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Abstract: In this paper we address the problem of segmenting a trajectory based on spa-
tiotemporal criteria. We require that each segment is homogeneous in the sense that a set
of spatiotemporal criteria are fulfilled. We define different such criteria, including location,
heading, speed, velocity, curvature, sinuosity, curviness, and shape. We present an algo-
rithmic framework that allows us to segment any trajectory into a minimum number of
segments under any of these criteria, or any combination of these criteria. In this frame-
work, a segmentation can generally be computed inO(n log n) time, where n is the number
of edges of the trajectory to be segmented. We also discuss the robustness of our approach.

Keywords: spatial and spatiotemporal information systems, computational geometry,
moving objects analysis, trajectory analysis, segmentation

1 Introduction

Due to technologies such as GPS tags, trajectories are collected on a large scale. A trajec-
tory represents the locations of a moving object over a certain time interval. Typically, a
trajectory is collected by recording the location at a number of moments in time. Such a

∗This article is a revised and expanded version of a paper that appeared at ACM SIGSPATIAL 2010 [9].
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34 BUCHIN, DRIEMEL, VAN KREVELD, SACRISTÁN

sequence of points with time stamps can then be interpreted as a continuous motion path
of a moving object by some form of interpolation. The recording of locations can be done
at regular or irregular intervals. Due to noise in the GPS data certain locations can be un-
reliable or missing. In some applications the recording is speed-dependent, with higher
sampling rates if the moving object is faster.
With the existence of large collections of trajectory data, the analysis of such data has

also taken a flight. Examples are detecting flocking behavior in trajectories of animals [7],
analyzing the trajectories of several shoppers in a supermarket [25], and determining com-
muting patterns in the trajectories of people [8].
The analysis task we discuss in this paper is segmenting a trajectory. The segmentation

problem for a trajectory is to partition it into a (typically small) number of pieces, which
are called segments. (Note that segment refers to subtrajectory and not the mathematical line
segment.) The idea of segmentation is to obtain segments where movement characteristics
inside each segment are uniform in some sense. Movement characteristics are for example,
speed, heading, or curviness, or any combination of such characteristics. Segmentation
aids in understanding the behavior of animals from animal trajectories, it helps to find and
analyze patterns in movement of sports players, and is important for content-basedmotion
retrieval tasks.

start

end

Figure 1: A trajectory and three segmentations of it: cutting points are indicated by squares.

Figure 1 illustrates the segmentation problem using different criteria. To the top left, a
possible trajectory is given, based on points sampled with equal time intervals. This means
that the length of each edge is proportional to the (average) speed along that edge. The
heading along an edge is the direction from the earlier endpoint to the later endpoint. To
the top right, a segmentation is shown where the criterion is that within each segment, the
speed cannot differ more than a factor 2. Hence, a segment cannot contain two edges of
which one is more than twice as long as the other. To the bottom left, a segmentation by
heading is shown, where the criterion is that within each segment, the direction of motion
differs by at most 90◦. To the bottom right, a segmentation is shown where both criteria are
used in conjunction. In all three segmentations, the number of segments used is minimum
(3 for speed, 5 for heading, and 6 for speed and heading simultaneously).
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Related work Segmentation is generally understood as the partitioning of data into ho-
mogeneous, possibly meaningful pieces. This is true for segmentation in image process-
ing [16, 34] and DNA sequence segmentation [6], for instance. In image processing, seg-
mentation is the partitioning of a digital image into regions of pixels by similarity in color
and intensity. These regions are often meaningful parts of the image, and therefore seg-
mentation can help in image analysis.

Segmentation is also common in time-series analysis [2, 10, 19]. Again the objective is
to partition the data into homogeneous pieces. The objective may be for compact or high-
level representation, for reduction of noise, and eventually for understanding or prediction
of the behavior of the time-series data. These papers treat segmentation as a simplification
or clustering problem, where a segment basically is a continuous section of the time series
(the trajectory) that could be replaced by a single edge or median point in the resulting
segmentation. The choice of the error criterion determines in which sense the characteris-
tics of the input are kept. It is also common to assume that the number of segments to be
used is given, and a global error function should be optimized [27, 35]. The most common
techniques used for segmentation of time-series data include curve fitting [27], dynamic
programming [22, 35], and various heuristics [2, 40]. The running time is generally O(n2k),
where n is the length of the time series and k is the maximal number of segments in the
output, see also [3].

For the processing of geographic trajectories of moving objects, segmentation has also
been studied [15, 40]. The objectives are generally the same as for time-series data seg-
mentation. Some papers discuss segmentation of trajectories for the purpose of high-level
representation, or semantic annotation [19, 42]. Here the goal is it also to have as much
homogeneity within each segment as possible while using only few segments in total. Al-
ternatively, a given set of templates are used to match to parts of the trajectory to realize
semantic annotation. These papers focus more on the semantics of spatiotemporal trajecto-
ries.

Our approach to segmentation Corresponding to the most common view of segmenta-
tion, in this paper we view trajectory segmentation as the problem of partitioning a trajec-
tory into parts (segments) that are sufficiently homogeneous. We formalize this as follows.
For each relevant movement characteristic we define an attribute function that specifies a
value at every point in time, where the trajectory is defined. For instance, attributes can be
speed, heading, and curvature. Then we define criteria that specify that within any single
segment, the attribute values at all points within a segment are sufficiently similar. For
instance, the speeds should be at most 30% different within each segment. This implies
that we will have a guaranteed similarity of each incorporated attribute within each seg-
ment. Within the limitations imposed by requiring similar attribute values, we minimize
the number of segments used in the segmentation. Interestingly, this optimization problem
can be solved efficiently in many situations. Our algorithmic framework shows that this is
the case: optimal segmentation requires at most O(n log n) time for a trajectory consisting
of n edges if we use simple criteria relating to speed, heading, location, curvature, sinuos-
ity, curviness, or any combination of these. One of the main advantages of our approach is
that we can compute an optimal segmentation using multiple criteria at once.

Application areas Segmentation is used as an important step in a variety of applications.
Not surprisingly, the desired properties requested towards a segmentation often depend
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on the application domain and the exact problem at hand. We mention a few application
scenarios that we consider relevant to our setting.
Bird ecologists study recurrent patterns and behavioral changes in animal tracking data

to explain the individual’s behavior during foraging or migration [18, 37]. It is common
to split and annotate the trajectories into distinct segments, depending on the birds activ-
ity, e.g., directional flight, soaring, circling, etc. Often, this task is performed manually
by a domain expert, but the process could be automated using a segmentation algorithm,
given a formal definition of these activity states, as in [36] for example. In fact, a com-
mon approach in animal movement analysis assumes that the individual movement is a
response to a combination of internal states, physiological constraints, and environmental
factors [18, 23, 24], which can be modeled using a state-space framework [30]. For many
models, the information that defines a particular state will be encoded in the spatiotem-
poral trajectory or is available through context data. The different states of a process can
be defined manually using domain knowledge, or sometimes they can be identified using
cluster analysis [37].
State-space models are an important tool used in many research areas. Scientists study

the trajectories generated by such a model to find out more about the underlying dynamic
system. In order to simplify this analysis, the trajectories are sometimes preprocessed into
semantic label sequences, a technique which is called symbolic time-series analysis [33,39].
We think that segmentation can help in this analysis by producing more sophisticated label
sequences.
Another application is the task of context recognition for mobile phone applications.

Modern mobile devices carry sensors for acceleration, noise level, luminosity, humidity,
etc. Online segmentation algorithms for the time series composed of this data can help to
adapt the user interface and increase the usability [22].
Finally, the solutions to the segmentation problem described in this paper can be used to

detect outliers. An outlier can be considered noise or relevant information. In both cases it
is desirable to detect it in a trajectory. An outlier can (arguably) be defined as a short section
on the trajectory that represents a behavior which deviates from its context, i.e., before and
after this section. If we can identify certain attributes which have to be homogeneous along
the noise-free parts of the trajectory, then segmentation based on these attributes will reveal
the outliers as very short segments.

Overview of this paper In Section 2 we define a trajectory and the interpretation of it
as a representation of the motion path of a moving object. We also define the trajectory
segmentation problem and when criteria are monotone. In Section 3 we discuss the ba-
sic attributes location, heading, speed, and velocity, and which criteria for them can be
used for segmentation. In Section 4 we present an algorithmic framework that allows us
to efficiently segment according to a criterion provided that two basic procedures can be
given, and the criterion is monotone. We prove that for any monotone criterion we can use
a greedy strategy for segmentation to obtain an optimal solution, and hence we can avoid
dynamic programming. In Section 5 we show that for simple criteria relating to location,
heading, speed, and velocity, efficient algorithms exist to implement the basic functions.
Using the results of the previous section this immediately implies efficient algorithms for
segmentation on such a criterion. We proceed to show that multiple criteria can be com-
bined using conjunctions, disjunctions, or linear combinations within our framework. The
segmentation according to these combined criteria remains optimal and is equally efficient.
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In Section 6 we consider more complex attributes like curvature, sinuosity, and curviness,
and possible criteria for them. We will show that segmenting optimally and efficiently
on these criteria is possible as well, with the same approach. In Section 7 we show that
shape-fitting criteria can also be used in our framework. These criteria do not result in
homogeneity of some attribute value within each segment, but achieve homogeneity in a
different manner. In Section 8 we discuss robustness in relation to segmentation, and show
that it can be handled on different levels.

Additional material in this version Part of this work has been published previously in
a conference proceedings version, see [9]. The additional material provided in the current
version can be summarized as follows. We included sections which were previously omit-
ted due to space requirements and we give full proofs to all the claims that were posed in
the previous version together with an extended discussion at several places. In particular,
the paragraph on application areas in Section 1 has been added in this version and a sec-
tion on robustness, see Section 8. We give mathematical formulations of different ways to
combine criteria and show how they can be integrated in the framework, see Section 5.4.
Furthermore, we discuss a completely new type of criterion based on shape in Section 7.

2 Preliminaries

We define two types of trajectories, discrete and continuous (piecewise-linear). In both
cases, the representation of the trajectory usually follows from the way it is collected: a dis-
crete sample of time-space positions. A piecewise-linear trajectory is a continuous motion
path, while a discrete trajectory is defined only at a series of discrete points in time.

Definition 1. A discrete trajectory τ is a mapping from a series of time stamps t0, t1, . . . , tn to
the plane (or a higher-dimensional space). For any time stamp ti, we denote the location in the plane
at time ti by τ(ti). For any two times ti, tj ∈ {t0, . . . , tn} with ti ≤ tj , we denote the subtrajectory
of τ from time ti to time tj by τ [ti, tj ].

Definition 2. A piecewise-linear trajectory τ is a continuous mapping from a time interval
[t0, tn] to the plane (or a higher-dimensional space). For some sequence of time steps t0 < t1 <
· · · < tn, the locations at these times are given as vi = τ(ti) for 0 ≤ i ≤ n, and v0, v1, . . . , vn are
the vertices of τ . The location τ(t) for t ∈ [ti, ti+1] is the linear interpolation over time of τ(ti) and
τ(ti+1), that is, the point

ti+1−t
ti+1−ti

· τ(ti) + t−ti
ti+1−ti

· τ(ti+1). We define ei = vi−1vi for 1 ≤ i ≤ n

to be the edges of τ . For any two times t, t′ ∈ [t0, tn] with t ≤ t′, we denote the subtrajectory of τ
from time t to time t′ by τ [t, t′].

Note that a subtrajectory of a discrete trajectory is a discrete trajectory itself, and the
same holds true for a piecewise-linear trajectory.

For a discrete trajectory one does not wish to assume any location between the known,
measured locations at the time stamps t0, . . . , tn. This may be due to under-sampling of the
trajectory: locations would be unreliable and therefore not so useful. In practice this can
happen, for example, when trackingmigrating birds over long distances and time stretches.
It is common practice to choose a very low tracking frequency in case of a limited energy
supply of the tracking devices, which are carried by the birds.
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If we want to compute a segmentation of a discrete trajectory based on attributes like
speed or heading, we must be provided with such data at the time stamps t0, . . . , tn. For
example, heading information may be available if a GPS measurement and compass read-
ing is done at each time stamp, and speed at a time stamp may be obtained by two GPS
measurements in quick succession. Otherwise, we must compute an attribute at a time
stamp ti by using the known locations at times ti−1, ti, and ti+1.
For a piecewise-linear trajectory we do assume a location at each time in [t0, tn]. At-

tributes of the piecewise-linear trajectory can be defined, like speed, heading, curvature,
etc. Location can also be seen as an attribute that has two (or three) coordinates: at any
time t, the location is given by τ(t). Since our trajectories are piecewise-linear, and loca-
tion is assumed to be linearly interpolated between τ(ti) and τ(ti+1), the attribute speed is
constant on every edge of the trajectory. At vertices, it changes to a new speed value. The
same is true for the attribute heading. Attributes like location and curvature (for a suitable
definition, given later in this paper) are not constant on edges of the trajectory.

In this paper we are mostly concerned with segmentation of piecewise-linear trajecto-
ries, andwe will use the term “trajectory” for any piecewise-linear trajectory. Our solutions
to the segmentation problem can be applied to the discrete setting with minor modifica-
tions. In general, the problem is easier for discrete trajectories. When sampling is suffi-
ciently dense for the type of data, piecewise-linear trajectories are in line with the nature of
movement, because a moving object has its location change in a continuous manner.

2.1 The segmentation problem

A segmentation of a trajectory is a partitioning into a number of parts called segments. The
idea of a segmentation is that each segment satisfies certain criteria. A segmentation is opti-
mal if it is a partitioning into a minimum number of segments while satisfying the criteria.
We distinguish between discrete and continuous segmentation. Discrete segmentation is

the partitioning of a discrete trajectory into segments, where a segment consist of one or
more consecutive time stamps. Continuous segmentation is the partitioning of a continu-
ous (piecewise-linear) trajectory into segments, where a segment consists of a subtrajectory
which can start and end anywhere on edges. The segments have disjoint interiors, and the
end of one segment is the start of the next segment. For example, τ [t0, t], τ [t, t′], τ [t′, tn] is a
segmentation of τ [t0, tn] into three segments if 0 < t < t′ < tn.
Continuous segmentation is algorithmically more challenging than discrete segmenta-

tion. Still we will show that continuous segmentation can be solved efficiently with a rela-
tively simple approach. The remainder of this paper is mainly concerned with continuous
segmentation, but our results can be adapted (in fact, simplified) to discrete segmentation.

2.2 Relative versus absolute criteria

Criteria typically concern attributes of the trajectory that are defined at any time t, and
bounds on the values of these. An example of a relative criterion is a bound on the standard
deviation of the values of an attribute within a subtrajectory, whereas an upper and a lower
bound on the mean or average value is an absolute criterion. Note that, consequently,
absolute criteria are not always defined. However, it is always possible to segment using
relative criteria.
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Observe that using absolute boundary values, like 10 km/h, 20 km/h, 50 km/h, and
100 km/h for speed might lead to oversegmentation. Using these absolute values a trajec-
tory that has speeds 51–51–98–98–103–103 km/h along its edges is segmented into more
pieces than desired. Also, it would segment a trajectory with speeds 49–51–49–51 km/h
along its edges into four segments. Hence, we will only use criteria based on relative values
within a segment in this paper.

Another illustrative example can be given using the location attribute. An absolute
criterion for location would categorize the positions of the trajectory into zones with fixed
boundaries. One of the known issues with this approach is the so-called modifiable area
unit problem (MAUP) [12]. A relative criterion is described in Section 3. Here, we say the
criterion is satisfied for a given subtrajectory, if the positions on this subtrajectory fit into
any disk of a given radius, which can be centered anywhere in space.

2.3 Monotone criteria

Definition 3. A criterion ismonotone if for any subtrajectory τ ′ ⊆ τ , we have that if τ ′ satisfies
the criterion, then any subtrajectory τ ′′ ⊆ τ ′ also satisfies the criterion.

Monotonicity is a requirement which guarantees the soundness of the segmentation.
In classical image processing, for instance, the segmentation problem is modeled using
monotone criteria [16, 34].

The monotonicity condition implies that if we have any subtrajectory for which the
criterion is not satisfied, then extending the subtrajectory cannot satisfy the criterion. There
are many examples of criteria that aremonotone. In particular, criteria that bound the range
(or maximum extent) of an attribute are always monotone. The range can be bounded by
bounding the difference of the extreme values (for example, the difference in minimum and
maximum speed is at most 20 km/h), or by bounding the ratio of the extreme values (for
example, the maximum speed is at most 1.5 times as high as the minimum speed).

An example of a criterion that is not monotone is specifying that the standard deviation
of some attribute is below a given value in each segment. It is possible that the standard
deviation decreases by extending a segment. Another criterion which is not monotone is
described in Section 8: if we allow the criterion to not be met for short durations, we obtain
a criterion that is more robust against noise, but it is not monotone if these durations are
relative to the length of the segment. By extending the segment, the tolerance duration
is also extended and therefore the criterion which was not satisfied before, may become
satisfied.

In Section 5.4we show that there are simple ways of combining criteria, such as conjunc-
tions, disjunctions, and linear combinations, which preserve the monotonicity. In Section 7
and Section 8 we describe monotone criteria that are robust against noise.

3 Basic spatiotemporal attributes and criteria

Next, we discuss some specific, basic attributes and possible criteria on them that can be
used for segmentation. These attributes are location, heading, and speed. We also discuss
velocity, the combination of heading and speed. For all, straightforward criteria exist that
are monotone. Furthermore, the criteria that we give do not use fixed, absolute values of
the attribute to bound segments, and hence they avoid oversegmentation.
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Location The location of a point on a trajectory is given by its coordinates in a spatial
reference system. Since trajectories are continuous motion paths of objects, the location
changes continuously over time, along the trajectory. We give two criteria based on loca-
tion. Both will—intuitively—bound the distance between points within one segment. One
criterion based on location states that each location in a segment in a segmentation should
be within a fixed-size neighborhood of some (unspecified) location. Geometrically, for any
segment, a disk of fixed size must exist that covers the locations of that segment completely.
Clearly, the disk criterion is monotone: if some subtrajectory can be covered by a fixed-size
disk, then any part of it can also be covered by such a disk (namely, by the same disk). Al-
ternatively, we could impose the criterion that no two points within one segment are more
than some given distance apart. Geometrically, we bound the diameter within a segment’s
locations. The diameter criterion is also monotone.

Heading The heading at any moment in time is the direction in which the moving object
is traveling at that moment. It can be specified by an angle in the range [0, 2π) according to
some reference system, or it is UNDEFINED if the object is not moving. For example, purely
north has angle 0 and purely east has angle +π/2. For trajectories represented by vertices
and edges, the heading has a straightforward definition on each edge, but not at vertices.
To define heading at a vertex, we can for instance choose it to be the same as the heading on
the edge just before or after the vertex. We should choose it to make sure that no segment
consists of a single vertex.
A straightforward criterion for heading is that in each segment, the heading lies within

an angular range of some pre-specified size α, or it is UNDEFINED. In other words, for each
segment, all of its edges have length zero and the heading is UNDEFINED, or there exists an
angle β such that all edges in the segment have angles in the range [β, β + α]. This range
should be interpreted modulo 2π, as heading has a circular scale. The angle α must be
chosen smaller than π; a reasonable value might be π/3 but it depends on the application.
This angular range criterion for heading is monotone.

Speed The speed at any moment in time is well-defined on any edge since we assume
constant speed on any edge. At any vertex, the speed can be chosen the same as the speed
on the edge just before or after the vertex. A straightforward criterion for speed is that on
any segment, the difference (or ratio) of the maximum andminimum speed is at most some
given value. This difference criterion for speed (or ratio criterion for speed) is monotone.

Velocity The velocity at any location on τ is captured by a vector whose length is speed
and whose direction is heading. Previously we bounded speed and heading separately,
but we can also define a criterion directly on velocity. To this end, consider the velocity
vector plane, where any point p represents the vector from the origin O to p. The origin O
represents the null vector. Since all points on any single edge of τ have the same velocity,
they are represented by the same point in the velocity vector plane.
Let α be some fixed angle in [0, π] that is specified by the criterion. An α-wedge is a

wedge whose apex is at O and that has opening angle α in the velocity vector plane. The
disk criterion for velocity specifies that there exists a disk inside an α-wedge such that for
each segment of the segmentation and for any location on an edge in that segment, its
velocity vector has its representing point in that disk. Note that if the representing points
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fit in a disk that lies inside a wedge of opening angle α, we can always enlarge the disk to
be tangent to the bounding rays of the wedge and keep the points representing the velocity
vectors inside.

The criterion is quite similar to the angular range criterion for heading combined with
the ratio criterion for speed using a conjunction, for which the shape is a sector of an an-
nulus centered at O in the velocity vector plane. We include it to show that our framework
can handle a variation like this as well. Figure 2 illustrates the two criteria.

αO αO

(a) (b)

Figure 2: The points represent velocity vectors starting at O. (a) Speed and heading are
bounded independently. (b) Speed and heading are bounded in conjunction with the disk
criterion.

4 Algorithmic framework

We show that a trajectory with n edges can be segmented optimally and in O(n log n) time
if the following conditions are fulfilled on the criterion that is used.

• The criterion is monotone.
• There is an O(m) time test to decide whether a subtrajectory τ [ti, tj ] satisfies the cri-
terion (wherem = j − i+ 1).
• If subtrajectory τ [ti, tj−1] satisfies the criterion but subtrajectory τ [ti, tj ] does not,
there is an O(m logm) time method to maximize q ∈ [tj−1, tj ] such that subtrajectory
τ [ti, q] satisfies the criterion.
• The number of segments in the output is O(n).
The first condition is necessary for the optimality of the segmentation, whereas the other

three conditions are needed for the running time. The third condition is not needed for dis-
crete segmentation and the fourth condition is trivially fulfilled for discrete segmentation.
In the extreme case that the number of segments in the output is superlinear in n, this
number will be an additional term in the running time. This will not occur in practice,
since segmentations that have more segments than the trajectory has vertices are typically
not useful.

4.1 Greedy strategy

A greedy strategy for segmentation starts at the beginning of the trajectory and makes the
first segment as long as possible, until the segment would not satisfy the criterion anymore.
The remainder of the trajectory is then segmented in the same way, always choosing the
longest possible next segment. If a segmentation problem uses a criterion that is monotone,
then a greedymethod can be used to efficiently find an optimal solution. We show this next.
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Theorem 4. Given a trajectory τ and a monotone criterion for segmentation that should be satisfied,
a greedy strategy yields an optimal solution to the segmentation problem.

Proof. Let t0 = a0, . . . , ak = tn be the sequence of times where the greedy segmentation
yields segment boundaries, and assume that an optimal segmentation has segment bound-
aries at times t0 = b0, . . . , bl = tn. Let bi be the first time with bi > ai (if no such i exists then
k ≤ l and the greedy strategy is optimal as well). Since bi−1 ≤ ai−1, the i-th greedy segment
starts no earlier than the optimal segmentation. But then, by monotonicity, τ [ai−1, bi]must
satisfy the criterion as well because [ai−1, bi] ⊆ [bi−1, bi], and the greedy strategy would
have extended [ai−1, ai] at least up to bi. Hence, bi > ai leads to a contradiction with the
greedy strategy.

4.2 Algorithm outline

With slight abuse of terminology, we use vertex also for a time stamp like ti, and we use
edge also for an elementary time interval like [ti, ti+1]. The algorithm to compute an optimal
segmentation on a given criterion has a rather simple structure. Starting at the end time s
of the last completed segment (for the first segment we let s = t0), we find the longest
segment that satisfies the criterion by determining a vertex tj so that τ [s, tj−1] satisfies the
criterion but τ [s, tj ] does not. We proceed by maximizing the part of the edge [tj−1, tj ] that
still satisfies the criterion to determine the latest end time of the current segment. (If the
goal was to compute a discrete segmentation, then we end the current segment at tj−1 and
start the next segment at tj .)
Suppose that we have two routines. One is an algorithm TEST(τ [s, q]) which returns

true if the subtrajectory τ [s, q] satisfies the criterion, and false otherwise. The other is an
algorithm FURTHEST(τ [s, tj ]) where tj−1 is the last vertex for which τ [s, tj−1] satisfies the
criterion, and returns the last time in [tj−1, tj ] that satisfies the criterion. FURTHEST is not
needed in case of discrete segmentation and for attributes that are constant on edges.

Incremental method The most simple implementation for a greedy strategy is incremen-
tal. Let ti+1 be the first vertex strictly after s, the end time of the last segment. We incre-
mentally call TEST(τ [s, ti+1]), TEST(τ [s, ti+2]), . . ., until a test fails. If this happens for the
test TEST(τ [s, tj ]), then we run FURTHEST(τ [s, tj ]). The efficiency of this implementation
depends on whether we can efficiently perform TEST(τ [s, ti+a+1]) if we already know that
TEST(τ [s, ti+a]) returns true. For the monotone criteria given for heading and speed, we
can test every next vertex and edge in O(1) time and this results in a linear running time.
More generally, using this method one can segment a trajectory with n edges optimally
in time O(n) with respect to a range criterion of any single-valued attribute, if FURTHEST
takes O(m) time on a subtrajectory ofm edges.
For the disk and diameter criteria for location, the attribute is not single-valued. For

an efficient incremental solution, we would need an algorithm that efficiently maintains
the diameter or smallest enclosing disk under insertions. Such an algorithm exists for the
problem of deciding whether a disk of given radius exists that contains the points, under
insertions and deletions given off-line withO(logm) update time [21], but not for the diam-
eter version. In any case, the method we describe next is simpler, equally or more efficient,
and more general.
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Double-and-search method We next present a different implementation of the greedy
strategy that is guaranteed to work in O(n logn) time for many criteria. We present this
result in a general theorem later in this section. The implementation uses the doubling
search technique which combines an exponential and a binary search. The pseudocode for
the implementation is given in Algorithm 1.

Suppose we have segmented a trajectory up to a time s, and let ti+1 be the first vertex
strictly after s. Initialize a ← 1. Then we call TEST(τ [s, ti+a]). If successful, we double the
value of a and repeat. The loop ends if the test is not successful or i + a > n. In the latter
case we call TEST(τ [s, tn]). If successful, the whole remainder of the trajectory is the last
segment and we stop.

If a = 1, we know j = i + 1. Else a = 2b for some b ≥ 1 and we know that j ∈
[i + a/2, min(i + a, n)]. In this interval of size at most a/2, we perform a binary search
using TEST to make decisions to determine the exact value of j. When j is determined,
we call FURTHEST(τ [s, tj ]) to determine the latest time q on the edge [tj−1, tj ] such that the
criterion for the segment up to q is still satisfied. The time q is then used as the new starting
time s in the computation of the next segment.

This technique is akin to a technique also used in [1].

Algorithm 1 Simple algorithmic framework for trajectory segmentation.
�

/ / Input: τ = (v0, t0), . . . , (vn, tn)
i ← 0 ; s ← t0 ; Sopt ← ∅ ;
while (s 	= tn )
{

/ / Phase 1: find first vertex vj that “does not fit”

a ← 1 ;
while ( i+ a ≤ n && TEST(τ [s, ti+a]) )

{ a ← 2a ; }
j ← Binary search in [i+ 
a/2�,min(i+ a, n)] ,

s.t. TEST(τ [s, tj−1]) = t rue ∧ ( j = n ∨ TEST(τ [s, tj]) = f a l s e ) ;

/ / Phase 2: find latest time q on edge [tj−1, tj ]

q ← FURTHEST(τ [s, tj ]) ;
Sopt ← Sopt ∪ τ [s, q] ; / / Next segment found
s ← q ; i ← j − 1 ;

}
� �

Theorem 5. For a trajectory with n edges, if TEST takes T (m) time for a subtrajectory with m
edges and FURTHEST takes F (m) time for a subtrajectory withm edges, then optimal segmentation
takes O(T (n) log n+ F (n)) time (assuming T (m) and F (m) are at least linear in m and at most
polynomial inm and the number of segments in the output is linear in n).

Proof. Suppose the optimal number of segments is h, let m1, . . . ,mh be the numbers of
edges (fully or partially) spanned by the segments which are computed by our algorithm.
Then we have

∑h
i=1mi ≤ n+ h− 1.
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During the computation of one segment of unknown size m, TEST is called on subtra-
jectories that have size smaller than 2m. The number of times it is called in the while-loop
is bounded by the maximal a such that 2a ≤ 2m, i.e., a ≤ log 2m, since the test value is
doubled until it reaches the first number that is greater than m. After this, a binary search
on the interval of size at most m will perform a maximum of O(logm) calls to TEST on
subtrajectories of size smaller than 2m. Computing a segment spanning m edges therefore
takes at most O(T (2m) logm+ F (m)) time. Note that FURTHEST is called only once at the
end.
We conclude that the algorithm takes

∑h
i=1(T (2mi) logmi + F (mi)) time in total. Since

T (m) is at least linear, T (m) logm is at least linear as well, and since F (m) is also linear,∑h
i=1(T (2mi) logmi + F (mi)) ≤ T (n+ h) log(n+ h) + F (n+ h). Since h = O(n) and T (m)

and F (m) are at most polynomial, we have T (n+h) log(n+h)+F (n+h) = O(T (n) logn+
F (n)).

5 Segmentation using basic attributes

In this section we apply the framework to single criteria and multiple criteria in combi-
nation. It is sufficient to provide efficient implementations of the two routines TEST and
FURTHEST, and then our framework implies the efficient algorithm for optimal segmen-
tation. We first discuss single criteria involving only one attribute, and then we discuss
combinations of criteria.

5.1 Univariate attribute criteria

For any of the monotone criteria listed earlier for heading and speed, we can show that
TEST can be performed in linear time, and Theorem 5 yields O(n log n) time solutions for
segmentation. Since these attributes are constant along the edges, we do not need the
procedure FURTHEST.
In general, we can also apply the framework to univariate attribute functions that are

not piecewise constant over the edges, assuming that a small set of requirements are met.
We denote the attribute function by φ(t). Its definition will generally depend on a sequence
of analytic functions ψ1(t), . . . , ψk(t) that become valid in this order at certain points in
time.
For example, consider the attribute speed. Suppose that we did not only record posi-

tions of our moving objects, but also the current speed at each time stamp. Then we could
choose to interpolate speed on [ti, ti+1] by linearly interpolating the measured values at ti
and ti+1. Now the analytic functions ψi(t) are linear functions (instead of constant), and
our greedy approach will segment on edges (instead of at vertices). We could also use
higher-degree polynomials to interpolate speed, which would be necessary to make speed
a differential function in time. In Section 6 we will see examples of more complex analytic
functions, and also cases where the number of analytic functions k needed to define φ(t) is
larger than n.
We prove a general result on segmenting a trajectory on a univariate criterion that sat-

isfies some conditions on the computations needed on ψ1(t), . . . , ψk(t).

Theorem 6. Let τ be a trajectory with n edges, and let an attribute function φ(t) be defined for
any t ∈ [t0, tn] by analytic functions ψ1(t), . . . , ψk(t), with k = O(n). If for any 1 ≤ i ≤ k,
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we can (i) evaluate ψi(t) in time O(1), (ii) compute the minima and maxima of ψi(t) over the
interval on which it is defined in timeO(1), and (iii) evaluate ψ−1

i (y) in timeO(1), then an optimal
segmentation with respect to a range criterion of this attribute can be computed in O(n log n) time
after preprocessing.

Proof. Assumption (ii) implies that each ψi(t) has O(1) extrema in the interval on which it
is defined. We add these extrema as time stamps and vertices to τ , and note that τ still has
O(n) vertices and edges in total. Adding time stamps at the extrema of each ψi(t) causes
φ(t) to be monotone (increasing or decreasing) on each edge. The functions ψ1(t), . . . , ψk(t)
can each be associatedwithO(1) consecutive edges. With this adaptation, TEST can be used
as before, and we need to evaluate φ only at vertices of τ to determine if a subtrajectory
τ [s, tj ] satisfies the range criterion of the attribute.

The routine FURTHEST(τ [s, tj ]) requires the computation of the inverse function φ−1
j

on some interval [tj−1, tj ], to find the last moment of time up to where the segment still
satisfies the criterion. We evaluate φ at s and the vertices ti+1, . . . , tj−1 to obtain the max-
imum and minimum values realized up to tj−1. If function ψj is increasing, then we use
the minimum realized value on τ [s, tj−1] to compute the maximum allowed value Max of
ψj . The correct result of FURTHEST is the time ψ−1

j (Max ). Symmetrically, if function ψj

is decreasing, then we use the maximum realized value on τ [s, tj−1] to compute the mini-
mum allowed value Min of ψj . The correct result of FURTHEST is the time ψ−1

j (Min). By
assumption (iii), we can compute the inverse of ψj in constant time.

Now, Theorem 5 implies that optimal segmentation takes O(n logn) time after prepro-
cessing, using the same algorithm as before.

Theorem 7. An optimal segmentation using the angular range criterion for heading, and the ratio
or difference criterion for speed, can be computed in O(n log n) time for a trajectory with n edges.

5.2 Location criteria

Suppose that we require for each segment that the locations are within a disk of radius
r. Then TEST(τ [ti, tj]) can easily be implemented in linear time using known, simple al-
gorithms for smallest enclosing disk on the points vi, . . . , vj [14, 28, 38]. Now, we need
to use FURTHEST to determine the latest time that still satisfies the location criterion. For
this task, a simple and efficient algorithm exists because it is a so-called LP-type problem.
LP-type problems can be solved using randomized incremental construction, a powerful tech-
nique that can solve various optimization problems with a surprisingly simple implemen-
tation [11, 14, 17, 38]. Let P be the set of points p1, . . . , pm; assume p1, . . . , pm−1 fit inside
some radius r disk but not p1, . . . , pm. Apply a similarity transformation to P so that
pm−1 = (0, 0) and pm = (0, 1). Now the problem of finding the disk with given radius
that contains pm−1 and the largest portion of pm−1pm is transformed into the problem of
finding a disk with some (different) radius r′ that contains P \ {pm} (after transformation)
and has the rightmost possible intersection with the x-axis.

Either the optimal solution is realized by a disk whose center is the center point of the
line segment connecting the intersection of the disk with the positive x-axis and one of
the points of P \ {pm}, or it is realized by a disk that has two points on its boundary, see
Figure 3. In the latter case, the two points on the boundary and the intersection point form
a triangle that contains the center of the disk.
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pm − 1

pm pm − 1

pm

(a) (b)

Figure 3: Optimal solution determined by (a) one point, or (b) two points. The arrow to pm
illustrates the optimization.

The pseudocode for solving the problem is given in Algorithm 2; the returned result
must be transformed back by the inverse of the affine transformation. Note the similarity
to the code for smallest enclosing disk or linear programming in constant dimensions [14].

Algorithm 2 Randomized incremental construction for FURTHEST for the disk criterion
for location.
�

/ / Input: A set P with m− 1 points, and a radius r
Let (p1, . . . , pm−1) be the points of P in random order ;
D1 ← OPTDISK(r, p1) ;
for h← 2 to m− 1
{
i f Dh−1 contains ph

{ Dh ← Dh−1 ; }
else Dh ← OPTDISK(r, p1, . . . , ph−1) with the

condition that ph is on Dh’s boundary
}
return the rightmost point on the x-axis and in Dm−1

� �

Algorithm 2 uses a routine OPTDISK which can be implemented as follows. Note that a
disk of fixed radius whose boundary contains a point ph can only pivot around this point,
and has just one degree of freedom which is angular. Every point in p1, . . . , ph−1 restricts
the angle by some angular interval, and the common intersection of these is again an angu-
lar interval that is computed in O(m) time by a single for-loop. Over this angular interval
we can optimize the disk easily in O(1) time. Therefore, using the standard efficiency anal-
ysis for randomized incremental construction [14], Algorithm 2 takes linear expected time,
where the expectation is only over the randomization performed within the algorithm.
That is, we do not assume a certain probability distribution on the input.

Lemma 8. Given a subtrajectory τ [ti, tj ] such that vi, . . . , vj−1 fit in a disk of radius r but
vi, . . . , vj do not fit in any disk of radius r, the problem of computing a disk of radius r that contains
vi, . . . , vj−1 and the largest possible part of ej is LP-type.

Proof. Wewill show that the equivalent, transformed problem is an LP-type problem. Since
the radius of the disk is fixed, an optimal solution for P is already determined by up to 2
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points of P , the basis of the problem, which shows that the combinatorial dimension of the
problem is 2. We need to show the two requirements monotonicity and locality.

Monotonicity is trivially satisfied: if a point of the set is removed, then the disk still cov-
ers the remaining points, and therefore the solution for the new problem instance cannot
be worse (meaning: less of the positive x-axis covered). To ensure locality we need to show
the following: if a point set G yields an optimal point with x-coordinate xG and a subset
F ⊂ G also yields xF = xG, then the two disks are identical. Let DG, DF be the disks cor-
responding to G and F , respectively. Assume for the sake of contradiction that DF 	= DG.
Clearly all points in F lie inside DF ∩DG because both are enclosing disks. The two disks
have boundaries that pass through (xG, 0), since they have the same optimal solution. Let
q be the other intersection point of the boundaries of DF and DG. Now we can pivot DF

around q while increasing DF ∩ DG, which necessarily results in an intersection point of
the boundary of DF with the positive x-axis with higher x-coordinate, a contradiction.

Next we consider the diameter criterion for location. For any set of n points in the
plane, the diameter can be computed in O(n log n) time as follows. First, sort the points
on x-coordinate in O(n log n) time. Second, construct the convex hull of the sorted set of
points in O(n) time by a Graham scan [14]. Third, perform a rotating calipers step (visit
antipodal pairs) on the convex hull in O(n) time to find the furthest pair of points, see [32].
Hence, we can implement TEST to run in O(m logm) time on a subtrajectory ofm edges.

We can implement FURTHEST to run in O(m) time. The maximum allowed diameter d
will be realized by one point among τ(s), vi+1, . . . , vj−1 and a point on the edge ej . The de-
sired point on ej has distance exactly d to one point from τ(s), vi+1, . . . , vj−1 and a smaller
distance to the other points. Hence, we simply compute for each point the point on the
edge ej that is at distance d. From the points on ej , we choose the one closest to vj−1 and
return it.

Theorem 9. An optimal segmentation using the disk criterion for location can be computed in
O(n log n) time for a trajectory with n edges, and using the diameter criterion in O(n log2 n) time.

Remark: We will show in Section 7 that we can also segment optimally using the diameter
criterion in O(n logn) time. This requires an extra algorithmic idea that we postpone for
now.

5.3 Velocity criteria

We next turn our attention to velocity without using speed and heading separately. Recall
that this problem must be solved in the velocity vector plane, where points represent the
velocity vectors of the edges of τ . Note that the origin O represents the null vector. Let
α be the fixed opening angle of the wedge with apex at the origin O specified by the disk
criterion; we denote such a wedge by α-wedge. Note that we cannot simply compute
the minimum enclosing disk and check if the smallest wedge that contains it has angle at
most α: a slightly larger disk that is further from O may have a smaller opening angle, see
Figure 4(a). Instead, we consider α-wedges only, and will compute the smallest disk that is
twice tangent to an α-wedge. We can show that this is an LP-type problem, and hence TEST
for the disk criterion for velocity can be solved in linear expected time using randomized
incremental construction. The algorithm may give a smallest disk that is twice tangent to
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an α-wedge, and then we return true, or no smallest disk exists (and therefore no disk at
all), and then we return false as the result of TEST.
The following lemma describes center points of disks that contain a fixed point on their

boundary while remaining twice tangent to some α-wedge, see Figure 4(c).

O

r

c

d

α
2O

p

L

O

(a) (b) (c)

Figure 4: (a) Computing the tangents to the minimum enclosing circle is not guaranteed to
give the wedge with smallest angle. (b) The radius r and the distance d of the circle center
to O are directly related via d sin(α/2) = r. (c) The circles pivoting at a fixed point p while
remaining tangent to an α-wedge have their center on the circle L.

Lemma 10. For any point p, the locus of the center points of disks that are twice tangent to an
α-wedge and which contain p is a disk.

Proof. For any disk inside and twice tangent to the α-wedge, denote its center by c = (c1, c2)
and radius by r, and let d = d(c, O). Notice that r = d sin(α/2) for all such disks, see
Figure 4(b). Hence, p = (p1, p2) lies inside the disk if and only if

(p1 − c1)2 + (p2 − c2)2 ≤ r2 = d2 sin2(α/2) = (c21 + c22) sin
2(α/2).

This is equivalent to

(
c1 − p1

cos2(α/2)

)2

+

(
c2 − p2

cos2(α/2)

)2

≤ (p21 + p22)
sin2(α/2)

cos4(α/2)

which means that c lies inside the disk centered at the point ( p1

cos2(α/2) ,
p2

cos2(α/2) )with radius√
(p21 + p22)

| sin(α/2)|
cos2(α/2) . See Figure 4(c) for an illustration.

Lemma 11. The problem of computing the smallest disk twice tangent to and inside an α-wedge is
LP-type.

Proof. If the velocity vector representations (points) of the edges ei, . . . , ej of the subtrajec-
tory can be covered by a disk that is twice tangent to an α-wedge, then the center point of
this disk lies in the intersection of the disks of the type described in 10. We can compute
these disks Di, . . . , Dj in O(m) time, where m = j − i + 1. The radius of a disk tangent
to a wedge of apex O and opening angle α is related to the distance d of its center to O by
d sin(α/2) = r, see Figure 4(b). Therefore, the smallest disk that covers the points and is
twice tangent to an α-wedge has its center at the point on the boundary of D1 ∩ · · · ∩ Dn
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and is closest to O; its radius is uniquely defined by the position of its center point. A basis
either consists of one disk Di, in which case the point on the boundary of Di that is closest
to O is the center point that realizes the smallest disk, or the basis consists of two disks Di

and Dj , in which case the center point of the smallest disk is the intersection point of the
boundaries ofDi andDj that is closest toO. Therefore the basis computation is trivial, and
the combinatorial dimension of the problem is again 2.

The monotonicity criterion is trivially satisfied: the intersection of a set of disksG is still
contained in the intersection if we remove a diskDi from the set. Therefore a valid solution
for G is also a solution for G \Di and the closest center point cannot be further from O. To
show that the locality criterion is satisfied, we argue as follows. Let F ⊂ G be a subset of
the disks in G, and assume for a contradiction that F and G define different closest center
points cF and cG that are at the same distance from O. Let R =

⋂
D∈GD, then cF , cG ∈ R.

By convexity of R, the whole line segment connecting cF and cG lies in R. But then the
midpoint is in R and it is closer to O than cF and cG, a contradiction.

The lemma above immediately implies that TEST for the disk criterion for velocity can
be made to run in linear expected time. Since velocity is constant over edges of τ , we do
not need FURTHEST for this criterion. We obtain:

Theorem 12. An optimal segmentation using the disk criterion for velocity can be computed in
O(n log n) time for a trajectory with n edges.

5.4 Combinations of segmentation criteria

In this section we show that there are several simple ways to combine segmentation criteria
of various attributes. The resulting combined criterion is monotone if the separate criteria
are monotone. In our framework, using a combined criterion for segmentation, made up of
a constant number of criteria, has the same asymptotic running time as each separate cri-
terion. We present two different ways of combining criteria, namely boolean combinations
and linear combinations. The criteria to be combined can be the ones for location, heading,
speed, and velocity, but also the criteria for more complex attributes to be presented later
in this paper.

Definition 13. Let Φ1, . . . ,Φk be a set of monotone criteria, where Φi : [t0, tn] × [t0, tn] →
{True, False}. We call any combination of conjunctions (e.g., Φi ∧ Φj) and disjunctions (e.g.,
Φi ∨Φj) of these criteria a boolean combination criterion.

For example, wemay allow a segment in a segmentation to have any speed and heading
as long as the diameter of its locations is at most 2 km (criterion Φ1), or a segment may
have any location as long as the difference criterion for heading is 30 degrees (criterion Φ2)
and the difference criterion for speed is 20 km/h (criterion Φ3). The boolean combination
would be Φ1 ∨ (Φ2 ∧ Φ3). One can imagine that a segment satisfying Φ1 could indicate
local inspection or foraging behavior, whereas a segment satisfying Φ2 ∧ Φ3 could indicate
various forms of directed travel, also segmented by speed.

Theorem 14. Let Φ1, . . . ,Φc be a constant number of monotone criteria, and assume that for each
of the Φi, an algorithm for TEST runs in O(m) time and an algorithm for FURTHEST runs in
O(m logm) time on a subtrajectory of m edges. Then we can compute an optimal segmentation
using any boolean combination criterion of these criteria in O(n logn) time, for a trajectory of n
edges.
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Proof. Let Φ denote an arbitrary boolean combination criterion of the Φi. Let I be a a set of
subsets S of the index set {1, . . . , c}, such that

ΦCNF =
∨
S∈I

∧
i∈S

Φi

is the conjunctive normal form ofΦ. It can be computed in constant time, since c is constant.
We first show that ΦCNF is a monotone criterion. If subtrajectory τ ′ does not satisfy the
criterion ΦCNF , then for every S ∈ I , there must be an Φi, such that i ∈ S and τ ′ does
not satisfy the criterion Φi. By the monotonicity of Φi, it also holds that τ ′′ does not satisfy
Φi if τ ′ ⊆ τ ′′. Therefore, τ ′′ does not satisfy ΦCNF . We observe that ΦCNF has constant
size, since the index set {1, . . . , c} has constant size and therefore only a constant number
of different subsets exist that are candidates for S ∈ I and furthermore, each such subset S
has constant size.
To prove the efficiency, we will argue that we can give algorithms for TEST and FUR-

THEST with respect to Φ that run in O(m) time and O(m logm) time, respectively, for a
subtrajectory of m edges. Theorem 5 then implies the claim. Recall that we required
that there is an algorithm for TEST for each of the Φi that runs in O(m) time. Let τ ′ be
any such a subtrajectory. We invoke the test function on τ ′ for each of the Φi. This takes
O(cm) = O(m) time. Let ai be the outcome of the test for Φi. Now, the outcome of TEST
on τ ′ for Φ can be determined by evaluating

∨
S∈I

∧
i∈S ai in constant time. Similarly, for

FURTHEST, given a subtrajectory τ [s, tj ] such that τ [s, tj−1] satisfies Φ but τ [s, tj ] does not,
we can run the respective algorithms for each of the Φi separately. This computation takes
O(cn logn) = O(n logn) time. Let the outcome be the values t′1, . . . , t

′
c. We have that the

furthest point on the edge τ [tj−1, tj], such that the subtrajectory satisfies Φ, is defined by
t′ = maxS∈I mini∈S t

′
i.

Another way to combine different criteria is by linear combinations. In this way, two
segmenting criteria may be combined such that less difference is allowed in one of them if
there is already a significant difference in the other one, and vice versa. For example, we
may allow a segment to have speed values different by at most 20 km/h if the heading is
constant, and also allow it to have a maximum heading difference of at most 40 degrees
if the speed is constant, by means of a linear combination of these two extremes. This
would also allow intermediate values such as a speed difference of 10 km/h and a heading
difference of 20 degrees.

Definition 15. Given a set of univariate attribute functions φ1, . . . , φc, and real coefficients
a1, . . . , ac, consider the function C(s, q) of a subtrajectory τ [s, q] defined as

C(s, q) :=
∑

1≤i≤c

ai max
s≤t≤q

s≤t′≤q

(φi(t)− φi(t′)).

We call the criterion that is satisfied for τ [s, q] iff C(s, q) ≤ δ, for a given threshold value δ, a linear
combination criterion.

If φ1 is speed in km/h and φ2 is heading in degrees, then the example above would use
a1 = 2, a2 = 1, and δ = 40, for the linear combination criterion.
Provided that certain computations are possible in an efficient manner on the attribute

functions to be combined and on the function C(s, q) as well, we can segment using a linear
combination criterion inO(n log n) time. For typical attribute functions, these requirements
will hold, but it must be verified for the combination of attributes to be used.
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Theorem 16. Given a constant number of univariate attribute functions φ1, . . . , φc, of which each
φi(t) is defined for any t ∈ [t0, tn] by analytic functions ψi,1(t), . . . , ψi,ki(t), with ki = O(n). We
can compute an optimal segmentation using any linear combination criterion with respect to these
attributes in O(n log n) time for a trajectory with n edges, if the following requirements are met.
For any 1 ≤ i ≤ c and for any 1 ≤ j ≤ ki, we can

(i) evaluate ψi,j(t) in time O(1),
(ii) compute the minima and maxima of ψi,j(t) over the interval on which it is defined in time

O(1), and
(iii) evaluate f−1(δ) in time O(1), where f(q) :=

∑
1≤i≤c ai(bi + piψi,li(q)) for constants

b1, . . . , bc, pi ∈ {1,−1} and 1 ≤ li ≤ ki and f monotone increasing.

Proof. We first show that the function C(s, q) is monotone decreasing in s and monotone
increasing in q. For any 1 ≤ i ≤ c, we have

max
s≤t≤q

s≤t′≤q

(φi(t)− φi(t′)) = max
s≤t≤q

φi(t)− min
s≤t′≤q

φi(t
′). (1)

Let fi(s, q) := ai(maxs≤t≤q φi(t)−mins≤t′≤q φi(t
′)). ThenC(s, q) =

∑
1≤i≤c fi(s, q). For any

given values 0 < s < q < q′ < tn, we have that fi(s, q) ≤ fi(s, q
′), since the interval [s, q′]

is a superset of the interval [s, q]. This implies that the function fi is monotone increasing
in the second parameter. Since the sum of monotone increasing functions is monotone
increasing, we also have that C(s, q) is monotone increasing in the second parameter. By a
similar argument, it follows that C(s, q) is monotone decreasing in the first parameter. As
a consequence, the linear combination criterion is monotone.

We will now describe how to apply the framework using a similar approach as the one
used in the proof of Theorem 6. For each 1 ≤ i ≤ c and 1 ≤ j ≤ ki we add the extrema of
the functions ψi,j(t) in the interval on which they are defined as time stamps and vertices
to τ . We also do this for the points where the domain of ψi,j ends and the domain of
ψi,j+1 starts. By Assumption (ii), each ψi,j(t) has O(1) extrema in the interval on which it
is defined and there are

∑
1≤i≤c ki = O(cn) of these functions. Therefore, τ still has O(n)

vertices and edges in total. Now, the algorithm for TEST for a subtrajectory τ [s, q] with m
edges only has to determine the minimum andmaximum of each attribute function φi over
the interval [s, q], which can be done in O(cm) time. Then, C(s, q) can be determined using
Equation 1 in constant time. Therefore, we can give an algorithm for TEST that runs in
O(m) time. We can also give an algorithm for FURTHEST. For this procedure, we are given
a subtrajectory τ [s, tj ] such that τ [s, tj−1] satisfies the criterion but τ [s, tj ] does not. On the
interval [tj−1, tj ], we can determine an analytical representation of the function C(s, q) for
fixed s. By construction, each attribute function φi is defined by one function ψi,li over the
interval [tj−1, tj ] and this function is either monotone increasing or monotone decreasing
over this interval. In the first case,mins≤t≤q φi(t) is constant for q ∈ [tj−1, tj], in the second
case this holds true for maxs≤t≤q φi(t). Let bi denote this constant. We have that over
[tj−1, tj ], C(s, q) for fixed s, is the sum of terms of the type ai(bi − ψi,li(q)) and the type
ai(ψi,li(q)− bi). By assumption (iii), we can evaluate the inverse of this function at value δ
in O(1) time, which gives the furthest point on the edge τ [tj−1, tj ], such that the criterion is
satisfied. By Theorem 5, we can compute an optimal segmentation in time O(n log n).
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6 Attributes with a neighborhood

While location, heading, speed, and velocity are perhaps the most basic attributes that can
be defined for points on a trajectory, there are several others that may be useful for the
segmentation problem. We study the attributes curvature, sinuosity, and curviness, and
possible criteria for these that can be used in our algorithmic framework.

The attributes we discuss next require a neighborhood for their definition. A neighbor-
hood of a point τ(t) is a subtrajectory that contains τ(t). For example, to define curviness
at a location τ(t) on τ , we need to measure the total angular change for an interval around
τ(t). We assume for now that this neighborhood always exists. There are three simple ways
to obtain such a neighborhood:

k-Vertex neighborhood: The subtrajectory from the k-th vertex before τ(t) until the k-th
vertex after τ(t) (counting τ(t) itself only once if it is a vertex, and clipped at the start
and end of τ if necessary).

d-Space neighborhood: The subtrajectory from the location at distance d before τ(t) until
the location at distance d after τ(t) (measured along the trajectory, and clipped at the
start and end of τ if necessary).

t̂-Time neighborhood: The subtrajectory in between time t − t̂ and time t + t̂ (clipped at
the start and end of τ if necessary).

A vertex neighborhoodmay be appropriate only if the sampling is regular and no data is
missing, otherwise, vertex neighborhoods are not meaningful. In case τ was sampled with
regular time intervals, a time neighborhood is the continuous version of a vertex neigh-
borhood. A vertex neighborhood, however, changes abruptly at the vertices, while time
neighborhoods always change continuously.

An attribute that uses a neighborhood to define a value of the trajectory at a time t is
based on some subtrajectory of τ . Let us denote by tleft and tright the start and end times of
this subtrajectory.

Notice that for times t near t0 or tn, the times tleft or tright may lie outside the time span
of the trajectory. This may cause an attribute value to be undefined. We can solve this in
various different ways. For example, we could extrapolate the first and last edge of the
trajectory sufficiently far, or we could use t0 instead of tleft if tleft < t0 as the start of the
neighborhood, and use tn instead of tright when tright > tn as the end of the neighborhood.

6.1 Computing the attribute functions

When the segmentation uses a criterion based on an attribute that requires a neighborhood,
it may take more than a constant amount of time to even evaluate the attribute at some
time t. The number of time stamps from t0, . . . , tn between tleft and tright will influence
the efficiency. Fortunately, we can pre-process the trajectory so that we can evaluate the
attribute value at every time efficiently. How to do this is further described below.

The three locations τ(tleft), τ(t), and τ(tright) generally lie on three different edges of
τ , although these could be the same. When t increases, tleft and tright also increase, and
τ(tleft), τ(t), and τ(tright) advance along τ . Since each of tleft, t, and tright goes past the times
t0, . . . , tn of the vertices of τ at most once during the whole increase of t from t0 to tn, the
total number of triples of edges on which τ(tleft), τ(t), and τ(tright) lie is at most 3n. For the
attributes discussed in this section, it holds that as long as τ(tleft), τ(t), and τ(tright) lie on the
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same triple of edges, an attribute value of interest is constant or is given by a well-defined,
analytic function of t. We denote these analytic functions by ψ1(t), . . . , ψk(t), where k ≤ 3n.
The time intervals over which the ψ1(t), . . . , ψk(t) are defined form a partition of [t0, tn], so
together they define the attribute of a function φ(t) for all of τ .

We compute these functions as follows. Perform a sweep with t from t0 to tn, and
simultaneously keep track of tleft and tright. Whenever tleft or tright is on one of the times
t0, . . . , tn that define vertices of τ , add a time stamp t and vertex τ(t) to the trajectory
(unless t is on one of the times t0, . . . , tn itself already). For the time interval up to t from
the previous time stamp before t, determine and store the analytic function that gives the
attribute value for any time in that time interval. How this is exactly done depends on
the attribute value definition, but for the examples we discuss in this section (curvature,
sinuosity, and curviness), preprocessing takes only linear time in total.

6.2 Examples: curvature, sinuosity, and curviness

Next we discuss the attributes curvature, sinuosity, and curviness and show that we can
segment optimally with respect to a range criterion for each attribute in each case. Recall
that a range criterion bounds the maximum range, or extent, of an attribute by a maximum
allowed difference or ratio, in the case of univariate attributes. Curvature, sinuosity, and
curviness are univariate.

Curvature Discrete curvature estimators have been studied widely to deal with the fact
that the standard curvature definition is not suitable for piecewise-linear curves [20, 26].
Different definitions of standard curvature exist in differential geometry which are all
equivalent. The corresponding definitions of discrete curvature are not equivalent, how-
ever. The commonly used methods for discrete curvature can be classified into three cate-
gories: those that use Gaussian smoothing, those that use curve or circle fitting, and three-
point estimators. All of these methods define the curvature at a point based on certain
points in a neighborhood of this point, implicitly or explicitly.

Three-point estimators define the curvature at a point p using the three points pleft =
τ(tleft), p = τ(t), pright = τ(tright). We now discuss three definitions of this type, as described
in [26], and how they can be used in our framework.

Firstly, the curvature can be defined as the rate of change of the direction of the tan-
gent vector. A first definition of discrete curvature therefore uses the turning angle of the
directed line segments connecting the three points, see also Figure 5(a):

κ(p) =
∠(pleft, p, pright)

‖p− pleft‖+ ‖pright − p‖ , where ∠(p
left, p, pright) = arccos

< p− pleft, pright − p >
‖p− pleft‖+ ‖pright − p‖

(2)
defines the turning angle. When this definition of discrete curvature is used, each of the
analytic functions ψ1(t), . . . , ψk(t) is given by an expression similar to the one for κ. Instead
of using pleft, p, and pright, we use the positions of these points as a function of t to get the
analytic functions that together define the curvature along τ .

Secondly, the curvature can be based on the inverse of the radius of the osculating circle.
The second definition of discrete curvature approximates this circle by the circle passing
through the three points, which is the circumcircle of the triangle formed by them, see also
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Figure 5(b):

κ(p) =
2|(p− pleft)× (pright − p)|

‖pright − p‖ · ‖p− pleft‖ · ‖pleft − pright‖ (3)

α

p

pleft

pright p

pleft

pright

r

(a) (b)

Figure 5: Discrete curvature by (a) turning angle, and (b) osculating circle.

Thirdly, the curvature is also the length of the second derivative vector if the curve is
parametrized by arc length. The third definition of discrete curvature takes the discrete
derivatives τ ′(pright) = pright − p and τ ′′(pright) = (pright − p) − (p − pleft), plugged into the
curvature formula:

κ(p) =
τ ′(pright)× τ ′′(pright)
‖τ ′(pright)‖3 . (4)

The attribute functions ψ1(t), . . . , ψk(t) for discrete curvature according to all three def-
initions satisfy the three requirements stated in Theorem 6. When pleft, p, and pright are on
some triple of edges, the time t defining p gives rise to a time tleft that defines pleft and
linearly depends on t. The analogous statement is true for pright. Hence, we can express the
curvature at p as an analytic function in t whose form can be stated easily. The function
has O(1) extrema on its interval that can be determined in O(1) time, it can be evaluated in
O(1) time, and its inverse can be computed in O(1) time as well. Hence we obtain:

Corollary 17. An optimal segmentation using a range criterion for discrete curvature as defined in
Equations (2), (3), or (4) using time, space or vertex neighborhoods can be computed in O(n logn)
time for a trajectory with n vertices.

Sinuosity The sinuosity of a point on a path refers to the amount of bending or winding
of the path in the neighborhood of this point. The term is used in the analysis of rivers and
coastlines [29, 31], but also to describe trajectories of moving animals [4, 5]. There appears
to be no standard definition for sinuosity. If τ̂ = τ [tleft, tright] is the subtrajectory that repre-
sents the neighborhood of τ(t), then some authors define the sinuosity at t as the arc length
of τ̂ divided by ‖τ(tleft) − τ(tright)‖. We will refer to this as the detour sinuosity. Another
existing definition of sinuosity is the angular range of heading, as defined in Section 3,
divided by the arc length of τ̂ . We will refer to this as winding sinuosity. Note that both def-
initions measure a slightly different winding behavior, as illustrated in Figure 6(a). While
winding sinuosity distinguishes the top two curves from the bottom curve, detour sinuos-
ity distinguishes the bottom two curves from the top curve. Other definitions include the
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deviation of the edges of τ̂ from the line segment connecting τ(tleft) and τ(tright). We focus
on the first two definitions and show how they can be used in our framework.

(b) (c)(a)

Figure 6: (a) Segments that are distinguished differently by winding and detour sinuosity.
(b) Segments that are distinguished by curviness, but not by winding or detour sinuosity.
(c) Segments that are distinguished by winding and detour sinuosity, but not by curviness.

Corollary 18. An optimal segmentation using a range criterion for winding or detour sinuosity
using time, space or vertex neighborhoods can be computed in O(n log n) time for a trajectory with
n edges.

Proof. We claim that Theorem 6 applies in each of the cases. If vertex neighborhoods are
used, the elementary functions are piecewise constant, both for winding sinuosity as well
as detour sinuosity. If we use space neighborhoods, then the arc length of τ̂ is constant for
all τ(t). As such, the winding sinuosity at a point depends only on the directions of the se-
quence of edges covered by its neighborhood. Therefore the elementary attribute functions
are constant-valued functions in this case too. Similarly, detour sinuosity depends only on
the distance between the two endpoints of τ̂ if we use space neighborhoods. Within the
range of one elementary attribute function these endpoints move on straight lines, and the
function of their distance can be expressed as the square-root of a polynomial of degree
two, which fulfills the conditions of Theorem 6. If we use time neighborhoods, the arc
length of τ̂ is a linear function, since speed is constant on the edges of the trajectory. We
can apply Theorem 6 since the composition of a linear functionwith the discussed functions
still satisfies the conditions.

Curviness In the context of the discussed sinuosity definitions we propose another mea-
sure that captures the winding of a path near a point. Let vi, . . . , vj be the subsequence of
vertices strictly inside the neighborhood of τ(t), then we define the curviness at τ(t) as the
total angular change, divided by the arc length of the subtrajectory that is the neighborhood
of τ(t). We define total angular change as

j∑
h=i

|∠(vh+1 − vh, vh − vh−1)|,

where ∠(v, w) ∈ (−π, π] is the angle of w with respect to v, interpreted as vectors 
ow and

ov. Again, this definition measures a different winding behavior than sinuosity, a fact illus-
trated in Figure 6(b) and (c). The proof of the following corollary is analogous to the proof
Corollary 18.

Corollary 19. An optimal segmentation using a range criterion for curviness using time, space, or
vertex neighborhoods can be computed in O(n log n) time for a trajectory with n edges.
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7 Shape fitting criteria

In this sectionwe discuss a criterion that is satisfied if the subtrajectory is similar to a certain
type of shape. This shape could be a line or a circle, or it could be a more complex shape.
The similarity could be defined in different ways. In the cases that we discuss below it is
the directed Hausdorff distance from a subtrajectory τ ′ to any line �:

min
line �

max
p∈τ ′

min
q∈�
‖p− q‖ .

Requiring that a subtrajectory has a small distance to a line is a similar but more robust
criterion than the angular range criterion for heading. For example, if a moving object
is traveling in one direction, but due to an error one measurement is located just behind
the previous location, then segmentation by heading would require the current segment to
end, while segmentation by line fitting would not. If one requires a similarity to a circle,
this could be a robust replacement for the criteria that we described for curvature.

Surprisingly, this type of criterion is monotone and therefore we can apply our frame-
work. However, depending on the complexity of the shape and the degrees of freedom
allowed in the similarity transformation, the computations necessary for TEST and FUR-
THEST can be quite expensive. We discuss how to apply our framework in the most simple
case, where we compare the subtrajectory to a line. We show how to compute an optimal
segmentation in O(n log n) time in this case.

Definition 20. Given a subtrajectory τ ′ and a value δ, we say that τ ′ satisfies a line fitting crite-
rion with threshold δ if there exist two parallel lines L andM at distance δ such that any point on
τ ′ lies below or on L and above or onM .

Note that even though we claim that this criterion is more robust, it may also have some
disadvantages. The line fitting criterion does not detect a very sharp turn of angle close to
π, for example. A significant part of the trajectory before the turn and after the turn could
be close to some line, which causes the parts before and after the turn to be in the same
segment.

Theorem 21. An optimal segmentation using a line fitting criterion can be computed inO(n logn)
time for a trajectory with n edges.

Proof. Clearly, the criterion is monotone. If there exist two parallel lines L and M of dis-
tance δ which enclose a subtrajectory τ ′, then these two lines also enclose any subtrajectory
of τ ′.

Now, we describe algorithms for TEST and FURTHEST that each run in O(m logm) time
on a subtrajectory of m edges. For TEST we can use an algorithm to compute the width of
a point set, because a subtrajectory satisfies the line fitting criterion with threshold δ if and
only if the width of its vertices is at most δ. The width can be computed using the rotating
calipers algorithm [32] after constructing the convex hull.

For FURTHEST, we are given a subtrajectory τ [s, tj ] such that τ [s, tj−1] satisfies the cri-
terion but τ [s, tj ] does not. We need to compute the furthest point r = τ(t) on the edge
τ [tj−1, tj ], such that τ [s, t] satisfies the criterion. The width of a point set is always deter-
mined by three of its points: one point on one line and two points on the other line. In our
setting, r is one of these points, and the width of {τ(s), . . . , τ(tj−1)}∪{r} is exactly δ. Let L
andM be the two lines that realize this situation. We have two cases, either the other two
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δ
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M

(a) (b)

L

L′
M ′

δ

τ(s)

τ(s)

τ(tj−1)

τ(tj−1)

Figure 7: The two cases for the optimal configuration for FURTHEST using a line fitting
criterion: (a) The furthest point r shares a line with p or q. (b) The furthest point r is on the
opposite line of p and q.

points p and q lie on the same line and r on the other line, or p and q lie on different lines
and r shares the line with one of them. See Figure 7 for an example of the two cases.

In the first case it must be that p and q are consecutive vertices on the boundary of the
convex hull of τ [s, tj−1]. The point r is the intersection point of the edge τ [tj−1, tj] and the
line at distance δ from the line through p and q. There are O(m) candidate points r since
there are O(m) pairs of consecutive points on the convex hull.

In the second case points p and qmust be antipodal on the convex hull of τ [s, tj−1]. This
means that there must be two parallel lines, one containing p and one containing q, that
contain τ [s, tj−1] (or, equivalently, its convex hull). It is well-known that a set of m points
has O(m) antipodal pairs and they can be computed in O(m) time by a rotating calipers
algorithm after the convex hull has been computed [32]. We test every antipodal pair p and
q and observe the following: If p and q are at distance less than δ, then they cannot be on
the lines L andM that determine the width together with point r. If p and q are at distance
greater than δ, there are exactly two pairs of lines that contain p and q and are at distance
δ from each other. We call these pairs of lines L and M , and L′ and M ′, see Figure 7(a).
Using the edges incident to p and q on the convex hull of τ [s, tj−1], we can test in constant
time whether τ [s, tj−1] lies between L and M (or L′ and M ′). If so, we compute r as the
intersection point of τ [tj−1, tj ] and L or M (or L′ or M ′). Assuming the convex hull was
already computed, we handle every antipodal pair in O(1) time.

So for both cases together we get O(m) possible points r on τ [tj−1, tj] where we have
checked that τ [s, tj−1] lies in between L and M . We pick the furthest computed point on
τ [tj−1, tj ] over all these valid configurations. This yields a running time of O(m logm) for
FURTHEST. We can apply Theorem 5, which implies that the overall computations take
O(n log2 n) time, since the number of segments will always be smaller than n with this
criterion.

We can improve the running time to O(n logn) using the following idea. Suppose we
are computing the next segment, which has m edges, and m is unknown. In the doubling
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phase of the algorithmwe use TEST as we described it. But as soon as TEST fails for the first
time, we use a slightly differentmethod to find theO(m) antipodal pairs of points. Suppose
TEST fails on a subtrajectory τ(s), vi+1, . . . , vi+a. Then we sort these a+1 = O(m) points by
x-coordinate in O(m logm) time. Now we start the binary search phase but with a linear-
time version of TEST. Suppose we test τ(s), vi+1 , . . . , vj . We extract these points in x-sorted
order from the sorted sequence τ(s), vi+1, . . . , vi+a in O(m) time. Then we use Graham’s
scan to compute the convex hull inO(m) time as well, and find the antipodal pairs inO(m)
time as well. We can now analyze the doubling phase and binary search phase separately
as in the proof of Theorem 5, which leads to O(m logm) time to find the maximal segment
starting at τ(s). In total we spend O(n log n) time on the segmentation.

Remark: As announced in Section 5.2, we can compute an optimal segmentation on the
diameter criterion inO(n log n) time, improving upon O(n log2 n) time claimed before. The
idea is the same as in the last part of the proof above. In the doubling phase we use the
O(m logm) time implementation of TEST. However, when it fails, we deviate from the
usual binary search. We sort the O(m) vertices τ(s), vi+1, . . . involved in the last TEST by
x-coordinate inO(m logm) time, wherem is again the unknown size of the segment we are
computing. As described in Section 5.2, from a sorted sequence of vertices we can compute
the diameter in only O(m) time.

As mentioned above, we can also define a circle-fitting criterion, which is satisfied if the
subtrajectory lies within an annulus of constant width. This criterion is also monotone, but
it is computationally more expensive. If we are interested in segmentation of a discrete
trajectory, we need an algorithm for TEST, which tests if the set of vertices spanned by
the segment lie within a constant-width annulus. Furthermore, if we restrict the outer
radius of the annulus to be fixed, the criterion is still monotone, but easier to compute.
A boolean combination of a constant number of circle-fitting criteria with different outer
radii could be used to detect subtrajectories of different curvature. Hence, we could use the
algorithm described in [13] which runs in O(m logm) time, achieving an O(n log2 n) time
for the overall segmentation algorithm.

8 Robustness

The segmentation process is sensitive to noise and outliers. It is likely that such data prob-
lems can cause additional segmentation, or segmentation in a different location. While it is
not the purpose of this paper to describe how to deal with noise and outliers successfully
in all cases, we describe three conceptually different ways that apply to different parts of
our framework. Recall that the segmentation in our framework is based on trajectories,
attributes, and criteria. We can choose to make any of these three concepts more robust,
which we describe next.
To make a trajectory more robust, we can apply outlier detection and removal, and

smoothing for dealing with noise and imprecision. Sometimes the device already takes
care of this. GPS often give coordinates that have been smoothed by Kalman filtering, for
example.
To make an attribute more robust, for example heading, we can use a neighborhood

definition for heading instead of a point-based definition. The heading is then determined
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by the direction of the vector from the starting point of the neighborhood to the endpoint
of the neighborhood. This in essence smooths the attribute values.

To make a criterion more robust, we can allow for short durations where the criterion is
not met. These durations can be absolute or relative. For example, a more robust criterion
for speed is that within each segment of the segmentation, there is a speed s such that
95% of the time, the speed is in the interval [s − 3, s + 3] m/s. We note that although
such a definition of a criterion can be stated formally, the criterion is no longer monotone,
so our framework cannot be used directly. However, under certain assumptions on the
occurrences of outliers (similar to noise models), criteria that allow outliers and that are
monotone can be devised. Since it is beyond the scope of this paper to discuss models for
outliers, we do not discuss this possibility any further.

9 Conclusions

This paper presented a general framework that allows efficient and optimal segmentation
using various different criteria separately or in combination. Our approach to segmentation
is to specify criteria formally that should hold for any attribute within each segment of the
segmentation. The resulting algorithms segment a trajectory with n edges optimally in
O(n log n) time for many different criteria. The only requirements on the criteria posed
are monotonicity and that there exist efficient algorithms to evaluate these criteria for a
given subtrajectory. The property that makes a segmentation of a trajectory optimal in our
paper, is that it subdivides the trajectory into as few pieces as possible. This ensures that
the algorithm maximizes the length of each individual piece in a global fashion.

We comment that the framework extends directly to segmenting 3-dimensional trajec-
tories. Attributes must be defined based on 3-dimensional coordinates of vertices, and the
implementations of TEST and FURTHEST must be adapted to this end. For example, the disk
criterion for location becomes a ball criterion. Also, curvature is a more complex attribute
in 3-space, described by curvature and torsion [26]. On the other hand, the adaptations
needed to segment on speed in the 3-dimensional case are trivial. In general, if TEST and
FURTHEST have efficient implementations in the 3-dimensional case, then segmentation is
efficient as well.

In this paper we segment a trajectory by partitioning it into as few pieces as possi-
ble. Interesting related tasks are computing segmentations with overlap and segmenta-
tions that allow for non-homogeneous pieces. We can adapt our segmentation technique
to include non-homogeneous pieces by joining short segments and marking these as ’non-
homogeneous’. We note that a recent paper [41] considers the problem of finding possibly
overlapping pieces of a trajectory that are ’interesting’ according to a given measure.

The application of our framework (which we presented using abstract spatiotemporal
attributes) to domain specific tasks requires the conversion of semantically relevant charac-
teristics of trajectories into attributes related to the ones we considered, but specific for the
purpose. This needs to be done in close collaboration with domain experts and is a topic
for further research.
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