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Abstract

 Bayesian methods are an increasingly popular form of statistical analysis which 

uses informative prior distributions to help calculate posterior distributions of models that 

represent different hypotheses. Frequentist methods are contrasting methods that are used 

more commonly and more well known, but have come under recent criticism. I examined 

data gathered by Ellen Robertson, who used information theoretic methods for a 

Masters’ Thesis in Ecology and Environmental Science at the University of Maine to 

analyze the daily survival probabilities of marsh birds with a Bayesian perspective in 

order to get a sense of the Bayesian analysis. Results were as expected; when using 

uninformative prior distributions, the Bayesian analysis had almost the same results as 

Robertson’s. With the use of Robertson’s calculated parameter estimates as informative 

prior distributions, the Bayesian analysis still ended with similar results. The conclusions 

in all three versions of statistical analysis were the same. Hence, Bayesian methods can 

construct models representing hypotheses effectively.
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CHAPTER ONE:

BIOLOGY OF RAILS

1.1 Introduction

 This paper is based on research done by Ellen Robertson for a Masters’ Thesis in 

Ecology and Environmental Science at the University of Maine on the virginia rail 

(Rallus limicola) and the sora (Porzana carolina), which are both birds in the family 

Rallidae, or rails. To fully understand the implications of this paper, it is necessary to 

learn about the rails themselves and the biology of the variables and methods involved in 

the statistical models analyzed by Robertson and reanalyzed by myself. Many of the 

species in this family prefer wetland habitats, and both the virginia rail and the sora can 

be found in these sorts of locations throughout most of North America (Alderfer 2006). It 

is important to study the habitat and survival probabilities of these birds as they are 

facing habitat loss and population decline over recent years (Conway et al. 1994). In the 

US, twenty-two states have lost half or more of the wetland habitat they once had 

(Fletcher 2003). The potential deterioration of populations of rails also can also have 

other lasting effects on the ecosystems (Fletcher 2003). Although these birds are in the 

“Least Concern” category of conservation status (“All About Birds” 2011), we need to 

understand the impact that this habitat loss may have on their avian populations. By 

studying what primarily affects these rails’ daily nest survival probabilities and how 

habitat loss will affect these variables we can potentially find ways to prevent these 
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species from becoming higher on the category of conservation status. We must be careful 

when studying these probabilities as there is a bias against failed nests that is not properly 

accounted for, which leads to an apparent nest success probability that is likely higher 

than the true value (Mayfield 1975). To combat this, we calculate daily survival 

probabilities and use those to determine an overall nest success probability (Mayfield 

1975). The variables studied in Robertson’s thesis were nest age, the water depth change 

at the location of the nest and the nest height change between visits to the nest, whether 

the marsh where the nest was found had water levels managed through human 

intervention (a technique known as impoundment), and the interaction between water 

depth change and nest height change. She studied 72 virginia rail and 22 sora nests in 

Maine from 2010-2011.

1.2 Background on the Virginia Rail and the Sora

 The virginia rail and sora are rails that have many similarities. While they are very 

common marsh birds in North America, they have a secretive nature that makes 

observation difficult (Kaufmann 1989). They both are found in marshes and wetlands 

throughout North America, and nest in hidden locations in very thick vegetation near the 

edge of water in the marsh (Alferder 2006). The nests are made from nearby emergent 

vegetation, or aquatic plants that also reach above water level into the air (Lowther 1977). 

Their nests are constructed so similarly that the primary way to tell the difference is by 

identifying the color of the eggs (Kaufmann 1989). The sora is typically around 19 to 25
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centimeters in length while the virginia rail is around 22 to 27 centimeters (Alferder 

2006). The sora and virginia rail on average weigh between 49 to 112 grams and 65 to 95 

grams respectively (“All About Birds” 2011). Due to their secretive nature, they are more 

often heard than seen (Melvin and Gibbs 2012, Conway 1995). They both feed on seeds, 

and insects found in the marshes, although the virginia rail also will eat fish, frogs and 

small snakes (“All About Birds” 2011). To breed, they both regularly migrate to a 

northern range from the Northwest Territories to California in the west and from New 

England to Pennsylvania in the east in the spring (typically around April and May) 

(Alferder 2006). They migrate in the early fall (typically around August or September) 

for the winter as far south as northern South America (Alferder 2006). Soras tend to more 

rigorously and aggressively defend a territory than the virginia rail (Kaufman 1989). 

During breeding season, nests are built from nearby vegetation near the water level of the 

marsh (Alferder 2006). For both species, both the male and female parents incubate eggs, 

feed and protect the young (Kaufmann 1989). Virginia rails and soras very often thrive in 

the same marshes throughout their range of distribution (Conway 1995) and even respond 

to each other’s calls (Kaufmann 1989). The average clutch size, or the total number of 

eggs incubated, is around 10.5 eggs for soras and 8.5 for virginia rails (Kaufmann 1989). 

The average incubation period for the virginia rail is around 20 days and for the sora 

between 16 and 22 days (Massachusetts Division of Fisheries & Wildlife, 2010).

 Due to the many similarities, in habitat, diet, and nesting/breeding, and their few 

differences, it makes sense to combine the data gathered on the two birds and study them
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 together as has been done in several studies. We also have to consider sample sizes of 

studies; both the virginia rail and the sora can be difficult to find because of their covert 

nesting behaviors. Combining data collected on the two birds can help make larger 

sample sizes and in turn lead to more precise estimates of the parameters of any statistical 

model that is developed.

1.3 Robertson’s Methods and Model Variables

 An important method used during the data gathering from Robertson’s research, 

as well as any research done on probabilities on nest success, is the Mayfield method. 

This is used to counter a bias in data collecting that leads to a perceived higher nest 

success probability than is the true probability. When collecting data on nests, the 

researcher is randomly collecting data which includes nests of all ages. What would be 

ideal is when attempting to estimate a population mean, in this case, the probability of 

nest success for the entire population, we could observe all of the nests from start to 

finish (success or failure) and take a simple ratio to determine the sample proportion of 

nest success (Mayfield 1975). Most often this is impossible, and the data gathered by 

Robertson was not collected in this manner. Instead, we use the Mayfield method, which 

is calculating daily survival probabilities and using those to estimate the overall rate of 

nest success for the population to compensate for a bias towards successful nests 

(Mayfield 1975). For example, if we observe 10 nests in a marsh, 9 of which we consider 

successful, we have an apparent nest success rate of 90%. However, if there were 8 nests
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 that failed and went unobserved, the true nest success rate would have been 50%, which 

is significantly different than the apparent nest success rate. Using the Mayfield method, 

we look at the sum of days we observed each nest — that is, if we observed one nest for 3 

days, one nest for 4 days and one nest for 5 days, we would have 12 observation days. Of 

the 10 nests observed in this example, let’s say we had around 30 total observation days. 

Since we had only one nest fail in these 30 observation days, we see that there is a 1/30, 

roughly .033, probability of any individual nest failing daily. To calculate the daily 

success probability, we subtract the daily failure probability from one, which comes out 

to roughly .967. Now that we have our daily survival probability for this example, since 

we know that the virginia rail and the sora both have incubation periods of around 20 

days, we can raise that probability to the 20th power to estimate the probability of overall 

nest success. So for this example, .96720 is approximately 0.51, which is a much better 

estimate of the true value of the population described above.

 It is also crucial to understand why we research the particular parameters we do, 

otherwise studies may make statistical sense but not make any sense biologically. 

Likewise, once we determine what is significant and what is not, we must understand 

what the significance means.

 Of the models researched by Robertson, one of the variables was the age of the 

nest. We then ask, what affect, if any, does the age of a nest have on it’s daily survival 

probability? There could be two possible answers to this question. We may see that the 

older a nest is, the longer it is exposed and the less likely it will be to survive each day.
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 On the contrary, it would be possible that a nest has a higher probability of daily survival 

the older it gets because it was hidden and constructed very well. These may not be the 

only positive or negative relationships between age of a nest and its daily survival 

probability, but we need to consider these before performing any kind of statistical 

analysis.

 Another variable in the models is whether the area the nest was found in was in an 

impoundment or not. An area that is in an impoundment has a structure, either a dam or a 

pit, built to control water levels in an area for reasons such as maintaining wetland 

environments and providing water for livestock. A positive or negative relationship with 

daily nest survival probabilities would likely mean that human intervention of water 

levels has an impact.

 The final three parameters in the models are water depth change at the location of 

the nest and nest height change between visits to the nest, and the interactions between 

them. The water depth was measured at the base of the nest, and the nest height was 

measured from the base of the nest to the lip of the top. The interactions term in the 

models is simply the multiplication of the two for each nest. The reason for including the 

interactions term is that the nest height change depends largely on the depth of the water. 

Rails have the ability to increase the height of their nests using nearby nesting material, 

and is typically done to help eggs survive flooding conditions (Pospichal and Marshall 

1954). While flooding can cause nest failures, it also makes it less likely that a predator 

can reach the nests and cause failure through predation (Conway 1995). A strong
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correlation with daily nest survival probabilities would suggest that more variability in 

water levels and nest heights would increase the chances that a rail would survive day to 

day.
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CHAPTER TWO:

BAYESIAN METHODS

2.1 Introduction

 Scientific papers rely heavily on statistical inferences to validate findings from 

research. The frequentist method of statistics, the most commonly used approach, is one 

of many different ways to use data to interpret relationships in science and otherwise. It is 

known as the “frequentist” method because the philosophy behind it relies on the 

expected frequency that collected data would yield the same results given that the data 

were gathered in the same fashion and analyzed in the same way (McCarthy 2011). 

Although it is the most commonly used, frequentist statistics has more recently come 

under criticism for allowing for conflicting conclusions to be formed from the same data 

under different circumstances (McCarthy 2011). Similarly, in order to form a conclusion 

based on the data, frequentist statistics requires the setting of a controversial “p-value” 

which is used as a guideline to determine if our hypothesis is accepted or rejected. While 

no form of analysis is perfect, the abandonment of frequentist methods for the use of 

Bayesian methods, which take into account perceived prior information, has been on the 

rise (McCarthy 2011). These methods contrast in both fundamental philosophies and 

logic (McCarthy 2011). The driving philosophy behind Bayesian methods is based on the 

“likelihood” of competing hypotheses, where the likelihood function for each individual 

hypothesis is defined as the probability of the hypothesis being true given the observed 
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data (McCarthy 2011). Together, the likelihood function and perceived prior information 

give way to the fundamental philosophy of Bayesian methods, that we are calculating the 

probability of each competing hypothesis being true given that the data observed is true 

(McCarthy 2011). Even though the two approaches also tend to realize conclusions that 

are not largely different from each other when using uninformative priors (McCarthy 

2011), there are several reasons which I present later to use Bayesian methods over 

frequentist (Link and Barker 2010).

2.2 Frequentist Methods Summary

 Frequentist methods are based on an approach called null-hypothesis significance 

testing in performing statistical inference (McCarthy 2011). The central philosophy is that  

the researcher will assume a null-hypothesis, which is a base statement about a mean or a 

relationship between two means, is true, and calculate the probability of obtaining a 

collected data set given that the null-hypothesis is true (McCarthy 2011). First, one is 

required to define a null-hypothesis and an alternative hypothesis, which is the opposite 

of the null, in the case the null is rejected. Very often these null-hypotheses are designed 

to have a low probability of being true in the first place, making their rejection relatively 

uninformative (McCarthy 2011). These null-hypotheses, deemed trivial null-hypotheses, 

are used due to the difficulty in forming a non-zero null-hypotheses (McCarthy 2011). 

For example, a trivial null-hypothesis might be that the difference between the average 

number of math majors and psychology majors at the University of Maine each year is 

zero. The two variables in the hypothesis that we would concern ourselves with are the 
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average number of math majors and the average number of psychology majors at the 

University of Maine. We may believe it to be extremely likely that the two variables are 

in fact different, but crafting and testing a null-hypothesis with a more defined estimate is 

difficult (McCarthy 2011). Next is the gathering of your data, which has essentially the 

same concerns for all methods of statistics; randomization of sampling and adhering to 

any assumptions that must be made in your modeling process are critical (McCarthy 

2011).

 After obtaining the data set so we can test the null-hypothesis, the frequentist 

method calls for the calculation of a p-value, which is the probability of observing the 

recorded data set or more extreme data with the assumption that the null-hypothesis is 

true (McCarthy 2011). This calculation is done by standardizing the data set and using 

standard deviations which takes into account random variability in the data (Quinn and 

Keough 2002). Standard deviations for sample data are calculated as:

     

xi xbar!( ) 2( )

n 1!i
!

    (1)

 where each xi is an individual data point from your data set, xbar is the mean of the 

sample set, and n is the size of the sample set (Quinn and Keough 2002). The sample 

standard deviation helps set up a probability distribution around the sample mean, which 

describes the probability of every possible value for a variable we are estimating (Quinn 

and Keough 2002). Let’s say we are studying the number of heads we would observe in 8 

coin flips and our null-hypothesis is that we would have a proportion of .25, or 2 heads, 
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with a standard deviation of 0.15, and our alternative hypothesis is that we would find a 

higher proportion of heads on average. Suppose we perform the 8 coin flips and find a 

proportion of .625 heads. The probability distribution for our hypothesis above is shown 

in Figure (1).

         

Figure 1. Example of a probability distribution. Assuming our null hypothesis, this distribution represents 
the probabilities (y values) of seeing certain proportions of heads (x values) on 8 coin flips, assuming that 
the true mean for the proportion of heads is 0.25.

Using this sample probability distribution, we can calculate the probability that we would 

obtain this sample data given that the true mean of the proportion is .25. Once the p-value 

is calculated, you compare it to an arbitrary value, conventionally set to 0.05, to 

determine whether or not you reject the null-hypothesis (Quinn and Keough 2002). As 

you can see from Figure (1), the p-value for .625 is extremely low, and is calculated to be 

approximately .004. Frequentist thinking leads us to say that the probability of obtaining 

this data set just by random chance, given that the true mean is actually .25, is this 
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p-value. Since this probability is so small and this data set seems extremely unlikely by 

random chance, a frequentist thinker would say that we reject the null-hypothesis and the 

true mean is larger than .25.

 However, the p-value is not always so straightforward. Critics claim that the strict 

choice of 0.05 or any other value to compare with a p-value has no formal basis and 

therefore exposes itself to higher rates of error (McCarthy 2011). In this example 

comparing a p-value to 0.05 only means that we are only dissatisfied with the null-

hypothesis when we gather data that we would only expect to observe with less than 5% 

frequency if our null-hypothesis were true (McCarthy 2011). For example, had our p-

value in the above example come out to be 0.06, we still have a very low probability of 

obtaining this data sample by chance, but by conventional standards this is not seen as 

statistically significant. If our p-value is larger than the chosen comparative value, we can 

only fail to reject the null hypothesis – it is not proven. If the null hypothesis is rejected 

due to a small enough p-value, we are forced to accept the alternative hypothesis (Quinn 

and Keough 2002). This is another point of criticism, as alternative hypotheses that are 

not carefully considered may be even less representative of the data than the null 

hypothesis that was just rejected since they are accepted without necessarily confirming it 

matches the data (McCarthy 2011). 

2.3 Bayesian Methods Summary

 Bayesian methods differ vastly in almost all of these major areas. Fundamentally, 
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instead of being concerned with the probability of obtaining a data set given a specific 

hypothesis, Bayesian thinkers will construct their hypotheses and calculate the 

probabilities of each hypothesis given that the data collected are a good representation of 

the real data, known as the population. Involved in this process is the use of prior 

probability distributions, which is the researcher’s prior beliefs about the data (Dennis 

1996). Instead of constructing null and alternative hypotheses, in Bayesian analysis you 

can form multiple hypotheses and compare them (McCarthy 2011). These hypotheses can 

be represented as hierarchical models in complex cases where we are studying the effects 

of certain variables on another (such as later in this paper). These models assign 

parameter values to the data, and the idea is to find the model that most accurately 

predicts one variable in terms of these parameters. The model hypotheses are most often 

chosen based on reality and what the researcher believes are the most realistic hypotheses 

(McCarthy 2011). While there are forms of frequentist methods which set up multiple 

models to represent hypotheses as well, the underlying thought process that Bayesians are 

looking for the probability of each hypothesis being true given the data is the major 

difference between the methods. 

 Once the set of hypotheses to be tested has been chosen, Bayesian thinkers also 

take into account prior beliefs about the parameters or means, which is impossible in 

frequentist analysis (McCarthy 2011). This is another major advantage of Bayesian 

analysis, as frequently scientists compare their results to that of similar studies done in 

the past (McCarthy 2011). To incorporate prior belief into the statistical models, a 
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Bayesian thinker will assign probability distributions to each parameter. Just like the 

probability distribution described in the frequentist section, these distributions represent 

what the researcher believes the probabilities are for the true value of the parameter. This 

can be done with uninformative prior distributions, where the range of any possible value 

with equal probability is assigned, or with informative prior distributions taken from what 

is believed to be the true value of the parameters (Link and Barker 2010). In the case of 

uninformative priors, the models usually have similar results as frequentist methods (Link 

and Barker 2010). When all the prior distributions have been chosen, the data are 

gathered similar to any other method, and we use the principle of Bayes’ Theorem to 

calculate a posterior distribution, or the new probability distributions for each parameter 

(McCarthy 2011).

 Bayes’ Theorem, derived from the relationship of two related probabilities, is then 

applied to the prior distributions and the data. Bayes’ Theorem states that for discrete 

hypotheses:

                                           

Pr Bi!A( )
Pr A!Bi( ) Pr Bi( )

Pr A!Bj( ) Pr Bj( )
j
!

=

            (2)

where Pr(Bi|A) is the probability of an event Bi occurring given event A, Pr(Bi) is the 

probability of event Bi, Pr(A|Bi) is the probability of event A occurring given event Bi, 

and all Bj and Bi are mutually exclusive events of a set of possible events B (Link and 

Barker 2010). For continuous hypotheses:
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Pr Bi!A( )
Pr A!Bi( ) Pr Bi( )

Pr A!x( ) Pr x( ) x
0

!
! d

=

         (3)

where the integral in the denominator represents all possible events in the set B 

(McCarthy 2011). For the continuous case, these are probability densities, meaning that 

instead of direct probabilities, they are probability distributions. The coin flipping 

example from the frequentist section is an example of a continuous hypothesis, because 

there are an infinite amount of numbers between 0 and 1 that could be the true 

proportion. An example of a discrete hypothesis might be detecting if a species is present 

or absent in a habitat; there is a finite number of outcomes that the species is either 

present or absent. In both cases the denominator on the right hand side of the equation is 

the probability distribution of A, which is calculated differently depending on the type of 

hypothesis you are testing (McCarthy 2011). This probability distribution of A is 

essentially only a scaling factor known as the normalizing constant; that is, the posterior 

distribution we are looking for is determined by the relationship in the numerator 

(McCarthy 2011). This theorem is mathematically and logically sound, and it is only the 

application of it that involves any controversy in Bayesian methods (Dennis 1996). Here, 

the philosophy is that Pr(Bi) is the probability distribution that the researcher has assigned 

as their informative or uninformative prior, which can be subjective and leads to the 

controversy (Cox 2006). 

 Due to the difficulty of calculating the denominator directly in most cases, 

hypothesis testing in Bayesian analysis is usually done with Markov Chain Monte Carlo
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(MCMC) sampling methods (McCarthy 2011). This is a sophisticated sampling algorithm 

which will produce a sequence of values where each is derived from the value before it 

(McCarthy 2011). The goal of the algorithm is to generate values that look ‘random,’ and 

after a substantial number of samples have been taken the values generally do (McCarthy 

2011). These samples can be calculated very easily with statistical software. If you wish 

to read about the details of how the algorithm works, I recommend the “MCMC 

algorithms” appendix of McCarthy’s book, “Bayesian Methods for Ecology,” or chapter 

4, “Calculating Posterior Distributions,” of Link and Barker’s book, “Bayesian Inference 

with Ecological Applications.”

 The most prominent issue with this method of chaining samples is correlation. 

Our drawn samples clearly always depend on the previous sample, which can cause 

problems in the posterior distribution. It is not useful to have these samples that are 

heavily dependent and linked between samples, because they can be low precision and be 

inaccurate in estimating the target distribution (Link and Barker 2010). After enough 

samples as we approach what will be the posterior distribution, we want the correlation to 

become close to zero, meaning that each subsequent random number appears randomly 

generated (Link and Barker 2010). To check this, we view an auto-correlation function 

plot. This plot calculates a standardized correlational value which is expected to approach 

zero as the chain approaches the posterior distribution. Typically when running these 

MCMC tests, three chains will be run simultaneously, to compare the correlational 

values. It is important that all three chains end up looking relatively the same. An 
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example of a good auto-correlation function plot is shown in Figure 2.

  

Figure 2. An example of an auto-correlation function plot: You can see all three chains approach zero very 
rapidly, and continue to vary around 0 randomly. These are good auto-correlation function plots, as there 
seems to be little correlation between posterior distributions and the first sample distribution.

 After ensuring that chains are independent of initial sample distributions, and 

having run MCMC tests for each of the model hypothesis, it is time to compare the 

models. This is done simply by using DIC, or deviance information criterion. DIC 

calculations are the Bayesian alternative to Akaike’s information criterion (or AIC), 

proposed by Spiegelhalter et al. (McCarthy 2011). AIC and DIC values are very similar 

and when posterior distributions are mostly symmetrical are essentially interchangeable 

(McCarthy 2011). DIC is calculated by first determining the deviance at the mean of the 

posterior distributions and can be calculated using statistical software. This calculation 

provides a gauge at judging what models are the best fit by which ones have the smallest 

deviance (Link and Barker 2010). However, it is also important to have simplistic 

models, and the best models are considered the ones with the fewest number of
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 parameters that provide the most information (McCarthy 2011). This is where DIC 

comes in, which adds a penalty to models for complexity, where complexity means more 

parameters. As with deviance, we are looking at models with the lowest DIC values as 

the best fits (McCarthy 2011). Typically, without this penalty, models with the most 

parameters would be expected to have the lowest deviance, but it is important to question 

whether the extra parameters are justified (McCarthy 2011). By adding in the penalty for 

complexity, a model with lots of parameters must fit particularly well to have a lower 

DIC value than a competing less complex model.

 It is not only of concern which is the best model, but how the models differ 

amongst themselves. To compare, we look at the ΔDIC, which is the difference between 

the DIC of a particular model and the minimum DIC of all the candidate models. Table 1 

is a table which compares ΔAIC values and how they should be viewed compared to the 

model with the lowest AIC value; since in most cases DIC values are interchangeable 

with AIC values, the same comparison rules can apply (McCarthy 2011).

Table 1. Interpretation of the level of support for apparently inferior models relative to the model with the 
lowest AIC, based on differences in their AIC values (Burnham and Anderson, 2002).

ΔAIC Degree of support

0-2 Substantial

4-7 Considerably less

>10 Essentially none
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 Once DIC values are calculated, weights can be calculated and assigned to each 

model to determine parameter estimates. These weights are normalized values that sum to 

one and can be interpreted as the probability that particular model is the best of the 

models that were tested (Johnson and Omland 2004). This is done by calculating the 

exponential likelihood function and then dividing by the sum of the likelihoods of all the 

models (Johnson and Omland 2004):

     

wi
e

1
2

!! "
# $ !DICi( )

e

1!
2! "

# $ !DICj( )

j
!

=

                     (4)

 Not only are these weights useful when discussing the comparative relevancy 

amongst models, but they are used to determine the model averaged parameters. 

Researchers are not only interested in whether or not there are effects in science, but also 

desire to explain these effects if they are found to be significant. For each parameter 

inside of each model, we can use the posterior distributions that have already been 

calculated to do so. Although these distributions vary from model to model, cross 

averaging them with weights is a direct approach to looking at the overall effects of a 

single parameter (Link and Barker 2010). Using the weights calculated from the DIC 

values connects the relevancy of the model and the effect of the parameter to give us a 

greater understanding. The means for the model average parameters are calculated by 

(Johnson and Omland 2004):
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where θmap is the model averaged parameter, and the summation over i is over all the 

models that contain the parameter θ. Similarly, the standard errors for these model 

averaged parameters are (Johnson and Omland 2004):

   
SE !map( ) wi var !i!gi( ) !i !map!( ) 2+( )( )

i
!=

 (6)

where var(θi⎮gi) is the reported standard error of the distribution of θi from model i, 

squared. By using equations (5) and (6), distributions for the model average parameters 

are calculated.

 To summarize the process of Bayesian thinking in an example, let’s take a look at 

the coin flipping example from the frequentist section. Suppose we did some research and 

discovered that the accepted proportion of getting a heads when flipping a coin is 0.5 

with a standard deviation also 0.5. We now want to test what the probability is that the 

true proportion of heads is 0.25 given the data we collected. Using the MCMC method 

described above, we get a posterior distribution with a mean of 0.5018 and a standard 

deviation of 0.1752. Using these numbers, we calculate an estimated probability of 0.077. 

This is our new probability of the hypothesis that the true proportion of heads is 0.25. We 

can compare this to other hypotheses; for example, if we wanted to know the probability 

of a hypothesis that the true proportion of heads is 0.5, or 4 heads in 8 coin flips on 

average, we examine the posterior distribution again and have an estimated probability of 

0.4959. A Bayesian thinker will compare the probabilities of each hypothesis and make
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 conclusions based on those results.

2.4 Differences in Methods

 The differences between Bayesian and frequentist methods are very clear, and 

there are advantages and disadvantages to using either. One of the most important 

advantages to using Bayesian analysis is the ability to combine previous data with each 

study, making it a much more cohesive process to further research a subject (Dennis 

1996). Even without any preemptive knowledge, a Bayesian analysis with uninformative 

priors will have results similar to what a frequentist’s model would (McCarthy 2011). 

Another major advantage to using Bayesian methods is that the philosophy is more 

consistent with a natural train of thought. When constructing tests and models in order to 

understand data, rarely are researchers concerned with “the probability of finding this 

data given that the hypothesis is true” (McCarthy 2011). Realistically, the goal of running 

the tests is to learn something, which means the true purpose of all the research is to 

unveil information on the hypothesis. This is exactly what the Bayesian method does, in 

contrast to frequentist; finding the probability that the hypothesis is true given the 

observed data (McCarthy 2011). Since this is what researchers truly seek, it follows 

logically that these methods are more well designed for their purpose (McCarthy 2011). 

Coming up with multiple hypotheses, represented as models, is also very convenient 

using this methodology (Dennis 1996). Instead of being concerned with accepted or 

rejected hypotheses based on an arbitrary probability level, models are compared to each
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 other as well as averaged to learn more about which one has the best fit, as well as 

finding good parameter estimates across all models.

 If it were that simple, Bayesian analysis would likely be much more widely 

accepted as the consensus way of analyzing data. There are also controversial drawbacks 

to these methods, which come almost entirely in the form of the informative priors 

(Dennis 1996). Just as setting arbitrary probability levels and rejecting null-hypotheses in 

frequentist statistics can be controversial, informative priors are set up by the researcher’s 

own beliefs, which are not always concrete. Those who oppose Bayesian statistics claim 

that a disagreement in priors can quite often cause issues in the interpretation of the 

results (Cox 2006).

 No method of statistical inference is perfect and each has its own drawbacks. 

Bayesian analysis, especially when proper attention is given to the informative priors, can 

be both useful and convenient in examining relationships in the world. Its use is growing 

and it can be strongly considered as a viable way of hypothesis testing.
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CHAPTER THREE:

COMPARISONS OF MODELS

3.1 Introduction

 The goal of this paper is to compare and contrast the use of Bayesian and 

frequentist methods in the statistical analysis in ecological research. Ellen Robertson 

wrote a thesis in partial fulfillment of a Degree of Master of Science in Ecology and 

Environmental Science in May 2012, which discussed the daily nest survival probabilities 

of two birds in the family Rallidae; the Virginia Rail (Rallus limicola) and the Sora 

(Porzana carolina), which she groups together to call “rails.” In her research, Robertson 

used information theoretic methods, which is a form of model hypothesis testing that uses 

frequentist philosophies, to determine ecological models to explain the probabilities. I 

examined her data, research and conclusions and used them to perform a Bayesian 

analysis.

 Robertson studied ten wetlands in Maine, five of which were impounded. There, 

she and other researchers searched for nests of both birds and recorded the date, water 

depth at the nest, and the nest height (which she defines as the height from the base of the 

nest to the lip of the nest). The observer would return to the nest once every 3-5 days until 

the nest was determined successful or failed. Success was defined as at least one hatched 

egg, where a failure lost all eggs either through predation or nest damage such as 

flooding. When the age of the nest was not known exactly, it was approximated by using

23



 the number of eggs in the nest and the hatching date for successful nests, and was 

assumed to be found in the middle of incubation for failed nests.

 In Robertson’s 16 candidate models, factors that were considered were age of the 

nest, nest height change, water depth change, whether or not the investigated wetland was 

impounded or not, and the interaction of nest height change and water depth change. 

3.2 Methods

 To work on Robertson’s models of rail nest daily survival probabilities and 

reanalyze them using Bayesian methods, I needed to obtain her observational data as well 

as statistical software which had the capability of running MCMC chains and running 

Bayesian analysis, and used the statistical software “R” (R Core Development Team 

2011). For the Bayesian methods, I wrote models defined in .txt files, which are then 

loaded into the R workspace to be used in the analysis. These models are defined with 

prior distributions, and a mathematical definition of the model we are testing. I put all the 

data together and with all models except for Model 12 ran a burn-in of 1000 samples to 

be discarded to avoid problems with correlation, following up with a chain of 25,000 

samples to be recorded. I then ran a reverse burn-in to observe a final 2,500 samples. The 

main reason Model 12 required a much larger burn-in, 25,000, was the correlation 

between MCMC generated samples was too high, and after running the larger burn-in the 

auto-correlation function produced values much closer to 0. These samples are used to 

determine a posterior distribution for each parameter which R fed back to me.
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 Using Robertson’s observational data, I first recreated all of her models using 

uninformative priors. My uninformative priors were a normal distribution with mean 0 

and a standard deviation of 1000, which results in an effective distribution from -3000 to 

3000 that covers all plausible values for the parameters. I examined each of Robertson’s 

16 candidate models with a Bayesian perspective. Once the chaining process was 

completed, I produced auto-correlation function plots, density plots, and trace plots for 

each parameter, and recorded the means and standard errors associated with each 

parameter for each model. After this was done for each candidate model, I calculated the 

DIC values and weights as to compare the fit of the models to Robertson’s. Using the 

weights, I also calculated parameter estimates for each of the variables as well as the 

standard errors. 

 Next I searched for informative priors for logistic models on daily nest survival. 

This process ended up being more difficult as the research done in Robertson’s thesis was 

relatively original. So for prior distributions, I used her results for parameter estimations 

as informative prior distributions, only multiplying the standard errors by 3. Other than 

the prior distributions, the calculations and sampling methods were reproduced exactly as 

they were for the models with uninformative priors. 

3.3 Results

 Overall, the Bayesian analysis proved to be relatively similar to the frequentist 

analysis done by Robertson. For the model averaged estimates, none of the parameters,
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 either from frequentist, Bayesian with informative priors, or Bayesian with 

uninformative priors were significantly different from each other, although there were a 

few differences. The standard error for the interactions between water depth change and 

nest height change, as well as water depth change itself, were larger in both Bayesian 

analysis tests than the frequentist, suggesting that we are less confident in our estimations 

of the effect of the variables. Also, Robertson found a significant effect of age while both 

of my Bayesian analyses included 0 within one standard error of the mean. This suggests 

that there is a weaker effect of age than was found in the frequentist analysis, notably 

even more so with the informative prior analysis.

Figure 3. Model-averaged mean plus or minus one standard error for the parameter of intercept in 
Robertson’s models compared to the Bayesian analysis with uninformative and informative priors.
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Figure 4. Model-averaged mean plus or minus one standard error for the parameter of age in Robertson’s 
models compared to the Bayesian analysis with uninformative and informative priors.

Figure 5. Model-averaged mean plus or minus one standard error for the parameter of water depth change 
in Robertson’s models compared to the Bayesian analysis with uninformative and informative priors.
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Figure 6. Model-averaged mean plus or minus one standard error for the parameter of nest height change in 
Robertson’s models compared to the Bayesian analysis with uninformative and informative priors.

Figure 7. Model-averaged mean plus or minus one standard error for the parameter of impoundment in 
Robertson’s models compared to the Bayesian analysis with uninformative and informative priors.
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Figure 8. Model-averaged mean plus or minus one standard error for the parameter of the interaction 
between water depth change and nest height change in Robertson’s models compared to the Bayesian 
analysis with uninformative and informative priors.

Table 2. Model-averaged parameter estimates for Robertson’s models and both the Bayesian models with 
uninformative and informative priors. 

Parameter Robertson’s 
Estimate ± 

Standard Error

Bayesian 
Uninformative 

Prior Estimate ± 
Standard Error

Bayesian 
Informative Prior 

Estimate ± 
Standard Error

Intercept 2.53 ± 0.61 1.95 ± 0.64 2.16 ± 0.46

Age 0.06 ± 0.03 0.05 ± 0.05 0.03 ± 0.04

Water Depth 
Change

0.15 ± 0.05 0.16 ± 0.12 0.16 ± 0.11

Nest Height 
Change

-0.04 ± 0.13 0.01 ± 0.14 0.01 ± 0.14

Impoundment 0.30 ± 0.44 0.38 ± 0.71 0.27 ± 0.51

Water Depth 
Change * Nest 
Height Change

0.06 ± 0.03 0.08 ± 0.07 0.08 ± 0.06
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Similarly, there was very little variation between the three methods of analysis when it 

came to the comparisons of the models. In all three methods, Robertson’s top model, 

which combined water depth change, nest height change, age, and the interaction 

between water depth change and nest height change, was calculated to be the best model 

with the highest weight. Likewise, Robertson’s worst model, which combined 

impoundment and nest height change, was calculated to be the worst model with the 

lowest weight also for the Bayesian models. The largest difference in the analysis was the 

overall differences in the AIC/DIC values. In Robertson’s analysis, the top model had a 

weight of 0.4, which suggested that of the models she tested there was a 40% chance that 

model was the best, while the weights for the Bayesian analysis were .23 for 

uninformative priors and .22 for informative priors, suggesting only a 23% and 22% 

chance respectfully that model was the best. The DIC values were much closer together 

for both of the Bayesian analyses than for the AIC values for Robertson’s, as the ΔAIC 

for her worst model was 10.0, but the ΔDIC for the worst Bayesian models were 6.47 for 

models with uninformative priors and 6.1 for models with informative priors. This leads 

to the weights also being much closer together overall, as the variance (a measure of how 

far the data is spread out) of the weights for Robertson’s models was 0.01, but for both 

Bayesian models was 0.005. The rankings were very similar in all three cases, with R2 

correlational values (with ±1 being heavily correlated and 0 being not correlated at all) 

being 0.79 and .71 between Robertson’s models and the Bayesian models with 

uninformative priors and informative priors respectfully.
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Table 3. The models in order of Robertson’s rankings and their parameters. These were used an all three 
analysis. 

Model # Parameters

1 water depth change + nest height change + age + water depth change * 
nest height change

2 impoundment + water depth change + nest height change + age + water 
depth change * nest height change

3 water depth change + nest height change + water depth change * nest 
height change

4 age + water depth change

5 age

6 impoundment + water depth change + nest height change + water depth 
change * nest height change

7 impoundment + age + water depth change

8 impoundment + age

9 age + nest height change

10 null (constant intercept)

11 water depth change

12 impoundment + age + nest height change

13 impoundment + water depth change

14 impoundment

15 nest height change

16 impoundment + nest height change
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Table 4. Comparisons between models for Robertson’s analysis and the Bayesian analysis. Robertson used 
AIC values in place of DIC values, which are virtually the same in this case. The smaller the AIC/DIC 
value and the higher the weight, wi, the higher the probability the model is the best among those listed. 
(ER) means the column stands for Robertson’s analysis, (UN) means the column stands for the Bayesian 
analysis with uninformative priors and (IN) means the column stands for the Bayesian analysis with 
informative priors. 

Model 
#

AIC 
(ER)

ΔAIC
(ER)

wi 
(ER)

DIC 
(UN)

ΔDIC 
(UN)

wi 
(UN)

DIC 
(IN)

ΔDIC 
(IN)

wi 
(IN)

New 
Rank 
(UN)

New 
Rank 
(IN)

1 160 0 0.40 160 0 0.23 160 0 0.22 1 1

2 162 1.6 0.18 162 1.6 0.10 161 0.7 0.15 3 3

3 163 2.9 0.09 161 0.7 0.20 160 0.3 0.19 2 2

4 164 3.5 0.07 164 3.5 0.04 164 3.5 0.04 6 6

5 164 3.6 0.07 162 1.7 0.10 163 3.0 0.05 5 5

6 165 4.7 0.04 162 1.7 0.10 161 1.1 0.13 4 4

7 165 5.0 0.03 165 4.3 0.03 164 4.3 0.03 10 11

8 166 5.2 0.03 164 4.1 0.03 164 4.2 0.03 9 10

9 166 5.5 0.03 166 5.4 0.02 165 5.1 0.02 13 13

10 167 6.4 0.02 164 3.5 0.04 164 3.6 0.04 7 7

11 167 6.4 0.02 164 3.9 0.03 164 4.0 0.03 8 8

12 168 7.1 0.01 167 6.2 0.01 166 5.9 0.01 15 15

13 169 8.1 0.01 165 4.5 0.02 164 4.3 0.03 12 12

14 169 8.1 0.01 165 4.3 0.03 164 4.1 0.03 11 9

15 169 8.3 0.01 166 5.5 0.01 166 5.6 0.01 14 14

16 170 10.0 0 167 6.5 0.01 166 6.1 0 16 16
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3.4 Discussion/Conclusions

 We expected both of the Bayesian methods, especially the one with uninformative 

priors, to have results that were very similar to Robertson’s, and they did. All the model 

averaged parameter estimates were within one standard error of each other, implying that 

the estimations were all similar. Likewise the top 6 overall models were the same for all 

three methods, and the rankings between them being so heavily correlated shows that the 

overall results are the essentially the same. Considering that the best model and the worst 

model according to AIC/DIC calculations were the same in all three also suggests that the 

methods come to the same conclusions. 

 One major difference between the methods was the spread of the AIC/DIC values, 

resulting in a difference in the spread of the weights as well. It was much more likely that 

Robertson’s best model was the best of those she tested than was the case for either of the 

Bayesian models. The Bayesian analysis then implies that the models are much more 

similar to each other than what Robertson’s analysis found. From models numbered 10 

and higher, her analysis showed almost no support. In the Bayesian analysis, there was 

not much overall support but considerably higher support that in Robertson’s tests seem 

to have been allocated to the top model. This makes it much less likely that we throw out 

any of the models from consideration. From the Bayesian tests we see that there appear to 

be three tiers of interchangeable acceptance; models 1 and 3 appear to be the best, models 

2,4,5 and 6 appear to be close, and the rest can all be grouped together. While this is a 

major difference between the tests, the overall results are extremely similar. We still 
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accept model 1 as the best model with the highest probability of being the correct model 

and there were no models that surprised, with the highest change in ranking being model 

number 7 being ranked 10th and 11th in the uninformative and the informative analysis 

respectfully.

 The inclusion of 0 in the within one standard error of the mean for the age 

parameter is also an important difference in the models as Robertson’s frequentist 

analysis shows it to have a significant effect on daily nest survival probability but the 

Bayesian analysis, while not ruling it out, suggests that the evidence of an effect from the 

age variable is not as strong. More importantly, the Bayesian analysis that used 

informative priors had a mean even closer to zero. Since we expect the Bayesian analysis 

with uninformative priors to be similar to frequentist analysis, and the use of informative 

priors is of high importance to Bayesian methods, this is an important difference. 

However, in the top rated model, the means and standard errors for the uninformative and 

informative Bayesian analyses were .047 ± .033 and .034 ± .026 respectively, both 

intervals excluding zero. This might mean that including models with less support in the 

model averaging, despite having a lower model weights, could have resulted in larger 

standard errors.

 For the parameters for water depth change, and the interaction between water 

depth change and nest height change, the standard errors were significantly larger. Unlike 

the parameter of age, in all three analyses the effect of both variables seems to be 

significant, but the difference in the standard errors suggests that we know less about how 
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important the impact they have on daily survival probabilities is.

 A small disagreement in the sign of the nest height change parameter, Robertson’s 

being negative and the Bayesian analysis showing it to be slightly positive, can be 

attributed to the standard error. For all three methods, the standard error was an order of 

magnitude higher than the estimate for the nest height change parameter, meaning that we 

are unsure if the true value is positive or negative, despite what the estimates are. While a 

sign change may seem like a significant difference, after observing the standard errors we 

see that in reality it is not.

 The Bayesian models with the lowest DIC values contained the parameters for the 

interaction between water depth change and nest height change as well as water depth 

change. In fact, none of the models without both of these parameters ranked higher than 

the four models that contained them for either Bayesian analysis. However, there are also 

models with water depth change that do not contain the interaction term that do not rank 

as highly, which implies that it is the addition of both of these variables that is important 

in estimating the daily nest survival probabilities. 

 We can conclude then that parameter estimations, model rankings, and overall 

conclusions were nearly identical. For possible further research into the topic, it would 

have been better to find informative priors from a study separate from the one where the 

observed data came from. More development on the research of predicting daily nest 

survival probabilities of rails is necessary to delve better into the informative prior 

perspective.
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