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Abstract: Many spatiotemporal data mining methods are dependent on how relationships
between a spatiotemporal unit and its neighbors are defined. These relationships are often
termed the neighborhood of a spatiotemporal object. The focus of this paper is the dis-
covery of spatiotemporal neighborhoods to find automatically spatiotemporal sub-regions
in a sensor dataset. This research is motivated by the need to characterize large sensor
datasets like those found in oceanographic and meteorological research. The approach pre-
sented in this paper finds spatiotemporal neighborhoods in sensor datasets by combining
an agglomerative method to create temporal intervals and a graph-based method to find
spatial neighborhoods within each temporal interval. These methods were tested on real-
world datasets including (a) sea surface temperature data from the Tropical Atmospheric
Ocean Project (TAO) array in the Equatorial Pacific Ocean and (b) NEXRAD precipitation
data from the Hydro-NEXRAD system. The results were evaluated based on known pat-
terns of the phenomenon being measured. Furthermore, the results were quantified by
performing hypothesis testing to establish the statistical significance using Monte Carlo
simulations. The approach was also compared with existing approaches using validation
metrics namely spatial autocorrelation and temporal interval dissimilarity. The results of
these experiments show that our approach indeed identifies highly refined spatiotemporal
neighborhoods.

Keywords: spatiotemporal patterns, data mining, sensors, spatial neighborhoods, spatial
clustering, discretization, change detection, spatial autocorrelation
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1 Introduction

Spatiotemporal data from automatic sensing devices has become prevalent in many do-
mains such as climatology, hydrology, transportation planning, and environmental science
and we are currently experiencing a deluge of spatiotemporal data collected at increasingly
numerous locations and fine temporal granularities. In the context of this paper, a sensor is
defined as a device that automatically measures a physical quantity over time at a location.
Finding spatiotemporal patterns in large sensor datasets helps identify physical processes
governing the phenomenon being measured. As the data grows over time, spatiotempo-
ral patterns become more difficult to analyze. Another challenge in spatiotemporal data
mining is to identify the proper method for neighborhood generation. The spatiotemporal
neighborhood is particularly important because it is used to define relationships between a
spatiotemporal unit and its neighbors and many spatiotemporal data mining methods are
dependent on how the neighborhood is defined [56]. This paper focuses on the discovery
of spatiotemporal neighborhoods where, in space, the neighborhood is generally a set of
locations that are proximal and have similar characteristics. In time, a neighborhood is a
set of time periods that are similar for either a single location or set of locations. Our notion
of a spatiotemporal neighborhood is distinct from the traditional notions since we consider
both a spatial characterization as well as a temporal characterization of neighborhoods.
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Figure 1: Spatiotemporal sub-regions

Figure 1 shows a simple example to illustrate spatiotemporal sub-regions in a set of sen-
sors measuring temperature at three time periods t1, t2, and t3 where the light sensors are
cold and the dark sensors are hot. The spatial neighborhoods in this example are exhibited
as the division in space between hot and cold measurements. The temporal neighborhoods
are exhibited as the division between time periods where the spatial pattern of temperature
changes. The primary objective of this paper is to characterize the pattern in spatiotempo-
ral datasets by combining spatial and temporal sub-regions. The result can be thought of
as a “thumb print” of a spatiotemporal dataset that identifies a spatial pattern for a pe-
riod of time. The pattern of spatiotemporal sub-regions in this example suggests that an
event has occurred between times t2 and t3 to change the spatial pattern of temperature.
Now imagine a much larger dataset than the one depicted in Figure 1 where the pattern
of spatiotemporal heterogeneity is much less evident. It becomes a challenge to find the
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pattern of changing spatiotemporal sub-regions and therefore approaches are needed to
automatically uncover these patterns in large sensor datasets.

This paper proposes an approach to identify spatiotemporal neighborhoods to find the
inherent pattern of spatiotemporal sub-regions in the data. The resulting characterization
of spatiotemporal data can be seen as a key step to knowledge discovery in a number
of domains including climatology, hydrology, transportation planning, and environmental
science because it provides an automated way to find the homogeneous sub-regions in
space and time in the dataset. The resulting regions can then be used in the identification
and characterization of events. The following presents a motivating example in the domain
of climatology:

1.1 Motivating Example

El Niño events are characterized by anomalously warm sea surface temperatures (SST)
in the Equatorial Pacific Ocean and can have important implications for global weather
conditions [47]. The TAO/TRITON array [46] consists of sensors installed on buoys posi-
tioned in the equatorial region of the Pacific Ocean. The sensors collect a wide range of
meteorological and oceanographic measurements. SST measurements are reported every
five minutes. Over time, this results in a massive dynamic spatiotemporal dataset. This
data played an integral part in characterizing the 1997–98 El Niño [38] and are currently
being used to initialize models for El Niño prediction. There have been a number of stud-
ies which assimilate meteorological and oceanographic data to offer a description of the
phenomena associated with the events of the 1982–83 El Niño [5, 49] and the 1997–1998 El
Niño [38]. These analyses show a particular importance in the spatiotemporal patterns of
SST anomalies that characterize El Niño events. Understanding these patterns can lead to
new knowledge about the global climate and in turn can assist in predicting local weather
patterns such as drought and flooding.

As a use case, consider the perspective of a climatologist analyzing the SST data over
time. The aim might be to find regions, boundaries, and outliers in the dataset; critical time
periods where changes in these regions occur; and relations between these global patterns
and local weather conditions. In the current mode of analysis, daily anomalies are typically
calculated using a combination of in situ and satellite measurements where the degree of
the anomaly is based on the difference between the current SST analysis value and SST
monthly climatology. This method finds global outliers at coarse spatial and temporal res-
olutions, in the order of 1 day [51]. Instead, a climatologist might prefer to develop a more
detailed spatiotemporal characterization of SST by using data from the TAO/TRITON net-
work. To begin this analysis, the climatologist must first be able to characterize the evolu-
tion of El Niño events by finding distinct points in time where the pattern of SST changes.

For the purpose of this motivational example, consider Figure 2 which shows a time
series of satellite measurements of SST for five consecutive days from February 4, 2006 to
February 8, 2006. It is evident from visual inspection of the figure that the region between
150◦E and 180◦ experiences a significant amount of change in the spatial pattern of SST.
However, given longer time series, it becomes prohibitively difficult to determine where
the critical time points exist and where the spatial pattern changes. It is also difficult to
determine, using the daily data, the spatiotemporal pattern of the data at a finer temporal
resolution.
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Longitude

Figure 2: A time series of daily SST between the dates of 2/4/2006 and 2/8/2006 mea-
sured by the NOAA AVHRR satellite. The black dots in the figure represent the SST sen-
sors of the TAO/Triton Array. The region between 150◦E and 180◦ experiences a significant
amount of change. Figure created using the IRI/LDEO Climate Data Library (http:�iridl.
ldeo.columbia.edu/).

Figure 3 shows the time series for a selected number of TAO/Triton Array sensors for
the time period shown in Figure 2. From this figure, it is evident that the time series for SST
exhibits a diurnal pattern where the temperature rises based on solar heating of the water.
However, it is also evident that there are interesting areas in the time series that are not
identifiable from Figure 2. For example, in Figure 2 there is a spike in SST for a sensor at a).
A period of abnormal fluctuations occurs for a group of sensors around b). A single sensor
exhibits a large positive shift in SST at c). Figure 3 provides evidence that the pattern of
SST exhibits finer temporal granularity than depicted in Figure 2. However, the time series
does not show relationships between proximal sensors in space. Furthermore, the example
shown here only shows five days of SST measurements where the scale of analysis for El
Niño events is over a much larger time period. Therefore it is important to understand the
spatiotemporal pattern of SST at a fine temporal resolution over a long period of time.
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Figure 3: Time series of measurements for the SST sensors shown in Figure 2.

This use case presents a number of challenges. The first challenge is to find proximal
sensors in the TAO/Triton network that have similar SST measurements in a particular time
frame. To make the analysis more efficient, the climatologist would like to automatically
find areas in the data where changes to the spatiotemporal patterns are most likely to occur
and focus the analysis on finding anomalies in these areas. For example, by finding these
areas, the climatologist could then pinpoint time periods where exploration of the satellite
data might prove to be fruitful. Furthermore, finding these areas can lead to the discovery
of events that shape the spatiotemporal pattern of SST. If these events can be identified in
advance, they can be used in the prediction of global weather conditions such as localized
drought and flooding. In short, the climatologist is in need of a mechanism that allows
for the spatiotemporal characterization of the natural boundaries in space and time in the
sensor network.

The approach to spatiotemporal neighborhoods presented in this paper first determines
adjacent spatial nodes then applies an agglomerative method to create temporal inter-
vals for multiple sensors based on spatial relationships between adjacent sensors. Then, a
graph-based method is used to create spatial neighborhoods for each interval. The combi-
nation of the temporal intervals and spatial neighborhoods results in spatiotemporal neigh-
borhoods.

The rest of the paper is organized as follows. Related research is discussed in Section
2. Section 3 provides the objectives and preliminaries for the discovery of spatiotemporal
neighborhoods. Section 4 discusses the approach and algorithms as well as validation met-
rics. Detailed experimental results are discussed in Section 5. Finally, Section 7 offers some
concluding remarks.
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2 Related work and contributions

Related works relevant to this research are situated in the areas of spatial neighborhood
discovery, time series segmentation, and spatiotemporal pattern discovery.

2.1 Spatial neighborhoods

The model used to determine the neighborhood of a spatial object is a critical step in spatial
and spatiotemporal statistical analysis [8]. Spatial neighborhood formation has been iden-
tified as a critical challenge in future research in spatial data mining and is a key aspect
to spatial data mining techniques [56]. This is never more true than in the case of spatial
outlier detection. For example, the issue of graph-based spatial outlier detection using a
single attribute has been addressed in [57]. Their definition of a neighborhood is similar
to the neighborhood graph [10], which is primarily based on spatial relationships. How-
ever the process of selecting the spatial predicates and identifying the spatial relationship
can be an intricate process in itself. Another approach generates neighborhoods using a
combination of distance and semantic relationships [2]. In general the neighborhoods in
these approaches have crisp boundaries and do not take the measurements from the spa-
tial objects into account for the generation of the neighborhoods. The approach presented
in this paper extends the crisp neighborhood by using a measure of connectivity strength
to assign a degree of membership of spatial nodes to a particular neighborhood. Further-
more, this approach uses the measurements taken at the spatial nodes to initialize neighbor
relationships and the number of neighborhoods are not known a priori.

Spatial neighborhood discovery can also be formulated as a spatial clustering problem.
Most of the existing clustering methods for spatial data either cluster spatial data alone
or treat attributes as another dimension along with spatial dimensions. The approach pre-
sented in this paper treats the spatial dimension separately from attribute dimensions in
the dataset therefore generating neighborhoods that are constrained by the spatial dimen-
sion and defined by the parameter being measured. There have been many applications
of various types of clustering algorithms on spatial data [20]. Clustering methods are typ-
ically categorized as partitioning-based, hierarchical, density-based, grid-based, or graph-
based methods. Partitioning-based methods typically group objects in the data based on
a distance from the closest cluster center. Partitioning methods include k-means [35], k-
medoids [27], CLARANS [42], and affinity propagation [13].

Hierarchical methods introduced in [23] form a dendrogram of clustered objects by re-
cursively splitting the dataset. Popular hierarchical clustering methods include BIRCH [62],
AGNES [27], and CURE [18]. Density-based clustering methods such as DBSCAN [11]
and OPTICS [3], instead of simply using distance between objects, form clusters in dense
regions of points in the data. Grid-based clustering methods such as STING [60] and
WaveCluster [55], allocate all data points into a grid structure and clustering is formed
by agglomerations of grid cells. Finally, graph-based methods model the data using a
graph structure and clusters are typically formed by using graph partitioning methods
[12, 25, 26, 34, 61]. Most closely related to our work is the work on using a Delaunay tri-
angulation for the clustering of spatial objects. In [25] the Delaunay triangulation is used
to cluster spatial points based on the connectivity of the triangulation after applying an
edge cut based on a spatial distance threshold. In [34] a Delaunay triangulation is used for
clustering and boundary detection in spatial datasets. The work presented in this paper
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builds on this approach. However, instead of applying an edge cut based on a spatial dis-
tance threshold, we perform edge cuts based on the difference between the measurements
at connected spatial nodes.

2.2 Time series segmentation

The concept of a temporal neighborhood is most closely related to the literature focused on
time series segmentation. The methods presented in this paper focus on finding temporal
intervals across a number of time series taken at a number of spatial locations. Moreover,
this is the first approach to delineate temporal intervals that are based on relationships
between adjacent spatial nodes. The existing literature primarily focuses on approximat-
ing a time series, and do not result in a set of discrete temporal intervals. Furthermore, the
literature has largely focused on segmentation of a single time series. To the authors’ knowl-
edge, there is no existing approach that discretizes multiple time series in a spatiotemporal
dataset. Numerous algorithms [1,4,21,29,32] have been written to segment time series. One
of the most common solutions to this problem applies a piecewise linear approximation us-
ing dynamic programming [4]. Three common algorithms for time series segmentation are
the bottom-up, top-down, and sliding window algorithms [29]. Another approach, global
iterative replacement (GIR), uses a greedy algorithm to gradually move break points to
more optimal positions [21]. Abonyi et al. (2003) [1] offer a method to segment time series
based on fuzzy clustering. In this approach, principal component analysis (PCA) models
are used to test the homogeneity of the resulting segments. Most recently [32] developed a
method to segment time series using polynomial degrees with regressor-based costs.

2.3 Spatiotemporal pattern discovery

This paper also has a number of commonalities with literature in spatiotemporal data min-
ing. Many of these approaches first perform a spatial characterization of the data then
find the temporal pattern. The work presented in this paper sets itself apart from this
literature by first finding temporal intervals in the dataset. Also, a novel aspect of this
research is the idea of combining temporal intervals with spatial neighborhoods to find
spatiotemporal neighborhoods. A number of works discover spatiotemporal patterns in
sensor data [6, 15, 16, 30, 40, 57]. In [57] a simple definition of a spatiotemporal neighbor-
hood is introduced as two or more nodes in a graph that are connected during a certain
point in time. Graphs can be used to represent spatiotemporal features for the purposes of
data mining. Time-expanded graphs were developed for the purpose of road traffic con-
trol to model traffic flows and solve flow problems on a network over time [30]. Building
on this approach, George and Shekhar devised the time-aggregated graph, defined as a
graph where at each node, a time series exists that represents the presence of the node at
any period in time [16]. Spatiotemporal sensor graphs (STSG) [15] extend the concept of
time-aggregated graphs to model spatiotemporal patterns in sensor networks. The STSG
approach includes not only a time series for the representation of nodes but also for the
representation of edges in the graph. This allows for the network which connects nodes to
also be dynamic. Chan et al. [6] also uses a graph representation to mine spatiotemporal
patterns. In this approach, clustering for spatiotemporal analysis of graphs (cSTAG) is used
to mine spatiotemporal patterns in emerging graphs.
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8 MICHAEL P. MCGUIRE, JANEJA, GANGOPADHYAY

There have been a number of approaches to spatiotemporal clustering. In [50] a self
organizing map (SOM) neural network is used to find spatiotemporal regions of precipita-
tion data. Another approach improves spatiotemporal clustering by extending the distance
measure traditionally used in most clustering algorithms to be a function of the position
history of the spatiotemporal objects in the dataset [52]. In [54] a weighted kernel k-means
algorithm is proposed to account for problems with nonlinear separability in spatiotem-
poral data. In [33] a tight clustering algorithm is presented where the clustering is based
on a measure of process similarity. While this approach does account for spatiotemporal
aspects of the data, it provides a global clustering for an entire time series and therefore,
does not uncover changing patterns over time. A number of approaches are focused on
finding dense areas or clusters in moving object databases. For example, in [59] spatiotem-
poral association rules are used to find stationary and high-traffic regions in object mobility
databases. In [24] a combination of density-based clustering and time slices are used to find
clusters of moving objects in trajectory databases. Finally, in [19] a grid-based technique is
used to find dense groups of moving objects across time.

2.4 Contribution of this work

The primary contribution of this paper is the discovery of neighborhood for spatiotemporal
data, which is a critical challenge in spatiotemporal statistical analysis [8] and spatiotem-
poral data mining [56]. The approach presented in this paper discretizes temporal intervals
and discovers spatial neighborhoods within each temporal interval to form spatiotempo-
ral neighborhoods. This notion of a spatiotemporal neighborhood is unique because the
formation of these neighborhoods is based on both a spatial characterization as well as a
temporal characterization. Also, there has yet to be an approach to spatiotemporal neigh-
borhoods that is based on the ability to track relationships between spatial locations over
time. Furthermore, experiments were performed on real world datasets on SST and precip-
itation data with promising results in finding distinct temporal interval and spatial neigh-
borhoods in both datasets. The specific contributions of this research are as follows:

Temporal intervals Temporal intervals embody the concept of neighborhoods in time.
One major contribution is the discovery of unequal width or unequal frequency intervals
that are robust in the presence of outliers. Furthermore, this is the first approach to temporal
intervals that is based on the relationships of measurements taken at adjacent spatial nodes.
Lastly, the efficacy of the interval discovery method is demonstrated on very large real
world sensor datasets from the TAO/TRITON Array [46] and Hydro-NEXRAD system
[31].

Spatiotemporal neighborhoods The spatiotemporal neighborhood method finds group-
ings of locations in terms of the spatial distribution of measurements based on their re-
lationships with neighboring locations. The spatiotemporal neighborhood approach pre-
sented in this paper is conceptually similar to clustering approaches which use a graph cre-
ated by a Delaunay triangulation [25,34]. However, no existing approach combines tempo-
ral intervals with spatial neighborhoods to form spatiotemporal neighborhoods. Further-
more, the approach presented in this paper can accommodate for spatial nodes that are
irregularly distributed as well as spatial nodes that are distributed in the form of a grid.

www.josis.org

http://www.josis.org


MINING SENSOR DATASETS WITH SPATIOTEMPORAL NEIGHBORHOODS 9

Validation The approaches presented in this paper are validated by using both estab-
lished metrics as well as new measures for comparison with alternative approaches. The
Moran’s I statistic, a standard measure of spatial autocorrelation, is used to validate the
quality of the spatial contiguity represented by the spatiotemporal neighborhoods. The
between interval dissimilarity (bid) measures the quality of a set of temporal intervals by
calculating the dissimilarity of adjacent intervals. This metric is used to compare our re-
sults with other established approaches. The significance of our results is then tested using
Monte Carlo simulation.

3 Objectives and preliminaries

In most real-world sensor deployments, a heterogeneous pattern of spatial and temporal
dependence exists based on the physical properties of the process being measured. With
this in mind, finding the how this pattern is expressed by the formation of homogeneous
spatiotemporal sub-regions in the data can lead to the discovery of distinct spatiotemporal
sub-regions in the dataset. Considering the motivational example of climatology, finding
these naturally occurring boundaries can lead to a better characterization of El Niño events
which in turn can lead to the discovery of new impacts on global weather patterns. In Fig-
ure 4, the spatial pattern can be determined by grouping the locations into regions based on
the measurements taken at each time period. Conversely, the temporal pattern can be de-
termined by grouping the time periods based on the measurements taken at each locations.
The goal of spatiotemporal neighborhoods (STN) is to find the spatial and temporal pat-
terns in a dataset by first delineating temporal intervals in a spatiotemporal dataset across
all locations, then, for each interval, to determine the spatial pattern in terms of groupings
of similar spatial nodes. The specific objectives of STN are as follows:

• Find the temporal pattern for a set of spatial nodes S and temporal measurements T
by dividing the time series for a set of spatial nodes and temporal measurements into
a set of unequal width temporal intervals.

• Find the spatial pattern for a set of spatial nodes S and temporal measurements T by
finding the spatial neighborhoods for each temporal interval resulting in spatiotem-
poral intervals where the number of neighborhoods is not known a priori.

3.1 Sensor datasets: Spatial nodes and temporal measurements

Conceptually, sensor deployments consist of a set of spatial nodes distributed in Euclidean
space where each spatial node is associated with a set of measurements taken over time.
More formally we consider the following input:

• Let S represent a set of spatial nodes where S = {s1, ..., sn} and each si ∈ S has a set
of coordinates in 2D Euclidean space (six, siy).

• Each si ∈ S also has a set of spatial neighbors SNi ⊂ S that are defined by a spatial
relationship sr such that given two spatial nodes (sp, sq) ∈ S a spatial relationship
sr(sp, sq) exists if there is either a distance, direction or topological relationship be-
tween them.

• Each si ∈ S has a set of measurements that are taken for a set of time periods Ti =
{ti1, . . . , tim} where ti1 < ti2 < · · · < tim. A time period is defined as any individual
tij ∈ Ti.
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The example depicted in Figure 4 shows a set of spatial nodes S = {s1, s2, s3, s4, s5, s6}
and temperature measurements taken at each spatial node such that for spatial node s1
the temporal measurements T1 = 21, 21, 25, 25. Spatial relationships are illustrated by lines
connecting the spatial nodes with their topological neighbors. For example, spatial node s4
has a set of spatial neighbors SN4 = {s1, s2, s3, s5, s6}.

s4

s1
s2

s3

s5 s7
s6

a) Spatial Nodes

x

b) Temporal Measurements

y

time

t2 t3 t4t1
s1
s2
s3
s4
s5
s6
s7

21 21 25 25

21 21 23 23

21 21 25 25

18 18 23 23

18 18 20 20

20 2020 20

20 2020 20

Figure 4: A set of spatial nodes a) along with temporal measurements b) for each spatial
node shown in table format.

Based on Tobler’s first law of geography (“Everything is related to everything else, but
nearby things are more related than distant things” [58]), it is assumed that for any spatial
node si ∈ S spatial dependence is defined by an sr with its spatial neighbors SNi such
that the temporal measurements Ti of si are similar in value to the temporal measure-
ments TNi of its spatial neighbors SNi. Similarly, temporal dependence exists between
each tij ∈ Ti and its temporal neighbors (tij−1, tij+1), which represent the temporal mea-
surements taken directly before and after tij . It can then be assumed that measurements
taken at tij−1, tij and tij+1 are generally similar.

4 Approach and algorithms

In this section, an approach to spatiotemporal neighborhoods is presented. The approach
applies the principals discussed in the previous section. An overview of the STN approach
is shown in Figure 5. The approach to spatiotemporal neighborhoods first determines ad-
jacent spatial nodes then applies an agglomerative method to create temporal intervals for
multiple sensors based on spatial relationships between adjacent sensors. Then, a graph-
based method is used to create spatial neighborhoods for each interval. The combination of
the temporal intervals and spatial neighborhoods results in spatiotemporal neighborhoods.
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Determine Adjacent Spatial Nodes

Spatio-Temporal Neighborhoods

Temporal Interval

Grid: 8 Direction Irregular: Delaunay 
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5 4 3 2 2 2 3 2 3 5 5 5

Figure 5: Overview of spatiotemporal neighborhoods (STN) approach.

4.1 Determine adjacent spatial nodes

Finding the spatial pattern first requires the identification of spatial neighbor sets for each
spatial node based on a spatial relationship. The methods presented in this paper use a
topological spatial relationship of adjacency. The first approach applies to irregularly dis-
tributed spatial nodes found in many in-situ sensor datasets where sensors are placed in
the field to collect measurements. In this case a Delaunay triangulation (DT) [9] is used to
create a network of adjacent spatial nodes. A DT creates a triangulation of the spatial nodes
such that the adjacent nodes are connected by non-intersecting edges. Figure 6 shows an
example triangulation where a) represents a set of irregularly spaced spatial nodes and b)
shows the resulting triangulation and the spatial nodes that are adjacent to node s4.

The DT is used to determine the local neighborhood of adjacent spatial nodes for irreg-
ularly spaced spatial nodes. The triangle-based adjacency relationship srtri is defined as
follows:

Definition 1 (Triangulation-based adjacency). Given a set of irregularly distributed spatial
nodes S = {s1, ..., sn} and a Delaunay triangulation (DT) of S where for any si ∈ S the
triangulation-based adjacency srtri comprises of a set of neighboring spatial nodes SNi ⊂ S that
are immediately adjacent to si by a single edge of the DT.

JOSIS, Number 6 (2013), pp. 1–42
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s4

s1
s2

s3

s5 s7
s6

a) b)

s4

s1
s2

s3

s5 s7
s6

Figure 6: Triangulation of irregularly spaced spatial nodes where a) depicts a set of irregu-
larly distributed spatial nodes and b) depicts the triangulation-based adjacency for the set
of spatial nodes.

Certain assumptions are made in creating the DT [48]. First, spatial nodes are assumed
to be non-collinear. Second, at least three points are required to create the triangulation.
Third, any given four nodes are non-co-circular, or in other words, it is assumed that there
are no four nodes on a circle. The DT captures the underlying spatial relationships between
nodes using an adjacency matrix, a structure for accommodating spatial autocorrelation.

The second approach applies to spatial nodes that are distributed as a regular grid, such
as those found in remotely sensed data. In this case, the centroids of the surrounding grid
cells in eight directions are used such that the adjacent spatial nodes to any spatial node dis-
tributed on a grid are the nearest spatial nodes to the north, south, east, and west, northeast,
northwest, southeast, and southwest. This is also known as the Moore neighborhood in the
field of cellular automata and 8-connected pixels in computer graphics. For the purpose of
this paper, the eight direction adjacency srd8 is defined as follows:

Definition 2 (Eight direction adjacency). Given a set of spatial nodes S = {s1, ..., sn} that are
distributed on a regular grid such that each si ∈ S is equidistant in the x and y direction. The eight
direction adjacency srd8 then consists of a set of spatial neighbors SNi ⊂ S that are immediately
adjacent to si in the x, y, or diagonal directions.

s4

s1 s2 s3

s5

s7

s6

a) b)

s8 s9

s4

s1 s2 s3

s5

s7

s6

s8 s9

Figure 7: Eight direction adjacency for spatial nodes on a regular grid where a) depicts a
set of spatial nodes distributed in a grid and b) shows the 8-direction adjacency for spatial
node s5.

An example of an eight direction neighborhood is shown in Figure 7 where a) shows
a set of spatial nodes distributed on a regular grid and b) shows the eight dimension ad-
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jacency for node s5. In the case of irregularly distributed spatial nodes, the triangulation-
based spatial adjacency is used. Alternatively, in the case of spatial nodes distributed on
a grid, the 8 direction spatial adjacency is used. We also use the concept of measurement
distance md in this step because md is used in the next step to create temporal intervals.

4.1.1 Measurement distance

Finding the spatial pattern of a phenomenon measured by a sensor network also requires a
method to evaluate differences between measurements taken at adjacent spatial nodes. In
the motivational example, comparing measurements between adjacent SST sensors allows
the climatologist to find where the spatial boundaries exist in the dataset. The measurement
distance or md accomplishes this goal by calculating the Euclidean distance between mea-
surements in attribute space taken at adjacent spatial nodes. More formally, md is defined
as follows:

Definition 3 (Measurement distance). Given a spatial node si and a set of adjacent spatial nodes
SNi ⊂ S. The measurement distance md(si, SNi) is the normalized Euclidean distance of a set of
temporal measurements Ti and Tn between si and all SNi such that:

md =

√∑n
1 (ti − tn)2

n

where ti ∈ Ti and tn ∈ Tn and n is the number of adjacent spatial nodes to si.
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Figure 8: Illustration of possible methods used to calculate md.

The md is calculated for each spatial node and its adjacent neighbors. In this paper, a
number of different methods are used to calculate md. These methods are generally based
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on different ways to combine a spatial node with its spatial neighbors. Figure 8 gives an
illustration of the various ways in which md can be calculated. The first, and most obvious,
calculates the distance between measurements individually for each adjacent spatial node.
This is referred to as md-edge and can be calculated for both srtri and srd8. Other ways
to calculate md are based on whether the triangulation-based adjacency or eight direction
adjacency is used. In the case of srtri, md can be calculated between a spatial node and
adjacent nodes for each triangle. This is referred to as md-tri. Finally for both the srtri and
srd8, md can be calculated between a spatial node and all adjacent neighbors referred to
as md-adj. The various approaches to calculating md are compared in Section 5. Table 1

t1 t2 t3 t4
md(s1, s2) 0 0 0 0
md(s1, s4) 0 0 0.75 0.75
md(s1, s5) 0.5 0.5 0 0
md(s2, s3) 1.5 1.5 0.25 0.25
md(s2, s4) 0 0 0.75 0.75
md(s3, s4) 1.5 1.5 0.5 0.5
md(s3, s7) 0 0 0.25 0.25
md(s4, s5) 0.5 0.5 0.75 0.75
md(s4, s6) 0.5 0.5 0 0
md(s4, s7) 1.5 1.5 0.75 0.75
md(s5, s6) 0 0 0.75 0.75
md(s5, s6) 1 1 0.75 0.75

Table 1: Table of md values for the example in Figure 4. Values calculated using md-edge.

shows the md values calculated at the md-edge level for the example set of spatial nodes
and temporal measurements depicted in Figure 4.

The algorithm for finding adjacent spatial nodes is shown in Algorithm 1. The algorithm
takes as input a set of spatial nodes S and for each set spatial node si ∈ S a set of temporal
measurements T as well as an argument determining whether the spatial nodes are irreg-
ularly distributed or distributed on a grid. A conditional statement in line 2 determines if
the points are irregularly distributed and if so, a DT is applied shown in line 3 and md is
calculated in lines 4–8. If the points are distributed in a grid, the eight direction adjacency
is applied in lines 6–16 and md is calculated in lines 17–21.

4.2 Delineate agglomerative temporal intervals

In this approach, an agglomerative method is used to create the temporal intervals. The
agglomerative procedure first divides the time series into a set of small equal frequency
temporal intervals then calculates the error for each base interval. Then an agglomerative
method to combine adjacent high and low error base temporal intervals across the entire
set of spatial nodes. A formal definition of a temporal interval is as follows:

Definition 4 (Temporal interval). Given a set of spatial nodes S = {s1, ..., sn} and a set of
adjacent spatial neighbors SNi ⊂ S with a set of temporal measurements Ti = {ti1, . . . , tim}
where ti1 < ti2 < · · · < tim, a set of temporal intervals INT = int1, . . . , intr where each
temporal interval intk = {ti1, . . . , tik} is a division of T based on an sr between measurement
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Algorithm 1 Procedure: Determine adjacent spatial nodes
Require: A set of spatial nodes S, a set of temporal measurements T
Ensure: The set of adjacent spatial nodes for each si ∈ S and

calculate the measurement distance md for each tj ∈ T
1: if irregular points then
2: Delaunay Triangulation(S)
3: for all Sn ∈ S do
4: for all tj ∈ T do
5: //Calculate measurement distance for each set of adjacent spatial nodes
6: Calculate md
7: end for
8: end for
9: else if grid points then

10: for all si ∈ S do
11: //find 8 adjacent neighbor cells
12: pnti = replicate six and siy for the number of si in S
13: //calculate distance using replicated matrix of point i from Sxy of all x and y coords in S
14: dist =

√
(pntix − Sx)2 + (pntiy − Sy)2

15: //get the distance value between adjacent cells in x and y directions
16: distxy = MIN(dist) > 0
17: //get the distance value between adjacent cells in diagonal directions
18: distdiag = MIN(dist) > distxy
19: //assign adjacent cells based on difference value
20: adjd8 = dist == distxy or dist == distdiag
21: end for
22: for all Sn ∈ S do
23: for all tj ∈ T do
24: //Calculate measurement distance for each set of adjacent spatial nodes
25: Calculate md
26: end for
27: end for
28: end if

values at all si and SNi ∈ S and intk ⊂ T where each intk=< intstartk , intendk > and the size
intsizek = (intendk − intstartk ) where for any any two intervals inta, intb, intasize �= intbsize.

The agglomerative method begins with a base set of intervals INT base ={
intbase1 , . . . , intbaseh

}
where the size INT base

size is a user defined parameter which largely
depends on the domain and granularity of the analysis. A heuristic method can be used to
set INT base

size where initially a large INT base
size is used. Then the resulting intervals are evalu-

ated while iteratively decreasing the INT base
size until a satisfactory set of intervals are found.

After the base intervals are created, the next step is to calculate the amount of error within
each base interval. For this purpose we use the sum of squared error (SSE) to identify high
and low error base intervals to be merged. The SSE is calculated based on the measurement
distance values for each set of adjacent spatial nodes. The SSE for the md values for each
spatial node in a given intbase is calculated as follows:

SSE =

n∑

1

(mdi − md)2

JOSIS, Number 6 (2013), pp. 1–42



16 MICHAEL P. MCGUIRE, JANEJA, GANGOPADHYAY

where n is the number of spatial nodes, dist is the Euclidean distance, and md is the mean
of all values within a base interval.

The agglomerative temporal intervals are based on the matrix of SSE values calculated
for each intbase such that intervals with similar SSE values are merged. Figure 9 shows
a conceptual set of intervals for the example spatial nodes and temporal measurements
shown in Figure 4. In this figure the INT base

size is 1 so that the measurements taken at each

-
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Figure 9: Illustration of conceptual temporal interval divisions for SSE values for the spatial
nodes and temporal measurements shown in Figure 4 based on pairs of spatially related
sensors. In this example, there are four base intervals intbase1 through intbase4 . The graph
shows the SSE values for each pair of spatial nodes. Notice that the SSE values change
between intbase2 and intbase3 creating a spatiotemporal interval division with the resulting
spatiotemporal intervals represented by int1 and int2.

time period fall into their own interval. The SSE measurements are shown as a time series
for each set of md values in each intbase. Temporal heterogeneity in this example is evident
between times t2 and t3 and the agglomerative temporal intervals merge base intervals
intbase1 and intbase2 to form temporal interval int1 and base intervals intbase3 and intbase4 to
form temporal interval int2.

After the base intervals are created, the next step is to classify each intbase as having
a high or low error based on the SSE values. In this step a threshold λ is applied for each
intbase for each spatial node. This results in a count ε of intbase with SSE > λ for each spatial
node. Then a threshold mv is applied to ε to determine intervals with a large number of
spatial nodes with SSE > λ. Finally, consecutive high and low SSE intervals are merged
resulting in a set of unequal width temporal intervals. A heuristic approach is used to set
the λ and mv thresholds by initially using the mean SSE for λ and the mean ε for mv. The
sensitivity of both thresholds is tested by progressively adding one standard deviation and
evaluate the resulting intervals.
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The algorithm for delineating temporal intervals is shown in Algorithm 2. The algo-
rithm takes as input a set of spatial nodes S and a set of temporal measurements T for all
si ∈ S, a base interval size INT base

size , an error threshold λ, and a voting function threshold
mv. In lines 1–8 the base temporal intervals are created and the SSE is calculated for each
interval. The voting function is applied in lines 9–21 where ε is calculated for each intbase
in lines 10–14 and the mv threshold and interval merging are applied in lines 15–21.

Algorithm 2 Procedure: Delineate temporal intervals
Require: a set of spatial nodes S, a set of temporal measurements T ,

a base interval size INT base
size , a SSE threshold λ,

and a voting threshold mv
Ensure: temporal intervals for S and T based on intbasesize ,λ, and mv

1: //Create base temporal intervals and calculate SSE
2: Interval Start = 1
3: Interval End = Interval Start + intbasesize

4: while Interval Start < count(tj ∈ T ) do
5: CALCULATE SSE
6: Interval Start = Interval End + 1
7: Interval End = Interval Start + intbasesize

8: end while
9: //Apply Voting Function

10: for all intk ∈ INTbase do
11: ε = 1
12: for all si ∈ S do
13: if SSE > λ then
14: ε = ε+ 1
15: end if
16: end for
17: //Apply mv threshold and merge intervals
18: if ε > mv and εold < mv then
19: Output Interval Start, Interval End
20: else if ε < mv and εold > mv then
21: Output Interval Start, Interval End
22: εold = ε
23: end if
24: end for

4.3 Spatiotemporal neighborhood discovery

Once the temporal intervals are discovered the spatial pattern can be explored further by
finding groupings of similar spatial nodes for a particular temporal interval. The spatial
groupings combined with the temporal interval configuration discussed above is termed
the spatiotemporal neighborhood and represents a set of divisions in time and space where
boundaries occur in a spatiotemporal dataset. With this in mind, the spatiotemporal neigh-
borhoods allow the climatologist to first identify an event, then analyze the spatial pattern
of SST before and after the event. More formally, a spatiotemporal neighborhood is defined
as follows:
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Definition 5 (Spatiotemporal neighborhood). Given a set of spatial nodes S = {s1, ..., sn},
where each si ∈ S has a set of adjacent spatial neighbors SNi ⊂ S as well as a set of temporal in-
tervals INT = {int1, . . . , intr} where each temporal interval intk = {ti1, . . . , tik} the spatiotem-
poral neighborhood STN for any intk ∈ INT is a connected set of graph components represented
by an adjacency matrix C of adjacent spatial nodes where for any edge in C, md < δ where δ is a
threshold.

In this definition, a threshold δ is introduced to remove edges that connect spatial nodes
that do not have substantially similar temporal measurements. The δ threshold is generally
a heuristic and depends largely on the spatial configuration of the sensor network as well
as the nature of the phenomenon being measured.
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Figure 10: Spatial neighborhoods and temporal neighborhoods combined to form spa-
tiotemporal neighborhoods for spatial nodes s1 ,s2, s3 ,s4, s5, s6, and s7 and time periods t1
, t2 ,t3, and t4.

Figure 10 shows the spatiotemporal neighborhood configuration for the example spatial
nodes and temporal measurements shown in Figure 4 where the spatiotemporal neighbor-
hoods are depicted as the combination of the temporal intervals and spatial neighborhoods.
As would be expected, the spatial configuration of the spatial neighborhoods changes for
int1 and int2.

The spatiotemporal neighborhoods can be explored at a more local level by analyzing
the connectivity strength based on the number of edges connecting each spatial node with
its spatiotemporal neighborhood. The connectivity strength of a spatial node for any given
temporal interval can be measured by counting the number of edges that connect each
spatial node in the adjacency matrix C. The connectivity strength is defined as follows:

Definition 6 (Connectivity strength). Given a set of spatiotemporal neighborhoods STN ⊂ S
represented by a set of connected spatial nodes during a particular temporal interval intk, the con-
nectivity strength is defined as the number of edges connecting the spatial node to its spatiotemporal
neighborhood. Any spatial node connected by at least 3 edges is considered to be strongly connected;
any node connected by 1 or 2 edges is considered to be weakly connected; and any spatial node that
is otherwise is considered to be disconnected.
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For the example shown in Figure 10 all the spatial nodes are weakly connected because
no spatial node is connected by at least 3 edges. Also, there are no completely disconnected
nodes. This suggests that a high level of spatial heterogeneity exists for both intervals in
the spatial process represented in this figure.

The algorithm for discovering spatiotemporal neighborhoods is presented in Algorithm
3. The algorithm takes as input a set of spatial nodes S and for each si ∈ S a set of temporal
measurements T and a set of adjacent spatial nodes SNi, a set of temporal intervals INT ,
and a measurement distance threshold δ. The md is calculated in lines 3–5. The λ threshold
is applied in lines 6–8. The resulting set of spatial neighbors are added to the adjacency
matrix C in lines 9–11.

Algorithm 3 Procedure: Discover spatiotemporal neighborhoods
Require: a set of spatial nodesS, a set of temporal

measurements T , a set of adjacent spatial nodes SN , a set of
temporal intervals INT , a measurement distance threshold δ

Ensure: Spatiotemporal neighborhoods for S and T for each
interval INT based on threshold δ

1: //discover spatiotemporal neighborhoods
2: for all intk ∈ INT do
3: for all SN ∈ S do
4: //calculate measurement distance for each SN
5: Calculate md
6: end for
7: //incrementally remove neighbor sets based on δ
8: while MAX(adjmd) > δ do
9: SPN = Sn < max(adjmd)

10: end while//create adjacency matrix C
11: for all si ∈ SN do
12: Add to C
13: end for
14: end for

4.3.1 Order Invariance of Approach

The STN algorithm is order invariant in that it will result in the same spatial neighborhoods
regardless of the starting spatial node. The following offers a formal proof of this property:

Theorem 1. For a set of spatial nodes S, Algorithm 3 will result in the same set of spatial neigh-
borhoods regardless of the starting spatial node.

Proof. The property of order invariance is proven by contradiction. Assume to the con-
trary that given a set of spatial nodes S and two spatial nodes sp and sq ∈ S that produce
two spatial graphs sgp and sgq each with a set of edges and nodes 〈ep, np〉 and 〈eq, nq〉
respectively that result in two sets of spatial neighborhoods SPNp = {spnp

1, . . . , spn
p
l }

and SPNq = {spnq
1, . . . , spn

q
l } derived from each graph. Because both the 8 direction and

triangulation adjacencies produce a connected graph where every spatial node s ∈ S is
connected to every other spatial node s ∈ S via a path p ⊂ e, the resulting set of edges
and nodes 〈ep, np〉 = 〈eq, nq〉 and therefore, sgp = sgq and SPNp = SPNq contradicting our
assumption.
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4.4 Complexity analysis

When using md-tri or md-adj the complexity of algorithm 1 is O(NM) where N is the num-
ber of spatial nodes and M is the number of temporal measurements. When using md-edge
the complexity of Algorithm 1 is O(EM) where E is the number of edges in the Delaunay
triangulation or 8 dimension adjacency and M is the number of temporal measurements.
The complexity of Algorithm 2 is O(2N/I) where N represents the number of tj ∈ T and
I represents the number of base intervals. The complexity of Algorithm 3 is O(2NI) where
I is the number of temporal intervals and N is the number of spatial nodes. Therefore, the
overall complexity of the approach is O(NM)+O(2N/I)+O(2NI) = O(5NM) = O(NM).

4.5 Validation metrics

A number of validation measures have been selected to ensure the efficacy of our approach
and to compare it to other approaches. This includes the between interval dissimilarity for
the temporal intervals, Moran’s I for spatiotemporal neighbors, and significance testing of
our results using Monte Carlo simulation.

4.5.1 Temporal intervals (between interval dissimilarity)

The objective of the temporal interval approach is to divide the time series into discrete
intervals that are not similar to their neighboring intervals. Therefore, a method has been
devised to measure the dissimilarity between adjacent intervals. First, the interval dissimi-
larity is measured across a set of consecutive temporal intervals by calculating the moving
difference between each temporal interval. The moving difference is defined as follows:

Definition 7 (Moving difference). Given a set of temporal intervals INT = {int1, ..., intn}
where each interval has a set of temporal values Ti = {ti1, . . . , tin} the moving difference mvd is
an n − 1 vector of the absolute difference between the mean of the values for each pair of intervals
such that: mvd =

{|μint1 − μint2 |, ..., |μintn−1 − μintn |}.

Then, the between interval dissimilarity is calculated by taking the sum of mvd divided
by n. The between interval dissimilarity bid is defined as follows:

Definition 8 (Between interval dissimilarity). Given a set of temporal intervals INT =
{int1, ..., intn} the between interval dissimilarity bid is the average mvd between the interval

means such that bid =
∑n−1

i |µinti−µinti+1 |
n where n is the number of intervals.

The bid is then used to evaluate the global dissimilarity across a set of temporal inter-
vals. These validation metrics are used to compare the performance of our algorithm to a
number of other approaches.

4.5.2 Spatiotemporal neighborhoods (Moran’s I)

The purpose of the spatiotemporal neighborhood approach is to find the spatial pattern of
a phenomena measured at a set of spatial nodes. This approach is based on the assump-
tion that there exists spatial dependence between some or all of the spatial nodes. Two
spatial nodes sp and sq are considered to be spatially dependent when the variance of
temporal measurements tp and tq is best explained by a spatial relationship sr. Most often

www.josis.org

http://www.josis.org


MINING SENSOR DATASETS WITH SPATIOTEMPORAL NEIGHBORHOODS 21

there exist distinct regions of spatially dependent nodes. For example, given a set of spatial
nodes S and two subsets of spatial nodes represented by spatial neighborhoods STN1 and
STN2 ⊂ S the pattern is heterogeneous if the spatial dependence of the nodes in STN1 is
distinct from the spatial dependence of the nodes in STN2. This heterogeneous pattern can
be caused by regions in the underlying geographical process. For example, in the SST data
there are regions of warm and cool water in the Pacific Ocean that form a heterogeneous
pattern.

Spatial autocorrelation can be used to measure the degree of spatial dependence of a set
of spatial nodes. There are three types of spatial autocorrelation; positive where neighbor-
ing values are similar, negative where neighboring values are dissimilar, and zero where
there is no spatial dependence whatsoever. The Moran’s I statistic [41] and the Geary’s C
statistic [14] are the most commonly used measures of spatial autocorrelation. Both of these
measures are based on a spatial contiguity matrix also known as a spatial weights matrix. It
is a well known fact that measures of spatial autocorrelation are heavily dependent on the
neighborhoods defined by the spatial contiguity matrix [8]. Therefore, we use a measure
of spatial autocorrelation to test the quality of our spatiotemporal neighborhood approach
as represented by the contiguity matrix C. The assumption that we make in choosing this
method is that higher Moran’s I values signify that a neighborhood approach has done a
better job at determining the appropriate neighborhood relationships as represented by a
contiguity matrix. Spatial autocorrelation is used because it takes into account the spatial
structure of a region as well as the temporal measurements of the spatial nodes. Specifically,
the I statistic was chosen because the variance of I is less affected by the distribution of the
sample data [7]. The I statistic essentially measures the covariance between the temporal
measurements at two spatial nodes [17] and is formally defined as follows:

Definition 9 (I statistic). Given a set of spatial nodes S and their attributes A and a contiguity
matrix C defined by a set of spatial neighborhoods SPN = {spn1, ..., spnk} the I statistic is defined
as follows: I = N∑

i

∑
j Cij

∑
i

∑
j Cij(ti−t̄)(tj−t̄)
∑

i(ti−t̄)2 where t̄ is the mean of the attributes for all spatial
nodes. If I = −1 then there exists negative spatial autocorrelation, if I = 0 then there exists no
spatial autocorrelation, and if I = 1 then there exists a positive spatial autocorrelation.

Therefore, if the I statistic is close to 1 the spatiotemporal neighborhood method has
performed well in grouping sets of similar spatial nodes and has found the pattern of spa-
tial dependence in the dataset. The value of the I statistic for a given interval will vary
based on the amount of spatial correlation present in the dataset. The I statistic is a logical
For validation purposes, the goal is to create a contiguity matrix that maximizes the value
of I .

4.6 Significance testing

The significance of the STN approach can be tested using Monte Carlo simulations [39].
Monte Carlo simulation has many uses including risk analysis and the simulation of math-
ematical and physical systems to name a few. For the significance testing we adapt an ap-
proach to Monte Carlo simulation for significance testing used in [22] where the goal of the
test is to determine that the spatial neighborhoods, temporal intervals, and the spatiotem-
poral neighborhoods identified in our approach are significant and not occurring randomly.
This approach is used to find the significance of the results by finding the probability that
the result could occur randomly. This probability value or “p-value” is calculated using
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Monte Carlo simulation. In this case the data is randomized and the algorithm is run and
validation metrics are calculated on the randomized dataset for a large number of simu-
lations. For each component the null hypothesis H0 states that the results are random and
the alternative hypothesis HA states that the resulting temporal intervals validated by the
between interval dissimilarity bidO and spatiotemporal neighborhoods validated by the I
statistic I0 are not random.

In every case described above the actual measures IO and bidO are calculated and Monte
Carlo simulation measures Ir or bidr are calculated for each iteration where the subscript
r represents the iteration. The measures for all simulations are sorted in descending order.
Then, where the measures IO and bidO fall in this ranking, determines the p-value by cal-
culating the ranking divided by the number of simulations. In all cases a p-value of < 0.05
(5%) is significant in that it is within the 95% confidence interval and therefore, the null
hypothesis H0 is rejected.

5 Experimental results

In this section the results of experiments are presented where the spatiotemporal neigh-
borhood approach is tested on real-world datasets including SST data for the equatorial
Pacific Ocean and precipitation data for a watershed in Baltimore, Maryland, USA. The ap-
proaches were qualitatively validated empirically by providing ground-truth validations
that show how finding the spatiotemporal neighborhoods in a dataset can lead to the dis-
covery of interesting events. The approaches were also quantitatively compared with other
approaches using the Moran’s I and bid validation metrics along with the results of the
significance testing using Monte Carlo simulation. The final part of this section discusses
experiments to test the scalability of the approach.

5.1 Datasets

Experiments were performed on two datasets. The following provides a detailed descrip-
tion of the datasets.

SST data SST data was retrieved from the TAO Project data delivery website [46]. High
resolution data (10 minute average) was downloaded for the entire year of 2006. This con-
sisted of data from 55 sensors, 13 of which were missing an extensive number of time
periods, and 42 had a full record for the year and had no-data values where measurements
were missing. Therefore, 42 sensors that had a full record were used in the experiment. The
dataset consisted of 52,563 temporal measurements for each spatial node resulting in a total
of 2,207,646 data points.

Precipitation data Precipitation data was retrieved from the Hydro-NEXRAD system
[31]. The data was in grid format where each grid cell maps directly to a NEXRAD cell.
For the purpose of these experiments, the center of each grid cell is treated as an individual
sensor.

The data was extracted for the Gwynns Falls Watershed which lies to the west of Bal-
timore, Maryland, USA. The dataset consisted of 198 grid cells and 33,492 temporal mea-
surements for each spatial node resulting in a total of 6,631,416 data points.
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5.2 Setting thresholds

The spatiotemporal neighborhoods require a number of thresholds to be set at initializa-
tion. For this experiment we used a number of heuristic based approaches to set the thresh-
olds. The temporal intervals require a base interval size INT base

size . For this threshold a large
INT base

size is first chosen and iteratively decreased until a satisfactory discretization is found.
The λ and mv thresholds are initialized with the mean SSE and mean ε respectively. The
sensitivity of both thresholds is tested by progressively adding one standard deviation. The
resulting intervals are visually inspected at each step until a satisfactory set of intervals is
found. A similar approach is taken for the δ threshold applied to md in the spatiotemporal
neighborhood step where the sensitivity of the threshold is tested by adding one standard
deviation to the mean md for all spatial nodes. The results are then visually inspected at
each step until satisfactory neighborhoods are found.

5.3 Temporal intervals

In this section the results for the discovery of temporal intervals are presented. This section
begins with a presentation of the empirical results for the SST and precipitation data. Then
the temporal interval approach with a other approaches including piecewise linear repre-
sentation and equal width temporal intervals followed by the results of the significance
testing using Monte Carlo simulations.

5.3.1 Knowledge discovery in temporal intervals

Temporal intervals were found for both the SST data and the precipitation data.

Validation The algorithm was able to delineate unequal width intervals of stable and
unstable periods of SST across the sensor array. The intervals become much more frequent
in March of 2006. This would signify an area of interest in the spatiotemporal dataset to the
climatologist and indicates a shift in the data. This shift is verified in Figure 11.

By calculating the SSE for each interval the location where the most change occurs can
be identified. The interval with the second highest SSE value is represented in Figure 11
a). This interval, which occurred in March of 2006, coincides with a shift in the Oceanic
Niño Index (ONI), an index used to classify El Niño and La Niña periods, from positive
to negative according to the NOAA National Weather Service El Niño Cold and Warm
Episodes by Season website [45]. This result shows that the algorithm was successful in
identifying the 2006 El Niño event [43].

Validation Once again, the algorithm was effective in delineating unequal width inter-
vals in the precipitation data. The interval divisions occur where there are large increases
or decreases in precipitation across the area. The intervals become more segmented during
the summer months. This is due to increased precipitation from summer thunderstorms.

Meaningful intervals that identify interesting events in the dataset were also found. The
interval with the largest SSE is shown in Figure 12 a). In this case, the temporal interval ap-
proach identified the onset of a significant rain storm that lasted for five days and dropped
almost 6 inches (15 cm) of rain on the Baltimore region [53].
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Figure 11: Temporal interval with greatest SSE for SST data where a) shows the location of
the interval division.
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Figure 12: Temporal Interval with greatest SSE for precipitation data where a) shows the
location of the interval division.

5.3.2 Comparison of temporal intervals to other approaches

The quality of the temporal intervals was compared using the between interval dissimilar-
ity measure with equal width temporal intervals and piecewise linear representation. Time
series data is often segmented using equally sized bins. We compare our method with an
equal width binning of the time series to prove the need for unequal-width intervals to
discretize spatiotemporal data. Equal width temporal intervals were created by dividing
the time series into equally sized bins. We also compare our approach with a time series
segmentation method that results in unequally sized bins. Piecewise linear approximation
is a commonly used method for representing a complex time series in a given number of
segments where the time series is approximated using a given number of linear segments.
The resulting segments are then used to represent a high-level discretization of a time se-
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ries that can be used for the purposes of data mining. In this experiment the bottom up
segmentation algorithm found in [28] was used. The piecewise linear approximation al-
gorithm was applied to the mean of the time series for both datasets. Since the temporal
intervals are based on md between two spatial nodes, the different methods to calculate md,
shown in Figure 8, were also compared. One fundamental difference between the agglom-
erative method and the equal width and piecewise linear representation methods is that the
agglomerative method requires a base interval size while the others require the number of
intervals. Because of this, the equal width and piecewise linear approaches were supplied
with the number of intervals found by the temporal interval approach.
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Figure 13: Comparison of bid for SST data.

The comparison results for the SST data are shown in Figure 13. The intervals created
md-tri distance calculation slightly outperformed the md-edge and md-adj methods. Regard-
less of the way that the md is calculated, the intervals created by STN outperformed the
intervals generated by piecewise linear approximation and equal-width methods. How-
ever, it must be noted that the goal of piecewise linear approximation is to approximate a
time series with a given number of segments and that because of the variance present in
the SST data, it was not an ideal approach to use to create temporal intervals.

The comparison results for the precipitation data are shown in Figure 14. The intervals
created using the md-adj distance calculation slightly outperformed the md-edge method.
The piecewise linear approximation outperformed STN for the precipitation data. This was
because presence of precipitation either exists or does not exist and therefore, the mean
across all sensors was adequate for generating temporal intervals using piecewise linear
approximation. Finally, the equal width intervals had the lowest bid value.

5.3.3 Significance testing of temporal intervals

The significance of the temporal intervals was tested using the Monte Carlo simulation
method shown in Section 4.6. Monte Carlo simulations were run with 10,000 iterations
where the temporal measurements were kept the same for each spatial node and the in-
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Figure 14: Comparison of bid for precipitation data.

terval divisions were placed randomly and the bid was calculated for each iteration. The
Monte Carlo simulations were run for both the SST data and precipitation data. The signif-
icance was tested for the md-edge, md-adj, md-tri, piecewise linear representation, and equal
width approaches. The results for the significance testing are shown in Table 2.

SST Data Precipitation Data
md-edge 0.001 0.001
md-tri 0.001 N/A
md-adj 0.001 0.001
Piecewise Linear Approximation 0.06 0.001
Equal Width 0.8 0.02

Table 2: Significance testing for temporal intervals.

The temporal intervals for all md types were significant beyond the 99% confidence
interval with p-values of 0.001. The piecewise linear approximation approach was not sig-
nificant for the SST data with a p-value of 0.06 and was significant for the precipitation data
with a p-value of 0.001. The equal-width intervals were not significant for the SST data with
a p-value of 0.8 and were significant for the precipitation data beyond the 95% confidence
interval with a p-value of 0.02. Because of this, our approach outperformed the alternative
methods in that we were able to find significant intervals for both datasets.
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5.4 Spatiotemporal neighborhoods

In this section the results for spatiotemporal neighborhood discovery are presented for the
SST and precipitation datasets. The empirical results for the experiments are presented.
Then the STN approach is compared to a method that uses a fully connected graph [36].
Finally the significance of the STN approach is tested across the set of temporal intervals.

5.4.1 Knowledge discovery in spatiotemporal neighborhoods

For each dataset an example of the spatiotemporal neighborhoods were mapped for two
adjacent temporal intervals. Then the connectivity of the spatiotemporal neighborhoods
was assessed for a given time period. For this purpose the number of connections was
counted for each spatial node across an entire year of SST data. Then k-means clustering
was used to identify three clusters. In this classification stable nodes were highly connected
across all intervals; boundary nodes had a significant number of intervals where they are
weakly connected; and unstable nodes were weakly connected or completely disconnected
across a large number of intervals.

Spatiotemporal neighborhoods for the SST data are shown in Figure 15. In this figure
groups of connected spatial nodes are labeled with the same number. Weakly connected
nodes are shown with squares and disconnected nodes are shown with circles. The spatial
nodes are displayed with a satellite of SST as the background. The time series for each
spatial node along with the interval division are shown below the depiction of the spatial
nodes.
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Figure 15: Spatiotemporal neighborhoods for two consecutive temporal intervals of SST
data. The node shown in a) and b) is disconnected for both intervals. The node shown in c)
becomes completely disconnected in interval 2. A moving trend is depicted in d) and e).
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Validation The algorithm was able to find the pattern of SST as validated by the satellite
imagery. Figure 15 a) depicts a completely disconnected spatial node. This is due to cold
water that typically travels west along the equator. This spatial node is disconnected in 15
b). The cold water continues to travel westward in 15 c), where a node that was previously
weakly connected in interval 1 is disconnected in interval 2. Figure 15 d) indicates another
location where a moving trend is detected. In this scenario, a new neighborhood is created
in Figure 15 e) and spreads north and eastward.

Figure 16: Pattern of stability for one year of SST data. a) and e) disconnected nodes; b)
boundary nodes; c) and d) instability caused by cold water traveling west along the equa-
tor; e) instability caused by warm water coming from the southwest.

The results of the connectivity analysis are shown in 16. It is evident that in 16 a) there
are four nodes that are consistently disconnected and in 16 b) there are four nodes that are
consistently boundary nodes. The two boundary nodes shown in 16 c) and d) are caused
by the cold water traveling west along the equator. Finally, the boundary nodes shown in
16 e) reflect warm water coming from the south west.

The connectivity strength pattern shown in Figure 16 naturally leads to the question of
whether there is a different pattern of connectivity strength in high and low El Niño Index
periods. To explore this further, two time periods were selected where the El Niño Index
was low (12/01/2005–02/28/2006) and where the El Niño Index was high (10/01/2002–
12/31/2002). Figure 5.4.1 shows the connectivity strength for each period. The low El Niño
period is shown in 5.4.1 a) and the high El Niño period is shown in 5.4.1 b). Here we
see a striking difference between the connectivity strength for each time period where for
the low El Niño period the sensors are generally more connected in that there are less
unstable nodes and in the high El Niño period there are a large number of unstable nodes
that are clustered in the southeast quadrant of the sensor network where there exists a
more variable spatial pattern. The sensors in the western Pacific Ocean tend to be much
more stable. This is largely because during an El Niño event, warm water comes from the
southwest Pacific Ocean.

Spatiotemporal neighborhoods were also discovered for the precipitation data. Figure
18 shows the spatiotemporal neighborhoods for two consecutive temporal intervals. The
time series for each spatial node along with the interval division is shown in the bottom of
the figure.
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(a) Low El Niño Index period 12/01/2005–02/28/2006

(b) High El Niño Index period 10/01/2002–12/31/2002

Figure 17: Connectivity strength for high and low El Niño periods.

Validation The algorithm was effective in finding spatiotemporal neighborhoods in the
precipitation data. The interval shown in Figure 18 characterizes a heavy precipitation
event while in Figure 18-2 there is light precipitation. Figure 18 a) shows a completely
disconnected node. Figure 18 b) shows a large neighborhood of strongly connected node.
Figure 18 c) shows three areas where there are weakly connected nodes. The pattern shown
here can be used to characterize precipitation for this particular temporal interval. Figures
18 a) and c) represent areas of highly variable precipitation where there exists a large gra-
dient suggesting a locally heavy downpour. Figure 18 b) represents an area with low vari-
ability which indicates a homogeneous region of precipitation. In interval 2 in Figure 18,
d) and f) show areas with strong connectivity while Figure 18 e) and g) show areas with
weak connectivity. For this particular interval, these disconnected areas represent locally
heavy precipitation cells caused by local thunderstorms. This result can be used to char-
acterize this precipitation event represented by interval 1: the upper part of the watershed
has a highly variable pattern of precipitation and the lower part of the watershed is largely
homogeneous.

Figure 19 shows the results of the connectivity analysis for the entire year of precipita-
tion data. It is evident that there is some spatial instability caused by the spatial configu-
ration of the dataset in terms of unstable nodes occurring along the outside boundary. A
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Figure 18: Spatiotemporal neighborhoods for two consecutive temporal intervals of pre-
cipitation data. a) a completely disconnected node. b) and f) strongly connected nodes; c),
d), and g) areas with weakly connected nodes. The thunder storm characterized by these
intervals produced highly variable precipitation in the upper portion of the watershed and
largely homogeneous precipitation in the lower part of the watershed.

pattern of stability can be seen within the interior nodes of the dataset. Figure 19 a) and c)
show two unstable interior nodes suggesting that the precipitation is highly variable over
this time period for these areas in the watershed. Figure 19 b) and d) show lines of bound-
ary nodes. The pattern of the boundary nodes seems to follow the streams shown on the
map. This shows a possible physiographic influence on precipitation. From a knowledge
discovery standpoint, this analysis could generate a hypothesis for the meteorologist to
test. Furthermore, given multiple years of NEXRAD data, the connectivity strength could
be used to compare the spatiotemporal pattern of precipitation between years.

5.4.2 Comparison of spatiotemporal neighborhoods to other approaches

This section presents a comparison of the methods to calculate md, a graph-based spatial
neighborhood approach which uses a fully connected graph [36] and DBSCAN [11]. For the
DBSCAN algorithm, we ran DBSCAN clustering as the neighborhood generation approach
for each interval generated by the md-edge approach. The approaches were tested on both
the SST data and precipitation data and the Moran’s I statistic was calculated based on the
resulting contiguity matrix for each approach across all intervals. The idea here is that the
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Figure 19: Pattern of stability for one year of precipitation data: a) and c) unstable nodes; b)
and d) boundary nodes.

neighborhood configuration with the highest Moran’s I value is the best representation of
the spatial pattern for each temporal interval.
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Figure 20: Comparison of Moran’s I (SST data).
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The results for the SST data are shown in Figure 20. Here the pattern of the Moran’s
I statistic is variable and generally decreases across the temporal intervals. Based on this
result, the md-tri outperforms md-edge, md-adj, DBSCAN, and the graph-based neighbor-
hoods, indicated by its ability to maximize the Moran’s I value for a large number of inter-
vals. Also, it must be noted that the contiguity matrix generated by md-adj was ineffective
in estimating the pattern of spatial dependence indicated by low Moran’s I values. Fur-
thermore, DBSCAN, performs well in some intervals but generally does not outperform
the md-edge and md-tri approaches.
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Figure 21: Comparison of Moran’s I (precipitation data).

The results for the precipitation data are shown in Figure 21. Once again, the Moran’s
I statistic is highly variable across all approaches. The md-edge outperformed the md-adj,
graph-based, and DBSCAN neighborhoods based on the fact that the correlation matrix
generated by md-edge was able to achieve the highest Moran’s I values. However, it must
be noted that for one particular interval, the md-edge had a significantly lower Moran’s
I value. The contiguity matrix generated by the graph-based neighborhoods were much
less effective in finding the pattern of spatial dependence based on the Moran’s I statistic.
The contiguity matrix generated by the DBSCAN algorithm, while not able to find high
Moran’s I values, generally had less variability in its ability to capture the pattern of spatial
dependence.

5.5 Significance testing of spatiotemporal neighborhoods

The significance of the spatiotemporal neighborhood approach was tested by performing
Monte Carlo simulations as described in Section 4.6. For this analysis the locations of the
spatial nodes were kept constant and a random shuffle was performed on the tempo-
ral measurements for each time step. The md-edge approach was used to test the signifi-
cance since it outperformed the other approaches. The results of the significance testing are
shown in Figure 22.

In this example, for both the SST and precipitation data, the spatiotemporal neighbor-
hoods were largely significant with p-values below the 95% confidence level. More specif-
ically, for the SST data, 95% of the intervals were significant below the 99% confidence
level and 99% of the intervals were significant below the 95% confidence level. For the
precipitation data, 55% of the intervals were below the 99% confidence level and 73% were
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Figure 22: Significance of spatiotemporal neighborhoods.

below the 95% confidence level. Intervals were found to be insignificant where the result-
ing spatiotemporal neighborhoods have low spatial autocorrelation in general. The results
of the significance testing are interesting in that not only are the spatiotemporal neigh-
borhoods significant, the insignificant intervals suggest places in the data where further
analysis should be focused.

5.6 Time and memory complexity

Experiments were also performed to test the scalability of the approach in terms of time
and memory efficiency. The experiments were performed on a workstation running the
Microsoft Windows XP 64-bit operating system with two 2.8 GHz Intel Quad Core Proces-
sors and 8 GB of RAM. The algorithms were run in Matlab R2009a. Measurements were
taken to record the execution time for the algorithm and the amount of memory required.
Because the operating system has the ability to reuse memory, the average of 5 runs of the
program was used. A simulated random dataset was used and the algorithm was run on
a range of the number of spatial nodes as well as the number of measurements in the time
series. The experiments included both STN-G for points distributed on a grid and STN-I
for irregularly spaced points.

The time complexity results for the number of temporal measurements is shown in
Figure 23 a). The experiment was run using 25 spatial nodes and 100, 500, 1000, 10,000,
and 50,000 temporal measurements. The algorithm ran in polynomial time in both cases
with STN-I slightly outperforming STN-G. This difference is caused by the triangulation
adjacency being more efficient than 8 neighbor adjacency.

The effect of increasing the number of temporal measurements on memory usage was
also tested. The results to this analysis are shown in Figure 23 b). In this case both algo-
rithms are linear with the amount of memory increasing as the number of temporal mea-
surements increases. However, STN-I uses less memory than STN-G as the number of tem-
poral measurements becomes significantly larger.

The time complexity results for the number of spatial nodes is shown in Figure 23 c).
For this experiment the number of temporal measurements were held constant at 1000. For
STN-G 25, 100, 400, and 900 spatial nodes were used. For STN-I 10, 50, 100, 500, and 1000
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Figure 23: Time and memory complexity of approach.
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spatial nodes were used. The algorithm ran in polynomial time for this experiment with
STN-I performing slightly better than STN-G for small numbers of spatial nodes. However,
the time complexity converges at approximately 900 spatial nodes.

The memory complexity results are shown in Figure 23 d). For both algorithms the
amount of memory used increases linearly with the number of spatial nodes. In particular,
STN-G uses less memory as compared to STN-I. This is due to the amount of memory
used to store the Delaunay triangulation and adjacency matrix for STN-I versus only the
adjacency matrix for STN-G.

6 Discussion of results

The approach presented in this paper was able to find significant and meaningful unequal
width temporal intervals and spatiotemporal neighborhoods. Our results lead to interest-
ing observations about both the SST and precipitation data. For example the approach un-
covered an interval with significant anomalies in the SST data, already identified by [44].
Furthermore, we were able to pinpoint an interval with significant precipitation. We were
also able to find interesting spatiotemporal patterns using the connectivity strength, uncov-
ering striking differences in the pattern of El Niño and La Niña conditions in the SST data.
Connectivity strength was also effective in characterizing highly dynamic regions in the
precipitation data. The method presented in this paper also performed well as compared
to a number of other approaches. For the temporal intervals, our approach seems to be
more suited to the SST data: the piecewise linear approximation of the precipitation data
outperformed our method. This suggests that STN is more appropriate for measurements
that have gradual fluctuations as opposed to measurements that fluctuate rapidly, such as
the precipitation data. Significance testing further supports this suggestion. The piecewise
linear approximation and equal width intervals were not significant, with p values above
the 95% confidence threshold. For the spatiotemporal intervals the STN approach outper-
formed the other approaches in its ability to approximate the contiguity matrix with the
highest Moran’s I values. Again, the STN method was better suited for the SST data in that
it identified more significant spatiotemporal intervals. It must be noted that the Moran’s
I values for the precipitation data were more variable than the SST data and there were
more instances where the neighborhoods for the precipitation data were not significant.
However, such variation exists across all approaches. In turn, this suggests that forming
neighborhoods in the precipitation data for the analysis of spatial autocorrelation is a more
challenging than in the SST data.

There exist a number of limitations to the approaches presented in this paper. First, the
method that is used to create the temporal intervals is based on the amount of error present
in a given set of base intervals. The base intervals are then merged according to their level
of error. High error intervals are merged with other high error intervals and the same is the
case for low error intervals. The approach is therefore well-suited to datasets that remain
relatively constant within the spatiotemporal domain, such as environmental sensors and
remotely sensed data. It is therefore unknown how the approach would perform in situa-
tions where there are large differences across the spatiotemporal domain. Furthermore, the
approach does not capture periodicity such as daily, monthly, and seasonal fluctuations in
a time series or large scale trends in the data.
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Another limitation exists in that the algorithms require parameterization using a num-
ber of thresholds. The most important threshold is δ. In the spatiotemporal neighborhoods,
lower values of δ result in a larger number of edges being cut from the graph and therefore
a more disconnected neighborhood configuration. This is illustrated in Figure 24 a), which
shows increasing values of δ based on the quantile of all md values for all intervals. Figure
24 a), a quantile of 0.5 represents the median of the md values; a higher quantile value
represents a higher δ threshold; and a lower quantile value represents a lower δ thresh-
old. Figure 24 a) shows that as the δ threshold increases, the number of neighborhoods
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Figure 24: Effect of δ threshold on the average number of neighborhoods and average
Moran’s I value for the SST data.

decrease. At a quantile of 0.6, only one neighborhood is identified, an unacceptable result.
Alternatively, when the δ threshold is at its lowest point, 31 neighborhoods are identified.
This is also unacceptable because there will be a large number of sensors that form their
own neighborhoods. An iterative approach is needed to choose the δ threshold, with the
objective of ensuring that each neighborhood has a small number of sensors at the same
time as adequately representing the spatial configuration of the data. The ideal δ threshold
is usually dependent on the domain and the granularity required for the analysis.

7 Conclusion

This paper presents a novel method to identify spatiotemporal intervals and neighbor-
hoods. The approach first discovers temporal intervals based on spatial relationships; and
second discovers spatial neighborhoods within the temporal intervals. The approach is
novel in that it is the first approach to combine spatial neighborhoods with temporal in-
tervals to create temporal intervals and neighborhoods. The methods were validated using
empirical ground truth evidence; measures such as Moran’s I and between interval dissim-
ilarity; as well as significance testing using Monte Carlo simulation. The methods were also
compared with alternative methods. The results indicate that our spatial neighborhood ap-
proach outperforms a grid-based approach. The temporal intervals also outperformed all
other methods where there is a high level of noise present in the data.
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There are a number of areas where this work can be extended. The temporal intervals
could be extended to include more properties of the time series, such as noise and period-
icity and long term trends. A logical extension to this approach would be to include func-
tionality to detect return frequencies and trends in the base intervals and to use this infor-
mation to detect periodic and long-term trends in the data. For such an extension, a multi-
resolution approach might be more suitable [37]. Another approach that has been recently
proposed uses a combination of temporal and spatial autocorrelation to find spatiotem-
poral outliers [63]. This approach shows promising results in outlier and event detection.
A similar approach using spatiotemporal autocorrelation could be used to find periodic
and long-term trends in the data. Another direction for extension of this work would be
to include a method to differentiate between interval divisions caused by malfunctioning
sensors versus those caused by naturally occurring events. Lastly, the method presented in
this paper is based on the analysis of a single attribute over space and time. This approach
could be extended to deal with multiple attributes in a spatiotemporal dataset simply by
adapting the md calculation, based on the Euclidean distance, to multiple attributes.

Acknowledgments

This work has been funded in part by the United States National Oceanic and Atmospheric
Administration Grants NA06OAR4310243, NA07OAR4170518, and NA10OAR310220. The
statements, findings, conclusions, and recommendations are those of the authors and do
not necessarily reflect the views of the National Oceanic and Atmospheric Administration
or the Department of Commerce. This work was also partially supported by the FDRC
grant of Towson University.

References
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