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ABSTRACT 

  

 Axolotl (Ambystoma mexicanum) and the zebrafish (Danio rerio) represent 

organisms extensively studied because of their remarkable capability of fully 

regenerating completely functional tissues after a traumatic event takes place. However, 

the research conducted with regards to the genomics of these two organisms has 

remained fairly independent of each other. The intent of this study is to bridge this gap 

and connect genes between axolotl and the zebrafish by use a “Rosetta stone” framework 

to develop a database comparing gene expression data obtained from both microarray-

based experiments and high-throughput DNA sequencing of axolotl and zebrafish mRNA 

and miRNA. Using gene data of this variety, accessed from a variety of private and 

public resources, 78 axolotl genes were matched to human genes and found to have 

homologous zebrafish genes. The function of these genes were organized and discussed 

from a variety of perspectives, including general gene ontologies, specific mechanisms 

and functions, expression during regeneration at specific times post amputation, and 

expression in normal regenerating specimens as compared to specimens exposed to the 

toxin TCDD. Specific proteins and protein functionalities that appear most frequently or 

novel significance included ribosomal proteins and mitochondrial processes, neurite 

regeneration, the presences of proteins NADH ubiquinone oxidoreductase, histone, 

cystatin, and cathepsin, cell differentiation, apoptosis and cellular maintenance, and the 

structure of the extracellular matrix. 



	  	  

KEY ABBREVIATIONS 

 

 Abbrv. Definition 

 BioPr  biological process (gene ontology) 

 BLAST Basic Local Alignment Search Tool 

 CComp cellular component (gene ontology) 

 cDNA  complementary DNA 

 dpa  days post-amputation 

 DRERI Danio rerio (ortholog organism) 

 ECM  extracellular matrix 

 GO  Gene Ontology (annotation nomenclature) 

    (example: GO:0000000) 

 HSAPI  Homo sapiens (ortholog organism) 

 HGNC  HUGO Gene Nomenclature Committee (annotation nomenclature) 

    (example: ABCD1_HUMAN) 

 miRNA microRNA 

 MolFn  molecular function (gene ontology) 

 mRNA  messenger RNA 

 PCR  polymerase chain reaction 

 TCDD  2,3,7,8-Tetrachlorodibenzo-p-dioxin 

 UP  UniProt, a protein information catalog 

 UniProt ID UniProt/SwissProt Accession (annotation nomenclature) ID 

    (example: A1B2C3)
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1. Introduction 

 

 The complete assembly and annotation of the human genome that resulted from 

the Human Genome Project constituted one of the greatest achievements in the relatively 

short history of bioinformatics. The ability to qualify and quantify gene expression, and 

to do so rapidly and accurately, has enabled new ways of assessing the role that specific 

genes play in human health and disease.1 One such function, the process of tissue repair 

and regeneration, is of particular importance to this project. Although humans can 

regenerate skin and blood cells as well as liver tissues, our ability to regenerate other 

functional tissues is quite minimal.2 A study comparing gene expression in regenerating 

tissues between two model organisms capable of regenerating fully functional tissue will 

lead to the identification of candidate genes that may be critical to this process. 

 

 Ambystoma mexicanum (axolotl) and Danio rerio (zebrafish) are well developed 

model organisms for the study of limb regeneration, both being able to efficiently 

regenerate complex and fully functioning musculoskeletal systems.3,4 The development 

of a database comparing gene expression data obtained from both microarray-based 

experiments and high-throughput DNA sequencing of axolotl and zebrafish mRNA and 

miRNA would help researchers identify potential candidate genes that have a role in the 

process of limb regeneration.1 This information could be compared with and contrasted 

against data from the human genome in order to better understand the mechanisms and 
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various metabolic and development pathways that are at work when vital organs and 

other aspects of the human musculoskeletal system begin to fail or break down. 

 

 Although both organisms have been studied extensively on an individual scale, 

research to draw connections between and connect homologous gene sequences from 

related sets of axolotl and zebrafish gene expression data has not been carried out to the 

same degree. Therefore, this study will focus on developing a more annotated database of 

gene expression data between axolotl and the zebrafish. 

 

 The goal of this study is to analyze public and private datasets of gene expression 

data from studies regarding regeneration in both the axolotl and the zebrafish to compare 

the expression of homologous genes that exist in these organisms. Analysis of the data 

will look to provide the user with a “Rosetta stone” of genetic information that will allow 

for easier comparisons of axolotl and zebrafish gene expression data to be made. Ideally, 

these annotations will provide some insight as to what types of gene sequences, 

biological processes, cellular components, and molecular functions may prove to play 

common roles in the unique regenerative processes of these two organisms. One group of 

genes that was examined in detail was those genes associated with the dynamic 

maintenance and biological processes of the extracellular matrix (ECM). 
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2. Background 

 

 Tissue repair and regeneration has the goal of improving the quality of life of 

people with chronic diseases, infections, or conditions where tissue damage is a major 

factor. As the average life expectancy of humans increase, a greater number of deaths are 

likely to be caused by organ failure or the natural breakdown of tissues as opposed to 

“curable” diseases. The development of new therapies that can reprogram cells to 

dedifferentiate and then regenerate tissues is the long-term goal of regeneration research. 

An ever-aging population is far from the only reason for a desire to further the field, as 

this research could also be used to further human medicine in regards to the treatment of 

spinal cord injuries and the handling of amputations during and after traumatic events. 

 

2.1. Ambystoma mexicanum, Danio rerio, and Previous Studies 

 

 Ambystoma mexicanum, binomial nomenclature for the Mexican salamander, is a 

species of salamander originally indigenous to central Mexico. Known colloquially as 

axolotl, this organism exhibits a select few traits of particular interest to scientific 

research, including the phenomenon of neoteny (whereby sexual maturity of an animal is 

reached in the larval stage, characterized by a lack of metamorphosis) and the ability to 

completely regenerate fully functioning tissues, as would be necessary in case of such an 

event as limb amputation. In part because of these unique qualities and in part because of 

its current status as a critically endangered species as designated by the International 

Union for Conservation of Nature, the Mexican salamander has primarily been relegated 
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to captive habitats and is a common model and test organism for fields dealing with 

developmental and genetic research. The axolotl does not yet have a fully sequenced 

genome.5 

 

 Danio rerio, binomial nomenclature for the zebrafish, is a species of freshwater 

fish native to the Himalayan region of Asia, although it has also been introduced to the 

United States. The zebrafish also possesses many distinguishing characteristics of interest 

to scientists. Zebrafish eggs become translucent almost immediately after fertilization, 

and the majority of initial major organ development happens within 3 days of, 

fertilization, which makes the fish a favorable model subject for developmental research. 

Another feature of the zebrafish, similar to axolotl, is its ability to regenerate fully 

functioning tissues. In contrast with the axolotl, the zebrafish genome has been 

completely sequenced.6 

 

 Both organisms are heavily researched individually in the scientific community, 

more specifically in the fields of genomics and bioinformatics. With a focus on gene 

expression and regulation, previous studies analyzing the regenerative processes found in 

axolotl and zebrafish specimens have found certain genes to be expressed at elevated or 

depressed levels at time intervals past the removal of an appendage.7 The existence of 

these upregulated and downregulated genes corresponds to an increase or decrease, 

respectively, in gene expressions relative to a reference. Gene expression data is 

recovered from transcriptome assemblies compiled using next-generation sequencing, a 

process that allows scientists to quantify and annotate transcripts as well as receive 
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alternative sequence variations and corrections in identified genes without the individual 

needing prior knowledge of the genes in question.8 

 

2.1.1. Effect of TCDD on Gene Expression during Regeneration 

 

 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a type of dibenzo-p-dioxin that is 

polychlorinated and can dissolve in fats, oils, and lipids. TCDD is a persistent chemical 

compound that possesses the tendency to bioaccumulate in eco- and animal systems. This 

is especially true for fish, as TCDD has been shown to impede growth and causes 

heightened mortality rates in these organisms.9,10 

 

 It has been proven that exposure to TCDD significant affects fin regeneration of 

the zebrafish. Zodrow et al. performed experiments during which zebrafish caudal fins 

were partially removed and specimens received 2.8, 14, or 70 ng TCDD per g weight via 

intraperitoneal injections. After 7 days post-amputation (dpa), zebrafish specimens 

receiving the greatest dosages of TCDD recorded 15% fin regeneration as opposed to 

65% fin regeneration as found in untreated specimens. The same study also showed lower 

rates of cell proliferation for TCDD-exposed zebrafish than for their untreated 

counterparts.11 

 

 An agonist of the aryl hydrocarbon receptor (AHR) signaling pathway, a 

biological process that controls the response of zebrafish to a toxin, TCDD binds with a 

receptor of AHR and causes translocation of the receptor complex into the nucleus of the 
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cell, where the complex binds to a gene that transactivates response-specific gene 

elements. It is through this process that further gene expression is modified.9,10,12 

 

2.2. Limb Regeneration – A Brief Cellular Biology Overview 

 

 Humans form scar tissue at the wound site rather than regenerate limbs as in 

axolotl and the zebrafish. In humans, the first stage of wound repair is inflammation that 

occurs directly after the tissue has been damaged. Inflammation is a fundamental 

pathological process composed of cytological changes, cellular infiltration, and mediator 

release. This process occurs in the blood vessels of and the tissues adjacent to those 

tissues affected by damage.13 On a cellular level, various components of coagulation 

process, inflammatory pathways, and the immune system are required to ensure that the 

organism does not lose too much blood or tissue and does not become infected. A clot of 

platelets forms and initial plug and is eventually replaced by a matrix of fibrin, a fibrous 

protein involved with the blood clotting process.14 The second stage in humans is the 

formation of new tissue. Keratinocytes migrate over the inner layer of the affected area of 

skin and angiogenesis occurs. The interaction between myofibroblasts and fibroblasts 

provides the basis for the extracellular matrix (refer to section 2.3., ECM).14 The third 

stage, remodeling, occurs over a longer period of time than the first two stages and is 

characterized by programmed cell death known as apoptosis and the migration of 

endothelial cells out of the wound. Tissue at the wound site is mainly composed of 

collagen and ECM proteins.14 
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 For the process of limb regeneration in axolotl and the zebrafish, a different set of 

stages occur. The first stage is composed of fast wound healing. The ECM breaks down 

and muscle, skeletal, and connective tissues are broken down from their structures. These 

freed cells then dedifferentiate and help to form blastema, the second stage of limb 

regeneration. In this stage, the formation of blastema, clusters of dedifferentiated cells 

that can act as precursors for the formation of many tissues, enables axolotl and the 

zebrafish to initiate regeneration of damaged tissue structures. This is because blastema 

cells bear a morphological resemblance to that of stem-like cells.13,15 The third stage of 

regeneration in these organisms is outgrowth, whereby new, functional tissues grow in 

place of the originally damaged tissue. The mass of blastema cells form buds where the 

growth occurs, with various levels of bud development (early, medium, and late bud 

blastema, digital outgrowth) and case-specific factors such as wound epidermis and 

regenerating nerves characterizing the complete process.16 

 

2.3. ECM 

 

 The extracellular matrix (ECM), a complex network of macromolecules that 

supports cells and allow them to move and elongate while maintaining their structure, 

plays an important role in regeneration. The ECM may also provide cells with sources of 

structural proteins, specialized proteins, and proteoglycans that can be used by the 

cell.17,18 Because of these functions, the ECM is generally a term used to encompass the 

wide variety of cellular components that can help provide a structural framework for the 
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cell by surrounding and supporting the cell. The ECM forms an interstitial “glue” that 

works to hold individual and groups of cells together.17 

 

 The proteins collagen, elastin, fibrillin, fibronectin, and laminin, all of which can 

be associated to and appear in connective tissue, are found within the ECM.18 These 

proteins possess structural and adhesive roles in the process of cell building. The most 

common of these proteins, collagen, is one of the dominant constituents of skin and bone. 

Collagen is a fibrous family of proteins that are secreted by cells in connective tissues 

systems like muscles, tendons, and bone. The typical collagen molecule possesses a long-

chained helical structure that exhibits stiffness and stability, which can help explain its 

role in these connective tissue systems as these systems contain organs known for their 

durability and functionality under stress.18 

 

 In addition to the structural and specialized proteins are the proteoglycans, 

molecules which form a gel-like, hydrated substrate that contains the fibrous proteins of 

the cell. These proteoglycans can help control proteins secreted by the cell as well as 

potentially serve as a primary medium through which intercellular chemical signaling and 

communication can occur.17 

  

2.4. Affymetrix GeneChip DNA Microarrays 

 

 Affymetrix GeneChip DNA Microarrays were used to acquire the gene expression 

data for this study in axolotl and the zebrafish. These devices allow researchers to quickly 
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characterize the gene expression present in any sample tissue using oligonucleotide 

probes that are designated to a set of genes for a specific organism. Affymetrix arrays use 

photolithography to microfabricate the oligonucleotide probes onto a solid surface. The 

array of oligonucleotides can be thought of as a checkerboard of fragmented DNA 

strands. Each microarray contains hundreds of thousands of squares, known as features. 

Features are incredibly small – on the order of 10 microns across, about 20% the width of 

a human hair. Each feature only contains one unique nucleic acid sequence, a chain of 25 

base-pairs known as a probe, but there are millions of identical copies of the same probe 

in the area occupied by a feature. These chips are constructed in a manner similar to a 

semiconductor, with highly specialized equipment being able to attach and compound 

individual nucleotides onto the solid surface of the microarray in order to construct any 

desired assortment of DNA probes. For scale, a 10K Affymetrix GeneChip DNA 

Microarray could test, as of a few years ago, for over 10,000 unique probes and contains 

over 400,000 features; the current numbers are much greater. The entire probe array 

covers a square less than 2 centimeters across.19 

 

 The basic principle behind the function of a DNA microarray is a concept known 

as hybridization, which is the process of using innate attractions between the nucleotide 

base pairs adenine (A), cytosine (C), guanine (G), and thymine (T) to create 

complementary sequences. In order to test for the presence of a particular DNA sequence 

of interest, a feature can be constructed so that it contains the opposite base pairs so as to 

attract that the desired sequence. For example, if the gene sequence one was interested in 
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determining the presence of in a sample was |ATTAGCGATC, then a probe with the 

sequence |TAATCGCTAG would be constructed.19 

 

 To acquire data from microarrays used in expression studies, RNA is extracted 

from the target sample and converted to complementary DNA (cDNA). The cDNA 

strands are chemically fragmented and biotin is attached to each short piece of cDNA. 

This chemical will later bond with fluorescent molecules and this fluorescence, under a 

laser, will be used to determine where (which probe) and to what degree (the intensity of 

expression) the sample RNA strands bind to the complementary oligonucleotide probe on 

the microarray. The sample cDNA is washed over the microarray for 14 to 16 hours and 

any sample strands that can find a match to any probe in any feature will attach 

themselves to the appropriate region of the microarray. The chip is then washed over with 

a fluorescent material which only attaches to the microarray in those regions with paired 

matches of sample cDNA and corresponding probe. The amount of expression of a 

particular gene in a sample of tissue, therefore, can be determined by analyzing which 

features on the microarray appear brightest.19 

 

 

2.5. Illumina High Throughput Sequencing 

 

 Another method of quantifying levels of gene expression used for this study is 

known as high throughput sequencing. This technique provides genomic technologists 

with a cheaper and faster method, relative to other techniques, of determining the 
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sequence and expression level of all RNA molecules in a  given sample. High throughput 

sequencing techniques generally use a polymerase chain reaction in order to amplify 

cDNA templates. Because millions of these sequencing reactions can be run 

simultaneously, a high throughput method can yield a full set of cDNA in a relatively 

short period of time.20 

 

 Illumina high throughput sequencing was used to obtain transcriptome data for 

this study. First, cDNA was prepared from RNA samples. Using sonication, acoustic 

waves fragment the cDNA. Oligonucleotides known as adapters are then attached to the 

ends of these pieces of cDNA and the strands are fractionated, or broken up into even 

smaller constituents based upon composition, over a gradient for size. Bands of desired 

base pair length are selected and these molecules are attached to a slide, also called a 

flowcell, alongside primers for PCR and amplified with polymerase via bridge 

amplification. In this process, the primers are attached to the flowcell surface and the 

sample cDNA is loaded onto the flowcell. The DNA strands act as templates for 

hybridization to occur to form an elongated copy of the DNA strand on the primer. The 

original molecule is denatured (a double strand of DNA splits into two strands) and 

washed away with formamide, leaving behind the elongated copies of DNA on the 

primers. This elongated strand is then free to bend and form a bridge by hybridizing with 

another PCR primer. The hybridized primer is extended and the two DNA strands are 

denatured again, leaving behind a strand of DNA attached to each of the PCR primers. 

This process can happen continually, resulting in 2n individual strands of identical DNA 
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for every n number of times the process completely repeats itself.21,22 Thus, DNA 

sequences of interest are “amplified”. 

 

 In order to character the order of base pairs in these amplified sequences, four 

types of reversible terminator bases are added to the flowcell and any bases not finding a 

match with an amplified sequence are washed away. Because these added molecules are 

fluorescently labeled, a camera can record an image of the nucleotides added to the 

flowcell. The fluorescent material is washed away and the next cycle occurs. Extension 

of DNA chains occur one nucleotide at a time, with images of every step being captured. 

This enables the ability to record rapid, sequential information for very large colonies of 

DNA.21,22 

 

2.6. Bioinformatics 

 

 The field of bioinformatics merges the fields of genetics, genomics, statistics, and 

often computer programming into an interdisciplinary field aimed at acquiring, 

organizing, assessing, and analyzing data from biological systems. Many principles of 

bioinformatics were used in the development of the research carried out by this study and 

many of these will be explained in further detail. 
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2.6.1. Searching for Sequence Similarity 

 

 A common goal of a study using bioinformatics is to identify instances where a 

particular protein sequence or gene of interest possesses a sequence similar to a test or 

desired sequence; for this study, a protein sequence or gene acquired from a sample 

organism will be referred to as a contig, and a known protein sequence or gene accessed 

from a genomic database will be referred to as a target. While multiple methods exist for 

determining these relationships between combinations of sample data and database data, 

all follow the basic premise of matching nucleotide base pairs and observing how well 

and to what extent alignments can be made. 

 

2.6.1.1. Local Sequence Alignment 

 

 Structural alignment methods use the shape and three-dimensional conformation 

of a protein structure to make homologous connections between two or more structures.23 

On a more basic level, local sequence alignment methods search for segments of two or 

more protein sequences that appear to match well. This type of alignment differs from 

global alignment in that the latter assumes that the protein sequences of approximately 

equal length and overlap each other over this length. Local alignment, on the other hand, 

does not force an entire protein sequence into a match between sequences, instead simply 

comparing the parts of the sequence that exhibit strong similarity. While global sequence 

alignments may be more effective for identifying unobvious similarities in an overall 
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sequence, local sequence alignments may provide more accurate and useful results on the 

whole. A visualization of a global and local alignment is shown in Figure 1 below.24 

 

 

Fig. 1.   Example Illustration of Global and Local Alignment 

 

 Another concept that will be mentioned in the Methods section is the notion of a 

“percent identity” and a “percent length”. These values determine the mapping accuracy 

(identity) and the extent of coverage between a contig and a target (length) that is to be 

allowed by the program. Figure 2, below, illustrates an example of how these values can 

be visualized. The percent identity of this mapping is 95% (19 of the 20 base pair 

matches are correct) and the percent length of this mapping is 80% (20 of the target’s 25 

bp sequence is matched up). Moreover, the example in Fig. 2 would be classified as 

fitting a 95/80 “threshold level”. 

 

 

 
GLOBAL ALIGNMENT 
 
SEQUENCE #1 R S D G K N L Q F F K S W E R S I M G V 
    |              |   |   |   |   |   |               |             | 
SEQUENCE #2 R D E N K N L Q F F R V G E P A F M V H 
 
 
LOCAL ALIGNMENT 
 
SEQUENCE #1                K N L Q F F  
                   |   |   |   |   |   |  
SEQUENCE #2                K N L Q F F  
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Fig. 2.   Example Illustration of Percent Identity and Percent Length Concepts 

 

2.6.1.2. BLAST 

 

 A popular tool in the bioinformatics community for determining and further 

characterizing the extent to which local alignments occur between protein sequences is 

the program Basic Local Alignment Search Tool (BLAST). This program is able to 

identify regions of local alignment similarity between protein sequences as well as 

quantify the statistical significance of any observed alignment. BLAST is commonly used 

to group known gene sequences together based on genetic families and to identify any 

inter-functional, ontological, evolutionary, or metabolic pathway relationships that may 

exist between these sequences.25 BLAST can be used with many types of database files 

and is a versatile tool for compiling valuable gene mapping information. For the purposes 

of this study, a BLAST package was downloaded from the internet.25 

 

2.6.2. Databases for Protein Sequences and Genes 

 

 In order to complete a study of genetic expression data through the lens of 

comparative genomics, the expression data must either be compiled by the tester or 

acquired from a secondary source. The focus of this study is data analysis rather than data 

 
TARGET ACGTG TTTTG CTAGA ACCAT TTAGC 
      |   |   |   |  |   |  |  |   |  |   |  |   |   |   |   |  |   |  | 
CONTIG    CGTG TTTTG CTAGC ACCAT T 
      √ √ √ √ √ √ √ √ √ √ √ √ √ −  √ √ √ √ √ √ 
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acquisition, and so all data files were obtained from outside sources. Many of the files 

used in this study were downloaded from a private database set up by Benjamin King 

(MDIBL) on the MDIBL server; this server was used because a few data sets are 

unpublished and are not subject to public domain. Other files with annotated gene 

descriptions and other ontological information were downloaded from the Ensembl 

Genome Browser via BioMart and NCBI via the Gene Expression Omnibus (GEO) 

DataSet Brower.26,27 

 

2.6.3. Programming (Perl) 

 

 In order to properly manipulate the data to acquire the results demanded by this 

study, a programming language must be used in order to parse and sort results from 

BLAST. Perl is a multipurpose programming language commonly used for, among other 

applications, handling bioinformatics data. As with typical programming languages, Perl 

allows users to write scripts, or blocks of carefully formatted texts with a specific syntax, 

that will can execute commands and display output information in a command prompt 

window as well as create files of data. The script for this study was written using Perl as 

the programming language. ActivePerl, an industry-standard distribution of Perl 

programming language software, was downloaded from ActiveState.28 
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2.6.3.1. Associative Arrays 

 

 A key concept in the use of writing a script to manipulate and sort tables of data is 

the idea of keeping every descriptive value associated with what it’s describing. This 

functionality is carried out through the use of an associative array. These associative 

arrays allow the user to establish a matrix of values where every individual value in a line 

of data is automatically “associated” with each other, much as rows in an Excel 

spreadsheet would be kept together. These input files are tab-delimited so that the script 

is able to identify this spacing format and associate all corresponding data values to one 

another, which forms the associative array. 

 

2.6.3.2. Merging Data Sets via Alignment Criteria 

 

 As will be discussed in the Methods section, the major purpose of using a 

programming language with associative arrays to sort through massive amounts of gene 

name, description, and expression data is to enable the user to quickly make connections 

between values from different data sets without needing to check every individual gene 

for a possible match. The main focus of the Perl script written for this study was to use 

associative arrays and Perl language to merge data sets based on specific criteria. These 

criteria may include the presence of a common gene name or description, desired 

statistical significance level, or 1:1 mappings between data sets. For a further explanation 

of the Perl scripting functionalities used in as well as the overall methodology of the steps 

taken to acquire data for this study, refer to the Methods section. 
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3. Methods 

 

 The majority of the physical work completed for this study was compiling a script 

in Perl designed to input axolotl and zebrafish data and output results that align 

homologous genes between the two organisms, show connections between the organisms, 

and identify genes that may be of interest. Before a description of the script is discussed, 

a framing of the methods of this study must be undertaken.  

 

3.1. Framing the Methods from a “Rosetta Stone” Perspective 

 

 Figure 3 highlights key concepts for the overall methodology of this study and 

provides a frame through which all research and data collection can be viewed. A 

GeneChip microarray is used to map probe sets, or groups of oligonucleotide fragments 

designed to test for the presence of desired sequences, to the Zv9 (zebrafish) genome for 

the zebrafish and to axolotl EST (expressed sequence tags) and then to a RNA-Seq 

assembly for the axolotl. The results of these steps are the production of data files that list 

all found matches of sample organism gene sequences to known or database gene 

sequences for those organisms in addition to probe set identification and gene symbol 

information. These files can be converged and compared to each other as well as to other 

data sets using Perl and other online resources like NCBI via the Gene Expression 

Omnibus (GEO) DataSet Brower, UniProt via UniProtKB, and Université de Genève’s 

Department of Microbiology and Molecular Medicine via OrthoDB.27,29,30 
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Fig. 3.   Overview of the Rosetta Stone Methodology of this Study 

  (source: Benjamin King, MDIBL) 

 

 Using a combination of genetic data from outside sources, Perl programming for 

computational and comparative purposes, and consultation of gene homology resources 

will the facilitate this study in its aim of creating a “Rosetta stone” of gene ontology for 

those genes expressed during the process of limb regeneration in axolotl and the 

zebrafish. 

 

3.2. Perl Script Construction 
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 (See Appendix A for the Perl scripts used in this study.) 

 

 First, any FASTA-formatted information file was converted into a tab-delimited 

text file so that all data files could be properly manipulated by the Perl script. Command 

prompts were run using Perl programming language to use the BLAST software to run 

initial comparisons between the axolotl data and the axolotl database genetic data; these 

data were used to create a file which mapped contigs against targets and a file which 

mapped the reverse of this case, targets against contigs. This was done so that mappings 

of genetic sequences could be looked at from two perspectives. 

 

 After these initial steps, the primary script used by this study was generated. On-

screen prompts for “% IDENTITY” and “% LENGTH” were created, allowing the 

program user to enter a value between 0 and 100 for each property. 

 

 Next, the text files containing axolotl contig lengths from the sample data, axolotl 

target lengths from the database, and axolotl gene annotations from the database were all 

read into the Perl script and converted into associative arrays. The input text file for the 

targets versus contigs comparison was read into the script and converted into an 

associative array. The script was written to test for incidences of targets mapping to 

contigs where the threshold level matched those values for percent identity and percent 

length entered by the user. A counting function was created to assess the number of 

instances where one target aligned to exactly one, greater than one, and equal to or 

greater than one contigs. The input text file for the contigs versus targets comparison was 
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then read into the script and a similar procedure was followed. The data used for these 

counts was used to give a number of 1:1 mappings for the given threshold level. A 1:1 

mapping exists where one target is mapped to only one contig and where that same contig 

is mapped to only that same target. 

 

 Additional programming language was added to the script to read in the text file 

containing human ECM gene listing data, this also being converted into an associative 

array. Any 1:1 mappings that share UPSPA names with those found in the human ECM 

gene listing data were identified. 

 

4. Results and Discussion 

 

 Once every input data file was obtained and ran through the completed programs 

previously described, output data of interest could be acquired. A count of 1:1 mappings 

between sample contigs from the axolotl data and targets from an axolotl gene database 

for a variety of alignment identity/length threshold values is easily obtained. Table 1 

provides a scope of how much of the total data will be covered by the results of this 

project. 

 

 For example, at a threshold level of 95/30, there are 3900 contigs that align to 

exactly one target, and 220 contigs that align to two or more targets. At the same 

threshold level, there are 1462 targets that align to exactly one contig, and 54 targets that 

align to two or more contigs. (Across all threshold levels, more contig gene sequences 
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were statistically aligned to target sequences than target sequences were to contig 

sequences because it is much easier to find a match for a shorter sequence of nucleotides 

in a larger sequence, as would be the case for the contigs, which are comparatively 

smaller in length than the targets.) When these matches are compared against each other 

to identify only those instances where one contig sequence aligns to one target sequence 

and the same target aligns to the same contig, 1054 such cases were found. 

 

 

Table 1.  No. of 1:1 Mappings between Sample Contigs and Database Targets, By 

Alignment Identity and Alignment Length 

 

% alignment identity 

≥ 98 ≥ 95 ≥ 90 ≥ 85 ≥ 80 

%
 a

lig
nm

en
t l

en
gt

h ≥ 96 1 1 1 1 1 

≥ 90 6 8 11 12 14 

≥ 70 114 132 146 154  
≥ 50 419 461 480   

≥ 30 997 1054    

 

 

 Table 1 shows that fewer 1:1 mappings exist as the required accuracies for 

alignment identity and alignment length are increased. This is to be expected, as a contig 

that aligns to a target to 86% alignment identity would be counted in the in the “≥ 85” 

column but not in the “≥ 90” column; the same logic applies for the percent alignment 

length. This chart of aggregate threshold values can be used to determine threshold values 
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that ought to be used for various areas of interest for this study, as sometimes selecting a 

certain threshold value could provide too few or many results to be practically discussed. 

Threshold values for percent alignment identity are weighted heavier than those values 

for percent alignment length were because an accurately mapped gene with limited 

coverage is of more statistical value than a gene with limited mapping accuracy and 

strong coverage; this is why the increments for percent alignment identity are smaller 

than the increments for percent alignment length. 

 

 In order to determine the threshold values to be used to find axolotl gene data that 

can be matched to homologous human gene data and zebrafish gene data, the final script 

is run at a variety of threshold levels in order to find limits not only where these 

thresholds were still fairly high and but also would provide a good overall number of 

matches for reporting purposes. A threshold value of 90/50 (90% alignment length 

accuracy and 50% alignment length accuracy) is selected and the axolotl genes that 

corresponded to human gene annotation data are given in Table 2 (pages 25-55). 

 

 Of the 480 1:1 mappings occurring in the axolotl data set, 78 are matches to 

homologous human genes. These genes are given in the second column of Table 2 by 

way of a six digit UniProt ID.29 Each of these 78 human gene UniProt IDs were 

individually queried in OrthoDB in order to search for orthologous zebrafish genes. The 

results of those searches yielded other orthologous human genes as well as orthologous 

zebrafish genes that related to the queried gene; UniProt IDs and descriptions of each of 

the 162 homologs found are given. The OrthoDB searches also provided gene ontology 
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information, which is also included in Table 2 and will be used to further characterize 

these sets of homologous genes.30 
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 One of the larger sets of orthologous genes with a common function appear to be 

those relating to different varieties of ribosomal proteins; of the 159 gene homologs 

given, 15 genes represent proteins related to this organelle. The 40S and 60S ribosomal 

proteins represent the small and large subunits, respectively, required by the ribosome to 

carry out protein synthesis via translation. Ribosomes create proteins by stringing 

together mRNA-determined sequences of amino acids. The small subunit is responsible 

for reading the mRNA, while the large subunit uses this information to create 

polypeptides from the amino acids.26 For example, gene P05388 (60S acidic ribosomal 

protein P0) is homologous to zebrafish gene Q5P6K3 (60S acidic ribosomal protein P0), 

gene P23396 (40S ribosomal protein S3) is homologous to zebrafish gene Q6TLG8 

(ribosomal protein S3), gene P46783 (40S ribosomal protein S10) is homologous to 

zebrafish gene Q7T1J9 (ribosomal protein S10), gene P62269 (40S ribosomal protein 

S18) is homologous to zebrafish gene Q8JGS9 (40S ribosomal protein S18), gene 

P62277 (40S ribosomal protein S13) is homologous to zebrafish gene Q6IMW6 

(ribosomal protein S13), and genes Q9UNX3 (60S ribosomal protein L26-like 1) and 

P61254 (60S ribosomal protein L26) are homologous to zebrafish gene Q78XA1 

(ribosomal protein L26). Gene P36578 (60S ribosomal protein L4) is homologous to 

zebrafish gene Q7ZW95 (ribosomal protein L4); ribosomal protein L4 plays a functional 

role in the regulation of neurite regeneration and is regulated via translation during this 

phenomenon. As scar tissue does not contain nerve endings, and because both axolotl and 

the zebrafish see an absence of scar tissue during the regenerative process, ribosomal 

protein L4 is likely plays an important role in the maintenance of proper nerve 

development in regenerating tissues.32 
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 Another set of orthologous gene descriptions in Table 2 is that of NADH 

dehydrogenase [ubiquinone] 1 alpha and beta; of the 159 gene homologs given, 10 genes 

relate to this function. As an entry enzyme for the mitochondrial respiratory chain, 

NADH dehydrogenase [ubiquinone], acts as a catalyst for electron transfer between 

NADH and coenzyme Q (CoQ).33 Also known as NADH ubiquinone oxidoreductase, this 

protein complex is one of four that is responsible for the pumping of protons across the 

mitochondrial cell membrane.34 Studies have shown that the Complex I type of NADH 

ubiquinone oxidoreductase may play a role in initiating apoptosis, a mechanism of 

programmed cell death which other studies have linked to the process of limb 

regeneration via providing the regenerating cell with a way to prevent the growth of 

unwanted cellular masses.35,36 

 

 Various forms of histone genes comprise 9 of the 162 gene homologs found in 

Table 2. Histone H3 proteins are core histones responsible for arranging DNA into 

nucleosomes. Histones are primary components of chromatin and involved with gene 

regulation. Gene ontology for histone H3.1 includes the regulation of gene silencing and 

blood coagulation, and that of histone H3.3 includes the extracellular region. These 

ontologies connect histones with the ECM in that extracellular histones have been found 

to be mediators in the processes of inflammation and thrombosis.37 

 

 Other gene homolog groups of interest include parvalbumin, which are calcium-

binding proteins that play a role in cell-cycle regulation especially in fast-contracting 
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muscle tissue, and the IFIT family of proteins, which have been shown to exhibit antiviral 

traits and could therefore be potentially capable of helping mediate innate immune 

responses.38,39 

 

 Some gene ontologies from Table 2 appear to be potentially related to the process 

of regeneration or ECM. These ontologies include GO:0001824 - blastocyst 

development, GO:0005576 - extracellular region, GO:0005578 - proteinaceous 

extracellular matrix, GO:0005615 - extracellular space, GO:0006915 - apoptotic process, 

GO:0006916 - anti-apoptosis, GO:0007275 - multicellular organismal development, 

GO:0030154 - cell differentiation, GO:0031100 - organ regeneration, GO:0042981 - 

regulation of apoptotic process, and GO:0060968 - regulation of gene silencing. A more 

statistical approach, however, to facilitate the identification of any significant gene 

ontologies for all 159 gene homologs is found in Table 3 (pages 59-60), which lists all 

gene ontology descriptions from Table 2 found more than once. 
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Table 3. List of Most Common GO Descriptions for Table 2 Genes	  

 GO Description Count 

GO:0005634 - nucleus  14 
GO:0003723 - RNA binding  11 
GO:0005737 - cytoplasm 9 
GO:0005739 - mitochondrion 9 
GO:0003735 - structural constituent of ribosome  8 
GO:0005829 - cytosol 8 
GO:0005840 - ribosome  7 
GO:0006412 - translation  6 
GO:0005576 - extracellular region 5 
GO:0006810 - transport  5 
GO:0008137 - NADH dehydrogenase (ubiquinone) activity 5 
GO:0016021 - integral to membrane  5 
GO:0044281 - small molecule metabolic process  5 
GO:0005622 - intracellular  4 
GO:0005743 - mitochondrial inner membrane  4 
GO:0005747 - mitochondrial respiratory chain complex I  4 
GO:0006413 - translational initiation  4 
GO:0006415 - translational termination  4 
GO:0008270 - zinc ion binding  4 
GO:0022627 - cytosolic small ribosomal subunit  4 
GO:0003676 - nucleic acid binding  3 
GO:0003677 - DNA binding 3 
GO:0005730 - nucleolus  3 
GO:0006120 - mitochondrial electron transport, NADH to ubiquinone 3 
GO:0006364 - rRNA processing  3 
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Table 3. List of Most Common GO Descriptions for Table 2 Genes	  

GO Description Count 

GO:0006915 - apoptotic process  3 
GO:0015935 - small ribosomal subunit  3 
GO:0022625 - cytosolic large ribosomal subunit  3 
GO:0022900 - electron transport chain  3 
GO:0071013 - catalytic step 2 spliceosome  3 
GO:0003676 - nucleic acid binding 2 
GO:0005524 - ATP binding  2 
GO:0005615 - extracellular space  2 
GO:0005654 - nucleoplasm  2 
GO:0005689 - U12-type spliceosomal complex  2 
GO:0005886 - plasma membrane  2 
GO:0006351 - transcription, DNA-dependent  2 
GO:0006355 - regulation of transcription, DNA-dependent  2 
GO:0006397 - mRNA processing  2 
GO:0006414 - translational elongation  2 
GO:0006979 - response to oxidative stress  2 
GO:0008270 - zinc ion binding 2 
GO:0008380 - RNA splicing  2 
GO:0016021 - integral to membrane 2 
GO:0019083 - viral transcription  2 
GO:0042254 - ribosome biogenesis  2 
GO:0044267 - cellular protein metabolic process 2 
GO:0046872 - metal ion binding 2 
GO:0070469 - respiratory chain  2 

 

 

 Many of the more common gene ontology descriptions for the 162 gene homologs 

are structural in nature: nucleus, cytoplasm, mitochondrion, cytosol, ribosome, etc. Other 

gene ontologies occurring in great number have already been touched upon: RNA 

binding, translation, transport, NADH dehydrogenase [ubiquinone] activity, 

mitochondrial respiratory chain complex I. 
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 There are numerous genes that relate to the ECM as determined by their gene 

ontologies, and because the formation and maintenance of which would be an integral 

part in the regeneration of fully functional tissue, this study will now look at these genes. 

As many of these homologous zebrafish genes are larger uncharacterized, a more 

thorough understanding of the mechanisms these genes take part in, especially in 

mediating the ECM with respect to regeneration, should be acquired. 

 

 Gene P01036 (Cystatin-S; CST4) is homologous to zebrafish gene B8A4D0, a 

largely uncharacterized protein. The gene ontology for this group of homologous genes 

consists of negative regulation of blood vessel remodeling, fibril organization, negative 

regulation of the collagen catabolic process, and negative regulation of elastin catabolic 

process, among others. Axolotl gene expression data from MDIBL showed the 

downregulation (decreased gene expression as compared to a reference) of collagen 

genes very early in the process of regeneration, only for upregulation (increased gene 

expression as compared to a reference) of the same genes to occur at a time after, so the 

presence of these genes in the zebrafish may signal a similar mechanism for outgrowth. 

 

 Genes P43235 (Cathepsin K; CTSK) and P25774 (Cathepsin S; CTSS) are 

homologous to zebrafish genes F1Q8A0 (CTSK), A2BF64 (novel protein), and Q502A6 

(Cathepsin S); these three zebrafish genes are also uncharacterized proteins. Cathepsins 

are proteases that can, in response to a signal under certain circumstances, trigger 

apoptosis through numerous pathways, such as via the release of mitochondrial 

proapoptotic factors. These proteases can thus play a role in controlling cell turnover 
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within an organism.40 Upon the occurrence of an incision or amputation, damaged cells 

must be removed before the ECM can begin to rebuild itself and new, functional tissues 

can be regenerated. 

 

 One such example of a gene homolog pair that researchers may choose to study 

more in-depth is gene Q9Y6R7 (IgGFc-binding protein; FCGBP) and its homologous 

zebrafish genes E7F2A5 and F1RDU8, both of which are uncharacterized proteins. The 

related gene ontology terms for this homologous pair include cell-matrix adhesion, 

extracellular region, cytoplasm, and proteinaceous extracellular matrix. In particular, cell-

matrix adhesion (GO:0007160) in particular may be of interest to this particular 

homologous pair of genes because this gene ontology only occurs once in the data in 

Table 2. Because the ECM provides a framework for cellular support in tissue and organ 

systems, cell adhesion is necessary in order to allow this molecular scaffold and the 

structure of the cell’s surface to become more tightly linked. Cell-matrix adhesion can 

also provide signaling to work with biological processes such as wound healing and cell 

proliferation.41 

 

 As a brief aside, a directory of all genes related to the ECM was downloaded from 

the Ensembl Genome Browser via BioMart and compared against the axolotl data.26 Of 

the 470 unique genes in this list, 322 intersections between the axolotl data and the ECM 

gene list were found. Genes with 1:1 mappings from these intersections at an 80/30 

threshold are listed in Table 4 (page 63); Table 4 will not be subject to in-depth 

discussion but has been given for reference purposes.
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 Another version of Table 2 can also be created to show changes in gene 

expression of these axolotl genes 1, 3, 5, and 7 dpa; this data was obtained from MDIBL. 

Table 5 (pages 65-76) shows these changes in levels of gene expression as fold changes, 

a commonly used scale in bioinformatics. A fold change of n after x dpa can be 

considered a 2n times change in gene expression from day 0 to day x (i.e. a fold change of 

-0.15 equals a 0.90, or 90%, expression rate as compared to the reference). A positive 

fold change indicates upregulation of a gene, and a negative fold change indicates 

downregulation of a gene. 

 Table 5 is sorted from greatest to least value for the parameter “7 dpa Fold 

change.” 
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 Table 5 also gives adjusted p-values for all fold change values, which gives the 

data some statistical test significance. A p-value can essentially be thought of as a 

statistic measuring the incidence of false positives of a test labeled as statistically 

significant, which could also be described as a rate of false discovery.42 Adjusted p-

values were calculated from p-value data in order provide a more accurate metric for 

statistical testing with multiple comparisons.43 

 

 The primary genes of interest from Table 5 are those with fold changes ≥ ±1.5 and 

adjusted p-values < 0.05. Gene P16112 (Aggrecan core protein) shows fold changes of 

greater than 4.6 for all time periods (1, 3, 5, 7 dpa) and therefore remains highly 

expressed in the early stages of response to an incision or amputation and limb 

regeneration; this gene is a cartilage-specific proteoglycan that likely plays a major role 

in regeneration with regards to building collagen-based tissues. Genes P43235 (Cathepsin 

K; CTSK) and Q15004 (PCNA-associated factor) both show initial downregulation for 

the 1 dpa time period (although the adjusted p-value of P43235 at 1 dpa is > 0.05) 

followed by upregulation of fold changes over 1.5 for the 5 dpa and 7 dpa time periods. 

This is indicative of genes that can be said to “turn down” early in the wound response 

process, only to be “turned back up” when their functions are deemed necessary by the 

cell. As a final example, gene Q7Z4S6 (probable squalene synthase) shows a trend in fold 

changes, from -0.775 at 1 dpa to -1.178 at 3 dpa to -1.325 at 5 dpa to -1.685 at 7 dpa. 

Squalene synthase takes part in the isoprenoid biosynthetic pathway, catalyzing the first 

stage of a multi-step reaction that eventually works to produce sterols, or steroid alcohols, 

from squalene.44 The corresponding homologous zebrafish genes F1QWX6 and 



	  

78

F8W3W5 are both uncharacterized proteins, so further research into these genes may 

provide useful information into a possible connection between the functionalities of these 

genes and how they could potentially relate to the regenerative process. 

 

 Comparisons of physical sequence similarities, as opposed to simply homologous 

function, can also be made using control-vs-TCDD zebrafish gene data and 

predetermined annotation information within that data regarding sequence structure 

similarities to corresponding human gene sequences, which can be used in 

correspondence with Tables 2 and 5 to assess which homologous sets of genes may be of 

further interest. The result of such a comparison is shown here as Table 6, where 

homologous gene data is given in addition to fold change and adjusted p-value data for 

comparisons between control zebrafish and zebrafish exposed to TCDD for the values at 

1, 3, and 5 dpa for both subsets. Positive fold change values represent cases in which 

genes exhibited higher amounts of expression in the control zebrafish for a given dpa 

time period as compared to the expression of that gene for the TCDD-dosed zebrafish, 

and vice versa. Another way to explain this concept is to assume all positive fold change 

values in Table 6 represent upregulation of a given gene in a control organism relative to 

the one dosed with TCDD. Similarly, all negative fold change values can be viewed as a 

downregulation of a given gene in a control organism relative to one dosed with TCDD. 

Greater fold change values imply that the presence of TCDD results in the 

downregulation of a gene, and lesser fold change values imply that the presence of 

TCDD results in the upregulation of a gene. Graphical representations of the fold change 

data given in Table 6 (page 79) can be seen in Figures 4, 5, and 6 (pages 80-82). 
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Table 6. Fold Change Values for Matches between Zebrafish CTRL-vs-TCDD 

  Data at 1, 3, 5 dpa and Table 2 

Zebrafish 
UniProt 
ID 

Extent of Sequence 
Similarity 

Human 
UniProt 
ID 

CTRL vs TCDD 
comparison 

Fold 
change 

adjusted 
p-val 

Q502E4 Moderate O43181 

1 dpa - 1 dpa 0.243 0.7361 

3 dpa - 3 dpa 0.119 0.8134 

5 dpa - 5 dpa 0.227 0.4263 

Q4VBU7 Moderate P20674 

1 dpa - 1 dpa 0.190 0.5506 

3 dpa - 3 dpa 0.108 0.6538 

5 dpa - 5 dpa 0.128 0.3876 

Q0P4E8 Moderate Q9P0U1 

1 dpa - 1 dpa 0.345 0.4235 

3 dpa - 3 dpa 0.119 0.7525 

5 dpa - 5 dpa 0.078 0.7227 

Q7SY44 Weak P04424 

1 dpa - 1 dpa -0.114 0.9302 

3 dpa - 3 dpa 0.724 0.1233 

5 dpa - 5 dpa 0.442 0.2671 

Q75T39 Weak P16112 

1 dpa - 1 dpa 0.162 0.9591 

3 dpa - 3 dpa -2.817 0.0400 

5 dpa - 5 dpa -1.793 0.1301 

Q5BJA2 Weak Q16718 

1 dpa - 1 dpa 0.152 0.8891 

3 dpa - 3 dpa 0.203 0.7089 

5 dpa - 5 dpa 0.129 0.6853 

Q566P2 Weak Q30201 

1 dpa - 1 dpa 0.137 0.9304 

3 dpa - 3 dpa -0.272 0.7319 

5 dpa - 5 dpa 0.302 0.5236 

A2CEX8 Weak Q9UDV7 

1 dpa - 1 dpa -0.054 0.9446 

3 dpa - 3 dpa 0.139 0.7525 

5 dpa - 5 dpa 0.146 0.5729 

 Q502D9 Weak Q9ULW0 

1 dpa - 1 dpa -0.826 0.5967 

3 dpa - 3 dpa 0.068 0.9497 

5 dpa - 5 dpa 0.379 0.5816 
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 Table 6 shows that of the 9 zebrafish genes in the zebrafish CTRL-vs-TCDD data, 

3 showed moderate sequence similarity and 6 showed weak sequence similarity. It should 

be noted that the majority of p-values given for the fold change values in Table 6 are not 

< 0.05, so some degree of caution should be exerted when taking these fold change 

values at face value. 

 

 Table 6 and Figure 4 show that zebrafish genes Q502E4, Q4VBU7, and Q0P4E8 

are not significantly altered with regards to comparing gene expression from a control 

organism to a TCDD-dosed organism; the values are all positive, however, so the 

presence of TCDD likely caused these genes to become downregulated because, again, a 

positive fold change signifies greater expression of a gene in the control animal as 

compared to the TCDD-dosed case. 

 

 Table 6 and Figure 5, however show vastly different results. Zebrafish gene 

Q7SY44 shows an insignificant amount of upregulation in the presence of TCDD at 1 

dpa followed by a quick transition to a markedly more downregulated state at 3 dpa when 

compared to the control organism. Zebrafish gene Q75T39 shows an insignificant amount 

of downregulation at 1 dpa followed by transitions to states of nearly 3 fold and 2 fold 

upregulation at 3 dpa and 5 dpa, respectively, in the presence of TCDD when compared 

to the control organism. The implication of this behavior is that the presence of TCDD 

causes gene Q75T39 to become significantly more expressed in the zebrafish during 

regeneration. Gene Q75T39 codes for a neurocan protein, a chondroitin sulfate 

proteoglycan considered to be related to migration and cell adhesion modulation. 
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Neurocan is also thought to play a role in the development of neurite growth. 

Furthermore, it is purely of interest to note that neurocan is also a component of the ECM 

in the brain.45 Zebrafish gene Q5BJA2 exhibits no drastic differences in fold change 

values. 

 

 Table 6 and Figure 6 show that zebrafish gene Q566P2 exhibits small amounts of 

relative down-, up-, and downregulation at 1, 3, and 5 dpa, respectively, in the presence 

of TCDD when compared to the control organism. Zebrafish gene A2CEX8 exhibits no 

drastic differences in fold change values. Zebrafish gene Q502D9 shows that a noticeable 

upregulation of gene expression at 1 dpa is followed by eventual downregulation at 5 dpa 

in the presence of TCDD when compared to the control organism. 

 

5. Summary 

 

 Various databases and online resources were accessed in order to obtain gene 

expression and annotation data for axolotl and the zebrafish. Scripts were written using 

Perl software and programming language in order to find 1:1 matches between gene 

sequences obtained from sample organisms during regeneration and known gene 

sequences from previously annotated database sources. 

 

 A table was constructed to show a Rosetta stone of 78 axolotl genes, matched to 

human genes, with homologous zebrafish gene information, including gene ontology 

annotation. Common gene ontologies from this table were counted and structured into 
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another table, and aspects of these two tables were discussed in detail. 20 found matches 

between the axolotl data and a database of human ECM genes were listed. Fold change 

data, both for the axolotl-zebrafish homologous genes as expressed in a previous 

experiment regarding gene expression at various times dpa as well as for zebrafish 

control-vs-TCDD gene expression data for different dpa were given in two additional 

other tables and discussed in some detail. Throughout, genes of interest were identified 

and examined. 

 

 Protein sequence topics discussed include 40S and 60S ribosomal proteins, 

NADH ubiquinone oxidoreductase, histones, parvalbumin, cystatin, cathepsin, squalene 

synthase, and neurocan. Gene ontologies and functions discussed include cell 

differentiation, protein synthesis via translation, mitochondrial and ribosomal operations, 

collagen, ECM, apoptosis, and neurite development. 

 

6. Closing Remarks 

 

 There are many implications of the sheer breadth and depth of the research 

currently being devoted to the fields of genomics and bioinformatics, as well as to 

research projects designed to determine how altering genes of interest can be carried out 

in order to affect positive changes for the betterment of society. Genetically modified 

agriculture is currently a booming industry with the potential to help assuage food 

shortages crises that may be encountered in the near future, if they have not already 

occurred, but this means that society will soon be grappling with questions regarding the 
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ethical nature of altering an organisms genes. In some cases, the answer may be simple: if 

future biomedical and gene therapy technologies can help an individual regenerate skin 

tissue after a life-threatening burn from a house fire or a soldier partially regenerate an 

appendage that was severely damaged in combat without using an especially invasive 

procedure, than questions regarding these concerns about gene therapies capable of 

helping these people may be limited. But what if new gene therapies can help drastically 

extend the lives of people past our current and “normal” life expectancies? At what point 

would genetic manipulation cease to be about finding treatments for unfortunate events 

and begin to represent ways to bend the governing rules of mother nature and the human 

body to man’s will? 

 

 The fact of the matter, however, is that the fields of genomics and bioinformatics 

have come a long way in the last decade, and the gene expression, annotation, and 

ontological data being compiled by researchers around the world are adding to the 

knowledge banks of the global genomics community by the day, and this information is 

immeasurably helpful in allowing scientists to determine what genes cause what chemical 

and physical changes to occur in a wide range of organisms. 

 

 And even if this research does not eventually lead to the ability of humans to alter 

our genetic makeup so as to enable limb regeneration, maybe it can be used to help find 

newer, preventative treatment options for life-altering diseases and disorders, maybe even 

before such maladies arise. 
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9. Appendix A – Perl Scripts 

 

Perl Script – “blast_parser_combo3b” 

“ 

#!/usr/bin/perl 

print " \n"; 

print "% IDENTITY? (input 0-100) : "; 

$PERCENT_ID=<STDIN>; 

print "% LENGTH? (input 0-100) : "; 

$COVERAGE=<STDIN> / 100; 

print "\n"; 

 
 

$target_lengths_fh = open(TLENGTHS, "<Amby_001a520165F_targets.fa_lengths.txt"); 

$assembly_lengths_fh = open(ALENGTHS, "<axolotl_assembly.fa_lengths.txt"); 

$annotate1_fh = open(ANNOTATE1, "<axolotl_blastx_1e-.txt"); 

$output = open(OUTPUT, ">Table_2_output.txt"); 

 

 

$input_fh1 = open(INPUT1,"<targets_vs_assembly_blastn.txt"); 

 

while (<ANNOTATE1>) { 

 $line1 = $_; 

 chomp($line1); 

 

 @fields = split("\t",$line1); 

 $a1_contig = $fields[0]; 
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 $a1_locus = $fields[1]; 

 $a1_hit = $fields[2]; 

 $a1_pvalue = $fields[3]; 

 $a1_match = $fields[5]; 

 

 $proteinnames{"Consensusfrom" . $a1_contig} = $a1_locus; 

 $proteinnames2{"Consensusfrom" . $a1_contig} = $a1_match; 

 

  #print $line1,"\t"; 

} 

 

 

while (<TLENGTHS>) { 

 $line1 = $_; 

 chomp($line1); # removes new line '\n' character at end of symbol 

 

 @fields = split("\t",$line1); 

 $id1 = $fields[0]; 

 $length1 = $fields[1]; 

 

 $target_lengths{$id1} = $length1; 

 

 #print $id1,"\t",$length1,"\n"; 

 

} 
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while (<INPUT1>) { 
 

 $line1 = $_; 

    chomp($line1); 

 

 @fields = split("\t",$line1); 
 

    $query_id1 = $fields[0]; 

    $subject_id1 = $fields[1]; 

    $percent_id1 = $fields[2]; 

 $align_length1 = $fields[3]; 

 $mismatches1 = $fields[4]; 

 $gaps1 = $fields[5]; 

 

 $identity_i1{$query_id1} = $percent_id1; 

 $length_i1a{$query_id1} = $align_length1; 

 

 #print $query_id1,"\t",$percent_id1,"\n"; 

 

 

 if ($target_lengths{$query_id1} > 0) { 

  if ($percent_id1 >= $PERCENT_ID) { 

   if (($align_length1/$target_lengths{$query_id1}) >= 
$COVERAGE) { 

    if ($query_to_subject1{$query_id1}) { 

    $query_to_subject1{$query_id1} = 
$query_to_subject1{$query_id1} . "," . $subject_id; 

    } 

    else { 
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    $query_to_subject1{$query_id1} = $subject_id1;  

    }  

   } 

    } 

 } 

 

   $gene_symbols_to_chr1{$symbol1} = $chr1; 
 

} 
 

 

$num_targets_w_mult_hits = 0; 

$num_targets_w_one_hit = 0; 

 

foreach $i1 (keys %query_to_subject1) { 
 

 #print $i1," hits = ",$query_to_subject1{$i1},"\n"; 

 if ($query_to_subject1{$i1} =~/,/) { 

     $num_targets_w_mult_hits1 = $num_targets_w_mult_hits1 + 1; 

 } 

 else { 

  $num_targets_w_one_hit1 = $num_targets_w_one_hit1 + 1; 

 } 

} 

 

 

$input_fh2 = open(INPUT2,"<assembly_vs_targets_blastn.txt"); 
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while (<ALENGTHS>) { 

 $line2 = $_; 

 chomp($line2); # removes new line '\n' character at end of symbol 

 

 @fields = split("\t",$line2); 

 $id2 = $fields[0]; 

 $length2 = $fields[1]; 

 

 $assembly_lengths{$id2} = $length2; 

} 

while (<INPUT2>) { 
 

 $line2 = $_; 

    chomp($line2); 

 

 @fields = split("\t",$line2); 
 

    $query_id2 = $fields[0]; 

    $subject_id2 = $fields[1]; 

    $percent_id2 = $fields[2]; 

 $align_length2 = $fields[3]; 

 $mismatches2 = $fields[4]; 

 $gaps2 = $fields[5]; 

 

 $identity_i2{$query_id2} = $percent_id2; 

 

 if ($assembly_lengths{$query_id2} > 0) { 

  if ($percent_id2 >= $PERCENT_ID) { 
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   if (($align_length2/$assembly_lengths{$query_id2}) >= 
$COVERAGE) { 

    if ($query_to_subject2{$query_id2}) { 

    $query_to_subject2{$query_id2} = 
$query_to_subject2{$query_id2} . "," . $subject_id; 

    } 

    else { 

    $query_to_subject2{$query_id2} = $subject_id2;  

    }  

   } 

    } 

 } 

 

$gene_symbols_to_chr2{$symbol2} = $chr2; 
 

} 
 

 

$num_contigs_w_mult_hits = 0; 

$num_contigs_w_one_hit = 0; 

 

foreach $i (keys %query_to_subject2) { 
 

 if ($query_to_subject2{$i} =~/,/) { 

     $num_contigs_w_mult_hits2 = $num_contigs_w_mult_hits2 + 1; 

 } 

 else { 

  $num_contigs_w_one_hit2 = $num_contigs_w_one_hit2 + 1; 

 } 
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} 

 

$num_1to1 = 0; 

 

foreach $target (keys %query_to_subject1) { 

         if ($query_to_subject1{$target} !~ /,/) { 

  foreach $subject (keys %query_to_subject2) { 

           if ($query_to_subject2{$subject} !~ /,/) { 

    if (($query_to_subject1{$target} eq $subject) && 
($query_to_subject2{$subject} eq $target)) { 

 

                 print "-> Found 1:1 mapping: 
",$target,"\t",$query_to_subject1{$target},"\n",$proteinnames{$query_to_subject1{$targ
et}},"\t",$proteinnames2{$query_to_subject1{$target}},"\t",$identity_i1{$target},"\t",$i
dentity_i2{$subject},"\t","\n"; 

  print OUTPUT "-> Found 1:1 mapping: 
",$target,"\t",$query_to_subject1{$target},"\n",$proteinnames{$query_to_subject1{$targ
et}},"\t",$proteinnames2{$query_to_subject1{$target}},"\t",$identity_i1{$target},"\t",$i
dentity_i2{$subject},"\t","\n"; 

 

  $num_1to1 = $num_1to1 + 1; 

    } 

               } 

  } 

            } 

} 

 

print " \n"; 

print " For % IDENTITY = ",$PERCENT_ID," and % LENGTH   = 
",$COVERAGE*100," ...","\n"; 

print " \n"; 
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print "Number of targets that align to >= % identity and >= % alignment length","\n"; 

print "specified above...","\n"; 

print " \n"; 

print ">=1 contig = ",scalar(keys(%query_to_subject1)),"\n"; 

print "=1 contig = ",$num_targets_w_one_hit1,"\n"; 

print ">1 contig = ",$num_targets_w_mult_hits1,"\n"; 

print " \n"; 

 

print "Number of contigs that align to >= % identity and >= % alignment length","\n"; 

print "specified above...","\n"; 

print " \n"; 

print ">=1 target = ",scalar(keys(%query_to_subject2)),"\n"; 

print "=1 target = ",$num_contigs_w_one_hit2,"\n"; 

print ">1 target = ",$num_contigs_w_mult_hits2,"\n"; 

print " \n"; 

 

print "-> Number of 1:1 mappings = ",$num_1to1,"\n"; 

print " \n"; 

”
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