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This thesis presents a novel clustering technique known as adaptive double self- 

organizing map (ADSOM) that addresses the issue of identifying the "correct" number of 

clusters. ADSOM has a flexible topology and performs clustering and cluster 

visualization simultaneously, thereby requiring no a priori knowledge about the number 

of clusters. ADSOM combines features of the popular self-organizing map with two- 

dimensional position vectors, which serve as a visualization tool to decide the number of 

clusters. It updates its free parameters during training and it allows convergence of its 

position vectors to a fairly consistent number of clusters provided that its initial number 

of nodes is greater than the expected number of clusters. A novel index is introduced 

based on hierarchical clustering of the final locations of position vectors. The index 

allows automated detection of the number of clusters, thereby reducing human error that 

could be incurred from counting clusters visually. The reliance of ADSOM in identifjmg 

the number of clusters is proven by applying it to publicly available gene expression data 

from multiple biological systems such as yeast, human, mouse, and bacteria. 
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CHAPTER 1 

INTRODUCTION 

1 .I Background 

Recent technological advances allow us to measure expression levels for 

thousands of genes simultaneously [I]. Efficient techniques are urgently needed to 

effectively analyze the generated gene expression data. The availability of reliable and 

accurate analysis tools will help the research community to identify the genetic make-up 

of the diseases and lead to suitable medical interventions. 

Key and early processing steps in the analysis of gene expression data include 

clustering groups of genes that manifest similar expression patterns. Genes with similar 

expression profiles might be transcriptionally regulated through a same transduction 

pathway. Thus, the rationale for clustering gene expression data is to identify a new 

transduction pathway or novel genes, which may be co-regulated through the same 

known pathway. 

A wide range of techniques have been applied for clustering gene expression data. 

Examples include hierarchical clustering [2], adaptive resonance theory (ART) [3], self- 

organizing map (SOM) [4], k-means [5], graph-theoretic approaches [6], [7], fuzzy ART 

[8], fuzzy c-means [9], fuzzy Kohonen [lo], and growing cell structures network [lo]. 

However, most of the above mentioned clustering algorithms are heuristically motivated, 

and the issues of determining the "correct" number of clusters and choosing a "good" 

clustering algorithm [2] are not yet rigorously solved. Clustering gene expression data 



using hierarchical clustering and SOM has been very popular among the bioinformatics 

research community. 

Hierarchical clustering organizes the expression profiles in a hierarchical tree 

structure, which allows detecting higher order relationships between clusters of profiles. 

Although hierarchical clustering has been proven valuable for describing gene expression 

[2], 1111, it has several shortcomings. The hierarchical trees do not reflect the multiple 

ways in which expression patterns of genes can be similar. The deterministic nature of 

hierarchical clustering can cause the data points to be clustered on the basis of local 

decisions, with no opportunity to reevaluate. As the amount of data increases, this 

problem can be exacerbated. Mangiarneli et al. [12] compared SOM with hierarchical 

clustering method and found that SOM is superior in both robustness and accuracy. 

The design of SOM starts with defining a geometric configuration for the 

partitions in a one- or two-dimensional grid. Then, random weight vectors are assigned 

to each partition. During training, a gene expression profile is picked randomly. The 

weight vector closest to the expression profile is identified. The identified weight vector 

and its neighbors are adjusted to look similar to the expression profile. This process is 

repeated until the weight vectors converge to a prespecified degree. During operation, 

SOM maps gene expression profiles to the relevant partitions based on the weight vectors 

to which they are most similar. However, in circumstances where the expected number 

of partitions (clusters) available in gene expression data is unknown, the validation of 

SOM's clustering result becomes a critical issue. One may heuristically validate the 

clustering results to identify a reasonable number of clusters. 



Many validation techniques have been implemented to evaluate clustering results. 

Yeung et al. [13] introduced figure of merit (FOM); Tibshirani et al. [14] applied "gap 

statistic"; Jain and Dubes [15] referred to using "Hubert and Jaccard index"; Hubert and 

Arabie [16] addressed the use of "adjusted rand index"; Lubovac et al. [17] proposed to 

use "entropy measure"; Musavi et al. [3] used the "change in internode distance per 

cluster". All of these algorithms have been proven valuable by some experiments. 

However, the use of heuristic evaluation technique makes the clustering process 

extremely time-consuming and complicated given the large volume and high-dimension 

of the gene expression data. 

A number of methods have been proposed in the literature to accomplish data 

partitioning and cluster validation/visualization either simultaneously or independently. 

Fraley and Raftery [18], [19] developed model based clustering that provides 

functionality for displaying/visualizing cluster results. Ramoni et al. [20] introduced 

Bayesian method of model based clustering of gene expression dynamics. Kaski et al. 

[21], [22] introduced methods for detecting, visualizing and interpreting clusters 

generated by SOM. They improved the SOM-based method of U-matrix [23] for 

visualization of cluster information. Nikkila et al. [24] and Kaski [25] have applied this 

improved method for the analysis and visualization of gene expression data. Herrero et 

al. [26], [27] have proposed a combination of self-organizing map and hierarchical 

method for clustering gene expression data. 

Su and Chang [28] developed a new technique known as double self-organizing 

map (DSOM). In DSOM, each center in the network has an N-dimensional weight vector 

and a two-dimensional position vector. The position vectors are projection of the weight 



vectors into a two-dimensional space and serve as a visualization tool for deciding how 

many clusters are needed, thus combining clustering and cluster visualization in one 

computational procedure. In other words, with the help of position vectors, DSOM 

adjusts its network structure during the learning phase so that neurons that respond to 

similar stimuli will not only have similar weight vectors but also move spatially nearer to 

each other. 

Although DSOM addresses the problem of deciding number of clusters needed, 

the selection of its free parameters is vital for a proper projection of the position vectors 

in a two dimensional space. Some combinations of these parameters make all the 

position vectors converge too quickly into a small dense area. Some other combinations 

lead the updating process to "get stuck" after several epochs and result in wrong number 

of clusters. Thus, the regulation of these parameters remains a challenge. 

In this thesis, an adaptive double self-organizing map (ADSOM) is proposed. 

ADSOM updates the free parameters involved in DSOM during the training process. 

This is achieved by carehlly analyzing the mathematical relationships between the 

parameters and the updating processes. Unlike DSOM, ADSOM gives fairly consistent 

number of clusters provided that the initial number of nodes is greater than the expected 

number of clusters. In addition, a novel hierarchical tree-based index is introduced to 

help identify the number of clusters from the results obtained using ADSOM. 

To demonstrate its effectiveness, ADSOM is applied to cluster gene expression 

data from multiple biological systems such as yeast, human, and mouse. The results 

show that ADSOM is a reliable technique for clustering gene expression data. ADSOM 



addresses the issue of identifjmg unknown number of clusters while performing data 

partitioning simultaneously. 

1.2 Purpose of the Research 

The main objective of this thesis is to develop a tool that can effectively identify 

the number of clusters and accurately partition gene expression data. 

A novel and reliable neural network-based clustering technique, adaptive double 

self-organizing map (ADSOM), is introduced in this thesis to accomplish both clustering 

and cluster validating simultaneously. The proposed technique is applied to identify the 

number of clusters and partition gene expression data from multiple biological systems, 

such as yeast, human, mouse, and bacteria. 

Other clustering and validating techniques, such as fuzzy c-means, figure of merit, 

model-based clustering etc, are applied to analyze gene expression data as well. The 

comparisons are made in this thesis as well. 

1.3 Thesis Organization 

This thesis is comprised of eight chapters. Chapter 2 provides an overview of 

microarray technology, clustering gene expression data and its challenges. Chapter 3 

reviews some important clustering methods, such as self-organizing map, adaptive 

resonance theory, fuzzy c-means, and model-based clustering. Chapter 4 introduces 

some validating techniques such as figure of merit, change in internode distance per 

cluster and Xie-Beni index. Chapter 5 introduces double self-organizing map and 

adaptive double self-organizing map (ADSOM). Chapter 6 described a novel 

hierarchical tree-based index that is implemented to validate number of clusters obtained 



by ADSOM. Chapter 7 shows the experimental gene expression data and results. 

Chapter 8 offers concluding remarks and provides suggestions for future work. 



CHAPTER 2 

MICROARRAY TECHNOLOGY AND CLUSTERING 

This chapter provides background information on microarray technology, gene 

expression data clustering and its challenges. 

2.1 DNA Microarray Technology 

DNA microarrays [I]  attempt to analyze the expression of different genes in 

parallel on any scale up to the entire genome of an organism. 

The construction of microarrays begins with the production of complimentary 

DNA (cDNA) segments that represent each gene. Each segment is the complement to the 

actual DNA sequence of a gene and differs from the corresponding mRNA sequence only 

in that thymine in cDNA replaces uracil in mRNA. Each spot on the microarray is created 

by inserting copies of a gene's cDNA sequence on a glass slide or other substrate by a 

high speed robotic process that physically binds the sequence to a small spot on the slide. 

A spot is created for each gene sequence to be used in the microarray. The substrate and 

the spots of DNA sequences are collectively known as the microarray. Each spot is 

referred to as a probe. 

To measure gene expression for a cell population, mRNA is extracted from the 

cells and is reverse-transcribed into complimentary DNA (cDNA). This cDNA sequence 

is identical to the DNA sequence for the gene found in the nucleus and is thus 

complimentary to the cDNA probes on the microarray chip. The concentration of each 

sequence is multiplied proportionally through chemical reactions Chemical dyes (often 

7 



green and red in microarray experiments) are bound to the sequences to allow for 

subsequent analysis of concentration. A solution of this dyed cDNA is created and 

exposed to the microarray. On the microarray, the cDNA sequences bind, or hybridize, to 

the probes that contain their complimentary sequence. After a prescribed amount of time, 

the remaining cDNA solution is washed off the chip. What remains are the probes and the 

cDNA sequences that hybridized with them. The microarray is scanned with a laser set at 

the wavelength of the dye's color. The florescent intensity of each spot indicates 

approximately how many copies of the gene are bound to the spot, and thus, a relative 

perspective of the expression of that gene in the cell. The appearance of a scanned 

microarray can be found in Figure 2.1. 

Figure 2.1 : A scanned DNA microarray 

Unfortunately, the florescence alone tells us very little when the gene expression 

fiom only one population is used; we cannot directly correlate the florescence of a probe 

to the copies of a gene on that probe. To alleviate the problem, we can add a second 



population whose cDNA sequences were treated with a different dye. T h s  second 

population can be used as a control population; in the case of time series data, the second 

(control) population is often the cell population at a fixed point of time while the first 

population is the same cell population at a later time. The two dyes should have colors of 

significantly different wavelengths to avoid "crosstalk", i.e., a situation where one dye 

affects the measured florescence of the other. The relative difference in florescence of the 

two dyes on a particular spot should tell us how much a gene's expression differs between 

the two populations. Expression levels can be reported as some form of difference 

between the two florescences, such as a ratio. Gene expression probes can be assembled 

from a series of these differential values at different points in time. The experiments of 

Spellman et al. [ l  11 display gene expression time series as a listing of the ratios between 

the experimental and control expression levels for each time point. 

Figure 2.2 presents an example of gene expression matrix. It shows that a gene 

expression data matrix is constructed with rows representing genes and with columns 

representing experimental conditions/samples. Usually, there are two common ways of 

analyzing the expression matrix: one is to compare rows (expression profiles of genes) in 

the gene expression data matrix; the other is to compare columns (expression profiles of 

samples) in the matrix. 

The technology is young and still has some problems. First, the florescence signal 

is unlikely to exactly match the level of expression of each gene. The probe solution used 

is far from a free solution; the distribution of a certain cDNA sequence through the 

solution is not even. T h s  problem may be partially alleviated by devoting several spots 

on the microarray to each gene and averaging the results, but it cannot guarantee the 



elimination of the problem. cDNA probes with similar, but not identical, sequences to a 

particular spot on the microarray may still hybridize to the spot with mixed results, 

exaggerating the expression of one gene, possibly at the expense of another. Kerr et al. 

[29] named array effects, dye effects, populations and genes as source of variation that 

have a significant effect on the relative expression of a gene from these microarray 

experiments. This variation can be viewed in terms of "noise" in our signal of gene 

expression for each gene. 



Figure 2.2: A sample of gene expression matrix 



2.2 Clustering Gene Expression Data 

It is difficult for researchers to interpret large amount of gene expression data 

without computational methods. Understandably, it needs a very careful analysis because 

biological signals may be hidden by experimental noise. Hence, the development of 

computational techniques for interpreting large amounts of gene expression data is a 

major challenge in functional genomics. According to Eisen et al. [2], this research area 

needs a holistic approach to the analysis of genome data that reflects the order in the 

whole set of observations, allowing biologists to develop an integrated understanding of 

the process being studied. Other researchers, like D'haeseleer et al. [30] for instance, uses 

computational methods that focus on identification of genes that are defined as significant 

for the intended purpose, instead of focusing on the whole data set. Hence, the methods 

that traditionally have been performed manually by biologists, like finding genes with 

significant change in expression, can be done in a more formal fashion by using different 

computational techniques. 

In cluster analysis, one wishes to partition entities into groups based on given 

features of each entity, so that the groups are homogeneous and well separated. Each 

group is called a cluster, and the partition is called clustering. Clustering problems arise 

in numerous disciplines including biology, medicine, psychology, economics and others. 

Since there is a tight connection between a gene's function and its expression pattern 

[31], an assumption that is frequently made in many studies is that genes should be 

organized according to the similarities of their expression profiles [32]. Since the idea 

behind clustering methods is to group similar data points together [4], this approach has 



been widely applied to gene expression analysis in terms of grouping together genes with 

similar expression patterns [3 11. 

Analyzing multi-conditional gene expression patterns with clustering algorithms 

involves the following steps: 

1. Determination of the gene expression data. The gene expression matrix (Figure 

2.2) can be represented by a real-valued expression matrix I where Ig is the 

measured expression level of gene i in experiment condition j. Expression levels 

should ideally be absolute, but often only relative levels are available. The ith row 

of the matrix is a vector forming the expression pattern of gene i. 

2. Calculation of a similarity matrix. In this matrix the entry Sq represents the 

similarity of the expression patterns for genes i and j. Many possible similarity 

measures can be used here. A good choice of measure depends on the nature of 

the biological question and on the technology that was used to obtain the data. 

The similarity measure will be briefly discussed in section 2.3.3. 

3. Clustering based on the gene expression matrix as well as on the similarity matrix. 

Genes that belong to the same cluster should have similar expression patterns, 

while different clusters should have distinct well-separated patterns. 

4. Representations of the constructed solution. As hundreds or thousands of genes 

are involved, visualization tools are crucial for organizing, understanding and 

exploiting the results. 



2.3 Challenges 

2.3.1 Number of Clusters 

Clustering is a very useful and important technique for analyzing gene expression 

data. Most clustering methods perform well when the number of clusters is given. 

However, identifying the number of clusters available in gene expression data is by itself 

a challenging task. Most clustering techniques require the number of clusters to be given 

prior to clustering. However, this information, especially in gene expression data, is 

usually unknown before clustering. Hence, various validation schemes are commonly 

used to choose the best number of clusters. In this thesis, a novel extension of the 

popular self organizing maps (SOM) known as adaptive double self-organizing map 

(ADSOM) is introduced to perform clustering and cluster visualization simultaneously, 

thereby requiring no a priori knowledge about the number of clusters. 

2.3.2 Cluster Validation 

Cluster validation is another challenge in gene expression data analysis. To 

identify the number of clusters, researchers commonly cluster the data by choosing 

different number of clusters heuristically and validate all the clustering results externally. 

This process is complicated and time-consuming. In addition, there are many different 

kinds of validation techniques such as figure of merit and Xie-Beni index. The selection 

of suitable validation technique for the chosen clustering method is very important for 

getting good results [13], [36]. 

This thesis introduces a new approach called tree-based index to help validate the 

number of clusters. This new approach is especially suitable to ADSOM. 



2.3.3 Other Challenges 

Choosing suitable similarity measure is also very important for analyzing the 

multi-condition gene expression In the similarity matrix S, the similarity between two 

gene expression levels in the original data is transferred to a single value, called painvise 

similarity. AEter clustering the genes based on the similarity measures, the genes that 

belong to the same cluster should have similar expression pattern, while different clusters 

will have distinct or well-separated patterns. The two most popularly used similarity 

measures are Euclidean distance and correlation. 

Euclidean distance is defined as: 

where d,  is the distance between gene i and j ,  and xjk and x,k are the P expression values 

of the gene i and j ,  respectively. If Euclidean distance is chosen as similarity measure, 

the smaller the distance (dg) is, the more similar genes i and j are. 

Correlation is used as an alternative approach similarity measure described by 

Eisen et a1 [2]. Correlation is defined as: 

where pi, represents the correlation between gene i and j, xik and x,k are the ph expression 

values of the gene i and j respectively, and jri and 5 are the mean expression values of 

gene i and j ,  respectively. As a similarity measure, higher correlation indicates that the 

corresponding genes are more similar. 



Different similarity measures yield different results. For example, two genes, 

which have very high correlation, may have large Euclidean distance between each other. 

This problem comes out more frequently, if the data is unnormalized. Unfortunately, 

there are no general guidelines in the literature to determine which of these two 

candidates is better. Finding a method for comparing them is a challenging task. 

Normalization is another challenge for gene clustering. It is a crucial step for 

preprocessing the data. Range normalization and standard normalization are the most 

commonly used normalization methods. 

Gene expression data from microarray chips involve substantial noise. 

Commonly, researchers use two-fold or three-fold methods to filter noise. 

Identifying outliers in the gene expression data is very important as well. A 

feature vector is an outlier if it is distant from all cluster centers. Clustering performance 

is strongly affected by the existence of outliers. Unless the outliers are identified and 

eliminated, they can influence the formation of clusters by competing with the rest of 

feature vector to attract the cluster centers. 

This thesis mainly addresses the challenges described in sections 2.3.1 and 2.3.2. 

Careful selection of similarity measure, normalization scheme and filtering techniques 

are also made in the experiments conducted in this thesis. 



CHAPTER 3 

CLUSTERING METHODS 

This chapter briefly describes a few popular clustering methods that have been 

applied in gene expression analysis. Some techniques that are explicitly used for cluster 

validation are described in Chapter 4. 

3.1 Self-organizing Map 

The most typical notion of the self-organizing map (SOM) is to consider it as an 

artificial neural network model of the brain, especially of the experimentally found 

ordered "maps" in the cortex. There exists a lot of neurophysiological evidence to 

support the idea that the SOM captures some of the fundamental processing principles of 

the brain. 

The design of SOM starts with defining a geometric configuration for the 

partitions in a one- or two-dimensional grid. Then, random weight (reference) vectors 

are assigned to each partition. During training, a gene expression profile (input vector) is 

picked randomly. The weight vector closest to the expression profile is identified. The 

identified weight vector and its neighbors are adjusted to look similar to the expression 

profile. This process is repeated until the weight vectors converge to a prespecified 

degree. 



SOM algorithm is described as follows: 

1. Initialization: Choose random values for the initial weight vectors 

w . (0), j = 1,2 ,... N , where N is the number of nodes. 
J 

2. Sampling: At each epoch k, choose an input vector x ( k )  from the input space 

with a certain probability. 

3. Similarity Matching: Find the winning neuron w, by using the minimum 

Euclidean distances criterion. w = argmin x(k )  - w . (k )  
j II J 

4 .  Updating: Adjust the weight vector of the winning neuron w, and its neighbors by 

using Equation (2).  

w . ( k  + 1 )  = w . ( k )  + q(k)h . ( k ) [ x ( k )  - w . (k ) ]  
J J J ,  w J 

(3 -2) 

Where h ( k )  is a given neighborhood function. 
j ,  w 

5.  Continuation: Repeat steps 2-4 until no noticeable change in the feature map is 

observed. 

SOM has a number of features that make it particularly well suited to cluster gene 

expression patterns. However, there are some fundamental problems with this method, 

which are also present in most other clustering algorithms. One of those is that SOM is 

not suitable for visualization of high-dimensional data. It requires the aid of other 

techniques, for example Umatrix [23] .  Another one is the issue of determining the 

number of clusters in the whole data. The more the number of clusters is, the tighter and 

more distinct clusters appear. But adding new nodes doesn't always supply the clustering 

with fimdamentally new patterns and will make the interpretation worse. 



In particular, in circumstances where knowledge about the number of clusters is 

unavailable like most gene expression data, use of SOM as a clustering tool will be time 

consuming. In which case, one will be forced to apply a trial and error approach to 

validate the clustering result. For example, one may start with a small number m, cluster 

the data into m groups and evaluate the result, increase the number m to m+l,  cluster the 

data and evaluate the data again, and so on so forth. One needs to increase the number m 

by 1 continuously, and evaluate the result every time. This trial-and error process is 

inconvenient and very time-consuming. 

3.2 Adaptive Resonance Theory 

Adaptive resonance theory (ART) allows to dynamically add nodes as needed by 

the data. It has one simple parameter "vigilance" to vary and its convergence is 

guaranteed within a few (often one) epochs [34]. Therefore, ART can cluster gene 

expression data effectively. Previous applications of ART on gene clustering have shown 

that it is robust to noise and able to create fine distinctions even with the same number of 

clusters when compared to other clustering algorithms [8]. 

However, to use the ART algorithm effectively, some details of its 

implementation must be properly understood. Unlike most clustering algorithms that use 

Euclidean distance (L2), ART uses the City Block distance (Ll). The L1 distance is 

computationally quicker than the L2 distance. However, this is partly offset because 

ART uses a process called "complement coding" that represents each cluster (node) in 

twice its original input dimensions. For example, a 13-dimensional input data is 

clustered into a 26 dimensional node in ART architecture. Therefore, unless otherwise 



noted, the distance between two nodes (internode distance) will be measured in the L1 

distance between complement-coded nodes. This is because L2 distance does not 

directly correspond to any part of the ART algorithm. The ART parameter "vigilance" 

dictates whether two genes should be grouped into the same cluster or not; higher 

vigilances lead to more nodes and lower vigilances lead to fewer nodes. Note that in 

SOM, one needs to input the number of clusters while in ART the number of clusters is 

controlled by the vigilance factor. The only required adjusted parameter is vigilance that 

ranges from 0 to 1. Note that the use of ART involves a heuristic selection of vigilance 

or some external validation techniques to arrive at a reasonable number of clusters. 

3.3 Fuzzy C-Means 

Fuzzy c-means (FCM) clustering facilitates the identification of overlapping 

groups of objects by allowing the objects to belong to more than one group. The essential 

difference between FCM and hard c-means is the partitioning of genes into each group. 

Instead of hard partitioning, where genes belong to only a single cluster, FCM clustering 

considers each gene to be a member of every cluster, with a variable degree of 

membership. Each gene has a total membership of 1.0 that is apportioned to clusters on 

the basis of the similarity between the gene's expression pattern and that of each cluster 

centroid. Genes whose expression patterns are very similar to a given centroid will be 

assigned a high membership in that cluster, whereas genes that bear little similarity to the 

centroid will have a low membership. Hence, FCM computes the fuzzy partition matrix 

U whose ikth element uik ~ [ 0 , 1 ]  expresses the membership degree of the sample x(k) to 

cluster i, i=l..c. 



3.4 Model-Based Clustering 

Raftery et al. [18] [19] introduced a clustering algorithm based on probability 

models which offers an alternative to heuristic-based algorithms. Particularly, the model- 

based approach assumes that the data is generated by a finite mixture of underlying 

probability distributions such as multivariate normal distributions. With the underlying 

probability model, the problems of determining the number of clusters and of choosing an 

appropriate clustering method become statistical model choice problems. 

Suppose the data x consists of independent multivariate components XI,  xz, . . ., x,. 

In the Gaussian mixture model, each component k is modeled by the multivariate normal 

distribution with parameters mean vector p, and covariance matrix Z, : 

The covariance matrix Z determines geometric features, such as shape, volume k 

and orientation. Banfield et al. [42] proposed a general framework to exploit the 

presentation of the covariance matrix in terms of its eigenvalue decomposition 

= A  Q PQ' Zk k k k k  

where Q, is the orthogonal matrix of eigenvectors which dertermines the orientation of 

the component; Pk is a diagonal matrix whose elements are proportional to the 

eigenvalues of Z, and Pk determines the shape of the component; 2, is a scalar which 

determines the volume of the component. 



The most important models are determined by four different types of Z, . These 

four models are equal volume spherical model (EI), unequal volume spherical model 

(VI), ecliptical model with equal volume, shape and orientation (EEE) and unconstrained 

model (VVV). EI model is parameterized by Z = A I ,  I  is the identity matrix. In VI, k  

Z = A  I .  In EEE, Z = A Q P Q ~ .  VVV model allows all of A,, Q,, Pk to vary 
k  k  

between components. 

Instead of using Bayes factor that has the main difficulty in evaluating the 

integrated likelihood, Yeung et al. [35] suggested using an approximation called the 

Bayesian Information Criterion (BIC) to compare models with different numbers of 

clusters and different covariance matrix parameterization. A large BIC score indicates 

strong evidence for the corresponding model. 



CHAPTER 4 

CLUSTER VALIDATION METHODS 

The clusters obtained by different clustering algorithms can be remarkably 

different. Without validation procedures, results of clustering algorithms may easily be 

misinterpreted. This chapter describes some cluster validation methods which will be 

used later in Chapter 7. These methods include figure of merit, change in internode 

distance per cluster and Xie-Beni index. 

4.1 Figure of Merit 

Figure of merit (FOM) is an estimate of the predictive power of a clustering 

algorithm. It is a systematic and quantitative framework to assess the results of clustering 

algorithms. Yeung et a1 [13], introduced FOM to validate clustering performances. They 

compute FOM for different clustering algorithms so as to solve the problem for choosing 

an appropriate clustering algorithm for a specific data set. 

FOM is described here as defined by Yeung et a1 [13]. A typical gene expression 

data set contains measurements of expression levels of n genes under m conditions. 

Suppose a clustering algorithm is applied to the data from condition 1,2,3,..,(e-I), 

(e+l),. . .,m and condition e is used to estimate the predictive power of the algorithm. 

Suppose there are k clusters, c,, cz ..., ck. Let R(g,e) be the expression level of gene g 

under condition e in the raw data matrix. Let Uci(e) be the average expression level in 

condition e of genes in clusters ci. So, the FOM under the condition e is defined as: 



And then, the aggregate figure of merit of all conditions is defined: 

FOM(k) = 2 FOM (e, k) 
e=l 

After computing FOM for different number of clusters and plotting FOM versus 

number of clusters, we expect FOM to decrease as the number of clusters increases 

saturating eventually. If a curve enters its saturation region and the corresponding 

number of cluster at that point is N, we say N nodes are sufficient to cluster the data. 

4.2 Change in Internode Distance per Cluster 

Musavi et al. [3] applied the method change in "internode distance per cluster" to 

identify the number of clusters obtained using ART. To investigate how a "good" 

number of clusters can be selected for a gene expression data, let average internode 

distance be D(9 ,  where 0 is the algorithm's parameters vigilance. Furthermore, let N ( 9  

be the number of clusters formed by the algorithm for a given 0. Note that D ( 9  is 

necessarily a function of N(9, and can be written as D(O,N(@). Plotting D ( 9  as a 

h c t i o n  of N(9,  one normally observes the saturation point where adding further nodes 

does not decrease internode distance significantly. For example, consider Figure 4.1, 

which shows the internode distance versus the number of clusters. As stated before, the 

internode distance approaches a saturation level as the number of clusters increases. 

Using this curve for finding an appropriate number of clusters may prove to be hard 

because of the difficulty in identifying the point of saturation. 



ART-cdcl5: Average internode distance vs. Number of clusters 
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Figure 4.1 : An example of Internode distance vs. the number of nodes. 



The internode distance per node is measured with D(QlN(8). The effect of 

decreasing internode distance per node can be measured by plotting D'(QlN(8) versus 

N(Q, where D '(8) is the first partial derivative of D(8) with respect to N(8). Now, it can 

be stated that when DJ(8)lN(8) approaches 0, adding more nodes does not significantly 

decrease internode distance. AAer this point, overclustering occurs. 

4.3 Xie-Beni Index 

This method is particularly suitable to validate the clustering results formed by 

fuzzy c-means. We assessed the goodness of each resulting partition using the Xie-Beni 

index [36],  which computes the ratio of compactness and separation of clusters as 

follows: 

where N is the number of training samples, x(k) is the kth input vector (sample), and _Vi is 

the ith cluster prototype. AAer plotting the Xie-Beni index versus c and choose, as 

optimal number of clusters, the value of c corresponds to the first distinctive local 

minimum. 



CHAPTER 5 

ADAPTIVE DOUBLE SELF-ORGANIZING MAP (ADSOM) 

5.1 Double Self-organizing Map 

Double self-organizing map (DSOM), introduced by Su and Chang [28], adjusts its 

network structure during the learning phase so that neurons which respond to similar 

stimuli will not only have similar weight vectors but also move spatially nearer to each 

other. This is accomplished by combining features of self-organizing maps (SOM) with 

position vectors, which serve as a visualization tool to decide how many clusters are 

needed. 

In DSOM, as described in [28], each node j has an N-dimensional synaptic weight 

vector w,. In addition to the weight vector, another two-dimensional position vector p, is 

also assigned to each neuron j. The vector p, determines the position of neuron j in the 

network structure. During the self-organizing process, not only the weight vector w,'s but 

also the position vector pj's are updated. 

All the updating formulae for both vectors at epoch k are given in Equations (5.1)- 

(5.6): 

w (k + 1) = w - (k) + ql ( k ) h  . (k ) [~ (k )  - w (k)], j = 1,2, ... N 
J J ,  w 

where 



Here II.II denotes the Euclidean distance; pw(k) and ww(k) represent the position 

and weight vectors of the winning neuron when the gh input vector x(k) is applied; r7, and 

qp are initial learning rates, s, is a scalar parameter which regulate how fast the hnction 

Aj,,(k) decreases, and k,, is the maximum number of epochs. sp and s, are two 

predetermined scalar parameters whch regulate the speed of the movement of the 

position vectors. 

For an instance, there are m (actually we don't know the appropriate number of 

clusters) classes in a data set. Before clustering, one initializes n nodes and their 

corresponding position vectors. Here n must be no less than m. Based on formulae (5.1- 

5.6), we can find that the closer the nodes (weights) are, the closer the corresponding 

position vectors will be. Theoretically, the n position vectors should move into the m 

groups after clustering. Because the position vectors are two-dimensional, we can 

visualize the number of groups of the position vectors by plotting them. As a result, we 

can determine the number of clusters available in the underlying data set. 



DSOM constructs a relationship between weight vector and position vector by 

using a few non-linear exponential functions. This method will not ruin the inner 

relations among those weight vectors and will not lose any possibly important 

information preserved in the high dimensional weight vectors. 

5.2 Adaptive Self-organizing Map 

Although DSOM addresses to the problem of deciding number of clusters, the 

selection of its free parameters, which is important to a proper projection of the position 

vectors in a two-dimensional space, remains a challenge. Some combinations of these 

parameters make all the position vectors converge too quickly into a small dense area; 

some other combinations lead the updating process to "get stuck" after several epochs 

and result in wrong number of clusters. Thus, the regulation of these parameters is a very 

important task. In this thesis, a novel adaptive self-organizing map (ADSOM) was 

developed by implementing a systematic method of updating the free parameters 

involved in DSOM during the training process with the aim of guaranteeing convergence. 

Looking at Equations (5.2), (5.5) and (5.6), one see that there are several parameters such 

as s,, s, , and number of epochs, which affect the movement of position vectors. In 

Equation (5.4), p, (k) is the position vector corresponding to a winner weight at epoch k; 

p, (k) and p, (k + 1) are the old and new jth position vectors, respectively. r],, (k) and 

hi,, (k) are both positive scalars and are always less than 1. 



Figure 5.1 : Movement of position vector. 

In Figure 5.1, OA, OB and OC represent vectors p, (k) , p, (k + 1) , and p, (k) 

respectively. According to Equation (5.2), one can easily prove that points A, B, and C 

are located on a straight line. Let's define a positive scalar @ , (k) as follows: 

@ j ('1 = 772, j ('1 

It is obvious that the ratio between the length of vector 3 and 2, which 

actually represents the vectors pj (k + 1) - p (k) and pw (k) - pj (k) respectively, is 

0 j(k) (from Equation 5.2). A conclusion can be drawn that the larger @,(k) is, the 

faster the jrh position vector pj  moves toward p, . 

Assuming there are two weights wl and w2, and their corresponding position 

vectors are pl and p2. At epoch k and for a given input pattern x(k), if wl(k) is closer to 

x(k) than w2(k), which means I lwl(k)-x(k)ll is less than or equal to I lw2(k)-x(k)l 1, one 

requires that pl(k) moves toward p,(k) faster than p2(k), which means 0, (k) 2 @, (k) . In 

another words, Equation (5.7) as follows should be true to true to keep position vectors 

from "getting stuck" and avoid unexpected results. 



( k )  - ai (k)[Ilw . ( k )  - ~ ( k )  5 O for Vi, j( i  # j )  
J 

(5.7) 

In order to study Equation (5.7) more flexibility, instead of using constant values 

for sp and s,, we suggest adopting them at every epoch. In another word, sp(k) and s,(k) 

are used. Moreover, we replace the power to ( k )  - x(k)) l -  ((w ( k )  - x (k )  in Equation 
W I I  

(5 .6)  from 2 to a variable n  (n>O) and replace the power to p . ( k )  - p (k) ( /  in Equation I I  W 

(5 .5)  from 1 to a variable m (m>O). 

Assuming A .  ( k )  = ilwi ( k )  - x(k)ll- Ilww(k) - x ( k ) ( / ,  Equation (5 .7)  will be equivalent 
I 

and 
X X 

If A j ( k )  = A,(k) , then Equation (5 .8)  is always valid regardless of the relationship 

between <Di ( k )  and <D ( k )  . So, in the following, we just need to analyze the cases when 

Aj ( k )  # A; ( k )  . 

Case 1 : 

If Aj ( k )  > A, ( k )  , then <D ( k )  l <Di ( k )  



o exp - s  , ( k ) ~ y k )  - s  . ( k )  ~ " k )  5 exp - s  , ( k ~ ?  ( k )  - sxf i k ~ :  i k ) ]  [ p  J x J 1 [ p  

.: A  .(k)  > A. ( k )  > 0, :. A; ( k )  - A,yk) 2 0 ; and since s  ( k )  > 0, s  ( k )  > 0 ,  Equation 
J I x P  

(5.9) is equal to 

Case 2: 

If A, ( k )  < Ai ( k )  , then 0, ( k )  > mi ( k )  

Following the same steps used in case 1 ,  we can prove that 

s, ( k )  BIm ( k )  - BJm ( k )  
v i ,  j(1 # j )  

s,  ( k )  A; ( k )  - A: ( k )  

From Equations (5.10) and (5.1 I ) ,  we can draw a conclusion that Equation (5.8) holds, if 

Bm ( k )  - Bm ( k )  s x W  1 
2 V i , j ( i t j )  

s p  ( k )  An ( k )  - An ( k )  
J 1 

Equation (5.12) specifies one end of the boundary for the ratio m. However, the 
s ,  (k) 

other end of the boundary is not specified. It is clear that closing both sides of the 



boundaries will be helpful to provide a more complete range of this ratio, thus further 

improve the accuracy and effectiveness of ADSOM. This task will be accomplished in 

the future. In this thesis, we use a particular choice of this ratio as follows: 

Defining t, (k) = m a  , Vu,  v, (v z u) , we specify the following 

relationship that allows Equation (5.12) to be satisfied and which we found to be 

effective in our experiments. 

unchanged, if rnax {tu (k)) 2 0 sxW 
-- - I U 

sp (k) [1 .2rnum {ru (k)}, if max{r (k)} > 0 
U 

Beside the problem mentioned above, defining a criterion for stopping the 

updating process is also a principal issue. On one hand, over-training will unexpectedly 

worsen the results. On the other hand, under-training will result in uncertain outcome. 

So, instead of directly finding out a way to intelligently select the number of epochs, we 

define a new parameter that would serve as a stopping criterion. 

We define the maximum change of position vectors (a)  at epoch k as 

a(k) = (k) - p, (k - l )~),  and we define a threshold (B) as 0.1% of largest distance 

among all the original position vectors. If the a remains less than P, the training process 

will be ceased. 

Finally, we demonstrate a proper mathematical relationship between a and the 

parameter sp(k) so that we can adaptively adjust sp(k) at each epoch k. Once we know 

sp(k) we can use Equation (5.13) to adjust the parameter s,(k) 



If a becomes larger, which means the position vectors move faster, one needs to 

reduce the speed of movement of position vectors. From Equation (5.4), the parameter s, 

needs to be increased. Similarly, if a becomes smaller, the parameter s, needs to be 

decreased. So, at epoch k, our objective is to figure out a mathematical continuous 

function f (y) to represent the relationship between the a and s,. It can be shown that one 

can update s, by using the following function: 

[ s, ( k )  = const > 0 if k = l  

According to the analysis in the previous paragraph, one can easily infer that 

f (y) is an increasing function, whose range should be between 0 and a constant positive 

value C. In addition, when a(k) = 1 ,  one requires f - 1) = 1 ; when 
a (k  - 1) 

suggest using any function f (y), which satisfies the following requirements: 

(1) f (y) E (0, C) for y E (-l,+m), where C is a constant positive number,. 

(2) f (y) is a continuous, increasing, non-linear function. 

(3) f (0) = 1 

In fact, there are many functions, which satisfy all the property mentioned above. 

Y e (-1 
These function include f (y)= ---(1 - e-'Y'l') and f (y)= e Y+l . The former one was 

e-1 

used in the experiments shown in chapter 7. It is possible that some other functions may 



be more suitable to present the relationship between a and s,. It is also possible that the 

functions can be discrete ones. 

In summary, ADSOM's algorithm repeats the following equations to adaptively 

update weights and position vectors until a is steadily less than P, which is a pre-defined 

threshold. 

-11, if k  2 2 
s ( k + l ) =  a ( k  - 1) 
P s ( k )  = const > 0 if k = l  

unchanged, 
s x  ( k )  
-- I 
where 



77, and vp are the initial learning rates which are between 0 and 1; s, is a scalar 

parameter which regulates how fast the function A,(k,j) changes and it's between 0 and 

1; k,,,, is the maximum number of epochs; sp(k) and s,(k) are the values of scalar 

parameters at epoch k that regulate the speed of the movement of the position vectors 

whose initial values are 1; rn and n are positive numbers (for example, one may choose 

n=3 and rn=0.3). However, effective choice of rn and n needs to be further investigated. 



5.3 Initialization Scheme 

Proper initialization of the weight vectors of ADSOM helps the parameter 

updating process converge quickly. The weight initialization scheme provided by Su et 

al. [33] is used for initialization in ADSOM. 

Figure 5.2: The arrangement of an K x L weight array. 

Assuming the size of weights array to be K x L (Figure 5.2), the following steps 

are used for initialization: 

1. Select a pair of input patterns whose distance is the largest one among the whole 

input data set, and then initialize the weight nodes on the lower left comer and the 

upper right comer (i.e. WK,] and w] ,~ )  as these two input patterns, respectively. 

From the remaining input data, use the pattern that is the farthest to the two 

chosen patterns to initialize the weight vector on the upper left comer (i.e. w],]). 

Set the weight on the lower right comer (i.e. WK,~)  as the input pattern which is the 

farthest to the previously selected three patterns. 



2. Initialize the weights of the neurons on the four edges by uniformly partitioning 

each edge into L-1 or K-1 segments. 

3. Initialize the remaining weights from left to right, and from top to bottom as 

follows: 

for ifrom2 to K-1 

for j from 2 to L-1 

end 

end 

As described in [28], the initial map constructed by directly partitioning the input 

space into MxN hypercubes and then using the coordinates of the centers of the 

hypercubes to initialize the weights of the network will tend to undersample high 

probability regions and oversample low probability ones. As a result, this direct 

initialization will lead to more iteration to refine the map. 



CHAPTER 6 

HIERARCHICAL TREE-BASED METHOD FOR VALIDATION 

This chapter introduces a novel validation technique that is especially suitable to 

ADSOM. This method is primary derived from the method of hierarchical tree. It helps to 

indicate the optimal number of clusters through a tree-based index. 

Once the final locations of the position vectors are obtained, one can visually 

determine the number of clusters. To minimize possible human error resulting from 

counting the number of clusters visually, a novel technique that provides an index for 

each cluster is developed. The index is calculated based on the outcome of clustering the 

position vectors themselves using hierarchical method. Consider a 2-by-N matrix T that 

contains the final locations of all two-dimensional position vectors; where N denotes the 

total number of position vectors. We calculate the Euclidean distances between each pair 

of position vectors in T. Based on these distances and subsequent distances between 

centers of merged clusters, we create a hierarchical cluster tree that grows vertically 

upwards. During clustering, we store the distance between two clusters that are merged 

together through a branch by applying the single linkage method. Hence, the height of 

each branch provides information about compactness and separation between the clusters 

connected. It will be large if the compactness is small or the separation is large. 

Consider a horizontal line that cuts c branches of the hierarchical cluster tree 

perpendicularly, the horizontal line picks c clusters that are embraced by the branches it 



cuts. An index corresponding to this horizontal line is designated as 3(c) and is defined 

as the sum of the heights of each branch it cuts. 

where z,(i) is the height contributed by the ith branch for the case when a 

horizontal branch cuts c branches of the tree. The index, referred to as tree-based index, 

is calculated for c = 2,..,N. Note that 3(1)=0, since there will be no horizontal line that 

would cut the tree only once. The value of c at which the index reaches its highest peak 

is considered as an indicator of the maximum separation between clusters in a two- 

dimensional space. Hence, it is used as a means to detect the number of clusters. 

Figure 6.1 shows an example where 18 position vectors (top) are clustered using a 

hierarchical clustering method (bottom). The three horizontal dashed lines in the figure 

(bottom) show the branches that they cut for c=2, 3, and 4, respectively. For example, 

the third dashed line from the top cuts four branches of the tree with the corresponding 

lengths designated as Z4(1)-Z4(4). 



Figure 6.1 : An example of hierarchical tree method: position vectors (top) and 

corresponding hierarchical tree (bottom). 



CHAPTER 7 

EXPERIMENTAL SCHEMES AND RESULTS 

To test ADSOM'S performance, experimental tests were conducted using artificial 

data and gene expression data from multiple biological systems. Other clustering and 

validating methods such as figure of merit, model-based clustering, and hzzy c-means 

were used for comparison. 

Table 7.1 shows the parameters of ADSOM used in some of the experiments 

conducted in this thesis. 

7.1 Artificial Data 

An artificial data set, which has six groups, was created. The centers of the six 

groups are chosen as shown in Figure 7.1. Each center is a vector with 17 elements, 

whose range is between 0 and 1. For every group, 100 random vectors are generated with 

a variance v=0.25. Hence, each group has 100 sample vectors. The reason for choosing 

such kind of centers is that the center of the real gene data is similar to one of these 

centers, or similar to the translation, rotation or combination of these centers. 



Data (# of initial T 
Yeast cell cycle data 

(9) 

Yeast cell cycle data 

(12) 

Yeast cell cycle data 

(15) 

Yeast cell cycle data 

(20) 

Yeast sporulation 

data (9) 

Yeast sporulation 

data (20) 

Table 7.1 : Parameters of ADSOM used in some of the experiments conducted in this 

thesis. 



Figure 7.1 : Centers of the artificial data set. (Each center has 17 data points) 



(a) Original position vectors 

(b) Position vectors after 200 epochs 

Figure 7.2: Final position vectors after using ADSOM for the artificial data set. 



(c) Position vectors after 500 epochs 

(d) Position vectors after 1000 epochs 

Figure 7.2: Final position vectors after using ADSOM for the artificial data set 

(continued). 



As shown in Figure 7.2 (a), nine original position vectors are placed onto a 3x3 

grid. Then the ADSOM is run for 1000 epochs. The results are shown in Figure 7.2 (b)- 

Figure 7.2 (d). In Figure 7.2 (d), the nine position vectors fall into the six groups. This 

shows us that there are six clusters in this artificial data set. In Figure 7.3, the tree based 

index peaks when number of cluster reaches 6, which indicates that this artificial data 

have 6 clusters. 



Tree-based validation for Artificial 
data:9 initial nodes 

Number of clusters 

Figure 7.3: Tree based index for artificial data 



7.2 Yeast Cell Cycle Data with the 5 Phase Criterion 

A subset of the gene expression data provided by Cho et a1 [37] was extracted. 

The data show the fluctuation of expression levels of approximately 6000 genes over two 

cell cycles (17 time points) corresponding to mitotic cell cycle of Saccharomyces 

cerevisiae from affyrnetrix chip. As in Yeung et al. [13] [35] a subset of 384 genes 

whose expression levels peak at different time points corresponding to the five phases of 

cell cycle was used for our experiments. These data were obtained from supplementary 

web site provided by Yeung et al. at 

http://staff.washington.edu~kayee/cluster/raw~cellcycle~384 - 17.txt. 

Prior to clustering, the data were normalized to have zero mean and unit variance. 

ADSOM was applied to cluster this dataset with different number of initial weights such 

as 9, 12, 15 and 20. As depicted in Figure 7.4, the final locations of position vectors 

converge into fewer groups in a two-dimensional space regardless of the initial number of 

nodes. We applied the tree-based validation index to estimate the optimal number of 

clusters from the final locations of the position vectors. As described before, the number 

of clusters at which the tree-based index reaches its highest peak can be used as an 

indicator of optimal number of clusters. The results in Figure 7.4 indicated that the 

optimal number of clusters is 5 regardless of different number of initial nodes. This 

result agrees with that of Yeung et al. [35] and was as expected from a dataset 

corresponding to 5 phases of the yeast cell cycle. 

Table 7.2 shows the number of genes in each cluster as well as the number of 

common genes found when clustering the yeast cell cycle data with different number of 

initial nodes (N), i.e., N= 9, 12, 15 and 20. The percentage of common genes between 



clusters formed by N=9 & 12 was 88%, N=9,12, & 15 was 79.7%; and N=9,12, 15, & 20 

was 70.8%. 

To compare the performance of ADSOM with the model-based clustering 

method, we run MCLUST for several models. The models are characterized by their 

covariance matrices such as equal volume spherical (EI), unequal volume and spherical 

(VI), ellipsoidal with equal volume, shape and orientation (EEE), ellipsoidal, varying 

volume, shape, and orientation (VVV), diagonal, varying volume, varying shape (VVI), 

etc. The Bayesian information criterion (BIC) introduced by Yeung et al. [35] was used 

to compare models with different numbers of clusters and different covariance matrix 

parameterization. A large BIC score indicates strong preference for the corresponding 

model. Figure 7.5 shows the BIC scores obtained by clustering the yeast cell cycle data 

for various cluster numbers ranging from 2 to 32 using five different models. As can be 

seen from the figure, the model-based approach favors the EEE model, which reached its 

maximum BIC score at 6 clusters. 
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Figure 7.4: Final position vectors (left) after using ADSOM to cluster yeast cell cycle 

data with initial nodes 9, 12, 15, and 20 and the corresponding tree-based validation 

results (right). 



I I1 I11 IV v 
Cluster # 
# of genes for N=9 43 89 7 7 107 68 

# of genes for N=12 3 8 100 7 1 100 75 

# of genes for N=15 40 89 7 3 116 66 

# of genes for N=20 35 93 70 110 76 

mon genes for N=9 & 12 

# of common genes for N =9,12, & 15 2 8 66 73 83 6 1 

# of common genes for N =9,12,15, &20 24 55 70 76 53 

Table 7.2: Number of genes as well as number of common genes for yeast cell cycle data 

using ADSOM with 9, 12, 15, and 20 initial nodes; N, number of initial nodes. 
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Figure 7.5: BIC scores for yeast cell cycle data with 5 phases. 



7.3 Yeast Sporulation Data 

Gene expression data in the budding yeast Saccharomyces cerevisiae from spotted 

c-DNA microarrays studied during the diauxic shift, the mitotic cell division cycle, 

sporulation, and temperature and reducing shocks were considered. In particular, the data 

corresponding to sporulation were used for this experiment. From the yeast sporulation 

data, 218x1 1 gene expression data that belong to four classes were extracted. Variance 

normalization was applied to the data. The four classes are ribosomal proteins, 

respiration, mitochodrial organization, and h-icarboxylic-acid pathway. This hct ional  

classification was made using information from Munich Information Center for Protein 

Sequences (MIPS) [39]. 

ADSOM clustered this yeast data into its four distinct classes without having the 

knowledge of the actual number of clusters. The beauty of ADSOM algorithm is that it 

would converge to the actual number of clusters without having to go through tedious 

cluster validation techniques. To demonstrate this, two experiments were conducted with 

this dataset; once ADSOM was assigned 9 initial nodes and once 20 nodes. ADSOM's 

position vectors that were assigned to these initial nodes converged to four final clusters 

regardless of the initial number of nodes chosen. Figure 7.6 shows the location of final 

position vectors for 9 initial nodes (left), for 20 initial nodes (middle) and the results 

obtained after applying the tree-based validation index (right). Note that these final four 

clusters that represent the actual and true number of clusters in the data are shown by 

enclosed boundaries. It also shows which of the initial 9 or 20 nodes had to be grouped 

together in order to make the final four classes. As can be seen from the Figure 7.6 



(right), the optimal number of clusters is 4 regardless of different number of initial nodes 

(9 and 20). 

It was observed that ADSOM resulted in partitioning the data with 70% accuracy. 

This accuracy was calculated based on the biological classification made by MIPS. In 

gene expression data, one doesn't normally have a priori knowledge about the true 

number of classes, and what distinguishes ADSOM from the currently available 

techniques is that one doesn't need to have this knowledge to be able to find the true 

number of classes accurately. 

To evaluate the consistency of the clustering, the number of common genes in two 

clusters for different number of initial nodes was investigated. Table 7.3 illustrates the 

number of genes obtained in the four clusters formed by ADSOM and the number of 

common genes between the cluster pair formed with 9 and 20 initial number of nodes, 

respectively. The robustness and consistency of ADSOM in clustering is evident from 

the large number of common genes (90.4%) in the clusters as shown below. 

In a separate experiment, the performance of ADSOM for different cluster sizes 

was investigated. To accomplish this, yeast sporulation data from 2, 3, and 4 MIPS 

classes were extracted and clustered independently. As shown in figure 7.7, the number 

of clusters was correctly identified by ADSOM using 9 initial nodes. 

Figure 7.8 shows the BIC scores obtained using MCLUST for four different 

models at clusters ranging from 1 to 20. As can be seen from the figure, the model-based 

approach favors the EEE model whose first maximum BIC score is reached at 10 and the 

second maximum BIC score is reached at 5 clusters. Note that the expected number of 

clusters for the yeast sporulation data is 4. 
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Figure 7.6: Final position vectors with initial nodes 9 (left), 20 (middle) and the 

corresponding tree-based validation results (right) using ADSOM for yeast sporulation 

data with 4 classes. 



Cluster I Cluster I1 Cluster III Cluster IV 

# of genes for N=9 60 28 19 11 1 

# of genes for N=20 5 5 25 21 117 

# of common genes for N=9 & 20 46 24 16 111 

Table 7.3: Number of genes as well as number of common genes for yeast sporulation 

data using ADSOM with 9 and 20 initial nodes; N, initial number of nodes. 
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Figure 7.7: Results of tree-based validation for yeast sporulation data. 
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Figure 7.8: BIC scores for yeast sporulation data. 

SOM was applied to group the yeast data in various numbers of clusters. The 

clusters are evaluated using FOM. Figure 7.9 reveals that that the optimal number of 

clusters is six. 

Figure 7.10 depicts the Xie-Beni index calculated for various numbers of clusters 

after clustering the yeast data using fbzzy c-means. As shown in the figure, the index has 

its first minimum at four, confirming the existence of four clusters in the yeast data. 
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Figure 7.9: Clustering results using SOM for yeast data. 
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Figure 7.10: Clustering results using FCM for yeast data. 



7.4 Yeast Cdcl5 and Elu 

The spotted c-DNA microarray data used for this experiment were those 

corresponding to cdc- 15 and elu. Cdc 15 data consisted of 15 time points following arrest 

of cdcl5 temperature sensitive mutant and elu data contained 14 time points following 

elutriation. After removing genes with missing points, there were 1882 genes in cdc-15 

data and 2020 genes in elu data. Before applying ADSOM, variance normalization was 

applied to the data. ADSOM was used to cluster each data set with different number of 

initial weights such as 25, 30, 36 and 42. The tree-based indices corresponding to the 

final locations of the position vectors were used to identify the number of clusters in both 

data sets. ADSOM gave fairly consistent number of clusters in the unknown yeast data 

set, thus demonstrating its effectiveness and reliability. As it can be seen from Table 7.4, 

the result of this experiment shows that there are 16 or 17 clusters available in both data 

sets. 

Figure 7.1 1 and 7.12 shows the BIC scores obtained using MCLUST for five 

different models in clustering the yeast elu (Figure 7.11) and yeast cdcl5 data (Figure 

7.12). As can be seen from the figure, the maximum BIC score is reached at 21 clusters 

for the EEE model when clustering the yeast elu data. For the yeast cdcl5 data, the EEE 

model reached its first, second, and third maximum BIC scores at 27, 21 and 19 clusters, 

respectively. 



Number of clusters obtained using ADSOM 

Data set Number Initial Initial Initial Initial 
of data nodes nodes nodes nodes Average 

=25 =30 =36 =42 
Yeast cdcl5 1882x15 16 16 17 17 16.5 

Yeast elu 2020x14 16 16 16 17 16.25 

Table 7.4: Number of clusters obtained using ADSOM. 
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Figure 7.1 1: B7IC scores for yeast elu data 
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Figure 7.12: BIC scores for yeast cdcl5 data. 

In addition, ART and SOM were applied to cluster the yeast cdcl.5. It is observed 

that similar results were found using these two techniques heuristically. However, ART 

and SOM require the aid of an external validating methods. In order to find the accurate 

number of clusters from gene expression data, one usually studies internode distance as a 

function of the number of nodes. When the average internode distance does not decrease 

appreciably as more nodes are added, "overclustering" occurs. In other words, beyond 

this "saturation point," adding further nodes is not fruitful in differentiating the genes. 

For SOM, however, rather than measuring internode distance, each node's average gene 

is compared (in the Euclidean sense) to other nodes' average gene. Unfortunately, this 

measurement of "inter-average gene" distance does not probe the weights of the SOM. 

In fact, certain initial weights can create "kinks" that do not accurately cover the input 

space. These "kinks" can be better detected with internode distance than inter-average 



gene distance. Biologically, internode distance can be thought of as the distance between 

the centers of two gene clusters. 

With ART, a similar saturation point can be demonstrated by varying vigilance. 

For example, Figure 7.13 illustrates the number of nodes and their internode distance 

created by ART versus vigilance for the cdcl5 dataset. Thus both SOM's and ART can 

create different number of nodes for a given dataset. It is noted that as vigilance 

increases, the number of clusters increases while the internode distance decreases. 

Many experiments using ART and SOM algorithms were conducted with cdcl5. 

For ART, the vigilance parameter was varied from 0 to 0.7 in steps of 0.025. Vigilance 

of above 0.7 leads to more than 60 clusters. Results are the average of 5 runs. The other 

operational parameters of ART such as alpha and beta were fixed at 0.001 and 1 ("fast 

learning"); respectively; the Weber rule was used. D'(8) was approximated fiom D(8) to 

the first order. The simulation for each dataset took approximately between 7-10 minutes 

using a PC with Pentium I11 processor. From the 1% change criteria, as shown in Figure 

7.16, a good estimate for the number of clusters in each dataset and the corresponding 

vigilance were found to be 16 and 0.525, respectively. 

SOM was changed from 3 to 40 with 3 runs at each number of clusters to average 

the outcome. Conducting the experiment for each dataset approximately took about 10 

hours on the same PC as compared to minutes for ART. It is noted that the larger the 

number of genes in a dataset is the more time consuming the processing is. Figure 7.14 

shows the results of SOM for cdcl5 dataset. Again using the 1% criteria for finding the 

saturation level, the number of clusters is found to be 17, as was also the case for ART 

algorithm. 
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Figure 7.13: Number of clusters and average internode distance vs. vigilance for cdcl5. 
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Figure 7.14: Change in internode distance per cluster @'/N) vs. number of clusters (N). 
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Figure 7.15: Internode distance vs. the number of nodes for cdc15. 
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Figure 7.16: Change in average internode distance (D') per cluster (N) vs. number of 

clusters (N). 



7.5 UNC 9 Mouse Tumor Data 

Mouse data that contained 9 tumor samples from different mouse strains were 

extracted for The Jackson Laboratory (http://www.jax.org/staff/churchill/labsite/datasets/ 

expression/tumors/index.html). The 9 independent tumor samples were assayed with 18 

cDNA microarrays using dye-swap reference design. There were 15488 rows of genes 

and 36 columns representing the samples. The data after filtering (3-fold) and range 

normalization (i.e., between 0 and 1) had 12866 genes. We used the proposed ADSOM 

to cluster these tumor samples. As shown in Figure 7.17 (middle), ADSOM identified 

three distinct clusters. The first cluster contained samples 1, 2, 3, 8, and 9; second cluster 

contained samples 4, 5, and 6; third cluster contained sample 7. As shown in Figure 7.17 

(right), the tree-based index cluster validation result also identifies three clusters. 

Interpreting the results, it was observed that the first cluster contained all mammary 

tumor tissue samples; second cluster contained all normal mammary tissue samples; and 

the third cluster contained Waptag liver control samples. An interesting observation 

made is that tumors tend to cluster together than different tissues of the same strain. 

ADSOM'S results were compared with hierarchical clustering in partitioning 

these tumor samples. MA-ANOVA [40] was used to perform hierarchical clustering. 

The results obtained using the hierarchical method is shown in Figure 7.17 (left). Three 

clusters were identified which were similar to those obtained using ADSOM. However, 

interpretation of the number of clusters is user dependent. This can be a problem when 

there are a large number of clusters. 
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Figure 7.17: Results obtained using hierarchical clustering (left) and ADSOM visual 

(middle) ADSOM tree-based validation (right) for UNC 9 tumor data. 



7.6 Human Fibroblast Data 

A subset of the gene expression data provided by Iyer et al. [41] was used for this 

experiment. The full data shows the response of human fibroblast to serum, using cDNA 

microarrays representing about 8600 distinct human genes to observe the temporal 

program of transcription that underlies this response. DNA microarray hybridization was 

used to measure the temporal changes in rnRNA levels of 8613 human genes at 12 times, 

ranging from 15 minutes to 24 hours after serum simulation. The subset of 517 genes 

that were chosen on the basis of substantial change in the expression by Iyer et al. was 

considered. The data containing normalized RIG ratios was obtained from http://genome- 

www.stanford.edu/serum/data.html. 

ADSOM was applied to cluster this data set with different initial nodes such as 

16, 20, 25, and 30. Repeated trials resulted in either 10 or 11 final clusters. The location 

of the final position vectors and the results of tree-based index for 16 and 20 initial nodes 

are shown in Figure 7.18, respectively. Figure 7.19 depicts the BIC scores for five 

different models using MCLUST for the human fibroblast data. As can be seen from the 

figure, model-based clustering favors the EEE model, whose maximum BIC score is 

reached at 11 clusters. Note that ADSOM also detected 11 clusters in most cases. 

Similar number of clusters was obtained using hierarchical clustering by Iyer et al. 

Interpretation of the correct number of clusters using hierarchical clustering is, however, 

user dependent. 
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Figure 7.18: Final position vectors after using ADSOM to cluster human fibroblasts data 

with 16 initial nodes and 20 initial nodes and corresponding tree-based validation results. 
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Figure 7.18: Continued. 
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Figure 7.19: BIC scores for the human fibroblast data. 



7.7 Escherichia Coli Data 

E-coli data published by Tao et al. [22] were used in t h s  experiment. The data 

originated fiom E-coli MG1655 cultures grown under different conditions on 

(i) minimal medium containing 0.2% glucose 

(ii) rich medium with luria broth containing 0.2% glucose 

(iii) gluconate medium 

The data were determined by the Pnaorama E-coli Gene Arrays using 

hybridization of mRNA isolated from E-coli cells grown under different conditions with 

the ORF specific DAN fragments immobilized on the array followed by radioactivity 

detection and image analysis. 67% of 4900 genes in 21 functional groups are selected. 

ARer removing the data with missing points, 2768 genes are used for clustering. The 

expected "correct" number of clusters was 21. 

ADSOM was used to cluster this data set with different number of initial weights 

such as 25, 30 and 36. As depicted before, the final locations of position vectors 

converged into fewer groups in a two-dimensional space regardless of the initial number 

of nodes. We applied the tree-based validation index to estimate the optimal number of 

clusters fiom the final locations of the position vectors. As described before, the number 

of clusters at which the tree-based index reaches its highest peak can be used as an 

indicator of optimal number of clusters. The results in Figure 7.20 indicated that the 

optimal number of clusters is 21 regardless of different number of initial nodes. T h s  

experimental result showed that ADSOM gave fairly consistent number of clusters in this 

gene expression data set, thus demonstrating its effectiveness and reliability. 
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Figure. 7.20: Clustering results using ADSOM for E-coli data. 

We applied MCLUST to cluster the E-coli data with four different models as 

described in section 2.2: EI, VI, EEE, VVV. A given number of clusters is specified as 

30 and then the model parameters are estimated by the EM algorithm. The results are 

shown in Figure 7.21. 

In Figure 7.21, for each model, the BICs for different numbers of clusters are 

plotted. As described before, the large BIC indicate strong evidence for the "correct" 

number of clusters. So for each model, we can identify the optimal number of clusters by 

identifymg the peak of curves. In our experiments, only the third curve peaked at number 

of clusters as 2 1. This curve represents the model EEE. This result means that only EEE 

model can find out the "correct" number of clusters through model-based clustering. 

The data were clustered using SOM for various numbers of clusters. As shown in 

Figure 7.22, the FOM curves started to saturate at 21, detecting the actual number of 



clusters. Figure 7.23 depicts the Xie-Beni index calculated for various numbers of 

clusters after clustering the E-coli data using fuzzy c-means. As shown in the figure, the 

index didn't provide a conclusive result. 
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Figure 7.21 : Clustering results using model-based method for E-coli data. 
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Figure 7.22: Clustering results using SOM for E-coli data. 
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Figure 7.23: Clustering results using FCM for E-coli data. 



CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

This thesis introduces a novel clustering tool known as adaptive double self- 

organizing map (ADSOM). It is shown that ADSOM gives a consistent final topology 

regardless of the initial topology. This topological flexibility of ADSOM provides 

credible information about the unknown number of clusters in gene expression data. 

ADSOM accomplishes both cluster visualization and data partitioning simultaneously 

without compromising the clustering accuracy. This particular feature of ADSOM is 

achieved by adapting its free parameters during the training process. In addition, in 

combination with hierarchical clustering, a hierarchical tree-based index is introduced for 

accomplishing cluster validation reliably. 

Using model-based clustering, one can identify the "correct" number of clusters if 

the model of the data is known. Or one can find out the "good" model of the data if the 

number of clusters is known. However, if neither of the information is known, it is 

difficult to identify the "correct" number of clusters or identify the "good" model of the 

data. Other clustering methods such as ART and fuzzy c-means cannot identify the 

number of clusters without the aid of validating process, which is very time-consuming. 

In summary, the methods described in this thesis offer two main advantages. 

First, ADSOM converges to a consistent number of groups regardless of the initial 

number of nodes. This is demonstrated by testing ADSOM on artificial data as well as 

real-world gene expression data. Second, ADSOM can visually present the clusters while 
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clustering the data. With the help of a tree-based index the number of clusters is easily 

identified. The approaches eliminate the trial-and-error process as well as the heuristic 

validating process, thus saving significant computational time. 

8.2 Future Work 

This thesis offers solutions to some of the challenges existing in gene expression 

analysis such as identifying and validating number of clusters. However, there are still 

several other issues in gene expression data analysis that need U r e  investigations. 

One of the future investigations may deal with the use of the clustering results 

obtained in this thesis to identify outliers in gene expression data. If gene expression data 

are clustered using ADSOM and one cluster contains very few gene expression profiles 

relative to other clusters, the profiles may be identified as outliers. A removal of such 

profiles should not affect the cluster information in other groups. In classification 

problems, removal of outliers can improve classification accuracy. 

Furthermore, one should investigate suitable normalization methods and 

similarity measures. It is clear that normalization is a crucial step in pre-processing gene 

expression data. For the same raw data, different normalization methods may yield 

different clustering results. The selection of appropriate similarity measure for a 

normalized gene expression data set is still an unsolved issue. 

ADSOM itself has some shortcomings that call for future investigations. As 

mentioned before, only one end of the boundary that defines the ratio between s, and s,, 

was established in t h s  thesis, see Equation (5.12). As a result, ADSOM fails to provide 



satisfactory results in some cases. To alleviate this problem, one needs to carefully 

choose parameters m and n that are implemented in Equation (5.12) to address the other 

end of the boundary. Future work should focus on updating m and n together with 

ADSOM's weights and position vectors instead of keeping them as constant positive 

values through trial and error. Moreover the theory behind the proposed hierarchical 

tree-based index needs to be proven mathematically, although the approach has provided 

very good experimental results. 
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