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ABSTRACT 

Ensis directus, commonly known as the razor clam, is a bivalve species that lives in 

temperate sub-polar regions of the Atlantic Ocean. It is an infaunal species found in 

shallow, subtidal, sedimentary habitats. A recent increase in the market value for razor 

clams has resulted in heightened interest in the culture of this species. The experimental 

hatchery at the University of Maine’s Darling Marine Center began work in 2012 to 

develop improved hatchery and grow-out techniques for this species. For my thesis, razor 

clam embryos from both spontaneous and controlled spawns were observed via video and 

still imagery to document the timing of early development. I obtained additional footage 

and images of clams during the larval phase through metamorphosis to determine 

morphological features that are associated with the onset of settlement in this species. I 

conducted experiments investigating the sediment preference of razor clam larvae and 

tested methods for improving the settlement rate and early post-settlement survival. 

Lastly, I determined the burrowing rates of juvenile razor clams to help identify 

appropriate sediments for nursery phase culture. The results of my research will aid in the 

development of razor clam aquaculture techniques that can be used by Maine’s shellfish 

culture industry.  
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INTRODUCTION 

Ecology 

 Ensis directus, commonly known as the razor clam or the Atlantic jackknife, is a 

bivalve species that lives in temperate sub-polar regions of the Atlantic Ocean (Couñago 

and Tajes 2011, Christian 2010, Kenchington and Duggan 1998). The native range of the 

Atlantic razor clam extends from Georgia, USA to Labrador, Canada. This species was 

recently introduced along the northwest coast of Europe where it has been considered an 

invasive species (Palmer 2004). They are typically found in habitats with sand as the 

primary sediment (Couñago and Gómez 2011, Kenchington and Duggan 1998) but may 

also be found in habitats with mud to gravel sediments (Christian 2010).  Although razor 

clams may inhabit the lower intertidal they are quite common in the subtidal zone, and 

may be found at depths up to 35m (Christian 2010).  

Anatomy 

 Ensis, like other bivalves, has a shell that is made of three layers, the periostracum 

layer, the prismatic layer, and the nacreous layer (Couñago and Gómez 2011). The shells 

of clams in the Solenidae family, of which Ensis is a member, is elongated and laterally 

compressed when compared to other bivalves, such as the gaper clam (Mya arenaria). 

The diameter of the shell maintains an even diameter for the whole length of the animal 

except at the ends; the anterior end is slightly open at all times to allow for the foot to 

extend out for movement even with a closed shell (Drew 1907). Similarly, the posterior 

end of the shell has an opening to allow for the inhalant and exhalant siphons to be 

extended when the shell is closed. The internal anatomy of a razor clam is similar to that 

of other clam species with the exception of the foot being larger then in other species 
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(Figure 1C and Drew 1907). Razor clams are highly mobile relative to other clam 

species. This motility stems from the flexible, muscular foot. A simple diagram of the 

internal anatomy is presented in (Figures 1A and C) while Figure 1B shows an adult in 

with developed gonads. 
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Figure 1: Internal Anatomy of Ensis directus as presented by Couñago and Gómez 2011. (A) Muscle scars 
on the internal surface of E. arcuatus bivalves.1: Scar of the anterior adductor muscle; 2: Distal area of the 
ligament insertion; 3: Scar of anterior retractor muscle of the foot; 4: Scar of posterior adductor muscle; 5: 
Pallial sinus; 6: Ventral pallial scar; 7: Anterior pallial image and 8: Scar of posterior retractor muscle of 
the foot. (B) Illustration of E. arcuatusesh, in mature stage, where gonad is emphasized. (C) Diagram of 
organ distribution in a specimen of E.siliqua. 1: Anterior adductor muscle; 2: Ligament; 3: Anterior 
retractor muscle of the foot; 4: Posterior adductor muscle; 5: Exhalant siphon; 6: Inhalant siphon; 7: Gills; 
8: Posterior retractor muscle of the foot; 9: Labial palps; 10: Mouth; 11: Heart; 12:Digestive gland; 13: 
Foot. Taken from Darriba (2001). 
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 The circulatory system of razor clams is open, as is common in all bivalves 

(Couñago and Gómez 2011). The heart pumps the blood into a series of spaces (sinuses) 

that act as “blood lakes” from which blood moves its way to the tissue and organs. 

Members of the Solenidae family have inner and outer gill lamellae in the gill chamber. 

The gills act not only as the respiratory organ, but cilia on the gills create water currents 

through the inhaleant siphon by which food enters the animal. The gills are also 

responsible for selecting particles that are “inhaled” by these currents. The food is then 

brought into the mouth, down the esophagus, into the stomach, through the digestive 

gland with wastes continuing to the intestine and out the anus. The mouth creates a ciliary 

current that sends the food from the gills down the digestive system (Couñago and 

Gómez 2011). A pair of ganglia with nerves that extend to the tissues makes up the 

simple nervous system of razor clams. Although bivalves have a pair of kidneys, most 

excretion takes place through the gills and body surface (Couñago and Gómez 2011). 

 
Reproduction 

 Ensis directus, like most bivalves, is dioecious, with individuals having either 

male or female organs (i.e., the testes and ovary). External sexual dimorphism is minimal 

in these bivalves. (Christain 2010, Couñago and Gomez 2011). Sexual maturity in Ensis 

directus is reached at the end of the first year of life (Cardoso 2009). The yearly 

reproductive cycle of Ensis directus has been classified into five stages (Darriba 2004). 

Sexual rest (stage O) is defined by the presence of few follicles, or undeveloped gametes, 

in the gonads. At the start of gametogenesis (stage I), more follicles appear, are larger, 

and undeveloped sperm and egg can also be seen. The number of follicles continued to 

increase through stage I and whiter lamina, the visible part of the gonad, can be observed 
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near the digestive gland. In advanced gametogenesis gametes at all stages of development 

are present with mature gametes composing the smallest percentage (stage II). By stage 

IIIA, the gonads are ripe (all gametes are mature) and envelope the digestive gland and 

part of the foot. Both oocytes and spermatozoids are mature (stage IIIA). Upon spawning 

(stage IIIB), the gametes leave the enlarged gonads and empty spaces show where mature 

gametes were before spawning occurred. The onset of restoration (stage IIIC) is 

characterized by a decrease in the size of the gonad compared to the previous two stages 

as well as smaller follicles. The loss of gonad biomass continues through exhaustion 

(stage IV) until the cycle begins again at rest.  

 In general, the reproductive cycle of bivalve species is dependent on several 

interacting variables, such as temperature, food supply, and gonad development (Darriba 

et al. 2005). Typically, gonadal mass and gamete development begin as water 

temperatures increase (gonadal mass) and gametes are released in late April or early May 

in the Northern Hemisphere. Bivalves spawn as water temperatures increase when 

gametes are mature (Darriba et al. 2005). Reproduction is metabolically expensive and it 

is critical to an individual’s survival that energy is diverted to reproduction only when 

conditions indicate the greatest success. Body growth (somatic mass) begins again after 

gamete release and often coincides with the spring bloom of algae, which supports the 

recovery of the energy lost in reproduction and the beginning of body growth (Cardoso 

2009). 

Aquaculture 

  There have been some attempts to culture razor clams, including E. directus and 

other members of the Solenidae. For example, people in China have been seafarming 
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Sinonovacula constricta, a close relative of Ensis directus, for nearly 500 years (Jaxin 

1990). Aquaculture techniques are currently being developed for other species of razor 

clams in China, northern Europe, and Oregon (Jaxin 1990, Breese and Robinson 1981, 

Costa 2009). Research supporting these efforts has focused on a variety of aspects of the 

life cycle of razor clams including spawning, larval rearing, settlement, and grow-out 

techniques.  

Objectives of this Thesis 

 Although the development of grow-out methods for razor clam aquaculture has 

progressed in Europe and China, there is little information available on larval rearing and 

early post-settlement culture of razor clams in hatchery settings. High mortality during 

these stages has precluded the consistent and reliable production of razor clam seed to 

support the culture of E. directus in the northeastern United States. The first objective of 

my thesis was to identify the external features of razor clam larvae that indicate their 

readiness to settle from the water column to the sediment. While at the Darling Marine 

Center in the summer of 2012, I documented the early development of E. directus from 

moment of fertilization through metamorphosis and settlement. For my second objective, 

I also conducted a sediment preference experiments for settling and juvenile razor clams. 

Species of infa unal (living within the sediments) bivalves are often found associated with 

specific sediment types (Compton et al. 2009). Several ecological factors can impact 

suitability of particular sedimentary habitats and clam growth and survival, such as the 

presence of predators, adequate delivery of suspended food, and the degree to which 

sediments get resuspended. The depth to which individuals burrow also has important 

ramifications on growth and productivity (deGoeij et al. 1998, Zacklan and Ydengerg 
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1997). Although the habitat for razor clams is often described as sandy to muddy gravel, 

these observations pertain primarily to the distribution of large adults while the 

distribution of juvenile razor clams has not been well described. The abundance of 

individuals in different sediments has been observed to change with age in several 

infaunal bivalve species. For example, in the Baltic clam (Macoma balthica,) juvenile 

clams settle in high intertidal mud habitats while adults are more often associated with 

sandier lower intertidal flats (Compton et al. 2009). It is presently unclear whether these 

patterns are due to age-specific changes in the sediment preference of clams or the result 

of other ecological processes. 

 What habitat characteristics are vital to razor clam growth and survival and are 

these conditions the same throughout the life cycle of Ensis directus are key questions; 

the answer to which will influence the choice of culture sites. There has been virtually no 

research on the abiotic and biotic processes that structure sediment-abundance 

associations in this species. The third objective of my research was to examine the 

burrowing rates of juvenile razor clams when they are presented with sand, mud, and a 

mixture of sand and mud. A set of burrowing chambers, like those employed designed by 

Sally Woodin colleagues at the University of South Carolina for monitoring burrowing 

activity in infaunal polychaetes, was used to observe burrowing (e.g., Volkenborn et al. 

2010). Similar types of chambers were used by Winter et al. (2012) for examining the 

mechanics of razor clam burrowing. Time-lapse video analysis of burrowing when clams 

were placed on different sediments in these chambers and was used to estimate the time it 

takes for clams to initiate burrowing, the burrowing speed and the burrowing depth. An 

analysis of variance test determined whether the variance in burrowing behavior is 
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statistically associated with sediment type. The results of this work will aid farmers in the 

selection of suitable culture sites and whether one sediment type is suitable throughout 

nursery and grow-out phases of culture. 
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CHAPTER 1: LARVAL DEVELOPMENT OF ENSIS DIRECTUS 

INTRODUCTION 

 Shellfish aquaculture is a thriving industry in the northeastern U.S. The 

production of cultured shellfish has increased steadily throughout the region over the past 

several decades, and now includes more than 350 culture operations generating products 

that value in excess of $50 million (Rhodes et al. 2005). The vast majority of farms in the 

region culture either Eastern oysters (Crassostrea virginica) or hard clams (Mercenaria 

mercenaria). Recent work at the Darling Marine Center has focused on developing 

culture techniques for alternative species, including the razor clam (Ensis directus). The 

razor clam is a bivalve species that lives in temperate sub-polar regions of the North 

Atlantic. It is commonly found in sandy and muddy-gravel habitats in shallow, subtidal 

regions. Although not currently cultured, this species is popular in the market and an 

increase in market value for the razor clam has resulted in greater interest in the farming 

of this species.  

 Recent research on E. directus and related species on the western coast of the 

United States, China, Galicia, and Chile have reported on the process of fertilization and 

developmental stages in razor clams (Costa 2007, Breese and Robinson 1980, 

Feudendahl 2005, Jaxin 1990). Proper conditioning and spawning of brood stock animals 

is a critical step for hatchery production of seed for any bivalve. For conditioning, adult 

animals or brood stock are kept in a controlled environment and feed a lipid-rich diet in 

order to maximize the number, quality and maturation of gametes. Conditioning can also 

provide for better management of species with different natural spawning cycles 

(González et al. 2011).  For example, Darriba et al. (2004 and 2005) found that in Spain, 
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Ensis arcuatus spawns from January to April while Ensis siliqua has its spawning season 

from May to June. Controlling the maturation of brood stock of these two species allows 

hatcheries to spawn these two species together. To begin conditioning, adult razor clams 

are held in tanks with sediment and fed a high density of food at a constant temperature. 

Feudendahl (2005) conditioned Ensis americanus putting them into tanks with 15cm of 

sediment and holding the tank at a constant temperature.  

 Conditioning can also provide for better control of spawning. When wild 

broodstock are brought into the lab it is difficult to detect the level of maturity of their 

gametes and there is often variable success in inducing spawns from field collected stock. 

Conditioning followed by the induction of spawning through a variety of means allows 

for controlled collection of viable gametes (Utting 1997). The method is not foolproof; 

conditioning of Ensis by Feudendahl (2005) supported the maturation of gonads, but the 

brood stock released gametes before being induced to do so (spontaneous spawn). 

 Research in a variety of bivalves has investigated a variety of methods inducing 

controlled spawning (Helm 2004), several of which have been tried with razor clams. 

These methods include temperature shock, strip spawning, tidal stimulation, and the 

addition of potassium chloride (Breese and Robinson 1981, Kenchington et a.l 1998, 

González et al. 2011). The success of these spawning methods has been variable, and the 

degree to which any method is successful is likely to be species specific. Kenchington et 

al. (1998) found that in Nova Scotia a temperature shock protocol, which involves slowly 

increasing from ambient temperatures the water holding the brood animals by several 

degrees until gametes are released, will induce spawning.   Feudendahl (2005) reported 

that Ensis had to be strip spawned in their work in Spain. The West coast species of razor 
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clams, Siliqua, responded to increased food density without need of temperature shock 

(Breese and Robinson 1981). Currently there is no clearly defined protocol for 

conditioning and spawning razor clams as there is for other species of bivalves (Helm 

2004). Thus, there is a clear need of further work to establish optimal conditioning and 

spawning protocols for razor clams that allow for the consistent production of high 

quality gametes. 

  Early development in razor clams is similar, yet unique to that of other bivalve 

species. Costa (2007) described the early development of fertilized razor clams in 

hatchery settings. Like many other bivalves, the sperm and eggs are mixed together in 

UV-treated water and, post-fertilization, the eggs are sieved to get rid of surplus sperm.  

To minimize stress during larval development, the temperature in larval tanks is kept at 

stable (+/- 1-2°C) and Breese and Robinson (1980) suggest that the culture water be 

changed as often as possible (every other day or daily).  Water temperature is a major 

determinant of the rate of larval development (Helm 2004). Faster development is 

fostered in warmer water temperatures up the point where it exceeds specie-specific 

temperature tolerance. González et al. (2011) theorized that there is an inverse 

relationship between egg size and time of embryonic development to the D-shaped 

veliger stage for razor clam species; the largest egg often has the shortest development 

time.  

 Larval development progresses through several stages up through competency, 

which is where an individual is morphologically and physiologically ready to settle and 

metamorphose. Helm (2004) describes the general developmental stages of embryonic 

and larval development for bivalves. By 24 to 36 h post-fertilization; the fertilized egg 
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has passed through the multicelled blastula and gastrula stages and becomes a motile 

trochophore, which has cilia surrounding an oval shaped body. As development proceeds, 

the larvae enter the straight-hinged D stage in which a complete digestive system, two 

valves, and the velum (a bivalve specific larval feeding organ) have formed. Given the 

time of the development of the velum, feeding of the larvae typically is initiated about 48 

hours post-fertilization (González el al. 2011). During the veliger stage, reached between 

one to two weeks post-fertilization, the shell morphology of individual bivalve larvae 

generally takes on a species-specific shape. The gills and the foot develop in the 

beginning of the postveliger stage and at this point the larvae have attained competency 

and are ready to settle out of the water column. Oyster larvae develop a dark circle on 

their shell, known as the “eye” at this stage, which indicates readiness to settle. Not all 

species of bivalve demonstrate such easily discernable “landmarks” of competency and 

no landmarks have yet been noted for razor clams. At this point, individual larvae settle 

out of the water column and metamorphose into the benthic, juvenile form specific to 

each species. 

 Larval mortality, particularly during the latter stages of development and during 

settlement can represent a significant bottleneck to the successful production of high 

quality bivalve seed for culture operations. Recognizing when larvae reach competency 

and providing suitable substrates for settlement and early post-metamorphic growth and 

survival are crucial to the seed production process. The first objective of my thesis was to 

describe embryonic and larval development through settlement for Ensis directus. 

Although work to define developmental stages and “landmarks” of development 

associated with readiness to settle has been conducted with other razor clam species, it is 
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not presently clear whether these findings from that work will pertain to Ensis directus 

seed production in Maine. The findings of this research will provide for a better 

understand embryonic and larval development in E. directus and define developmental 

milestones that will aid in the establishment of hatchery protocols.  

 

MATERIALS AND METHODS 

 A controlled spawn of Enisis directus brood stock was conducted on June 28, 

2012. A set of adult E. directus were collected in late May 2012 near the Darling Marine 

Center and brought to the hatchery. In the hatchery they were held in flow-through tanks 

using ambient Damariscotta River water. The water temperature in the Damariscotta 

River was approximately 15°C in late June.  

 On June 28, 2012, after approximately a month of conditioning and feeding, nine 

of the broods were placed in a 12mm layer of filtered (1 um) and UV sterilized seawater 

(UVFSW, 15°C) in a 0.8m x 1.2m spawning table. To induce spawning the temperature 

of the water was gradual increased by adding heated UVFSW, raised a total of 7°C over 

three hours. Females were observed to release a string of white pearls at spawning while 

males released a milky suspension. Six males and three females released gametes at water 

temperatures between 20°C and 22°C over a 2hr 18min time period (Table 1) Upon the 

initiation of spawning, individual razor clams were quickly placed into a 1 L beaker filled 

with UVFSW (15°C) to facilitate the collection of gametes at high concentrations. After 

spawning was complete, each brood individual was tagged via super gluing small slips of 

plastic, each numbered, to the exterior shell.  
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Sex Time 
Temperature 

°C Tag # 
Male 07:05 20 980 
Male 07:55 20 891 
Female 08:00 20 975 
Male 08:04 20 976 
Female 08:07 20 977 
Male 08:28 20 982 
Male 08:33 22 983 
Female 09:23 22 984 
Male Unknown 22 985 

Table 1: Temperature controlled spawn at the Darling Marine Center on June 28, 2012. Sex of individual 
broods was determined by gamete type. Time and temperature of each spawn was recorded. Tag number 
was given post spawn. 
 
  

 Fertilization of the eggs followed typical hatchery protocols for marine bivalves 

(Helm 2004). Marine bivalve eggs are prone to polyspermy which occurs when multiple 

sperm fertilize a single egg leading to developmental abnormalities and eventually egg 

mortality. In an effort to minimize polyspermy, the egg-sperm suspensions were gently 

poured over a 50 µm sieve over a period of several minutes, capturing the fertilized eggs 

while allowing the water used for fertilization and excess sperm to pass through the sieve. 

The proportion of fertilized eggs was estimated by counting fertilized eggs in triplicate 1 

ml samples loaded into a sedgewick rafter cell and observed at 100X magnification. The 

sieved fertilized eggs were held in a 20 L bucket for 48 h, during which time the embryos 

progressed through the trochophore stage and entered the D-stage of larval development. 

During the first 36 hours of development the water was kept at 16°C (+/- 0.5°C). 

Subsequent stages were kept at 19°C until settlement.  

 At the end of 48 h, larvae were placed into four tanks containing 350 L of 

UVFSW at a density of 10 larvae•ml-1 and kept at ambient water temperatures (19°C) for 

the remainder of their larval development. The larval culture tanks were drained every 
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other day; at each water change, the larvae were captured on an 80 µm sieved and the 

tank water replaced with fresh UVFSW seawater. As the larvae developed, the density in 

the tanks was gradually reduced to 2 larvae•ml-1 and excess larvae were moved into three 

additional 350 L tanks containing UVFSW. In total, 7 tanks were used to culture 

approximately 700,000 razor clam larvae to metamorphosis. At each tank draining, a 

small sample of larvae was photographed using an Olympus BX41 Compound Scope and 

Lumenera Infinity 2-1C 1.4 megapixel digital camera. Ethanol was used to slow the 

movement of some clams in later stages of development as they were swimming too 

quickly to be photographed.  

 On July 10, 2012, the larvae appeared to be reaching competency and nearing 

settlement as evidenced the fastest growing larvae exhibiting a foot and had reduced 

motility. The faster growing larvae were isolated from slower growing larvae by grading 

larvae using a series of sieves (180 µm, 150 µm, and 80 µm). Those retained on the 

largest sieve were used in subsequent experiments investigating the importance of 

sediment type on settlement and early juvenile development (see Chapter 2). 

 

RESULTS AND DISCUSSION 

 Razor clam embryos and larvae exhibited all stages of larval development typical 

of marine bivalves (see Helm 2004). Embryonic development is shown in figure 2. The 

first cell division occurred within 1 h of fertilization at 16°C (Figure 2A). Cilia were 

apparent about twelve h post-fertilization (Figure 2D) and one large cilia was visible 15 h 

post-fertilization, although a clear image of the cilia was not taken until 20 h post-

fertilization (Figure 2E). This observation shows that the larvae reached the trochophore 
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stage within 24 h post fertilization at a water temperature of 16°C water. Perhaps the 

most astonishing development began 21 h post-fertilization; at this point there was the 

continued development of the larger cilia and the initial signs of shell deposition at 24 h 

post-fertilization (Figure 2F and 2G). 

 Figure 3 shows major larval stages in razor clam development. Food can be seen 

in the intestines of all of the clams in these images which is an indication of the general 

health and activity of the larvae. The larvae remained in the shelled, D-shaped stage until 

day 5 (Figure 3A and B) and by day 7 there was clear development of the external 

feeding structure known as the velum (Figure 3C). The appearance of the velum marks 

the transition to the veliger stage. The development of the larval foot is clearly seen in 

Figure 3D. As the foot develops, the larvae transitions from the veliger stage to the 

pediveliger stage. The behavior of the larvae changed with the development of the foot; 

they spent less time in the water column and a substantial amount of time was spent 

crawling at the bottom. Larvae which had not developed a foot, remained suspended in 

the water column and were actively swimming. Generally larvae over 150 μm in size had 

a well developed foot, which resulted in their removal from the larval tanks and 

placement in the settlement tanks (see chapter 2) on July 10, 2012. Other than the 

development of the foot, no external landmarks were observed. Samples of sediment 

were taken over a period of six days post settlement from the settlement tanks and settled 

E. directus were observed, providing a clear indication of successful settlement. Figure 4 

shows a razor clam at approximately 6 d post-settlement. Gills can be seen through the 

transparent shell and the shell itself has begun to elongate. 
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Figure 2: Embryonic development of E. directus spawned at the Darling Marine Center on June 28, 2012: 
A (1 hour post spawn (HPS)), B (2 HPS), C (8 HPS), D (12 HPS), E (20 HPS), F (21 HPS), G (24 HPS). 
Images A-F were taken at 40X magnification and the scale bar in A represents 10μm. Image G was taken at 
10X magnification and the scale bar represents 50μm. A (36μm) shows two cells, B (36μm) shows several 
cell divisions, C (36μm) shows blastulation, D (36μm) shows cilia surrounding the group of cells, E (36μm) 
shows cilia surrounding and one larger cilia, F (37μm) shows the beginning of the veliger stage, and G 
(66μm) shows shell shape development and the D-Larva stage. 
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Figure 3: Larval development of E. directus spawned at the Darling Marine Center on June 28, 2012: A (5 
day post spawn (DPS)), B (7DPS), C (13DPS), D (13DPS). All images were taken at 10X magnification 
and the scale bar in A represents 50μm. Image A (79 μm) shows three larva, B shows a single larva digital 
close up, C (117μm) shows a larvae with velum, and D (122μm) shows an early juvenile.  
 
 
 
 

 
Figure 4: E. directus post settlement, courtesy of Dana Morse. Post metamorphic animals are generally 
less then 2-3mm in shell length.  
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CONCLUSION 

 The most prominent and discernible indication that razor clams are ready to settle 

is the presence of a well developed foot (see Figure 4). In addition, I observed notable 

differences in behavior as larvae neared competency they stopped swimming and spent 

more time crawling along the bottom. It is thus my recommendation that the development 

of the foot be used as a visual marker indicating the readiness of E. directus to settle. As 

described by Helm (2004), other bivalves that are cultured typically have features that 

indicate readiness to settle, an example being the dark eyespot seen on larval oysters. I 

found that the foot developed in a substantial portion of larvae by 13 d post-fertilization 

at 19°C. However, due to logistical constraints I only observed larval clams from one 

spawn and only at a narrow range of culture temperatures. The rate of larval development 

is highly dependent on temperature (Helm 2004). Increasing or decreasing the water 

temperature in which larvae are reared may result in shorter or longer times of 

development. Mytilus edulis (blue mussel) larvae will not grow at 5°C and show slowed 

development when reared in temperatures ranging 19°C to 22°C (Strathmann, 1987). On 

the other hand, mussel larvae have rapid development and grow well at 9°C, a 

temperature similar to the ambient temperature the adult habitat. In order to better 

understand the timing of development for E. directus, future research must examine 

larval development, survival and settlement success in different temperatures. The 

ultimate goal of such work will be to identify conditions that will maximize the 

production of reliable razor clam seed.  

 

 



 

 
 

20 

CHAPTER TWO: SETTLEMENT 

INTRODUCTION 

 Successful settlement is critical to the production of bivalve seed in hatchery 

settings. Settlement and metamorphosis occur at the completion of larval development 

when larvae have reached competency. The duration of larval development varies 

considerable among species within a genus and even among populations and individuals 

within species (Strathmann 1987). Key environmental determinants of the rate of larval 

development include water temperature and food availability. At the completion of the 

larval stage larvae settle out of the water column, contact the substrate and, if the 

substrate is suitable, initiate metamorphosis.  Competency and readiness to settle and 

metamorphose in different bivalve species are associated with a variety of physical 

characteristics.  For example, American and European Oysters are classified as being 

ready to settle by their size and the appearance of an “eye spot”, or a small round 

darkening on their translucent shells (Helm 2004).  

 In hatchery settings, it is necessary to provide suitable conditions to induce 

controlled settlement. This includes identifying critical points in development. For 

example, once reaching metamorphosis special attention must be paid to larvae as some 

species have high mortality during or directly after this phase if not presented with 

suitable settlement conditions.  In addition, competent larvae may settle indiscriminately 

on tank bottoms and sides of culture tanks if not provided with suitable substrates in a 

timely fashion. Some species, such as blue mussels, can delay metamorphosis if 

conditions for settlement are not present (Bayne 1976), but such delays can come at an 

energetic cost and may result in reduced survival and the substantial loss of settled larvae 
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(spat) and a decline in seed production. As shown by Breese and Robinson (1981) high 

mortality of larvae in the hatchery is associated with metamorphosis. Settlement also 

varies considerable between species 

 Technologies have been developed for some species, such as oysters and clams, to 

improve the recovery and survival of spat. Downwellers have been found to promote 

settlement in oysters and are used widely in oyster hatcheries. Downwellers distribute 

food evenly and relatively constantly to the seed that is held on sieves suspended in the 

tank, allowing for easy cleaning and access to the spat (see Figure 5). Improving the rate 

of successful settlement in oysters can be achieved by the use microcultch composed of 

finely ground cleaned oyster shell as a settlement substrate. This allows the spat to settle 

individually on the shell pieces rather then on each other; formation of “doubles” and 

larger clumps of oysters reduces the value relative to individual oysters sold to half shell 

markets. Settling methods that are used for oysters and other cultured species of bivalves, 

including other species of clams, have not been used successfully and ideal settlement 

protocols have not yet been identified for razor class (Breese 1981).   
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Figure 5: Downweller system containing natural sediment. 
 

 Larval development in Ensis directus proceeds as for many other bivalves. As 

described in chapter 1, larvae remain in the water column and after several days, 

depending upon environmental conditions, develop into veliger and pediveliger stages 

(González et al. 2011). During the pediveliger stage, the foot and gills form and the clams 

become competent. As described by González et al. (2011), E. arcuatus reached the 

postlarval stage 20 d post-fertilization while E. siliqua settled after only 14 d post-

fertilization. 

 Several hatcheries have had success in spawning adult razor clams and obtaining 

large numbers of viable larvae. A key bottleneck in the production of seed has been 

carrying larvae through settlement and metamorphosis. The downweller system, typical 

in the production of oyster, mussel, and other bivalves has not been used successfully in 

the production of razor clam seed.  Razor clams are benthic invertebrates and live in 

sandy and muddy gravel sediments from settlement through adulthood (Christian 2010). 

Dick Kraus (pers. comm.) of the Aquaculture Research Corporation has suggested that 
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razor clam spat are prone to bacterial and protozoan infections if not provided with 

sediment which is not provided by downweller systems.  

 As adults, razor clams are deep burrowers (Christian 2010).  In natural 

environments, razor clam abundance appears to be correlated with grain size which may 

be a function of grain-size associated burrowing rates and predator avoidance. Razor 

clams are filter feeders and extend their siphon to the sediment surface for feeding and 

excretion. Thus, while clams may burrow to avoid exposure and predators they must also 

maintain a connection with the surface. The dynamics of razor clam burrowing has been 

studied by Winter et al. (2012), but whether sediment preference or sediment-specific 

burrowing capacity varies ontogenetically has not been thoroughly investigated in razor 

clams.  

 It is unclear whether sediment is an absolute requirement for settlement and post-

metamorphic survival for razor clams. Costa (2009) documented that E. directus seed can 

survive without sediment until a shell length of 1 mm and until three months post-

settlement. Other research suggests that razor clam larvae must be provided with 

appropriately sized sediments at settlement in order to improve survival through 

metamorphosis and production of seed.  The second objective of my thesis is to better 

determine the preference for different sediment types in early post-larval E. directus. In 

developing culture methods for new species of bivalves, ease of culturing must be 

considered. It is important to maximize the use of equipment commonly employed for 

other cultured species to minimize expense and increase likelihood that the industry will 

adopt a new species. Key questions that need to be addressed include, how early sediment 

must be brought into the culture process, what sediment grain size is best suited for the 
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razor clams, and what conditions are necessary for minimal loss and greatest net 

production of seed.  

 

MATERIALS AND METHODS 

 Settlement preference for three different sediment types and two methods of 

sediment preparation were determined for competent Ensis directus. Natural sediment 

was collected from Lowes Cove and sifted to remove large masses such as rocks and 

wood, leaving mainly fine-grained “mud” and silty sediment. Fine sand (play sand) and 

course sand (construction grade) were purchased from a local supplier (Damariscotta 

Hardware). Sediments were prepared by rinsing several times with UV sterilized filtered 

seawater (UVFSW). Twelve 30 cm x 15 cm bins were filled with approximately 7-8 cm 

of one type of sediment were positioned in each 1.2 m x 1.2 cm square tank filled to a 

depth of 45 cm of UVFSW. These bins were placed into two tanks; the sediments placed 

in one tank had been further processed by autoclaving while the sediments in the second 

tank were not autoclaved. The three sediment types were randomly assembled into the ten 

different bins each containing a randomly assigned sediment type, two of which were 

larger and split to hold two sediments replicates. Thus, in each tank there were four 

assigned “bins” for each sediment type (Figure 6). Approximately 200,000 competent 

razor clam larvae retained on a 180 µm sieve were introduced to each tank on July 10, 

2012. Water in the tanks was aerated throughout the experiment and water was changed 

every two days after the larvae settled. 

 Settlement in “downweller” systems, commonly used for rearing recently settled 

bivalves in hatchery settings such as oysters, was also examined to test whether these 
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systems can support razor clam settlement and early nursery phase culture. Four 

downwellers were prepared by fitting 150 µm mesh screen on the bottom of a waxed 

wooden frame (Figure 5). The downwellers include PVC tubing that provides for water 

motion via an airlift so that water is circulated from the surrounding tank through the 

PVC pipe and downwells through the mesh screen. This method allows for continuous 

water flow through the screen. The screen is intended to hold competent larvae and 

promote settlement. Approximately 25,000 razor clam larvae were introduced into each 

downweller. Two downwellers contained sieved natural sediments and the remaining two 

had bare screen. Like the sediment treatment tanks, water in the downweller tanks was 

exchanged every other day. 

 Sediments in each treatment were regularly inspected to monitor presence and 

size of clams and shell durability. The size of individual clams and volume of clams in 

each treatment were measured to estimate growth and mortality in each treatment. 

Individuals were removed from the sediment via sieves and counts of total volume and 

average of shell length were determined. The first measurement of sediment preference 

was taken 8 week post-settlement. Juvenile E. directus have weaker shells when young 

and the shell gradual hardens with age. A count of individuals in different sediments did 

not happen prior to 8 weeks because the shells were not strong enough to withstand being 

sieved out of sediment. The second count of individual’s preference for settlement in 

different sediments was conducted 12 weeks post-settlement. This count also included 

estimated individuals and biomass.  
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Figure 6: Autoclaved tank used in sediment preference experiments. Autoclaved tank used in sediment 
preference experiments. There were 10 bins containing sediments. The larger bins were split into two 
sections so that there were a total of 4 “bins” for each sediment type (natural, fine sand, and coarse sand). 

 
 
 
RESULTS AND DISCUSSION 

 The settlement, survival, and growth of E. directus varied substantially among 

tanks and treatments. All clams introduced to the tank with autoclaved sediment perished 

due to an unidentified contaminant that resulted in white film covering the sediment. 

Mortality was also high in the downweller treatments. All individuals in both the bare 

downwellers and downwellers with fine sediment died within the first week of post-

settlement. In contrast, the volume of E. directus juveniles in the non-autoclaved 

sediments was quite high.  When counted 8 weeks post-settlement, the highest volume of 

juvenile E. directus was found in fine sediment while the lowest volume was observed in 
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natural sediment (Figure 7). Growth also varied among the different treatments in the 

non-autoclaved sediments. Razor clams in the coarse sediments were found to have the 

greatest mean length at the 8 weeks post-settlement sampling while the lowest mean 

length was found in natural sediment (Figure 8). These observations indicate higher 

settlement and survival in both types of sand sediments and perhaps greater feeding 

activity and health among the clams in the coarse sand treatment. By 12 weeks post-

settlement, the highest volume, largest mean length, greatest estimated number of 

individuals, and largest biomass was observed in the coarse sediment containers (Figures 

9-12). There were fewer, smaller clams observed in the fine sand compared to the coarse 

sand treatment and the lowest number and the smallest clams were observed in natural 

sediment treatment.  
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Figure 7: Volume (mL) of juvenile Ensis directus in the three sediment types in the non-autoclaved 
settlement tank eight weeks post settlement.  
 

 
Figure 8: Mean length (mm) of juvenile Ensis directus in the three sediment types in the non-autoclaved 
settlement tank eight weeks post settlement.  
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Figure 9: Volume (mL) of juvenile Ensis directus in the three sediment types in the non-autoclaved 
settlement tank twelve weeks post settlement.  
 

 
Figure 10: Mean length (mm) of juvenile Ensis directus in the three sediment types in the non-autoclaved 
settlement tank twelve weeks post settlement.  
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Figure 11: The number of individuals estimated from counts of juvenile Ensis directus in the three 
sediment types in the non-autoclaved settlement tank twelve weeks post settlement.  

 
Figure 12: Estimated biomass (g) of juvenile Ensis directus in the three sediment types in the non-
autoclaved settlement tank twelve weeks post settlement.  
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CONCLUSION  

 The results of my settlement experiment provide a clear indication of the need for 

properly prepared sediments for the successful settlement and early growth and survival 

of razor clam seed. The high mortality seen in the tank with autoclaved sediment may 

have been a result of contamination or lack of preference for autoclaved sediments. 

Complete mortality of clams in downwellers indicates that they are unsuitable for early 

nursery post-settlement for razor clams. With the fragile shells of newly settled juveniles 

and the fact that E. directus is a benthic bivalve that lives buried in the sediment 

(Christian 2010), it is not surprising that downwellers did not support its survival and 

growth.  

On the other hand, when provided with cleaned, washed sediments, razor clams 

exhibited a clear preference for coarse sand. The volume, biomass and growth for post-

set razor clams in the coarse sand treatment was higher in comparison to the clams that 

settled in the fine sand or natural sediment treatments in the tank which had non-

autoclaved sediments.  It is important to note that my experiment cannot directly 

determine differences in survival for clams in each of these treatments, as survival is 

confounded by differences in initial settlement density. However, the clear differences 

between total volume and biomass in the natural sediments and sand sediment treatments 

indicate there is greater settlement and survival in the latter. Based on my observations, 

the increased shell size and volume in the coarse sand treatment suggests that coarse sand 

should be used in aerated tank systems for successful survival and growth of E. directus 

post-settlement. Unfortunately, due to psuedoreplication of sediment treatments no 

formal statistical tests of the difference in mean volume and shell size have been 
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conducted. Thus, my findings should be considered preliminary observations and should 

be confirmed through additional research.  
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CHAPTER THREE: GROW-OUT 

INTRODUCTION 

 Razor clams are benthic marine bivalves that burrow into sediments to reduce the 

risk of exposure and for protection from predators. When burrowed, they extend their 

siphon to the sediment surface to access the water column for feeding, excretion, 

defecation, and other activities. Razor clams have a strong muscular foot, which gives 

them the ability to move quickly through sediments. They can even “outrun” the spade 

used to harvest them which is a major factor that limits wild harvests of this species 

(Drew 1907).  Sediment grain size influences the ability of Ensis to penetrate the 

sediment (Alexander 1993) and the need for sediments and ontogenetic variation in 

sediment preference complicates the culture of this species. 

  Several methods of culture systems have been proposed for E. directus. Garcia et 

al. (2011) used long-line, “in pond”, and on-bottom culturing methods. Long-line 

culturing involves using cylinder like pens filled with sediment with small openings in 

the pen material to allow for water exchange. These pens are hung in the water column at 

different depths so that clams can feed on a natural supply of food. However, the cost of 

the material and the amount of sand needed to fill the pens makes this practice 

logistically difficult and highly expensive. “Pond culture” involves using large tubs filled 

with sediment held within a bivalve hatchery or seawater lab. While this approach allows 

for close monitoring of the clams and thus reduces the threat from predators, it requires 

hatchery space and extra expense to ensure adequate flow and delivery of food to the 

clams. On-bottom culture involves leasing bottom space in an estuary or coastal region 

and is the most common method used for clam culture. In this approach juveniles are 
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simply scattered on the seabed (Jaxin 1990). While this approach eliminates the logistical 

problems associated with transporting large amounts of sediment and does not require 

hatchery space, some predators of razor clams, such as the nemertean worm Cerebratulus 

lacteuscan, also burrow into the sediment (McDermott 1976).  Thus, the grow-out area 

needs to be protected from fish and bird predators by mesh and from benthic predators by 

board barriers. At present, however, there are no well established guidelines for site 

selection due to a lack of knowledge regarding the types of sediments that maximize 

retention, growth and survival or razor clams at various ontogenetic stages. 

 Adult razor clams are prolific burrowers and can quickly burrow up to 70 cm deep 

into the sediment (Winter et al. 2012). The burrowing behavior of razor clams, however, 

is likely to vary as a function of sediment characteristics. For example, Alexander (1993) 

has shown that sediment size influences the ability of adult Ensis to penetrate the 

sediment. Winter et al. (2012) have proposed that burrowing in Ensis proceeds through 

six steps (start of burrowing, downward extension of foot, upstroke of valve, valve 

contraction, foot contraction, and expansion of valve; Figure 13). Before burrowing has 

initiated, the clam will use its foot to explore the sediment by extending it to the 

sediment. When conditions are suitable, the foot extends down into the sediment.  As the 

valve of the shell contracts, blood fills the foot and allows it to act as an anchor for the 

animal to pull itself down into the sediments. The valve relaxes to start the next cycle. 

While the general burrowing mechanism outlined by Winter et al. (2012) likely holds for 

recently metamorphosed, juvenile and adult clams, it is not known whether the sediment 

preference and thus burrowing behavior differs among razor clams of different 

ontogenetic stages. The objective of the following experiment was to determine whether 
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the burrowing behavior (i.e., rate) of juvenile Ensis varies when the clams are presented 

with different sediment types 

 

 

Figure 13: The burrowing cycle of E. directus (Abigail Flanagan 2013). Initiation of burrowing (left=1), 
upright positioning (2), valve contractions (3-5), and completion of burrowing (right=6).  
 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

36 

 

MATERIALS AND METHODS  

 The burrowing rates of juvenile E. directus were compared between three 

sediment types. Chambers for documenting variation in burrowing behavior of juvenile 

razor clams were constructed from two 30.5 mm x 30.5 mm x 1.9 mm lexan plates. In 

between the plates, a piece of 2.5 cm hollow tygon tubing was sandwiched and the plates 

were held together by a series of 10 stainless steel bolts with wing nuts. The tubing acted 

as both a spacer between the plates and as a seal for holding sediments between the plates 

(see Figure 14) and allowed the behavior of clams placed on the sediments to be 

videotaped. A gentle stream of flowing seawater was passed across the top of the 

sediment surface during all burrowing trials. 

 
 

 Figure 14: Picture of the burrowing chamber without sediment but otherwise constructed   
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 The burrowing chamber were filled with one of three different sediment types 

(Table 2), leaving approximately 2 cm of space at the top for water flow and placement 

of individual clams. Three different sediment types were used; mud collected from 

Lowes Cove commercial play sand (Figure 15) and a 50:50 mix (by volume of play sand 

and Lowes Cove mud). The mud was kindly provided by Dr. Sara Lindsay.  

 

Figure 15: Mud (left) and Sand (right) sediment used in burrowing experiments. The picture was taken 
with 3X magnification. The scale bars represent 0.55mm. Based on an average of the diameters, found 
using ImageJ, of ten sediments, the sand grains are estimated to have ten times more area then the mud 
grains.  
 
 Juvenile razor clams (1.20cm-1.85cm in length), from the June 28 2012 spawning 

were transported from the Darling Marine Center hatchery and placed in a holding tank in 

Murray Hall at the University of Maine. The clams were fed live microalgae (Isochrysis 

galbana, strain T-iso), ad libitum, prior to the burrowing experiments. The experimental 

trials were conducted between December 5 and December 14, 2012 (table 2). Although I 

attempted to complete all of the trials for a single sediment type on the same day, the 

trials in mud took longer than expected and thus were completed over a three-day period. 

I used a recirculating seawater system to hold the clams and supply water for the 

burrowing chambers with the intent of providing constant conditions for all three 
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sediment trials. However, water temperature varied among the trials as indicated in Table 

2.  

 

Sediment Type Number of E. 
directus counted 

Testing Dates Temperature of Water 

Mud 1 
9 
2 

12/5/12 
12/10/12 
12/11/12 

18.6°C 
13.2°C 
14.1°C 

Sand 12 12/3/2012 13°C 
Mix 12 12/14/2012 16.5°C 
Table 2: Sediment testing dates with observed water temperatures. Burrowing testing was completed in 
Murray Hall at The University of Maine. 
 
 The burrowing behavior of 12 juvenile clams was videotaped in each sediment 

type. Individual clams were retrieved from the holding tank using floppy forceps and 

their shell length recorded prior to deployment in the burrowing chamber. To video tape 

each clam, I used a SONY Handycam. Each clam was videotaped until burrowing was 

completed as evidence by either the valve being completely buried or lack of visual 

movement in the burrowing chamber. If a clam had not completed burrowing by the end 

of 15 min, the videotaping was suspended and the clam was recorded as having “not 

burrowed”. Eighty three percent of clams across all treatments burrowed within the 15-

min period and most had completed burrowing by 8 min. At the end of a trial, the 

individual was removed from the burrowing chamber before the next trial began to limit 

any potential interference due to the presence of other razor clams in the test chamber. 

The videos were analyzed using iMovie to determine the time clams spent exploring the 

sediment, the time required for clams to complete stages of burrowing described above 

(e.g., start of cycle, upright position, completion), and the timing of any other foot 

activity. 
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 Each variable was square root transformed prior to conducting single factor 

analysis of variance (ANOVA). For ANOVA where the treatment effect was statistically 

significant, a post-hoc test of means (Bonferroni correction) was used to test for 

differences among the three sediment types. ANOVA was conducted using SYSTAT 

(version 12) and the appropriateness of each model was determined via examination of 

model residuals. SYSTAT was used to identify potential outliers prior to running the 

models.  

 

RESULTS AND DISCUSSION 

 There were clear and statistically significant differences in the burrowing 

behavior of early juvenile razor clams (< 20 mm shell length) among the three sediment 

treatments included in my experiment. Although all individuals used in this experiment 

were spawned on the same date (June 28, 2012), they were not all the same length. I used 

an analysis of variance to test whether the mean length of clams differed among the three 

sediment types. This analysis indicated there was no significant difference of lengths 

between treatment types (F2,33 = 0.2; p = 0.82) and thus the effect of size on burrowing 

behavior was not considered further. 

 The burrowing cycles of 36 juvenile razor clams were visually recorded and 

analyzed for time to visual siphon extension, first evidence of foot extension, initiation of 

burrowing cycle, upright position of individual, and completion of burrowing cycle 

(Figure 13). Some individuals in the mud treatment did not complete the burrowing cycle 

within 15 min and were not included in the analysis of burrowing behavior. In addition, 

siphon exposure was difficult to observe, particularly in the mud and mud/sand mix 
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treatments due to suspended sediments so this variable was not analyzed. However, 

substantial and statistically significant differences among sediment types were detected 

for the three aspects of burrowing behavior that I quantified.  The mean time from the 

start of exploration to the start of burrowing was found to be statistically different 

between the three sediment types (F2,29 = 4.3 and p = 0.023). Clams in the mud treatment 

had the longest lag time between initiating exploration of the sediments and initiating 

burrowing (Figure 16). In contrast, the lag time for clams in the sand and mixed 

sediments was less than 25% of that observed for clams in the mud sediments. Pair-wise 

comparisons indicated that the means for the mud and mixed sediments were 

significantly different from one another (p = 0.025), although there was no difference 

between the sand and either of the other two treatments.  In addition, while > 90% of the 

clams in the sand and mixed sediments completed burrowing within 15 min, only 67% of 

those in the mud treatment had completed burrowing in the same time frame (Figure 17); 

a difference that was statistically significant (R x C contingency test; χ2
2 = 6.04; p < 

0.05).  Combined, these observations provide clear evidence that juvenile razor clams 

prefer and more readily burrow into coarser sediments. 

 The treatment-level effects that I observed were reversed for the other two aspects 

of burrowing behavior that I quantified. Razor clams in the mud treatment spent 

significantly less time completing the burrowing cycle once they were in the upright 

position (Figure 18; F2,29 = 4.104; p = 0.028). Similarly, after first initiating burrowing 

clams in the mud treatment completed burrowing the nearly twice as fast as the clams in 

the sand treatment and nearly 50% faster than the clams in the mixed sediments (Figure 

19; F2,29 = 14.47; p < 0.001). These observations suggest that once clams make the 
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commitment to burrow into the sediments, they have an easier time burrowing into mud 

than into mixed sediments and are much faster at completing burrowing in mud when 

compared to sand. 

 The whole burrowing cycle in razor clams includes a period of exploration prior 

to extension of the foot into the sediment at the start of burrowing (Figure 15). In this 

experiment, the bulk of the total burrowing cycle time occurs during the exploration 

phase (Figure 20). For the clams in the sand and mixed sediments, the exploration phase 

accounted for 48-58% of the total burrow cycle while it accounted for 78% of the total 

cycle among clams in the mud treatment. From an ecological perspective, juvenile razor 

clams are most vulnerable to predators and potentially exposed to adverse conditions or 

prone to being swept away if they spend a protracted period on the surface of the 

sediment (McDermott 1976). Thus, under field conditions, the differences in sediment 

preference are likely to translate into large differences in sediment-specific abundance for 

juvenile razor clams. In terms of the importance to aquaculture, the clear preference that 

clams display for coarser sediments as observed in this experiment, along with the 

increased growth described in Chapter 2 of this thesis, indicates that hatcheries should 

use sand or mixed sediments and avoid fine grained mud for the nursery phase production 

of razor clam seed. 
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Figure 16: Mean time in seconds (s) from start of exploration to initiation of burrowing cycle for juvenile 
E. directus in mud (n=9), sand (n=12) and mix (n=11) sediment treatments.  The start of exploration was 
defined when foot of the individual was first visible while initiation of burrowing was defined as when the 
foot pushing into the sediment. Error bars represent the mean +/- one standard error for the untransformed 
values. The sketch in the upper right-hand corner depicts a visual representation of the portion of the cycle 
represented in the figure.  
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Figure 17: The proportion of juvenile E. directus that completed burrowing in 15 min in each of three 
sediment types (mud, sand, and mixed sediments).  
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Figure 18: Mean time in seconds (s) between when juvenile razor clams were in the upright position 
during burrowing cycle and when they completed the burrowing cycle. Error bars are the mean +/- one 
standard error for the untransformed values. The sketch in the upper right-hand corner depicts a visual 
representation of the portion of the cycle represented in the figure.  
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Figure 19: Mean time in seconds (s) between the start of burrowing cycle to completion of the burrowing 
cycle for juvenile E. directus in three sediment types (mud, sand, and mixed). The start of burrowing cycle 
was defined as when the steps of burrowing are first visible while the completion of the burrowing cycle is 
defined as when the burrowing steps are no longer visible. The error bars are the mean +/- the standard 
error for the untransformed values. The sketch in the upper right-hand corner depicts a visual representation 
of the portion of the cycle represented in the figure.  
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Figure 20: Average time for total burrowing cycle and diffferent phases of the burrowing cycle for juvenile 
E. directus in mud, sand, and sediment treatments. Each average total time was broken into the average 
times of explore to start of burrowing (exp_start), start of burrowing to upright (start_upright), and upright 
position to completion of burrowing (upright_final). 
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CONCLUSION 
 
 Based on the differences between razor clam burrowing behavior in the mud, 

sand, and mixed sediment treatments in the burrowing rate experiment, a mixed or mud 

sediment composition provides for the fastest completion of burrowing by 6 month-old 

juvenile E. directus. Additional experiments with an increased array of sediment types 

would be beneficial for determining the optimal sediments that can be used in the nursery 

culture of razor clams. When extended to older age classes, such sediment preference 

experiments will also help to further define which sediment types will be the best for the 

post-nursery field grow-out culture of juvenile and adult E. directus.  Future work should 

also strive to characterize sediments based on more than just grain size; including 

analyzing such variable as sulfur content. Woodin et al. (1995) discussed different 

sediment variables and their influence on the burrowing behavior of the hard clam 

(Mercenaria mercenaria) and lugworm (Arenicola cristata). Differences in sediment type 

of sediment and original depth of sediment, which influences the redox state of the 

sediments, resulted in differing burrowing behaviors. Taking sediments from depth and 

the surface introduces the idea of sediment-borne cues and their influences on the 

burrowing rates of different species. More complete characterization of sediment 

characterization and the role of sediment-borne cues on burrowing behavior in razor 

clams will be critical in the identification of suitable culture sites and in developing 

appropriate grow-out protocols for this species. In addition, similar experiments as to the 

ones discussed in this chapter with juveniles of different ages will better show at what 

age juveniles have the best chance of burrowing under the sediment before predation or 

currents remove them from the culture lease site. 
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