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The spruce budworm epidemic of the 1970s and 1980s led to the salvage harvesting of 

spruce-fir stands, serving as a release for scattered immature eastern white pine (Pinus 

strobus L.) trees. These pines are now growing as large isolated reserve trees above a 

mixed conifer regeneration stratum. The objectives in this study were to determine any 

effect of varying levels of basal area (m ha") of large pine reserve trees may have on (1) 

the densities (stems ha'1) of both eastern white pine and non-pine species in the 

developing regeneration stratum, and (2) the height growth of eastern white pine in the 

developing regeneration stratum (3) incidence of white pine weevil injury of eastern 

white pine in the developing regeneration stratum, and (4) determine if any differences 

in quality exist between the two-aged stand type and the precommercially thinned stand 

type, relative to white pine weevil attack, blister rust infection, and branch shedding. Our 



null hypotheses were that large pine reserves have no effect on the density (stems h a ) 

and height growth of the regenerating understory pine, or the density (stems ha"1) of the 

regenerating non-pine species, and also that large pine reserves have no effect on the 

frequency of white pine weevil injury of the regenerating understory pine, and that there 

were no differences in pine regeneration quality aspects between stand type. Thirteen 

forest stands throughout the spruce-fir region of Maine were chosen for this study. Nine 

of these stands were two-aged stands that were regenerated prior to 1995, have no history 

of precommercial thinning, and contain a significant component of heavily released 

eastern white pine trees growing above a developing mixed species matrix. These nine 

stands were harvested between the years of 1984 and 1994, and have soils ranging from 

somewhat poorly drained to very poorly drained. Four forest stands throughout the 

spruce-fir region of Maine that had been regenerated in the same time period as above, 

and also had a history of precommercial thinning that favored eastern white pine were 

also chosen for investigation in this study. One of these four stands contained a 

component of heavily released eastern white pine trees growing above the developing 

mixed species matrix. Soils ranged from poorly drained to very poorly-drained. Reserve 

pine basal area (m2 ha1) was found to be positively correlated with the presence versus 

absence of pine in the regeneration stratum (p = 0.0398). The odds ratio of this model 

indicated that an increase of one square meter of reserve pine basal area increases the 

odds of pine regeneration success by 72 percent. This is true regardless of where reserve 

pine basal area (m2 ha"1) is held. Basal area (m2 ha"1) of reserve pine was not correlated 

with pine regeneration density (stems ha"1) when investigating only those plots in which 

pine regeneration was present (p = 0.2246). Non-pine density (stems ha"1) in the 



regeneration stratum was observed to be influenced more by differences in site, rather 

than basal area (m ha") of reserve pine trees. Reserve tree basal area (m ha ) was not 

o 9 1 

significant in the model. Basal area of reserve pine (m ha") had a negative (p = 0.0886) 

effect on mean annual height increment of pine regeneration. Basal area (m2 ha"1) of pine 

reserves was not correlated (p = 0.3721) with the presence versus absence of weevil 

injuries in the two-aged stand type. Likewise, pine reserve basal area (m ha") was not 

correlated with number of weevil injuries (p = 0.6950) when investigating only those 

plots in which weevil injuries were present. The two-aged stands with large isolated 

reserves were found to have lower incidence of weevil injury (p = 0.0055), with smaller 

weevil caused stem offsets (p = 0.0449). Two-aged stands also had smaller diameter 

branches (p = 0.0136). Incidence of white pine blister rust indicated caution should be 

used in the precommercially thinned stand type. 
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CHAPTER 1 

A REVIEW OF EASTERN WHITE PINE (PINUS STROBUS L.) MANAGEMENT 

EASTERN WHITE PINE: PAST, PRESENT, AND FUTURE 

Eastern white pine (Pinus strobus L.) has long been considered a high value tree species 

in New England. It produces wood that is lightweight and durable, with a straight grain 

that is resistant to decay (Abrams 2001, Lockard 1959). Commercial logging of eastern 

white pine had begun in Maine as early as 1650 (Lorimer 1977). These efforts were 

focused mainly on large, old-growth pine that existed along large river floodplains and 

sandy outwash sites, as well as scattered supercanopy white pine that existed within 

mixed-species stands (Abrams 2001). Lorimer (1977) estimated the pre-European 

settlement white pine resource in Maine accounted for a standing volume between 

600,000 and 30 million board feet. More recent estimates indicate that the resource was 

much greater, with approximately 6 billion board feet in the Penobscot River watershed 

alone (Wilson 2005). As logging efforts continually increased throughout the 1700s and 

1800s, increasing numbers of settlers witnessed the decline of virgin pine forests 

throughout New England (Abrams 2001, Lorimer 1977, Wilson 2005). 

The shift of agriculture to the mid-western United States throughout the 19th century, led 

to the establishment of eastern white pine on abandoned agricultural land (Foster 1992). 

Old-field pine monocultures came to dominate the landscape. This second growth pine 
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was of a poorer quality than the original pine forests, therefore short clear pieces of 

lumber came to drive the market for eastern white pine products in the early 1900s, with 

boxes becoming the most important white pine product of the time (Fedkiw and Stout 

1959, Howard 1986). 

As a result of the spruce budworm epidemic of the late 1970s, salvage harvesting of 

spruce-fir stands was common in Maine from the mid-1970s through the 1990s 

(McWilliams et al. 2005). Unaffected immature eastern white pines were often left to 

harvest at a later date. These pines had the benefit of being released, as the spruce and fir 

were cut, and are now growing as large isolated crop trees, within the regenerating stand. 

Currently, there is an estimated 142 million eastern white pine trees, five inches d.b.h. 

and above, growing on timberland in the state of Maine. At 2.25 million cubic feet, this 

accounts for almost ten percent of the total volume of all growing stock trees 

(McWilliams et al. 2005). It has been suggested that as global climate change continues, 

white pine will increase in both distribution and abundance, as it was a more dominant 

species in the Maine landscape under the warmer climate experienced seven to nine 

thousand years ago. A warming of as little as 0.5°C could favor the establishment of pine 

over typical Maine species, such as spruce and fir (Jacobson and Dieffenbacher-Krall 

1995). 
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LUMBER QUALITY AND VALUE 

The ability to recover high grade, defect-free lumber is the key to the financial value of 

eastern white pine. Eastern white pine lumber is graded based on the maximum 

allowable defects of the best face, including the frequency and size of knots. D select and 

better is the highest grade, and permits one knot up to - inch in diameter, per surface foot 

(NeLMA 1952). Currently, lumber that is D select and better is worth approximately 2.4 

times the value of the next highest grade, premium grade lumber (Random Lengths 

2008). Lumber value increases with log grade (Hibbs and Bentley, 1987), thus the 

greatest importance is placed on the ability to grow clear, knot-free lumber. 

PESTS. PATHOGEN. AND PROBLEMS 

White pine weevil 

The white pine weevil (Pissodes strobi Peck) is a native insect pest capable of damaging 

eastern white pine to the point of little to no value. Stem deformation and reduction in 

height growth are common results of weevil attack (Hamid et al. 2005, Maughan 1930). 

When the terminal shoot of a pine is killed by weevil attack, one or more lateral branches 

in the whorl below the dead portion will turn and grow upward to replace the terminal 

shoot. This results in a crook in the stem, as the laterals try to correct for the loss of the 

leader. The laterals, acting as new leaders, are the next to be attacked, continuing the 
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cycle, and leading to numerous deformities. Repeated attacks by white pine weevil 

amount to trees that are "cabbaged", with several crooked and forked stems, resulting 

from the repeated death of the terminal shoot (Dirks 1964, Maughan 1930, Peirson 1922). 

Beginning in mid-April, weevils emerge from their overwintering sites in the duff below 

host trees (Dixon and Houseweart 1983). The adults crawl up the bole of the host tree 

and feed just below the terminal bud cluster (Belyea and Sullivan 1956, Hamid et al. 

2005). Preference is given by the weevil to those leaders that exhibit thick bark, and are 

growing in sunlight, making the tallest, most vigorous trees most susceptible to weevil 

attack (Dirks 1964, Droska et al. 2003, Wilkinson 1982). From May to July, female 

weevils lay between 100 and 200 eggs in the feeding cavities made in the terminal shoot. 

Upon hatching, the larvae remain inside the shoot, feeding on the cambium from the top 

down, thus killing the leader (Pubanz et al. 1999). Inside the shoot, larvae molt four 

times over five to six weeks. A pupal chamber is formed, and adult weevils chew holes 

through the dead leader, and emerge beginning in late-July (Dirks 1964, Hamid et al. 

2005). These new adult weevils feed on buds and live bark tissues of the stem and 

branches of pines throughout mid-October. At this time, weevils move to their 

overwintering sites below the host tree. Typically, overwintering occurs beneath the 

crown dripline of the host tree, within 20 centimeters of the bole, between the dry needles 

and moist organic layer (Dirks 1964, Dixon et al. 1979, Hamid et al. 2005). 
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White pine blister rust 

Documented in eastern North America as early as 1898, white pine blister rust 

{Cronartium ribicola J.C. Fisch) is an introduced pathogen, native to Asia (Mielke 1943, 

Maloy 2001). It was first documented in Maine in 1916, with a control program initiated 

in 1917 (Ostrofsky et al. 1988). White pine blister rust is a complex fungal organism, 

involving five spore stages, and requiring two hosts, eastern white pine and Ribes spp., to 

complete its life cycle (Mielke 1943, Maloy 2001). Blister rust is capable of causing high 

levels of damage to eastern white pine, over a wide geographic range, and has the ability 

to infect and eventually kill pine of all ages and developmental stages (Fowler 1959, 

Ostrofsky et al. 1988). 

Infection of eastern white pine occurs in late-summer or fall, after a period of cool moist 

conditions. Specifically, a minimum of 48 hours with a relative humidity of 100 percent, 

combined with temperatures below 68°F are required for infection of pine to be 

successful (Gross 1985, Castello et al. 1995, Maloy 2001, Kinloch 2003). Basidiospores 

produced on Ribes enter the needles of the pine through the stomata. The fungus then 

grows into the branches of the tree, where the fungal mycelium becomes established, 

forms a canker, and continues to grow inward toward the bole of the pine. Upon 

spreading to the bole, the canker can result in girdling death (Maloy 2001), although 

Ostrofsky (1988) found that 45 to 70 percent of branches exhibiting cankers died before 

infection of the main stem occurred. After a period of one to three years, white blisters 

known as aecia erupt through the bark of the pine, releasing wind dispersed spores that 
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will infect Ribes. The basidiospores that infect the eastern white pine are then formed on 

the Ribes, completing the life cycle (Maloy 2001, Kinloch 2003). 

Control of white pine blister rust is centered on the eradication of Ribes species, with the 

use of herbicide being the primary technique (Maloy 2001, Ostrofsky 1988, Kinloch 

2003). Pathological pruning is also crucial to limiting the spread of blister rust infection. 

This involves pruning out infected branches before the fungus reaches the bole. Moist 

conditions are more common near the ground level. This fact coupled with Ribes spp. 

persisting low to the ground, makes the lowest three meters of a tree the most susceptible 

to infection. Therefore, it is recommended that the lower branches of trees be removed. 

This serves to increase the air circulation and sunlight, thus reducing cool moist 

conditions needed by the fungus (Maloy 2001). Although many Ribes eradication 

programs throughout North America were unsuccessful, the program in Maine was 

employed with moderate success, accounting for a 50 percent reduction in blister rust 

incidence in areas treated (Ostrofsky 1988). Overall, there was greater success in 

eradication programs in eastern North America, compared to those of western North 

America, due in part to the early action taken in the east (Kinloch 2003). 

Branch shedding 

Eastern white pine has been found to be a poor natural branch shedder. Dead branches 

may persist on the bole from 25 to 73 years, thus natural branch shedding of the butt log 

is rarely achieved within the eastern white pine lifespan (Foster 1957). Loose black knots 
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can be an obstacle to recovering valuable, high grade lumber, as there is an average of 60 

limbs found in a given eastern white pine butt log, (Foster 1957, Wendel and Smith 

1990). 

Pruning can enhance the quality of wood, offering the opportunity to overcome the 

problem of loose, black knots, thus yielding defect-free lumber that will achieve a higher 

grade than that of unpruned trees. Pruning minimizes the size of the defect core to a 

diameter not much larger than that of the tree at the time of the pruning (O'Hara 2007), 

thus clearwood production is maximized. It is ideal to perform the first pruning of eastern 

white pine trees when they have reached at least one log in height, and are between four 

to ten inches d.b.h., with branches no larger than 1.5 inches in diameter. Following this 

strategy minimizes the defect core (Smith and Seymour 1986, Perkey 1999). Pruning 

requires a financial investment in order to substantially increase the value of pines grown 

to maturity (Foster 1957, Wendel and Smith 1990). Therefore, pruning should be limited 

to potential crop trees only. It has been shown that the return of clear lumber justifies the 

investment involved with intensive management practices such as pruning (Page and 

Smith 1994). 

SILVICULTURE AND MANAGEMENT OF EASTERN WHITE PINE 

Traditionally, the silviculture of eastern white pine in New England has focused on old-

field monocultures, and the difficulties associated with managing them. The shelterwood 

method has been the most commonly recommended method for regenerating white pine 
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(Lancaster and Leak 1978, Wetzel and Burgess 2001). More recently, a new silvicultural 

system has been suggested for eastern white pine, in which residual trees are left at the 

time of the overstory removal cutting, and allowed to grow and maximize value for an 

extended period of time. This shelterwood with reserves method affords sufficient 

growth of established regeneration, while minimizing damage from pests and pathogens 

(Zenner and Krueger 2006). 

To promote high quality crop trees, dense pine regeneration should be initiated by timing 

the establishment cut with an abundant seed year (Seymour 1995). Good seed crops of 

eastern white pine occur on average every 3 to 7 years (Deen 1933, Burns and Honkala 

1990). Pine regeneration should be maintained for several decades under a light pine 

overstory at approximately 40 percent crown closure (Seymour 1995). Eastern white 

pine is intermediate in shade tolerance, and can survive in the understory and respond to 

release for 38 years or more (Kelty and Entcheva 1993). Suppressed white pine have the 

ability to reallocate resources to their root systems, in an effort to maximize the length of 

time they can survive in suppressed conditions (Bormann 1965, O'Connell and Kelty 

1994). In a study comparing understory and open-grown white pine saplings, O'Connell 

and Kelty (1994), found that understory pine root systems had the same total biomass as 

that of open-grown pine root systems. This mechanism of resource reallocation is 

advantageous, as the size and development of the root system can limit tree vigor and the 

ability to respond to release (Larson 1992). 
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Upon release, eastern white pine has the ability to rapidly increase both diameter and 

height growth. Puettmann and Saunders (2000) found that partial release of pine in 

central Minnesota resulted in an average increase in diameter growth of 115 percent, as 

well as an average height growth increase of 42 percent during the first year after release. 

Once future crop trees have grown to a height of 17 to 25 feet, the overwood should be 

removed. When crop trees have achieved a dbh of approximately six inches, and a live 

crown base of 20 feet, up to 100 crop trees per acre should be released in a heavy crown 

thinning (Seymour 1995). The live crown base should be maintained at 20 feet through 

the use of a low-density thinning schedule. In this manner, the stand is kept well below 

the B-line on the stocking guide, eliminating crown recession, thus allowing for the rapid 

growth of the crop trees (Seymour and Smith 1987). Seymour (2007) found that heavily 

released pines exhibited 1.6 times the diameter growth of pines grown on stands released 

to the B-line. Pruning to a height of 17 to 25 feet should be done after the thinning, 

allowing for the recovery of clear, high value butt logs, as well as upper logs that are free 

of loose black knots (Smith and Seymour 1986, Seymour 2007). 

Recently, there has been a trend to retain a number of large trees when removing the 

overwood, either in perpetuity, or simply well beyond the typical rotation. This serves to 

increase structural heterogeneity, by integrating structural legacies into the stand. 

Generally reserves are left for the purpose of maintaining wildlife habitat or aesthetics 

during the regeneration process (Burgess et al. 2005, Zenner and Krueger 2006). Since 

most of a stands volume growth occurs in the trees that are in direct sunlight (Oliver and 

Larson 1990), another objective of the shelterwood with reserves system could be to 
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allow the residual trees to grow rapidly in open conditions, yielding high rates of return 

on their own value. These trees could then be harvested at a later point in time. 

There are several benefits to regenerating eastern white pine in this manner. The dense 

stocking in the understory limits branch size, and thus knot size. It also promotes straight 

stem growth and rapid branch shedding. This has the positive effect of reducing future 

pruning investments (Seymour 1995). The overwood, and later the reserve trees, offer 

enough shade to greatly reduce white pine weevil infestations, by reducing the rate of 

shoot diameter growth, as well as offering suitable habitat for predators and parasites of 

the weevil (Krueger and Puettmann 2004, Burgess et al. 2005, Zenner and Krueger 

2006). The spread of blister rust infection is also minimized through the reduction in dew 

formation, which reduces the moist conditions required by the blister rust to infect pine 

(Hodge etal. 1989). 

Growing eastern white pine in mixed species stands further enhances the benefits of the 

shelterwood with reserves system, as multicohort, mixed species stands have the ability 

to exceed the production and yield of monocultures, as well as increase both wood 

quality and forest health (Cline and Lockard 1925). This is especially true if there is a 

constituent of large, long-lived trees, as competition is reduced through spatial separation 

(Kelty 1992). This trend is even more dramatic when species niches are exceedingly 

different (Oliver and Larson 1990). When grown in mixed species stands, there is an 

improvement in both form and quality of white pine stems (Tarbox and Reed 1924, 

Fajvan and Seymour 1993, Fajvan and Seymour 1999). High densities of mixed species 
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maintain straight boles, with the added benefit of further reducing susceptibility to both 

white pine weevil and blister rust. When grown in the company of other more shade 

tolerant conifers, natural branch shedding of pine is promoted, as the tolerant conifers act 

as trainers, creating better quality wood (Oliver and Larson 1990). 
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CHAPTER 2 

PATTERNS OF REGENERATION OF EASTERN WHITE PINE 

(PINUS STROBUS L.) AS INFLUENCED BY LARGE 

ISOLATED RESERVE TREES 

ABSTRACT 

Salvage harvesting of spruce-fir stands following the spruce budworm epidemic of the 

1970s and 1980s commonly served as a release for scattered immature eastern white pine 

trees. These trees are now growing as large isolated reserve trees above a mixed conifer 

regeneration stratum, offering a unique opportunity to determine any effect of large pine 

reserve trees on the density and height growth of eastern white pine in the developing 

regeneration stratum, as well as the density of non-pine species in the regeneration 

stratum. Nine forest stands throughout the spruce-fir region of Maine that were 

regenerated prior to 1995 were chosen for study. These nine stands had no history of 

precommercial thinning, and contained a significant component of heavily released 

eastern white pine trees growing above a developing mixed species matrix. Harvesting of 

these sites took place between the years 1984 and 1994. Soils ranged from somewhat 

poorly drained to very poorly drained. Reserve pine basal area (m2 ha1) was found to be 

positively correlated with the presence of pine in the regeneration stratum (p = 0.0398). 

The odds ratio of this model indicated that an increase of one square meter of reserve 

pine basal area increases the odds of pine regeneration success by 72 percent. This is true 

regardless of where reserve pine basal area (m2 ha"1) is held. Basal area (m2 ha"1) of 
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reserve pine was not correlated with pine regeneration density (stems ha") when 

investigating only those plots in which pine regeneration was present (p - 0.2246). Non-

pine density (stems ha"1) in the regeneration stratum was influenced more by differences 

in site, than by basal area (m ha" ) of reserve pine trees. Reserve tree basal area (m ha") 

was not significant in the model. Basal area of reserve pine (m ha") had a negative 

effect (p = 0.0886) on mean annual height increment of pine regeneration. Large isolated 

reserve pines did not appear to have an effect on the density (stems ha"1) of pine versus 

non-pine species, although there was a slightly negative effect on height growth of pine 

in the regeneration stratum. 

INTRODUCTION 

Much of the past research regarding eastern white pine has focused on the difficulties 

surrounding eastern white pine as a suitable crop tree. The old-field monocultures of 

white pine that seeded in after agricultural land abandonment risked repeated attacks by 

the white pine weevil (Pissodes strobi [Peck]), resulting in stem deformations that 

decreased the value and yield of the lumber (Peirson 1922). The ensuing volunteer 

stands of mixed hardwoods and white pine that arose after these monocultures had been 

cut over required costly precommercial treatments to ensure the pine saplings were not 

continually out-competed by the hardwood saplings (McKinnon et al. 1935). 

There is, however, some research showing eastern white pine can do well as scattered 

crop trees growing in stratified stands of mixed conifer species (Fajvan and Seymour 

1993). In a stratified system such as this, it would be possible to develop a two-aged 
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silvicultural system, in which some scattered white pines are left after the harvesting of 

other shade tolerant conifers, thus releasing the pines, and allowing them to grow to 

large, high-value crop trees. When grown under these conditions, the more shade tolerant 

conifers such as spruce, fir, and hemlock act as trainers, encouraging natural branch 

shedding of the pine, thus reducing pruning expenses. This two-aged silvicultural system 

would have the additional benefit of minimizing weevil damage, as white pine grown 

scattered within mixed species stands is less susceptible to weevil attack (Peirson, 1922). 

The spruce budworm epidemic of the 1970s and early 1980s led to the salvage harvesting 

of spruce-fir stands beginning during the mid-1970s. During this time, landowners 

commonly left unaffected immature eastern white pines to harvest at a later date. These 

pines had the benefit of being released, as the spruce and fir was cut, and are now 

growing as large isolated crop trees above the regenerating stand. Such large dominant 

trees contribute a disproportionately large amount of seed to a stand, but the effects of 

such large isolated reserve trees on the composition of the regenerating stratum have not 

been studied. 

Our objectives in this study were to determine any effect of varying levels of basal area 

9 1 I 

(m ha") of large pine reserve trees may have on (1) the densities (stems ha ) of both 

eastern white pine and non-pine species in the developing regeneration stratum, and (2) 

the height growth of eastern white pine in the developing regeneration stratum. Our null 

hypothesis was that large pine reserves have no effect on the density (stems ha*1) and 
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height growth of the regenerating understory pine, or the density (stems ha"1) of the 

regenerating non-pine species. 

METHODS 

Study site and data collection 

Nine forest stands throughout the spruce-fir region of Maine that were regenerated prior 

to 1995 were chosen for this study. These nine stands had no history of precommercial 

thinning, and contained a significant component of heavily released eastern white pine 

trees growing above a developing mixed species matrix. Harvesting of these sites took 

place between the years of 1984 and 1994. Soils ranged from somewhat poorly drained 

to very poorly drained (Briggs 1994) (Table 2.1). Mean stocking of pine across all sites 

was found to be 97.23 ± 2.72 percent stocked, with well stocked being defined as at least 

50 pines ha"1. 

Data were collected during late spring and summer of 2008. Twelve plot centers were 

established on a 40m x 40m grid at each of the nine study sites, with the exception of one 

site (PEF C2A) in which 24 plot centers were established. A fixed radius plot of 0.1 ha 

was established at each plot center, and all reserve trees were measured for species and 

dbh, as well as distance and direction to plot center. A nested 0.001 ha plot was also 

established at each plot center, and all trees < 30cm dbh and > 1.3 meters tall were tallied 

by 2 cm diameter class, by species. Up to three pines in each diameter class were 

measured for total height, and base of live crown. Age was approximated with an 

internode count. If pine was not present in 0.001 ha plot, a 0.02 ha plot was established to 
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determine if the area was stocked with pine. Soil drainage class was assessed using the 

protocol from Briggs (1994). 
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Table 2.1. Stand locations, age, and soil drainage class of two-aged stands 
(Briggs, 1994).  

Site (Harvest Year) 

Dead River Twp. (1984) 

Long Pond Twp. (1989) 

Penobscot Experimental Forest, 
Compartment 2 (1984) 

Topsfield Twp. (1992) 

T3 R12(1987) 

T4 R12(1991) 

T5 R12 (1994) 

T39 MD(1980) 

Location 

N 45° 12', W 70° 16' 

N 45° 36', W 70° 02' 

N 44° 52', W 68° 39' 

N 45° 28', W 67° 51' 

N 45° 56', W 69° 15' 

N 45° 58', W 69° 11' 

N 46° 06', W 69° 15' 

N 45° 01', W 68° 18' 

Soil Drainage Class 

3 - Somewhat Poorly 
Drained 

4 - Poorly Drained 

3 - Somewhat Poorly 
Drained 

4 - Poorly Drained 

4 - Poorly Drained 

3 - Somewhat Poorly 
Drained 
5 - Very Poorly 
Drained 
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Analysis 

Data were analyzed using version 2.8 of the R statistical software package (R 

Development Core Team 2008). All data were summarized at the plot level, using 

conventional mensurational variables including trees per acre, basal area, relative density, 

and species composition. Height and diameter distributions were also determined. 

A two stage approach was employed to determine the effect of large pine reserves on the 

density (stems ha"1) of pine in the developing regeneration stratum. This two stage 

approach was employed to analyze two separate processes: the effect of reserve pines on 

pine regeneration presence versus absence, and the effect of reserve pines on pine 

regeneration density. This approach enabled the analysis of a data set in which there 

were a substantial number of zero data points, due to pine regeneration not being present 

in 24 percent of the plots. 

First, a mixed effects logistic regression model (a = 0.05) was employed to determine the 

effect of pine reserve basal area (m ha") on the presence versus absence of pine 

regeneration. The model takes the form: 

[1] 

Pripregt = 1) = logir1 (asite[i]BBAOW) 

where preg is pine regeneration as a binary response in which 0 indicates absence and 1 

indicates presence of pine regeneration in the /th plot, a is the intercept with a random 

7 1 

effect for site, and BAOW'is the basal area (m ha") of pine reserves, associated with the 
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parameter estimate 6. The assumptions of a discreet outcome, and no outliers in the 

independent variable were met. 

The odds ratio of the logistic regression was calculated as follows: 

[2] 

OR = expQ?) 

Second, a linear mixed effects model (a = 0.05) was employed to determine the effect of 

the reserves on the pine regeneration, conditional on pine being present in the 

regeneration. For this part of the analysis, a zero truncated data set was used, in which all 

zero data points were eliminated. The model takes the form: 

[3] 

pd = B0 + b0 + (& + b1)BAOW 

wherepd is pine regeneration density (stems ha"1), BAOW is the basal area (m2 ha"1) of 

pine reserves, bo is a random effect for site associated with the intercept /?o, and b\ is a 

random effects for site associated B\. The assumption of normally distributed random 

effects was met however heteroskedasticity was present in the residuals. Weighting was 

attempted to correct for heteroskedasticity, however residuals remained heteroskedastic 

and the model was not improved. 

A linear mixed effects model (a = 0.05) was utilized to determine the effect of large pine 

reserves on the non-pine species in the developing regeneration stratum. The non-pine 
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species in the regeneration stratum mainly consisted of red spruce (Picea rubens Sarg.) 

and balsam fir {Abies balsamea (L.) Mill.). The model has the form: 

[4] 

oreg = B0 + b0 + (ft + bx)BAOW 

where oreg is non-pine regeneration density (stems ha"1), BAOW is the basal area 

(m ha") of pine reserves, bo is a random effect for site associated with the intercept Bo, 

and bi is a random effects for site associated ft. As with the previous model, the 

assumption of normally distributed random effects was met however heteroskedasticity 

was present in the residuals. Weighting was attempted to correct for heteroskedasticity, 

however residuals remained heteroskedastic and the model was not improved. 

A linear mixed effects model (a = 0.10) was also employed in an effort to model the 

effect of large pine reserves on the height growth of the regenerating eastern white pine. 

The model takes the form: 

[5] 

MAHl = B0+b0 + (ft + bJBAOW 

where MAHl is the average mean annual height increment (cm) by plot, BAOW is the 

basal area (m ha") of pine reserves, bo is a random effect for site associated with the 

intercept Bo, and b\ is a random effects for site associated ft. Assumptions of 

homoskedasticity of residuals and normally distributed random effects were met. 
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RESULTS 

All stands had a component of large isolated eastern white pine reserve trees, with a 

mixed species regeneration stratum composed mainly of red spruce, fir, and eastern white 

pine, forming a two-aged stand structure. Mean basal area of eastern white pine reserves 

ranged from 1.74 ± 0.79 m2 ha"1 to 7.31 ± 1.31 m2 ha"1 across all sites (Table 2.2). 

Reserve tree density ranged from 9.2 stems ha"1 at the Dead River site (± 5.9) and the 

Topsfield site (± 4.6) to 41.7 ± 7.3 stems ha"1 (Table 2.3). QMD of pine reserves was 

found to range from 38.97 cm to 57.46 cm (Figure 2.1). 

Mean basal area of the regeneration stratum ranged from 12.44 ± 2.34 m2 ha"1 to 33.17 ± 

4.69 m2 ha"1 across all sites. Eastern white pine accounted for 10.80 ± 2.83 to 58.41 ± 

11.55 % of the regeneration matrix, with basal area ranging from 1.42 ± 0.78 m2 ha"1 to 

15.36 ± 4.42 m ha" . Non-pine species basal area ranged from 10.28 ± 2.92 m ha to 

24.60 ± 4.48 m ha" (Table 2.2). Mean density of the regeneration stratum ranged from 

9083.33 ± 2122.96 stems ha'1 to 22833.33 ± 4314.94 stems ha"1. Eastern white pine 

accounted for 666.67 ± 224.73 stems ha"1 to 5916.67 ± 1872.68 stems ha"1 (Table 2.3). 

Mean height of pine regeneration across all sites was found to be 4.40 ± 0.13 m, ranging 

from 3.07 ±0.27 m to 7.92 ± 1.09 m (Figure 2.2). Quadratic mean diameter (QMD) of 

eastern white pine regeneration was found to range from 2.00 cm to 3.21 cm across all 

sites, and QMD of non-pine species regeneration was found to range from 2.62 cm to 

3.31 cm (Figure 2.3). 

21 



Table 2.2. Mean basal area (m2 ha"1) of regeneration stratum and pine overwood in two-
aged stands by site.  

Regeneration Stratum 

Site 

Pine Only 
Mean 

Std. Error 
Minimum 
Maximum 

PEF 
C2A 

3.21 
0.82 

0 
13.29 

PEF 
C2B 

T 39 Topsfield 

4.85 15.36 
1.62 4.42 

0 0.08 
17.46 47.03 

1.42 
0.78 

0 
7.71 

Long 
Pond 

3.46 
1.76 

0 
18.32 

T4 
R12 

T5 
R12 

2.99 1.72 
1.80 0.56 

0 0 
22.26 4.72 

T3 Dead 
R12 River 

7.29 8.57 
2.61 3.41 

0 0 
33.11 32.32 

Non-Pine 
Mean 16.49 18.70 10.28 13.98 11.69 12.33 10.72 22.72 24.60 

Std. Error 2.11 6.23 2.92 4.58 2.62 3.17 1.93 3.98 4.48 
Minimum 3.38 0 0 0 0.31 0.08 3.30 0.63 4.56 
Maximum 47.27 65.35 28.08 48.21 31.54 37.20 25.17 52.93 50.81 
All Species 

Mean 
Std. Error 
Minimum 
Maximum 

19.70 23.55 25.64 15.40 15.15 
1.95 5.56 4.10 4.51 3.89 
6.69 4.56 7.31 0.08 0.31 

47.27 65.36 53.87 48.21 49.87 

15.32 12.44 
3.31 2.34 
0.16 3.38 
37.20 29.73 

30.01 33.17 
5.07 4.69 
7.31 9.59 

62.52 73.54 

Pine Overwood 

Site PEF PEF T39 Topsfield Long T4 T5 T3 Dead 
C2A C2B Pond R12 R12 R12 River 

Mean 5.54 3.46 7.31 1.94 2.41 3.88 1.74 6.54 1.97 
Std. Error 0.80 0.88 1.31 0.90 0.60 0.91 0.79 1.10 0.75 
Minimum 0 0 0 0 0 0 0 1.19 0 
Maximum 13.14 10.31 13.96 10.80 6.79 10.11 9.78 13.47 8.64 
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Table 2.3. Mean density (stems ha"1) of two-aged stands by site. 
Site PEF PEF T39 Topsfield Long T4R12 T5R12 T3 Dead 

C2A C2B Pond R12 River 
Pine Only 

Mean 5125 5666.7 5916.7 666.7 2000 1333.3 1833.3 2083.3 916.7 
Std. Error 1275.9 1639.2 1872.7 224.7 758.8 376.1 489.8 398.1 259.9 
Minimum 0 0 1000 0 0 0 0 0 0 
Maximum 24000 19000 23000 2000 9000 4000 5000 5000 3000 
All Species 

Mean 14500 10833 12000 9083 21916 16833 22833 18250 10416 
Std. Error 1645.15 1812.55 2798.8 2122.9 3826.7 4098.8 4314.9 1962.2 1151.1 
Minimum 4000 4000 1000 1000 4000 0 5000 5000 3000 
Maximum 36000 25000 31000 21000 50000 5000 56000 29000 16000 

Pine Overwood 

Site PEF C2A PEF T39 Topsfield Long T4 T5 T3 Dead River 
C2B Pond R12 R12 R12 

Mean 23.3 13.33 30.0 9.2 20.0 32.5 15.0 41.7 9.2 
Std. Error 2.8 3.10 5.3 4.6 3.7 7.4 3.0 7.3 5.9 
Minimum 0 0 0 0 0 0 0 10 0 
Maximum 50 40 70 50 50 70 40 80 60 



Figure 2.1. Diameter distribution of overwood by site in five cm diameter classes, and 
quadratic mean diameter (QMD) of pine overwood by site; A= PEF C2A, B= PEF C2B, 
C= T 39, D= Topsfield, E= Long Pond, F= T4 R12, G= T5 R12, H= T3 R12,1= Dead 
River. 
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Site 

Figure 2.2. Plot of height distribution of eastern white pine regeneration of two-aged 
stands by site. 
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Figure 2.3. Diameter distribution in two centimeter diameter classes, and quadratic mean 
diameter (QMD) of regeneration stratum by site; A= PEF C2A, B= PEF C2B, C= T 39, 
D= Topsfield, E= Long Pond, F= T4 R12, G= T5 R12, H= T3 R12,1= Dead River. 
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Reserve pine basal area (mz ha') was found to be positively correlated (p = 0.0398) with 

the presence of pine in the regeneration stratum (Table 2.4). This relationship exhibited 

little variation between sites (Table 2.5), as the random effects for site associated with the 

intercept were all nearly zero. The odds ratio of this model indicated that an increase of 

one square meter of reserve pine basal area increases the odds of pine regeneration 
9 \ 

success by 72 percent. This is true regardless of where reserve pine basal area (nf ha"1) 

is held. 

Basal area (m2 ha"1) of reserve pine was not significant (p = 0.2246) in predicting pine 

regeneration density (stems ha"1) in plots where pine regeneration was present (Table 

2.6). Further, disproportionally large random effects associated with the intercept (Table 

2.7) indicated that differences in pine regeneration density (stems ha'1) were influenced 

9 I 

by differences in site more than reserve pine basal area (m ha") (Figure 2.4). 

Non-pine density (stems ha"1) in the regeneration stratum was also observed to be 
* 9 1 

influenced more by differences in site, rather than basal area (m ha*) of reserve pine 
9 I 

trees. Reserve tree basal area (m ha") was not statistically significant in the model 

(Table 2.8), and random effects associated with the intercept were found to have very 

large values (Table 2.9) (Figure 2.5). 

Basal area of reserve pine (m ha") had a negative effect (p = 0.0886) on mean annual 

height increment of pine regeneration (Table 2.10). As seen in the pine regeneration 

density model [Equation 3], the random effect associated with the intercept outweighed 
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the random effect associated with basal area (m2 ha"1) of reserve pine, indicating that site 

differences had a greater influence on mean annual height increment than basal area (m2 

ha"1) of reserve pine trees (Table 2.11) (Figure 2.6). 
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Table 2.4. Presence/absence of pine regeneration logistic model [Equation 1] parameter estimates and 
fit statistics. AIC-Akaike's Information Criteria; BIC-Bayesian Information Criteria; OR-Odds Ratio. 

Value Std. Error P value AIC BIC LogLik 0% 
a 1.218 0.2311 0.0000 565.43 579.37 -277.71 1.718 
p 0.541 0.2601 0.0398 

to 

Table 2.5. Random effects for presence/absence logistic regression [Equation 1]. 
asite  

PEFC2A -4.46 x 10"8 

PEF C2B 2.21 x 10"8 

T39 4.53 xlO"8 

Topsfield -5.40 x 10"8 

Long Pond 6.58 xlO'9 

T4R12 -2.39 x 10"9 

T5R12 1.23 xlO"8 

T3 R12 2.61 x 10"8 

Dead River -1.13 x 10"8 



Table 2.6. Pine density (stems ha'1) model [Equation 3], parameter estimates, and fit statistics. 
AIC-Akaike's Information Criteria; BIC-Bayesian Information Criteria; RMSE-Root mean 
squared error; R2-Generalized coefficient of determination.  

Value Std. Error P value AIC BIC LogLik RMSE Rz 

0o 2801.79 780.58 0.0006 1769.16 1784.09 -878.58 4069.9 0.17 
fi1 193.90 158.46 0.2246 

o 
Table 2.7. Random effects for pine density (stems ha"1) linear mixed effects model [Equation 3]. 

&A h. 
PEFC2A 1089.08 213.01 
PEF C2B 1414.53 276.66 

T39 527.60 103.19 
Topsfield -561.36 -109.79 

Long Pond -117.33 -22.95 
T4R12 -647.12 -126.57 
T5 R12 -329.93 -64.53 
T3 R12 -694.56 -135.84 

Dead River -680.90 -133.17 



2 A Overstory Basal Area (m / ha i 

Figure 2.4. Scatterplot of pine regeneration density (stems ha"1) vs basal area (m2 ha1) of 
pine reserves. Grey circles represent plot observations, open squares represent site means 
with standard error bars. 
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Table 2.8. Non-pine density (stems ha"1) model [Equation 4], parameter estimates, and fit 
statistics. AIC-Akaike's Information Criteria; BIC-Bayesian Information Criteria; RMSE-Root 
mean squared error; R2-Generalized coefficient of determination.  

Value Std. Error P value AIC BIC LogLik RMSE R2 

0O 11873 2520.34 0.0000 2519.14 2535.76 -1253.57 8573.0 0.22 
& 66.38 253.40 0.7938 

Table 2.9. Random effects for non-pine density (stems ha"1) linear mixed effects model 
[Equation 4],  

*>fl bi 
PEFC2A -3414.98 157.19 
PEF C2B -6680.26 307.48 

T 39 -7696.89 354.28 
Topsfield -2998.04 138.00 

Long Pond 7511.92 -345.77 
T4R12 3525.25 -162.26 
T5R12 7975.75 -367.11 
T3R12 4269.07 -196.50 

Dead River -2491.83 114.70 
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Figure 2.5. Scatterplot of non-pine regeneration density(stems ha"1) vs basal area 
(m2 ha'1) of large isolated pine reserves. Grey circles represent plot observations, open 
squares represent site means with standard error bars. 
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Table 2.10. Mean annual height increment (cm) model [Equation 5], parameter estimates, and fit 
statistics. AIC-Akaike's Information Criteria; BIC-Bayesian Information Criteria; RMSE-Root mean 
squared error; R2-Generalized coefficient of determination.  

Value Std. Error P value AIC BIC LogLik RMSE Rz 

ft 24.46 3.032 0.0000 529.22 542.96 -258.61 6.55 0.41 
ft -0.4811 0.2783 0.0886 

Table 2.11. Random effects for mean annual height increment (cm) linear mixed effects model 
[Equation 5].  

bn bj. 
PEFC2A -8.19 0.377 
PEFC2B -8.16 0.376 

T39 -3.40 0.156 
Topsfield 4.33 -0.199 

Long Pond -2.64 0.122 
T4R12 -0.03 0.001 
T5 R12 -3.09 0.142 
T3R12 13.08 -0.602 

Dead River 8.10 -0.373 
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Figure 2.6. Scatterplot of mean annual height increment of eastern white pine 
regeneration (cm) vs basal area (stems ha") of pine reserves. Grey circles represent plot 
observations, open squares represent site means with standard error bars. 
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DISCUSSION 

Retention of reserve pines provides a seed source to ensure pine regeneration success. 

Our results indicated that the probability of pine regeneration success increased with 

basal area (m2 ha"1) of pine reserves. This coincides with the findings of Dovciak et al 

(2003), in which pine seed rain density was found to be positively correlated with 

overstory basal area. A possible explanation for this trend is that dominant or emergent 

trees provided a disproportionate amount of seed, as larger and older trees tend to allocate 

a greater amount of resources to reproduction (Weiner and Thomas 2001). 

No significant relationship was found between basal area (m ha") of pine reserves and 

pine regeneration density (stems ha"1), indicating that pine can persist with the more 

shade tolerant spruce and fir under the range of retained basal area (m2 ha"1) examined in 

this study. This result is supported by the findings of Zenner and Krueger (2006) in 

which pine regeneration was found to exhibit no reduction in growth under retention 

basal areas of up to 9 m ha", which is above the range examined in the current study. 

Although mean annual height increment decreased with increasing reserve pine basal 

area (m ha"), it is important to note the difference between statistical and operational 

significance. Although statistically significant, a reduction in height of 0.48 ± 0.28 cm 

for every additional square meter ha"1 of reserve pine basal area is hardly significant from 

a management standpoint. Previous research has shown that increased light above 50 

percent of full sunlight resulted in no significant increase in height growth of eastern 
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white pine (Logan 1966). Wetzel and Burgess (2001) also found that eastern white pine 

incurred no growth limitations down to 50 percent photosynthetically active radiation. 

Although light levels were not recorded in this study, casual observation suggests that 

light levels would not have been limiting in this two-aged silvicultural system. 

It is important to recognize that this study was conducted retrospectively on nine forest 

stands with differing geographic locations and stand histories, with similar two-aged 

stand structures. Stand histories such as stand composition prior to regeneration harvests, 

as well as harvesting practices likely influenced current attributes of the regeneration 

stratum. 

CONCLUSION 

As forest managers become more aware of ecosystem processes, it becomes more 

apparent that silvicultural systems incorporating reserve trees, or "green tree retention", 

provide ecosystem services in the form of wildlife habitat and aesthetic benefit. This 

study found no discemable effect on regeneration densities (stems ha"1) or height growth 

of increased white pine reserve basal area (m ha"). These results suggest that a 

silvicultural system incorporating isolated reserve pines is viable from a management 

standpoint. When managing a stand in this way, it is also important to keep in mind the 

periodicity of good pine seed crops, and thus timing the cut to maximize successful pine 

regeneration. 
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CHAPTER 3 

QUALITY ASSESSMENT OF POTENTIAL EASTERN WHITE PINE 

(PINUS STROBUS L.) CROP TREES AS INFLUENCED BY 

ISOLATED RESERVES AND PRECOMMERCIAL THINNING 

ABSTRACT 

Scattered immature eastern white pine trees were commonly left during the salvage 

harvesting of spruce-fir stands following the spruce budworm epidemic of the 1970s and 

1980s. These trees are now growing as emergent reserves above a mixed conifer species 

regeneration stratum. This offered the opportunity to determine any effect the presence 

of large pine reserve trees may have on the incidence of white pine weevil attack on the 

eastern white pine in the regeneration stratum, as well as determine any differences in the 

quality of the developing eastern white pines in these two-aged stands and the quality of 

eastern white pine in precommercially thinned stands, relative to white pine weevil 

attack, blister rust infection, and natural branch shedding. Thirteen forest stands 

throughout the spruce-fir region of Maine were chosen for this study. Nine of these 

stands were two-aged stands that were regenerated prior to 1995, have no history of 

precommercial thinning, and contain a significant component of heavily released eastern 

white pine trees growing above a developing mixed species matrix. These nine stands 

were harvested between the years of 1984 and 1994, and had soils ranging from 

somewhat poorly drained to very poorly drained. Four forest stands throughout the 
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spruce-fir region of Maine that had been regenerated in the same time period as above, 

and also had a history of precommercial thinning that favored eastern white pine were 

also chosen for investigation in this study. One of these four stands contained a 

component of heavily released eastern white pine trees growing above the developing 

mixed species matrix. Soils ranged from poorly drained to very poorly-drained. Basal 

area (m2 ha"1) of pine reserves was not correlated (p = 0.3721) with the presence versus 

absence of weevil injuries in the two-aged stand type. Likewise, pine reserve basal area 

(m2 ha"1) was not correlated with number of weevil injuries (p = 0.6950) when 

investigating only those plots in which weevil injuries were present. The two-aged stands 

with large isolated reserves were found to have lower incidence of weevil injury 

(p - 0.0055), with smaller weevil caused stem offsets (p = 0.0449). Two-aged stands 

also had smaller diameter branches (p = 0.0136). Incidence of white pine blister rust 

indicated that caution should be taken in the precommercially thinned stand type. 

Overall, the two-aged stands tended to have better quality stems relative to the quality 

aspects we investigated. 

INTRODUCTION 

Typically, eastern white pine research has been focused on growing eastern white pine as 

a suitable crop tree, and the difficulties involved with this task. Following agricultural 

land abandonment, old-field monocultures of white pine seeded in. These eastern white 

pine monocultures risked repeated attacks by the white pine weevil (Pissodes strobi 

[Peck]). Weevil attack resulted in stem deformations, thus decreasing the value and yield 
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of lumber (Peirson 1922). Volunteer stands of mixed hardwoods and white pine arose 

after these monocultures had been cut over, however, the difficulty of pine saplings being 

continually out-competed by the hardwood saplings lead to the requirement of financial 

outputs for precommercial treatments to ensure pine regeneration success (McKinnon et 

al. 1935). 

Fajvan and Seymour (1993) have shown that eastern white pine can do well as scattered 

crop trees growing in stratified stands of mixed conifer species. In this type of stratified 

system a two-aged silvicultural system is developed, in which some scattered white pines 

are left behind during the harvesting of other tolerant conifers. These eastern white pines 

are released, and left to grow into large, high-value reserves. When grown under this 

two-aged silvicultural system, the more shade tolerant conifers such as spruce, fir, and 

hemlock act as trainers, encouraging natural branch shedding of the pine. The benefit is 

the reduction in pruning expenses. An additional benefit to growing stands in this 

manner is the minimizing of weevil damage, as white pine grown scattered within mixed 

species stands is less susceptible to weevil attack (Peirson, 1922). 

Salvage harvesting of spruce-fir stands due to the spruce budworm epidemic of the 1970s 

and early 1980s took place from the mid-1970s. Unaffected immature eastern white 

pines were commonly left during this time, with the intention to harvest at a later date. 

Due to the release caused by the salvage harvesting, these pines are now growing as large 

isolated reserves, above a mixed species regeneration matrix. This offers the opportunity 

to study the effects of these pine reserves on the quality of pine regeneration relative to 
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white pine weevil injury, as well as compare the quality of pine regeneration relative to 

white pine weevil attack, blister rust infection, and branch shedding ability in these two-

aged stands to that of eastern white pine in precommercially thinned stands harvested 

during a similar time period. Precommercial treatments are often employed in white pine 

stands in an effort to increase stand value. However, it is not known if implementing 

precommercial treatments impacts the quality of the pines relative to white pine weevil 

attack, blister rust infection, and branch shedding. 

Our objectives were to (1) determine any effect of varying levels of basal area (m2 ha"1) 

of large pine reserve trees may have on the mean number of weevil injuries in the eastern 

white pine regeneration of the two-aged stands, and (2) determine if any differences in 

quality exist between the two-aged stand type and the precommercially thinned stand 

type, relative to white pine weevil attack, blister rust infection, and branch shedding. Our 

null hypotheses were that large pine reserves have no effect on the frequency of white 

pine weevil injury of the regenerating understory pine, and that there were no differences 

in pine regeneration quality aspects between stand type. 

METHODS 

Study site and data collection 

Nine forest stands throughout the spruce-fir region of Maine that were regenerated prior 

to 1995 were chosen for this study. These nine stands had no history of precommercial 

thinning, and contained a significant component of heavily released eastern white pine 
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trees growing above a developing mixed species matrix. Harvesting of these sites took 

place between the years of 1984 and 1994. Soils ranged from somewhat poorly drained 

to very poorly drained (Briggs 1994) (Table 3.1). Mean stocking of pine across all sites 

was found to be 97.23 ± 2.72 percent stocked, with well stocked being defined as at least 

50 pines ha"1. 
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Table 3.1. Stand locations, age, and soil drainage class of two-aged stands (Briggs, 1994).  
Soil Drainage Class 
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Site (Harvest Year) 

Dead River Twp. (1984) 

Long Pond Twp. (1989) 

Penobscot Experimental Forest, 
Compartment 2 (1984) 

Topsfield Twp. (1992) 

T3 R12 (1987) 

T4R12(1991) 

T5 R12 (1994) 

T39MD(1980) 

Location 

N 45° 12', W 70° 16' 

N 45° 36', W 70° 02' 

N 44° 52', W 68° 39' 

N 45° 28', W 67° 51' 

N 45° 56', W 69° 15' 

N 45° 58', W 69° 11' 

N 46° 06', W 69° 15' 

N 45° 01', W 68° 18' 

3 - Somewhat Poorly 
Drained 

4 - Poorly Drained 

3 - Somewhat Poorly 
Drained 

4 - Poorly Drained 

4 - Poorly Drained 

3 - Somewhat Poorly 
Drained 
5 - Very Poorly 
Drained 



Data was collected during late spring and summer of 2008. Twelve plot centers were 

established on a 40m x 40m grid at each of the nine study sites, with the exception of one 

site (PEF C2A) in which 24 plot centers were established. A fixed radius plot of 0.1 ha 

was established at each plot center, and all reserve trees were measured for species and 

dbh, as well as distance and direction to plot center. A nested 0.001 ha plot was also 

established at each plot center, and all trees < 30 cm dbh and > 1.3 meters tall were 

tallied by 2 cm diameter class, by species. A quality assessment was performed on each 

0.001 ha plot. Up to three pine in each diameter class were measured for total height, and 

base of live crown. Age was approximated with an internode count. A quality 

assessment was performed on each 0.001 ha plot, using the same pine stems as were 

measured above. White pine weevil damage was assessed based on the protocol of 

Pubanz et al. (1999). Incidence of weevil injury was recorded by height of attack, and 

stem offset was measured from the pith of the original leader to the pith of the new 

leader. The criteria used to classify stem features as weevil damage include: stem 

deflection at a branch node, acute branch angles at a branch node, unusually large 

branches or branch clusters at a branch node, and stem offset opposite branch 

abnormalities. To confirm weevil damage, more than one criterion must have been met. 

All evidence of blister rust was recorded, and all dead white pines were inspected for 

blister rust caused mortality. Branch diameters were measured with calipers at the 

highest whorl < 2 m, as an index of branch shedding and future stem quality. If pine was 

not present in 0.001 ha plot, a 0.02 ha plot was established to determine if the area was 

stocked with pine. 
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Four forest stands throughout the spruce-fir region of Maine that had been regenerated in 

the same time period as above, and also had a history of precommercial thinning that 

favored eastern white pine were also chosen for investigation in this study. One of these 

stands contained a component of heavily released eastern white pine trees growing above 

the developing mixed species matrix. Soils ranged from poorly drained to very poorly 

drained (Briggs 1994) (Table 3.2). 
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Table 3.2. Stand locations and soil drainage class of precommercially thinned stands (Briggs, 1994). 
Site Location Soil Drainage Class 

T5 Rl1 N N 46° 06', W 69° 12' 5 - Very Poorly Drained 

T5 Rl1 S N 46° 04', W 69° 12' 4 - Poorly Drained 

Penobscot Experimental N ^0 5 w 6 g 0 3g , 4 _ D r a m e d 

Forest, Compartment 23A J 

Summit Twp. N 45° 06', W 68° 29' 5 - Very Poorly Drained 
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Data for these precommercially thinned stands were also collected during late spring and 

summer of 2008. Twelve plot centers were established on a 40m x 40m grid at each of 

the four stands, with the exception of one site (Summit) in which only nine plot centers 

were established. A fixed radius plot of 0.02ha was established at each plot center and all 

trees < 30 cm dbh and > 1.3 meters tall were tallied by 2cm diameter class, by species. 

Assessment and measurement of all pine stems was carried out as outlined above in the 

0.001 ha plot protocol. If heavily released reserve trees were present, protocol for 0.1 ha 

plots was employed, as outlined above. 

Analysis 

Data were analyzed using version 2.8 of the R statistical software package (R 

Development Core Team 2008). Data were summarized at the plot level, using 

conventional mensurational variables including trees per acre, basal area, relative density, 

and species composition. Height and diameter distributions were also determined. The 

eastern white pine quality data was also summarized at the plot level, including 

proportion of trees experiencing attack by white pine weevil, attacks per tree, maximum 

offset caused by white pine weevil attack per tree, and index of offset per tree (calculated 

as the measured offset divided by the diameter class of the stem). Largest branch 

diameter was also summarized, as well as the proportion of trees showing evidence of 

blister rust infection. 
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A two stage approach was employed to determine the effect of large pine reserve basal 

area (m2 ha"1) on the mean number of weevil injuries per tree in the regeneration stratum 

of the two-aged stands. This two stage approach was employed to analyze two separate 

processes: the effect of reserve pine basal area (m ha"1) on the presence versus absence 

of weevil injury, and the effect of reserve pine basal area (m ha") on abundance of 

weevil injuries on only those plots where weevil injury was present. This approach 

enabled the analysis of a data set in which weevil injury was not present in 64 percent of 

the plots, leading to a large number of zero data points. 

First, a mixed effects logistic regression model (a = 0.05) was employed to determine the 

effect of pine reserve basal area (m2 ha"1) on the presence versus absence of weevil 

injury. The model takes the form: 

[1] Pr(weevi = 1) = logir1 (asite[i]BBAOW) 

where weev is number of weevil injuries as a binary response in which 0 indicates 

absence and 1 indicates presence of weevil injury in the fth plot, a is the intercept with a 

random effect for site, and BAOWis the basal area (m2 ha"1) of pine reserves, associated 

with the parameter estimate /?. Assumptions of a discreet outcome and no outliers in the 

independent variable were met. 

Second, a linear mixed effects model (a = 0.05) was employed to determine the effect of 

the reserve basal area (m2 ha"1) on the mean number of weevil injuries in the pine 

regeneration of two-aged stands, conditional on weevil injury being present in the pine 
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regeneration. For this part of the analysis, a truncated data set was used, in which all zero 

data points were eliminated. The model takes the form: 

[2] miv = p0 + b0 + (ft. + b^BAOW 

where mw is the mean number weevil injuries, BAOW is the basal area (m2 ha"1) of pine 

reserves, bo is a random effect for site associated with the intercept Po, and b\ is a random 

effects for site associated fi\. Assumptions of homoskedasticity of residuals and normally 

distributed random effects were met. 

A chi-square test (a = 0.05) was performed in an effort to determine if the number of 

weevil attacks observed on eastern white pine stems was independent of stand type. 

Again, the stand types were two-aged mixed species stands containing a significant 

component of heavily released eastern white pine trees growing above a developing 

mixed species matrix, and mixed species stands with a history of precommercial thinning 

that favored eastern white pine. 

Non-parametric Kruskal Wallis tests (a = 0.05) were performed to determine significant 

differences between the two stand types in regard to the following variables: mean 

proportion of eastern white pine trees in the regeneration stratum experiencing weevil 

attack, maximum weevil caused offset per tree, index of weevil caused offset per tree, 

largest measured branch diameter (< 2 meters high). 
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RESULTS 

The nine two-aged forest stands investigated in this study all had a component of large 

isolated eastern white pine reserve trees, with a mixed species regeneration stratum 

composed mainly of spruce, fir, and eastern white pine, forming a two-aged stand 

structure. Mean basal area of eastern white pine reserves ranged from 1.74 ± 0.79 m2 ha" 

to 7.31 ± 1.31 m2 ha"1 across all sites (Table 3.3). Reserve tree density ranged from 9.2 

stems ha"1 at the Dead River site (± 5.9) and the Topsfield site (± 4.6) to 41.7 ± 7.3 stems 

ha"1 (Table 3.4). QMD of pine reserves was found to range from 38.97 cm to 57.46 cm 

(Figure 3.1). 

Mean basal area of the regeneration stratum ranged from 12.44 ± 2.34 m2 ha"1 to 33.17 ± 

4.69 m2 ha"1 across all sites. Eastern white pine accounted for 10.80 ± 2.83 to 58.41 ± 

11.55 % of the regeneration matrix, with basal area ranging from 1.42 ± 0.78 m ha" to 

15.36 ± 4.42 m2 ha"1. Non-pine species basal area ranged from 10.28 ± 2.92 m2 ha"1 to 

24.60 ± 4.48 m2 ha"1 (Table 3.3). Mean density of the regeneration stratum ranged from 

9083.33 ± 2122.96 stems ha"1 to 22833.33 ± 4314.94 stems ha"1. Eastern white pine 

accounted for 666.67 ± 224.73 stems ha"1 to 5916.67 ± 1872.68 stems ha"1 (Table 3.4). 

Mean height of pine regeneration across all sites was found to be 4.40 ± 0.13 m, ranging 

from 3.07 ±0.27 m to 7.92 ± 1.09 m (Figure 3.2). Quadratic mean diameter (QMD) of 

eastern white pine regeneration was found to range from 2.00 cm to 3.21 cm across all 
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sites, and QMD of non-pine species regeneration was found to range from 2.62 cm to 

3.31 cm (Figure 3.3). 
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Table 3.3. Mean basal area (m2 ha"') of regeneration stratum and pine overwood in two 
aged stands by site.  

Site PEF PEF 
C2A C2B 

Pine Only 
Mean 3.21 4.85 

Std. Error 0.82 1.62 
Minimum 0 0 
Maximum 13.29 17.46 
Non-Pine 

Mean 16.49 18.70 
Std. Error 2.11 6.23 
Minimum 3.38 0 
Maximum 47.27 65.35 
All Species 

Mean 19.70 23.55 
Std. Error 1.95 5.56 
Minimum 6.69 4.56 
Maximum 47.27 65.36 

Site PEF PEF 
C2A C2B 

Mean 5.54 3.46 
Std. Error 0.80 0.88 
Minimum 0 0 
Maximum 13.14 10.31 

Regeneration Stratum 

T 39 Topsfield Long 
Pond 

15.36 1.42 3.46 
4.42 0.78 1.76 
0.08 0 0 

47.03 7.71 18.32 

10.28 13.98 11.69 
2.92 4.58 2.62 

0 0 0.31 
28.08 48.21 31.54 

25.64 15.40 15.15 
4.10 4.51 3.89 
7.31 0.08 0.31 
53.87 48.21 49.87 

Pine Overwood 

T 39 Topsfield Long 
Pond 

7.31 1.94 2.41 
1.31 0.90 0.60 

0 0 0 
13.96 10.80 6.79 

T4 T5 T3 Dead 
R12 R12 R12 River 

2.99 1.72 7.29 8.57 
1.80 0.56 2.61 3.41 

0 0 0 0 
22.26 4.72 33.11 32.32 

12.33 10.72 22.72 24.60 
3.17 1.93 3.98 4.48 
0.08 3.30 0.63 4.56 
37.20 25.17 52.93 50.81 

15.32 12.44 30.01 33.17 
3.31 2.34 5.07 4.69 
0.16 3.38 7.31 9.59 
37.20 29.73 62.52 73.54 

T4 T5 T3 Dead 
R12 R12 R12 River 

3.88 1.74 6.54 1.97 
0.91 0.79 1.10 0.75 

0 0 1.19 0 
10.11 9.78 13.47 8.64 
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Table 3.4. Mean density (stems ha"1) of two-aged stands by site. 
Site PEF PEF T39 Topsfield Long T4R12 T5R12 T3 Dead 

C2A C2B Pond R12 River 
Pine Only 

Mean 5125 5666.7 5916.7 666.7 2000 1333.3 1833.3 2083.3 916.7 
Std. Error 1275.9 1639.2 1872.7 224.7 758.8 376.1 489.8 398.1 259.9 
Minimum 0 0 1000 0 0 0 0 0 0 
Maximum 24000 19000 23000 2000 9000 4000 5000 5000 3000 
All Species 

Mean 14500 10833 12000 9083 21916 16833 22833 18250 10416 
Std. Error 1645.15 1812.55 2798.8 2122.9 3826.7 4098.8 4314.9 1962.2 1151.1 
Minimum 4000 4000 1000 1000 4000 0 5000 5000 3000 
Maximum 36000 25000 31000 21000 50000 5000 56000 29000 16000 

Pine Overwood 

Site PEF C2A PEF T39 Topsfield Long T4 T5 T3 Dead River 
C2B Pond R12 R12 R12 

Mean 23.3 13.33 30.0 9.2 20.0 32.5 15.0 41.7 9.2 
Std. Error 2.8 3.10 5.3 4.6 3.7 7.4 3.0 7.3 5.9 
Minimum 0 0 0 0 0 0 0 10 0 
Maximum 50 40 70 50 50 70 40 80 60 



Figure 3.1. Diameter distribution of overwood by site in five cm diameter classes, and 
quadratic mean diameter (QMD) of pine overwood by site; A= PEF C2A, B= PEF C2B, 
C= T 39, D= Topsfield, E= Long Pond, F= T4 R12, G= T5 R12, H= T3 R12,1= Dead 
River. 
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Figure 3.2. Plot of height distribution of eastern white pine regeneration of two-aged 
stands by site. 
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Figure 3.3. Diameter distribution in two centimeter diameter classes, and quadratic mean 
diameter (QMD) of regeneration stratum by site; A= PEF C2A, B= PEF C2B, O T 39, 
D= Topsfield, E= Long Pond, F= T4 R12, G= T5 R12, H= T3 R12,1= Dead River. 
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Mean basal area of the precommercially thinned stands ranged from 17.44 ± 0.63 m2 ha"1 

to 33.82 ± 0.87 m2 ha"1 across all sites. Mean basal area of eastern white pine only 

ranged from 1.24 ± 0.59 m2 ha"1 to 13.86 ± 1.75 m2 ha"1. Non-pine species ranged from 

12.89 ± 0.96 m2 ha*1 to 32.58 ± 0.98 m2 ha"1. Mean basal area of eastern white pine 

overwood on the Summit site was 0.17 ±0.01 m ha" (Table 3.5). Mean density ranged 

from 2916.67 ± 243.50 stems per ha to 6250 ± 567.89 stems per ha across all sites. Mean 

density of eastern white pine only ranged from 41.67 ± 13.53 to 525 ± 72.95 (Table 3.6). 

Mean height across all precommercially thinned sites was found to be 9.49 ± 0.55 m, 

ranging from 8.10 ± 0.20 m to 10.45 ± 0.15 m (Figure 3.4). Quadratic mean diameter 

(QMD) of eastern white pine stems was found to range from 15.78 cm to 20.46 cm across 

all sites, while QMD of non-pine stems was found to be 7.81 cm to 12.39 cm across all 

sites. QMD of pine overwood on the Summit site was found to be 56.44 cm (Figure 3.5). 
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Table 3.5. Mean basal area (m ha") of precommercially thinned stands by site. 
Site T5R11N T5R11S PEF C23A Summit 

Pine Only 
Mean 3.80 13.86 1.24 1.51 

Std. Error 0.54 1.75 0.59 0.71 
Minimum 0.66 3.50 0.00 0.00 
Maximum 7.57 24.92 5.03 5.95 

Non-Pine 
Mean 13.64 12.89 32.58 24.49 

Std. Error 0.44 0.96 0.98 1.01 
Minimum 11.95 7.28 29.08 21.33 
Maximum 16.44 19.65 38.37 29.22 

All Species 
Mean 17.44 26.75 33.82 26.00 

Std. Error 0.63 1.51 0.87 0.85 
Minimum 14.89 17.99 29.24 21.98 
Maximum 21.71 34.08 38.37 29.27 

Pine Overwood 
Mean — — — 0.17 

Std. Error — — — 0.01 
Minimum — — — 

Maximum — — — 
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Table 3.6. Mean density (stems ha"1) of precommercially thinned stands by site.  
Site T5R11N T5R11S PEFC23A Summit 

Pine Only 
Mean 200 525 41.67 66.67 

Std. Error 27.52 72.95 13.53 20.41 
Minimum 50 150 0 0 
Maximum 350 950 100 150 

All Species 
Mean 3933.33 3629.17 6250 2911.11 

Std. Error 219.70 472.28 567.89 243.50 
Minimum 2900 2000 3800 1700 
Maximum 5550 7600 9550 3900 
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Site 

Figure 3.4. Plot of height distribution of eastern white pine of precommercially thinned 
stands by site. 
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Figure 3.5. Diameter distribution in two centimeter diameter classes, and quadratic mean 
diameter (QMD) of precommercially thinned stands by site; A= T5 Rl 1 N, B= T5 Rl 1 S, 
C= PEF C23A, D= Summit. 
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Mean proportion of eastern white pine trees in the regeneration stratum experiencing 

weevil attack ranged from 0 ± 0 to 0.51 ± 0.11 across all two-aged stands. The mean 

number of attacks per tree ranged from 0 ± 0 to 2.61 ± 0.26. The maximum weevil 

caused offset per tree ranged from 0 ± 0 cm to 8.5 ± 0 cm, and the index of weevil caused 

offset per tree ranged from 0 ± 0 to 1.85 ± 1.06 (Table 3.7). The largest measured branch 

diameter (< 2 meters high) of eastern white pine stems in the regeneration stratum ranged 

from 0.85 ± 0.12 cm to 1.38 ± 0.19 cm across all two-aged stands (Table 3.8), and the 

proportion of eastern white pine trees with evidence of blister rust ranged from 0 to 0.09, 

with several stands displaying no evidence of blister rust infection on the investigated 

stems (Table 3.9). 

Mean proportion of eastern white pine trees experiencing weevil attack ranged from 0.67 

± 0.17 to 0.89 + 0.04 across all precommercially thinned stands. The mean number of 

attacks per tree ranged from 1.73 ± 0.19 to 3.17 ± 0.65. The maximum weevil caused 

offset per tree ranged from 5.13 ± 0.36 cm to 13.51 ± 4.83 cm, and the index of weevil 

caused offset per tree ranged from 0.40 ± 0.01 to 0.57 ± 0.10 (Table 3.10). The largest 

measured branch diameter (< 2 meters high) of eastern white pine stems ranged from 

1.25 ± 0.19 cm to 2.58 ± 0.22 cm across all precommercially thinned stands (Table 3.11), 

and the proportion of eastern white pine trees with evidence of blister rust ranged from 0 

±0 to 0.32 ±0.10 (Table 3.12). 
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Table 3.7. Quality of eastern white pine regeneration of two-aged stands in relation to 
white pine weevil injury. 
Site PEF PEF T39 Topsfield Long T4 T5 T3 Dead 

C2A C2B Pond R12 R12 R12 River 

Proportion of Trees with Weevil Injury 
Mean 0.44 0.12 0.51 0.17 0.22 0.21 0 0.47 0.25 

Std. Error 0.09 0.05 0.11 0.17 0.11 0.12 0 0.13 0.16 
Minimum 0 0 0 0 0 0 0 0 0 
Maximum 1 0.43 1 1 1 1 0 1 1 

Attacks per Tree 
Mean 1.11 1.75 2.61 1 1 1.5 — 1.71 1 

Std. Error 0.06 0.25 0.26 — 0 0.29 — 0.24 0 
Minimum 1 1 1 1 1 1 — 1 1 
Maximum 2 3 6 1 1 2 — 3 1 

Maximum Offset per Tree (cm) 
Mean 2.66 3.81 6.48 8.5 3.73 1.77 — 3.67 2.9 

Std. Error 0.83 1.13 1.76 0 1.00 0.91 — 0.69 0.1 
Minimum 0.5 1 1.5 8.5 2.4 0 — 1.58 2.8 
Maximum 13 6.17 17.6 8.5 6.7 3 — 6.6 3 

Index of Offset per Tree 
Mean 1.01 0.58 1.85 8.5 0.78 0.21 — 0.55 0.78 

Std. Error 0.19 0.11 1.06 0 0.27 0.11 — 0.13 0.22 
Minimum 0.5 0.33 0.21 8.5 0.48 0 — 0.19 0.56 
Maximum 2.84 0.81 10.12 8.5 1.6 0.33 — 1.03 1 

63 



Table 3.8. Quality of eastern white pine regeneration of two-aged stands in relation to 
branch shedding ability. 
Site PEF PEF T39 Topsfield Long T4 T5 T3 Dead 

C2A C2B Pond R12 R12 R12 River 

Largest Branch Diameter (cm) 
Mean 1.07 1.22 1.27 0.91 1.21 1.10 0.85 0.90 1.38 

Std. Error 0.09 0.18 0.26 0.16 0.12 0.18 0.12 0.14 0.19 
Minimum 0.5 0.65 0.2 0.6 0.7 0.4 0.45 0.4 0.5 
Maximum 1.9 2.1 3.3 1.7 1.63 2.1 1.5 1.5 2.4 
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Table 3.9. Quality of eastern white pine regeneration of two-aged stands in relation to 
blister rust infection.  
Site PEF PEF T39 Topsfield 

C2A C2B 

Proportion of Trees with Evidence of Blister Rust 
Mean 0.09 0 0.06 0 

Std. Error 0.06 0 0.04 0 
Minimum 0 0 0 0 
Maximum 1 0 0.50 0 

Long T4 T5 T3 Dead 
Pond R12 R12 R12 River 

0 0.04 0 0.05 0.04 
0 0.04 0 0.05 0.04 
0 0 0 0 0 
0 0.33 0 0.50 0.33 
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Table 3.10. Quality of eastern white pine regeneration of precommercially thinned stands 
in relation to white pine weevil injury.  
Site T5R11N T5R11S PEFC23A Summit 

Proportion of Trees Experiencing Weevil Injury 
Mean 0.89 0.77 0.67 0.86 

Std. Error 0.04 0.09 0.17 0.14 
Minimum 0.71 0.16 0 0 
Maximum 1 1 1 1 

Attacks per Tree 
Mean 2.63 

Std. Error 0.22 
Minimum 1 
Maximum 6 

Maximum Offset per Tree (cm) 
Mean 5.13 

Std. Error 0.36 
Minimum 3 
Maximum 7.5 

Index of Offset per Tree 
Mean 0.47 0.40 0.57 0.50 

Std. Error 0.42 0.01 0.10 0.07 
Minimum 0.24 0.33 0.19 0.25 
Maximum 0.71 0.49 0.72 0.65 

2.27 3.17 1.73 
0.12 0.65 0.19 

1 1 1 
5 5 3 

6.56 
0.54 
4.8 
11 

13.51 
4.83 
2.5 
28 

5.78 
0.89 
3.83 
9.5 

66 



Table 3.11. Quality of eastern white pine regeneration of precommercially thinned stands 
in relation to branch shedding ability.  

Summit 

1.25 
0.19 
0.45 
1.87 

Site T5R11N T5R11S PEF C23A 

Largest Branch Diameter (cm) 
Mean 2.58 2.08 2.23 

Std. Error 0.22 0.07 0.57 
Minimum 1.8 1.74 0.9 
Maximum 4.7 2.43 4.65 
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Table 3.12. Quality of eastern white pine regeneration of precommercially thinned stands 
in relation to blister rust infection.  
Site T5 R11 N T5R11S PEF C23A Summit 

Proportion of Trees with Evidence of Blister Rust 
Mean 0.32 0.22 0 0 

Std. Error 0.10 0.04 0 0 
Minimum 0 0 0 0 
Maximum 1 0.50 0 0 
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Basal area (m ha") of pine reserves was not correlated with weevil injury in either the 

presence versus absence model (p = 0.3721) or the abundance model (p = 6950) (Table 

3.13). The random effects of the presence versus absence model differed greatly between 

sites, suggesting that other factors influenced the presence or absence of weevil injuries at 

different sites (Table 3.14). Similarly, the lack of significance in the abundance model 

combined with larger random effects associated with the intercept, indicate that 

differences in site influence abundance of weevil attacks more than basal area (m2 ha-1) of 

pine reserves (Tables 3.15, 3.16, Figure 3.6). 
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Table 3.13. Presence/absence of weevil injury logistic model [Equation 1], parameter estimates 
and fit statistics. AIC-Akaike's Information Criteria; BIC-Bayesian Information Criteria; 0~R-
Odds Ratio.  

Value Std. Error P value AIC BIC LogLik (fit 
a -0.788 0.385 0.0434 550.10 564.04 -270.05 
p 0.191 0.213 0.3721 

o 
Table 3.14. Random effects for presence/absence logistic regression [Equation 1], 

asite 

PEF C2A 0.901 
PEF C2B 0.088 

T39 1.245 
Topsfield -0.839 
Long Pond 0.127 

T4 R12 -0.535 
T5R12 -1.269 
T3 R12 0.752 

Dead River -0.470 



Table 3.15. Mean number weevil injuries model [Equation 2], parameter estimates, and fit 
statistics. AIC-Akaike's Information Criteria; BIC-Bayesian Information Criteria; RMSE-Root 
mean squared error; R2-Generalized coefficient of determination. 

Value Std. Error P value AIC BIC LogLik RMSE R2 

p0 0.870 0.220 0.0004 120.29 130.57 
ft 0.017 0.044 0.6950 

-54.14 0.70 0.19 

Table 3.16. Random effects mean number weevil injuries linear mixed effects model [Equation 2]. 
*fl h 

PEFC2A -0.163 -0.032 
PEFC2B -0.117 -0.023 

T 39 0.275 0.054 
Topsfield 0.011 0.002 

Long Pond -0.139 -0.027 
T4R12 -0.058 -0.011 
T3R12 0.175 0.034 

Dead River 0.015 0.003 



Overstory Basal Area i m2 /ha) 

Figure 3.6. Scatterplot of mean number of weevil injuries vs basal area (m2 ha"1) of pine 
reserves. Grey circles represent plot observations, open squares represent site means with 
standard error bars. 

72 



Results of the chi-square test for independence indicated that the number of weevil 

attacks observed on eastern white pine stems was dependent on stand type (p < 0.0001), 

with those stands having a history of precommercial thinning experiencing almost double 

the incidence of white pine weevil attack (Table 3.17). The results of the non-parametric 

Kruskal Wallis tests indicated significant differences between stand type with regard to 

every variable tested. The proportion of trees with weevil injury was greater (p < 0.0001) 

in the precommercially thinned stands than in the two-aged stands. Precommercially 

thinned stands had larger maximum weevil caused offset per tree than that of two-aged 

stands (p < 0.0001). The index of weevil caused offset was greater (p = 0.0007) in the 

two-aged stands than in the precommercially thinned stands. Largest branch diameter 

was found to be greater in precommercially thinned stands than in two-aged stands 

ip< 0.0001) (Table 3.18). 
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Table 3.17. Results of chi-square test for independence showing number of weevil attacks 
is dependent upon stand type. 

Statistic DF Value Pr(>|z|) 

Chi-square 5 116.7958 <0.0001 

Stand Type Mean SE 
Two-aged 1.30 0.24 

Precommercially thinned 2.45 0.30 
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Table 3.18. Results of Kruskal Wallis tests showing effect of stand type on eastern white 
pine quality variables. 
Variable x2 

Statistic 

DF P value TA 
Mean 

TASE PCT 
Mean 

PCTSE 

PTI 7.71 1 0.0055 0.26 0.06 0.80 0.05 
MOT 4.02 1 0.0449 3.72 0.83 7.75 1.94 

IOT 1.93 1 0.1649 1.58 0.88 0.48 0.04 
LBD 6.09 1 0.0136 1.10 0.06 2.04 0.28 

PTI= Proportion of trees with weevil injury, MOT= Maximum offset per tree, IOT= 
Index of offset per tree, LBD= Largest branch diameter, TA= two-aged stand type, PCT= 
precommercially thinned stand type 
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DISCUSSION 

Our results indicated that growing eastern white pine in two-aged stands resulted in 

smaller branch diameters, therefore limiting the need to prune. Eastern white pine grown 

in this manner also had smaller branch diameters than the precommercially thinned 

counterparts. This finding is important, as the financial value of eastern white pine lies in 

the recovery of high grade, defect-free lumber. Grading of eastern white pine lumber is 

based on the maximum allowable defects of the best face. These defects include the 

frequency and size of knots, with the highest grade of D select and better allowing for 

one knot up to Vi inch in diameter, per surface foot (NeLMA 1952). Based on the results 

of this study, the two-aged stands will yield more D select trees. Currently, lumber that is 

D select and better is worth approximately 2.4 times the value of premium grade lumber, 

which is the next highest grade (Random Lengths 2008). As log grade increases, so does 

value (Hibbs and Bentley 1987), placing the greatest importance on the ability to grow 

clear, knot-free lumber. 

It is important to note that eastern white pine is a poor natural branch shedder. Foster 

(1957) found that natural branch shedding of the butt log is rarely achieved within the 

lifespan of an eastern white pine, with dead branches persisting on the bole from 25 to 73 

years. With an average of 60 limbs found in a given butt log, loose black knots become 

an obstacle to recovering valuable lumber (Foster 1957, Wendel and Smith 1990). 
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Our results indicate that growing eastern white pine in two-aged stands with large 

isolated pine reserves may also negate the need for white pine weevil control methods 

such as pruning and insecticide use. It is likely that the large isolated reserve pine create 

enough shade to limit weevil activity, as the two-aged stands had significantly lower 

incidence of weevil injury compared to the precommercially thinned counterparts. Trees 

most susceptible to weevil attack are those with leaders that exhibit thick phloem and are 

growing in sunlight (Dirks 1964, Droska et al. 2003, Wilkinson 1982). Also, the higher 

densities found in the regenerating matrix of two-aged stands leads to pine stems that are 

maintaining smaller diameter leaders, which are not preferred by the white pine weevil. 

The higher densities found in the two-aged stands also likely contribute to the 

significantly smaller stem offsets found in these stands, by forcing a more rapid upturn of 

the new leader on weevil-damaged trees. 

In the precommercially thinned white pine stands and other situations with little shade, 

control of the white pine weevil is centered on pruning damaged trees, as well as 

insecticide treatments. Persisting dead terminal shoots act as a point of entry for red-rot 

(Ostrander and Foster 1957). Therefore, pruning of affected leaders is essential. In 

sapling stands, it is wise to prune before adults emerge in the spring, as a method to 

reduce the population. Pruning of lateral branches can help to maintain a straight bole 

(Hamid et al. 2005). Insecticide use can be effective against adult weevils. Dixon and 

House weart (1982) found that the population trends of the white pine weevil are strongly 

determined by survival of overwintering adults, with the highest numbers of adult 

weevils found on host trees in the spring (Dixon and Houseweart 1983). This suggests 
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that suppression efforts such as insecticide use should be executed in the spring, as a 

means of limiting the adult weevil population, thus preventing attack. Diflubenzuron 

(Dimilin) is the insecticide currently registered for white pine weevil control in Maine 

(MDOC 2003). It acts as an insect growth regulator by interfering with the development 

of chitin, thereby interfering with the development of the insect shell. To be effective 

diflubenzuron must be applied to leaders prior to buds opening (MDOC 2003). 

Our results indicate that white pine blister rust had little impact on the quality of both the 

two-aged and precommercially thinned stand types, with the exception of two of the 

precommercially thinned stands. This may be attributed to the lack of Ribes present, as 

we encountered this alternate host species only four times across the time span of data 

collection. Ostrofsky et al (1988) found that the Ribes eradication program had 

significantly reduced incidence of white pine blister rust throughout the state of Maine. 

However, those areas that were treated during the Ribes eradication program represent 

only a small portion of Maine, with the sites investigated in this study falling outside of 

that range. Indeed, two of the precommercially thinned stands in this study exhibited 

blister rust incidence up to three times as high as those findings of Ostrofsky et al (1988), 

leading to concern regarding the potentially increased susceptibility of pine in 

precommercially thinned stands to blister rust infection. 

The two-aged with reserves stand type exhibited eastern white pine stems of higher 

quality than those of the precommercially thinned stands, relative to all quality variables 

investigated in this study, and thus leads to the belief that white pine in these stands can 
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exhibit a higher value than the precommercially thinned counterparts. These benefits are 

amplified, when considering that the two-aged with reserves stand type also leaves the 

forest manager with the option to thin out poorer quality pine stems, while still 

maintaining enough pine stems. This is contrary to the precommercially thinned stands, 

in which every pine stem is already deemed a crop tree, thus limiting the ability to retain 

high quality pine within these stands during pest or pathogen outbreaks. 

CONCLUSION 

Neither weevil injury, branch shedding ability, or blister rust incidence were found to be 

of major concern in two-aged stands. Management of forest stands throughout the 

spruce-fir region of Maine as two-aged stands with a substantial component of large 

isolated reserve pines growing above the regenerating mixed species conifer matrix was 

found to be a viable silvicultural option. We recommend treating potential eastern white 

pine crop trees as an invisible species when carrying out precommercial thinning 

regimes, allowing nearby spruce and fir stems to remain around the pine until a later 

thinning. Treating potential eastern white pine crop trees in this manner will allow for 

higher quality pine crop trees, with smaller branch diameters, less weevil attacks, and 

more rapid turn up of lateral branches, thus limiting pruning investments, while still 

allowing for the stand to be precommercially thinned. 
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