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Abstract: Vast amounts of video data render manual video analysis useless while recent
automatic video analytics techniques suffer from insufficient performance. To alleviate
these issues, we present a scalable and reliable approach exploiting the visual analytics
methodology. This involves the user in the iterative process of exploration, hypotheses
generation, and their verification. Scalability is achieved by interactive filter definitions
on trajectory features extracted by the automatic computer vision stage. We establish the
interface between user and machine adopting the VideoPerpetuoGram (VPG) for visual-
ization and enable users to provide filter-based relevance feedback. Additionally, users
are supported in deriving hypotheses by context-sensitive statistical graphics. To allow
for reliable decision making, we gather uncertainties introduced by the computer vision
step, communicate these information to users through uncertainty visualization, and grant
fuzzy hypothesis formulation to interact with the machine. Finally, we demonstrate the
effectiveness of our approach by the video analysis mini challenge which was part of the
IEEE Symposium on Visual Analytics Science and Technology 2009.

Keywords: visual analytics, video analysis, uncertainty, trajectories, interactive query,
video processing, video visualization, video surveillance

1 Introduction

The amount of video data world-wide is growing tremendously and has already reached
hardly manageable dimensions. The following examples help to understand the actual
situation:
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• According to Cisco’s estimates on future Internet traffic, “the sum of all forms of
video (TV, video on demand, Internet, and P2P) will account for over 91 percent of
global consumer traffic by 2013.”1

• In May 2009, the duration of videos uploaded to YouTube in every minute exceeded
20 hours.2

• The New York Times of January 11, 2010 notices that the US “Government agen-
cies are still having trouble making sense of the flood of data they collect for intel-
ligence purposes. ... Air Force drones collected nearly three times as much video
over Afghanistan and Iraq last year as in 2007—about 24 years’ worth if watched
continuously.”3

• With an estimated 40 million surveillance cameras worldwide [45], closed-circuit tele-
vision (CCTV) is one of the major sources of video data.

For reasonable interpretation of video data, especially in order to draw valuable insights
from it, comprehensive and reliable analyses are necessary. In consideration of the vast
amount of video data, analysis methods should be scalable and efficient. In general, there
is a trade-off between quality and efficiency, but in particular, there are a few problems
that are well-suited to automated video analysis. Some examples for applications that are
suited to automated video analysis are detection of shot changes in movies, or number
plate recognition for traffic surveillance.

However, there are many problems that are unsatisfactorily handled by automated
video processing. Imagine the challenge of searching for suspicious events within sev-
eral hours of video data captured by a surveillance camera. While the task of detecting
a specific person or a previously known event can be handled by an automated analysis
process, the search for vaguely defined targets becomes unreliable (see Figure 1). We fol-
low Leyk et al.’s definition of vagueness, which can be “defined as indeterminacy due to a
lack of distinctness between ill-defined or fuzzy classes of objects” [37]. A search for such a
vaguely defined target (which itself can consist of several objects) is an ill-posed problem,
where we assume a smooth transition between well-defined and vaguely defined targets.
In general, we observe that the reliability of automated video analysis depends on the com-
plexity of the problem, which in turn can be expressed by i) the degrees of freedom inherent
in the problem’s definition; and ii) the degrees of freedom present in the problem’s context
or environment (e.g., projection, illumination, noise). The former (i) also depends on the
semantic level of the problem (in other words the amount of abstraction involved), and is
solely responsible for the classification if a problem is vaguely or well-defined. Automated
video analytics systems that try to cope with complex problems often suffer from high false
alarm rates [26]; there is a trade-off between recall and precision.

A non-exhaustive enumeration of domains that have to deal with such ill-posed search
targets are:

• visual surveillance (CCTV, surgery documentation, aerial surveillance);

1“Cisco visual networking index: Forecast and methodology, 2008–2013,” available at http://
www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-
481360 ns827 Networking Solutions White Paper.html

2“Zoinks! 20 hours of video uploaded every minute!”, available at http://youtube-global.blogspot.com/
2009/05/zoinks-20-hours-of-video-uploaded-every 20.html

3“Military is awash in data from drones,” permalink: http://www.nytimes.com/2010/01/11/business/
11drone.html
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Figure 1: Example of well-defined search target (specific person in the left image) and
vaguely defined target (search for “abnormal” behavior in right image). The images origi-
nate from PETS 2004 dataset [20] and PETS 2006 dataset [57].

• scientific video analysis (behavior analysis, biological surveillance/animal studies,
motion analysis); and

• digital life streams (webcams, videoblogs).

Since automated video analysis in these fields is usually difficult and unreliable, users
often fall back on the traditional method: manual video analysis (i.e., watching the com-
plete video), which obviously lacks scalability. The situation in video analysis can be sum-
marized by the words of John Naisbitt:

“We are drowning in information but starved for knowledge.” [44]

1.1 A visual analytics approach

To facilitate scalable video analysis with respect to vaguely defined search targets we intro-
duce an approach based on the visual analytics (VA) methodology. The term visual analyt-
ics describes “an iterative process that involves information gathering, data preprocessing,
knowledge representation, interaction, and decision making” [30]. Hence, the basic idea is
to split the analysis task into two parts: automated low-level feature extraction and human-
based high-level pattern recognition (see Figure 2 for a simplified VA process). Thus, we
deploy both parts to the expert, since humans are adept at recognizing complex patterns
and spatiotemporal events, whereas the machine is capable of performing large amounts
of calculations reliably and in a short period of time. The connection between both worlds
is established by visualization and human-computer interaction.

The goal of video analysis is to gain insight into the data provided by the capturing
device. According to VA, insight is gained by a user-driven iterative process of exploration,
hypothesis formulation, and hypothesis verification. The users are supported in this task
by features automatically extracted from the input videos. We use trajectory features since
they are suitable in many cases for visual surveillance and scientific video analysis. The
challenge of visualization and interaction, however, is to assist the users in deriving these
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Figure 2: Simplified visual analytics process. The interfaces between machine and human
(i.e., visualization and human-computer interaction) are fundamental parts to combine au-
tomatic low-level feature extraction and high-level pattern recognition by the user.

hypotheses, assumptions, and finally, insights on possibly relevant events by means of
the video data and the provided features. The advantage of video visual analytics is that
scalability is achieved by exploiting automatic feature extraction, while at the same time
reliability is obtained by utilizing human experts.

The information retrieved by video analysis, especially in the case of CCTV, often pro-
vides the basis for more or less critical decisions. Thus, it is crucial for decision-making to
be aware of and to consider uncertainties originating from different levels in order to draw
the right conclusions. Uncertainty information has to be extracted and communicated to
users in a comprehensible manner. International standards define how to aggregate, prop-
agate, classify, and display uncertainty in measurement [56].

In this paper, we distinguish between uncertainties from different sources. We denote
the uncertainty stemming from automatic analysis as data quality. This is the quality of
trajectory data extracted from video, which is determined by the measurement process.
Uncertainty is aggregated and propagated in every transformation step: video capturing,
object tracking, etc. Additionally, not only automatic video processing introduces uncer-
tainty to the analysis process: humans may be more or less confident about decisions and
hypothesis they make, too. To communicate this confidence information to the machine, we
take advantage of fuzzy sets.

1.2 Contribution

This paper is an extension of the work previously presented at the Third Workshop on Behav-
ior Monitoring and Interpretation 2009 [25]. There, we proposed a system for visual analytics
of video data introducing a novel method for the interactive and exploratory analysis of
videos. The visualization of the video sequences superimposed by automatically extracted
trajectory data enables the analyst to keep track of the important parts of the video, while
not losing the context. Further, the definition of relevant information by filtering for trajec-
tories’ movement description leverages scalability of the analysis.

The extensions in this paper additionally contribute to quality-aware analysis of videos.
Among the calculation and fusion of uncertainty information in every step of automatic
feature extraction (Section 4), visual feedback is provided to communicate associated data
quality to the users, as frequently demanded [58]. Therefore, we extend the VideoPer-
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petuoGram (VPG), a video stream visualization introduced by Botchen et al. [6], to provide
positional uncertainty information, and to improve context information (Section 5).

Further, integration of fuzzy filter definition similarly enables users to formulate hy-
potheses and assumptions according to their confidence about these ideas (Section 6.3).
To facilitate interactive trajectory query and to compensate inexperience, filter definitions
are kept easy-to-use (Section 6.2) and analysts are supported by context-sensitive statistical
graphics depicting the distribution of trajectories’ movement properties (Section 6.4).

Hence, beyond scalability the proposed visual analytics approach allows for reliable
video analysis, since high-level pattern recognition tasks are processed by human experts,
aware of the uncertainty inherent in the data.

2 Related work

2.1 Video analysis

In the last decade, several approaches aiming to aid inspection of video streams were pro-
posed.

Some video analysis systems guide users’ attention by alarms to certain events in order
to increase their efficiency and effectiveness. These events have to be modeled beforehand.
Examples are approaches for left-luggage detection [3], fire detection [38], loitering pedes-
trians detection [28], and the detection of forbidden area violations [36].

Forensic video processing systems provide another type of video analysis. Such an envi-
ronment is proposed by Jerian et al. [29]. They apply several processing functions to video
footage for the purpose of enhancing the video quality and therefore enable the investiga-
tion of important regions, such as the license plate of a car. The processing functions include
shifted lines correction, compression artifacts reduction, projective registration, and motion
deblurring.

There is only little prior research on visual analytics for video surveillance. Related
approaches in the literature are systems supporting exploratory search, such as the one
proposed by Christel [11]. His system is capable of exploratory query in video libraries,
such as broadcast news databases. He aims to retrieve relevant videos out of huge video
databases by defining filters. The filters make use of text annotations and image classifica-
tion algorithms to refine the set of relevant videos. This allows search for shots conveying
different characteristics, such as “is an outdoor shot,” “includes buildings,” or “includes
faces.” The search is also supported by the annotations of time stamps, locations on a map
view, and keywords in speech.

Ferguson et al. [19] integrates content-based analysis techniques into interactive TV (iTV)
devices to explore videos and video archives. Therefore, they present keyframes that rep-
resent automatically segmented shots or scenes in the video, and a video review (the play-
back of these keyframes) for each video in the archive. Their system is capable of searching
for video parts based on text (e.g., originating from subtitles), low-level visual features (e.g.,
color, texture, shapes), and faces. They propose to process specific video content, such as
sports and news, differently to take advantage of their particular characteristics.

Video visualization techniques depict the content of a video in a different way than the
traditional video representation: Daniel and Chen [14] apply volume rendering techniques
to visualize videos; Chen et al. [9] propose a horseshoe visualization; and Botchen et al. [6]
introduce a visualization called VideoPerpetuoGram (VPG). The VPG is a seismograph-like
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visualization technique for continuous video streams. A 3D video volume, where time
is extruded in the third dimension, combines keyframes for context information with ex-
tracted attributes in a single visualization. We have adopted the visual design of VPG in
this work.

Video synopsis approaches [50] show several actions simultaneously even if they occur
chronologically in succession. Showing these non-overlapping activity regions at the same
time reduces the time requirement to watch a video, but may also be confusing. Caspi et
al. [8] select and merge informative poses of objects to generate images or short video clips.
To avoid occlusion they rotate and translate the poses in the video volume.

Other approaches introduce video navigation techniques to ease and speed up video ex-
ploration. For example, Schoeffmann and Boeszoermenyi [51] extend the time slider to
show navigation summaries. Navigation summaries are content abstractions of the video
highlighting different temporal aspects, such as visited frames, dominant colors, or mo-
tion. Another approach to enhance video browsing enables the user to interactively drag
objects in video [15]. Here, moving an object causes the video to shift temporally to the
frame where the object is located at the desired spatial position.

Adapting the fast-forward speed is another approach to watch video in less time. Ir-
relevant parts of the video are played faster than periods of interest. The definition of
interesting parts vary: motion features [47], similarity to target clips [48], semantic rules
and user input [10], and the information theory [23] are used as measures.

2.2 Trajectory analysis

The presented work also has substantial overlap with other research domains, such as ge-
ographical information science or spatiotemporal databases. Besides differences in termi-
nology and emphasis on different issues the challenges are quite similar: acquisition and
description of trajectories as well as their query, classification, or summarization. The latter
often utilize an iterative process that involves context-dependent trajectory visualization.

In the field of geographical information science, Mark [40] termed “the continuous set of
positions occupied by an object in geographic space over some time period” a geospatial life-
line, whose “data consist of discrete space-time observations, ... describing an individual’s
location in geographic space at regular or irregular temporal intervals.” Geospatial life-
lines often originate from GPS-tracking data and are analyzed in an interactive exploratory
fashion involving their visualization (e.g., [1, 16]). These methods bridge the gap to visual
analytics. There exist several visualizations of spatiotemporal data in geographical infor-
mation science (see Andrienko et al. [2] for a survey). In particular, we point out the space-
time cube [32, 33], whose foundations go back to Hägerstrand’s time geography [22], since it
is quite related to the VPG, which we apply for video visualization. Important progress
was also achieved for the description of geospatial lifelines and their analysis with respect
to the temporal context (e.g., [27, 35]).

Research in spatial databases was originally motivated by geographical information
systems, which themselves served as foundation (together with temporal databases) for
spatiotemporal databases. Moving object databases (MODs) are one particular line of re-
search that “deal with moving objects whose position is recorded at, not always regular,
moments in time” [34]. The database community has especially contributed to the rep-
resentation of spatiotemporal objects (e.g., trajectories), their comparison, indexing, and
query. Additionally, uncertainty inherent to the measurement of trajectory data as well
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as query-imprecision support was in focus of research on moving object databases. For
further introduction we refer the reader to the textbook of Güting and Schneider [21].

Wolfson presented in his vision paper [62] an overview of operators to query for trajec-
tories. We integrate some of these operators into the filters introduced in Section 6.

2.3 Uncertainty

To derive reliable decisions, the process of decision making has to deal with data of dif-
ferent qualities. The quality is determined by the degree of uncertainty and the amount of
missing values that are propagated and aggregated by the transformations applied to the
data.

For handling uncertain information, Correa et al. [13] first generate a model for source
uncertainty (uncertainty modeling) using parametric models. During data transformation,
the uncertainties are propagated using sensitivity modeling and aggregated via error mod-
eling. They denote the uncertainty of the derived data and its sources by uncertainty-aware
transformations and finally map them to visual representations to complement the view.

Pang et al. [46] introduce a visualization pipeline that distinguishes between three types
of uncertainty: data acquisition leads to data uncertainty; data transformation to derived
uncertainty; and the visualization process to visualization uncertainty. Similar to Correa,
they propose to display data and uncertainty in a combined visualization, too.

A comprehensive survey of uncertainty visualization is provided by MacEachren et al.
[39]. They discuss several approaches ranging from uncertainty measurement and assess-
ment, via coping with uncertainty in information analysis and decision making, through to
uncertainty visualization. They reviewed literature both from the geographical information
science community as well as from the scientific and information visualization community.

Uncertainty models of trajectories have been discussed within the moving object
database community, too. Trajcevski et al. [59] and Wolfson [62] propose a threshold to
define a cylindrical uncertainty zone around the linear interpolation of two sample points
in which the real trajectory of the moving object is situated. Position updates are only
sent to the database if the object leaves its uncertainty zone. Wolfson also demands query-
imprecision support and introduces predicate pairs for spatiotemporal query such as al-
ways/sometimes, possibly/definitely, and somewhere/everywhere.

A more sophisticated method was proposed by Pfoser and Jensen [49]. They distin-
guish between measurement error and sampling error. The latter introduces positional
uncertainty of the trajectory in time tx between two consecutive sample points. In their
approach the likelihood of the object’s position in tx is equally distributed over an area
(termed lens) determined by the object’s estimated maximum speed. The lenses of the time
between two subsequent trajectory samples form two linked cones, a lower cone with its
apex at the first sampling point oriented forward in time, and an upper cone with its apex
located at the second sampling point and direction backward in time. This shape is known
as space-time prism [42] or lifeline bead [27]. A whole trajectory, sampled in time, is then
represented as chain of lifeline beads, called a lifeline necklace. Kuijpers and Othman re-
port a three times higher precision for lifeline beads than the cylindrical method [34]. Our
approach to describe the positional uncertainty of a trajectory is related to lifeline beads
inspired by Pfoser and Jensen, but starts from a different data model.
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Figure 3: The structure of the proposed visual analytics framework.

3 Uncertainty-aware video visual analytics

In the introduction we briefly illustrated the basic concepts of visual analytics in general.
This section explains our approach to video analysis by visual analytics.

The different stages involved in an iterative visual analytics process are sketched by
Keim’s mantra: “Analyze first; show the important; zoom, filter, and analyze further; de-
tails on demand” [31], cf. [53]. In the proposed approach, these stages are addressed in
three parts: video vision, visualization and interaction, and hypothesis generation (Figure
3). Keim’s first stage is covered by the video vision pipeline presented in Section 4, while
the two latter stages largely involve human analysts for reasoning: creating assumptions
and hypotheses and as a final goal, gaining insight. Visualization and interaction tech-
niques are the connecting parts of visual analytics. They link automatic low-level feature
extraction to high-level pattern-recognition by human analysts.

Among other tasks, video representation has primarily to support the navigation and
orientation in spatiotemporal data space. Otherwise, users may lose spatial or temporal
relationships between several events. Further, the abstraction capability of the visualization
is important to enable fast and scalable exploration of a video sequence. It is fundamental
to human-centered video analysis that the visualization supports the adaption of the level
of detail for any particular region of the video and that it provides access to additional
information, such as metadata, previously extracted features, or statistics.

Video analysis with vaguely defined search targets typically starts with the visual ex-
ploration of a huge amount of data of low detail and evolves into inspection of a small
amount of data of high detail. In interactive query refinement, two principles turn out to
be important: the analysis process focuses on relevant data and controls the level of detail.
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This raises the question which part of a video sequence is relevant to the analysts. Further,
it motivates the adaption of level of detail of the information presented by visualization.
We will examine these issues in Sections 5 and 6.

Findings of analyses without knowing about their quality are generally of no avail.
Especially for decision making based on the results of an analysis, it is indispensable to
know about the reliability of the provided information. Uncertainty of information orig-
inates from the various transformations applied to the data, reaching from measurement
via video processing through to visualization and perception. But also the definition of
relevance, assumptions, and hypotheses by human analysts introduce uncertainty to the
information, as depicted in Figure 3. A major contribution of this paper is to cope with
uncertainties in all stages, utilizing uncertainty aggregation and propagation in the video
vision part, fuzzy hypotheses definition on the analyst’s side, and uncertainty visualization
to communicate the quality of features to the human.

4 Video vision

Tracking moving objects is an elementary stage of the spatiotemporal analysis of video
sequences. In our approach, we combine well-known, basic computer vision techniques to
achieve simple but robust feature extraction (see Figure 4).

Background subtraction classifies the pixels of a video frame to foreground and back-
ground utilizing a background model. Assuming the background to be static to some ex-
tent, we apply the running Gaussian average method [63] that utilizes a single Gaussian
luminance distribution per pixel to describe the background. The background model is
updated by the currently processed video frame to cope with noise and gradually chang-
ing illumination. Foreground objects are retrieved by thresholding the subtraction of the
current video frame and the background model.

By motion segmentation we identify areas of homogeneous movement, which are con-
sidered to be foreground objects. To calculate the required optical flow field of successive
frames we apply the pyramidal Lucas-Kanade method [7]. We use these two segmentation
approaches (background subtraction and motion segmentation) to avoid wrong trajectories
and false alarms due to encoding artifacts or badly initialized background models. Finally,
we refine the object regions by morphological operations utilizing prior knowledge of the
video material (e.g., codec block size) and fuse the results of both segmentation methods.
The fused object blob as well as the results of both segmentation methods are illustrated in
Figure 5.

Object tracking integrates the observation of foreground regions of several frames. For
this purpose we utilize a linear Kalman filter [61] with a dynamics model of second order
derivative and trace the extracted blobs. To support multiple object tracking, the object’s
dynamics model represented by the Kalman filter is used to predict a target window (cf.
red circle in Figure 5). Based on this prediction, target windows and object observations are
associated by the Hungarian algorithm (also termed Munkres), according to their distance.
The new observations are used to update the Kalman tracker. For trajectories without as-
sociated observation, for instance because of object occlusion, we apply an update rule
according to Cipra and Romera [12].

After trajectories of moving objects within the video sequence are extracted, a selection
of movement properties is calculated. These properties are a subset of the movement de-
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Figure 4: Workflow of automated trajectory extraction.

Figure 5: A video frame superimposed by the results of the different segmentation ap-
proaches. Blobs stem from background subtraction (magenta), motion analysis (yellow),
and the fusion of both results (cyan). Small pink lines illustrate the optical flow. The ob-
ject’s position in previous frame is represented by red rectangle, while the red circle limits
the prediction window.

scriptors by Laube et al. [35], which they use to specify and compare geospatial lifelines
captured by GPS devices. We apply the movement descriptors of global trajectory context
for interactive query introduced in Section 6. The subset of properties we use consists of
location, speed, and movement azimuth.

To draw correct conclusions the analysts have to know about the quality of the informa-
tion provided by the automated extraction process. Hence, we communicate the algorith-
mic uncertainty to the video visualization, which is an extension of our previous work [25].
Since every step of the trajectory extraction process introduces (or at least propagates) un-
certainty, the quality of each result has to be evaluated and, finally, fused together to a
combined uncertainty estimation.

Our uncertainty model is based on the following assumptions and simplifications. We
neglect the uncertainty originating from the video capturing process, which basically re-
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flects sensor noise and coding noise. We consider its influence as negligible since the effect
of noise is alleviated by morphological post-processing of the segmentation result. Further,
we only focus on data uncertainty and in general omit handling of missing values and
contradictory data. Thus, it is possible that some objects (i.e., blobs, trajectories) will be
missed due to inappropriate thresholds. Likewise, we do not consider any systematic error
that leads to reduced accuracy; we solely regard random error that affects the precision of the
result. Finally, we assume temporal precision of video sampling to be high enough for our
purpose. Hence, we ignore it and focus only on spatial precision of the extracted features.

The different computer vision methods we apply introduce their own methods of how
measurement uncertainty is estimated. To model the uncertainty inherent in the two seg-
mentation approaches, we calculate each pixel’s probability of being correctly assigned to
foreground or background class. The uncertainty of both segmentation results is then fused
by averaging. Regions where blobs of both methods overlap are considered as object areas
and are further tracked (cf. Figure 5). Similar to Pfoser and Jensen [49], we only maintain
trajectories of moving points, in contrast to traces of whole blob areas. Hence, we calculate
the mean and covariance of the blob area weighted by the segmentation quality.

The classification uncertainty of a pixel is retrieved by widely accepted methods, ac-
cording to the segmentation approach. For background subtraction, we exploit the stan-
dard deviation of the background model to specify the likelihood of being well classified.
The quality of the optical flow field obtained by the Lucas-Kanade method is largely deter-
mined by the cornerness of the tracked image region, which is due to the aperture problem
and exploited by the popular Kanade-Lucas-Tomasi tracking technique [52]. According to
Barron et al. [4], we use the magnitude of the smallest eigenvalue of the system matrix to
determine the uncertainty of the estimated optical flow.

In the Kalman filter, we treat the mean of the uncertainty weighted blob area as the
observation of the object’s location, while its covariance is considered as the normal dis-
tributed measurement noise. In consequence, the trajectory is modeled by the location
(filter state) and the positional precision (a posteriori error covariance matrix) of the mov-
ing point in each frame. The square root of the error covariance is used for visualization
of trajectories’ positional precision in Section 5 according to standards of measurement un-
certainty [56]. We assume the temporal sampling of video frames to be dense enough to
ignore positional deviation of the trajectory between two consecutive samples. If obser-
vations were missed for some frames, for instance in cases where the object is occluded,
the trajectory is extrapolated according to its dynamics model. Inaccuracy of the dynam-
ics model in combination with the process noise (which covers the simplifications of the
dynamics model) leads to increasing uncertainty of the predicted positions.

In case of missing observations, the proposed method of modeling the trajectory un-
certainty is quite similar to lifeline beads [49]. The main difference between lifeline beads
and the proposed approach is that the former uses a uniform distribution to model the
object’s likelihood of being at any location within a bead, which is constrained by the ob-
ject’s estimated maximal velocity. In contrast, the approach based on Kalman filtering uses
a multivariate Gaussian distribution with respect to the recent dynamics model and its
accuracy to define the probability density function of the moving object’s location.

Based on the ground plane projected locations of the moving object, further movement
descriptions are extracted. In contrast to different levels of granularity [35], we evaluate
the descriptions of the whole trajectory, since the length of trajectories extracted from video
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footage is generally short. Movement descriptions, such as speed:
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are solely based on the object’s locations. Hence, we use error propagation [41] (also called
Gaussian error propagation or linear error propagation) to calculate their uncertainties. Since,
we assume the uncertainties to be Gaussian distributed, they are expressed as the standard
deviations σspeed and σazimuth (cf. Appendix for derivation):
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]

(4)
with vector:

v(i,j) =

(
x(i,j)

y(i,j)

)
= T

(j)
pos − T

(i)
pos

and the according covariance matrix representing the uncertainty:

C(i,j)
v =

(
var

(i,j)
x cov

(i,j)
x,y

cov
(i,j)
y,x var

(i,j)
y

)
= C

(i)
pos + C

(j)
pos

where N is the number of equidistant trajectory fixes, sampled at the rate of fps (frames
per second). T

(i)
pos denotes the trajectory’s position vector at sample i with the according

covariance matrix C
(i)
pos. The superscript represent the time index of the sample or the vector

between two samples, e.g., in the case of (i, j). Note that we assume the errors in T
(i)
pos and

T
(j)
pos (for i �= j) to be independent and uncorrelated.

5 Video visualization

Video visualization aims at displaying relevant parts of video, features extracted by video
vision, and consequences of filter definitions. Uncertainty-aware video visualization has
additionally to communicate uncertainties originating from the video vision stage, and
confidences from the filter definitions. For the visualization of videos, we utilize the

www.josis.org

http://www.josis.org


UNCERTAINTY-AWARE VIDEO VISUAL ANALYTICS OF TRACKED MOVING OBJECTS 99

Figure 6: The video is visualized by VideoPerpetuoGram (VPG) containing the two spatial
axes and the temporal axis of a video. Three keyframes with their time stamps are depicted
to convey context information. Although there are just few keyframes, the video volume
is dense and shows detailed trajectories (in the space-time volume) with their degree of
membership (DOM) related to filters mapped to color (green: high; red: low). Their po-
sitional uncertainty is illustrated by semi-transparent blur. The green trajectory, featuring
high DOM, shows a person walking from left across the footway. The orange trajectory,
featuring moderate to low DOM, represents a car appearing for a short period of time
in the upper part of the video. Trajectories with a DOM below a user-defined threshold
are hidden, and periods without trajectories are skipped. Between the second and third
keyframe, no trajectory is left. Therefore, this period of time can be skipped and is cut off
the (afore dense) video volume. The blue bar indicates the gap in the video volume and the
amount of time skipped.

VideoPerpetuoGram (VPG) [6] and enhance it to provide positional uncertainty informa-
tion of trajectories.

The VPG visualizes continuous video streams similar to the illustration of seismographs
and electrocardiograms (ECGs). Features, such as trajectories of moving objects, are dis-
played together with a couple of keyframes that convey the context of the original video
data. The VPG depicts a video volume composed of the time axis and two spatial axes
of the video frames. This representation supports the navigation and orientation in the
spatiotemporal video space. Hence, users are enabled to keep track of spatial and tempo-
ral relationships between several events. This abstract visualization of the video helps to
overview a long video sequence at a glance and allows interactive exploration of trajecto-
ries.
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Figure 7: The trajectory of a moving object is depicted by a geometric tube. A blob in the
beginning conveys context information, i.e., to which object this trajectory belongs. DOM
with respect to filters and positional uncertainty is depicted by color and semi-transparent
blur, respectively.

Figure 6 shows our VPG visualizing a part of the video stream from the IEEE VAST
Challenge 2009 [60].

There is a trade-off between using abstract visualizations and visualizations similar to
standard video playback. The former provide faster exploration with more details than the
latter, but are unfamiliar. We decided to use an abstract visualization since it was demon-
strated by a controlled user study that users are able to learn abstract visual signatures [9].
Even visualization novices are able to understand the VPG [24] after introducing simple
related 2D visualization designs.

To convey data quality, uncertainty information has to be provided by the VPG. There
exist different visual mappings of uncertainty discussed in literature: adding glyphs,
adding or modifying geometry, modifying attributes (e.g., color and shading), using an-
imation [46], and applying transparency [13]. Botchen et al. [6] use two levels of saturation
to indicate the relationship plausibility of trajectories in the VPG. We use color to encode
the degree of membership (DOM) of the trajectories with respect to the defined filters (see
Section 6). In addition, quantitatively expressed trajectory quality as well as further in-
formation of the trajectory can be acquired on demand (cf. Section 6.6). Trajectories with
a DOM below a user defined threshold are hidden, and periods without trajectories are
skipped. The blue bar indicates the amount of time skipped.

A contribution of this paper is to superimpose the positional uncertainty of the video
vision stage in the VPG by semi-transparent blur. This represents the probability density
function of the object’s location and is realized by an elliptical tube with according trans-
parency distribution. The uncertainty visualization enables the users to be aware of the
trajectory’s quality and facilitates reliable conclusions.

Another extension of the VPG aims to improve context information. The trajectory’s
start position is therefore augmented with the blob of the moving object (cf. Figure 6,
orange trajectory, and Figure 7).

6 User interaction

The objective of human-computer interaction in video visual analytics is mainly to enable
users to explore video data and to verify the derived hypotheses. Therefore, the user inter-
action has to be closely connected with the visualization.
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In general, users start the analysis process of a video sequence by exploring it to derive
the first hypotheses. Basic concepts for navigation, selection (to access additional infor-
mation), and magnification (adjustment of information granularity) are widely established
and adopted for the special needs of video analytics.

6.1 Relevance definition for video parts

After exploration has led to first findings, a second type of interaction gains in importance:
the definition of relevance of certain video parts. This is the key element to achieve scal-
ability for large amounts of video data. Both interaction schemes—the exploration and
the feedback of user-defined relevance based on hypotheses—are fundamental elements of
video visual analytics and define the analysis process: users generate insight by iteratively
deriving hypotheses, verifying, adapting, accepting, or rejecting them.

In the proposed framework, relevance is defined by the formulation of filters. An in-
troductory example should help to understand the relationship between hypothesis, rele-
vance, and filter: if we have the hypothesis that the person searched for is an employee
traveling by bus, only those trajectories are relevant. Hence, we define filters to constrain
the set of trajectories to those leaving the company and walking into the direction of the bus
stop (cf. Figure 8). Please note that the term relevance is used here related to users’ inter-
ests. Of course, other users, searching for other events, may be interested in different parts
of the footage and therefore define relevance differently. The set of supported filter types
stems from the trajectories’ movement description calculated in the video vision stage and
covers various types: location filter (cf. Figure 9), filter for movement azimuth (cf. Figure
10), lifetime filter, speed filter (cf. Figure 11), black list, and white list. Additionally, a
relationship filter (cf. Figure 12) allows the user to filter trajectory relations. The particular
filters will be discussed in Section 6.2.

Figure 8: Exemplary filter tree. A particular filter is represented by its type (e.g., “Location
filter”) and its user-defined description (e.g., “Exclude streets”). The union operator is ap-
plied to fuzzy sets of filters of the same level (e.g., “Speed filter—Pedestrian” and “Location
filter—Exclude streets”). Sets of filters at successive levels are intersected (e.g., “Location
filter—Door (exit)” and “Movement azimuth—Bus stop direction”). Filter containers are
used to aggregate filter subtrees in hypotheses. The percentage values next to the filters
denote the DOM of a selected trajectory to this filter. The percentage values in brackets
next to filter containers express the DOM to the whole hypothesis (i.e., the resulting DOM
regarding all intersection and union operations of the filters in this filter container).
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Figure 9: Interface of the location filter. Spatial areas of interest (yellow) can be brushed on
a keyframe similar as done in applications such as Photoshop. The fuzzy value between 0
and 1 that will be brushed is selected by the “Fuzzy value”-slider. The fuzzy value of an
area of interest is depicted by saturation of the yellow color. This particular location filter
can be used to exclude trajectories situated on streets (cf. Figure 8 “Location filter—Exclude
streets”).

To enable users to keep track of the semantics and purposes of the filter definitions,
filters can be annotated. These descriptions are given by users to explain the intention of
the filter (such as “Exclude streets” or “Meeting”) and provide an overview.

The filters can be arbitrarily combined using intersection, union, and complement oper-
ators on fuzzy sets to form complex filter trees. Filter containers are used to aggregate filter
subtrees in hypotheses. An exemplary filter tree is illustrated in Figure 8. In fuzzy sets,
intersection can be applied by any t-norm and union by the corresponding t-conorm. The
most common t-norm and t-conorm for fuzzy sets are Zadeh’s min and max [64] operators,
which are applied by default. However, the users are not restricted to them and may apply
any t-norm and t-conorm. For an introduction to fuzzy sets and their operators we refer to
the textbook of Siler and Buckley [55].

A major contribution of this work is to support users in their filter definition process.
Therefore, we designed a user interface that complies with the following five essential in-
teraction guidelines:

www.josis.org

http://www.josis.org


UNCERTAINTY-AWARE VIDEO VISUAL ANALYTICS OF TRACKED MOVING OBJECTS 103

Figure 10: Interface for movement azimuth selection. A keyframe is depicted for context
information. The histogram (blue bins) shows the distribution of trajectories’ directions.
The yellow area represents the selected directions. On the right side, users can choose to
model their uncertainty by different fuzzy selection modes, described in Section 6.2. This
particular selection of the movement azimuth will focus on trajectories walking from top
to bottom.

1. easy-to-use filter definition;
2. confidence-incorporated filter definition;
3. decision-guided filter definition;
4. filter feedback; and
5. details-on-demand.

6.2 Easy-to-use filter definition

Since filter specification is an important element in interactive exploration, it should be
easy-to-use. The International Organization for Standardization (ISO) describes a set of
usability heuristics for dialogs. One of these is the “Conformity with user expectations.”4

This principle demands that an application should be consistent and in accordance with
the users’ expectations. In our case, this implies that the filter formulation has to support
the users in defining filter parameters according to their real world associations. The input
of locations, directions, distances, and so on has to be done in a manner that matches the
knowledge and experience of the users with these attributes.

In particular, the location filter (see Figure 9) is defined by drawing in the image similar
to applications such as Photoshop. A keyframe is depicted in the background to convey
the spatial context information to the user.

4ISO 9241-110:2006 Ergonomics of human-system interaction—Part 110: Dialogue principles; conformity with
user expectations
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Figure 11: Speed filter. A histogram (blue bins) shows the distribution of the mean speed
of the trajectories. The yellow area represents the selected speeds. This particular speed
filter can be used to focus on trajectories at walking speed (cf. Figure 8 “Speed filter—
Pedestrian”).

For the selection of the movement directions it is important to put the movement az-
imuth in context to the image space. By a compass-like visualization we illustrate how
directions are embedded, while a keyframe contributes scene context. The highlighted
parts of the circle represent the desired and supported directions (see Figure 10). Hence, a
direct match between the movement azimuth and the scene is established. This facilitates
that movement directions of desired trajectories can be easily estimated.

Interactions between moving objects can occur if they share nearby spatial locations at
a similar time. Thus, two attributes, the spatial distance and the temporal distance, are
of interest for a relationship filter. Figure 12 shows the interface to provide the spatial
distance of the relationship filter. To increase users’ awareness of their defined distances at
different locations, we project a distance circle on the ground plane, as the mouse hovers
over the keyframe. Please note that the relationship filter is independent of the absolute
spatial location: only the relative distance between trajectories is considered. The temporal
distance of the relationship filter, as well as filters for lifetime or speed of trajectories, are
fed into the system with a dialog similar to Figure 11.

Endert et al. [18] reported on observations of analysts working with the IEEE VAST
2009 Challenge data. One of the outcomes was that professional analysts like to start with
intuitive GUIs to sketch filters and in this way explore data rapidly. Later, they prefer to
enter exact values. We support both interaction modes: users can drag and drop values
(e.g., movement azimuth and speed filter, red points in Figures 10 and 11) and brush their
desired locations (location filter, Figure 9) to sketch filters roughly as well as enter the exact
values (cf. right panels of Figures 10 and 11).

Wolfson [62] introduced operators for retrieving trajectories that stand in certain rela-
tionships to a region: always/everywhere and sometimes/somewhere. For the location filter
and the spatial distances of the relationship filter, we require trajectories to start at, end
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Figure 12: Interface for spatial distance selection of the relationship filter. A keyframe is
depicted for context information. Yellow ellipses indicate the certain and uncertain spatial
distances projected on the ground plane at the mouse position helping users to estimate
distances. This particular relationship filter can be used in combination with the property
start at (property selection not visible here, cf. Section 6.2) to detect meetings (cf. Figure 8
“Relationship filter—Split of trajectories indicate meeting” and Section 7).

at, be partially in, or to be completely in a region. Wolfson uses the two discrete states to
model uncertainty: possibly and definitely. In contrast, we assign trajectories to filters by a
continuous DOM.

6.3 Confidence-incorporated filter definition

The human-centered and hypothesis-based relevance filtering introduces a new level of ab-
straction. Since filters are associated with assumptions, they are a source of uncertainty, too.
Filter definitions have to enable analysts to incorporate their confidence about hypotheses
into the relevance feedback. In consequence, the relevance feedback must not strictly filter
for trajectories, but has rather to cope with fuzzy decisions based on user-defined confi-
dence values.

To address this issue, we represent filters by fuzzy sets and allow analysts to model
their confidence by fuzzy membership functions. We support three different membership
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functions: Gaussian, triangle, and trapezoid set functions. These functions are the most
common fuzzy sets functions [43], and they are modeled by only few parameters: two
(Gaussian: mean and deviation), three (triangle), or four (trapezoid) (cf. Figures 10 and 11).
Additionally, these functions are also very common to represent measurement uncertainty
distribution in calibration applications, for instance. For the relationship filter, we use a
single-sided fuzzy membership function (termed Z-function), such as the one in Figure 12.
For the location filter (see Figure 9), the fuzzy values of arbitrary areas can be set separately.

A trajectory’s DOM to a filter is calculated by the uncertainty originating from the video
vision stage (data quality) and the confidence provided by the users. Therefore, we inte-
grate the product of an uncertain attribute of a trajectory and the fuzzy set function of a
filter. The resulting interval of the DOM is between 0 and 1.

The filters differ in the complexity and discretization in calculation of the DOM. While
the location filter has to regard all three spatiotemporal dimensions, other filters consider
only a single attribute, for example the mean speed of a whole trajectory. The discretization
is either introduced in the filter evaluation step (i.e., the uncertain attribute is evaluated at
sample points) or is already available (e.g., pixels and frames).

6.4 Decision-guided filter definition

Thomas and Cook identified the importance of “visual analytics systems to support the an-
alyst in executing sound analytic technique routinely, facilitating insight and sound judg-
ment in time-pressured environments and compensating for inexperience wherever possi-
ble” [58].

To support the analysts, we supply background information for decision guidance by
presenting context-sensitive graphical statistics. Context sensitivity denotes the selection
of the provided statistics according to the filters. For different filters and when appropriate,
we depict normalized histograms of the filters’ attributes.

To conform to users’ expectations, the appearance of the histogram is adapted to the
filter. For example, the histogram of the movement azimuth filter is arranged in a circle
in order to ease derivation of assumptions of trajectories’ behavior. Investigating the his-
togram in Figure 10, one assumption may be that the amount of people walking on the
footway from right to left outnumbers the people walking into the opposite direction. This
supports users to define relevance, derive hypotheses, and to create appropriate filters.

Further, such context-sensitive graphical statistics help also to reject previously made
incorrect assumptions, for example that there are two predominant speed intervals: one
for people and one for cars. The histogram of the speed filter shown in Figure 11 tells us
that there are no sharp speed intervals. This distribution arises from cars decelerating and
stopping at the signal light and bicycles at intermediate speed. Therefore, the assumption
has to be rejected.

As already mentioned above, we complement the context-sensitive graphical statistics
with keyframes for spatial context information where appropriate (Figures 9, 10, and 12).

6.5 Filter feedback

Feedback is essential for users to verify their hypotheses by filter definitions. Without filter
feedback, users cannot know whether their filter formulations are too weak or too restric-
tive. More than that, users are left in the dark whether the filters operate as intended.
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They are also not aware if the filters cause side-effects. We provide filter feedback of three
different kinds.

During the filter definition, we do not remove the trajectories from the VPG, but im-
mediately map their DOMs to the color of tubes (cf. Section 5). The changes have to be
explicitly applied. In this way, users are made aware of how the filters affect the trajecto-
ries.

The second filter feedback shows for a selected trajectory the DOM to each single fil-
ter. Additionally, the combined DOM to each hypothesis (including the intersections and
unions of the filters) can be monitored in the filter tree as illustrated in Figure 8.

The third kind of filter feedback displays the amount of remaining trajectories in con-
trast to the number of all trajectories extracted from the video. Hence, users get an impres-
sion of how restrictive their filter formulations are.

6.6 Details-on-demand

Details-on-demand techniques provide an overview of a larger region of interest (in our
case the video part displayed in the VPG), while users may select parts of data to be vi-
sualized in more detail. This combination allows for in-depth analysis without losing the
big picture. Since the proposed framework is mainly based on the trajectories of moving
objects, detailed information of particular trajectories are indispensable.

Therefore, our framework supports the selection of a particular trajectory. The selected
trajectory will be highlighted in the VPG and a window with detailed information about
this trajectory appears. The detailed information includes all features extracted by the com-
puter vision stage, such as the mean speed, movement azimuth, location, and temporal
constraints, each with the inherent uncertainties. With this detailed information, the user
can investigate particular trajectories to search for characteristic attributes. Having these
characteristic attributes in mind, the user can define or refine filters that permit or exclude
these trajectories.

Figure 13: The part belonging to a trajectory can be played as conventional video. The
region of the trajectory is highlighted.
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Sometimes, whether for novices to learn the VPG or for further investigation of a trajec-
tory, analysts want to see the native video stream of a trajectory. We support this necessity
by a conventional internal video player that is able to highlight the region that belongs to a
trajectory (Figure 13). Of course, it is also possible to play arbitrary parts of the video even
if no trajectory is situated there.

7 Case study and evaluation

For the validation of our work we follow Ellis and Dix [17]. They claim that validation
should consider two parts: justification and evaluation. The justification of our approach
can be found in the particular sections. For the evaluation of our approach we participated
at the IEEE VAST Challenge 2009 [60].

Shneiderman and Plaisant claim the IEEE VAST Challenge to be a good evaluation
method: “the Visual Analytics VAST contest will combine both qualitative and quantitative
metrics by using synthetic dataset which provides ground truth against which insights can
be evaluated” [54].

The IEEE VAST Challenge has been part of the IEEE Symposium on Visual Analytics
Science and Technologies since 2006. The IEEE VAST Challenge 2009 covered three mini
challenges: Badge and Network Traffic, Social Network and Geospatial, and the Video Analysis
mini challenge. Additionally, participation in the grand challenge, which combined the
mini challenges, was possible. We participated in the Video Analysis mini challenge with
our framework, and collaborated with two other groups who worked on the other mini
challenges to solve the grand challenge.

The background story of the challenge was the suspicion that an embassy employee
is corrupt and transfers data to an outside criminal organization. For the video analysis
mini challenge, 10 hours of surveillance footage was provided and it was suspected “that
at least one, perhaps more, meetings of persons associated with this case took place at
locations captured by this security camera” [60].

According to the discussion in the introduction about well-defined and vaguely defined
search targets, this is a vaguely defined search target: the detection of suspicious meetings
requires analyis of the behavior as well as interpretation of the intentions of the involved
persons. Although we have some constraints (search target: meetings), the problem defini-
tion includes many degrees of freedom, such as an arbitrary number of associated persons
and the undefined appearance of the persons. Thus, solving this task solely by automated
computer vision techniques is hard. In our approach, we address this issue by involving the
analysts in the exploration of the video and delegate the responsibility to evaluate potential
scenes of interest to them.

We will now explain how our filter framework was applied to solve the task. We started
the VA process on the whole video containing 809 trajectories. In the beginning, we ex-
plored the video to find irrelevant parts. We detected that a lot of trajectories belong to cars
driving on streets. Since we are searching for encounters of people, we made the assump-
tion that meetings will not take place on streets. Thus, we created a location filter similar to
Figure 9 to get rid of trajectories originating from cars. Cars are typically faster than pedes-
trians. Hence, the application of a speed filter similar to Figure 11 would be an option,
too. After further exploration, we came up with the hypothesis that an encounter of people
includes a discriminatory trajectory relationship. The trajectories involved in a meeting
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Figure 14: The split and merge of trajectories indicate encounter of people (upper left). At
the split of the trajectories at the end of the meeting (right) we find the woman and the man
involved in briefcase exchange (lower left, marked).

first merge (arrival of people) and then stay together while the meeting takes place. After
the meeting, the trajectories of the participants finally split. To detect meetings, filtering
for one of these stages is appropriate. Therefore, we formulated a relationship filter similar
to Figure 12 with the condition starts at. That means, we are searching for the last stage:
the end of the meeting. With these simple filters, the amount of remaining trajectories
was decreased to 22, a manageable amount to investigate manually. Within the remaining
video, we found a woman and a man involved in a briefcase exchange, the solution of the
challenge (see Figure 14).

The task of deriving hypothesis, such as that meetings will not take place on streets and
that meetings can be described by a split and merge of trajectories, is solely the responsibil-
ity of the analyst. It requires a large amount of knowledge (e.g., that persons do not meet on
busy streets since it is dangerous) which is collected by humans through daily experiences.
It is impractical to model the whole knowledge in the machine, and therefore the machine
alone cannot solve this task. Nevertheless, the machine is appropriate to aid the user in the
particular parameter definitions of filters, such as “Where are the streets located?”, “How
fast are the trajectories on the pedestrian walk in common?”, or “How far is a distance of
5 meter in the projected image?” This is the kind of information that is provided by the
proposed system. This also points out that the given solution may not be the optimal one.
The filters are applied exactly in the order the analysts derived their hypothesis. There may
be better and worse filter combinations that lead to the solution, depending on the ideas
and skills of the analysts.

As mentioned above, we also participated at the grand challenge. This required us to
check further events. For example, the collaborating groups came up with the hypothesis
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that a particular building in the video is the embassy. To check this hypothesis, we defined
a location filter with the condition ends at and marked the door to exclusively select trajecto-
ries entering the building. We then compared the entrance timestamps of these trajectories
with those of the provided by badge data. They did not match. Therefore, the hypothesis
was rejected: the building is not the embassy.

Another meeting we found included a cyclist. Here, a man arrived with a bicycle and
had a short talk with another man. A query of badge traffic database for this timestamp
indicated that a few minutes later someone arrived in the embassy. Since the embassy
is in walking distance (this information was provided by the challenge description), this
caused the hypothesis that this cyclist may be of interest. Hence, we defined two filters
to extract trajectories of cyclists: a location filter selecting the pedestrian walk (the cyclist
was solely driving on the pedestrian walk) was combined (by intersection) with a speed
filter discriminating between pedestrians and cyclists. Now, we could investigate these
trajectories further and found out that there were no suspicious event including the cyclist.

During analysis, we experienced several advantages, as well as some drawbacks of our
system. The approach scales well for huge amounts of video data and a wide variety of
tasks. The interactive filter formulation including background information for decision
guidance helps to define relevant parts of the video. Decisions about how the filter param-
eters should be chosen are especially supported by context information and information
on how a particular filter parameter is applied in the concrete video scenario. Additionally,
the visualized statistics provide a good summary of trajectories’ properties and therefore
supports users to get a feeling about these parameters and helps them to formulate the
filters.

The visualization of the positional uncertainty in the VPG helps especially in the defi-
nition of the location and relationship filter. Being aware of these positional uncertainties
provides confidence to the users that their definitions of filters are not wrong because of in-
accurate location calculations of the video vision stage and enables them to create the filters
with respect to positional uncertainties. The color coded DOM of trajectories to the filters
in the VPG indicates not only how well this trajectory matches hypotheses, rather it is also
a signal for users that helps to validate the filters and often initiates further refinement. As
expected, the possibility to model a fuzzy membership function simplifies the definition of
filters because users do not need to derive sharp constraints from uncertain assumptions.
We experienced that filter definitions are often formulated coarsely with a large contingent
of uncertainty in the beginning. Here, the users “play safe” (i.e., they do not discriminate
too many trajectories) and do not spend too much time on the initial filter definition. After
a while, as they closer investigate the left trajectories and their DOMs, they reduce the mod-
eled uncertainty and refine the filters to be sharper and more discriminative. Calculation
and communication of uncertainty in all stages enables a reliable analysis process. Without
data quality information from the video vision stage (communicated via video visualiza-
tion to users and used for DOM calculations of filters) and the input of a user’s confidence
during fuzzy filter definition, the basis of decisions would be wrong. Considering uncer-
tainty in combination with the expertise and the excellent high-level pattern recognition
ability of the human analyst leads to the reliability of our system.

Fuzzy filter definition and uncertainties of the automatic processing step also support
higher recall rates. This is due to color coding of trajectories’ DOM indicating whether
filters are badly adjusted or measured properties of trajectories are uncertain and thus do
not match the intended filters. In contrast to sharp filtering process without uncertainty
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consideration, poorly fitting trajectories are not immediately removed and filters can be
adapted. Finally, this increases the analyst’s trust in the analysis process, too.

At the moment, the system lacks of integration of data sources other than video. For
instance, the grand challenge necessitated the combination of insights from different data
sources (e.g., comparison of video data with badge data). This required the manual transfer
of data, assumptions, and insights from different analysis tools.

Our experiences were also shared by the jury of the IEEE VAST Challenge 2009, which
consisted of two visualization experts and a professional analyst. For the proposed video
visual analytics approach we received the award: “outstanding video analysis tool” [5].
We also received the grand challenge award “excellent example of analytic tradecraft” [5],
which honored the flexibility of our visual analytics approach that allowed for checking
and searching for different events.

8 Conclusion and future directions

Following the methodology of visual analytics, we introduced a system for video analysis
that is both scalable and reliable. We identified the importance of visualization and inter-
action techniques to connect automatic video vision with pattern recognition of humans.
We covered both uncertainty-aware visualization of video and trajectory features as well as
easy-to-use filter definition for relevance feedback, guiding the analyst by graphical statis-
tics. Finally, we presented an evaluation of the proposed system by the IEEE VAST Chal-
lenge 2009 and pointed out how filter feedback and uncertainty-aware video visualization
support scalability and reliability.

Future work includes consideration of the movement description of a trajectory in dif-
ferent granularities [35], rather than only the description of a whole trajectory. Since videos
are embedded in certain context, other time-dependent data streams have to be integrated
to provide a capable and useful analysis system.
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[24] HÖFERLIN, M., GRUNDY, E., BORGO, R., WEISKOPF, D., CHEN, M., GRIFFITHS, I. W.,
AND GRIFFITHS, W. Video visualization for snooker skill training. Computer Graphics
Forum 29, 3 (2010), 1053–1062. doi:10.1111/j.1467-8659.2009.01670.x.
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Appendix: Error propagation

Given the sample position T
(i)
pos of a trajectory at index i with the covariance matrix C

(i)
pos,

we can calculate the covariance matrix C(i,j) of the vector v(i,j) = T
(j)
pos − T

(i)
pos going from at

sample position T
(i)
pos to T

(j)
pos by

C(i,j) =

(
var

(i,j)
x cov

(i,j)
x,y

cov
(i,j)
y,x var

(i,j)
y

)
= C

(i)
pos + C

(j)
pos =

(
var

(i)
x + var

(j)
x cov

(i)
x,y + cov

(j)
x,y

cov
(i)
y,x + cov

(j)
y,x var

(i)
y + var

(j)
y

)
(5)
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with the variance var
(i)
x of x(i) and the covariance term cov

(i)
x,y of x(i) and y(i). The length

of vector v(i,j) = (x(i,j) y(i,j))T is given by ‖v‖ =
√
(x(i,j))2 + (y(i,j))2. Using linear error

propagation its variance var
(i,j)
‖v‖ is calculated by

var
(i,j)
‖v‖ =

(x(i,j))2 var
(i,j)
x + (y(i,j))2 var

(i,j)
y + 2x(i,j)y(i,j) cov

(i,j)
x,y

(x(i,j))2 + (y(i,j))2
(6)

Here, we assume only small variance of the data. Hence, we can use the linear Taylor
approximation to estimate the error propagation of the quadratic equation. This approx-
imation is also used to derive the variance and covariance terms of the squared sum of x
and y that is used to calculate var

(i,j)
(x2+y2) = var

(i,j)
x2 + var

(i,j)
y2 + 2 cov

(i,j)
x2,y2

Hence, the uncertainty (standard deviation) σ(1,N)
speed of a trajectory’s speed (cf. (1)) can be

expressed as

σ
(1,N)
speed =

N

fps

√√√√
N−1∑

1

var
(i,i+1)
‖v‖ (7)

To derive the uncertainty σ
(1,N)
azimuth of a trajectory’s azimuth (see (2)), we first consider the

normalized projected x̃(1,N)-coordinate of vector v(1,N) and make use of (6):

x̃(1,N) =
v(1,N)

∥∥v(1,N)
∥∥

(
1
0

)

var
(1,N)
x̃ =

var
(1)
x + var

(N)
x∥∥v(1,N)

∥∥2 +
var

(1,N)
‖v‖ (x(1,N))2

∥∥v(1,N)
∥∥4

(8)

For error propagation of cos−1 we also use the linear Taylor approximation

σcos−1(a) =

∣∣∣∣
∂ cos−1

∂a

∣∣∣∣ σa =
∂ sin−1

∂a
σa =

σa√
1− a2

Hence, we can write the uncertainty σ
(1,N)
azimuth as

σ
(1,N)
azimuth =

180

π

√√√√ var
(1,N)
x̃

1− (x(1,N))2

(x(1,N))2+(y(1,N))2

(9)

and further rewrite it as (4).
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