
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2011

The Extended Kalman-Consensus Filter
Andrew Pellett

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Computer Sciences Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Pellett, Andrew, "The Extended Kalman-Consensus Filter" (2011). Electronic Theses and Dissertations. 1593.
http://digitalcommons.library.umaine.edu/etd/1593

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Maine

https://core.ac.uk/display/217050523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/1593?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1593&utm_medium=PDF&utm_campaign=PDFCoverPages


THE EXTENDED KALMAN-CONSENSUS FILTER

By

Andrew Pellett

B.S. University of Maine, 2009

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Computer Engineering)

The Graduate School

The University of Maine

December, 2011

Advisory Committee:

Donald M. Hummels, Castle Professor of Electrical and Computer Engineering,

Advisor

Yifeng Zhu, Associate Professor of Electrical and Computer Engineering

Richard Eason, Associate Professor of Electrical and Computer Engineering



LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at The University of Maine, I agree that the Library shall make it freely available

for inspection. I further agree that permission for “fair use” copying of this thesis for

scholarly purposes may be granted by the Librarian. It is understood that any copying

or publication of this thesis for financial gain shall not be allowed without my written

permission.

Signature: Date:
Andrew Pellett



THE EXTENDED KALMAN-CONSENSUS FILTER

By Andrew Pellett

Thesis Advisor: Dr. Donald M. Hummels

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Computer Engineering)

December, 2011

An algorithm called the extended Kalman-Consensus filter is developed as an

extension of the Kalman-Consensus filter to the non-linear case. The extended Kalman-

Consensus filter is a technique for estimating the state of a non-linear process disturbed

by noise using multiple observations from a distributed set of sense nodes. All sense

nodes attempt to estimate the same state by determining how their observations affect

that state, and by communicating with neighbor nodes. The algorithm is designed to be

more accurate through measurement diversity, scalable to a large number of nodes, and

robust against loss of nodes during operation.

Simulations are used to compare the performance of the algorithm to the stan-

dard extended Kalman filter, the central extended Kalman filter, and the distributed

extended Kalman filter. The extended Kalman-Consensus filter performs more accu-

rate estimation than the standard and distributed extended Kalman filters, and is more

scalable than the central extended Kalman filter, with a similar degree of estimation

accuracy.



ACCEPTANCE STATEMENT

On behalf of the Graduate Committee for Andrew Pellett, I affirm that this

manuscript is the final and accepted thesis. Signatures of all committee members are

on file with the Graduate School at the University of Maine, 42 Stodder Hall, Orono,

Maine.

Submitted for graduation in December, 2011.

Signature: Date:
Dr. Donald M. Hummels
Professor, Electrical and Computer Engineering

ii



ACKNOWLEDGMENTS

The author would like to thank his committee, and especially committee chair

Dr. Don Hummels for providing vital help, extra teaching, and general support beyond

expectations.

The author would also like to thank his parents for continued support through

college, as well as his friends for keeping him from getting too wrapped up in work.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS.............................................................................. iii

LIST OF TABLES ....................................................................................... vi

LIST OF FIGURES..................................................................................... vii

Chapter

1. INTRODUCTION .................................................................................... 1

1.1. Background .................................................................................... 1

1.2. Purpose .......................................................................................... 2

1.3. Outline........................................................................................... 2

2. BACKGROUND CONCEPTS .................................................................... 3

2.1. Notation ......................................................................................... 3

2.2. Kinematics ..................................................................................... 4

2.2.1. Kinematic Equations ................................................................ 4

2.3. Coordinate Systems .......................................................................... 5

2.4. Quaternions .................................................................................... 5

2.5. Projection ....................................................................................... 8

2.6. The Kalman Filter ............................................................................ 9

2.6.1. Information Form ...................................................................13

2.7. The Extended Kalman Filter..............................................................14

3. THE EXTENDED KALMAN-CONSENSUS FILTER ...................................17

3.1. The Kalman-Consensus Filter............................................................17

3.2. Derivation for the Non-Linear Case ....................................................19

3.3. The Extended Kalman-Consensus Filter ..............................................22

iv



4. SIMULATION........................................................................................23

4.1. Sensor Networks.............................................................................23

4.1.1. Capabilities ...........................................................................24

4.1.2. Communication......................................................................24

4.2. Simulation Architecture....................................................................25

4.3. Kalman Filter Design.......................................................................27

4.4. Test Case.......................................................................................31

4.4.1. Sense Node Layout .................................................................31

4.4.2. Object Motion........................................................................34

5. ANALYSIS ............................................................................................36

5.1. Isolated Extended Kalman Filters .......................................................36

5.2. Central Extended Kalman Filter .........................................................42

5.3. Distributed Extended Kalman Filter ....................................................47

5.4. Extended Kalman-Consensus Filter ....................................................53

5.4.1. Long Term Behavior ...............................................................58

5.4.2. Consensus Gain Behavior.........................................................61

6. CONCLUSION.......................................................................................64

6.1. Challenges.....................................................................................64

6.1.1. Choosing a Linearization Point..................................................64

6.1.2. Ensuring Consensus ................................................................64

6.1.3. Timing .................................................................................65

6.1.4. Initial Conditions....................................................................65

6.2. Performance of the extended Kalman-Consensus filter ...........................65

6.3. Future Work...................................................................................66

REFERENCES............................................................................................67

BIOGRAPHY OF THE AUTHOR ..................................................................68

v



LIST OF TABLES

Table 2.1. Notation for quantity types................................................................ 3

Table 2.2. Newton’s dot notation for describing linear and angular kinematics........... 3

Table 2.3. Notation for specifying coordinate systems .......................................... 3

Table 2.4. Mathematical operator definitions ...................................................... 4

Table 2.5. Notation for quantities at different points on an object ............................ 8

Table 2.6. Kalman variable definitions..............................................................12

Table 4.1. Example sense node capabilities .......................................................24

vi



LIST OF FIGURES

Figure 2.1. World versus body coordinate systems ..............................................10

Figure 2.2. Kalman filter block diagram............................................................12

Figure 4.1. Simulation architecture ..................................................................26

Figure 4.2. Pentagram sense node formation......................................................32

Figure 4.3. Line sense node formation..............................................................33

Figure 4.4. Object motion ..............................................................................35

Figure 5.1. Line EKF plot ..............................................................................37

Figure 5.2. Pentagram EKF plot ......................................................................39

Figure 5.3. Line EKF error plot.......................................................................40

Figure 5.4. Pentagram EKF error plot...............................................................41

Figure 5.5. Line CEKF plot ............................................................................43

Figure 5.6. Pentagram CEKF plot....................................................................44

Figure 5.7. Line CEKF error plot.....................................................................45

Figure 5.8. Pentagram CEKF error plot ............................................................46

Figure 5.9. Line DEKF plot............................................................................48

Figure 5.10. Pentagram DEKF plot ..................................................................49

Figure 5.11. Line DEKF error plot...................................................................51

Figure 5.12. Pentagram DEKF error plot...........................................................52

Figure 5.13. Line EKCF plot ..........................................................................54

Figure 5.14. Pentagram EKCF plot ..................................................................55

Figure 5.15. Line EKCF error plot ...................................................................56

Figure 5.16. Pentagram EKCF error plot...........................................................57

Figure 5.17. Long-term line EKCF plot ............................................................59

Figure 5.18. Long-term line EKCF error plot .....................................................60

vii



Figure 5.19. Slow consensus line EKCF plot .....................................................62

Figure 5.20. Slow consensus line EKCF error plot ..............................................63

viii



Chapter 1

INTRODUCTION

1.1 Background

Determining the location and orientation of an object is a fundamental task in

many applications, from vehicle navigation, to rocket guidance, to limb tracking. There

is a limited set of physical phenomena that can be measured to help determine location

and orientation using dead reckoning, including inertial measurements (e.g. acceler-

ation, angular velocity) and magnetic measurements. Dead reckoning measurements

are often combined with some sort of absolutely referenced measurement, such as a

radionavigation measurement (e.g. GPS, LORAN), to avoid accumulation of errors

from numerical approximation of integration.

In reality, all measurements have inherent random error, but by identifying the

statistical tendencies of the error, a more accurate measurement can be obtained over

time. The Kalman filter is a common approach to this problem, and has been shown to

be the optimal estimator for a linear process disturbed by Gaussian noise.

The use of networks of sensors to match or surpass the performance of a single

sensor has become a popular area of research, and allows for less expensive, more robust

sensing systems.

This work draws from methods for tracking location and orientation, Kalman

filtering, and sensor networks to examine the performance of a distributed sensing

system for tracking the movements of an object in three dimensional space.

A similar task of distributed tracking of a target with linear kinematics has been

heavily explored in [1], [2], and [3]. The original proposed distributed Kalman filtering

algorithm involved pushing sensor and covariance data through consensus filters, then

performing a standard Kalman filter update on the consensus values. The use of consen-

sus filters allows an average value of each quantity to propogate through the network.

1



After considering various modifications of the consensus filters, this path culminated in

a type of distributed Kalman filter called the Kalman-Consensus filter which integrates

a consensus filter on the state estimate with the Kalman filter. The Kalman-Consensus

filter builds on the roots of consensus filtering, explored in [4], which aims to allow

nodes of a graph to reach a consensus on the value of some quantity by exchanging

messages between nodes.

1.2 Purpose

This research develops an algorithm for the application of a non-linear

distributed Kalman filtering technique to a set of sparsely-connected sense nodes

with the goal of tracking the location and orientation of an object moving in three

dimensional space.

This research branches from [2], but considers a similar, yet different, tracking

task, where a set of sensors on an object are used to track the object, versus a set of

sensors moving independently attempting to track a target.

1.3 Outline

Chapter 2 builds the notation used to describe the concepts underlying the work

to follow. Chapter 3 proposes an extended version of the Kalman-Consensus filter in [2]

as a technique for estimating the state of a non-linear process via distributed sensing.

The details of the simulation developed for testing is discussed in Chapter 4. Chapter

5 analyzes the characteristics of different ways of tracking the location and orienta-

tion of an object using a distributed network of sense nodes. Chapter 6 discusses the

performance of the techniques from Chapter 5, and draws a conclusion on the extended

Kalman-Consensus filter.

2



Chapter 2

BACKGROUND CONCEPTS

This chapter sets up the basic concepts and notation underlying the rest of the

work. It will be helpful to distinguish among scalar, vector, matrix, and quaternion

quantities, so the notation for each is given in Table 2.1.

s Scalar v Vector
M
∼

Matrix q Quaternion

Table 2.1. Notation for quantity types

2.1 Notation

This section is a quick introduction to the various notation to be used. More

careful descriptions of these quantities are given in the following sections.

Newton’s dot notation is used for describing linear and angular kinematics, as

shown in Table 2.2.

p Position θ Angular position
ṗ Velocity θ̇ Angular velocity
p̈ Acceleration θ̈ Angular acceleration

Table 2.2. Newton’s dot notation for describing linear and angular kinematics

The distinction between frames of reference and their associated coordinate

systems is important in some calculations, so a notation is established in Table 2.3.

Coordinate system specification will be represented as a superscript.

xB Quantity in body coordinate system
xW Quantity in world coordinate system

qB→W Coordinate transformation quaternion

Table 2.3. Notation for specifying coordinate systems

A number of less conventional mathematical operators are used, and their nota-

tion is described in 2.4.

3



? Quaternion multiply • Quaternion conjugation
× Cross product

Table 2.4. Mathematical operator definitions

2.2 Kinematics

The kinematics of an object moving in three dimensional space are considered

in the development and simulation of this research. Weak assumptions are made about

the nature of the movement, so the work is tunable to different applications, such as

tracking of cars, aircraft, and limbs, all of which have subtle but important tendencies.

A car won’t climb in altitude as quickly as an aircraft; neither a car or aircraft will

change directions nearly as quickly as a limb.

2.2.1 Kinematic Equations

Free movement in three dimensional space can be expressed using conventional

linear kinematics in combination with angular (rotational) kinematics.

Some useful relationships between linear and angular position, velocity, and

acceleration are described in Equation 2.2.1. The subscript k refers to the current

discrete time step, which has duration dt. The duration of time step dt is assumed

short (relative to the dynamics of the system), so the acceleration over dt is assumed to

be constant.

pk = pk−1 + ṗk−1 dt+
1

2
p̈k−1 dt

2

ṗk = ṗk−1 + p̈k−1 dt (2.2.1)

θ̈k−1 =
θ̇k − θ̇k−1

dt

4



2.3 Coordinate Systems

It is necessary to differentiate between quantities in the body frame of reference

versus the world frame of reference. Ultimately, the quantities in the world frame are

most useful; they describe the motion of the object from an external point of view that

can be referenced to other objects. For example, the world frame position of an aircraft

can be used in guiding a precision approach to a runway.

Not all measurements are made in the world frame, though. For instance, inertial

measurements taken on the body of the object being tracked are in a body frame that is

separate from the external world frame. This is also true of rotational measurements

from gyroscopes. While the world frame remains fixed, the body frame is constantly

changing orientation relative to the world frame, and this difference in orientation must

be kept track of in order to describe body frame quantities in the world frame, and vice

versa.

As a result, it is important to keep track of the frame of reference associated with

a quantity, as well as some way to translate between quantities in the world frame and

the body frame. Quaternions are helpful for the latter task.

2.4 Quaternions

There are a few ways to describe the orientation of an object in three dimensional

space (e.g. Euler angles, axis-angle, rotation matrix), but unit quaternions have a few

key advantages over other representations (note: only unit quaternions are considered in

this work, so the “unit” distinction will be dropped).

Quaternions are a four parameter description of rotations in three dimensional

space. The extra parameter makes the quaternion more robust. Quaternions are immune

to the phenomenon of gimbal lock (a singularity that occurs when two rotation axes

become coplanar, so there is no distinction between them, and a degree-of-freedom is

5



lost). Numerical precision is less of an issue for quaternions — a small error in quater-

nion components is a small error in represented rotation — versus rotation matrices,

which must be kept orthogonal. Quaternions are also computationally efficient.

Gyroscopes sense a rotation rate along a given axis, so their readings translate

directly to an axis-angle form. The reading can be integrated to determine an angle of

rotation about some body frame vector.

Given an axis unit vector u, and a rotation θ about u, obtaining a quaternion

representation of the rotation is straightforward, and described in Equation 2.4.1.

u = (ux, uy, uz)

q =

(
cos(

θ

2
),usin(

θ

2
)

)
=

(
cos(

θ

2
), uxsin(

θ

2
), uysin(

θ

2
), uzsin(

θ

2
)

)
(2.4.1)

For example, consider a rotation of θ about the x axis. The resulting quaternion

is shown in Equation 2.4.2.

u = (1, 0, 0)

q =

(
cos(

θ

2
), sin(

θ

2
), 0, 0

)
(2.4.2)

6



The product of two quaternions is a quaternion representating the combination

of each original quaternion’s rotation. The operation of quaternion multiplication will

be denoted by ?, and is defined in Equation 2.4.3.

qa = (a1, a2, a3, a4) qb = (b1, b2, b3, b4)

r1 = a1b1 − a2b2 − a3b3 − a4b4

r2 = a1b2 − a2b1 − a3b4 − a4b3

r3 = a1b3 − a2b4 − a3b1 − a4b2

r4 = a1b4 − a2b3 − a3b2 − a4b1

qresult = qa ? qb

= (r1, r2, r3, r4) (2.4.3)

The properties of quaternion multiplication allow for more complex quaternions

to be built up incrementally from simple quaternions, as shown in Equation 2.4.4.

qx =

(
cos(

θx
2
), sin(

θx
2
), 0, 0

)
qy =

(
cos(

θy
2
), 0, sin(

θy
2
), 0

)
(2.4.4)

qz =

(
cos(

θz
2
), 0, 0, sin(

θz
2
)

)
qnew = qold ? qx ? qy ? qz (2.4.5)

Since the rotation quaternions being used are unit quaternions, there is no

increase in magnitude over time, so the quaternion is a stable representation of overall

orientation that can be updated indefinitely, as described by Equation 2.4.5.

7



The act of rotating a vector by a quaternion is called conjugation by a quaternion.

Conjugation, denoted by • and described in Equation 2.4.6, is composed of a series of

quaternion multiplies. Conjugation requires the use of the quaternion inverse, defined

in Equation 2.4.7. Since quaternions and vectors are different types of quantities, some

padding is necessary to allow the vector quantity to be used in a quaternion multiply.

vnew = q • v

qv = (0, v1, v2, v3)

qvnew = q ? qv ? q
−1 (2.4.6)

vnew = (qvnew,2, qvnew,3, qvnew,4)

q−1 = (q1, −q2, −q3, −q4) (2.4.7)

2.5 Projection

In describing the motion of a rigid body, the quantities defined in Table 2.2 are

the primary concerns. The angular kinematics are assumed constant across the body, as

is the nature of a rigid body, but the linear kinematics require more careful consideration.

A rigid physical connection between sets of sense nodes is assumed, and is used

to describe linear movements at one point on the body given measurements at another

point. The vector r is the vector pointing from the sensing point to the tracking point.

The convention for referring to different physical positions on the object is described in

Table 2.5.

xt Quantity at tracking point
xs Quantity at sensing point
r Vector between tracking and sensing points

Table 2.5. Notation for quantities at different points on an object

The equations for this relationship begin with the simple case of expressing the

world position of a tracking point in terms of the position of a sensing point, where the

8



sensing point world position pWs and a body vector between the tracking and sensing

points r are known. Equation 2.5.1 describes this relationship, which is simple vector

addition with the added complexity of a rotating frame of reference. This relationship is

described graphically in Figure 2.1.

Observing that the change in r over time is governed by ω, the time derivative

of r can be written as Equation 2.5.2, which allows the simple position equation to be

differentiated to express the same relation for velocity and acceleration in Equations

2.5.3 and 2.5.4, respectively.

pWt = pWs + qB→WrB = pWs + rW (2.5.1)

ṙ = ω × r (2.5.2)

ṗWt = ṗWs + ṙW = ṗWs + ω × rW (2.5.3)

p̈Wt = qB→W •
(
p̈Bs︸︷︷︸

term 1

+ θ̈
B ×

(
pBt − pBs

)︸ ︷︷ ︸
term 2 (tangential)

+ θ̇
B ×

(
θ̇
B × (pBt − pBs )

)︸ ︷︷ ︸
term 3 (radial)

)
(2.5.4)

2.6 The Kalman Filter

The Kalman filter is a method for optimal estimation (least square error) of the

state of a linear process disturbed by Gaussian noise, as described by Equation 2.6.1.

The state is denoted x, while A
∼

is the process matrix, which describes how the state

evolves from one time step to the next. The Gaussian noise w is shaped by the process

noise matrixB
∼

to represent the noise that disturbs the process evolution.

Evolution of the state of the process is inferred from observations, z, which are

linearly related to the unknown state, and also disturbed by noise, as shown in Equa-

tion 2.6.2. The observation matrix H
∼

relates the state of the system to a corresponding

observation, once again disturbed by Gaussian noise, v.

Each successive state estimate is based on the previous best estimate of the

system state, which allows efficient real-time calculation. Discrete time indexes are

9



Z
B

Y
W

Y
Br

X
B

X
W

p
s

W

p
t

W

Z
W

Figure 2.1. World versus body coordinate systems

10



dropped in this Kalman filter notation (to reduce clutter), but the superscript + (e.g. x+)

is used to differentiate a quantity at the next time step from a quantity at the current time

step.

x+ = A
∼
x+B

∼
w (2.6.1)

z =H
∼
x+ v (2.6.2)

In implementation, the Kalman filter consists of two stages, where estimates of

the state are formed, and a covariance matrix representing the confidence in the state

estimate is maintained. The predict stage uses the previous state estimate and a process

matrix that describes how the linear process evolves in time to form a prediction of

the current state. This predicted state is then modified by incorporating the difference

between actual observations and an educated guess at what the observations should be.

This is called the update stage, and produces the updated state estimate, which then feeds

back into the predict stage to advance to the next time step. A block diagram overview

of the Kalman filter is shown in Figure 2.2. Equations for calculating the Kalman filter

are given in Equation 2.6.3.

Definitions of the set of variables involved in the Kalman filter are given in Table

2.6. Dimensions of each variable are given as subscripts. n represents the number of

elements in the state vector. m represents the number of observations being made. l

represents the dimension of the process noise.

11



Kalman filter

Update Predict

Updated state

Predicted state

Initial state

Figure 2.2. Kalman filter block diagram

zm×1 Observations H
∼ m×n

Observation matrix

xn×1 Actual state K
∼ n×m

Kalman gain

x̄n×1 Predicted state P
∼n×n

Predicted state covariance

x̂n×1 Updated state M
∼ n×n

Updated state covariance

wl×1 Process noise Q
∼ l×l

Process noise covariance

vm×1 Observation noise R
∼m×m

Observation noise matrix

A
∼n×n

Process matrix B
∼ n×l

Process noise matrix

Table 2.6. Kalman variable definitions

12



Update stage


x̂ = x̄+K

∼

(
z −H

∼
x̄
)

M
∼

= P
∼
−K

∼
H
∼
P
∼

Kalman gain
{
K
∼

= P
∼
H
∼

T
(
R
∼
+H

∼
P
∼
H
∼

T
)−1

H
∼
P
∼

(2.6.3)

Predict stage


x̄+ = A

∼
x̂

P
∼

+ = A
∼
M
∼
A
∼

T +B
∼
Q
∼
B
∼

T

2.6.1 Information Form

A common alteration to the Kalman filter involves using the inverse of the covari-

ance matrix and a modified version of the state vector to describe the process. This

allows multiple observations to be combined in one update stage, rather than using

multiple update stages as the traditional Kalman filter would require. Because this work

focuses on distributed measurements, it will be useful to take advantage of informa-

tion form later on. The information form of the Kalman filter equations is shown in

Equations 2.6.4 through 2.6.8.

x̂ = x̄+M
∼

(
y − S

∼
x̄
)

(2.6.4)

M
∼

= (P
∼
−1 + S

∼
)−1 (2.6.5)

S
∼
=M

∼
TR

∼
−1H

∼
(2.6.6)

x̄+ = A
∼
x̂ (2.6.7)

P
∼

+ = A
∼
M
∼
A
∼

T +B
∼
Q
∼
B
∼

T (2.6.8)

13



2.7 The Extended Kalman Filter

The Kalman filter can be extended to handle non-linear processes, as well as

non-linear observations; this is called the extended Kalman filter. This research deals

only with non-linearities in the observations, so Equation 2.7.2 replaces Equation 2.6.2,

but Equation 2.7.1 is not used in the extended Kalman filter considered here.

x+ = a(x) + b(x,w) (2.7.1)

z = h(x) + v (2.7.2)

The non-linear nature of the extended Kalman filter is realized by replacing

terms involving static matrices with functions that return similar, but dynamic, matri-

ces. When evaluated at a point in the state space, the functions (e.g. a(x)) produce

the corresponding term in the Kalman equations, which is valid only at that point in the

state space. This is illustrated in Equation 2.7.3.

a(x)|x=xk
= A

∼
xk

b(x,w)|x=xk
= B

∼
w (2.7.3)

h(x)|x=xk
=H

∼
xk

There are other non-linear Kalman filters (e.g. unscented Kalman filter), but they

are not addressed in this research.

14



The general idea behind the extended Kalman filter for a linear process with

non-linear observations is to choose a point in the state space to linearize around in

order to make an estimate of the next observation. The linearization involves calculating

the first order Taylor series expansion around the current state estimate, which requires

maintaining a Jacobian matrix of the observation matrix, as in Equation 2.7.5.

h(x) ≈ h(x̄) + dh(x̄)

dx̄︸ ︷︷ ︸
Jacobian

(x− x̄) (2.7.4)

Ȟ
∼

=
dh(x̄)

dx̄
(2.7.5)

The Jacobian matrix Ȟ
∼

describes how the observation changes for small changes

in the state, so the product of the Jacobian and the state difference gives the change in

observation between the observations at x and x̄.

Because the estimate of the next observation involves linearizing a non-linear

function, there is some amount of error introduced, so the extended Kalman filter can no

longer be shown to be an optimal estimation technique. If too much error is introduced

by the linearization, the estimate of the next observation will diverge from the true next

observation, and thereby the filter’s state estimate will diverge from the actual state. This

makes the extended Kalman filter a bit delicate, but still effective if carefully designed.

15



The equations for calculating the extended Kalman filter on a linear process with

non-linear observations are given in Equation 2.7.6.

Update stage


x̂ = x̄+K

∼
(z − h(x̄))

M
∼

= P
∼
−K

∼
Ȟ
∼
P
∼

Kalman gain
{
K
∼

= P
∼
Ȟ
∼

T
(
R
∼
+ Ȟ

∼
P
∼
Ȟ
∼

T
)−1

Ȟ
∼
P
∼

(2.7.6)

Predict stage


x̄+ = A

∼
x̂

P
∼

+ = A
∼
M
∼
A
∼

T +B
∼
Q
∼
B
∼

T

16



Chapter 3

THE EXTENDED KALMAN-CONSENSUS FILTER

The distributed Kalman-Consensus filter proposed in [2], [3] applies to a linear

process with linear observations. In this chapter, a distributed extended Kalman-

Consensus filter is proposed to handle a linear process with non-linear observations.

3.1 The Kalman-Consensus Filter

The Kalman-Consensus filter fuses the information form of the Kalman filter

with the concept of a consensus filter, creating a distributed filter that converges to

a common state estimate. This is desirable in a distributed Kalman filtering scheme,

because it eliminates the need for a single master node, making the system more robust

against losing nodes. It also makes the system more flexible, in that it is possible that

the network of nodes could be dynamic.

The consensus filter, which has roots in graph theory and linear algebra, provides

an established method for causing multiple estimates of some quantity to converge to the

same estimate. The amount of time it takes for consensus to be reached can vary widely,

and is heavily affected by the architecture of the communication network between nodes.

The Kalman-Consensus filter was proposed in [2], [3], and lead to the algorithm

described in Equations 3.1.2 through 3.1.7. The subscripts refer to a specific node. The

set of neighbor nodes that communicate to (one-way) a node i are denoted byN i, while

J i is simply the setN i with node i included.

J i =N i ∪ {i} (3.1.1)

17



Each node communicates the two quantities shown in 3.1.2, as well as the node’s

current state estimate x̄i, to all the nodes it has an outgoing communication link with.

ui =Hi
∼

TRi
∼

−1zi Ui
∼

=Hi
∼

TRi
∼

−1Hi
∼

(3.1.2)

As each node receives messages from other nodes, the receiving node sums up

the two quantities in the message, as shown in 3.1.3. This term will take the place of the

sensed observations term in the Kalman update stage.

yi =
∑
j∈Ji

uj Si
∼

=
∑
j∈Ji

Uj
∼

(3.1.3)

Equation 3.1.4 is the new version of the Kalman update stage, using the summed,

weighted sensed observations and predicted observations. The corresponding update

covariance and predict stage are given in Equations 3.1.5 through 3.1.7.

x̂i = x̄i +Mi
∼

(yi − Si
∼
x̄i) + γPi

∼

∑
j∈N i

(x̄j − x̄i) (3.1.4)

Mi
∼

= (Pi
∼

−1 + Si
∼
)−1 (3.1.5)

x̄+
i = A

∼
x̂i (3.1.6)

Pi
∼

+ = A
∼
Mi
∼
A
∼

T +B
∼
Q
∼
B
∼

T (3.1.7)

The constant ε, from Equation 3.1.8, acts as a scale factor on the consensus gain

γ in Equation 3.1.4, and is used to determine how much of an effect the consensus term

has on the update stage state estimate. In [2] and [3], there is some discussion of how

to set ε, but the general advice is that ε should be proportional to the discrete time step

size.

18



γ =
ε

‖Pi
∼
‖+ 1

‖X
∼
‖ = tr(X

∼
TX

∼
)
1
2 (3.1.8)

As discussed in [3], this Kalman-Consensus filter is not an optimal estimator

even for a process that evolves in a linear fashion with linear observations, because the

optimal Kalman gain is not used. Calculating the optimal Kalman gain seems to require

all-to-all communication, which would impair the robustness of the system.

3.2 Derivation for the Non-Linear Case

In the linear case, the Kalman-Consensus filter involves exchanging weighted

versions of the observations and measurement covariance (ui,Ui
∼

respectively) between

nodes. The non-linear case isn’t as straightforward, because the quantities being

exchanged are weighted versions of the difference between the sensed observation and

the predicted observation, expressed in Equation 3.2.2, where subscript s denotes the

sending node, and subscript c denotes the receiving and calculating node.

Ui
∼

=Hi
∼

TRi
∼

−1Hi
∼

→ Us
∼

= Ȟs
∼

T
Rs
∼

−1Ȟs
∼

(3.2.1)

ui =Hi
∼

TRi
∼

−1zi → us = Ȟs
∼

T
Rs
∼

−1(zs − hs(x̄c)) (3.2.2)

Each node calculates its own observation estimate hi(x) and Jacobian Ȟi
∼

using

its own state estimate x̄i.

When a node sums weighted observations (i.e. Equation 3.1.3), it needs to sum

using the difference between the sensed observation and predicted observation at the

calculating node’s state. This leads to a new step in the algorithm for the non-linear

case. First, consider the weighted observation being sent out by each node. Equation

3.2.3 is the same as in the linear case, and uses only each node’s own information. This

same message is sent to each other node the sending node is communicating with (i.e. a

broadcast).

19



us = Ȟs
∼

T
Rs
∼

−1(zs − hs(x̄s)) (3.2.3)

In order to find the difference between the sensed observation and predicted

observation at the calculating node’s state, it is necessary to look back at the funda-

mental linearization of the extended Kalman filter, Equation 3.2.4. This suggests a way

to calculate the sending node’s estimate of what should be observed at the calculating

node’s state, given in Equation 3.2.5.

hs(xs) ≈ hs(x̄s) + Ȟs
∼

(xs − x̄s) (3.2.4)

hs(x̄c) = hs(x̄s) + Ȟs
∼

(x̄c − x̄s) (3.2.5)

Using this result, the desired difference can be calculated as Equation 3.2.6.

Because the information form is being used, this difference needs to be weighted, as

in Equation 3.2.7. Distributing the weighting terms leads to Equation 3.2.9. The two

underlined terms are the non-linear equivalent of the two quantities that each node sends

to its neighbors in the linear Kalman-Consensus filter. Additionally, the state of each

node must be sent in order to calculate the state difference.

zs − hs(x̄c) = zs − hs(x̄s)− Ȟs
∼

(x̄c − x̄s) (3.2.6)

ds = Ȟs
∼

T
Rs
∼

−1(zs − hs(x̄c)) (3.2.7)

= Ȟs
∼

T
Rs
∼

−1(zs − hs(x̄s)− Ȟs
∼

(x̄c − x̄s)) (3.2.8)

= Ȟs
∼

T
Rs
∼

−1(zs − hs(x̄s))︸ ︷︷ ︸
us

− Ȟs
∼

T
Rs
∼

−1Ȟs
∼︸ ︷︷ ︸

Us
∼

(x̄c − x̄s) (3.2.9)

20



Finally, the receiving and calculating node must sum the ds terms for each node

that it receives a message from, as in Equation 3.2.10. The neighborhood of nodes

sending messages to the calculating node is denoted J c (includes the calculating node).

gc =
∑
s∈Jc

ds

gc =
∑
s∈Jc

us −Us
∼
(x̄c − x̄s) (3.2.10)

Equation 3.2.10 is a bit different from its linear analog in Equation 3.1.3, and

this induces a change in the non-linear update equation, Equation 3.2.11. Because the

difference yi −Si
∼
x̄i is calculated at an earlier step, Equation 3.2.10, only gc appears in

the update equation.

x̂c = x̄c +Mc
∼
gc + γPc

∼

∑
s∈Nc

(x̄s − x̄c) (3.2.11)

Mc
∼

= (Pc
∼

−1 + Sc
∼
)−1 (3.2.12)

x̄c = A∼
x̂c (3.2.13)

Pc
∼

= A
∼
Mc
∼
A
∼

T +B
∼
Q
∼
B
∼

T (3.2.14)

The consensus gain scale factor ε is still subject to the same constraints discussed

in Section 3.1 and Equations 3.1.8. Choosing ε too large amplifies the consensus term,

overpowering the effect of the Kalman filter, and provides a consensus filter tracking a

nonsense value. Choosing ε too small will cause a very large convergence time for the

consensus filter, if it converges at all.

21



3.3 The Extended Kalman-Consensus Filter

The derivation leads to the following algorithm to be run by every node in the

network:

1. Take available local measurements, zi

2. Calculate ui (Equation 3.2.2) and U
∼ i

(Equation 3.2.1)

3. Transmit ui, U∼ i
, and x̄i to neighbor nodes

4. Receive ui, U∼ i
, and x̄i from all neighbor nodes

5. Calculate gc (Equation 3.2.10)

6. Calculate update and predict stages via Equations 3.2.11 through 3.2.14

The state, x, being tracked is the state of the tracking point on the object. Each

node uses the projection techniques discussed in Section 2.5 to estimate the state of the

tracking point given measurements at its own location. The result is that each node is

estimating the state of the same point, which makes it possible to perform a consensus

operation on the state vector.

22



Chapter 4

SIMULATION

This chapter describes the simulation developed for testing the proposed

extended Kalman-Consensus filter. The architecture of the program is discussed,

followed by a description of the test case developed for comparing the proposed

algorithm to other estimation techniques.

Taking advantage of measurement diversity (multiple measurements of the same

quantity) should increase the accuracy of the overall state estimate.

4.1 Sensor Networks

Consider a set of sense nodes distributed at various well-known locations across

an object being tracked. Each sense node runs its own extended Kalman filter to track

the state of the tracking point on the object. There are a few different ways for the

sense nodes to work together to come up with a more accurate estimate. One way

involves taking in to account the node’s own observations as well as those of any nodes

it communicates with (the distributed extended Kalman filter). The proposed extended

Kalman-Consensus filter expands on this by also sharing state estimates between neigh-

bor nodes, with the intention that the state estimates of all nodes will converge to a

single, more accurate state estimate.

While actual sensors (e.g. accelerometers, gyroscopes) aren’t mentioned, the

measurements considered are limited to those that are physically possible. To illustrate

the effectiveness of the extended Kalman-Consensus filter, arrangements of accelerom-

eters, gyroscopes, and absolute position sensors (e.g. GPS) are examined.

23



4.1.1 Capabilities

Depending on the hardware configuration, a given sense node is usually only

capable of measuring a small subset of the information about the state of the process

being tracked. Three possible node types are outlined in Table 4.1.

Node type Axes Sensor type

0
x, y, z acceleration
x, y, z angular velocity

1 x, y, z position
2 x, y acceleration

Table 4.1. Example sense node capabilities

Each sense node contributes what it can to a state estimate, but that contribution

will be different for different sense node types. As a result, the dimensions of the vectors

and matrices behind the filtering will change depending on what is being observed,

but the dimensions of the state vector will remain the same as long as the dimensions

follow the pattern established in Table 2.6. This becomes important when nodes share

measurements between one another.

4.1.2 Communication

Communication between sense nodes is necessary to form an overall estimate of

object state that accounts for the various distributed measurements. Intuitively, the best

performance will be achieved when the communication graph is complete (all nodes can

talk to all nodes), but this architecture suffers from a lack of real-world robustness, and

communication complexity that increases asO(n2) with the number of nodes n.

A more feasible architecture is a relatively sparse communication graph, where

nodes communicate with their local neighbors. Making the communication graph

dynamic would make the system more robust.

In the simulations, communication between nodes occurs in both directions, but

there is no reason that the communication can’t be one-way. For example, a large

24



network could have smart nodes (sensors and filtering calculations) that take care of

their local neighborhood of dumb sensors (sensors only, no calculations), and commu-

nicate with other smart nodes in to execute the distributed filtering algorithm. This

scenario is not explored any further in this work.

4.2 Simulation Architecture

In order to test the proposed algorithm, a simulation environment was devel-

oped in MATLAB, using object-oriented design principles. A diagram of the simulation

architecture is shown in Figure 4.1. The arrows represent information being passed to

the pointed-at class. The red lines indicate information requested by the judge, blue lines

correspond to information requested by the sensors, and green lines are the inter-node

communications.

Descriptions of the important classes follow:

Node Each node contains a filter (or filters) and a set of sensors, defined by a sensor

mask indicating which quantities the sensor is capable of sensing. This makes

it easy to investigate the effects of different sensor combinations. The node also

knows its location and orientation relative to the tracking point, which is necessary

for filter calculations.

Filter The filter class implements the various Kalman filter types discussed in this work.

After a node has interrogated its sensors, it passes that information on so the filter

can make its next calculation.

World The world class is responsible for receiving queries from the sensors, and

replying with the values that the sensor should be reading to follow some

pre-determined path, taking in to account the location of the sensor on the object.

25



Node 1 Node 2

Node n-1 Node n

Judge

World

Body

Filter Filter

Filter Filter

Sensors Sensors

Sensors Sensors

Figure 4.1. Simulation architecture

26



Judge The judge checks in with all the nodes and the world every iteration, and keeps

track of the true and estimated states. The judge then plots this data for later

analysis.

4.3 Kalman Filter Design

The design parameters of the Kalman filter were chosen to fit a general case of

three dimensional motion, and were not specialized to any specific type of motion. The

matrices are formed from the general kinematic equations given in 2.2.1.

The process matrix is an 18-by-18 element matrix that describes how the state

of the process evolves from one time step to the next. The complete set of rows in the

process matrix are given in Equations 4.3.1 through 4.3.6.

27



A
∼ 1:3

=


1 0 0 dt 0 0 .5dt2 0 0 0 · · · 0

0 1 0 0 dt 0 0 .5dt2 0 0 · · · 0

0 0 1 0 0 dt 0 0 .5dt2 0 · · · 0

 (4.3.1)

A
∼ 4:6

=


0 0 0 1 0 0 dt 0 0 0 · · · 0

0 0 0 0 1 0 0 dt 0 0 · · · 0

0 0 0 0 0 1 0 0 dt 0 · · · 0

 (4.3.2)

A
∼ 7:9

=


0 0 0 0 0 0 a1 0 0 0 · · · 0

0 0 0 0 0 0 0 a1 0 0 · · · 0

0 0 0 0 0 0 0 0 a1 0 · · · 0

 (4.3.3)

A
∼ 10:12

=


0 · · · 0 1 0 0 dt 0 0 .5dt2 0 0

0 · · · 0 0 1 0 0 dt 0 0 .5dt2 0

0 · · · 0 0 0 1 0 0 dt 0 0 .5dt2

 (4.3.4)

A
∼ 13:15

=


0 · · · 0 0 0 0 1 0 0 dt 0 0

0 · · · 0 0 0 0 0 1 0 0 dt 0

0 · · · 0 0 0 0 0 0 1 0 0 dt

 (4.3.5)

A
∼ 16:18

=


0 · · · 0 0 0 0 0 0 0 a2 0 0

0 · · · 0 0 0 0 0 0 0 0 a2 0

0 · · · 0 0 0 0 0 0 0 0 0 a2

 (4.3.6)

The time step dt was chosen to be 1 for the simulations. The variables a1 and a2

determine how previous accelerations are weighted when considering the next acceler-

ation. a1 and a2 are set so that an acceleration’s impact has faded to 10% of it’s original

magnitude 4 time steps after it is introduced; the math is expressed in Equation 4.3.7.

28



a4 = .1 (4.3.7)

a2 = a1 = .5623 (4.3.8)

Each row in the process matrix corresponds to an element in the state vector,

and each column represents the contribution of that element in the state vector to the

resulting state vector. For example, in Equation 4.3.1, the element at row 1, column 9

indicates that one component of the next state vector’s position comes from the current

state vector’s acceleration multiplied by .5dt2; this is expressed in Equation 4.3.9.

x+1 = x1 + (dt)x4 + (.5dt2)x7 (4.3.9)

The process noise matrix was set to the value shown in Equation 4.3.10. The

actual process noise matrix used in each predict step will vary in dimensions, based

on the dimensions of the observation, which is determined by the node type. When

preparing to do the predict calculation, the appropriate rows (i.e. those that correspond

to the measurements being observed) from the matrix in Equation 4.3.10 are combined

to form the actualB
∼

matrix used in the calculation of P
∼

.

B
∼

= diag(b1, b1, b1, 0, 0, 0, b1, b1, b1, ...

0, 0, 0, 0, 0, 0, b2, b2, b2) (4.3.10)

29



The variables b1 and b2 combined with a1 and a2 shape a filter that controls the

effect of the process noise on the evolving state. b1 and b2 are chosen to set the variance

of the process noise to 10−4, given the a1 and a2 chosen above, and white process noise.

This is shown in Equation 4.3.11.

σ2 =
b2σ2

n

1− a2

σ2 = 10−4

σ2
n = 1

b2 = b1 = .0083 (4.3.11)

The observation noise associated with the sensors was picked as in Equation

4.3.12. In an actual application, these values would be determined by the specs of the

actual sensors being used.

R
∼

= diag(10−8, 10−8, 10−8, 10−4, 10−4, 10−4, 10−4, 10−4, 10−4, ...

10−4, 10−4, 10−4, 10−4, 10−4, 10−4, 10−4, 10−4, 10−4) (4.3.12)

30



4.4 Test Case

A test case was developed to compare the performance of the various filtering

algorithms discussed in this work.

4.4.1 Sense Node Layout

Two different sense node formations will be considered in the following exam-

ples. In the formation figures, the boxes represent sense nodes, the lines are commu-

nication links, and the circle is the tracking point. Each sense node is labelled with an

identifying number, position on the object ( (x, y, z) relative to the tracking point), and

sensing type.

The formation in Figure 4.2 is in the form of a pentagram, with each sense node

communicating with it’s adjacent sense nodes around the perimeter of the pentagram.

Each node is separated by at most 3 hops, and information propagates in both directions

around the perimeter of the pentagram.

The second formation, in Figure 4.3 is a simple line, with each sense node

communicating with only adjacent sense nodes. In this case, nodes 1 and 5 are separated

by 4 hops, and there is only one propagation path for messages.

31



Tracking point

Node 1
@ (0.951, 0.309, 0)

Type 0

Node 2
@ (0.588, −0.809, 0)

Type 0

Node 3
@ (−0.588, −0.809, 0)

Type 0

Node 4
@ (−0.951, 0.309, 0)

Type 0

Node 5
@ (0, 1, 0)

Type 1

Node Layout

Figure 4.2. Pentagram sense node formation

32



Tracking point
Node 1

@ (−2, 0, 0)
Type 0

Node 2
@ (−1, 0, 0)

Type 0

Node 3
@ (1, 0, 0)

Type 0

Node 4
@ (2, 0, 0)

Type 0

Node 5
@ (3, 0, 0)

Type 1

Node Layout

Figure 4.3. Line sense node formation

33



4.4.2 Object Motion

In order to evaluate the performance of the proposed extended Kalman-

Consensus filter and compare it to other methods, it became necessary to generate a

well-defined, predictable behavior for the object’s movement.

It’s difficult to think about defining a path (i.e. set of positions) by picking the

correct accelerations at each time step, and even more difficult to pick the corresponding

rotation rates to complete the puzzle. So the problem was approached from the opposite

direction. An equation, Equation 4.4.1, was chosen for the position of the object p as a

function of time and a constant rotational rate ω, Equation 4.4.2.

p


px = .05 ∗ 2 ∗ π ∗ t

py = 1− cos(px ∗ t)

pz = 0

(4.4.1)

ω =
.05 ∗ 2 ∗ π

4
(4.4.2)

The resulting path is shown in Figure 4.4. The plot shows the position of the

tracking point on the object (as referenced in the legend), and a vector (terminated by

an asterisk) that indicates the orientation of the object.

It is important that the chosen equations are twice differentiable, so the exact

acceleration values can be easily generated.

Every iteration of the simulation, each node’s sensors are interrogated, and the

world uses the above formulas to determine what each node should be sensing, taking

in to consideration the node’s position as well as the orientation of the object.

34



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position

pos (X)

 

p
o
s
 (

Y
)

Actual

Figure 4.4. Object motion

35



Chapter 5

ANALYSIS

The performance of the various Kalman filters investigated are compared in this

chapter.

In each case, all filters are initialized with the correct starting state.

In the following position plots, each node’s estimate of the position of the track-

ing point on the object is shown by the corresponding symbol in the plot’s legend. There

is a vector (terminated by an asterisk) attached to each symbol which indicates the esti-

mate of the orientation of the object.

The position error plots show the difference between the estimated and actual

positions of the tracking point for each node. The x, y, and z components are displayed

separately.

5.1 Isolated Extended Kalman Filters

The simplest case, where there is no communication between sense nodes,

provides a lower bound for performance of a distributed method for tracking an object.

This produces a separate estimate of the object state for each sense node.

For each sensor formation (e.g. pentagram, line), each sensor’s estimate of the

object’s position and orientation are plotted, and accompanied by a separate plot of the

error in the position estimate (i.e. difference between estimate and actual position).

Figures 5.1 and 5.2 demonstrate how the pure inertial nodes (type 0) capture the

shape of the motion well, but build up error constantly due to the error in integration,

which is unavoidable. This behavior can’t be fixed by simply allowing inertial nodes to

communicate; there needs to be another reference to pull the state estimate back towards

the actual state. A type 1 sensor (e.g. GPS) is perfect for this.

36



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (EKF − Line formation − No communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.1. Line EKF plot

37



The type 1 sensor does a remarkably good job at tracking the object’s position

by itself, but this is due to the update rate in the simulation. In reality, GPS updates are

not available at a rate that is fast enough for scenarios like precision approaches, so inte-

gration with inertial sensors is common, due to their much faster rate of measurement.

As more sensors are fused in a distributed fashion, the overall measurement system can

do a progressively better job.

Even though there is no communication between nodes, there is a slight differ-

ence in the behavior of the different sensor formations. This is due to the location of

each sensor on the object; different sensor locations induce slight differences in the

initial error. This error grows in the same way for each sensor, but the initial difference

persists.

The error plots in Figures 5.3 and 5.4 are also virtually identical. This positively

suggests that the location of the sensors doesn’t affect the position estimate, other than

the initial error in the inertial nodes discussed previously.

For most sense node types, an isolated extended Kalman filter will quickly

diverge from the actual state of the object, if it is able to track at all. In general, different

node types will encounter their own unique problems in this case:

Node type 0

Errors from integrating various quantities will build up, causing estimated state to

diverge from actual state.

Node type 1

Real-world position updates are relatively slow, and orientation isn’t tracked, so

complete three dimensional tracking isn’t feasible.

Node type 2

Measurements are only taken in two dimensions, so there is no way to track posi-

tion in three dimensional space. Also, orientation isn’t tracked.

38



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (EKF − Pentagram formation − No communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.2. Pentagram EKF plot

39



0 50 100 150
−10

0

10
Node 1 position error

0 50 100 150
−10

0

10
Node 2 position error

0 50 100 150
−10

0

10
Node 3 position error

0 50 100 150
−10

0

10
Node 4 position error

0 50 100 150
−2

0

2
x 10

−4 Node 5 position error (EKF − Line formation − No communication)

 

 

error x

error y

error z

Figure 5.3. Line EKF error plot

40



0 50 100 150
−10

0

10
Node 1 position error

0 50 100 150
−10

0

10
Node 2 position error

0 50 100 150
−10

0

10
Node 3 position error

0 50 100 150
−10

0

10
Node 4 position error

0 50 100 150
−2

0

2
x 10

−4 Node 5 position error (EKF − Pentagram formation − No communication)

 

 

error x

error y

error z

Figure 5.4. Pentagram EKF error plot

41



Node type 0+1

This node type will have the best performance, but that performance can be

improved upon by incorporating measurement diversity from multiple nodes.

5.2 Central Extended Kalman Filter

In the case of a complete communication graph, each node has access to all

observations made throughout the network, and will use those observations to calculate

an estimate of the object’s state. This is called a central extended Kalman filter, and

should provide an upper bound for performance of a distributed method for tracking an

object.

Plots of the position estimate for each node, as well as the corresponding error

plots are presented in the following figures. Each node calculates a state estimate using

the same observations, so the node position points are plotted very near one another.

The position estimates plotted in Figure 5.5 (line formation), and Figure 5.6

(pentagram formation) are almost indistinguishable, which suggests that the sensor

formation has little effect on the overall system’s state estimate. This is encouraging,

as it suggests that the sensor formation is flexible provided the right types of sensors

are mixed in. Still, more work could be done to investigate the limitations that will

likely be imposed by using less capable sensors in more ambitious configurations (e.g.

single-axis sensors communicating solely with other single-axis sensors).

There is a slight difference in the quality of the estimates of the different forma-

tions; this shows up in the following error plots. At this magnitude of error, the shape

of the error curves is significantly affected by the random error introduced by taking

measurements.

The pentagram formation error in Figure 5.8 has similar, small magnitude to that

of the line formation in Figure 5.7. This suggests that the error is mostly attributable to

the noise introduced in the observations, and not by the sensor formation. As can be

42



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (CEKF − Line formation − All−to−all communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.5. Line CEKF plot

43



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (CEKF − Pentagram formation − All−to−all communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.6. Pentagram CEKF plot

44



0 50 100 150
−5

0

5
x 10

−3 Node 1 position error

0 50 100 150
−5

0

5
x 10

−3 Node 2 position error

0 50 100 150
−5

0

5
x 10

−3 Node 3 position error

0 50 100 150
−5

0

5
x 10

−3 Node 4 position error

0 50 100 150
−5

0

5
x 10

−3 Node 5 position error (CEKF − Line formation − All−to−all communication)

 

 

error x

error y

error z

Figure 5.7. Line CEKF error plot

45



0 50 100 150
−2

0

2
x 10

−3 Node 1 position error

0 50 100 150
−2

0

2
x 10

−3 Node 2 position error

0 50 100 150
−2

0

2
x 10

−3 Node 3 position error

0 50 100 150
−2

0

2
x 10

−3 Node 4 position error

0 50 100 150
−2

0

2
x 10

−3 Node 5 position error (CEKF − Pentagram formation − All−to−all communication)

 

 

error x

error y

error z

Figure 5.8. Pentagram CEKF error plot

46



expected of a central extended Kalman filter – where each node observations from all

nodes in it’s calculations – the error characteristics of each node are extremely similar

to one another, within a given formation.

5.3 Distributed Extended Kalman Filter

Consider an incomplete communication graph where each node only communi-

cates with a few of its neighbors. In this case, the distributed extended Kalman filter

can be applied to allow the sharing of observations between neighboring nodes. This

scenario allows for more efficient scaling with an increasing number of sense nodes, as

opposed to the all-to-all communication of the central extended Kalman filter.

An issue with the distributed extended Kalman filter becomes apparent in the

line formation position plot, Figure 5.9. Not long in to the simulation, the position

sensor (node 5) becomes corrupted, estimating the state very poorly. The behavior is a

result of node 5 not making any angular measurements. The only angular information

node 5 has is from its initialized state, and the angular rate measurements from node 4’s

messages. Any slight error from node 4’s measurements causes an error in the estimated

orientation of node 5, and before long, the estimated orientation is too poor to provide a

good linearization when calculatingh(x). This effect feeds itself, until the state estimate

becomes completely corrupted.

The issue doesn’t manifest in the pentagram formation, Figure 5.10, presumably

due to the position sensor receiving angular information from more than one source. It

is unclear how fragile this issue is, but it likely depends on the actual application. In

order to be reliable, the distributed extended Kalman filter would need careful sensor

layout to prevent the corruption of more fragile sensor types; this also makes the filter

less robust against losing sensor nodes.

The error of each node in the line formation, Figure 5.11, demonstrates how the

limited communication causes issues in non-favorable formations. The nodes farther

47



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (DEKF − Line formation − Neighbor communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.9. Line DEKF plot

48



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (DEKF − Pentagram formation − Neighbor communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.10. Pentagram DEKF plot

49



away from the position sensor, don’t benefit at all from the position measurements,

making them only slightly more effective than isolated extended Kalman filters. Node 4

begins by tracking a similar error curve to that of node 5, but doesn’t become corrupted

when node 5 does. Node 4 keeps track of its own orientation, which is influenced by

angular measurements from node 4 and node 3, so it is still able to linearize and make

use of the position observations from node 5 (node 5 is still making good observations,

despite having a bad orientation estimate).

The pentagram formation displays less error, Figure 5.12, but the same behav-

ior; the nodes farther away from the position sensor don’t receive any benefit from the

position sensor. Positive behavior is shown in the nodes adjacent to the position sensor;

nodes 1 and 4 take on an error characteristic very similar to that of the position sensor.

The distributed extended Kalman filter shows improvement in scalibility, and

promise in sharing observations between nodes, but comes up short as a flexible and

robust solution for distributed non-linear estimation.

50



0 50 100 150
−5

0

5

10
Node 1 position error

0 50 100 150
−5

0

5

10
Node 2 position error

0 50 100 150
−5

0

5

10
Node 3 position error

0 50 100 150
−0.1

0

0.1
Node 4 position error

0 50 100 150
−5

0

5

10
Node 5 position error (DEKF − Line formation − Neighbor communication)

 

 

error x

error y

error z

Figure 5.11. Line DEKF error plot

51



0 50 100 150
−0.01

0

0.01
Node 1 position error

0 50 100 150
−10

0

10
Node 2 position error

0 50 100 150
−10

0

10
Node 3 position error

0 50 100 150
−0.01

0

0.01
Node 4 position error

0 50 100 150
−5

0

5
x 10

−3 Node 5 position error (DEKF − Pentagram formation − Neighbor communication)

 

 

error x

error y

error z

Figure 5.12. Pentagram DEKF error plot

52



5.4 Extended Kalman-Consensus Filter

The proposed extended Kalman-Consensus filter builds on the scalability and

local communication of the distributed extended Kalman filter by adding a consensus

on the state estimate. In the following simulations, the value of the consensus gain scale

factor ε was chosen to be:

ε = .8

This value was chosen according to the guidelines in Sections 3.1 and 3.2, and

tweaked to create a reasonable convergence time in the test case. The behavior of the

line formation in Figure 5.13 is encouraging; each sensor’s estimates begin following

their usual track, but are quickly pulled together by the consensus.

The pentagram formation performs in a similar fashion in Figure 5.14, but

exhibits a quicker convergence time. This suggests that some sensor formations will

perform more favorably than others. Specifically, the closed loop of the pentagram

formation allows quicker propagation of the state between the nodes, as opposed to the

open-ended line formation.

The error plot of the line formation in Figure 5.15 reveals more details which

further support the characterization of the proposed filter. The nodes farther away from

the position sensor take longer to converge to the better state estimate. In each of the

nodes from node 1, to node 2, to node 3, the shape of the error curve becomes more like

that of the least-error curve of node 5, suggesting that the nodes are converging properly

to an estimate with as little error as possible.

The pentagram formation error plot in Figure 5.16 exhibits the same characteris-

tics. The nodes farthest away from the least-error node converge just a bit more slowly

than the nearer nodes, eventually agreeing on a state estimate with low error.

53



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (DEKCF − Line formation − Neighbor communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.13. Line EKCF plot

54



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (DEKCF − Pentagram formation − Neighbor communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.14. Pentagram EKCF plot

55



0 50 100 150
−1

0

1

2
Node 1 position error

0 50 100 150
−1

0

1

2
Node 2 position error

0 50 100 150
−0.5

0

0.5

1
Node 3 position error

0 50 100 150
−0.5

0

0.5
Node 4 position error

0 50 100 150
−0.5

0

0.5
Node 5 position error (DEKCF − Line formation − Neighbor communication)

 

 

error x

error y

error z

Figure 5.15. Line EKCF error plot

56



0 50 100 150
−0.1

0

0.1
Node 1 position error

0 50 100 150
−0.5

0

0.5

1
Node 2 position error

0 50 100 150
−0.5

0

0.5

1
Node 3 position error

0 50 100 150
−0.1

0

0.1
Node 4 position error

0 50 100 150
−0.1

0

0.1
Node 5 position error (DEKCF − Pentagram formation − Neighbor communication)

 

 

error x

error y

error z

Figure 5.16. Pentagram EKCF error plot

57



5.4.1 Long Term Behavior

The previous plots have made a strong case for the behavior of the extended

Kalman-Consensus filter in terms of the ability to induce convergence between the

nodes. In order to compare the error magnitude performance, a longer simulation was

run to allow the error to settle. The line formation was put through the same simulation

for five times as long, and the resulting position plot is shown in Figure 5.17.

After all node’s estimates have converged, they stay locked together with no

signs of divergence. The error plot in Figure 5.18 tells the same story, but also shows

the error converging to within an envelope of approximately the same magnitude as that

of the central extended Kalman filter.

The simulations suggest that the proposed extended Kalman-Consensus filter is

capable of achieving estimation accuracy comparable to that of the central extended

Kalman filter, while maintaining greater scalability.

58



0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10

12  
Node position (DEKCF − Line formation − Neighbor communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.17. Long-term line EKCF plot

59



0 200 400 600
−1

0

1

2
Node 1 position error

0 200 400 600
−1

0

1

2
Node 2 position error

0 200 400 600
−0.5

0

0.5

1
Node 3 position error

0 200 400 600
−0.5

0

0.5
Node 4 position error

0 200 400 600
−0.5

0

0.5
Node 5 position error (DEKCF − Line formation − Neighbor communication)

 

 

error x

error y

error z

Figure 5.18. Long-term line EKCF error plot

60



5.4.2 Consensus Gain Behavior

A smaller consensus gain scale factor will cause slower convergence of the state

estimates of the nodes to one another. The previous choice of ε caused aggresive conver-

gence; now a more relaxed ε will be examined:

ε = .4

This behavior is illustrated in the position plot in Figure 5.19 and the correspond-

ing position error plot, Figure 5.20.

61



0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12  
Node position (DEKCF − Line formation − Neighbor communication)

pos (X)

 

p
o
s
 (

Y
)

Actual

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 5.19. Slow consensus line EKCF plot

62



0 50 100 150
−1

0

1

2
Node 1 position error

0 50 100 150
−1

0

1

2
Node 2 position error

0 50 100 150
−0.5

0

0.5

1
Node 3 position error

0 50 100 150
−0.5

0

0.5
Node 4 position error

0 50 100 150
−0.5

0

0.5
Node 5 position error (DEKCF − Line formation − Neighbor communication)

 

 

error x

error y

error z

Figure 5.20. Slow consensus line EKCF error plot

63



Chapter 6

CONCLUSION

6.1 Challenges

6.1.1 Choosing a Linearization Point

Choice of a state estimate to linearize around is probably the most challenging

difference to overcome between a linear Kalman filter and a non-linear Kalman filter. As

established in Section 2.7, a poor choice of linearization point can easily cause the filter

to diverge from the correct state. This problem is amplified, because in the distributed

case there are now n choices of linearization points, one for each sense node, and each

one is potentially unique. All n filters are attempting to estimate the same actual state,

so it would be helpful if some consensus could be reached for a linearization point.

The proposed extended Kalman-Consensus filter is effective in preventing the

choice of linearization point from becoming an issue, because as long as the algorithm

converges on a state estimate quickly enough (i.e. as long as the filter is well tuned),

each node is using nearly identical linearization points.

6.1.2 Ensuring Consensus

In addition to the tuning parameters that accompany any Kalman filter imple-

mentation, the extended Kalman-Consensus filter introduces the need to tune the

consensus gain scale factor ε. While a more in depth discussion of selecting ε and

convergence is presented in [3], no complete solution is found. Therefore, the choice of

ε is not straightforward, and will likely require tweaking via a guess and check method

to ensure convergence of the filter.

64



6.1.3 Timing

The timing of communication between the nodes will likely limit the number

of nodes that can communicate with each other in a given neighborhood. The latency

of the communication network and any associated overhead will place a limit on how

quickly nodes can exchange messages, and will be a major consideration when applying

the extended Kalman-Consensus filter to a new task.

6.1.4 Initial Conditions

As is the case with any extended Kalman filter, the use of linearization means

that good initial conditions can be vital to ensuring the filter is able to converge. This is

another application-specific problem, but the problem is widely known, so there is prior

work.

6.2 Performance of the extended Kalman-Consensus filter

The position error plots in Chapter 5 demonstrated that the extended Kalman-

Consensus filter is able to converge on a state estimate as anticipated, provided the filter

is properly tuned. The propogation of the state estimate between the nodes also behaves

as anticipated, with the state estimates of any pair of nodes converging towards the more

accurate estimate, and doing so more quickly when the nodes are separated by fewer

communication hops.

The proposed extended Kalman-Consensus filter scales better with an increasing

number of nodes than a central extended Kalman filter, and provides similar, if not

better, state estimation accuracy. The simulations have shown that the extended Kalman-

Consensus filter is a promising algorithm for estimating the state of a non-linear process

via distributed sensing.

65



6.3 Future Work

A more mathematically rigorous investigation of the error characteristics of the

extended Kalman-Consensus filter would allow a quantifiable description of the perfor-

mance of the filter.

More work needs to be done to determine how the formation of sensors affects

the performance of the overall system, and how well the system performs with a larger

number of sense nodes. This work laid a general framework for the extended Kalman-

Consensus filter, but a real-world application of the filter to a specific task would truly

test its usefulness. Sense node hardware could be designed, and the software could be

tweaked to apply the nodes to any of a number of tasks.

The sensor types and formations used in the preceding simulations were not

chosen in an attempt to push the limits of this type of algorithm. More work could be

done to explore those limits by testing networks of less capable (e.g. single-axis) sensors

arranged in various less-than-favorable formations.

66



REFERENCES

[1] R. Olfati-Saber, “Distributed kalman filter with embedded consensus filters,” in
Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC
’05. 44th IEEE Conference on, pp. 8179 – 8184, dec. 2005.

[2] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in Decision and
Control, 2007 46th IEEE Conference on, pp. 5492 –5498, dec. 2007.

[3] R. Olfati-Saber, “Kalman-consensus filter : Optimality, stability, and perfor-
mance,” in Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on, pp. 7036 –7042, dec. 2009.

[4] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed sensor fusion using
dynamic consensus,” http://users.cms.caltech.edu/ murray/preprints/sm05-ifac.pdf,
2005.

67



BIOGRAPHY OF THE AUTHOR

Andrew Pellett was born in Sitka, Alaska on August 13, 1987. After growing

up in Juneau, Alaska, he moved to Winthrop, Maine, where he attended Winthrop High

School, graduating in 2005.

Andrew enrolled at the University of Maine in 2005, and graduated in 2009

with his Bachelor of Science degree with a double major in Electrical Engineering and

Computer Engineering. He then continued at the University of Maine, pursuing a Master

of Science degree in Computer Engineering.

While at the University of Maine, Andrew worked as a Teaching Assistant for

ECE 486 Digital Signal Processing, and as a Research Assistant on the off semesters.

His research interests include signal processing, hardware design, and difficult problems

in general.

Andrew is a member of IEEE, and his extracurricular interests include hiking,

travel, flying, and staying active.

He is a candidate for the Master of Science degree in Computer Engineering

from the University of Maine in December 2011.

68


	The University of Maine
	DigitalCommons@UMaine
	2011

	The Extended Kalman-Consensus Filter
	Andrew Pellett
	Recommended Citation


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Background
	Purpose
	Outline

	BACKGROUND CONCEPTS
	Notation
	Kinematics
	Kinematic Equations

	Coordinate Systems
	Quaternions
	Projection
	The Kalman Filter
	Information Form

	The Extended Kalman Filter

	THE EXTENDED KALMAN-CONSENSUS FILTER
	The Kalman-Consensus Filter
	Derivation for the Non-Linear Case
	The Extended Kalman-Consensus Filter

	SIMULATION
	Sensor Networks
	Capabilities
	Communication

	Simulation Architecture
	Kalman Filter Design
	Test Case
	Sense Node Layout
	Object Motion


	ANALYSIS
	Isolated Extended Kalman Filters
	Central Extended Kalman Filter
	Distributed Extended Kalman Filter
	Extended Kalman-Consensus Filter
	Long Term Behavior
	Consensus Gain Behavior


	CONCLUSION
	Challenges
	Choosing a Linearization Point
	Ensuring Consensus
	Timing
	Initial Conditions

	Performance of the extended Kalman-Consensus filter
	Future Work

	REFERENCES
	BIOGRAPHY OF THE AUTHOR

