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The ability of eastern white pine (Pinus strobus L.) to persist as emergent 

trees makes this species well suited to silvicultural systems in which they are retained as 

isolated reserves after a regeneration harvest. While such systems are implemented 

throughout the Acadian spruce-fir region of Maine, little is known about the growth 

response and financial performance of eastern white pine following complete release 

from competition. In this study, 77 trees from 8 sites throughout the Acadian spruce-fir 

region were sampled tree and crown measurements, and increment cores were extracted 

at breast height, as well as from the top of the valuable first 16 foot log. Volume growth 

was examined prior to and following release, and overall response to release was 

favorable. A subsample of 9 trees climbed to measure basal diameter and vertical 

location of each branch to develop allometric leaf area equations and to examine 

influence of site productivity and age on growth efficiency. Leaf area-volume increment 

relationships were modeled with a nonlinear power function with a random effect for site, 

and employed to forecast future growth. A sawmill simulator was used to estimate post

release standing tree values and financial analysis was performed to assess performance 

of completely released trees for an unpruned and a hypothetical pruned scenario. 

Unpruned trees, on average exhibited peak net present value 52 years post-release. 



Pruned trees declined in net present value following release, due to high initial values. 

The net benefit of pruning reached its maximum 30 years after pruning, and stayed 

positive for 101 years, suggesting that pruning is a viable practice for eastern white pine 

that will be released and retained as reserve trees. The retention of eastern white pine 

reserve trees appears to be both biologically and financially sound, but forest managers 

should be careful to select vigorous younger trees as reserves to maximize financial 

performance. 
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CHAPTER ONE 

LEAF AREA AND GROWTH EFFICIENCY OF ARCHETYPAL EASTERN 

WHITE PINE TREES GROWN IN ISOLATION 

ABSTRACT 

The ability of eastern white pine {Pinus strobus L.) to persist as emergent trees makes 

this species well-suited to retention as reserve trees in the mixed coniferous forests in the 

Acadian region of Maine. While there are many two-aged stands with pine reserves 

across the region, the growth and quality of these trees has never been studied. To assess 

the viability of such a silvicultural system, we selected 77 reserve trees from 8 forest 

stands throughout the spruce-fir region of Maine. Each tree was assessed for stem 

quality, and increment core data were used to reconstruct growth response to release. 

Allometric leaf area relationships were established using the branch summation method, 

and growth efficiency was assessed. With the exception of one site, trees responded well 

to complete release, with mean annual volume increment increasing 17.0 (± 2.2) dm -yr" 

post-release. On average, growth efficiency was 0.22 (±0.01) dm3-m2, and projected leaf 

area was 349.4 (±20.0) m . Mean current annual volume increment was 63.3 (±3.2) 

dm -yr" . Silvicultural systems with extended rotations for isolated reserve white pines is 

biologically feasible, however the many details must be addressed by financial analysis 

using equations developed in this study. 
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INTRODUCTION 

The financial performance of eastern white pine depends largely on how it is managed. 

Silvicultural systems that result in large diameter trees that yield knot-free lumber can 

maximize financial returns, yet often involve significant investments in precommercial 

thinning and pruning operations, especially when grown in pure, even-aged stands. 

Historically, most white pine research has focused on old-field monocultures, which were 

at one time abundant throughout New England. As time has passed, this resource has 

dwindled, and so has much of the research on this species. 

Research has shown that white pine can display the good stem form required to yield 

high value lumber when grown in mixed, stratified stands in combination with more 

shade tolerant conifers, such as spruce, fir and hemlock (Fajvan and Seymour 1993). The 

other species allow for high density, resulting in straight boles, without the high risk of 

white pine weevil {Pissodes strobi [Peck]) attacks associated with monocultures. This 

approach has other distinct benefits, due largely to the growth characteristics of white 

pine. Because white pine continues to grow well longer than red spruce and balsam fir, a 

few high quality pines can be retained through a second rotation, so as to develop into 

large diameter crop trees. This is possible because white pine responds well to heavy 

release and remains relatively windfirm, even as isolated individuals (Bevilacqua et al. 

2005). The second rotation of spruce and fir also promotes natural branch shedding, 

which may reduce the need for pruning operations. 

While it is certain that knot-free sawlogs offer a much higher financial return than lower 

grades of white pine, it remains unclear as to when white pine reaches financial maturity. 
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Determination of financial maturity is dependent on several variables, including changing 

growth rates, costs and returns of silvicultural investments, and guiding rate of return. 

With eastern white pine, grade yield must also be considered, because of the premium 

placed on the highest grades of lumber. Much of the research to this effect (Chappelle 

1966, Hibbs and Bentley 1987) is no longer relevant due to changes in market conditions 

for white pine lumber. Development of financial maturity guidelines that are relevant to 

landowners in Maine would be especially helpful, as white pine has arguably become the 

most important commercial species in the state. Of the estimated 142 million live white 

pine trees growing on timberland in the state, nearly 16% are in diameter classes of 15" 

or greater at breast height (McWilliams et al. 2005), so it stands to reason that older 

estimates of financial maturity are no longer valid. 

To develop a viable financial maturity model, a further understanding of white pine 

growth, especially in larger trees, is needed. Recent research has shown that white pine 

grown in monocultures at unconventionally low densities can maximize tree level 

growth, with little sacrifice in stand level growth (Seymour 2007). Isolated white pines 

grown in irregular, mixed-species stands likely would also exhibit such patterns, but it is 

unknown what effects such a system would have on lumber quality. It has been 

suggested that white pine may exhibit ring shake as a result of growing in isolation, 

although this has previously been shown to be found primarily in slow growing trees with 

small crowns and little taper (Page and Smith 1994), which would not be characteristic of 

a heavily released crop tree. 

The purpose of this study was to examine the growth response of completely released 

mature eastern white pine trees, as well as assess stem quality of trees grown in isolation. 
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Specific objectives were to quantify volume increments (VINC), model relationships 

between tree characteristics and projected leaf area (PLA), and model relationships 

between PL A and VINC. These findings provide the basis for a companion study that 

forecasts growth of isolated crop trees, and better assess the financial viability of 

retaining trees for extended periods of time. 

METHODS 

Study sites 

Eight forest stands throughout the spruce-fir region of Maine, USA were selected for this 

study (Table 1.1). Each stand was two-aged, with a mixed conifer regeneration stratum 

developing under a sparse canopy of heavily released eastern white pine trees grown in 

relative isolation. The harvests that created this structure occurred between 1980 and 

1994 and removed most or all of the mature spruce and fir. Soils ranged from somewhat 

poorly-drained to very poorly-drained (Briggs 1994). 
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Table 1.1. Study stand locations, harvest years, soil drainage class (Briggs, 1994), sample size, and sample siz 
trees. 

Site Location Harvest Year 

Dead River Twp. N 45° 12', W 70° 16' 1984 

Long Pond Twp. N 45° 36', W 70° 02' 1989 

Penobscot 
Experimental N 44° 52', W 68° 39' 1984 
Forest, 
Compartment 2 

Topsfield Twp. N 45° 28', W 67° 51' 1992 

T3R12 N 45° 56', W 69° 15' 1987 

T4R12 N 45° 58', W 69° 11' 1991 

T5.R12 N 46° 06', W 69° 15' 1994 

T39MD N 45° 01' , W 68° 18' 1980 

Soil Drainage Class Sample Size Climbe 

3 - Somewhat 
Poorly Drained 

9 
4 - Poorly Drained 

20 

3 - Somewhat 
Poorly Drained 

7 
4 - Poorly Drained 

10 
4 - Poorly Drained 

3 - Somewhat y 

Poorly Drained 

5 - Very Poorly 4 

Drained 
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Table 1.2. Summary statistics for all trees included in this study. Attributes include 
diameter at breast height (DBH), total height (HT), crown length (CL), crown projection 
area (CPA), stem class form (GFC), and branch diameters (BD). 

Site DBH (cm) HT(m) CL(m) CPA(rn') GFC BD(cm) 
Dead River Twp. 
Mean 54.2 21.8 16.3 221.7 77.6 2.0 
Standard Error 2.8 0.6 0.8 19.2 0.7 0.1 
Minimum 40.0 18.6 12.9 135.5 73.4 0.1 
Maximum 70.1 25.8 20.2 324.7 80.4 12.6 
Long Pond Twp. 
Mean 42.5 21.4 13.4 172.3 78.0 — 
Standard Error 1.3 0.4 0.4 18.2 1.0 — 
Minimum 36.8 19.7 10.9 101.2 72.3 — 
Maximum 48.3 23.1 15.2 283.5 82.3 --
Penobscot Experimental Forest, Compartment 2 
Mean 55.8 25.6 15.8 345.4 81.1 3.3 
Standard Error 1.2 0.3 0.5 16.77 0.5 0.2 
Minimum 45.3 22.9 11.2 160.9 75.3 0.1 
Maximum 70.6 30.3 22.7 546.1 87.5 17.3 
Topsfield Twp. 
Mean 52.6 24.1 14.4 275.6 77.0 6.8 
Standard Error 2.8 0.7 0.6 26.73 3.2 0.5 
Minimum 39.6 20.7 11.4 140.3 49.1 0.2 
Maximum 63.6 27.1 16.4 387.0 83.1 12.9 
T3R12 
Mean 48.4 22.9 14.0 273.0 78.9 3.6 
Standard Error 2.8 0.6 0.7 27.3 0.8 0.2 
Minimum 34.4 19.5 11.2 144.9 75.4 0.1 
Maximum 63.9 25.6 18.4 410.5 82.3 13.6 
T4R12 
Mean 42.5 21.3 11.7 203.0 78.1 2.3 
Standard Error 1.7 0.9 0.7 16.2 1.0 0.1 
Minimum 34.6 17.6 8.2 127.6 71.2 0.2 
Maximum 53.1 26.7 16.9 304.9 82.2 9.9 
T5R12 
Mean 48.3 21.9 11.2 218.3 80.4 — 
Standard Error 12.2 2.8 2.5 46.8 0.9 — 
Minimum 33.3 17.9 8.2 141.0 78.8 — 
Maximum 96.7 33.1 21.0 402.3 83.4 — 
T39MD 
Mean 60.6 26.0 13.2 351.1 79.3 — 
Standard Error 5.0 0.8 1.0 37.9 1.2 — 
Minimum 42.8 21.2 9.6 166.6 72.1 — 
Maximum 99.7 30.7 20.8 497.0 83.3 — 
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Data collection 

Fixed radius plots (0.1 ha) were established to survey the reserve overstory. Each reserve 

tree was measured for diameter at breast height (DBH, 1.37m) and crop tree suitability 

(having straight lower boles free of obvious defect and crowns not engaged with 

neighboring trees). Suitable trees were stratified into 10 cm diameter classes, and a 

proportional subset (n=77) was selected at random. Each tree in the subset was measured 

for total height, height to base of live crown, defined as the lowest contiguous live whorl, 

crown radii in six directions, diameter at 5.18m, and bark thickness in two locations at 

both 1.37m and 5.18m. Two increment cores were extracted at 1.37m, and one at 5.18m. 

Increment cores were scanned at 1200 dpi and measured with the WinDendro® software 

package (Regent Systems, Inc. 1992). 

A subset of the sampled trees (n=9) was then selected to represent the range of DBHs at 

the time of release, as determined through increment core data. The subject trees were 

climbed, and all live branches were measured for basal diameter and height. Epicormic 

branches were also measured and noted. The branch summation method (Monserud and 

Marshall 1999) was employed to estimate projected leaf area (PLA). For this process, 

three branches were removed for detailed analysis; one from the base of the live crown 

(BLC), one from the sixth highest whorl, and one from the whorl median to the BLC and 

the sixth highest whorl. The sample branches were chosen by taking the branch nearest a 

randomly selected azimuth direction. Needle samples from each sample branch, 

consisting of approximately 100 needles, were collected and frozen in the field to reduce 

moisture loss. The frozen needles were then thawed, and scanned at 1200 dpi, and the 

PLA was measured to the nearest 0.0001 cm2 using the WinSeedle® software package 
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(Regent Systems, Inc. 1992). These needles were then oven dried at 65° C for 72 hours 

and weighed to the nearest 0.0001 gram to determine specific leaf area (SLA; cm2»g"'). 

The remainder of the foliage from the three sample branches from each tree was then 

oven-dried for two days, at which point needles were separated from any non-

photosynthetic tissue. Needles were then re-dried separately prior to obtaining their 

masses. 

Table 1.3. Mean volume estimates for study trees by site. Standard errors in parentheses. 
Whole tree cubic feet estimates derived from Honer (1967). Board foot estimates derived 
from Leak, et al (1970).  

Tree Vol. Tree Vol. Butt Log Top Log Vol. in Butt 
(dm3) (bdft) Vol.(bdft) Vol.(bdft) Log(%) 

Penobscot 
Experimental 2565.5(135.9) 610.8(34.5) 220.2(10.0) 390.6(24.8) 36.70(0.01) 
Forest, C2 

T39MD 3222.5(699.4) 779.0(179.7) 262.2(47.8) 516.8(122.5) 35.86(0.02) 

Topsfield 2118.1(269.0) 495.3(69.0) 190.4(18.9) 304.9(50.3) 42.2(0.0) 

Long Pond 1197.8(65.1) 259.0(16.3) 115.2(7.2) 143.8(9.7) 44.6(0.0) 

T4R12 1237.4(150.1) 269.7(38.4) 117.3(10.5) 152.4(28.2) 46.0(0.0) 

T5R12 2528.7(1696.2) 600.8(435.3) 196.5(110.5) 404.3(324.9) 48.0(0.1) 

T3R12 1733.0(215.2) 396.4(55.2) 154.5(17.4) 241.8(37.9) 40.6(0.0) 

Dead River 2106.8(254.9) 492.3(35.2) 200.7(21.8) 291.5(44.2) 42.1(0.0) 

Summit 3010.1(430.4) 724.5(110.6) 232.8(28.9) 491.7(83.3) 32.8(0.0) 
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Table 1.4. Summary statistics for all trees included in this study. Attributes include 
projected leaf area (PLA), growth efficiency (GE), and tree age. 

Site PLA (m2) GE(dm3m"2) Age (years) 
Dead River Twp. 
Mean 378.1 0.31 72.1 
Standard Error 51.4 0.02 1.1 
Minimum 159.5 0.20 68 
Maximum 653.3 0.43 77 
Long Pond Twp. 
Mean 204.9 0.20 112.8 
Standard Error 19.1 0.02 3.1 
Minimum 121.1 0.12 97 
Maximum 305.5 0.29 127 
Penobscot Experimental Forest, Compartment 2 
Mean 463.2 0.16 108.0 
Standard Error 35.2 0.01 1.8 
Minimum 219.8 0.09 93 
Maximum 790.5 0.22 128 
Topsfield Twp. 
Mean 399.5 0.18 131.6 
Standard Error 59.6 0.01 1.5 
Minimum 169.1 0.12 128 
Maximum 579.1 0.24 139 
T3R12 
Mean 319.7 0.27 79.2 
Standard Error 47.4 0.02 1.4 
Minimum 118.8 0.20 74 
Maximum 625.0 0.44 87 
T4R12 
Mean 202.3 0.27 83.2 
Standard Error 19.6 0.01 2.9 
Minimum 123.8 0.22 66 
Maximum 318.5 0.33 98 
T5R12 
Mean 142.2 0.29 80.3 
Standard Error 15.5 0.03 4.0 
Minimum 111.4 0.23 74 
Maximum 171.6 0.36 91 
T39MD 
Mean 479.4 0.15 144.6 
Standard Error 69.9 0.01 15.3 
Minimum 197.4 0.11 99 
Maximum 768.4 0.21 245 
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Analysis 

Branch level projected leaf area (BLA) from the 27 sample branches from the climbed 

trees were used to fit a predictive model. The model formulation is as follows: 

[1] 

eBLA = fiQ+ fit* eBD 

where BD is the branch basal diameter (mm). BLA was then back-transformed, using a 

log-bias correction factor of 1.15 (Sprugel 1983). Relative depth in crown was explored 

as a covariate, but was not significant. 

Table 1.5. Branch leaf area equation [eqn 1] parameter estimates and fit statistics. SE -
standard error; RMSE - root mean squared error; R2 - generalized coefficient of 
determination. 

Parameter Estimate SE p Value RMSE R2 

fio 
Pi 

-5.8948 
1.8514 

0.4501 
0.1174 

< 0.0001 
< 0.0001 

0.5127 0.9050 

Tree level projected leaf area (PLA) was estimated for the nine climbed trees by 

summing the predicted BLAs, and then used to fit the following model: 

[2] 
PLA = pQ * DBHP1 * CPA?2 

where DBH is diameter at breast height (1.37m) and CPA is crown projection area. 

Several other model forms were also evaluated (Table 1.2), however, this formulation 

provided the best, and most unbiased prediction, as assessed using root mean squared 

error and residuals. This allowed PLA prediction for all of the study trees. Both models 
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were fit using generalized nonlinear least squares in the nlme library (Pinheiro et al. 

2008) in R (R Development Core Team 2008). 

Table 1.6. Model formulations and fit statistics for estimating tree-level projected leaf 
area (PLA). Independent variables include sapwood basal area (SBA, cm ), live crown 
length (CL, m), diameter at breast height (DBH, cm), total stem height (HT, m), modified 
live crown ratio (mLCR), and crown projection area (CPA, m2). AIC - Akaike's 
information criteria; BIC - Bayesian information criteria; RMSE - root mean squared 
error; R2 - generalized coefficient of determination. 

Model Equation AIC BIC RMSE R2 

SACL PLA = /?0 * SBAPl * CLP2 110.76 111.55 72.97 0.77 
CLDH , _ DBH. 

PLA = B0 * CLPl * e^'-irr) 110.53 111.32 72.04 0.78 
mLCR PLA = /?0 * DBHPi * mLCR?* 108.13 108.93 63.07 0.83 
DCL PLA = B0 * DBH^ * CL?* 105.88 106.67 55.65 0.87 
DCPA PLA = p0 * DBHPi * CPAfo 103.69 104.48 49.27 0.90 

Table 1.7. Parameter estimates with standard errors and;? values for selected models for 
estimating tree-level projected leaf area (PLA). 

Model Po Pi P2 
SACL 
Estimate 0.1025 0.6910 1.089 
Standard Error 0.2081 0.2940 0.4270 
p Value 0.6398 0.0571 0.0435 
CLDH 
Estimate 8.6833 1.5630 0.8845 
Standard Error 9.9238 0.3779 0.2657 
p Value 0.4152 0.0061 0.0158 
mLCR 
Estimate 0.0596 2.2537 0.4662 
Standard Error 0.1457 0.5577 0.7358 
p Value 0.6968 0.0068 0.5497 
DCL 
Estimate 0.0316 1.9960 0.5509 
Standard Error 0.0538 0.5303 0.3795 
p Value 0.5787 0.0094 0.1968 
DCPA 
Estimate 0.0126 2.1025 0.3438 
Standard Error 0.0186 0.4091 0.1680 
p Value 0.5232 0.0021 0.0868 
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Figure 1.1. Projected leaf area (m2) as a function of diameter at breast height (cm). 
Filled circles are climbed trees, and leaf area was estimated using the branch summation 
method. Open circles are leaf area estimates made using the whole-tree model. 
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Figure 1.2. Projected leaf area (m ) as a function of crown projection area (m ). Filled 
circles are climbed trees, and leaf area was estimated using the branch summation 
method. Open circles are leaf area estimates made using the whole-tree model. 

Annual volume increment (VINC) was estimated by reconstructing previous heights and 

diameters. Tree ring data were used to estimate tree diameters in 2003, five years prior to 

sampling. Site index was calculated for each tree (Carmean et al. 1989), which was then 

used to estimate heights in 2003. Honer's (1967) volume equation was then employed to 
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estimate whole tree volumes in 2003, and the difference between 2008 volume and 2003 

volume was divided by five to annualize volume increment. PLA was then used to 

predict VINC using a nonlinear mixed effects model taking the form: 

[3] 

VINC = p0PLA^+bi 

where b] is a random effect for site associated with the parameter/?/. 

Table 1.8. Annual volume increment equation [eqn 3] parameter estimates and fit 
statistics. SE -standard error; RMSE - root mean squared error; R2 - generalized 
coefficient of determination. 

Parameter Estimate SE p Value RMSE R2 

fio 
ft 

1.1074 
0.6978 

0.3713 
0.0583 

0.0004 
< 0.0001 

11.045 0.82 

Table 1.9. Random effects for the annual volume increment equation [eqn 3]. 

Site bi 
Dead River Twp. 0.0583 
Long Pond Twp. -0.0041 
PEF, Comp. 2 -0.0286 
Topsfield Twp. -0.0041 
T3R12 0.0136 
T4R12 0.0091 
T5 R12 0.0001 
T39MD -0.0211 
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In an effort to elucidate the variation in VINC between sites, tree age was introduced as a 

covariate, as increasing age has been shown to have a deleterious effect on growth 

efficiency (Seymour and Kenefic 2002), or the stemwood growth per unit of leaf area 

(Waring et al. 1980). The following model was fit using generalized nonlinear least 

squares regression: 

[4] 

VINC = PQPLA^AGEP2 

where Age is tree age, in years. Parameter estimates and fit statistics can be found in 

table 1.10. 

Table 1.10. Annual volume increment equation [eqn 4] parameter estimates and fit 
statistics. SE -standard error; RMSE - root mean squared error; R2 - generalized 
coefficient of determination. 

Parameter Estimate SE p Value RMSE R1 

fto 
Px 

26.5839 
0.7522 
-0.7629 

13.6205 
0.0559 
0.1049 

0.0549 
< 0.0001 
< 0.0001 

13.72 0.74 

RESULTS 

Volume growth and stem form 

The mean annual volume increment for all trees raised from 33.12 ± 1.98 dm3 pre-release 

to 50.15 ± 2.68 dm3 post-release, representing a 51.4% increase in mean annual volume 

increment, a significant increase (P < 0.0001) as determined by a pairwise t-test. All sites 

exhibited a substantial post-harvest increase in mean annual volume increment, with the 

exception of the Long Pond Twp. site (Figure 1.5). The trees at this site also had the 
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smallest mean CPA (Table 1.2), which suggests that the larger pine trees had been 

removed in the harvest. Whole tree volumes across all sites ranged from 715.6 dm3 to 

10159.2 dm3, with a mean volume of 2445.1 ± 149.1 dm3 (Table 1.3). The mean percent 

of volume found in the butt log was 45.5 ± 0.01%. 

Stem form of the trees was generally good (Table 1.2), with Girard form classes ranging 

from 49.14 to 87.50, with a mean Gfc of 79.1 ± 0.5. While the maximum number of dead 

retained branches on the butt log was 19, the mean number of dead branches was 3.18 ± 

0.46, and 40 of the 77 trees had no dead branches. 

Crown characteristics 

The crown projection areas of the study trees ranged from 101.2 m to 546.1 m , with a 

mean of 281.4 ± 10.7 m . Live crown ratios ranged from 0.397 to 0.867, with a mean of 

0.602 ± 0.009. The isolated growth conditions resulted in asymmetric crowns, as 

determined with one-way ANOVA (P = 0.0006). This is likely due to prevailing winds, 

as the shortest radii were in the western and north-western radii, while maximum crown 

radius was 9.76 m, extending southward. Crown lengths had a mean of 14.38 ± 0.30 m, 

and ranged from 8.20 m to 22.70 m (Table 1.2). In the nine climbed trees, the mean 

number of live whorls was 39.1 ± 2.9, indicating that these trees experienced substantial 

crown expansion following release from the surrounding matrix. Mean branch diameter 

was 2.81 ± 0.09 cm, and maximum branch diameter was 17.3 cm. 
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Leaf area and growth efficiency 

Branch leaf area was found to be well correlated with branch diameter {R2- 0.9050; 

Table 1.5). Relative depth in crown was not significant in predicting branch leaf area (P 

= 0.599). Several covariates were employed to predict PLA, though most were not 

significant. Rejected covariates included modified live crown ratio (P — 0.513; Valentine 

et al 1994), and live crown ratio (P = 0.197). Sapwood basal area (P < 0.0001) was 

significant, but was rejected due to the low correlation (R2 = 0.7748) and the variability 

between the two increment cores from each tree. The final model included DBH and 

CPA (Table 1.6), which correlated well with PLA (R2 = 0.8972). Predicted PLA ranged 

from 111.4 m2 to 790.5 m2, with a mean of 349.4 ± 20.2 m2 (Table 1.4). 

VINC was found to be well correlated with predicted PLA (R2 = 0.82), and exhibited a 

fairly strong site effect, especially at the highly productive Dead River site (Table 1.9). 

Site effect was determined to be driven largely by tree age (Figure 1.7) rather than site 

productivity, as site index was found to be not significant when included in equation 4 

(Figure 1.6). GE ranged from 0.092 dm3cm"2 to 0.438 dm3-cm"2, with a mean of 0.220 ± 

0.009 dm3cm~2 (Table 1.4). Mean growth efficiency was lowest at the T39 MD site (0.15 

dm -cm"), and highest at the Dead River Twp. site (0.31 dm cm"). No discernable 

patterns were observed between growth efficiency and site index (Figure 1.6), however 

growth efficiency exhibited a decrease with tree age (Figure 1.7). 
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Figure 1.3. Growth efficiency (dm • m") as a function of projected leaf area (m*). Filled 
circles are climbed trees, and leaf area was estimated using the branch summation 
method. Open circles are leaf area estimates made using the whole-tree model. 
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Figure 1.4. Growth efficiency (dm • m") as a function of crown projection area (m ). 
Filled circles are climbed trees, and leaf area was estimated using the branch summation 
method. Open circles are leaf area estimates made using the whole-tree model. 
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Figure 1.5. Annual volume increment (VINC, dm • yr") as a function of projected leaf 
area (m2). Open circles represent stemwood increment calculated with Honer's (1967) 
equation, filled circles represent fitted model [eqn 3]. 
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Figure 1.6. Growth efficiency as a function of site index (height in feet at base age 50). 
Grey circles represent individual observations, open squares represent site means with 
standard error bars. 
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Figure 1.7. Growth efficiency as a function of tree age. Grey circles represent individual 
observations, open squares represent site means with standard error bars. 
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Figure 1.8. Beanplot of growth efficiencies by site. Small horizontal lines represent 
individual observations, and large horizontal lines represent site means. Dashed line 
across entire figure represents grand mean (0.22 dm3- m"2). 
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Figure 1.9. Beanplots of pre- and post- release volume increments by site, (a) for whole 
tree merchantable volume (dm3 yr"), (b) Whole tree merchantable volume (bdft yr"1), and 
(c) butt log merchantable volume (bdft yr"1) . Small horizontal lines represent individual 
observations, and large horizontal lines represent site means. Dashed line across entire 
figure represents grand mean 
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DISCUSSION 

Tree growth and form 

The significant increase in volume growth shows that white pine responds well to 

complete release. This is likely due to the unrestricted crown expansion, both vertically 

and laterally, afforded by this silvicultural system. While this coincides with the findings 

of Bevilacqua et al. (2005), the trees in the current study were much larger (44.8 ±1.2cm) 

at the time of release, indicating that white pine will continue to respond even at ages in 

excess of 100 years. While site factors likely accounted for some differences in response 

to release (Figure 1.9a), stand history may also have influenced growth response. 

Reserve trees at the only site to not exhibit a response, Long Pond, had small crowns and 

whole tree volumes, despite having the median number of years since release among all 

sites. This suggests that the highest quality or most vigorous trees were likely harvested 

at the time of release. The small crowns, combined with the relatively advanced ages 

found at this site were likely the driving factors limiting growth response. In contrast, the 

Dead River site release was an herbicide release trial, in which the best white pines were 

selected for retention. This, in combination with the high site productivity, as well as the 

youngest ages among all study sites, resulted in the largest growth response among sites. 

Tree form was generally good, exhibiting moderate taper and few retained dead branches 

on the lower bole, which Fajvan and Seymour (1993) attributed to the "trainer" effect of 

growing amidst a matrix of dense, shade-tolerant conifers. 
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Crown characteristics 

The unrestricted crown expansion that complete release facilitated in these trees has led 

to massive crowns, with some individual branches exhibiting diameters and lengths equal 

to that of a medium sized tree (Table 1.2). As such, the implementation of this 

silvicultural system requires very low reserve tree densities, likely fewer than 30 trees-ha" 

', in order to prevent crown competition and subsequent crown recession (Oliver and 

Larson 1990). This would allow average CPA to expand to over 300 m before crown 

competition began, which would accommodate about 75% of the trees in this study. 

Some areas within the study sites exceeded this density, and crown closure had already 

begun, for the purposes of this study, trees in these areas were not considered. Crown 

form was generally representative of the archetypical white pine as depicted by Seymour 

and Smith (1987). 

Leaf area and growth efficiency 

Several studies have examined patterns of leaf area and growth efficiency in eastern 

white pine (Barker 1998, Pace 2003, Guiterman 2009, Weiskittel et al. 2009), however, 

these studies focused on trees growing within forest stands. Typically, the branch 

summation method involves felling a tree, then selecting easily accessible branches for 

sampling. Monserud and Marshall (1999) acknowledged that this could introduce 

sampling bias, and as such, selected only forest interior trees with fairly radially 

symmetric crowns. Forest interior tree crowns are shaped largely as a function of crown 

abrasion (Oliver and Larson 1990), a competitive process not experienced by the trees in 

the current research since their release. The resulting crown shape is likely influenced by 

abiotic factors, such as prevailing winds and sun angle, resulting in asymmetric crowns. 
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The use of a tree climber facilitated sampling from standing trees, which allowed 

branches to be selected using a random azimuth direction, thus reducing sampling bias. 

Branch-level leaf area prediction typically includes depth in crown as a covariate 

(Monserud and Marshall 1999), to account for differences in specific leaf area, the 

measure of leaf area per unit mass, that occur due to varying light environments. 

Growing in relative isolation creates a much more uniform light environment throughout 

the crown, which explains why depth in crown was not significant in the branch PLA 

model. 

PLA prediction was found to exhibit the best fit with the DCPA model, but other models 

performed acceptably (Table 1.6). This could be explained by the lateral expansion in the 

middle and lower branches within the crown, which supported most of the leaf area. 

While sapwood area may be the most biologically appropriate predictor of PLA 

(Shinozaki et al. 1964), the model with the poorest fit in this study was SACL, likely due 

to poor estimation of sapwood area using two increment cores, as sapwood width can be 

highly variable around the bole. The DCPA model provided the best fit, but CPA 

measurement is relatively labor intensive, and therefore may not provide the most 

practical model for field implementation. For this reason, the DCL model may be more 

appealing to forest managers, as crown length is easily measured with a hypsometer. The 

DCL model also has the added advantage in that future crown lengths can be predicted, 

as crown recession is very limited in completely released trees, and future heights can be 

predicted using site index curves. 

VINC increased monotonically with PLA, albeit at a decreasing rate (Figure 1.5). The 

concave pattern coincides with VINC-PLA patterns seen in Quercus petraea (Assman 
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1970), Pinus contorta (Long and Smith 1990), and Abies balsamea (Gilmore and 

Seymour 1997). Predicted VINC for a PLA of 200 m2 was about 46 dm3yr"', which is 

similar to the findings of Guiterman (2009) for stand grown eastern white pine. While 

the mixed-effects VINC model (R2 = 0.82) had a better fit than the model that included 

age (R2 = 0.74), age proved to be a significant covariate, whereas site index did not. This 

suggests that the differences between sites were primarily due to reserve tree ages, rather 

than estimates of site productivity based on site index equations. 

GE decreased as PLA increased (Figure 1.3), which is consistent with the findings of 

studies involving other species (Long and Smith 1990, Gilmore and Seymour 1996, 

DeRose and Seymour 2009), and the same pattern was found with increasing CPA 

(Figure 1.4). This conforms to the idea that smaller, more compact crowns are the most 

efficient (Assmann 1970, Gilmore and Seymour 1996). Furthermore, Honer's (1967) 

volume equation does not account for branch wood, which neglects a significant 

component of the annual growth in trees with such massive crowns. Despite the 

decreasing trend in GE, the overall mean GE (0.22 dm3-cm"2, Figure 1.6) was similar to 

that of much smaller, forest grown eastern white pines (Guiterman 2009). Such isolated 

conditions results in much greater light availability along the sides of the crown, whereas 

even dominant forest grown trees receive most incoming sunlight from above. Site level 

GE (Figure 1.8) appears to be effected by age, with the 4 sites with the youngest trees 

exhibiting above average GE, and the four sites with the oldest trees exhibiting below 

average GE (Table 1.4), suggesting an age related decline, as found by Seymour and 

Kenefic (2002) in eastern hemlock (Tsuga canadensis L., Carriere). As exhibited in the 

VINC models, GE decreased monotonically with age (Figure 1.7), whereas no clear 
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patterns were observed between GE and site index (Figure 1.6). This finding is 

somewhat contradictory to the findings of Hofmeyer et al. (2010), in which Thuja 

occidentalis GE was found to be significantly correlated with soil drainage, which may 

be an artifact of employing site index as an index of site productivity. In the case of this 

study, several assumptions were violated in the use of site index. Carmean et al. (1989) 

stated that proper application of site index equations requires the use of "free-growing, 

uninjured, dominant and codominant trees" from well-stocked-even aged stands. In this 

study, all of the climbed trees exhibited evidence of repeated weevil attacks, which would 

have resulted in the loss of height growth in the year of attack. Height growth of isolated 

trees may further be reduced by way of hydraulic limitation (Ryan and Yoder 1997), as 

open-grown trees are more susceptible to water stress. Finally, the ages of many of the 

trees included in this study were beyond the range of ages used to fit the site index 

equation (Carmean et al. 1989), which may have led to inaccurate results due to 

overextrapolation. This inaccuracy could be corrected for through destructive sampling 

and stem analysis, which would have allowed direct measurements of heights throughout 

the life of the tree. 

CONCLUSIONS 

The retention of mature eastern white pine trees as reserves allows for unrestricted crown 

expansion, both vertically and horizontally. This study has shown that this sustained 

increase in leaf area allows for a continued growth response, well after release, while 

providing a seed source and protection for future cohorts of pine within the mixed conifer 
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regeneration matrix. For this system to remain effective, reserve density must be very 

low, likely less than 30 trees-ha"1, to allow lateral and vertical crown expansion, so as to 

prevent future crown competition and subsequent recession. In selection of potential 

reserve white pine crop trees, priority should be given to vigorous, younger trees with 

clear, straight lower boles. 
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CHAPTER TWO 

FINANCIAL PERFORMANCE OF ISOLATED EASTERN WHITE PINE 

RESERVE TREES IN THE ACADIAN SPRUCE-FIR FOREST OF MAINE, USA 

ABSTRACT 

The adaptation of eastern white pine {Pinus strobus L.) to persist as emergent trees makes 

them well-suited to retention as reserve trees in the mixed coniferous forests in the 

Acadian region of Maine. While there are many two-aged stands with pine reserves 

across the region, the financial performance of these trees has never been studied. We 

sampled 77 archetypal eastern white pine trees grown in relative isolation for 14 to 28 

years from 8 forest stands throughout the spruce-fir region of Maine to assess financial 

performance. Increment core data and site index equations were used to reconstruct tree 

dimensions for every year post-release to the time of sampling. Future growth of each 

tree was projected from 2009 to 2050 employing relationships between leaf area, annual 

volume increment, and differing site productivity. Two scenarios were created: An 

unpruned scenario, in which the defect core was assumed to be the scaling end diameter 

of the butt log at the time of release; and a pruned scenario, in which the defect core was 

fixed at 15.24 cm. CantSim, a spreadsheet-based sawing simulation program was 

employed to estimate volumes and values by grade of eastern white pine (Pinus strobus 

L.) butt logs with a range of scaling and defect core diameters. A two-part polynomial 

regression model was then fit to predict butt log value. Using 5 year average wholesale 
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prices, butt log values were then estimated with the two-part polynomial model, and top 

log values were estimated using existing volume equations. Financial performance was 

assessed using net present value (NPV) at the time of release. In the pruned scenario, 

NPV declined following release for all but fast growing, smaller trees, due to the high 

value of the trees when released. In the unpruned scenario, NPV tended to initially 

decrease, followed by a rapid increase as the trees began to accrue high value, knot-free 

lumber. On average, NPV peaked 52 years post-release, at which point trees had a mean 

diameter at breast height 68.8 (±2.9) cm, using a guiding rate of return of 4%. 

To analyze the financial benefit of pruning directly, the differences in value between the 

pruned and unpruned scenarios were discounted back to the time of pruning, and pruning 

costs were subtracted. The peak mean benefit occurred 30 years after pruning, at which 

point the net present value was $23.67 (±2.83), using a guiding rate of return of 4%. 

Mean net present value of the pruning benefit remained positive for 101 years after 

pruning. 

INTRODUCTION 

In recent years, much attention has been given to ecosystem benefits of green-tree 

retention (Franklin 1989, Rose and Muir 1997, Acker et al. 1998). Silviculturally, trees 

retained after a regeneration harvest, or reserves, offer the benefit providing a seed source 

to future rotations, as well as casting shade, thus preventing establishment of undesirable 

intolerants (Miller et al. 2005). Little attention, however, has been given to the growth 

and financial performance of completely released reserve trees. With complete release, 
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eastern white pine reserve tree crowns undergo unrestricted crown expansion, both 

vertically and laterally. This leads to a rapid increase in leaf area, the primary driver of 

tree productivity (Mainwaring and Maguire 2004). While increased growth rates 

undoubtedly increase the value of reserve trees, there has never been an investigation into 

whether the value growth can keep pace with discount rates when analyzed in terms of 

NPV. 

Eastern white pine, although taxonomically a softwood, is treated in nearly the same 

manner as hardwoods by the forest products industry. As is done for hardwoods, special 

attention is given to grade recovery in the milling process due to the high price premium 

placed on the best grades of white pine products (Figure 2.1). Typical softwood milling 

is centered on sawing efficiency, as there are little price differences between structural 

softwood grades (Duvall, 2004). Grading of white pine is based on the appearance of the 

best face, as outlined by the Northeastern Lumber Manufacturers Association (NeLMA), 

and is limited by the maximum allowable defects, such as knot size and frequency, on a 

given board. The highest practical grade given to white pine is "D select & better," 

which only permits one knot, Vi inch in diameter or less, per surface foot (NeLMA, 

1952). 
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Figure 2.1. Prices of eastern white pine lumber (USD mbf1), by grade, for years 1995 to 
2009 (source: Random Length Publications®, 2010). 

As previously stated, the value of white pine depends largely on grade recovery. For this 

reason, white pine is often treated as a hardwood in respect to processing at a sawmill. 

There are two fundamental approaches to milling a log, one emphasizes volume recovery, 

which is employed at most softwood sawmills, the other focuses on value recovery, 

which is more common in hardwood and white pine sawmills (Thawornwong et al. 
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2003). The sawing method used to maximize value recovery is referred to as grade-

sawing, which is designed to confine internal log defects to the fewest number of 

recovered boards as possible, resulting in high yields of high value products 

(Thawornwong et al. 2003). 

Due to the premium placed on higher grade lumber, management practices should focus 

on minimizing the knotty core in eastern white pine. Poor natural branch shedding is, 

however, a problem associated with growing white pine crop trees, as pine tends to retain 

dead branches for more than 25 years, possibly as long as 73 years, resulting in an 

average of 60 defects to the valuable butt log (Wendel and Smith, 1990; Foster, 1957). 

Pruning is often employed to assuage this problem, but it involves a substantial 

investment. When applied to trees when they are young, but at least one log tall, it 

confines the defects in the butt log to a volume slightly larger than the diameter of the 

tree when pruned, known as the knotty core. Because of the investment involved with 

pruning can only be recouped by the growth of clear, valuable lumber over the knotty 

core, it is not recommended that this practice is employed on trees that are larger than 10 

inches dbh (Seymour and Smith, 1987; Perkey, 1999). Branch occlusion in pruned white 

pine occurs rather rapidly, particularly if trees are free to grow. Rich (1957) found that 

although a scar may persist on the bark of a pruned white pine tree for years, clear wood 

is being grown over occluded branch stubs after an average of only 0.411 inches of radial 

growth. Fight, et al. (1992) performed a financial analysis of pruning ponderosa pine, 

which exhibits similar financial properties as white pine, in which a premium is placed on 

defect free lumber. They found that the break-even point for the investment was nearly 
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$11 per tree, based on a 4% guiding rate of return, with harvests occurring 30 to 70 years 

after pruning. 

While pruning may be a financially sound practice, natural branch shedding can be used 

to augment the rate of return on the investment. Seymour (1992) found that when grown 

in combination with densely stocked spruce-fir stands, white pine develops a high 

quality, defect free bole as a result of the shading from the surrounding competition. Due 

to the relatively fast growth rate of white pine, they will generally attain a dbh of 20-30 

cm as codominants over the course of a typical spruce-fir pulpwood rotation. The white 

pine component of the stand could then be retained through another rotation, amassing 

radial growth as emergent trees. 

The objectives of this study were to (1) assess the post-release financial performance of 

eastern white pine reserve trees that were previously pruned or unpruned, and (2) assess 

the financial viability of pruning white pine that will at some point be completely 

released and retained as a reserve tree. 

METHODS 

Study sites 

Eight forest stands throughout the spruce-fir region of Maine, USA were selected for this 

study (Table 2.1). Each stand was two-aged, with a mixed conifer regeneration stratum 

developing under a sparse canopy of heavily released eastern white pine reserve trees 

grown in relative isolation. The regeneration harvests that created this structure occurred 

36 



between 1980 and 1994. Soils ranged from somewhat poorly-drained to very poorly-

drained (Briggs, 1994). 

Table 2.1. Study stand locations, harvest years, and soil drainage class (Briggs, 1994). 

Site Location Harvest Year Soil Drainage Class 

Dead River Twp. 
N 45° 12', W 70° 

16' 
1984 

3 - Somewhat 
Poorly Drained 

Long Pond Twp. 
N 45° 36', W 70° 

02' 
1989 4 - Poorly Drained 

Penobscot 
Experimental Forest, 
Compartment 2 

Topsfield Twp. 

N 44° 52', W 68° 
39' 

N 45° 28', W 67° 
51' 

1984 

1992 

3 - Somewhat 
Poorly Drained 

4 - Poorly Drained 

T3R12 
N 45° 56', W 69° 

15' 
1987 4 - Poorly Drained 

T4R12 
N 45° 58', W 69° 

11' 
1991 

3 - Somewhat 
Poorly Drained 

T5R12 
N 46° 06', W 69° 

15' 
1994 

5 - Very Poorly 
Drained 

T39MD 
N 45° 01' , W 68° 

18' 
1980 
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Table 2.2. Attributes of eastern white pine reserve component of study stands at the time 
of sampling, with standard errors in parentheses. 

Site Density (stems ha"1) Basal Area (m2 ha"1) QMD (cm) 

Dead River Twp. 9.2 (5.9) 1.96(0.29) 52.2 

Long Pond Twp. 20.0 (3.7) 2.41 (0.00) 39.2 

Penobscot 
Experimental 23.3 (2.8) 5.54(0.14) 55.0 

Forest, 
Compartment 2 
Topsfield Twp. 9.2 (4.6) 1.94(0.22) 51.9 

T3R12 41.7(7.3) 6.54(0.18) 44.7 

T4R12 32.5 (7.4) 3.88(0.14) 39.0 

T5R12 15.0(3.0) 1.74(0.45) 38.4 

T39MD 30.0 (5.3) 7.31 (0.35) 55.7 

Data collection 

Fixed radius plots (0.1 ha) were established to survey the reserve overstory. Each reserve 

tree was measured for dbh (1.37m) and crop tree suitability. Suitable trees were stratified 

into 10 cm diameter classes, and a proportional subset (n=77) were selected at random. 

Each tree in the subset was measured for total height, height to base of live crown, 

defined as the lowest contiguous live whorl, crown radii in six directions, diameter at 

breast height (1.37 m) and at the scaling end diameter at the top of the first 16 ft. log 

(5.18 m), and bark thickness in two locations at both 1.37 m and 5.18 m. Two increment 
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cores were extracted at 1.37 m, and one at 5.18 m. Increment cores were scanned at 1200 

dpi and measured with the WinDendro software package (Regent Systems, Inc.). 

Growth simulation 

Site indices were calculated for each study tree using the Carmean, et al. (1989) equation. 

Heights were then estimated for each tree at every year from the year of release (Table 

2.1) to 2050, the terminal year of the simulation. Tree diameters prior to 2008 were 

reconstructed using breast height increment core data. Honer's (1967) equation was then 

used to estimate whole tree volumes for each year from harvest date (table 2.1) to 2008. 

Estimation of diameters at breast height for the years 2009-2050 employed a leaf area 

based, three-step process. The projected leaf area of each tree in 2008 was estimated 

using the formula, as developed in chapter one of this study: 

[1] 

PLA = foDBH^CLP2 

where PLA is projected leaf area (m2), DBH is diameter at breast height (cm), and CL is 

crown length (m). Parameter estimates and fir statistics can be found in Table 2.4. 

Table 2.3. Projected leaf area (m ) equation [eqn 1] parameter estimates and fit statistics. 
SE -standard error; RMSE - root mean squared error; R2 - generalized coefficient of 
determination. 

Parameter Estimate SE p Value RMSE R1 

fio 
Pi 
02 

0.0316 
1.9960 
0.5509 

0.0538 
0.5303 
0.3795 

0.5787 
0.0094 
0.1968 

55.65 0.87 
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Crown base was held constant throughout the simulation period, as the isolated reserves 

trees experienced no crown competition at the time of the study. Future crown lengths 

were simply the difference between crown base and predicted height. The estimated 

PLA was then used to predict the annual volume increment expected to accrue that year, 

using the nonlinear mixed effects model with the form as developed in chapter one of this 

study: 

[2] 

VINC = p0PLA^+b^ 

where VINC is annual volume increment (dm3), and bi is a site specific random effect. 

Parameter estimates and fit statistics can be found in Table 2.5, and estimated random 

effects can be found in Table 2.6. 

Table 2.4. Annual volume increment (dm ) equation [eqn 2] parameter estimates and fit 
statistics. SE -standard error; RMSE - root mean squared error; R2 - generalized 
coefficient of determination. 
Parameter Estimate SE p Value RMSE R1 

fio 
Pi 

1.1074 
0.69778 

0.3713 
0.0583 

0.0004 
< 0.0001 

11.045 0.82 

Table 2.5. Random effects for the annual volume increment equation [eqn 2]. 

Site bi 
Dead River Twp. 0.0583 
Long Pond Twp. -0.0041 
PEF, Comp. 2 -0.0286 
Topsfield Twp. -0.0041 
T3R12 0.0136 
T4R12 0.0091 
T5 R12 0.0001 
T39MD -0.0211 
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The predicted VINC was then added to the previous volume to obtain the whole tree 

volume for the 2009. Finally, DBH in 2009 was calculated from Honer's (1967) equation 

solved for DBH: 

[3] 

DBH = 
N 

VOL 
* Po * • ( & ) 

where VOL is whole tree volume (dm3) and HT is tree height (m). This process was then 

repeated for each year until the end of the simulation period. Scaling end diameter of the 

butt log was then estimated using the Girard stem form class (Gfc), or the ratio of scaling 

end inside bark diameter to outside bark breast height diameter, measured for each tree. 

Stem form was held constant over the entire simulation period. 

Two scenarios were simulated with respect to the knotty core in the butt log: (1) a 

hypothetical pruned scenario, in which the knotty core was assumed to be fixed at a 

diameter of 15.24 cm, and (2) an unpruned scenario, in which the defect core was 

assumed to be the scaling end diameter at the time of release. This approach is 

conservative, because most of the trees exhibited few, if any branches in the butt log, and 

likely had somewhat smaller knotty cores, and therefore would have contained 

recoverable clear lumber. For the pruned scenario, increment core data were used to 

determine the year in which each tree would have been 15.24 cm DBH, at which time 

pruning would have been performed. 
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Sawing simulation 

Sawmill simulations were carried out on theoretical butt logs in 5-cm diameter classes 

ranging from 30 to 100 cm, and knotty defect cores ranging from 15 to 70 cm using a 

version of CantSim, a spreadsheet-based sawing simulation program (Benjamin, 2006), 

that was modified to maximize value recovery in knot-free sawlogs. Value recovery was 

maximized using a cant-sawing pattern in which the cant size was set to encompass the 

knotty core (Figure 2.2). If the knotty core exceeded maximum product width (30.48 

cm), the cant was set equal to maximum product width. For value recovery 

optimization, the average prices from January 2005 to December 2009 for products 

graded D select & better were input in to the simulator, and linear programming was 

employed to optimize value for the opening face cut and each subsequent cut in the 

sawing pattern. Kerf size was set at %" (0.635 cm), and butt log length was set at 16 ft. 

(4.877 m). The graphical output was then visually assessed for grade recovery. Products 

with less than 33% of the best face within the knotty core were graded as D select & 

better, and all other products were graded as standard. Counts of all products were 

verified with the tabular output of the simulator. Each product was valued by grade and 

width using the average prices from January 2005 to December 2009 (Table 2.3). All 

prices were provided by Random Length Publications® (2010). 
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Table 2.6. Wholesale, mill delivered lumber prices and board feet-piece"1 for eastern 
white pine, by grade and product, used in sawmill simulation and tree valuation. All 
prices reflect average price for the period of January 2005 to December 2009 (Random 
Length Publications®, 2010). 

Product Pricembf' (USD) Board feet-piece"1 

D Select & better 

1 x 4 1511.33 5.33 

1 x 6 1703.96 8.00 

1 x 8 1511.58 10.67 

1x10 1664.18 13.33 

1x12 1896.47 16.00 

Standard 

1x4 361.27 5.33 

1 x6 516.08 8.00 

1 x 8 516.66 10.67 

1x10 433.96 13.33 

1x12 484.38 16.00 

Average 462.46 — 
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Figure 2.2. Example of graphical output of the CantSim sawing simulation program 
(Benjamin, 2006). Black inner circle demarcates knotty defect cor 

Simulation results were then used to fit a two part equation to predict butt log value in US 
dollars, taking the form: 

[4] 

_ ((DM - KC) > 10, /?0 + (JiDIA2 + p2KC2 + p3DIA + p4KC 

where V is the butt log value, in US dollars, DIA is the scaling end diameter, and KC is 

the defect core diameter. Parameter estimates and fit statistics can be found in Table 2.7. 

The two part equation was needed to account for the sharp decrease in value when KC is 
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nearly as large or equal to DIA, which results in very little or no yield of D Select or 

better lumber. 

Lumber recovery from the butt log was predicted by fitting an equation using the 

simulation results, which took the following form: 

[5] 

BDFTpred = /?0 + &DM2 + p2KC2 + 03D1A + p4KC 

where BDFTpred is lumber recovery, in board feet, and DIA and KC are as above. 

Parameter estimates and fit statistics can be found in Table 2.8. This prediction allowed 

for a correction to account for lumber recovery in slabs that result from butt log taper, 

which is not included in the CantSim sawmill simulator. The correction was calculated 

as follows: 

[6] 

where Vcorr is corrected butt log value, BDFTjnti is the butt log volume in board feet as 

calculated using the international V" rule, and Vpreci and BDFTpred are as above. 

Value of lumber above the butt log (Vtop) was estimated by first estimating whole tree 

volume in board feet using the formula by Leak, et al (1970) for eastern white pine, then 

subtracting the volume of the butt log, as estimated with the International lA" rule. The 

resulting board footage was then valued at the average price for standard grade lumber 

(Table 2.2), as specific products were unknown. 
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Whole tree values were then calculated by adding Vcorr and Vtop. These values were then 

adjusted for harvesting, trucking and milling. Based on discussions with local logging 

contractors and pine sawmills, who wish to remain confidential, costs associated with 

harvesting and milling costs were determined on a thousand board foot (mbf) basis. 

Harvesting and trucking was assumed to be $162 mbf1, and sawing, planning, and drying 

were assumed to cost $100, $49, $52 mbf1, respectively, for a total milling cost of 

$201 mbf'. The total cost of $363 mbf1 was subtracted from whole tree values to give 

standing values (V) for each tree in each year of the simulation period. 

Table 2.7. Butt log value equation [eqn 4] parameter estimates and fit statistics. SE 
standard error; RMSE - root mean squared error; R2 - generalized coefficient of 
determination. 

Parameter Estimate SE p Value RMSE R2 

fio 2.0522 36.408 0.9552 28.75 0.997 

fix 
Pi 
ft 

PI 

A. 

2.0522 36.408 0.9552 
-4.8216 1.0985 O.0001 
4.0332 1.0020 0.0001 
0.2563 0.0078 <0.0001 
-0.2326 0.0124 <0.0001 
7.9513 20.902 0.7109 
2.3312 1.0778 0.0534 
-3.4989 0.5989 0.0001 
0.0688 0.0081 <0.0001 

fis 7.9513 20.902 0.7109 4.6542 0.997 
fit 

Table 2.8. Butt log volume (bdft) equation [eqn 4] parameter estimates and fit statistics. 
SE -standard error; RMSE - root mean squared error; R2 - generalized coefficient of 
determination. 

Parameter Estimate SE p Value RMSE R2 

fio 4.9624 8.3607 0.5542 6.60 0.999 
fix -0.9559 0.2523 <0.0001 
fi2 -0.4951 0.2301 0.0339 
fi3 0.1276 0.0018 <0.0001 

_§A 0.0047 0.0029 0.1037  
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Analysis 

Net present value for individual trees( NPVtree) were calculated as follows: 

[7] 

Vt 
NPVtrpP = tree (i + ty 

where NPVtree is net present value in US dollars, V is the value in year t, i is the guiding 

interest rate of return, and t is the number of years from present. Analysis performed for 

both pruned and unpruned scenarios, using time of release (TOR) as Vo. For this 

analysis, pruning was considered to be a sunk cost, and therefore was not considered. 

This assumption was made to accommodate a single management decision, whether or 

not to retain trees as reserves regardless of past investments. 

To assess the financial benefit of pruning, the value of the unpruned trees was subtracted 

from the value of the pruned trees to give pruning benefit (PB). PB was then discounted 

back to the time of pruning (TOP) using: 

[8] 

NPV = PC 
™rvvrune Q + j ) t 

where NPVprune is the net present value of the financial benefit of pruning, PBt is the 

pruning benefit in year t, i is the guiding interest rate of return, t is the number of years 

from TOP, and PC is pruning cost. Pruning costs were assumed to be $4.21 for each tree 
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(O'Hara et al, 1995). Guiding rate of return (GRR) was held at 4%, except where 

otherwise noted. 

RESULTS 

Average post-release financial performance 

Average NPV for unpruned trees (Figure 2.3) initially declined when the guiding rate of 

return (GRR) was 5 or 6%, but rose slightly, followed by a decline when GRR was 3 or 

4%. This is followed by a marked increase for GRR of 3,4, and 5% at the 24th year post

release, at which point the amount of clear wood rapidly accumulated around the defect 

core began to increase the value in the butt log. While NPV does increase at year 24 at a 

GRR of 6%, the discounted value never recovers to the value at release. With a GRR of 

5%, maximum NPV of $33.14 occurs at year 43, however this is only a $2.39 increase 

over the value at release. With a GRR of 4%, NPV peaks at year 52, at which point the 

mean DBH is 68.8 (±2.9) cm. With a GRR of 3%, peak NPV appears to past the 

projected time frame in this simulation. 
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Figure 2.3. Net present values for unpruned scenario averaged for all study trees, under 
guiding rates of return ranging from 3 to 6% and 0 to 60 years after complete release. 
Values were discounted to time of release. 

Average NPVfor pruned trees declines immediately following release, regardless of GRR 

(Figure 2.4). Peak NPV may occur well before the time range analyzed in this 

simulation. Although declining rapidly, average NPV 60 years post-release for pruned 

trees is 33% greater than that of unpruned trees. 
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Figure 2.4. Net present values for pruned scenario for all study trees, under guiding rates 
of return ranging from 3 to 6% and 0 to 60 years after complete release . Values were 
discounted to time of release. 

Financial analysis by site and tree characteristics 

Trends in post-release NPV vary by site, tree size, and whether pruning occurred or not. 

In unpruned trees (Figure 2.5), site productivity and value at release influence initial 

trajectory of NPV. In the most productive sites, Dead River and T3 R12, NPV shows a 
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generally increasing trend. At the least productive site, Long Pond, the general trend is 

either flat or slightly decreasing. Sharp initial decreases in NPV can be seen in both the 

PEF and T39 MD, both of which have high quadratic mean diameters (Table 2.2), and 

thus high initial values, combined with generally lower productivity. All sites exhibit a 

disconnect in NPV reflecting the time at which the scaling end diameter exceeds the 

defect core diameter by 10 cm or more, at which point trees begin to accrue higher value 

clear lumber. 

In pruned trees (Figure 2.6), a nearly universal trend of decreasing NPV is seen. This 

trend was not seen in the highly productive Dead River site, as rapid growth of valuable 

clear lumber offset the effect of discounting. 

When trees are grouped by both DBH at release and average 20 year post release 

diameter increment, large trees exhibit the most rapid initial decline in NPV among the 

unpruned trees (Figure 2.8), due to their relatively high initial value. Small and medium 

trees, regardless of growth rate, tend to exhibit a nearly flat response to release, followed 

by a rapid increase at which point they begin to accumulate higher grade lumber at a rate 

nearly equal to the 4% GRR. 

Released pruned trees grouped by the same initial tree characteristics (Figure 2.9) show a 

decline in NPV, with the exception of fast growing small trees, which exhibit a slight 

increase in NPV, and fast growing medium-sized trees, whose values seem to keep pace 

with discounting at a 4% GRR. Direct comparison between the two simulated pruning 

treatments (Figure 2.10) shows that while post-release NPV generally decreases for 
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pruned trees, and increases for unpruned trees, NPV remains substantially higher in 

pruned trees for several decades, except in smaller trees. 
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Figure 2.5. Post-release net present values for every tree in unpruned scenario, grouped by site. 
fixed at 4% and values were discounted to time of release. 
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Figure 2.6. Post-release net present values for every tree in pruned scenario, grouped by site. 
at 4% and values were discounted to time of release. 

Guiding rate o 
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Figure 2.7. Post-release undiscounted values for every tree in unpruned scenario, grouped by site. 
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Figure 2.8. Post-release net present values for every tree in unpruned scenario, grouped by tree characteristics 
boxes are relative post-release growth rates (Slow < 0.53 cm yr"1, 0.53 cm yr"1 < Medium < 0.68 cm yr"1, Fast > 
and lower group boxes refer to relative diameters at release (small < 30.0 cm, 30.0 cm < medium < 39.0 cm , l 
Guiding rate of return was fixed at 4% and values were discounted to time of release. 
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Figure 2.9. Post-release net present values for every tree in pruned scenario, grouped by tree characteristics. 
boxes are relative post-release growth rates (Slow < 0.53 cm yr"1, 0.53 cm yr" < Medium < 0.68 cm yr"1, Fast 
and lower group boxes refer to relative diameters at release (small < 30.0 cm, 30.0 cm < medium < 39.0 cm , 
Guiding rate of return was fixed at 4% and values were discounted to time of release. 
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Figure 2.10. Differences between post-release net present values of pruned and unpruned scenarios, for every 
tree characteristics. Upper group boxes are relative post-release growth rates (Slow < 0.53 cm yr"1, 0.53 cm y 
0.68 cm yr" , Fast > 0.68 cm yr" ), and lower group boxes refer to relative diameters at release (small < 30.0 c 
medium < 39.0 cm , large > 39.0 cm). Guiding rate of return was fixed at 4% and values were discounted to 
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Figure 2.11. Net present values of financial benefit of pruning, assuming a guiding rate of return of 4% and 
to time of pruning. Grey dot series represent individual trees. Heavy solid line represents the mean, thin sol 
standard error. Dashed horizontal line represents zero net present value, below which pruning investments e 



Financial analysis of pruning investment 

The analysis of pruning benefit (Figure 2.11) shows that the NPV of the mean PB reaches 

its maximum value 30 years after pruning a 15.24 cm tree, at $23.67 (±2.83). This was 

true for GRR of 3% and 5%, as well, with NPVs of $33.05 (±3.78) and $16.71 (±2.12). 

The NPV of PB remained positive for GRR of 4% and 5% for 101 and 76 years, 

respectively, and remained positive for the entire simulation period at a 3% GRR. 

DISCUSSION 

Financial viability of reserve white pines with and without pruning 

The financial performance of heavily released, mature eastern white pines appears to be 

favorable for extended periods, depending on tree conditions at the time of release. The 

primary factors affecting performance appear to be initial size and vigor. With the 

exception of the Long Pond site, sites with smaller trees at the time of release (Table 2.9) 

exhibited the most favorable increases in NPV (Figure 2.5). The Long Pond site, while 

having the lowest mean initial diameter, also exhibited the lowest mean post-release 

radial increment (0.20 ± 0.03 cm-yr"1), which led to value growth nearly equal to 

discounting rate. Despite having the third largest initial mean diameter, the Topsfield site 

also performed well, due to vigorous post-release growth, with a mean radial increment 

of 0.33 ±0.06 cm-yr"1. Larger trees from less productive sites, such as T39 MD and the 

PEF, had peak NPV at the time of release, but smaller trees at these sites performed well, 

with peak NPVs as much as 54 years post-release (Table 2.10). 
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Table 2.9. Summary statistics of tree diameters at time of release by site. 

Site Mean Standard Error Minimum Maximum 
Dead River 
Twp. 
Long Pond 
Twp. 
PEF, Comp. 2 

42.0 

39.4 

50.5 

2.9 

1.2 

1.6 

29.4 

34.0 

41.5 

57.1 

44.6 

66.6 

Topsfield Twp. 50.2 3.6 27.7 55.4 

T3R12 41.7 2.6 36.0 90.8 

T4R12 36.6 1.4 30.6 45.9 

T5R12 30.5 1.5 27.4 33.6 

T39MD 54.8 5.3 35.1 57.8 
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Table 2.10. Post-release year in which net present values (NPV) with a 4% guiding rate 
of return peaks, and undiscounted values for study trees in that same year. 

Unpruned Pruned 
Yea NPV Value Value 

Tree Site r (USD) (USD) Year NPV (USD) (USD) 
2 PEF 0 45.55 45.55 0 250.29 285.29 
3 PEF 54 27.26 226.64 0 86.37 114.03 
4 PEF 49 49.72 339.72 0 207.45 236.22 
5 PEF 53 46.96 375.39 0 235.73 275.10 
6 PEF 49 43.27 295.65 0 165.11 197.47 
7 PEF 0 89.00 89.00 0 474.12 518.41 
10 PEF 0 46.70 46.70 0 212.74 252.11 
12 PEF 52 47.75 367.05 0 211.29 243.65 
13 PEF 52 39.46 303.31 0 135.72 164.49 
14 PEF 0 64.18 64.18 0 293.17 324.28 
15 PEF 0 48.93 48.93 0 173.25 233.86 
18 PEF 43 50.96 275.20 0 158.20 218.81 
20 PEF 0 78.36 78.36 0 371.51 417.57 
21 PEF 50 37.51 266.60 0 95.05 127.42 
22 PEF 0 54.53 54.53 0 282.23 313.35 
23 PEF 47 41.97 265.16 0 165.06 201.47 
27 PEF 42 48.80 253.39 0 127.38 161.04 
29 PEF 46 56.57 343.65 0 142.08 179.93 
30 PEF 43 73.78 398.42 0 290.19 322.55 
31 T39MD 0 56.43 56.43 0 297.53 319.39 
32 T39MD 0 55.79 55.79 0 254.30 283.07 
34 T39MD 0 72.83 72.83 0 161.31 441.11 
36 T39MD 0 64.08 64.08 0 286.60 323.00 
37 T39MD 0 42.06 42.06 0 204.54 228.19 
38 T39MD 0 27.71 27.71 0 50.83 127.52 
39 T39MD 51 39.84 294.46 0 179.28 221.86 
40 T39MD 9 30.54 43.47 0 34.69 86.50 
41 Topsfield 45 79.05 461.74 0 237.19 338.11 
42 Topsfield 47 68.45 432.43 0 166.28 284.35 
44 Topsfield 45 41.36 241.59 0 40.09 91.90 
45 Topsfield 42 82.78 429.84 0 199.07 304.03 
46 Topsfield 0 28.80 28.80 0 -2.64 49.17 
47 Topsfield 45 90.24 527.10 0 199.72 304.68 
49 Topsfield 0 66.35 66.35 0 171.18 289.24 
51 Long Pond 51 35.31 260.94 0 66.71 104.57 
53 Long Pond 48 36.17 237.62 0 65.84 91.42 
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Unpruned Pruned 

Yea NPV Value Value 
Tree Site r (USD) (USD) Year NPV (USD) (USD) 
54 Long Pond 3 37.85 42.58 0 97.59 138.54 
55 Long Pond 2 33.74 36.50 0 111.12 147.52 
56 Long Pond 52 36.76 282.57 0 49.63 83.28 
57 Long Pond 50 26.39 187.52 0 51.70 79.37 
58 Long Pond 50 28.84 204.93 0 72.15 111.52 
59 Long Pond 44 43.16 242.43 0 109.25 169.86 
60 Long Pond 4 23.72 27.75 0 60.36 81.38 
61 T4R12 51 50.31 371.80 0 54.65 71.27 
62 T4R12 46 44.33 269.32 0 99.34 118.03 
63 T4R12 55 48.89 422.73 0 55.56 71.54 
64 T4R12 57 37.18 347.75 0 35.79 45.01 
65 T4R12 50 50.68 360.18 0 62.59 76.79 
66 T4R12 46 35.87 217.91 0 83.91 101.19 
67 T4R12 47 32.90 207.84 3 41.66 74.53 
68 T4R12 42 31.79 165.09 0 60.15 79.58 
69 T4R12 41 61.44 306.80 0 156.14 181.72 
71 T5R12 53 22.33 178.49 0 44.05 58.82 
73 T5R12 58 16.22 157.75 0 44.20 53.43 
74 T5R12 62 26.03 296.22 0 30.24 38.13 
75 T5R12 59 29.68 300.25 0 60.95 70.54 
76 T3R12 54 59.58 495.37 0 120.57 139.26 
77 T3R12 54 44.63 371.05 0 83.65 97.85 
78 T3R12 59 41.31 417.88 0 56.05 70.82 
79 T3R12 48 83.12 546.13 0 250.14 268.11 
80 T3R12 58 36.70 356.94 0 28.67 38.27 
81 T3R12 50 61.19 434.86 0 122.64 138.00 
82 T3R12 53 63.03 503.90 0 168.27 185.55 
83 T3R12 52 59.58 457.98 0 160.63 177.24 
84 T3R12 48 66.27 435.42 0 144.92 160.90 
85 T3R12 52 50.71 389.77 4 64.33 91.24 
86 Dead River 55 135.93 1175.30 0 271.37 286.73 
87 Dead River 59 99.27 1004.11 0 153.02 168.99 
88 Dead River 63 104.98 1242.22 2 110.95 134.77 
89 Dead River 59 101.89 1030.58 4 103.91 136.92 
91 Dead River 59 138.05 1396.42 0 186.02 201.38 
92 Dead River 57 97.96 916.10 1 83.51 98.99 
93 Dead River 61 77.64 849.45 0 64.39 74.76 
94 Dead River 64 91.98 1131.94 8 55.67 98.92 
95 Dead River 66 75.36 1003.04 0 36.36 45.58 
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Despite the variation between sites with regard to NPV, trees from all sites became 

valuable by the end of the simulation period (Figure 2.7). This is especially tree of the 

highly productive Dead River site, where all trees were approaching or exceeding 

undiscounted values of 1,000 USD. 

The conservative assumption that the knotty core diameter is equivalent to the scaling 

end diameter of the butt log was employed due to the lack of knowledge of internal 

defects, but knotty cores were likely considerably smaller, as live crown bases were 

generally well above the butt log. This would have a significant effect on whole tree 

value, as the presence of clear lumber would have substantially increased the initial value 

as the butt log, which accounts for more than half the value of the entire tree (Figure 

2.11). Internal knowledge could have drastic effects on recommended retention period 

for the reserve trees, as growth rates cannot withstand the scrutiny of discounting when 

initial values are high. This is evident in the pruned scenario in which the trees already 

too valuable to justify retaining, as tree growth could maintain value increases greater 

than the 4% GRR. 

The financial analysis of pruning was confounded in this study by the differing periods of 

time between time of simulated pruning and time of release, which ranged between 16 

and 107 years. While peak profits occur at only 30 years after pruning, the sustained net 

profit period of 101 years, when a GRR of 4% is employed, suggests that reserve pines 

could be retained though a second rotation of spruce and fir, and a net profit from pruning 

would still be realized. This would allow for coordination of harvesting activities, 

thereby reducing damage to the surrounding stand when felling the large reserve pine. At 
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this time, a new cohort of reserves, already selected and pruned, would be retained as 

reserves. 

Sawmill simulation 

The use of sawmill simulators to maximize value recovery of a log can be a valuable tool, 

but only if the sawyer has a priori knowledge of the size of the defect core. Recently, 

non-destructive log scanning methods have been used to determine the internal defects of 

a log. X-Ray computed tomography (CT) is of particular interest, as it provides a high 

resolution and is relatively efficient (Thawornwong et al. 2003). CT scanning is 

performed by a rotating X-Ray machine that provides a series of two-dimensional images 

at specified increments along the length of the log. Internal defects are easily discerned 

due to differences in densities in knots, voids, heartwood, and sapwood (Rinnhofer et al., 

2003). 

The information provided by CT scanning was found to improve yield recovery by 6.6% 

when applied by sawyers (Rinnhofer, 2003). When information on the location and size 

of the knotty core, as provided by CT scanning, was combined with sawing optimization 

from AUTOS AW, value recovery was increased as much as 11% (Todoroki, 2005). 

Gains in productivity associated with CT scanning and computer aided sawing 

optimization are substantial, and merit further review. Hodges et al. (1990) found that 

the increase in value recovery as a result of implementing CT scanning into the milling 

process would offset the cost of the investment in the scanning equipment in southern 

U.S. hardwood mills. Based on the similarities in processing of white pine and 
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hardwoods, it stands to reason that high volume New England white pine mills could also 

profit from this technology. 

Pruning, along with detailed record keeping, also has the potential to give sawyers a 

priori knowledge of the approximate size of the defect core. This knowledge, combined 

with a database of value-maximizing simulated sawing patterns, could also yield 

substantial improvements in value recovery, without the added cost of expensive CT 

scanners, or the reduced efficiency associated with simulations tailored to each individual 

log. 

66 



67 

Dead River Long Pond PEF T3R12 T39MD T4R12 

Site 

T5R12 

Figure 2.12. Beanplot of the percent of tree value found in the butt log. Small horizontal lines represent indi 

observations, and large horizontal lines represent site means. Dashed line across entire figure represents gran 



CONCLUSIONS 

In addition to providing silvicultural, ecological, and aesthetic benefits, retaining mature 

eastern white pine trees as reserves through a second rotation appears to be financially 

viable, as long as careful consideration is given to the selection of vigorous trees. While 

pruned trees will generally be financially mature at the time of release, the net benefit of 

pruning will persist, and undiscounted values will increase over the course of the 

following softwood rotation. The retention of eastern white pine as reserves is especially 

advantageous on productive sites, where growth rates will increase values at a 

substantially higher rate than discount rates. Future work in this area should include 

destructive sampling and detailed stem analysis, to assess the true influence of a two-aged 

silvicultural system on the knotty core diameter of eastern white pine trees. This would 

also allow for a more accurate assessment of lumber recovery and valuation of top logs, 

especially below the crown base, as some knot-free lumber would likely be recovered 

from that portion of these trees. 
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