
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

5-2013

Towards a filmic look and feel in real time
computer graphics
Sherief Farouk

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, and
the Other Film and Media Studies Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Farouk, Sherief, "Towards a filmic look and feel in real time computer graphics" (2013). Electronic Theses and Dissertations. 1898.
http://digitalcommons.library.umaine.edu/etd/1898

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/565?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/1898?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages

TOWARDS A FILMIC LOOK AND FEEL IN

REAL TIME COMPUTER GRAPHICS

By

Sherief Farouk

B.S. Arab Academy for Science and Technology, 2009

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Computer Science)

The Graduate School

The University of Maine

May 2013

Advisory Committee:

James Fastook, Professor of Computer Science, Advisor

Phillip Dickens, Associate Professor of Computer Science

Larry Latour, Associate Professor of Computer Science

TOWARDS A FILMIC LOOK AND FEEL IN

REAL TIME COMPUTER GRAPHICS

By Sherief Farouk

Thesis Advisor: Dr. James Fastook

An Abstract of the Thesis Presented

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

(in Computer Science)

May 2013

Film footage has a distinct look and feel that audience can instantly recognize,

making its replication desirable for computer generated graphics. This thesis pre­

sents methods capable of replicating significant portions of the film look and feel

while being able to fit within the constraints imposed by real-time computer gen­

erated graphics on consumer hardware.

TABLE OF CONTENTS
LIST OF FIGURES... vi

LIST OF EQUATIONS..xi

CHAPTER ONE: INTRODUCTION.. 1

Problem Statement...1

Objectives...2

Review of Previous Work.. 4

CHAPTER TWO: RENDERING OVERVIEW .. 6

High Dynamic Range.. 7

Conservation of Energy.. 8

The Graphics Pipeline.. 11

Anti-Aliasing... 25

Pixels versus fragments..30

CHAPTER THREE: DEPTH OF FIELD... 31

Introduction...31

Previous Work..37

Proposed Technique... 44

Algorithm.. 49

Results..50

CHAPTER FOUR: LENS FLARE...52

Introduction.. 52

Previous Work.. 54

Breakdown..55

Bright Region Detection...............................55

Bloom..56

Light Streaks... 57

Ghosting..59

Proposed Technique..63

Algorithm...66

Results..67

CHAPTER FIVE: TONEMAPPING... 70

Introduction.. 70

Previous Work.. 77

Proposed Approach.. 82

Results..85

CHAPTER SIX: FRAME RATE..88

CHAPTER SEVEN: MOTION BLUR... 92

Introduction.. 92

Used Technique...95

CHAPTER EIGHT: PROJECTOR COLOR CONVERGENCE................97

Introduction...97

Previous Work.. 100

Proposed Technique.. 101

Algorithm................................... ... 104

Results.. 105

CONCLUSIONS.. 109

BIBLIOGRAPHY.. 110

APPENDIX A: BRANCH-FREE ERROR FUNCTION........................... 114

BIOGRAPHY OF THE AUTHOR..115

v

LIST OF FIGURES

Figure 1. IEEE 16-bit Floating Point Binary Layout................................. 7

Figure 2. High Dynamic Range Blur... 10

Figure 3. The Hardware Graphics Pipeline..11

Figure 4. Rasterization Rendering Vertices.. 13

Figure 5. Rasterization Rendering Polygon.. 14

Figure 6. Texture and Associated Mipmap Chain...................................15

Figure 7. Trilinear and Anisotropic Texture Filtering............................... 17

Figure 8. Cubemap Texture Composition... 18

Figure 9. Cubemap Texture Addressing..19

Figure 10. Texture and Rasterized Polygon.. 20

Figure 11. Scene Rendered Using Render To Texture.............................21

Figure 12. Complex Render To Texture Pipeline......................................22

Figure 13. Texture and Screen Aligned Polygon.......................................23

Figure 14. Texture and Post Processed Polygon..................................... 24

Figure 15. Computer Generated Scene with Aliasing.............................. 25

Figure 16. Computer Generated Scene with Anti-Aliasing......................26

Figure 17. Anti-Aliased Pixel Sample Layout..27

vi

Figure 18. Subsampled Pixel Color Values... 28

Figure 19. Subsampled Pixel Color Resolution...28

Figure 20. High Frequency Polygon with Anti-Aliasing............................ 29

Figure 21. Lens Imaging Model.. 32

Figure 22. Chromatic Aberration Lens Model.. 33

Figure 23. Chromatic Aberration Photograph..34

Figure 24. Purple Fringing..35

Figure 25. Depth of Field in Film.. 36

Figure 26. Depth of Field Sampling Pattern.. 38

Figure 27. Depth of Field in Uncharted 2 .. 39

Figure 28. Depth of Field in Good Samaritan...41

Figure 29. Depth of Field Layers in Good Samaritan................................41

Figure 30. Depth of Field Aperture Sampling Patterns............................ 45

Figure 31. Scene and Depth of Field Rejected Samples.........................47

Figure 32. Chromatic Aberration in Mythbusters..................................... 48

Figure 33. Vignette Mask Texture.. 48

Figure 34. Scene Rendered Without Depth of Field................................ 50

Figure 35. Scene Rendered With Focus on Foreground.........................50

vii

Figure 36. Scene Rendered With Focus on Center................................. 51

Figure 37. Scene Rendered With Chromatic Aberration..........................51

Figure 38. Anamorphic Lens F lare... 52

Figure 39. Scene and Bright Region Filter Results.................................. 56

Figure 40. Bloom Rendering Pipeline... 57

Figure 41. Light Streaks in Mythbusters... 58

Figure 42. Directional Light Streak Blur.. 59

Figure 43. Light Streaks in Rendered Scene..59

Figure 44. Lens Ghosts in Photograph... 60

Figure 45. Lens Ghosts in Film...61

Figure 46. Lens Ghost Color Tint in Film .. 62

Figure 47. Aperture Diffraction Points... 64

Figure 48. Rectangular Ghost.. 67

Figure 49. Tinted Rectangular Ghost.. 68

Figure 50. Rectangular Ghost With Color Diffraction...............................68

Figure 51. Rectangular Ghosts With Varying Rotation............................69

Figure 52. Ghosts With Varying Parameters... 69

Figure 53. High Dynamic Range Local Tonemapped Image.................... 71

viii

Figure 54. Local Tonemapping Halo Artifacts...73

Figure 55. High Dynamic Range Global Tonemapped Im age................ 75

Figure 56. Kodachrome Film Characteristic Curve.................................. 76

Figure 57. Reinhard Tonemapping Curve... 78

Figure 58. Hable Tonemapping Curve.. 80

Figure 59. Hable and Reinhard Tonemapping Curves’ Lower Ends..... 81

Figure 60. Farouk Tonemapping Curves.. 84

Figure 61. Kodak Premier Color Print Film 2393 Curves........................ 85

Figure 62. Scene With Various Tonemapping Curves.............................86

Figure 63. Scene With Varying Color Component Curve Parameters ..87

Figure 64. Rotary Disc Shutter Camera.. 88

Figure 65. 3:2 Pulldown... 90

Figure 66. 2:2:2:4 Pulldown... 90

Figure 67. Long Exposure Photograph With Motion Blur........................ 92

Figure 68. Scene From Half-Life 2 ... 93

Figure 69. Still Photograph of Drummer.. 94

Figure 70. Animated Scene Without Motion Blur.....................................96

Figure 71. Animated Scene Velocity Buffer Visualization....................... 96

Figure 72. Animated Scene With Motion Blur..96

Figure 73. Projector Color Divergence on Black Square G rid 97

Figure 74. Extreme Projector Color Divergence.......................................98

Figure 75. Non-Uniform Projector Color Divergence.............................. 99

Figure 76. Scene Without Color Divergence... 105

Figure 77. Scene With Uniform Color Divergence.................................105

Figure 78. Scene With Exaggerated Uniform Color Divergence......... 106

Figure 79. Color Divergence Vignette...107

Figure 80. Scene With Non-Uniform Color Divergence........................ 108

Figure 81. Scene With Extreme Non-Uniform Color Divergence......... 108

x

LIST OF EQUATIONS

Equation 1. Monitor Gamma Response... 6

Equation 2. Color to Black and White Conversion..................................... 23

Equation 3. Subtractive Bright Region Filter...55

Equation 4. Luminance Based Bright Region Filter...................................55

Equation 5. Screen Space Reflection... 64

Equation 6. Reinhard Tonemapping..77

Equation 7. Hable Tonemapping Primary Curve...................................... 80

Equation 8. Hable Tonemapping..80

Equation 9. Error Function Approximation..82

Equation 10. Farouk Tonemapping..83

Equation 11. Color Divergence Coordinate Calculation........................... 101

Equation 12. Range Packing... 102

Equation 13. Range Unpacking... 102

Equation 14. Normalized Vector Component Recalculation................... 102

xi

CHAPTER ONE:

INTRODUCTION

P r o b l e m S t a t e m e n t

Film footage, due to the photography and production process, has a distinctive

look that audiences are familiar with. Audiences can easily tell the difference be­

tween film and TV Soap Opera footage after a quick glance, and that affects

their perception of the content.

Comedy Troupe Monty Python even used the visual difference between film and

TV footage in one of their sketches, titled “The Royal Society For Putting Things

On Top Of Other Things”, where the characters upon moving to a different loca­

tion where they’re shot using outdoor film cameras exclaim “We’ve been trapped

in film!” [Python 1970]

Computer Generated Imagery (CGI) has a very sharp, defined look that’s a result

of the rendering process that simulates a perfect camera with no visual errors

operating with an infinitely fast shutter along a linear color space - a completely

different situation from the one encountered while shooting and processing film

footage.

This thesis aims to replicate some of the defining aspects of film footage on

commodity consumer hardware in real-time in an attempt to bring CGI as closely

as possible to film footage.

1

O b j e c t i v e s

This thesis aims to replicate a number of the visual artifacts seen in film in a real

time computer generated rendering. The low hanging fruit like film grain and

camera movement patterns, things where a trivial implementation method exists,

have been tackled extensively by both academia and video-game development -

the latter being a major driver of advancement in the field of real time computer

graphics.

The effects tackled in this thesis are imaging system artifacts like depth of field,

lens flare and color grading in addition to projection and display artifacts like color

convergence, with the goal being visually acceptable models of simulation suit­

able for implementation as a part of a real time rendering pipeline running on

standard consumer hardware governed by economical, performance and power

budgets.

Graphics Processing Units (GPUs) started out with hard-wired algorithms and

pipelines and as a result the look and feel of real time hardware accelerated ren­

dering hasn’t seen significant variations. With the recent introduction of GPUs

with fully programmable pipelines these restrictions have been lifted and a new

wave of non-traditional rendering models aimed at generating non-photorealistic

imagery emerged such as cel shading where the resulting scene mimics hand-

drawn cartoons (the technique was actually named after the celluloids, or cels,

used in the production in two-dimensional animation).

2

The attempt to replicate the film look and feel will explore the new options offered

by massively parallel programmable GPUs and try to come up with algorithms

that replicate expensive traditionally ray-traced rendering features such as lens

artifacts resulting from the diffraction, reflection and refraction of light inside an

imaging system while taking advantage of the GPU architecture and fitting within

the constraints required for real time rendering.

3

R e v i e w o f P r e v i o u s W o r k

Attempts at achieving a cinematic look and feel have happened within offline and

real-time rendered computer graphics. Computer generated movies like Wall-E

attempted to replicate cinema’s look and feel to increase the viewer immersion -

viewers have become accustomed to the specifics of cinematic format including

its limitations and imperfections and while the viewers may not be actively aware

of their recognition of cinema’s look and feel they can be acutely aware of their

lack of recognition of it. Peter Jackson’s The Hobbit was screened at 48 frames-

per-second, double the traditional cinema frame rate of 24 frames-per-second,

and some of the audience came out calling it “camcorder-like” for better or for

worse.

Video games have also attempted to create cinematic environments as

consumer-grade graphics hardware started getting good enough to handle com­

plex scenes and content creation pipelines became sophisticated enough to in­

clude actors for physical and facial performances coupled with motion-capture

and facial-capture systems. Franchises like Uncharted have boasted about their

cinematic gameplay experience, and the God of War franchise has gone to the

length of simulating a virtual camera that moves like an actual cinematic camera

on a dolly as opposed to the free camera common in computer graphics made

possible by the fact that the scene is synthetic and camera placement or path

does not have to conform to physical laws of acceleration and movement or re­

spect barriers in its way. The Dead Space series did away with the in-game user

4

interface or heads up display to maintain a movie-like feel and Mass Effect went

to the length of adding artificial film grain - noise artificially added over the ren­

dered frames to simulate the graininess imperfections of film material.

A significant amount of work in that direction, especially in real-time graphics, has

not been in the form of traditional literature. The economics of the games industry

result in a massive amount of research being done with the target being relatively

low turn-around times and an end-product quality that’s acceptable by the aver­

age consumer, and some times the work doesn’t get any form of external peer

review at all since implementation details could be considered a competitive ad­

vantage. Even for some published works less scrutiny is usually given, and the

publication could consist entirely of a talk, an article or a white paper lacking the

rigorous in-depth analysis traditionally done by academic literature.

5

CHAPTER TWO:

RENDERING OVERVIEW

Graphics Processing Units (GPUs) store the display image in a region of memory

called the framebuffer. Most commonly an 8-bit per color channel format is used

(for 24-bits or 32-bits total per pixel for RGB [Red/Green/Blue] or RGBA [Red/

Green/Blue/Alpha - a value used for representing how opaque the pixel is and

used for compositing and blending effects] framebuffers respectively) to repre­

sent color either in linear or non-linear space, usually referred to as gamma

space where the intensity of a color c is equal to cv. The term gamma comes

from the equation used by electronics engineers to describe the brightness re­

sponse curve of a CRT monitor (equation 1) [Smith 1995]. In the equation / refers

to the intensity or brightness, V is the voltage applied and k is a proportionality

constant.

/ = K V 1 (1)

Since CRT monitors and TVs historically had a response curve corresponding to

gamma = 2.2 that is the non-linear framebuffer storage preferred by graphics

cards.

The 256 possible values of the color components in unsigned 8-bit per compo­

nent formats are represented with a floating-point number limited to the range [0,

1.0]. Any values outside this range are clamped to the range’s minimum or

maximum value by the display hardware.

6

H i g h D y n a m i c R a n g e

Color intensities in the real world are not limited to 256 quantized values - the dif­

ference between the brightest and darkest spots in a photograph can be on the

order of 10,000:1 - such imagery is referred to as High Dynamic Range (HDR)

imagery. Several formats are capable of storing images in greater than 8-bit per

component precision, and among the most common is OpenEXR, which uses the

IEEE 16-bit floating-point format (commonly referred to as half or FP16) which

has one sign bit, five exponent bits and and ten mantissa (fraction) bits as shown

in figure 1 to store color components.

exponent fraction
sign (5 bit) (10 bit)

O O O
15 10 0

Figure 1: IEEE 16-bit floating point (half) type binary layout.

With a 16-bit floating-point representation the range of intensity values can be as

low as 2~u and as high as 65504. The format’s bit-count imposes some restric­

tions on precision, with integer values between 0 and 2048 representable exactly

7

and rounding used for higher values: 2049 to 4096 round to the nearest 2-

multiple, 4097 to 8192 round to the nearest 4-multiple, 8193 to 16384 round to

the nearest 8-multiple, 16385 to 32768 round to the nearest 16-multiple and

32769 to 65504 round to the nearest 32-multiple.

C o n s e r v a t i o n o f E n e r g y

Saturating framebuffers tend to lose color information outside of the range [0,1],

a scene featuring the sun and a lightbulb (two bright but drastically different ob­

jects) when stored in an 8-bit framebuffer might end up representing both the sun

and the lightbulb with the same brightness value. Lowering the exposure of that

scene in a later post-processing step will yield inaccurate results - color compo­

nents with values above 1.0 are clipped, and so a region with a brightness of

1000 units would look the same as a region with a brightness of 10 units despite

the two orders-of-magnitude difference in intensity - the format’s limited precision

has caused a loss of energy between the two transformations (rendering and ex­

posure change).

Framebuffer formats with higher precision have been supported in hardware

since NVIDIA’s NV4X generation chips, known commercially as GeForce 6 Se­

ries, which introduced FP16 framebuffer format support. Newer GPUs like the

NVIDIA G8X series, known commercially as GeForce 8 Series, introduced other

high-precision formats suitable for rendering with more precision (full FP32, or

float) as well as a format using the same 32 bits that the 8-bit-per-channel RGBA

format uses, but yields a 4-fold increase in the number of color values available

(R10G10B10A2, a format that utilizes 10 bits for each of the Red, Green and

Blue components and two bits for Alpha). Hardware support for such high preci­

sion formats coupled with higher precision in the fragment processing pipeline

make it possible to avoid loss of energy when rendering scenes that rely on

heavy / complex post-processing steps.

With saturating 8-bit framebuffers significant loss of data can occur, which can

accumulate and magnify errors when post-processing is applied to the image

data. One example would be the case of applying a blur on a very bright object -

an object with RGB color values of (11.4, 2.4, 12.1) due to the object being a

bright source of light (like a lamp) or having strong specular reflections would be

stored in a saturating 8-bit framebuffer as an evenly white (1.0, 1.0, 1.0), and

blurring would result in a uniformly gray blur along the objects edges - using an

FP16 framebuffer preserves in the ratios between the RGB components with the

result consisting of a white center with a halo that is mostly purple (since the

dominant color components are red and blue) when viewed on an 8-bit display.

Figure 2 shows such an object using high-precision pixel storage and the result

of applying a Gaussian blur to it demonstrating the energy-conserving property of

high-precision framebuffer representations.

9

Figure 2: A high dynamic range region with color components exceeding the
maximum displayable value of 1.0 as seen on a traditional display after clamping
its value to 1.0 (left) and the result of applying a Gaussian blur to that same re­
gion - note the preservation of the purple hue around the highlight due to the

high-precision framebuffer storage format used. A clamping framebuffer format
would have a gray hue surrounding the highlight since all pixels will be stored as

white (1.0, 1.0, 1.0) RGB tuples.

10

T h e G r a p h i c s P i p e l i n e

The task of the GPU is to generate a two-dimensional image of a scene given

that scene’s description. GPUs started out as simple framebuffer-only devices

responsible for managing two-dimensional pixel data and output to the display

device, and the CPU was responsible for determining the values of individual

pixels to generate the desired image and passing that over to the GPU.

Later GPUs gained significant computation power, and were designed to synthe­

size an image from a complex high-level polygonal description of a scene (Figure

3 shows an outline of a modern GPU pipeline).

Figure 3: The hardware graphics pipeline. Data flows alongside the arrow and
the Vertex Shader and Pixel Shader stages are fully programmable.

Modern GPUs start by taking in vertex attributes like positions and normals in a

three-dimensional space and invoke a provided program on each vertex inde­

pendently (and, logically, in parallel) to transform the vertices to the Normalized

Device Coordinates [NDC] space describing the position within the image using a

11

[-1, 1] range. Other vertex-related attributes are computed at this step such as

illumination (if not deferred to the pixel stage, which will be explained shortly).1

After each vertex receives a NDC position, and optionally a set of attribute val­

ues, the GPU’s primitive assembly stage connects the transformed vertices to

establish primitives such as points, point-sprites, lines, triangles or quads.

The assembled primitives are then handed on to the rasterization stage2, where

the screen-space pixels covered by each primitive are determined. The screen-

space pixels that a primitive affects can be subject to other operations that de­

termine a pixel’s visibility.

There are various operations that determine a pixel’s visibility. Among these are

scissor testing, an operation whereby a pixel is accepted or rejected based on its

screen coordinates; stencil testing, an operation whereby a pixel is accepted or

rejected depending on values stored in a pixel-for-pixel Stencil Buffer that holds a

special defining value for each pixel on display. Hidden surface removal, an op­

eration that is usually handled by maintaining a per-pixel depth buffer that holds

1 There are lots of different ways to generate an image using programmable hardware - this overview goes

over the most common and traditional one, but different use-cases and clever tricks can synthesize images

from very little input (such as vertex indices and fragment screen coordinates, tracked by the GPU without

needing any external input for the vertex and fragment pipelines).

2 More recent GPUs have an optional pipeline stage that comes after the vertex stage and primitive assem­

bly known as the Geometry Shader stage - it operates on assembled primitives (and potentially adjacent

primitives) and has the ability to kill existing primitives or emit entirely new ones to be passed on to the ras-

terizer stage. The Geometry Shader stage is not used by any of the techniques discussed here and there­

fore isn’t discussed in detail. For more information [Blythe 2006] provides excellent coverage of the topic.

12

the distance from the camera to each pixel, such that when an incoming pixel

has a depth value that is higher than the one that is already in the depth buffer at

that location (signifying that it is farther away from the camera than the existing

pixel and therefore is behind an already-rasterized primitive) it is rejected.

The rasterizer is also responsible for interpolating the attributes generated in the

vertex stage across the surface of the primitive in a perspective-correct way, so

that a color attribute at each vertex of a triangle (Figure 4) will be smoothly inter­

polated3 across the surface of the primitive (Figure 5).

Figure 4: Three vertices (emphasized), each with a color attribute (red, green and
blue).

3 While smooth interpolation is the default there are other interpolation options available (non perspective-

correct, solid and centroid sampling to name a few) but they are beyond the scope of this thesis.

13

Figure 5: A triangle generated by connecting the vertices in figure 4 and interpo­
lating the color values across the primitive surface.

After the rasterizer calculates the fragments covered by the primitive it passes

them along with their interpolated per-vertex attribute values to the pixel shader

stage, where a fragment program is executed once for every pixel, given that

pixel’s attributes, this program is responsible for calculating the final output colors

of each pixel written to the framebuffer. Fragment programs on modern GPUs

can be arbitrarily complex allowing for the use of per-fragment complex lighting

models or simulation of exotic materials.

The programmable vertex and pixel shader stages can be given uniform parame­

ters invariant across vertices / fragments for the object being rendered - as in­

puts, and they can also access the GPU’s on-board memory in the form of either

standard C-like arrays of data or in the form of GPU-stored images called tex­

tures.

14

A texture is a one, two or three dimensional collection of one to four component

pixels (referred to as a texture element or a texture pixel, commonly abbreviated

as texel) and an optional associated set of the identical images in decreasing di­

mensions known as the mipmap chain that is used for filtering. The mipmap

chain is arranged into levels with the source image being level 0, a half-size im­

age being level 1 and a quarter-size image being level 2 etc. all the way down to

a 1x1 pixel representation.

Figure 6: A texture (left) and its associated mipmap chain.

Textures are accessed using a variety of filtering methods and a normalized co­

ordinate space. A texture image with 2 dimensions (m, n) and having from one to

four color components per pixel can be uploaded to the GPU and accessed us­

ing normalized coordinates in the range [0, 1.0]. These are expanded by the

GPU to the ranges [0, m] and [0, n] before sampling the image. In the case

15

where fractional coordinates are generated, the GPU can use one of the sup­

ported filtering modes:

• Nearest filtering, where the nearest texel is retrieved.

• Bi-linear filtering where the resulting color consists of the texel closest to

the requested coordinate plus a linear interpolation of the texels above,

below, to the left and to the right of it, with weights corresponding to their

distance from the fractional coordinates.

• Tri-linear filtering where two bi-linear filtered samples are taken from the

two mipmap levels closest to the screen-space size of the textured surface

and then linearly interpolated.

• Anisotropic filtering where the elongation of the primitive at the sampling

point (determined by the screen-space derivatives of the primitive’s width

and height at the pixel being processed) is calculated and used to deter­

mine the number of samples fetched and interpolated to avoid perceived

smudginess. Figure 7 shows a comparison between bi-linear filtering and

anisotropic filtering.

16

Figure 7: A texture-mapped surface using tri-linear filtering (left) and anisotropic
filtering (right). Source: Wikimedia Commons.

Another special kind of texture is the cubemap texture often used to simulate re­

flective objects. A cubemap is a texture composed of six two-dimensional images

logically arranged in a cube shape (hence the name), with each of the six images

optionally having a mipmap chain. Figure 8 shows the structure of a cubemap

texture representing a scene viewed from six different view points (facing top,

bottom, left, right, forward and backwards).

17

Figure 8: Six different viewpoints of a scene (top, bottom, left, right, forward and
backwards) and their mapping onto the surface of a cubemap texture object.

Source: http://www.nvidia.com/object/cube_map_ogl_tutorial.html

Cubemap textures are addressed using a three-dimensional vector representing

a direction from the center of the cube, and the value returned is the result of

sampling the cubemap at the intersection of the addressing vector with the

cube’s surface. Figure 9 shows an example of a vector used for addressing a cu­

bemap.

18

http://www.nvidia.com/object/cube_map_ogl_tutorial.html

Figure 9: A cubemap texture and an addressing vector along with its intersection
on the cubemap’s surface. Source:

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter08.html

Textures are sampled during fragment shading using per-vertex attributes com­

monly referred to as texture coordinates. Figure 10 shows a texture (left) and a

quadrilateral polygon (right) rendered with the per-vertex attributes for texture

coordinates (0, 0) assigned to its lower-left corner, (1, 0) assigned to its lower-

right corner, (1,1) assigned to its upper right corner and (0, 1) assigned to its

upper-left corner. The texture coordinate attributes pass through the vertex stage

unmodified, where they’re interpolated across the surface of the polygon at every

fragment. The fragment program uses these interpolated attribute values to sam­

ple the texture at every fragment and output that color, resulting in the texture

appearing spread over the surface of the polygon.

19

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter08.html

Figure 10: A two-dimensional texture image (left) and a square rendered in a
three-dimensional space with perspective projection (right) using the image on

the left for texture mapping.

GPUs have the ability to render output directly to one or more textures instead of

the display, which is commonly referred to as render-to-texture functionality.

Render-to-texture can be used as an intermediate step to dynamically generate

textures used in the synthesis of the final displayed image. Figure 11 shows a

scene with render-to-texture used to render a wireframe teapot to a texture that is

later used to color the surface of a quadrilateral similar to the one in figure 10.

20

Figure 11: A wireframe teapot is rendered to a texture image and that image is
later used to texture a quadrilateral polygon rendered to the display.

Render-to-texture functionality and the closely related concept of off-screen fra­

mebuffers enable significantly more complex rendering pipelines. With the intro­

duction of the virtual framebuffer object a new functionality known as Multiple

Render Targets (MRTs) was created, enabling the fragment program to output

multiple color values to multiple framebuffers.

Figure 12 shows the result of a complex rendering pipeline incorporating Multiple

Render Targets functionality. The original texture (left) is used as a texture for a

quadrilateral rendered in three-dimensional space with a perspective projection

to two texture-based framebuffers at the same time, with the fragment program

modifying the output color for each of the two output framebuffers. The two fra­

mebuffers are then used as texture inputs for a second pass that renders two

21

side-by-side view plane-aligned quadrilateral polygons textured with the contents

generated by the first render pass.

Figure 12: An example of a complex rendering pipeline made possible by using
render to texture and multiple render targets functionality. A texture (left) is used
to cover the surface of a quadrilateral rendered in a three dimensional environ­

ment using a perspective projection with the output written to two texture objects
simultaneously, each receiving a different color tint in the fragment program. The
resulting textures from the previous step are then drawn on view plane-aligned

quadrilaterals in the following render pass.

Render-to-texture can be used to implement image post-processing by rendering

the scene in its original form to a texture and then using that texture as input

when rendering a view-plane aligned full-screen quadrilateral. Figure 13 shows a

texture (left) and an OpenGL window (right) with a scene consisting of a single

view-plane aligned full-screen quadrilateral using that texture.

22

Figure 13: A texture (left) and an OpenGL window with a scene (right) with the
texture overlaid on a screen-sized, view plane-aligned quadrilateral with a simple

color pass-through fragment program.

Render-to-texture along with a fragment program that is not a trivial color pass­

through (the most basic post-processing fragment program) can be used to im­

plement a variety of post-processing effects. Figure 14 shows a black-and-white

effect implemented with a fragment program. The fragment program would (at

every screen pixel) sample the source texture, convert the sampled color to

black-and-white using equation 2 and output that value as the pixel’s color.

f (x) = x • (0.299,0.587,0.114) (2)

23

Figure 14: A texture (left) and an OpenGL window with a scene (right) with the
texture overlaid on a screen-sized, view plane-aligned quadrilateral with a frag­
ment program that applies equation 2 to the texture’s sampled color before out-

putting it as the final display color.

More complex post-processing pipelines can be created by using two or more

textures and alternating between using them as source and destination for ren­

dering. An initial scene, for example, can be rendered to a texture Ti followed by

a post-processing pass rendering the processed scene from 7? into a texture T2

followed by another post-processing pass this time using T2 as its input and T1 as

its output, etc.

24

A n t i - A l i a s i n g

The images generated by rasterization hardware are the result of sampling poly­

gon coverage and shading at every screen pixel, and as with any sampling func­

tion in digital signal processing aliasing can occur - two different signals could

look identical (or alias) as a result of insufficient sampling resolution precision.

In rasterized computer graphics aliasing manifests itself spatially as jagged stair

step-like edges on polygons. Figure 15 shows a real-time computer generated

scene (left) and a magnified close-up (right) showing the jagged edges of po­

lygonal objects.

Figure 15: Computer generated scene with a highlighted region (left) and a close
up of the highlighted region (right) showing spatial aliasing at polygon edges.

Anti-aliasing in computer graphics is an attempt to fix that problem. Figure 16

shows the same scene from figure 15 with morphological anti-aliasing [Reshetov

2009] applied.

25

Figure 16: Anti-aliased computer generated scene with a highlighted region (left)
and a close up of the highlighted region (right) showing a significant decrease in

spatial aliasing compared to the same scene and region from figure 15.

26

Graphics hardware has traditionally implemented anti-aliasing by rasterizing the

scene into a render buffer with more than one sampling point per pixel, effectively

rasterizing the scene’s polygons at a higher sampling resolution than the final

resolution . Figure 17 shows a close up of a single anti-aliased pixel with four

sampling points (represented by the black circles) having three solidly colored

triangles rasterized across its sub-coordinates.

Figure 17: A close up of a single anti-aliased pixel with four sub-pixel sampling
points. Image from [Burrows 2004],

The polygons are rasterized at sampling point resolution and a color value for

each sampling point is stored. Figure 18 shows the sampling point color values

resulting from the rasterization of the polygons in figure 17 at sampling point

resolution.

27

Figure 18: Color values stored at each sampling point from the rasterization of
the polygons in figure 17. Image from [Burrows 2004],

After the scene is rendered to the sub-pixel sampled render buffer it is then re­

solved into a framebuffer with the desired pixel dimensions, usually by linearly

averaging the color of the subsamples in each pixel. Figure 19 shows an exam­

ple of the resolve step acting on the sub-sampled pixel shown in figure 18.

Figure 19: Resolving the four sub-pixel samples from figure 18 into a single pixel
by linearly averaging the four colors. Image from [Burrows 2004].

When the same polygon covers multiple sample points in the same pixels two

approaches are used by hardware anti-aliasing implementations to determine the

28

shading frequency, which in a programmable pipeline is how often to execute the

fragment program.

In super-sampling anti-aliasing a single polygon covering n sampling points in a

pixel will have the fragment program executed n times, once for each fragment,

and the n different output values stored for each sample. In multi-sampling anti­

aliasing a single polygon covering n sampling points in a pixel will have the frag­

ment program executed once for that pixel and the fragment program’s output

value copied into the n samples’ storage location. Figure 20 shows a polygon be­

ing rasterized into sub-sampled rendering buffers with super-sampling anti­

aliasing (left) and multi-sampling anti-aliasing (right).

X • • •

\

X • • •

\

• n • • • • •

in • X •
X

• • • \ •

.
•

• • • . \

Figure 20: Two identical polygons with high-frequency shading rasterized to sub­
sampled buffers with four samples per pixel. Each square represents one sub­

pixel sampling point and the large square with a dotted edge on the top left rep­
resents the area of one pixel. The polygon on the left is being rasterized into a

super-sampled buffer and has each sampling point storing a separate color as a
result of each sampling point having executed its own invocation of the fragment
program. The polygon on the right is being rasterized into a multi-sampled buffer
and has all the sampling points in each pixel storing the same color value as a
result of the fragment program being executed only once per pixel. Image from

[Burrows 2004],

Anti-aliasing doesn’t necessarily have to be implemented using the built-in hard­

ware support and algorithms. Various methods to perform anti-aliasing as a post­

process have been proposed: [Chajdas et. al 2011] used sub-pixel reconstruc­

tion, [Lottes 2011] used luminosity-based edge detection and blending, [Kaplan-

yan 2010] used a color deviation based blur coupled with temporal anti-aliasing

on distant objects occupying a small screen-space region in an animated scene

and [Reshetov 2009] used a CPU-based anti-aliasing which bypasses the GPU

entirely. Deciding which anti-aliasing algorithm to use is a complex decision

based on many factors tied to the rendering pipeline in use, although post­

processing based anti-aliasing algorithms can be added to any pipeline that pro­

duces a final (Red, Green, Blue) image as its output.

P i x e l s v e r s u s f r a g m e n t s

Pixels and fragments are two closely-related concepts involved with rasterization-

based GPUs, and as a result some confusion about what they represent is com­

mon.

A fragment is the unit of input to the fragment processing stage and the fragment

program. A fragment consists of multiple data points such as raster position,

depth value, stencil value, sub-sample index and any attributes interpolated from

the vertex processing stage. A pixel is the output result of fragment processing,

and it is merely a one to four element tuple representing the color of the pixel.

30

CHAPTER THREE:

DEPTH OF FIELD

I N T R O D U C T I O N

A lens aperture maps every point in a captured scene to a Circle of Confusion

(CoC) on the image plane. At a certain distance range the CoC is small enough

to be considered a point and the objects to appear sharp and free of any blur -

this range is called the Depth of Field (DoF). Points outside the DoF are pro­

jected on the image plane as circles-of-confusion with a diameter proportional to

the size of the lens and their distance from the image plane. DoF is also affected

by multiple lens parameters such as the Focal Length and the f-number.

Figure 21 shows a lens image capture system (with aperture A and focal point at

distance F)and an object at distance D from the lens which has a plane in focus

at distance P. Since Dand P are different the object does not lie on the focus

plane and therefore its image will appear out of focus on the lens’s image plane

(at distance / from the lens) - each point on the object will map to a circle of con­

fusion of diameter Con the image plane.

31

D- Object Distance
I - Image Distance

Figure 21: Lens-based Image Capture System and its Circle of Confusion. Image
from [Hammon 2007],

Due to the nature of visible light and the range of wavelengths it covers there are

some other subtle side-effects related to DoF, like Chromatic Aberration and

Bokeh.

Chromatic Aberration is an image effect caused by the inability of optical lenses

to focus the entire range of visible light at one point - the Index of Refraction n of

a material can be stated as A / Am where A is the wavelength of light in vacuum

and Am is the wavelength of light in the material causing the refraction and as a

result different wavelengths of light corresponding to different visible colors have

slightly different refraction indices different wavelengths of light have different re­

fractive indices (n) and are therefore focused at slightly different focal points.

32

Figure 22 shows an example of chromatic aberration affecting three different

wavelengths of light (red, green and blue). The rays entering the lens at the

same point get focused at different focal points due to their wavelength affecting

their indices of refraction.

Figure 22: The physics involved in Chromatic Aberration - different wavelengths
(colors) have different refractive indices resulting in each color’s focal point being

slightly different from every other color’s. Source: Wikimedia Commons

33

Figure 23: Clear image (top) and the same image with severe Chromatic Aberra­
tion. Source: Wikimedia Commons

In Figure 23, the top image is a reference image taken with an imaging system

that exhibits little-to-none chromatic aberration while the bottom image exhibits

severe chromatic aberration, with the most visible effect being the strong color

separation. Chromatic aberration isn’t uniform, and the distance between the foci

increases the farther you get from the center of the lens. The lower image also

exhibits barre l d is to rtion (the apparent curvature of the columns that increases

towards the right) but that is a separate error which occurs alongside chromatic

aberration due to the geometry of the lens itself.

Imaging systems with minimal chromatic aberration still affect the final image

though in a more subtle way. One of the most common effects of chromatic aber­

ration is the phenomenon known as Purple Fringing - a purple outline that ap-

34

pears around mostly dark regions in a scene (figure 24). Chromatic aberration

causes some of the colors of an object to move out of focus purple fringing is a

manifestation of that.

Figure 24: Example of Purple Fringing, a term used to describe the out-of-focus
purple “ghost image” around object edges, a subtle yet very common result of

Chromatic Aberration. Source: Wikimedia Commons

Accurate depth of field is a desirable property, as the effect contributes heavily to

shot composition. Figure 25 shows a scene from The Dark Knight with shallow

depth of field, a blurred background, a blurred foreground object and an in focus

central character (Batman).

35

Figure 25: Scene from The Dark Knight. Depth of field is a major contributor to
the shot’s final look with the shallow depth of field drawing the viewer’s attention

to the central character (Batman).

36

P r e v i o u s W o r k

The majority of real-time depth of field implementations so far have relied on

post-processing a single view image coupled with per-pixel depth info - those can

be split into two major categories: Gather Methods and Scatter Methods.

Gather methods run as a post-processing filter that, at each pixel, computes the

size of the circle of confusion and uses that size to determine which coordinate

from the source image should be fetched and processed to generate the final

output color value for that pixel in the image [Rokita 1996; Riguer et al. 2003; Oat

2003; Scheuermann 2004; Bertalmio et al. 2004; Earl Hammon 2007; Zhou et al.

2007; Lee et al. 2009]. Those filters are fast enough to use in an already GPU-

taxing rendering pipeline in real-time applications such as video games. Gather

methods, however, suffer from intensity leakage whereby sharp foreground ob­

jects having a leaky “halo” that bleeds over background objects.

Figure 26 shows the basis of the gather method used in [Oat 2003] - a circle of

confusion size is calculated by the fragment program at every pixel based on the

pixel’s distance from the view plane and the camera parameters and that size

was used to scale a number of sampling coordinates (red) centered around the

pixel coordinates being processed (blue) and the scaled sizes were used to

sample the source image with the final color result being the linear average of the

sampled values.

37

Circle Of Confusion Filter Kernel

• Vary kernel size based on the “blurriness” factor

/ \
0 •

u

" \
o J

o •

v y

Point in focus Point is blurred

Real-Time 3D Scene Post-processing - Game Developer's Conference Europe 2003

Figure 26: Post-process depth of field filter sampling pattern used in [Oat 2003].

38

Gather methods usually suffer from intensity leakage, the blurring of in-focus ob­

jects onto out of focus parts of the scene where the two intersect on the view

plane. Figure 27 shows an example of intensity leakage in the PlayStation 3

video game Uncharted 2: Among Thieves with the foreground objects in the high­

lighted and magnified region (sandbags) having a ‘halo’ effect around their edges

that intersect with the out of focus background.

Figure 27: Example of intensity leakage from the PlayStation 3 video game Un­
charted 2: Among Thieves. The close-up at the bottom of the highlighted region
in the top image shows the foreground in-focus objects leaking into the scene’s

blurred background.

39

Intensity leakage in gather methods is usually a side-effect of averaging contribu­

tions from a number of pixels to determine the final color of a pixel since the pix­

els samples wouldn’t necessarily belong to objects that all have a similar view-

space distance. In the example in figure 27 the contributions from pixels belong­

ing to the foreground sandbags object sampled while rendering the out of focus

background pixels that are close to the sandbags in screen space cause the

sandbags’ color to leak onto the background.

A Scatter Method starts with the input pixels and for each pixel a circle of confu­

sion size is calculated based on its distance from the view plane and camera pa­

rameters, just like in gather methods. After the circle of confusion size is calcu­

lated the algorithm determines which pixels across the output image the current

input pixel affects and proceeds to accumulate the input pixel’s contribution to the

output pixels.

Figure 28 shows depth of field achieved using a scatter method in the Good Sa­

maritan technology demo. The algorithm achieves scatter writing by generating

for each input pixel a non-opaque screen-aligned polygon whose size is propor­

tional to the computed circle of confusion size and additively blends those poly­

gons onto the output image using the alpha-blending hardware.

40

I * I

U :

\j j

I .1 9

\ ' 1 Hif .v :
It

Figure 28: Depth of Field in the Good Samaritan technology presentation.

To avoid intensity leakage the Good Samaritan demo divides the scene into three

regions (Figure 29): blurred foreground (closed to the camera than the focus

plane), in focus region (at or near the focus plane) and a blurred background (far­

ther from the camera than the focus plane).

Foreground (blurred) In Focus (Full Resolution)

Figure 29: Images from The Good Samaritan presentation highlighting the
scene’s division into near, far and in-focus regions.

Background (blurred)

41

The algorithm used in the Good Samaritan technology demo results in improved

image quality but the cost is significantly higher as it taxes the limited number of

pixels a GPU can write to a framebuffer every second (referred to as the fillrate),

the GPU’s vertex processors and rasterization hardware (since an extra polygon

is rendered for every pixel) and memory bandwidth used to blend the semi­

transparent polygons with the rendered scene background. The technique used

in Epic Software’s Good Samaritan demo required three top-of-the-line at the

time (March 2011) GeForce GTX 580 GPUs running in parallel.

A side-effect of the majority of both gather and scatter methods is that the depth

values in the original depth buffer, after applying the Depth of Field effect, no

longer represent the depth of the pixels at their raster coordinates - in regions

where a near objects bleeds onto regions occupied by a far object. The depth

buffer will hold the far value, but the color pixels consist of a mixture of the values

from the near and far colors. This isn’t a major inconvenience in itself, but the

depth buffer is sometimes used as input to a number of other techniques down

the line [Mittring 2007, Mittring 2009]. The depth buffer can be used as input for

shadowing, fog, particle systems, motion blur and edge based anti-aliasing

amongst other things.

Single-image based methods, which operate mainly as a framebuffer post­

process, result in inaccurate results in cases where hidden surfaces would affect

the final image and a common workaround is to split the scene into a number of

layers and sort the objects into each of those layers either during a forward ren­

dering step or as a post-processing step [Barsky et al. 2002, Kraus and Strengert

42

2007, Lefohn et al. 2006; Kosloff and Barsky 2007, Lee et al. 2009a, Kolsoff et al.

2009, Lee et al. 2009b], Each layer requires its own depth-buffer for hidden sur­

face removal so multiple render target functionality is usually unsuitable for ac­

celerating layer rendering unless a custom (and therefore non-hardware acceler­

ated) hidden surface removal method is used. On hardware with support for the

geometry shader pipeline stage polygon duplication in the geometry stage cou­

ples with multiple render targets can remove the need for rendering the scene n-

times for n-layers, although the cost is still noticeably higher than for single-view

rendering. More recent work has attempted to reproduce lens-related artifacts

like chromatic aberration and spherical aberration [Lee et al. 2010].

43

P r o p o s e d T e c h n i q u e

The proposed technique is based on [Oat 2003]’s approach of using a

dynamically-sized circle of confusion with a fixed number of texture samples per

pixel.

The algorithm works at every pixel by calculating the circle of confusion size

based on the pixel’s view-space distance from the camera and the depth of field

distance and range. After the canonical circle of confusion size S three circle of

confusion sizes for the red, green and blue channels Sr, Sg, Sbare calculated by

scaling the original size S by three variables dr, dg, db specifying the differences

in circle of confusion sizes for each color channel which corresponds directly to

how off-center the colors will focus with respect to the lens’s canonical focal

point.

A number of texture sampling coordinates C = {Co..... Cn} distributed around a

unit circle (figure 30) are supplied as a uniform input to the algorithm and once

the circle of confusion sizes are calculated three sets of texture sampling coordi­

nates Cr, Cg, Cb are generated by centering the texture sampling coordinates

from C around the current pixel’s coordinates and scaling them by Sr, Sg and Sb

respectively.

44

s V
/

> «
«

• s j

• • • •
• •

1

I
•

• •
m

• • •

\ / /
i

•

/
\

\

/
V

1

')

\ /

N

/ • •
\ t

/
€

\

• •l

\
• •

j

\)

\ /

Figure 30: Various sampling patterns corresponding to different aperture shapes.

To extract a color value a passed sample counter P is initialized to one, an ac­

cumulation vector A is initialized with the value of sampling the source image at

the pixel’s center and a depth value D is initialized with the depth of the pixel be­

ing processed. Using a list of n texture sampling coordinates, n color and depth

are samples are taken and, for each sample, if the magnitude of the difference in

depth between the sample’s depth and D is less than a threshold value ^ th e

sample’s color value is added to the accumulator A and the passed sample

45

counter P is incremented by one. After n samples are processed the final color

value is calculated by dividing the value in the accumulator A by the passed

sample counter P.

Conditionally accepting only the samples with a depth difference of at most A

guarantees that all the samples contributing to the color of a pixel are within an

explicitly specified depth range around the pixel’s depth, which helps avoid inten­

sity leakage since background samples contributing to foreground samples or the

other way around would be rejected due to the large depth difference. The num­

ber of sampling coordinates plus one becomes an upper bound to the number of

source image pixels contributing to every processed pixel, with the lower bound

being one contributing pixel (which can happen in case none of the sampled pix­

els u^ing coordinates from the sampling coordinates list fails the depth condition,

in which case the only contributor to a pixel’s color value would be the pixel it­

self). Figure 31 shows a scene (left) and a visualization of the percentage of re­

jected samples due to depth (right) - black means zero pixels were rejected and

white means all pixels were rejected with grey regions occurring linearly in be­

tween the two.

46

Figure 31: A scene (left) and a visualization of the percentage of rejected sam­
ples due to depth (right). Black means zero pixels were rejected and white

means all pixels were rejected with levels of grey representing values in between
the two extremes linearly.

To compute the final color of each pixel three colors R, G, B are computed using

the color extraction approach using the lists Cr, Cg, Cb respectively. The final

color is the vector consisting of the red component of R, the green component of

G and the blue component of B. Chromatic aberration is a direct result of using

three different sizes Sr, Sg, Sb to calculate three circle of confusion sizes. The

case where Sr = Sg = Sb is the equivalent of an ideal lens with no chromatic aber­

ration.

Lenses usually have a non uniform distribution of chromatic aberration intensity,

with the edges having more aberration than the center (Figure 32). The scaling

parameters dr, dg, db can themselves be scaled across the image using values

fetched from a texture such as a vignette (figure 33) to vary the chromatic aberra­

tion intensity across the image.

47

Figure 32: Scene from Mythbusters made using a wide-angle lens exhibiting
chromatic aberration. The non uniform distribution of aberration intensity can be
seen near the right and left edges which exhibit significant chromatic aberration

as opposed to the center which is relatively aberration free.

Figure 33: Vignette texture which can be used to scale dr, dg, db to get a chro­
matic aberration distribution similar to figure 32.

48

A l g o r i t h m

DepthO fField(SourceImage,

Depth Texture,

TextureCoordinate,

C,
A):

Depth «— sample(DepthTexture,TextureCoordinate)

A «— sample(SourceImage,TextureCoordinate)

P <- 1

S ComputeCoCSize()

s P, Ss, Sb <- S * dr, S * dg, S * db

C «- C + TextureCoordinate

Cr, Cg, Cb, <- C * Sr, C * Sg, C * Sb

FetchColors(SampleSet):

A <— sample(SourceImage,TextureCoordinate)

P <- 1

for i in SampleSet:

D «- sample(DepthTexture, i)

if abs(Depth - D) <= Δ:

Color «— sample(SourceImage, i)

A «- A + Color

P <— P + 1

return (A / P)

R «- FetehColors(Cr)

(i «- Fetch Colors(Cg)

B «- FetcliColors(Cb)

return (R.r, C.g, B.l>)

49

R e s u l t s

Figure 34: Scene rendered without Depth of Field.

Figure 35: Same scene rendered with DoF filter enabled and the front object in
focus - the background out of focus objects don’t leak into the foreground in fo­

cus object.

50

Figure 36: Same scene rendered with DoF filter enabled and the front object out
of focus - the front out of focus objects don’t leak into the background in focus

objects.

Figure 37: Same scene rendered with depth of field and chromatic aberration en­
abled (Sr ≠ Sg ≠ Sb). Chromatic aberration artifacts such as purple fringing can be

scene in the highlighted region (left) and its closeup (right).

CHAPTER FOUR:

LENS FLARE

I n t r o d u c t i o n

Lens Flare is the name given to a set of unintended visual patterns caused by the

diffraction and reflection of light as it passes through a camera’s aperture and

lens system. While the effect is considered a flaw in lenses it has become an

identifying element of photographic and video footage, and attempts have been

made to reproduce it in computer-generated footage for realism [Pixar 2008].

Figure 38: Anamorphic Lens Flare. Source: Wikimedia Commons

52

Lens flares exhibit characteristic variations based on the specific lens and cam­

era formats used, and some patterns like the lens flare shown In Figure 38 are

strongly associated with film productions due to their correlation with the ana-

morphic lenses (lenses used to shoot wide-screen content while stretching it to

fill a 35mm film frame of a different aspect ratio) and film format used. Lens Flare

rendering adds a strong camera feel to a scene, and attempts to reproduce it in

real-time and offline renderings have been going on for over a decade.

53

P r e v i o u s W o r k

Previous attempts at rendering real-time lens flare have mostly relied on having

explicit knowledge of the screen-space position and visibility of a point light

source. [Kilgard 2000] relied on pre-made flare texture sprites additively blended

to the framebuffer. [King 2000] used a technique similar to [Kilgard 2000] while

varying flare texture sprite position and intensity depending on the screen-space

position of the light source. [Maughan 2001] introduced a method to vary the lens

flare intensity based on the visibility of the light source. [Kawase 2003] used

downsized framebuffer post-processing on programmable hardware to generate

image-based light streaks and simple lens ghosting that was limited to being a

vignette-masked screen-space reflection of the framebuffer contents. [Hullin et.

al. 2011] used GPU-accelerated raytracing coupled with geometry generation

and pre-computed textures to render a very accurate approximation of lens flare

for a given point light, albeit at a very high cost, making the algorithm unsuitable

for use on consumer hardware in scenes with area lights or many point lights.

The algorithm presented here is an image-based approach based on [Kawase

2003]. The runtime is independent of the number of light sources in the scene,

enabling it to simulate lens flare for any number of point and area lights in a

scene, as well as handling secondary light reflections such as the specular high­

lights on shiny objects in the scene. The algorithm can also vary the shape of

ghosts and light streaks based on a definition of the desired aperture’s shape.

54

B r e a k d o w n

Lens flare rendering is divided into three parts: Bloom (halos around bright ob­

jects), Light Streaks (aperture-based diffractions) and Ghosting (internal reflec­

tions in the lens).

B r i g h t R e g i o n D e t e c t i o n

As a pre-processing step a bright-region texture is created by passing the ren­

dered scene through a filter that extracts the bright regions of the scene while

blacking out the rest of the image area. The filter is applied after the tone-

mapping step since exposure and other tone-mapping parameters affect the

brightness of the scene. The output needs to be clamped to the range [0.0, «>[to

avoid having negative color intensities, a concept that has no real meaning.

Detecting bright regions can be done using a variety of methods. The easiest ap­

proach is a linear subtraction (equation 3) where the resulting color vector y is

the result of subtracting a color threshold vector t from the input color x; but the

approach used here was based on evaluating the pixel’s luminance and passing

only pixels with luminance exceeding a threshold value t (equation 4).

/(x) = x - t (3)

, f 0 if luminance(x) < t,
fix) — < , (4)

x otherwise

55

Figure 39 shows a scene rendered into a high dynamic range framebuffer (left)

and the result of a bright-region detection pass using the luminance based ap­

proach from equation (4) (right). The bright-region texture is used as input to the

rendering passes responsible for generating the various components of the lens

flare effect.

*

Figure 39: Scene rendered into high dynamic range framebuffer (left) and its cor­
responding bright-region filter output (Note that the white spots have an RGB ra­
tio that’s not necessarily 1:1:1, they merely appear so due to the limitations of the

display).

B l o o m

Bloom is an effect resulting from bright over-saturated points leaking onto neigh­

boring pixels on an image sensor, with the result looking like halos around bright

objects. The effect can be achieved by applying a Gaussian blur [Oat 2003] or

Kawase’s Bloom Filter [Kawase 2003] to the bright-pass output texture and addi­

tively blending the result with the framebuffer.

56

Figure 40 shows the bloom rendering process from [James 2004] - a source tex­

ture (a) is passed through a high-pass filter to isolate the bright regions, with the

output stored in a texture (b). The bright regions texture then has a separable

Gaussian blur [Oat 2003] applied to it first horizontally then vertically to get the

texture (c). A final post-processing pass additively blends the texture from (c)

onto the source texture from (a) resulting in the final image with bloom (d).

----------------------------------- - 0 —W J

t
(a) <d)

s 5
(b) (c)

Figure 40: Bloom rendering pipeline. Source texture (a) is passed through a high-
pass filter to isolate the bright regions (b) followed by a 2-stage Gaussian blur (c)
and then the result is composited additively on top of the source texture resulting

in the final image with the bloom effect (d). Image from [James 2004],

L i g h t S t r e a k s

Light streaks are a result of light diffraction around the edges of a polygonally-

shaped aperture resulting in star-like shapes originating at bright points in the

image. Figure 41 shows an example of light-streaks in video footage from the

show Mythbusters. The streaks originate at bright points in the scene and spread

out in six different directions, suggesting that the camera used had a hexagon-

shaper aperture.

57

Figure 41: Light Streaks (outlined) captured by a video camera from the TV show
Mythbusters.

[Kawase 2003] proposed an algorithm to render light streaks that starts by gen­

erating a high-pass texture containing the bright regions in the scene, scaling it to

one quarter of its original size followed by applying a directional blur two or more

times to end up with a texture containing a single streak (Figure 42) that is then

scaled back to the original source size and composited additively on top of the

source image (figure 43).

58

1st pass 2nd pass 3rd pass x4 d irections

%
%

%
%
«

«

\
V

\
\

V* \

i

Figure 42: A three-pass directional blur applied to the bright regions in a scene
and the resulting streaks image with four-directional streaks from applying four

directional blur passes. Image from [Kawase 2003].

V

Figure 43: Light Streaks rendered using [Kawase 2003].

G h o s t i n g

Ghosts is the name given to the visual artifact that manifests as aperture-shaped

polygonal reflections of bright regions in the scene being photographed. Figure

44 shows an example of lens ghosts (highlighted) in a photograph.

59

Figure 44: Polygonal, aperture-shaped ghosts in a photograph. Source: Wikime­
dia Commons

Lens ghosting is heavily present in film. Figure 45 shows a scene from the 2012

movie The Dark Knight Rises (left) with a bright light-bar on top of a police car in

an otherwise dark scene and a close-up of a highlighted region in the scene

(right) showing multiple ghosts.

60

Figure 45: Scene from the 2012 movie The Dark Knight Rises (left) showing lens
ghosts in the red highlighted region and a close up of the region (right) with the

lens ghosts highlighted in green.

Ghosts can emphasize some color components more than others. Figure 46

shows a scene from The Dark Knight Rises with a highlighted bright light source

and its associated ghost inside a red outline (left), and a close-up of the high­

lighted region (right) with the ghost (outlined in blue) and its source (outlined in

green) where the purple tint of the ghost, resulting from some light wavelengths

being emphasized more than others.

61

Figure 46: Scene from The Dark Knight with a highlighted region (left) and a
close-up of the highlighted region (right) showing a ghost (blue highlight) and its

source (green highlight).

62

P r o p o s e d T e c h n i q u e

[Kawase 2003] proposed using a blurred version of the scene’s bright-pass out­

put reflected and scaled around the center of the screen to simulate basic lens

ghosting. A problem with this method, however, is that ghosts do not accurately

account for the diffraction due to the aperture shape and they maintain a strong

resemblance to the original bright-pass output unlike real ghosts which usually

have polygonal, aperture-based shapes. The proposed technique also recreates

the apparent rotation of aperture shaped ghosts around a vector perpendicular to

the resulting two-dimensional image’s surface, color emphasis and subtle color

shifts due to different wavelengths of light.

The proposed algorithm takes as input a set of n two-dimensional points C = {

Ci..... Cn } distributed within a unit circle representing the aperture diffraction

points (the vertices of a hexagonal aperture for example) centered around the

unit circle (figure 47).

63

/ \
\ 1

/ - . \1 ' 1

\ \ /

Figure 47: Sample aperture diffraction points (in red) for an octagonal aperture.

To generate a ghost, a post-process pass is executed where at each pixel the set

of points in C is centered around the pixel’s texture coordinates and reflected

around the center of the image by an amount R using equation 5.

reflected(x) = ((x — 0.5) x R) + 0.5 (5)

An expansion scale E controlling the resulting size and dispersion of the ghosts

is determined based on the sampling points and desired ghost shapes. Three

offsets Or, Og, Ob are used to represent the difference in diffraction strengths with

respect to the diffraction of white light for red, green and blue respectively. Three

expansion scales Er, Eg, Eb are generated by multiplying E with Or, Og and Ob

respectively. If Or = Og = Ob then the three color components will be treated as

having the same diffraction properties and no color shifting will exist in the gen­

erated ghosts, otherwise there will be a varying color shift for each color compo­

nent.

64

To simulate the rotation of ghosts around the vector perpendicular to the surface

of the image by an angle (2 the points in Care transformed using a standard two

dimensional rotation matrix with the angle Cl before being passed as input to the

fragment program. The points in C are then scaled by Er, Eg and E/> to yield the

sets Cr, Cg and Cb

Three color vectors R, G, B are generated by taking n samples from the bright-

region texture - after it has been softened using a blur pass based on the bloom

filter from [Kawase 2003] - using the sampling coordinates from Cr, Cb, Cg re­

spectively and then averaging the color of the n samples. The final ghost image

is generated by taking the red component of R, the green component of G and

the blue component of B to retrieve the final color F. A color tint can be applied at

this point by multiplying Fby a three component tint vector T containing the rela­

tive weights for the three color components, so for example a ghost with a strong

red tint, moderate green tint and weak blue tint would have T« { 1.0, 0.5, 0.2 }.

65

A l g o r i t h m

GenerateGhost(BrightRegionTexture, TextureCoordinate, R, C, E):

C <- C + TextureCoordinate

Er, Eg, Eb <- E * Or, E * Og, E * Ob

Cr, Cg, Cb <- C * Er, C * Eg, C * Eb

FetchColors(SampleSet):

Color <- 0

Count <- 0

for i in SampleSet:

Color <— Color + sample(BrightRegionTexture, i)

Count <- Count + 1

return (Color / Count)

R <- FetehColors(C,.)

G «- FetehColors(C.r)
\ p /

B <- EetehColors(Cb)

return (R.r, G.g, B.b)

66

A test scene with two bright regions was used for testing the technique, and the

resulting ghost(s) are outlined. Figure 48 shows a single ghost generated using a

rectangular aperture diffraction pattern. Figure 49 shows a single ghost gener­

ated using the same rectangular pattern and a tint vector T that emphasizes the

purple color. Figure 50 shows the same ghost rendered using Er < Eg < Eb, with

the resulting ghost exhibiting non-uniform color component diffraction. Figure 51

shows two rectangular ghosts generated using a different Q value for each. Fig­

ure 52 shows a variety of ghosts rendered using different T, Er, Eg, Eb and Q

values.

R e s u l t s

m

*

Figure 48: A single rectangular ghost of the two bright regions in the scene.

67

•

< r

Figure 49: A single rectangular ghost rendered using a tint vector T emphasizing
purple.

L .
•

r

Figure 50: A single rectangular ghost rendered with Er > Eg > Eb. The distribution
of the ghost’s color components over the ghosts area approximates that of real

lenses with significant non-uniform diffraction.

68

Figure 52: A variety of ghosts rendered using various Er, Eg, Eb, T and O parame­
ters.

69

CHAPTER FIVE:

TONEMAPPING

I N T R O D U C T I O N

While 24-bit monitors can display RGB colors whose components are in the

range [0.0, 1.0] colors in reality have a much larger intensity range, and lighting

calculations involved in the generation of a computer-generated image can lead

to an intensity range that exceeds the displayable [0.0, 1.0] range. When an im­

age is rendered to a traditional 8-bit per color component framebuffer the graph­

ics hardware clamps colors outside the displayable range into the displayable

range, but framebuffers using 16-bit or 32-bit floating point color components re­

tain the high intensity values.

Image formats have been created to accommodate high-precision color images.

OpenEXR, an image format developed by Industrial Light and Magic, is capable

of storing color with 16-bit and 32-bit floating point components. Displaying high-

precision formats directly on a traditional display would result in the high intensity

color information being lost with the end result no better than traditional low pre­

cision image formats.

Tonemapping is the name given to the process used to map colors from one

range (usually being the high-precision color range or a large subset of the range

[0.0, lnfinity[) to another range (usually being the displayable range of [0.0, 1.0])

while preserving as much visual information as possible. Tonemapping can be

used to map a large range of color intensities to a smaller displayable range or

70

merely map one displayable range to another for aesthetic reason. Tonemapping

operators can be divided into two kinds: local (spatially varying) and local (spa­

tially uniform).

Local tonemapping operators adjust the color of each region based on the inten­

sities of the surrounding regions, an approach that works in practice because the

human eye is much more sensitive to local contrast than it is to global contrast.

Figure 53 shows a high dynamic range image tonemapped using a local tone-

mapping operator to fit into the displayable range on traditional computer dis­

plays. The overall aesthetic look of local tonemapping operators is very unique,

and the aesthetic look of each intensity region (sky, billboards, square) is different

due to the tonemapping operator considering each region’s intensity locally inde­

pendently of the overall intensity of the image.

Figure 53: High dynamic range image using local tone mapping operator. The
image is a result of combining three shots with different exposure levels and ap­
plying a tone-mapping operator to get all the colors in the displayable range, pre­

serving detail in bright and dark regions. Source: Wikimedia Commons

Local tonemapping operators can suffer from artifacts at the edges where bright

regions meet dark regions. The edge area will be tonemapped relative to the av­

erage intensity of its local surroundings which along that edge will be an average

of the dark and bright region intensities, resulting in halo-like artifacts around that

area. Figure 54 shows an example of the halo artifacts in a high dynamic range

image with a local tonemapping operator applied.

72

Figure 54: A high dynamic range image tonemapped using a local tonemapping
operator exhibiting halo artifacts. The region where the bright background meets
the relatively darker foreground building has an average local luminance that is
brighter than the foreground luminance and darker than the background lumi­

nance, which affects the tonemapping operator. The result it the bright region be­
ing locally brighter and the dar region being locally darker, giving the foreground

object the halo effect.

73

Global tonemapping operators adjust the color of the pixels based on image-wide

attributes like overall exposure or a color histogram and as a result don’t suffer

from localized artifacts like local tonemapping operators, although the need to

process the entire image to extract the attributes needed for applying the tone-

mapping operator could be more costly than sampling local regions.

Figure 55 shows six photographs of the same scene with different exposures and

a high dynamic range image generated from the six exposures and tonemapped

using a global tonemapping operator.

74

Figure 55: Six different exposures of the same scene (top) and a high dynamic
range image (bottom) generated from the six exposures and tonemapped using a

global tonemapping operator. Detail from the six source images is preserved in
both bright and dark regions. Source: Wikimedia Commons

75

Another important aspect defining the look of a scene is the film transfer function

- film material doesn’t respond to colors in a linear way, and film material from dif­

ferent vendors has a different and unique response curve.The film response

curve is commonly referred to as the Characteristic Curve, an S-curve with a toe,

linear and shoulder regions. Figure 56 shows the characteristic curve for Ko-

dachrome film from [Kodak 1998] with the toe, linear and shoulder regions la­

beled.

LOG EXPOSURE

Figure 56: Kodachrome film characteristic curve from [Kodak 1998].

Film characteristic curves are one of the reasons people perceive consumer

camcorder footage as “Soap Opera-like” as opposed to the usual, less linear and

high contrast distinctive film footage look.

76

P r e v i o u s W o r k

Humans don’t perceive color intensities linearly, and a linear scaling of color

components to bring them from the range [0.0, Infinity] to the displayable [0.0,

1.0] range results in a significant loss of information. As a result, various tone-

mapping operators have been developed in an attempt to display high dynamic

range images on traditional low dynamic range displays while preserving as

much detail as possible.

[Reinhard et al. 2002], which targeted existing photographic content, provided a

number of global tonemapping operators of various complexity aimed at mapping

high dynamic range color into the displayable [0.0, 1.0] range. For comparison

purposes an average complexity operator (equation 6) from [Reinhard et al.

2002] will be used.

77

Reinhard’s operator, like other tonemapping operators aimed at tonemapping

photographic content, was designed for use on images that have already been

affected by the film characteristic curve and as such its curve (figure 57) is not s-

curve like. Computer-generated imagery uses a linear color space with the value

of a color component corresponding to the linear intensity or brightness of the

component and as a result when Reinhard’s operator is applied to computer­

generated imagery the result is a flat-looking image lacking the characteristic

lights and darks of photographic images that are a result of the s-curve film trans­

fer function.

Figure 57: Tonemapping curve from [Reinhard et al. 2002].

For film production vendors provide LookUp Tables (LUTs) for converting linear

color from computer generated imagery (most commonly used for visual effects)

78

to a non-linear color space matching their film products’ characteristic curves.

Look up tables supporting a large range of color values, a necessity for high dy­

namic range content, are too large to be managed in real-time on current con­

sumer hardware.

When dealing with low dynamic range images [Reinhard et al. 2002]’s shortcom­

ings can be overcome by converting the linear color values into non-linear, film­

like space using a texture as a lookup table for color correction [Selan 2005]. The

lookup table texture is used as a map from every possible low dynamic range

RGB triplet to a corrected non-linear RGB triplet. A cubemap texure with sides

that are 256x256 pixels is a perfect match for such use case.

[Selan 2005] talked briefly about extending lookup tables to support high dynamic

range content and suggested using non-uniform lattice sampling to concentrate

the limited precision of a GPU supported lookup table in the regions where the

human visual system is most sensitive. [Hable 2010] attempted a different ap­

proach, getting rid of lookup tables in favor of mathematical functions that mimic

the visual properties of film.

[Hable 2010]’s tonemapping operator defines a curve mapping function (equation

7) with fitting parameters (a, b, c, d, e, /) that is used by the tonemapping opera­

tor (equation 8) which applies global tonemapping based on a white-point w.

79

The graph of Hable’s tonemapping operator (figure 58) is similar to Reinhard’s in

its mid section but the low and high color ranges are mapped differently. Hable’s

operator has a toe-like section at the low color range (Figure 59) which avoids

the desaturation of low intensity colors seen with Reinhard’s tonemapping opera­

tor.

0.0

Linear C o lo r

Figure 58: Hable Tone-mapping response curve.

80

0.06

0 05

0 04

0.03

0.02

0 01

o —
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 59: The low end of Reinhard’s and Hable’s (Filmic) tonemapping opera­
tors. Hable’s filmic tonemapping operator has a toe section which avoids Rein­

hard’s desaturation of low intensity colors. Image from [Hable 2010b].

Reinhard’s and Hable’s tonemapping operators map input in the range [0.0, infin­

ity! to toe displayable [0.0, 1.0] range of low dynamic range displays; and while

this is sufficient as a final step in the pipeline for displaying a high dynamic range

image the side-effect of clipping bright values might not be desirable in an inter­

mediate step that is a part of a complex rendering pipeline. Brightness cutoff

passes, such as the bright region detection pass used for bloom and lens flare

rendering, rely on bright regions (with per-component color values greater than

the maximum displayable value of 1.0) retaining their values.

A tone-mapping operator suitable for use as part of a high dynamic range proc­

essing pipeline should be able to preserve the contrast between light and dark

regions by not clipping highlights while at the same time preserving data that is

outside the displayable range for use in subsequent image processing steps.

81

P r o p o s e d A p p r o a c h

The proposed approach to tonemapping is a new, purely mathematical operator

that does not depend on any lookup tables (and is thus able to tonemap any

range of color intensities) while applying an s-curve transfer function.

The tonemapping operator relies on the error function, which is not natively sup­

ported by graphics hardware or shading languages. A branch-free implementa­

tion was used based on the approximation in equation 9 from [Abramowitz and

Stegun 1964] which has a maximum error of 5-10-4. The approximation is espe­

cially good since most of the denominator can be computed using very few in­

structions on GPUs with 4-wide vector data processing support. A branch-free

implementation of the error function suitable for use in GPU shading languages

can be found in Appendix A.

er f (x) m l — —-------------------------- 5-------------; -------------7 - 7 (9)
(1 + a L. r + 0-2 . T ' + + a . 4. r 4)4

The proposed tone-mapping function can map colors from the range [0.0, m] to

the range [0.0, n] where m and n are any two numbers greater than zero. The

ability to map inputs between two arbitrary positive ranges gives the operator the

ability to be an intermediate part of a rendering pipeline - a high dynamic range

image can be tonemapped using this operator for exposure adjustment and s-

curve application with the output being another high dynamic range image as op­

posed to a low dynamic range image limited to the range [0.0, 1.0] as is the case

with other tonemapping techniques.

82

T(x) = Sr x (O - M x er f {B - [Ch + Cs x ./•)'•.)') (10)

Equation 10 shows the proposed tonemapping operator T. A range scale pa­

rameter (Sr) determines the range of the output values, with higher values corre­

sponding to higher output ranges and vice versa. An offset parameter (O) linearly

affects the tonemapped values’ range and exposure. A multiplier (M) controls the

wideness or narrowness of the output range. The error function’s term has an

overall bias (B) and a linear color bias (Cb) acting as linear exposure adjust­

ments, a color scale (Cs) affecting the extent of the s-curve’s mid region and a

color exponent (Ce) affecting the toe and shoulder regions.

83

Figure 60 shows a variety of possible tonemapping curves from the operator in

equation 10. The parameters allow for a very flexible s-curve color mapping and

exposure adjustment.

Figure 60: A variety of tone-mapping curves from the operator in equation 10.

84

The proposed tonemapping operator avoids the unsaturated low intensity regions

of Reinhard’s operator and the over-bright mid tones of Hable’s operator, result­

ing in a much vibrant look that is close to that of film when applied to linear color

content. Figure 62 shows a comparison between Reinhard’s, Hable’s and the

proposed tonemapping operators.

Film material can have different characteristic curves for red, green and blue (fig­

ure 61). By applying the proposed tonemapping operator independently to each

channel with a separate set of parameter the visual effect of per-component

characteristic curves can be reproduced, or the per-component values can be

used for color grading as opposed to attempting to recreate a film curve. Figure

63 shows a comparison between uniform curve parameters and per color com­

ponent curve parameters.

R e s u l t s

Figure 61: Kodak Premier Color Print Film 2393 characteristic curves for red,
green and blue.

85

Figure 62: Scene rendered using Reinhard (top), Hable (middle) and proposed
tonemapping algorithms.

86

Figure 63: Examples of the proposed tonemapping operator applied to a scene
using different curve parameters for each of the red, green and blue color com­

ponents.

87

CHAPTER SIX:

FRAME RATE

Film is usually shot and displayed at 24 frames per second (FPS), meaning that

the camera captures the incoming light over 1 /24th of a second onto a single

frame of video. Historically, film cameras used Rotary Disc Shutters with a physi­

cal half-circle shaped disk that would expose the film at regular intervals (figure

64) while using the aperture to adjust the amount of light hitting the film based on

the scene’s brightness and mid-tones.

Figure 64: A Rotary Disc Shutter exposing a film (clockwise, starting at top left).

That frame-rate is one major contributor to the traditional Film look, as opposed

to the Camcorder look which is a result of camcorders recording at 30 or 60

frames per second.

Audiences are able to differentiate between 24 FPS footage and 50 / 60 FPS

footage, usually referring to the latter as the “Soap Opera Look”. Recently Direc-

88

tor Peter Jackson (Lord of the Rings) screened his new movie, The Hobbit, shot

at 48 FPS and the reception of the new high frame rate projection format was not

positive [Faraci 2012],

The majority of consumer displays refresh 60 times per second (60 Hz), which

makes natively displaying 24 FPS footage impossible since 60 cannot be divided

evenly by 24. To overcome this technical limitation a technique called Pulldown is

used - since 24 does not divide evenly into 30 or 60, some frames must be re­

peated more often than others in order to stretch the 24 frame-per-second over a

30 or 60 frame interval suitable for displaying on a 60 Hz screen.

One pattern for doing this is 3:2 pulldown where alternating patterns of 3 and 2

repeated frames are used (figure 65). Another is 2:2:2:4 pulldown (figure 66)

where three sets of 2 repeats followed by one set of 4 repeats are used. Profes­

sional video editing software like Final Cut Pro usually use 2:2:2:4 pulldown.

Various techniques for dealing with frame rate conversion on computer displays

have been covered in [Marsh 2001].

89

3:2 Pull-Down

Before (23.98 fps)

After (29.97 fps)

- One second ■

Figure 65: 3:2 Pulldown. Image from Final Cut User Manual.

2 2:2:4 Pull-Down

- One second -

Before (23.98 fps)

After (29.97 fps)

Figure 66: 2:2:2:4 Pulldown. Image from Final Cut User Manual.

90

On platforms that offer tight integration with the graphics vertical retrace

(VBLANK / VSYNC) signals the computer-generated scene can be rendered at a

film-like 24 frames-per-second and pulldown algorithms can be applied and used

to adapt the output to the screen in use which is typically a 60 Hz device in the

case of PCs and gaming consoles. The proof-of-concept application developed

for this thesis uses the Core Video framework on OS X to implement 2:2:2:4 pull­

down.

A side-effect of 24 FPS capture that needs to be emulated in computer­

generated renderings is motion blur - since the camera shutter remains open for

1/24 of a second (which is a relatively large time period with respect to the

screen-space velocities of the objects being photographed with respect to the

camera) in every frame there will be an apparent streaking of objects in motion.

The next chapter will cover some of the existing algorithms for emulating motion-

blur artifacts in real-time computer graphics.

91

CHAPTER SEVEN:

MOTION BLUR

I n t r o d u c t i o n

Motion Blur is the apparent streaking of moving objects in a still image or a video

frame. Figure 67 shows an exaggerated motion blur, the result of a long photo­

graph exposure time, of a bus that’s moving with respect to the camera. Station­

ary objects or objects that don’t change their position relative to the camera dur­

ing the exposure time are not affected by motion blur, such as the telephone

booth in the figure.

Figure 67: A long-exposure photograph of a moving bus against a stationary
background. The bus exhibits exaggerated motion blur due to the long exposure

time. Source: Wikimedia Commons

92

When the camera shutter stays open for a specified duration all the light emitted

by an object during that time is captured, and an object that moves significantly

during that time period it will show streaks representing the path of motion it took.

Motion Blur depends primarily on the shutter duration and the distance the object

moves during time the shutter is open. Therefore the smaller the shutter duration

and the less distance the object moves the less motion blur it will generate.

Computer graphics simulate a camera with a shutter duration of zero, so in a

straight-forward rendering a scene exhibits no motion blur whatsoever. Figure 68

shows a first-person scene from the video game Half-Life 2 - while the interactive

scene has the character on the left apparently in motion but the still image offers

no cues that can be used to infer the direction or intensity of that motion.

v

Figure 68: Scene from the video-game Half-Life 2.

93

Images and videos made using still and film cameras having a finite shutter dura­

tion tend to have motion blur of varying degrees which offers visual cues about

the motion of the objects in the image. Figure 69 is a still photograph of a drum­

mer caught in the act - the motion blur of his hands and drumsticks cues the

viewer to the fact that this images was taken as he was actively playing the

drums.

Figure 69: Still photograph of drummer. Source: Wikimedia Commons

Motion blur is very prevalent in film footage. Due to the relatively low frame rate

of 24 frames per second, corresponding to a shutter exposure time of around

41.5 milliseconds, significant motion blur can be seen in most still frames of film

except those with very little subject and camera motion.

94

U s e d T e c h n i q u e

The proof-of-concept application developed for this thesis uses the motion blur

technique from [Lengyel 2010], which operates as a post-process pass perform­

ing a directional per-pixel blur based on the scree-space velocity of the pixel and

relies on using the view-space depth gradient in the X and Y dimensions to avoid

intensity leakage.

Since the depth of field algorithm proposed earlier guarantees that the depths of

all the contributors to a pixel will have a depth difference that is at most A the

depth gradient can still be used to estimate object boundaries and avoid intensity

leakage when using the algorithm from [Lengyel 2010].

Figure 70 shows a scene with an animated charactered. The direction and inten­

sity of the animation aren’t visible in the figure since no motion blur is applied.

Figure 71 shows a false-color visualization of the screen-space velocity vector

associated with every pixel in the scene and figure 72 shows the result of render­

ing the scene with applied motion blur based on the screen-space velocities.

95

Figure 70: Animated scene rendered without motion blur.

Figure 71: False-color visualization of the per-pixel velocity vector of the scene.

Figure 72: Animated scene rendered with applied motion blur based on [Lengyle
2010],

96

CHAPTER EIGHT:

PROJECTOR COLOR CONVERGENCE

I n t r o d u c t i o n

Film projectors and rear projection televisions suffer from an image artifact known

as the lack of color convergence. In perfect color convergence the red, green and

blue portions of the image projected onto the display by the rear projection sys­

tem line up exactly and the image appears artifact free, but in the case of sub-

optimal color convergence the three color channels do not line up perfectly and

color artifacts around the edges of regions can be seen. Figure 73 shows an ex­

ample of the color artifacts resulting from a projection system with sub-optimal

color convergence.

Figure 73: A grid of black squares with white grid lines as seen through a projec­
tion system with sub-optimal color convergence. The edges of the black squares

bleed some of their color components onto the white grid lines. Image source:
(http://www.avsforum.eom/t/1100329/lcd-projector-what-should-i-see-up-close).

97

http://www.avsforum.eom/t/1100329/lcd-projector-what-should-i-see-up-close

Extreme lack of color convergence is a distracting artifact which figure 74 shows,

but slight pixel or sub-pixel color divergence exists on almost all projection-based

systems and is considered to be part of the look and feel of projected images.

Reproducing color divergence in computer-generated imagery is a step towards

achieving projected film look and feel.

Figure 74: Extreme lack of color convergence in a projection-based display sys­
tem. Image from TvRepairKits.com.

Color divergence isn’t usually uniform - the divergence intensity and direction

varies across the display surface. Figure 75 shows an example of a display ex­

hibiting color divergence with non-uniform intensity and direction distribution.

98

www TvRepairKits com I Copyright 2009

Figure 75: Color divergence across a display surface exhibiting non-uniform di­
rection and intensity. Blue for example diverges upwards in the lower half of the

screen and downwards in the upper half, while red exhibits a different divergence
intensity across the screen’s width, most obvious along the field’s yard lines. Im­

age from TvRepairKits.com.

99

P r e v i o u s W o r k

[Kawase 2003] proposed using a post-processing pass with three separate sets

of texture coordinates passed to the vertex stage which are then linearly interpo­

lated across the surface of the view plane aligned quadrilateral and used to sam­

ple the source texture’s red, green and blue channels separately. Each of the

three sets of texture coordinates would be set to correspond to the shaded pixel’s

coordinates with an additional offset which would determine the final color diver­

gence - for example, a texture coordinate used for sampling the red color chan­

nel with an offset of (AX, AY) would cause the post-process resulting image to

have its red color component diverging from its ideal position by (AX, AY).

The algorithm presented in [Kawase 2003] suffered from a major drawback: with

the diverged texture coordinates generated at a per-vertex level the color diver­

gence is either uniform across the display image or linearly varying across the

view-plane aligned quadrilateral used in the post-processing pass due to the per-

vertex interpolation of attributes passed to the fragment program. The proposed

algorithm offers a way to have independent per-pixel and per color component

divergence direction and distance at a performance cost that is only very slightly

more than the algorithm in [Kawase 2003] - specifically two additional texture

fetches and a few math instructions.

100

P r o p o s e d T e c h n i q u e

The proposed algorithm operates as a post-processing pass and uses two values

at each pixel’s color component to specify the color component’s divergence di­

rection and distance: a normalized two-dimensional vector D specifying the di­

vergence direction and a scalar A specifying the divergence distance. Equation

11 is then calculated in the fragment program to get the final texture sampling

coordinate C from the original texture sampling coordinate T. C is calculated for

each of the red, green and blue color component channels to get three separate

texture coordinates C i, C2, C3. Using each of these coordinates respectively to

sample the source texture’s red, green and blue channels results in the desired

diverged color component values which are then written to the output framebuffer

as the result of the post-processing pass.

C = T + D x A (11)

Specifying per-pixel and per color component divergence direction and distance

is done using two three-component textures with normalized 8-bits per compo­

nent storage (RGB 8) referred to as the direction texture and the distance tex­

ture.

A global value A max is passed to the post-processing fragment program and the A

value for each pixel’s color component is calculated by sampling the distance

texture at the current texture coordinate T and multiplying the desired compo­

nent’s value (which due to the texture’s format will be a number in the range [0.0,

1.0]) by A max to get the current pixel component’s A

101

Calculating D per pixel color component is done by taking advantage of the fact

that D is a normalized two-component vector, so the values of its x and y compo­

nent will be confined to the range [-1.0, 1.0]. Values in the range [-1.0, 1.0] can

be compressed into the range [0.0, 1.0] using equation 12.

pack(x) = (x + 1.0)/2.0 (12)

With the components of D compressed into the range [0.0, 1.0] they can be

stored in components of the direction texture and uncompressed in the fragment

program using equation 13.

unpack (x) = (x x 2.0) — 1.0 (13)

Since D is a normalized vector storing the X component only in the direction tex­

ture would be sufficient since the Y component can be re-calculated using equa­

tion 14.

y = v / l . O - X 2 (1 4)

Using equations 12, 13 and 14 three two-dimensional normalized vector fields

can be stored in the three-component direction texture, each vector field repre­

senting the normalized direction vector D at every pixel color component. The

fragment program samples the direction texture at the current texture coordinate

T and uses the values in the red, green and blue channels to calculate the vector

D for each color component.

102

Using the per-pixel color component A and D values calculated in the fragment

program and plugging them into equation 11 to get divergence texture coordi­

nates Callows for the desired per-pixel color component divergence calculation.

103

A l g o r i t h m

ProjectorSeparation(SourceImage, DistanceTexture, DirectionTexture, T, Δmax):

Distances <- sample(DistanceTexture, T)

RedDistance <- Distances.r * Δmax

GreenDistanee <- Distances.g* Δmax

BlueDistanee <- Distances.!) * Δmax

Directions <- sample(DirectionTexture,T)

Red Direction <- (0,0)

RedDirection.x <- Directions.r

Red Direction.y <- sqrt(1.0 - Directions.r2)

GreenDirection <- (0,0)

GreenDirection.x <- Directions.g

Green Direction.y <- sqrt(1.0 - Directions.g2)

BlueDirection <- (0, 0)

BlueDirection.x <- Directions.!)

BlueDirection.y <- sqrt(1.0 - Directions.b2)

Red = sample(SourceImage, T + (RedDirection * RedDistance))

Green = sample(SourceImage, T + (GreenDirection * GreenDistance))

Blue = sampIe(SourceImage,T + (BlueDirection * BlueDistance))

return (Red, Green, Blue)

104

Figure 76 shows a reference used as an input image to the projector separation

algorithm and figure 77 shows the same scene after the projector separation al­

gorithm is applied.

R e s u l t s

Figure 76: A reference scene serving as an input image to the projector separa­
tion algorithm.

Figure 77: Scene with uniform color separation.

105

For clarity, figure 78 shows the same scene with the same divergence direction

(D) values but with a largely exaggerated divergence distance (21) value.

Figure 78: Scene with uniform color separation with an exaggerated distance (A)
values.

106

Non-uniform divergence distance can be shown using a texture such as the vi­

gnette in figure 79. Figure 80 shows the scene with divergence distances deter­

mined by the vignette texture and figure 81 shows the scene with the vignette di­

vergence distance texture and an exaggerated divergence distance for clarity.

Figure 79: A vignette used as a divergence distance texture to show non-uniform
divergence distances.

107

Figure 80: Scene with non-uniform color divergence using the distance texture
from figure 79. The center has no color divergence while the edges exhibit diver­

gence.

Figure 81: Scene with the same exaggerated divergence distances from figure
78 using the distance texture from figure 79. The center has no color divergence

while the edges exhibit divergence.

CONCLUSIONS

The thesis presented algorithms suitable for use in real time rendering on tradi­

tional consumer hardware that simulate a variety of the artifacts and visual

themes unique to the look achieved by the film imaging process.

The depth of field algorithm presented solves the issue of intensity leakage

common in gather methods while adding the ability to simulate non-uniform

chromatic aberration at a very low performance cost. The ghost generation algo­

rithm presented allows for rendering ghosts with varying position, orientation and

color parameters for both primary and secondary light sources at a low perform­

ance cost that is independent of the number of light sources in a given scene.

The proposed tonemapping operator provides an extremely flexible method to

reproduce a wide variety of color response curves and exposures across a po­

tentially infinite high dynamic range color range for both input and output. Finally,

the color convergence algorithm allows for replication of color convergence dis­

play artifacts common to projection displays across any vector field describing

the direction and intensity of color convergence with pixel accuracy.

The proof-of-concept application designed to implement a real time rendering

pipeline incorporating the methods presented in this thesis runs at interactive

frame rates on a 2012 MacBook Pro with Retina Display which features a mobile

low-power graphics chip, the GeForce 650M by NVIDIA, with the system operat­

ing at or under 85 watts of power consumption.

109

BIBLIOGRAPHY

Abramowitz, M. and I. Stegun (1964). Handbook of Mathematical Functions with

Formulas. Graphs, and Mathematical Tables.

Barsky, B. A. (2004). Vision-realistic rendering: simulation of the scanned foveal
image from wavefront data of human subjects. Proceedings of the 1 st Sympo­
sium on Applied perception in graphics and visualization. Los Angeles, California,
ACM: 73-81.

Barsky, B. A., et al. (2002). "Introducing Vision-Realistic Rendering." Thirteenth
Eurographics Workshop on Rendering.

Bertalmio, M., et al. (2004). Real-Time, Accurate Depth of Field using Anisotropic
Diffusion and Programmable Graphics Cards. Proceedings of the 3D Data Proc­
essing. Visualization, and Transmission. 2nd International Symposium. IEEE
Computer Society: 767-773.

Blythe, D. (2006). "The Direct3D 10 system." ACM Trans. Graph. 25(3): 724-734.
Burrows, M., et al. (2004). Advanced Visual Effects with Direct3D. Game Devel­
opers Conference.

Debevec, P., et al. (2004). High dynamic range imaging. ACM SIGGRAPH 2004
Course Notes. Los Angeles, CA, ACM: 14.

Faraci, D. (2012). "CinemaCon 2012: The Hobbit Underwhelms At 48 Frames
Per Second." from
http://badassdigest.com/2012/04/24/cinemacon-2012-the-hobbit-underwhelms-at
-48-frames-per-secon/

Hable, J. (2010). "Filmic Tonemapping Operators." from
http://filmicgames.com/archives/75.

Hable, J. (2010). "Why a Filmic Curve Saturates Your Blacks."

Haeberli, P. and K. Akeley (1990). The Accumulation Buffer: Hardware Support
for High-Quality Rendering. SIGGRAPH.

Hammon, E. (2007). Practical Post-Process Depth of Field. GPU Gems 3.

Hullin, M., et al. (2011). Physically-based real-time lens flare rendering. ACM
SIGGRAPH 2011 papers. Vancouver, British Columbia, Canada, ACM: 1-10.

James, G. (2004). Real-Time Glow. GPU Gems.

110

http://badassdigest.com/2012/04/24/cinemacon-2012-the-hobbit-underwhelms-at
http://filmicgames.com/archives/75

Kawase, M. (2003). Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L
(Wreckless). Game Developers Conference.

Kilgard, M. (2000). "Fast OpenGL-rendering of Lens Flares." from
http://www.opengl.org/archives/resources/features/KilgardTechniques/LensFlare/.

King, Y. (2000). 2D Lens Flare. Game Programming Gems.

Kodak (1998). Basic Sensitometry and Characteristics of Film: 49-60.

Kodak (1998). "Technical Data - KODAK VISION Premier Color Print Film 2393."
from
http://motion.kodak.com/motion/Products/Distribution And Exhibition/2393/tech2
393.htm.

Kosloff, T. J. and B. A. Barsky (2007). An algorithm for rendering generalized
depth of field effects based on simulated heat diffusion. Proceedings of the 2007
international conference on Computational science and its applications - Volume
Part III. Kuala Lumpur, Malaysia, Springer-Verlag: 1124-1140.

Kraus, M. and M. Strengert (2007). "Depth-of-Field Rendering by Pyramidal Im­
age Processing." Eurographics 26(3).

Krawczyk, G., et al. (2005). Perceptual Effects in Real-time Tone Mapping.
SCCG

Lee, S., et al. (2009). "Depth-of-field rendering with multiview synthesis." ACM
Trans. Graph. 28(5): 1-6.

Lee, S., et al. (2009). "Depth-of-field rendering with multiview synthesis." ACM
Trans. Graph. 28(5): 1-6.

Lee, S., et al. (2009). "Real-Time Depth-of-Field Rendering Using Anisotropically
Filtered Mipmap Interpolation." IEEE Transactions on Visualization and Computer
Graphics 15(3): 453-464.

Lefohn, A. and J. Owens (2006). Interactive depth of field using simulated diffu­
sion.

Lengyel, E. (2010). Motion Blur and the Velocity-Depth-Gradient Buffer. Game
Engine Gems 1.

Luksch, C. (2007) Realtime HDR Rendering.

111

http://www.opengl.org/archives/resources/features/KilgardTechniques/LensFlare/
http://motion.kodak.com/motion/Products/Distribution

Marsh, D. (2001). "Temporal Rate Conversion." from
http://msdn.microsoft.com/en-us/windows/hardware/gg463407.aspx.

Maughan, C. (2001). Texture Masking for Faster Lens Flare. Game Programming
Gems 2.

Mittring, M. (2007). Finding next gen: CryEngine 2. ACM SIGGRAPH 2007
courses. San Diego, California, ACM: 97-121.

Mittring, M. (2009). A Bit More Deferred - CryEngine 3. Triangle Game Confer­
ence.

Oat, C. (2003). Real-Time 3D Scene Post-processing. Game Developer’s Con­
ference Europe.

Pixar (2008). The Imperfect Lens: Creating the Look of WALL-E. WALL-E Special
Edition DVD Extras.

Potmesil, M. and I. Chakravarty (1981). A lens and aperture camera model for
synthetic image generation. Proceedings of the 8th annual conference on Com­
puter graphics and interactive techniques. Dallas, Texas, USA, ACM: 297-305.

Python, M. (1970). The Royal Society For Putting Things On Top Of Other
Things. Monty Python's Flying Circus.

Reinhard, E., et al. (2002). Photographic tone reproduction for digital images.
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. San Antonio, Texas, ACM: 267-276.

Riguer, G., et al. (2003). Real-Time Depth of Field Simulation. Shader X2 -
Shader Programming Tips and Tricks with DirectX 9.

Rokita, P. (1996). "Generating Depth-of-Field Effects in Virtual Reality Applica­
tions." lEEE^om puLiam ptLAppL 16(2): 18-21.

Rokita, P. (1996). "Generating Depth-of-Field Effects in Virtual Reality Applica­
tions."]EEE_QompulJ3mphJ\ppL 16(2): 18-21.

Selan, J. (2005). Using Lookup Tables to Accelerate Color Transformations. GPU
Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation.

Smith, A. R. (1995). Gamma Correction.

112

http://msdn.microsoft.com/en-us/windows/hardware/gg463407.aspx

Zhou, T., et al. (2007). "Accurate Depth of Field Simulation in Real Time." Com­
puter Graphics Forum.

Wenzel, C. (2005). Far Cry and DirectX. Game Developers Conference.

113

APPENDIX A: BRANCH-FREE ERROR FUNCTION

float erf(float x)
{

float Correction = 1.0;
if(x < 0)
{

x = -x;
Correction = -1.0;

}
float al = 0.278393;
float a2 = 0.230389;
float a3 = 0.000972;
float a4 = 0.078108;
float Denominator = 1.0 + al*x + a2*pow(x, 2) +

a3*pow(x, 3) + a4*pow(x, 4);
float Result = 1.0 - (1.0 / pow(Denominator,4));
return Result * Correction;

114

BIOGRAPHY OF THE AUTHOR

Sherief Farouk was born in Cairo, Egypt on June 12, 1986. He attended high

school in Heliopolis, Cairo and later attended the Arab Academy for Science and

Technology and graduated in 2009 with a Bachelor’s degree in computer sci­

ence. He absolutely loathes speaking about himself in the third person and his

favorite animal is the sloth. Sherief is a candidate for the Master of Science

degree in Computer Science from the University of Maine in May 2013.

115

	The University of Maine
	DigitalCommons@UMaine
	5-2013

	Towards a filmic look and feel in real time computer graphics
	Sherief Farouk
	Recommended Citation

	tmp.1382548750.pdf.2I5fW

