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DNA microarray technology allows for the parallel analysis of the expression 

of genes in an organism. The wealth of spatio-temporal data provided by the 

technology allows us to attempt to reverse engineer the genetic network. Fuzzy 

logic has been proposed as a method of analyzing the relationships between genes 

as well as their corresponding proteins. Combinations of genes are entered into a 

fuzzy model of gene interaction and evaluated on the basis of how well the combi- 

nation fits the model. Those combinations of genes that fit the model are likely 

to be related. However, current analysis algorithms are slow and computationally 

complex, sensitive to noise in gene expression data, and only tested and validated 

on simple models of gene interaction. This thesis proposes improvements to the 

fuzzy gene modeling method by reducing the computation time, altering the model 

to make it more robust with respect to noise, and generalizing the model to accom- 

modate any combination of genes and model of gene interaction. The improved 

algorithm achieves a speed-up of 15-50%, significant resistance to noise, and a 

degree of generality that enables the analysis of large gene complexes. 
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CHAPTER 1 

Introduction 

1.1 Background 

DNA Microarray technology [l] allows us to analyze the relative expression 

levels of a group of genes of an organism simultaneously. Instead of being forced 

into only examining a few genes at  once, we now have the "whole picture'' of 

the expression of genes. Microarray technology also is relatively fast, allowing the 

quick creation of spatial data (i.e., expression levels of different cells in an organism 

at  a particular time) as well as temporal data (i.e., expression levels of the same 

cell population in a time series). 

With the new wealth of spatio-temporal data obtained from microarrays, 

many different methods have been proposed to  make sense of the data. Clustering 

algorithms have been used to  group genes by their expression profiles [2, 31 to find 

related genes. Others have attempted to reverse engineer the network of genetic 

interactions through methods such as linear matrices [4, 51, series of differential 

equations [6], and Boolean Networks [7] 

Another method that has been attempted is fuzzy logic. Woolf and Wang 

[8] have developed a fuzzy model of known gene interaction (an activator/repressor 

relationship in this case) Using a normalized subset of saccharomyces cervisae data 

from [9], they apply every possible combination of activators and repressors for 

each gene. The output of the model, which is the ideal expression of a gene that is 

regulated by that activator and repressor, is compared to  the expression level of a 

third gene known as the target gene. Gene combinations are ranked based upon the 

mean squared error between the model and the target gene and variance between 

the application of the fuzzy rules over the time period. Those combinations of 



genes that have a low error are the most likely to  exhibit an activator/repressor 

relationship. 

The method attempts to simulate what a human would do in comparing 

expression levels of genes to find the underlying relationships. Different fuzzy 

models can be developed for different models of interaction, including co-activators 

and co-repressors as well as the presence of other factors in the cell, such as proteins 

or assorted compounds necessary for transcription. The method is intuitively 

pleasing and the results are consistent with literature of genetic networks of saccha- 

romyces cervisae. The model itself is an interesting generalization of Boolean 

networks where genes are not either "on" or "off', but are often both "on" and 

"off" a t  the same time. 

While the method appears to  be effective, a few drawbacks exist: 

1. The algorithm is of 0 ( N 3 )  complexity; every triplet of genes (one as the 

activator, one as the repressor, and one as the target gene) is checked. As 

a result, large numbers of genes take a long time to  examine; the 1891 gene 

subset used by Woolf and Wang required more than 200 hours on an 8- 

processor SGI Origin 2000 system. With simple optimizations, the time 

can be dramatically reduced, but the algorithmic complexity remains. Each 

input added to the model increases the complexity by an order of magnitude; 

the time required to analyze a model with two activators and two repressors 

would be on the scale of years using similar computational resources. 

2. Microarray data is inherently noisy; most experiments cite that detectable 

changes in gene expression are limited to  detections of doubled expression 

or greater; [lo] cites a minimum detectable change of 1.8, implying a signal 

error of 29%. There are many potential causes for noise, including improper 

binding and the stochastic nature of microarray technology. Attempting to 

create a model from data that is corrupted by such a high noise margin is 

2 



extremely difficult; it is likely that the model developed will not accurately 

predict proper connections between genes. Improving microarray technology 

or experimental methods [ll] to lower the noise ratio will help reduce model 

error. However, some issues, such as the process's stochastic nature, may not 

be eliminated by new technology, and some degree of error will have to be 
I 

dealt with. Woolf and Wang's original model, as will be shown in Chapter 

5, is highly vulnerable to slight changes in the model inputs. Any noise in 

the data will dramatically affect the results. 

3. Woolf and Wang have only analyzed a simple activator-repressor model. 

More complex models that introduce multiple activators or repressors have 

not been tested. 

1.2 Purpose of the Research 

This thesis attempts to improve and expand upon the proof-of-concept 

algorithm proposed by Woolf and Wang. We propose the following solutions to 

the problems mentioned in the previous section: 

1. We propose the use of clustering gene expression data as a preprocessing 

method to eliminate combinations of genes that are not likely to fit the 

model. 

2. We propose altering the methods used by Woolf and Wang to conjoin and 

aggregate fuzzy data to reduce the sensitivity of the model to  small variations 

in the inputs while still producing valid results. 

3. We propose a generalized version of Woolf and Wang's fuzzy model to accom- 

modate any number of activators and repressors in the model. 



The above improvements will improve the performance, robustness, and 

generality of the model to make it more viable as a method for the analysis of gene 

expression data. 

1.3 Thesis Organization 

This thesis is divided into seven chapters. Chapter 2 gives an introduction 

to the concepts of genes, genetic interaction, microarray technology, and Woolf and 

Wang's algorithm. Chapter 3 discusses the ideas behind the proposed improve- 

ments to the algorithm. Chapter 4 explains the implementation of the improve- 

ments. Chapter 5 illustrates and analyzes the results of the improvements. Finally, 

Chapter 6 concludes the discussion of the topic and proposes future work on the 

method. 



CHAPTER 2 

Genes, Microarray Technology, and Fuzzy Modeling 

This chapter discusses the underlying theory behind the research. Section 

2.1 covers the basics of how genes work and methods of gene regulation. Additional 

information about gene theory can be found in [12]. Section 2.2 discusses microarray 

technology and its pertinence to gene research. Finally, Section 2.3 discusses 

previous work in fuzzy modeling of microarray data. 

2.1 Genes and Gene Interaction 

2.1.1 Gene Theory 

An individual cell is a complex entity. It must ensure its own survival, 

maintain its structure, respond to outside stimuli such as changes in temperature 

and concentration of different substances, and perform functions t o  keep the cell 

(and the rest of the organism in a multicellular organism) alive. All of a cell's 

necessary functions are directly carried out through proteins. Proteins act as struc- 

tural components or enzymes to catalyze the building or dissociation of compounds 

that allow the cell to  carry out its functions. 

The construction of these proteins is achieved through a cell's genetic material. 

Deoxyribonucleic Acid (DNA), encased within the cell nucleus, is the mechanism 

by which protein information is stored and passed on to  new cells. DNA consists 

of a chain of compounds called nucleotides that consist of a sugar-phosphate 

backbone and one of four bases: adenine (A), thymine (T), guanine (G) , and 

cytosine (C). Solitary strands of DNA are connected through bonds in the sugar- 

phosphate backbone of each nucleic acid. A pair of strands can connect through 

each nucleotide binding to  its complement base (adenine can only bind to thymine 



Figure 2.1: Structure of nucleotides and their binding (left) and DNA structure 
(right) [13] 

and vice versa, guanine can only bind to cytosine and vice versa) and coils to 

form a double helix. The structure of nucleotides and their binding, as well as the 

three-dimensional structure of DNA can be found in Figure 2.1. 

The segment of DNA that contains the code for a particular protein is known 

as a gene. The code itself can be broken down into sequences of 3 nucleotides known 

as codons, each representing an amino acid or a control code (start or stop). From a 

1-dimensional perspective, proteins consist of chains (known as polypeptide chains) 

of 20 different types of amino acids. These 20 acids, as well as codons that indicate 

the beginning and end of a gene, will require a minimum of 22 codons. Since there 

are four bases in DNA, there are 43 = 64 different codons available. Obviously, 

there are far more available codons than there are amino acids to code for, so most 

amino acids have multiple codons, reducing the probability that an improperly 

reproduced base will result in a different amino acid and thus a different protein. 



Figure 2.2: Overview of transcription and translation [14] 

DNA remains in the nucleus of a cell and cannot synthesize proteins on 

its own. Ribonucleic acid (RNA) is used as a medium to  transmit information 

from the nucleus to the rest of the cell, where the information can be used to 

construct proteins. RNA also consists of nucleic acids, but of a slightly different 

structure than DNA; thymine (T) is replaced with uracil (U) as a base and the 

sugar in the sugar-phosphate background is of a different type. The process by 

which proteins are created from the instructions provided by DNA comes in two 

steps, transcription and translation. A graphical overview of the processes of 

transcription and translation can be found in Figure 2.2. 



Transcription is the process by which RNA molecules are created for the 

construction of proteins in the cell. Three types of RNA are created by transcription: 

messenger RNA (mRNA), which carries the code for a particular protein; transfer 

RNA (tRNA), which carries a particular amino acid for protein synthesis; and 

ribosomal RNA (rRNA), which form parts of ribosomes (enzyme complexes that 

use mRNA to assemble proteins). 'Transcription of mRNA begins with the enzyme 

RNA polymerase binding to a region on the DNA strand that indicates the beginning 

of a gene, known as the promoter. Promoters are areas of DNA that allow binding 

of transcription factors (i.e., proteins that bind to DNA, altering its structure 

and allowing transcription to start at that site.) The process of binding RNA 

polymerase to a promoter is known as initiation. In the next step, known as 

elongation, the mRNA chain is constructed through the binding of RNA bases 

(adenine, uracil, guanine, and cytosine) to the exposed DNA chain, with RNA 

polymerase catalyzing the reaction. Termination takes place when the RNA 

polymerase either reaches a Stop codon or a termination factor (proteins that 

bind to DNA to prevent transcription beyond a point.) The mRNA chain may be 

processed further before being ready to be translated into a protein. tRNA and 

rRNA are also transcribed in the cell in a similar fashion. 

Translation takes place outside the nucleus and involves the creation of a 

polypeptide chain from a mRNA strand. Ribosomes, which consist of a complex 

of proteins and rRNA, bind to an mRNA strand. tRNA is used as a medium to 

bring the necessary amino acids to the ribosome. Many different tRNA sequences 

exist, each with its own 3-dimensional structure that allows a particular amino 

acid to bind to it. Each also has a site called an anticodon, that contains the 

complimentary base sequence to the codon for the amino acid it carries. The 

anticodon binds to a codon in mRNA, allowing for the binding of the amino acid 

it carries to the increasing polypeptide chain. When a Stop codon is reached 



in the mRNA/ribosome complex, translation stops and the polypeptide chain is 

separated from the ribosome. The sequence of amino acids determines how the 

polypeptide folds upon itself and thus its final 3-dimensional structure. 

For our purposes, the term "gene expression level" will refer to  the concen- 

tration of a gene's corresponding mRNA in a cell. tRNA and rRNA must be 

present in significant concentrations in order for any gene transcription and trans- 

lation to  take place. mRNA, however, varies with how much of a particular protein 

is to  be translated. A certain concentration of mRNA in a cell does not imply that 

there is a corresponding concentration of its corresponding protein but that there 

will be a t  some point in the near future depending upon the rate of translation. 

In general, higher concentrations of a gene's mRNA sequence in a cell will result 

in higher expression of the protein encoded by that mRNA sequence. 

2.1.2 Methods of Gene Interaction 

The expression of a gene and its corresponding protein can be altered, or 

regulated, a t  several points in the processes of transcription or translation: 

1. Initiation of transcription can be controlled by transcription factors that bind 

to the promoter and allow for easier transcription. Other proteins may bind 

to  transcription factors, altering their structure and rendering them unable 

to bind to the promoter, thus reducing the volume of transcription. 

2. A lack of a particular amino acid or tRNAs to carry the acid will reduce the 

rate of translation of all proteins according to  the number of that amino acid 

used in the protein. Any genes whose expression is affected by those proteins 

will also be affected. 

3. Presence or absence of different compounds can change the structures of 

proteins that may directly encourage transcription and/or translation. The 



presence or absence of these compounds may be caused by reactions of certain 

enzymes produced by other genes. 

4. Some proteins can bind to  mRNA in the cell, preventing its translation into 

a polypeptide chain. 

This list is not exhaustive; there may be other types of regulation. However, 

we can divide the types of regulation into two major categories: activators, whose 

presence allows for the expression of a gene, and repressors, whose presence prevents 

the expression of a gene. 

Activators can work through either positive or negative control. An example 

of a positive control scenario is an activator binding to  a promoter site to  allow 

transcription. A negative control scenario is an activator binding to  a repressor, 

altering its structure to  prevent repression of transcription or translation. Repressors 

can also work through positive or negative control in a similar manner. Activators 

and repressors need not be proteins; they may be other compounds in the cell that 

can alter the structure of another protein. 

Often, a gene can be directly regulated by several other genes acting as 

activators or repressors. In these cases, several proteins will combine t o  form a 

complex that interacts with gene expression processes. 

2.2 DNA Microarray Technology 

DNA Microarrays [l] attempt to analyze the expression of different genes 

in parallel on any scale up to  the entire genome of an organism. 

The construction of microarrays begins with the production of compli- 

mentary DNA (cDNA) segments that represent each gene. Each segment is the 

complement to the actual DNA sequence of a gene and differs from the corre- 

sponding mRNA sequence only in that thymine in cDNA replaces uracil in mRNA. 



Each spot on the microarray is created by inserting copies of a of one gene's cDNA 

sequence on a glass slide or other substrate by a high speed robotic process that 

physically binds the sequence to  a small spot on the slide. A spot is created for 

each gene sequence to be used in the microarray. The substrate and the spots of 

DNA sequences are collectively known as the microarray. Each spot is referred to  

as a probe. 

To measure gene expression for a cell population, mRNA is extracted from 

the cells and is reverse-transcribed into complimentary DNA (cDNA). This cDNA 

sequence is identical to the DNA sequence for the gene found in the nucleus and 

is thus complimentary to the cDNA probes on the microarray chip. The concen- 

tration of each sequence is multiplied proportionally through chemical reactions. 

Chemical dyes (often green and red in microarray experiments) are bound to the 

sequences to  allow for subsequent analysis of concentration. A solution of this 

dyed cDNA is created and exposed to the microarray. On the microarray, the 

cDNA sequences bind, or hybridize, to the probes that contain their complimentary 

sequence. After a proscribed amount of time, the remaining cDNA solution is 

washed off the chip. What remains are the probes and the cDNA sequences that 

hybridized with them. The microarray is scanned with a laser set a t  the wavelength 

of the dye's color. The florescent intensity of each spot indicates approximately 

how many copies of the gene are bound to  the spot, and thus, a relative perspective 

of the expression of that gene in the cell. The appearance of a scanned microarray 

can be found in Figure 2.3 

Unfortunately, the florescence alone tells us very little when the gene expression 

from only one population is used; we cannot directly correlate the florescence of 

a probe to  the copies of a gene on that probe. To alleviate the problem, we can 

add a second population whose cDNA sequences were treated with a different dye. 

This second population can be used as a control population; in the case of time 



Figure 2.3: A scanned DNA microarray after hybridization 

series data, the second (control) population is often the cell population at a fixed 

point of time while the first population is the same cell population a t  a later time. 

The two dyes should have colors of significantly different wavelengths to avoid 

"crosstalk", i-e., a situation where one dye affects the measured florescence of the 

other. The relative difference in florescence of the two dyes on a particular spot 

should tell us how much a gene's expression differs between the two populations. 

Expression levels can be reported as some form of difference between the two flores- 

cences, such as a ratio. Gene expression profiles can be assembled from a series of 

these differential values at different points in time. The experiments of Spellman 

et a1 [16] display gene expression timeseries as a listing of the ratioe between the 

experimental and control expression levels for each time point. 

The technology is young and still has some problems. First, the florescence 

signal is unlikely to exactly match the level of expression of each gene. The probe 

solution used is far fiom a free solution; the distribution of a certain cDNA sequence 

through the solution is not even. This problem may be partially alleviated by 

devoting several spots on the microarray to each gene and averaging the results, but 



it cannot guarantee the elimination of the problem. cDNA probes with similar, but 

not identical, sequences to a particular spot on the microarray may still hybridize 

to the spot with mixed results, exaggerating the expression of one gene, possibly at 

the expense of another. Many other issues may also exist. Kerr et a1 [15] identify 

the sources of signal error: 
1 

1. Array effects - A time series dataset may be formed over a collection of 

microarrays, each of which may have differences in cDNA spot concentration, 

substrate properties, etc. 

2. Dye effects - A chosen dye might be inherently "brighter" than the other 

and thus alter the relative florescence between the two populations. 

3. Populations - This is referred to as "varieties" in [15]. One population may 

simply have overall higher mRNA concentrations, and thus higher cDNA 

probe concentrations, due to the nature of the population or a difference in 

the number of cells used to obtain the mRNA. 

4. Genes - The importance of a particular differential change for one gene may 

be higher than that of another gene. Small changes may be important for 

some genes, but are ignored because they are so small. 

Combinations of these four sources of variation can have a significant effect 

on the relative expression of a gene from these microarray experiments. This 

variation can be viewed in terms of "noise" in our signal of gene expression for 

each gene. 



2.3 Woolf and Wang's Fuzzy Gene Model Algorithm 

As previously mentioned, a fuzzy model of gene interaction would be a 

generalization of a simple Boolean "on" and "off model; it realizes that transi- 

tionary states exist and attempts to account for them. 

Woolf and Wang's algorithm starts by selecting an appropriate subset of 

genes to  analyze. Only genes that meet set minimum expression and differential 

thresholds are used in the analysis. The differential threshold only accepts genes 

whose expression changes by a factor of a t  least 3; that is, the ratio between the 

gene's lowest and highest expression level should be a t  least 3 [8]. This ratio exceeds 

the minimum detectable change (as determined by the estimated noise level) and 

ensures that the genes used are ones that change significantly over the time series 

and thus have switched "on" or "off'. The minimum expression threshold is set to  

eliminate genes whose highest expression level is below a certain level. Differential 

changes are greater for a given absolute change if the overall expression level is low; 

a difference of 30 between local maxima and minima means a greater differential 

change when the minimum is 30 than when it is 300. Genes with low expression 

levels are thus more likely to be distorted by noise and will not serve well in 

analysis. 

Once the subset of genes has been obtained, the data is fuzzified. Each 

gene is normalized to a scale of 0 to 1, where 1 is the highest expression level 

and 0 is the lowest (these are the "on" and "off positions of Boolean data). The 

normalized data is fuzzified into three fuzzy qualifiers, "Low", "Med" , and "High". 

The membership functions can be seen in Figure 2.4. 

All possible triples of genes are applied to  a model of gene interaction shown 

in Figure 2.5. From the model, we get two outputs. The first is the model's output, 

which is compared to  the target gene and scored on basis of the Mean Squared 

Error between the modeled target output and the actual target output. The second 
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Figure 2.5: Fuzzy model of gene interaction from [8] 



output is a variance; the variance returned is the variance between the total degree 

to which each rule was fired over the time series. This serves as a confidence value 

for the model output; lower variances imply that all rules were fired nearly equally 

and the model output is indicative of the model as a whole. This does not imply 

that a gene triplet with a high model variance cannot produce a valid output. 

However, a high variance combination has not been equally handled by all rules in 

the model and we cannot be sure that the model would fit the triplet in other parts 

of the model's output space. Thus, the variance serves as a secondary supplement 

to the error score; it may have some importance when comparing the validity of 

two gene triplets with nearly identical error scores, but may not be as valid in 

comparing gene triplets with significantly different error scores. Both the error 

and the variance are multiplied by 1000 to obtain a score that is easier to read. In 

both cases, lower scores are better; low scores imply low error or variance. 

All possible triplets of genes (with each gene serving in each role in the 

model) may be examined in this manner. The program records the error and 

variance of each triplet. To save computation time and memory, error and variance 

limits can be set. If a triplet has a higher error than the specified limit, it will 

not be recorded in the results. If a particular activator and repressor combination 

has a variance above the specified limit, no other triplets with those genes in the 

activator and repressor positions will be examined. 

In [8], Woolf and Wang verified their results through a few methods. First, 

they attempted to find known gene relationships in the results. As an example in 

the paper, they were able to find many known relationships to the gene HAP1. 

Second, they searched for common pairs among the low-error gene triplets. Pairs of 

genes that appear in many triplets in the same position (e.g., gene A is expressed as 

an activator and gene C is expressed as a target in many gene triplets), it is likely 

that the two are related and the third gene in the triplets are relatively irrelevant 



to the model. The rationale can apply to either commonly-appearing activator- 

target or repressor-target pairs. The most frequently appearing pairs were usually 

biologically related. Finally, they examined the presence of transcription factors in 

the results. Transcription factors have a direct effect upon transcription of genes 

and will thus have a profound impact on gene expression. Logically, the lowest- 

error results should have a disproportionate number of transcription factors; that 

is, the probability of finding a transcription factor in a low-error gene triplet should 

be better than the probability of finding a transcription factor in the input dataset. 

The appearance of a particular gene triplet in the results does not neces- 

sarily mean that the modeled relationship exists between the two genes. Since 

there are fewer time steps than there are genes, there is no way to  develop a unique 

solution. Due to the stochastic nature of the network, it is unlikely that a unique 

solution would be right even if one were found. The validity of the results can be 

further strengthened through the results of different datasets and the union of the 

results of these disparate datasets to  find common links. The model and algorithm 

make a series of assumptions. First, it is assumed that the time from a gene's 

transcription to its translation into a protein is negligible; that is, the expression 

level of a particular gene is directly proportional to  the presence of its corre- 

sponding protein at  any point in time. This is generally not true; reaction times of 

the system are relatively slow and possibly not constant. If we assume that time 

from transcription to translation is generally consistent, then we can simply view 

the gene expression data as the protein expression data  with a time shift. Second, 

the model is deterministic, i.e., there can be only one model output for a particular 

expression level input. However, as discussed in [17], gene interaction is increas- 

ingly shown to be a stochastic process: "the number of transcription factors in a 

cell is often low ... the environment in which the gene regulatory interactions occur 

is far from free solution; and the reaction kinetics is relatively slow." The averaging 



of expression levels through using a large number of cells may eliminate some of 

these effects (by making the overall solution closer to  "average" and uniform), but 

may also distort regulatory networks to some degree [17], hindering our ability to  

extract important relationships from the genetic network. Care must be taken to 

ensure that averaging does not distort these networks. 

The model is intuitively pleasing; the method is similar to  that of a human 

expert attempting to find relationships through time series data. Fuzzy logic deals 

with uncertainty and ambiguity; it handles qualitative data and may handle the 

nonlinear, stochastic nature of the data better than other deterministic models, 

such as the Boolean model where the gene is either "on" or "off" and nothing in 

between. It is also expandable to  model any known relationships between genes 

and can be modified to handle time delays or multiple activators and/or repressors. 

However, as discussed in the introduction, there are several problems with 

the model that endanger its viability as an analysis method. First, the algorithm 

has a high algorithmic complexity; all permutations of three genes must be analyzed, 

giving the algorithm an 0 (N3)  complexity. The complexity of the model is directly 

related to  the number of inputs; a model with two activators and two repressors 

would have an 0 ( N 5 )  complexity. With each additional input, the run time of the 

algorithm increases by orders of magnitude. A model with two co-activators has 

been shown (in our experiments) to take more than 200 times longer than a model 

with only one activator. Adding another input would likely increase the run time 

by a similar factor, making the analysis of complex relationships nearly impossible 

without extremely powerful computers. Second, the output space of the model is 

highly irregular and thus vulnerable to large changes in output for a small change 

in input. Since the error of microarray data can be up to  30% or more, it is likely 

that the output of the model can be highly inaccurate. 



CHAPTER 3 

Methods to Improve the Fuzzy Gene Modelling Algorithm 

This chapter introduces the concepts behind our proposed improvements to 

the fuzzy gene modelling algorithm outlined in Chapter 1. Section 3.1 discusses 

how using clusters to approximate groups of gene expression profiles can be used 

for preprocessing to save run time. Section 3.2 discusses the potential problems of 

using the algorithm on expression data with high levels of noise and some potential 

alterations to the model to improve the response. Section 3.3 proposes a general 

model that can be used to accommodate any number of genes into the model. 

3.1 Clustering to Improve Run Time 

We can attempt to use gene clusters as metadata for the gene dataset. If 

a particular combination of clusters does not fit the model well, it is unlikely that 

any genes with similar expression profiles will fit the model well. This can be 

shown through an analysis of how the data is processed. 

3.1.1 Mat hematical Formalization 

Each gene can be represented as a vector of timeseries data. Suppose X is 

an input matrix containing a number of gene vectors xl...x, where g is the number 

of inputs in the model. Suppose that y is the output of the model y = f(X), i.e., 

the ideal expression profile of the target gene. If z is a vector representing the 

actual expression level of the target gene, the MSE of the model is: 



Where i is the index into the vector and N is the vector length (i.e., number 

of points in the time series). Now assume that X, and z, are meta-data for the 

input vectors X and z; that is, X, and z, contain general information about 

the expression level that could be provided by using cluster centers of the clusters 

closest to X and z. We can now define 6X, Gy, and Sz, where 

6y = f (X) - f (X,) 

6z = z - zm 

Therefore, 

From these values, we can establish the difference in MSE between a cluster 

center and its corresponding genes, GMSE: 

GMSE = MSE(X, z) - MSE(X,, z,) 



If the dataset is amenable to clustering (i.e., the majority of gene expression 

profiles would be close to a cluster center), we can assume that the difference 

between X and X,, as well as between z and z, is close to 0: 

If we assume that 6X is small around most input values Xo and that the 

gradient of the output space y is relatively small (which is the case for most Xo, 

as we will see in Chapter 5), 

If we substitute these values into Equation 3.2: 

Therefore, assuming that we can cluster the data so that most of the genes' 

expression profiles are relatively close to the cluster centers, cluster centers and 

their corresponding gene profiles will be similar and the difference in the MSE 

will be minimal. Thus, if a combination of cluster centers does not fit the model 

well, genes close to those cluster centers will not fit the model well. With prior 

knowledge of how cluster centers fit the model, we can eliminate combinations of 

genes whose nearest cluster center do not fit the model well, thus saving time by 

not analyzing those combinations. 



The results of a version of the algorithm with clustering will always be a 

subset of the original results; that is, the results will either be identical or missing 

some gene combinations, but there will be no new combinations of genes in the new 

results. The method would not directly affect the fuzzy model, so the output of the 

model for any combination would not change and no new low-error combinations 
I 

will be introduced. The analysis is not likely to be perfect; due to  the output space 

of the model and the inability of clustering to  completely capture the expression 

profile of a group of genes, it may be possible for a gene combination to  fit the 

model well while its corresponding cluster centers do not. However, if we choose 

proper selection criteria for which cluster combinations will be searched, we can 

reduce the likelihood of a low-error gene combination being neglected. 

There are a few approaches one could take in determining which cluster 

combinations are acceptable. One could propose to only analyze a certain percentage 

of the combinations ranked by MSE or to set an maximum error threshold for 

cluster combinations to be analyzed. In either method, setting the limits too 

strictly (i.e., a low percentage of cluster combinations are analyzed or the error 

threshold is set too low) will result in many valid gene combinations being ignored, 

while setting the limits too freely (i.e., a high percentage of cluster combinations 

are analyzed or the error threshold is set too high) will save little time as few 

invalid gene combinations are ignored. In general, it is favorable to  err on the side 

of caution and set an easily passable limit to  obtain a high percentage of a t  the 

expense of extra run time. 

3.1.2 Clustering Methods 

Clustering has already been used on microarray data to find genes with 

similar expression profiles [2], [3]. The rationale for clustering expression data 

is that genes with similar expression profiles over several different datasets are 



likely to have similar functions. Thus, one can make an educated guess about the 

function of unknown genes. 

Hierarchical clustering [2] has been used to attempt to cluster genes into a 

hierarchical tree. Upon each iteration of the algorithm, all combination of genes 

and cluster centers are analyzed under a similarity measure. The two most similar 

items (two genes, two cluster centers, or one of each) are combined into a cluster 

center, which replaces the two elements. The process continues until there is only 

one cluster center. The similarity of two genes can be measured through their 

distance from each other in the tree. The distance measure used is Euclidean, 

but other measurement methods can be used. While it has been shown to be an 

effective tool for visualization of gene expression similarities, it is not intuitive for 

selecting a set of clusters that is representative of the dataset. 

A Self-organizing Map (SOM) [18] is a clustering method similar to a k- 

means algorithm, but has a degree of self-regulation through connected networks 

of centers. Centers can be connected in either a 1 or 2-dimensional network. 

The SOM training algorithm is similar to that of the k-means algorithm, except 

whenever a center's value is updated, nearby centers are also updated to a degree 

proportional to its distance from the updated center in the network topology. The 

resulting set of clusters is more organized than that of a k-means clustering and 

is generally more representative of the input space; since the map updates all 

centers in a particular neighborhood, the cluster centers are more representative 

of the density of data in different parts of the input space. SOMs have been used 

to analyze gene expression data of yeast [3] and have been shown to find valid 

functional groups. 



3.2 Changing Fuzzy Methodology to Improve Robustness 

There are many factors to be considered when establishing a fuzzy model 

of gene interaction. The fuzzy rule base, membership functions, methods of fuzzy 

conjunction and aggregation, and defuzzification can all be changed to accom- 

modate knowledge of gene interaction. The choice of fuzzy model and its mathe- 

matical implementation will affect the model's validity and sensitivity to noise. 

Woolf and Wang's methods of conjunction, aggregation, and defuzzification produce 

valid results, but are highly susceptible to noise. 

Let us reexamine the equations of Section 3.1.1. Suppose that X, and 

z, now represent noise-distorted versions of X and z, respectively. Equation 3.2 

states: 

The difference between the normal and noise-distorted versions of X and z 

can again be expressed as 6X and 6z: 

If the error is high, we can no longer assume that either value is near 0. 

Thus, Equation 3.3 no longer holds and the MSE will be distinctly different if the 

input data is distorted by noise. We can attempt to minimize the effect by keeping 

y continuous and small around Xo so that 
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However, we must not alter the model so much as to lose its ability to 

accurately identify activator and/or repressor relationships. 

Woolf and Wang's fuzzy model does not fulfill the conditions of a continuous 

y or a low & around many values of Xo. Figure 3.1 represents the output of the 

model based upon the normalized expression levels of the activator and repressors. 

We can see that there are several discontinuities in the model and that & is small 

only in certain locations of the model output space. 



Woolf and Wang's methods of fuzzy conjunction, rule aggregation, and 

defuzzification are a hybrid of known models; conjunction of membership values is 

done through a sum function, aggregation is achieved by averaging the output of 

the rules, and defuzzification is done through a modified centroid function. 

Different fuzzy model types have been proposed with different methods of 

conjunction, aggregation, and defuzzification. We will examine two of the model 

types: 

Mamdani Model [19] - Mamdani's model is a classic model that uses the 

drastic product (i.e., minimum) operation for conjunction and a drastic sum 

(i.e., maximum) operator for rule aggregation. The model does not provide 

a set method of defuzzification; it is up to the model designer to decide the 

method, which can include mean of median (MOM), center of area (COA 

or centroid), or any other method. A minimum operator on fuzzy inputs 

makes intuitive sense for gene interaction; the truth value of a particular 

rule is going to be bound by the minimally-expressed gene. For example; 

if an activator's expression level is mostly MED and a little HIGH, while a 

repressor's expression level is mostly LOW and a little MED, the rule "If 

activator is HIGH and repressor is LOW, then target is HIGH" should be 

limited completely by the fact that the activator is not particularly HIGH. 

Standard Additive Model ( S A M )  [20] - Kosko's Standard Additive Model uses 

a product operation for conjunction, a sum operation for aggregation, and 

the centroid method for defuzzification. Centroid defuzzification is performed 

by scaling membership functions instead of clipping them a t  the level of rule 

application. 



3.3 Developing More Complex Models 

3.3.1 Background 

Although application of a simple activator/repressor/target model is helpful, 

many gene relationships are more complex. For example, the HAT coactivation 

complex in yeast consists of 11 pioteins and thus 11 activators. While it is likely 

that many pairings of those 11 proteins with the genes they activate would appear 

in the simple model, extracting the relationship may not be possible as we are only 

taking one gene into account a t  a time, rendering the simple model insufficient 

when examining more complex relationships. A general model must be developed 

that can accept an arbitrary number of genes as activators and/or repressors. 

We propose a generalized version of the model based upon the idea of 

limiting reactants. All proteins in a complex must be present to form the complex. 

If one or more of the genes are not expressed highly, the proteins they encode will 

not be expressed highly, which in turn results in low expression of the complex 

because certain component proteins are missing. Therefore, if not all of the 

activators or repressors necessary to activate or repress the target gene of the 

complex are not highly expressed, it is not likely that the complexes will have a 

significant effect on the expression of the target gene. 

3.3.2 General Model 

Again, we will suppose that X is the input of the model and y is the modc 

output. In the simple model, we can divide X into two vectors, x, and x,, which 

represent the activator and repressor expression profiles. 

We can generalize x, and x, to X, and X,, which are matrices repre- 

senting an arbitrary number of vectors of activator or repressor expression profiles. 

Suppose there exist vectors x,, and x,, where 



and 

where j is the number of activators in X,, k is the number of repressors 

in X,, and i=l:N, where N is the number of points in an expression profile. x,, 

and x,, now contain the minimum expression level for the point for all genes 

in X, and X,. We can assume x,, and x,, to be the expression profile of the 

coactivator/corepressor complex due to the concept of limiting reactants. We can 

thus use x,, and x,, as inputs to the simple model. If the model error is low, we 

make the same assumption as we did with the simple model: the combination of 

genes fits the model of gene interaction and is likely to be related in the manner 

described by the model. 

With theoretical foundation established for each section, we can now work 

on the implementation of the improvements to the model. 



CHAPTER 4 

Implementation of the Algorithm 

This chapter discusses the implementation of the ideas proposed in chapter 

3. Section 4.1 explains the experiments performed to analyze the performance of 

clustering as a preprocessing method. Section 4.2 explains how different model 

modeling methods were analyzed. Finally, Section 4.3 discusses the analysis and 

validation of the results of the general model and the effects of clustering in the 

general model. 

Woolf and Wang's algorithm was written in ANSI C and has been run on 

Unix and Windows machines. Our revisions to the algorithm expand its function- 

ality and perform a series of optimizations for the dataset, including eliminating 

gene combinations that have a high variance in the model before they are analyzed, 

changing the order in which triplets are analyzed so that the model only needs to 

be applied once per activator/repressor pair, and other code optimizations. 

4.1 Clustering to Improve Run Time 

Three public timeseries datasets were obtained from experiments in [9] and 

[16]. All three datasets were of saccharomyces cervisae under different condi- 

tions, herein referred to as cdcl5, cdc28, and elu experiments. Selection and 

normalization of genes was performed in an identical manner to Woolf and Wang's 

experiment [8]. All expression profiles that made the necessary expression cutoffs 

were filtered to eliminate high-frequency noise and extract the general shape of 

the expression profile. The filtered data was clustered using Genecluster, the 

SOM software developed for [3]. Several runs were performed for each number of 

clusters used and the results with the lowest variation between cluster nodes and 

the data were selected. The number of nodes was increased until the decrease in 



standard deviation between genes and their corresponding clusters was minimal. 

The product of clustering was two files: a file of cluster node profiles (File 1) and 

another file of gene expression profiles and the ID of the most similar cluster node 

(File 2). 

The cluster node file was run through a modified version of the algorithm 

that views the nodes as "genes" in their own right. All possible combinations were 

analyzed and scored on basis of error and rule variance as discussed in Chapter 

2. The program produces a third file (File 3) that contains each combination of 

cluster nodes and its corresponding error and variance in the model. We thus have 

our evaluation of the cluster nodes that should give us some insight as to which 

combinations of genes will fit the model well. 

The unfiltered, normalized data is reintroduced to File 2 and the algorithm 

is rerun using Files 2 and 3. Before analysis of gene combinations, each cluster 

combination and its error and variance in the model is stored locally. Analysis of 

gene combinations then commences. Before analyzing a particular triplet of genes, 

the nodes of the clusters they belong to are evaluated in one of two manners, 

depending upon the experiment: 

1. The corresponding cluster triplet must be above a certain ranking percentile 

for the cluster of the target gene. Ranking is determined by the model error 

for cluster triplets; lower error implies a higher rank. 

2. The corresponding cluster combination must have an error score below a 

previously specified threshold. 

If the gene triplet's corresponding cluster triplet does not meet the specified 

threshold, the gene triplet is not analyzed and the algorithm proceeds to the next 

triplet. 



For the percentile ranking method, experiments were run with an error 

cutoff of 2000 (implying 2% MSE) and a variance cutoff of 40000 for all combina- 

tions of: 

1. All three datasets. 

2. Numbers of clusters rangin; from 4 to 15 

3. Ranking percentile cutoffs of the top 50%, 60%, 67%, and 75% of combina- 

tions. 

For the error threshold method, experiments were run with gene error 

cutoffs of 1500, 2000, and 2500 (MSEs of 1.5-2.5%) for all combinations of: 

1. All three datasets. 

2. All numbers of clusters ranging from 12 to 15 

3. Cluster error thresholds at  several points between 7000 and 12000 (implying 

7-12% MSE) 

The reason for a smaller range of clusters in the error threshold experiments 

is due to the number of experiments required for any number of clusters as well as 

evidence from the percentile cutoff experiments (which occurred before the error 

threshold experiments) of marginal returns beyond a certain number of clusters. 

Several different error cutoffs were run to see its effect on optimal threshold. 

Each experiment was timed starting a t  the beginning of the loop of analyzing 

triplets and ending a t  the end of the loop. The number of gene triplets that passed 

error and variance cutoffs and the time required to run the program were compared 

against an experiment with the percentile cutoff a t  100% (no triplets were ignored) 

or an error threshold of 100000 (implying an MSE of loo%, meaning no triplets 

were ignored) The percentage of the full results obtained by experiment as well 
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as the percentage of the full time required were stored. The data was graphed 

as the percentage of full combinations and time required as a function of the 

number of clusters and the percentile cutoff (or error threshold cutoff) selected. 

The percentile cutoff experiments were represented in two-dimensional graphs with 

each line representing a different percentile cutoff. The error threshold experiments 
I 

were represented as a three dimensional graph with the threshold value and number 

of clusters as the independent variables. 

4.2 Changing Fuzzy Methodology to Improve Robustness 

Four different fuzzy models were tested for sensitivity to noise: 

1. Woolf and Wang's original model (sum conjunction, average aggregation, 

modified COA defuzzification) 

2. Mamdani Model (min conjunction, max aggregation, clipping COA defuzzi- 

fication) 

3. Standard Additive Model (product conjunction, sum aggregation, scaling 

COA defuzzification) 

4. Hybrid Model (product conjunction, max aggregation, scaling COA defuzzi- 

fication) 

The model output surfaces were calculated for each of the models. The 

gradient was calculated a t  increments of 0.01 and the mean and standard deviation 

of the model gradient was calculated from those datapoints. The results of the 

gradient analysis were compared against each other to compare typical model 

gradient. 



A Monte Carlo simulation was run to find the effect of noise on the model. 

The output of the original algorithm was used as a basis for gene triplets to use in 

our analysis. For each gene triplet in the results: 

1. The unnormalized data for each gene in the triplet is extracted from the 

original datafile. I 

2. Each timepoint in each of the three genes is distorted by a random amount 

of noise up to  a specified noise limit expressed as a percentage of the current 

expression level. 

3. The distorted data is normalized and applied to  the model. 

4. The new model error and variance are calculated. 

Each gene triplet goes through 20000 iterations of the process. The mean 

and standard deviation of the error and variance for the 20000 iterations are stored 

along with the original error and variance of the "noise-free" triplet ("Noise-free" 

is in quotes because the original gene expression data is itself distorted by noise; 

we only assume that it's not for the sake of experiment) 

The Monte Carlo simulation was run for noise limits a t  increments of 5% 

from 5% to 35% and on four different models. The distribution of error plots 

were made for the mean and standard deviations of noise-distorted MSEs versus 

the original MSEs for each model and noise limit and plotted a regression line on 

the new mean MSE versus the original MSE. Sensitivity to noise can be found by 

checking the equation of the regression line; a model is less sensitive to noise if the 

slope of the regression line is close to 1 and the y-intercept is close to  0. A slope of 

1 would imply that on average, all model outputs would be distorted by the same 

factor, regardless of the original error score. Minimizing the y-intercept value is 

also of interest, but is not necessary for proper operation; if we know that all error 



scores are offset by a constant due to error, we can simply raise our error cutoffs 

to get the same results. Ideally, we would want to find the regression line y = x, 

where x is the original error score, while y is the error score after noise distortion. 

Such a regression would imply that the average change in MSE is 0. However, a 

model that yields the ideal regression line may not be sufficient to produce reliable 

results; it may not be sensitive enough to properly model gene interaction. Some 

compromise between the ideal and Woolf and Wang's model is desired. 

To ensure that reduced noise sensitivity does not affect the validity of the 

results, we attempted to validate the results for each model in a manner similar to 

[8]. We checked for the detection of certain relationships mentioned in Woolf and 

Wang's paper, analyzed the enrichment of transcription factors, and looked at the 

relationships between the most commonly appearing pairs of known genes. 

4.3 Developing More Complex Models 

The generalization of the fuzzy model to accommodate any number of 

activators or inhibitors is relatively simple. The algorithm checks every combi- 

nation of A + B + 1 genes, where A is the number of activators and B is the 

number of repressors. If there are multiple activators or repressors, the expression 

profiles are combined using the min operator. The resulting three expression 

profiles (activator complex, repressor complex, and target) are applied to the model 

and analyzed in the same manner as with the simple model. 

Clustering experiments were performed and analyzed in a manner identical 

to the simple model for a model with 2 activators and 1 repressor using the saccha- 

romyces cervisae data from [9]. The number of experiments was reduced due to the 

time required and the lack of computational resources. As such, only the following 

experiments were produced: 



1. cdc28 dataset only. 

2. Ranking percentile cutoffs of the top 50%, 67%, and 75% of combinations 

with a number of clusters ranging from 4 to 15. 

3. Error cutoffs at several points between 7000 and 12000 (implying 7-12% 

MSE) with only 15 clusters. ' 

Again, the number of clusters used for the percentile cutoff experiments 

are more complete because they were completed first; it became obvious that the 

number of clusters to use should be above a certain level. 

Validation on the model was also performed in a similar manner as described 

above. Enrichment of known coactivators was also performed; known coactivators 

should be in a large percentage of results relative to the number present in the 

input dataset. 



CHAPTER 5 

Results and Analysis 

This chapter reveals and analyzes the results of the experiments proposed 

in Chapter 4. Section 5.1 shows the results of the experiments on clustering as a 

preprocessing method. Section 5.2 shows the output space, Monte Carlo simula- 

tions, and model validations for each of the proposed models. Section 5.3 shows 

the validation of the general model and the effects of clustering on the general 

model. 

5.1 Clustering to Improve Run Time 

Results in this section are obtained using the Mamdani fuzzy model for 

reasons explained in Section 5.2. As shown in [25], similar results were obtained 

using Woolf and Wang's original model. 

5.1.1 Clustering 0 bservations 

Repeated clustering of each dataset with different numbers of clusters and 

learning rates revealed that the overall variance of gene time series around cluster 

nodes changes little over different runs. Common results for standard deviations 

of genes around a cluster node as a function of the number of genes can be found 

in Figure 5.1. 

It is apparent that the gradient of each curve approaches 0 as the number of 

clusters increases and appears negligible in all of the datasets a t  about 12 clusters. 

This observation is fortunate; the amount of memory required to store the ranking 

is exponentially related to the number of inputs to the model. As the number 

of inputs increase, as is the case with the general model, the amount of extra 
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space required to  store ranking data for each additional cluster node becomes 

prohibitively large. 

5.1.2 Cluster Analysis - Percentile Cutoff 

Figures 5.2-5.4 depict the percentage graphs discussed in Section 4.1. 

The results were obtained assuming an error cutoff score of 2000 (implying 

an MSE of 2%) and a variance score of 40000. 

The most apparent observation is that the percentage of valid combina- 

tions obtained increases as the number of clusters increases (and the standard 

deviation between a gene and the nearest cluster center decreases.) However, the 

gains obtained by increasing the number of clusters is in steady decline, which 

is consistent with the findings that improvements in standard deviation around 

clusters decrease as the number of clusters increases. 

Except for a few of the experiments on the cdcl5 dataset, it is obvious that 

the time taken by the algorithm is relatively constant regardless of the number 

of clusters used. The time required is primarily dependent upon the percentile 

cutoff used. The time saved is obviously not identical to  the percentile cutoff, but 

this can be excused as some overhead for checking each gene combination for the 

cluster cutoff may account for some of the extra time. 

Another observation is that the results depend heavily upon the dataset 

used. For a particular number of clusters and percentile cutoff, the results are 

far different for the cdcl5 dataset than they are for the elu dataset. This fact 

hinders the use of this method of choosing gene combinations; the only way to  

find an optimal number of clusters and percentile cutoff is to  run the algorithm 

repeatedly, which will take longer than simply using the original algorithm. 
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Figure 5.2: Results obtained and time required for clustering method of fuzzy 
analysis for cdc28 dataset [9] using cluster error percentile cutoffs 
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Figure 5.3: Results obtained and time required for clustering method of fuzzy 
analysis for cdcl5 dataset [2] using cluster error percentile cutoffs 
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Figure 5.4: Results obtained and time required for clustering method of fuzzy 
analysis for elu dataset [2] using cluster error percentile cutoffs 



5.1.3 Cluster Analysis - Cluster Error Threshold 

A disadvantage of selecting percentages of cluster combinations, as seen in 

the previous section, is that selecting the percentage for optimal time saving and 

results is completely subjective to the dataset. Thus, a different method needs to 

be used to reliably obtain most of the results independent of the dataset. 

It was observed that, for a particular percentage of the original results 

obtained, the error score of the worst combination of clusters that was checked 

was relatively constant. This fact led to the idea of using a cluster error score 

threshold to select the cluster nodes whose corresponding genes would be analyzed. 

It is assumed that there exists some function g(h) where h is a maximum desired 

error score for gene combinations and g(h) is the corresponding minimum error 

threshold for the corresponding cluster combinations. The choice of optimal score 

threshold should be dataset independent; it should only be a function of the model 

itself and the error cutoff set for gene combinations. 

Graphs summarizing the percentage of results obtained relative to the 

original results and the percentage of the original time required can be found 

in Figures 5.5 - 5.7. The percentage of the original results and time are displayed 

as a function of the number of clusters used and the cluster error threshold. 

To analyze the accuracy of the algorithm in identifying valid gene combi- 

nations, we will define a "99.9%" point, which is the lowest cluster error threshold 

that returns 99.9% of the original algorithm's results. 

It appears that, for a given desired error cutoff the 99.9% point is independent 

of the dataset or the number of clusters used (provided we examine a near-optimal 

number of clusters). In all three datasets, the point is approximately at a threshold 

of 7500 for a desired cutoff of 1500,8000 for a desired cutoff of 2000, and 8500 for a 
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Figure 5.5: Results obtained and time required for clustering method of fuzzy 
analysis for the cdc28 dataset in [9] using absolute cluster error thresholds 
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Figure 5.6: Results obtained and time required for clustering method of fuzzy 
analysis for the cdcl5 dataset in [2] using absolute cluster error thresholds 
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Figure 5.7: Results obtained and time required for clustering method of fuzzy 
analysis for the elu datasets in [2] using absolute cluster error thresholds 



desired cutoff of 2500. For the range of gene combinations we would be most inter- 

ested in (i.e., those with an MSE of 2.5% or less), we find that the error threshold 

is linear and independent of factors other than the desired error cutoff. 

As made evident by Figures 5.5 - 5.7, the time required to run the algorithm 

in this manner is independent of the desired error cutoff and is only dependent upon 

the cluster error threshold and the dataset used. 

The cluster error threshold method allows us to have prior knowledge of 

optimal conditions and thus be able to realize the benefits of clustering as a prepro- 

cessing method. The amount of time saved varies since it becomes dependent on 

factors such as the complexity of the dataset. However, the inability to forecast 

the run time is countered by the increased ability to forecast the percentage of the 

original results produced by the new algorithm. 

5.2 Changing Fuzzy Methodology to Improve Robustness 

5.2.1 Gradient Analysis 

The output space of the four fuzzy modelling methods (Woolf and Wang, 

Mamdani, SAM, and hybrid) can be found in Figures 5.8 - 5.11. 

As can be seen in Figures 5.9 - 5.11, the three alternate models proposed 

have similar output spaces with only minor variation. Because of centroid defuzzi- 

fication, none of the alternate models can produce a model output of 1 or 0 . Thus, 

there will always be some error between a target gene and the model output as 

one time point in the gene's expression profile will have a value of 1 and another 

timepoint will have a value of 0. 

An analysis of the gradient of the output space of each model can be seen in 

Table 5.1. The highly irregular response of Woolf and Wang's model is reflected in 



Activator Expression Level Repressor Expression Level 

Figure 5.8: Output space of the Woolf & Wang model 
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Figure 5.9: Output space of the Mamdani model 
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Figure 5.11: Output space of the Hybrid model 



Mamdani 5.48 4.64 
SAM 6.57 0.68 

Hybrid 6.02 2.88 

Table 5.1: Gradient analysis of the fuzzy models. 

a high average gradient as well as the high standard deviation; most of the change 

in output is localized in small areas of the input space. The Mamdani model offers 

a much lower average gradient and standard deviation. The Standard Additive 

Model has a higher average gradient, but an extremely low change in standard 

deviation shows that the model has a more consistent gradient. The Hybrid model 

appears to be a compromise between the Mamdani model and the SAM. 

5.2.2 Monte Carlo Error Simulations 

Error simulations for 5% and 30% noise for each of the models can be found 

below in Figures 5.12 - 5.15. A more complete set of simulation graphs can be found 

in Appendix A. 

Fkom the graphs, it appears that Mamdani model produces regression lines 

with the slope closest to 1 for all potential noise distortions. This implies that, on 

average, the primary effect of noise on the model is to add a constant error offset 

to the noise-free error score. The original fit of the inputs (i.e., the noise-free error 

score) has little or no effect upon the noise-distorted data's fit of the model. If the 

standard deviation of noise-distorted error scores is also low, as is the case with 

the Mamdani model, we can say that the majority of gene input combinations are 

distorted by approximately the constant error offset. If the dataset's noise interval 

can be estimated [15], one could, while checking the results of the algorithm for 

gene combinations with a certain error score cutoff, raise the desired error cutoff 
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Figure 5.12: Monte Carlo error simulations for the Woolf & Wang model 



0 500 loo0 1500 MOO 

Old Store 
Y - I ~ Z X + I ~ W . ~  

R2 - 02735 

Slrdsrd Miat ion d Score (5%) 

Score 

Figure 5.13: Monte Carlo error simulations for the Mamdani model 
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Figure 5.14: Monte Carlo error simulations for the Standard Additive Model 
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Figure 5.15: Monte Carlo error simulations for the Hybrid model 



Model Type 
Woolf and Wang 

by the value of the constant error offset to obtain the majority of genes that are 

likely to fit the model under noise-free conditions. 

The other three models (Woolf and Wang, SAM, and Hybrid) have regression 

line slopes significantly greater than 1, implying that high-error gene combinations 

will be distorted by a disproportionate amount in the presence of noise. This makes 

analysis of results less reliable and more difficult. The standard deviation of results 

around their means are also much higher. In general, the Woolf and Wang model 

has the highest slopes and standard deviations. The Standard Additive model has 

slightly lower slopes and standard deviations. The Hybrid model produces results 

between the SAM and Mamdani models. 

Mamdani 
SAM 

Hybrid 

5.2.3 Model Validation 

TF % in results 
8.96% 

Transcription factor enrichment results can be seen in Table 5.2. The 

percentages are derived from the results of each model with an error score cutoff of 

2000 (MSE of 2%) and a variance cutoff of 20000. The "Ratio of Enrichment" is the 

ratio of percentages of results with transcription factors in them to the percentage 

of transcription factors in the input set (3.97% of the input genes in the cdc28 

dataset). 

All of the models appear to report a disproportionate amount of low-error 

results containing transcription factors. However, the Mamdani and Hybrid models 

appear to yield a higher percentage of results with transcription factors than Woolf 

Ratio of Enrichment 
2.26 

Table 5.2: Transcription factor enrichment of the fuzzy models. 

10.53% 
9.43 
10.51 

2.66 
2.38 
2.65 
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273 PUS2 alters tRNA-Leu, which inhibits LEU synthesis genes [23] 
156 Involved in different metabolisms. Only one should be active. 
145 PUS2 alters tRNA-Tyr, which inhibits translation of AR03 
138 Unknown 
127 Both activated by low nitrogen levels 
115 CYTl is directly regulated by HAP1 
95 Cbinduced in mitochondria1 mutant 
94 Both involved in cell division (mitosis/meiosis) 
86 Ceinduced during G2 

Table 5.3: Most common gene pairs in results of Mamdani model. 

and Wang's model or SAM. This may imply that these models are better a t  

extracting gene relationships. 

The algorithm's output using the Mamdani model was analyzed for known 

gene relationships. The gene relationships of the HAPl regulatory network, examined 

in [8], were found to  have similar error and variance scores as they had in [8]. Most 

of the variance scores were higher, but the variance calculations appear to produce 

higher variance scores with the Mamdani model in general, so an increased variance 

score cutoff would eliminate the problem. This shows that the Mamdani model has 

the ability to  find some known gene relationships. The most common pairs of genes 

were found and are summarized in Table 5.3. 'A' denotes the activator gene, 'B' 

denotes the repressor gene, and 'C' denotes the target. Most of the relationships 

between the genes were obtained by the Proteome YPD database [21, 221 

One thing that is apparent by the most common pairs is that the Mamdani 

model extracts many co-regulated pairs of genes. There is no known causal relation 

between the two, but they appear to  rise and fall with similar profiles of expression. 

With the use of the min operator for fuzzy conjunction, it is more likely that 

changes in a single model input will not change the output. Thus, i t  is more likely 

that a particular gene's expression timeseries will have little effect on the output 



compared to another. Thus, we are faced with increasing likelihood that frequently 

expressed pairs are in fact co-regulated and do not have a causal relationship. 

5.3 Developing More Complex Models 

Because many coactivation pr corepression complexes consist of many proteins, 

time and computational resources prohibited the search of all possible combina- 

tions of large numbers of genes. Instead, we checked the results of a model with 2 

activators and 1 repressor. If any coactivator complexes are active, pairs of member 

genes should appear in the coactivator positions. 

5.3.1 Model Validation 

Unfortunately, only six known coactivators (TSM1, SNF5, SWI1, SWI3, 

SRC1, and PGD1) are available in the data to be analyzed, most of which are 

involved in different coactivator complexes. Since the algorithm can only analyze 

genes whose expression levels have significantly changed (thus having "High" and 

"Low" expression levels), many coactivators were left out due to relatively constant 

expression over time. They may all be at a "High" or "Low" expression level, thus 

completing the complex, but we cannot discern that from the information given. 

Our only methods of validation were to check transcription factor enrichment 

as well as coactivator enrichment. Again, only 3.97% of the input genes are 

transcription factors, but 15.47% of the combinations with an error score less than 

1500 and variance score less than 20000 contain transcription factors, revealing an 

increase of a factor of 3.9. Only 0.317% of the input genes are known to be coacti- 

vators, but they appear in 0.822% of the results with the same cutoffs. Of the six 

coactivators in the input data, only two are a part of the same coactivator complex; 

SWIl and SWI3 are part of the SWI/SNF complex [24]. Both often appear in the 

same gene combinations, but with one as a coactivator and the other as a target. 



Since the known targets of the SWI/SNF complex are not in the input set, we 

cannot find many combinations where both serve as coactivators. As mentioned 

in the previous section, it is possible for coregulated genes to  appear in activator 

and target positions provided that other activators and repressors have minimal 

effect on the model output. 

More data will be needed to  prove the effectiveness of general model validation. 

A decrease in signal noise will also be beneficial; it will allow us to analyze genes 

with lower factors of change over the timeseries since we can be assured that the 

change is real and not a factor of noise. 

5.3.2 Effects of Clustering to Improve Run Time 

As expected, the time required for the analysis of a model with three input 

genes is significantly higher than that of the two input model; a three-input model 

takes approximately 75 hours with code optimizations on our test systems where 

a two-input model took less than an hour. Therefore, saving computation time 

through clustering is even more important. The time requirements also made it 

difficult to perform the same number of experiments on the general model. As 

such, our results are not as complete for the general model. We performed tests 

similar to  those performed on the two input model (cluster combination percentile 

cutoffs and maximum score cutoffs). Our results for the cdc28 dataset can be 

found in Figures 5.16 and 5.17. Figure 5.17 can be considered a cross-section of 

graphs in Figures 5.5 - 5.7 at  the point where the number of clusters is 15. 

With the percentile cutoff method, we see similar behavior to  the simple 

model in the response to  clustering. However, time savings are significantly reduced; 

a 50% percentile cutoff only saves 30% run time. Using this method with the 

general model reveals the same problem as the simple model: there is no a priori 

knowledge of the optimal cutoff point. 
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Figure 5.16: Results obtained and time required for clustering method of fuzzy 
analysis for datasets in [9] using cluster error percentile cutoffs in a 2 activator 
model 
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Figure 5.17: Results obtained and time required for clustering method of fuzzy 
analysis for datasets in [9] using error cutoff thresholds in a 2 activator model 



The cluster error threshold method fares better. The 99.9% point is slightly 

higher than with the simple model (around 9000), but there appears to be a definite 

point. The time savings is reduced to 20%, but we are still able to find the optimum 

point. It should also be considered that 20% of 75 hours (the time required to 

obtain the results of the cdc28 dataset for an error cutoff of 1500 and a variance 

cutoff of 20000, which does not encapsulate the entire set of results we would want 

to examine) is quite significant and will be even more beneficial with increased 

cutoff limits or numbers of inputs. 



CHAPTER 6 

Conclusions and Future Work 

6.1 Conclusions 

We now draw the following'conclusions addressing each point made in the 

introduction: 

1. The use of clustering as a preprocessing method can save a significant amount 

of processing time. By using a large number of clusters and setting a model- 

dependent error threshold for cluster combinations, we can effectively obtain 

the same results as the original algorithm with significantly reduced run time. 

Empirical evidence shows that the optimal cluster error threshold is linear 

and predictable. The amount of time saved while still obtaining 99.9% or 

more of the results is dependent upon the dataset, but ranges from 20-50% 

2. Altering the methods of applying the fuzzy model can produce valid results 

that are less vulnerable to  noise. In particular, the Mamdani model is quite 

resilient to noise and (on average) only adds a constant offset t o  error scores. 

This allows the user to merely set a higher error score cutoff to  obtain all valid 

results. However, more testing and validation needs to  be before concluding 

that the Mamdani model is better a t  predicting known relationships. 

3. The general model proposed in this thesis shows promise as a valid model. 

The results generated by the model enrich the presence of both transcription 

factors (which are enriched by a factor of 3.9) and known coactivators (which 

are enriched by a factor of 2.78). Unfortunately, validation could not be 

completed due to  a lack of known coactivators in the dataset. More data  

will be needed to fully validate the model. The general model also benefits 



from using clustering as a preprocessing method; the run time for the cdc28 

dataset is reduced by about 17%. As the number of inputs increases, even 

more time may be saved, even if the relative savings decreases somewhat, as 

is the case with our results. 

We can propose an overall improved method for the algorithm as follows: 

1. Perform gene selection and normalization as performed by Woolf and Wang 

PI. 

2. Run a low-pass filter through the data to  downplay minor variations and 

allow for better clustering. 

3. Create self-organizing maps for the filtered dataset. Increase the number 

of clusters until the standard deviation between a node and nearby clusters 

does not decrease much with an increase in the number of clusters. 

4. Reintroduce the unfiltered data into the resulting dataset. 

5. Run the fuzzy algorithm using the cluster node expression profiles as gene 

expression data. 

6. Run the modified algorithm (using the Mamdani model), which eliminates 

combinations of genes whose corresponding clusters do not fit the model well. 

6.2 Future Work 

While Woolf and Wang's algorithm has been expanded to  run faster and 

increase its robustness, there is still more work to  do to  make the fuzzy algorithm 

a proper tool for gene expression analysis. There are still several tasks that need 

to be completed. 



First, there must be further validation of the model as identifying valid 

gene relationships. While the Mamdani model has been shown to produce valid 

results, there is no objective way to compare its validity to that of the results of 

the Woolf and Wang, SAM, or Hybrid versions of the model. There needs to be 

some measurement of the validity of any model that will allow us to select the 

best possible version of the fuzzy model. A heuristic may be proposed through 

examining the algorithm's output with a database of all known gene relationships 

and reporting percentages of the results that are known causal relationships, known 

coregulated groups of genes, etc. A fitness score can be established using the 

number of valid causal relationships found versus the number of invalid causal 

relationships and the error scores assigned to each. Care must be taken with 

analyzing percentages, however; there may be a large number of valid relationships 

found between genes with unknown function that would not be in any database. 

Thus, absolute numbers or ratios of valid to invalid relationships in known genes 

might be a better assessment. Other methods of comparing genetic network models 

have been proposed by Wessels et a1 [26] that may serve as a good starting point 

for model analysis. 

Second, the validity of the general model must be tested further. Due to 

time and computational constraints, our analysis was limited to one form of the 

general model (2 activators, 1 repressor) and one dataset. In that dataset, there 

were few known coactivators that met the cutoffs of minimum expression level and 

ratio of change over the timeseries. More tests need to be done with more datasets 

to see if the general model extracts known relationships. 

Third, if the general model is proved to be invalid, work will need to be done 

to find what the general model should be. Development of a better general model 

may be refined through the use of neuro-fuzzy networks with gene expression data 

from known sets of coactivators and/or corepressors. 



Finally, a data mining method should be developed to  extract results of 

interest from the listing of low-error gene combinations. One cannot always draw 

the conclusion that a combination of genes has a causal relationship from one 

microarray experiment. Analysis of the results of the fuzzy algorithm on several 

different experiment timeseries would further reveal the likelihood of a certain 

relationship; if the same combination of genes fits the model in numerous timeseries, 

it is more likely that the genes are related. Work must also be done to  identify the 

difference between causal relationships and groups of genes that are simply coregu- 

lated. As shown in the validation of the Mamdani models, there are many low-error 

combinations that do not imply causal relationships but imply relationship through 

being coregulated. Clustering may also be able to  help in data  mining. If an 

activator (or group of activators) belong to  the same cluster as the target (or are 

in an adjacent cluster), the repressor (or repressors) may have little effect on the 

fuzzy model and may thus be not as likely to  reflect a causal relationship; the 

genes may simply be coregulated. Other data mining methods may be proposed 

and validated to help make more sense of the results. 
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APPENDIX A 

Monte Carlo Error Simulations For Fuzzy Models 

All Monte Carlo error simulations of the four fuzzy models (Woolf and 

Wang, Mamdani, SAM, and Hybrid) with noise margins from 5-30% can be found 

below in Figures A. l  - A.12. 
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Figure A.l :  Monte Carlo error simulations for the Woolf & Wang model (error 
5-10%) 
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Figure A.2: Monte Carlo error simulations for the Woolf & Wang model (error 
15-20%) 
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Figure A.3: Monte Carlo error simulations for the Woolf & Wang model (error 
25-35%) 
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Figure A.4: Monte Carlo error simulations for the Mamdani model (error 5-10%) 
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Figure A.5: Monte Carlo error simulations for the Mamdani model (error 1520%) 
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Figure A.6: Monte Carlo error simulations for the Mamdani model (error 25-35%) 
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Figure A.7: Monte Carlo error simulations for the Standard Additive Model (error 
5-10%) 
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Figure A.8: Monte Carlo error simulations for the Standard Additive Model (error 
15-20%) 
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Figure A.9: Monte Carlo error simulations for the Standard Additive Model (error 
25-35%) 
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Figure A.lO: Monte Carlo error simulations for the Hybrid model (error 5-10%) 
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Figure A . l l :  Monte Carlo error simulations for the Hybrid model (error 15-20%) 
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Figure A.12: Monte Carlo error simulations for the Hybrid model (error 25-35%) 
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