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Abstract

Infections by malicious software, such as Internet worms, spreading on computer net-

works can have devastating consequences, resulting in loss of information, time, and money.

To better understand how these worms spread, and thus how to more effectively limit future

infections, we apply the household model from epidemiology to simulate the prolifera-

tion of adaptive and non-adaptive preference-scanning worms, which take advantage of

biologically-inspired strategies. From scans of the actual distribution of Web servers on the

Internet, we find that vulnerable machines seem to be highly clustered in Internet Protocol

version 4 (IPv4) address space, and our simulations suggest that this organization fosters the

quick and comprehensive proliferation of preference-scanning Internet worms.
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Chapter 1

INTRODUCTION

Malicious software such as viruses and worms spreading through computer networks is

now a routine problem faced by all computer or network users and administrators. Attacks

by such malware can cost billions of dollars per incident and spread around the world in

a matter of hours or even minutes (D. Moore et al., 2002; D. Moore, Paxson, et al., 2003;

Albanese et al., 2004). One formal definition of a computer worm is “an independently

replicating and autonomous infection agent, capable of seeking out new host systems and

infecting them via the network” (Nazario, 2004). Whereas computer viruses depend on users

to proliferate, for instance by unknowingly forwarding an infected email or accidentally

downloading software from a disreputable source, computer worms spread autonomously

through networks, which generally allows them to propagate more quickly and ultimately

cause much more damage.

In the past decade, worms began to use more advanced biologically-inspired strategies

for seeking out potential hosts to invade (Chen & Ji, 2005; Avlonitis et al., 2007). Such

tactics exploit inherent vulnerabilities in the structure of the Internet that enable today’s

worms to spread even more swiftly than their predecessors (Zou et al., 2006). In particular, a

technique known as local preference scanning takes advantage of the tendency for machines

that are nearby on the Internet to be running the same software, and thus share the same
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vulnerabilities; when two machines are enough, such machines are often part of a homo-

geneous network maintained by the same individuals or organization. To quickly infect

these pockets of vulnerable hosts, local preference scanning worms choose new targets

from within the same network as their infected host machine more often than they choose a

machine completely at random. This strategy for propagation typically results in persistent

and widespread infections while entrenching extensive invasion within protected networks

once a single host within a network has been compromised (Nazario, 2004; Pastor-Satorras

& Vespignani, 2004). For example, one version of the Code Red worm infected more than

350,000 computers within 14 hours, for a time infecting more than 2,000 new hosts per

minute (D. Moore & Shannon, 2001). In addition to preference scanning, modern worms

often employ adaptive strategies, changing the way they spread throughout the course of an

epidemic. Changes might occur randomly, or they could be based on the worm’s success, or

lack thereof, in a particular region of the Internet. An adaptive preference-scanning strategy

might switch between a propagation algorithm that targets random IP addresses and one

that targets localized addresses depending on how successful it is in spreading within its

local network.

Although outbreaks of worms that use the aforementioned techniques are highly docu-

mented, little work has been done to elucidate the dynamics of their dispersal, and thus to

identify effective methods for curbing or preventing such attacks and their consequences.

To improve our understanding of how these worms achieve their extensive invasion, we

partition the population of computers on the Internet into a hierarchy reflecting the structure

imposed by the addressing system currently used by virtually all connected machines, then

apply state-based epidemiological models to simulate the dynamics of susceptible, infected,
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and recovered or removed populations. By thus simulating the spread of adaptive and

non-adaptive preference scanning worms and running many instances of simulations that

sample the whole parameter space of the model, we can visualize the effects of changing

various conditions to ultimately gain a better understanding as to how these worms spread.

We know that the spatial clustering of suitable habitat strongly impacts the propaga-

tion of populations for population models on heterogeneously favorable landscapes in

nature (Hiebeler, 2000, 2004). We found the same to be true of preference scanning Internet

worms populating the habitat of vulnerable hosts on the Internet. Internet scan data suggest

that web servers vulnerable to worm attacks are indeed highly clustered in Internet address

space, which likely explains the success of preference scanning worms.

1.1 Background

1.1.1 The Structure and Nomenclature of the Internet

Every computer connected to a network, such as the Internet, has an Internet Protocol

(IP) address. As street addresses identify the location of a home in our three-dimensional

world, IP addresses identify the location of certain machines in IP address space. Every

website corresponds to at least one IP address. In our scans and simulations, we make the

simplifying assumption that the mapping between IP addresses and machines is a bijection.

Two IP addressing systems are currently in use: IP version 4 (IPv4) and IP version 6

(IPv6). We are interested in simulating worms that spread on IP version 4 (IPv4) networks,

as opposed to the newer IPv6 standard, for two main reasons. First, IPv4 is the exclusive

addressing system used by 93% of autonomous systems on the Internet as of July 2011 (RIPE
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NCC, 2011). Additionally, IPv6 addressing will increase the size of the Internet address

space by 296 times to 2128 possible addresses, so the distribution of actual hosts in the address

space, let alone those susceptible to a worm attack, would likely be much too sparse for

preference-scanning to remain a viable worm dispersal strategy. Regardless, it is likely

that IPv4 will remain in widespread use for quite a while, and consequently worm creators

will continue to favor simple and effective scanning methods over the more elaborate and

ambitious techniques that would be necessary to infect machines over IPv6 (Albanese et al.,

2004; Bellovin et al., 2006; Chen & Ji, 2007).

IPv4 addresses are 32 bits long, divided into 4 byte-long segments called octets, since a

byte is composed of 8 bits. In binary, 8 bits, can represent the decimal numbers 0–255, so

an IPv4 address can be written as four such numbers in decimal, separated by dots. This is

known as the dot-decimal notation for IP addresses. For example, 130.111.228.119 is the IP

address currently mapping to umaine.edu. In fact, all IP addresses of the form 130.111.x.y

and 141.114.x.y belong to the University of Maine to address whichever machines they

please. Such blocks of addresses are referred to as subnets, and using Classless Inter-Domain

Routing (CIDR) notation, those subnets would be called /16 subnets, since the addresses in

each of those subnets share the same first 16 bits. More specifically, in CIDR notation the

first subnet would be the 130.111.0.0/16 subnet, and the latter 141.114.0.0/16. The worms

we are interested in try to spread preferentially to /8 and /16 subnets.

1.1.2 Two Preference-Scanning Worms

In Summer 2001, Code Red II, hereafter simply Code Red, was the first worm to

successfully employ a preference scanning strategy for producing target addresses when
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seeking out additional hosts. Although this work focuses on the specific strategy used by

the second generation of the Code Red worm, subsequent destructive infections including

Sasser, Blaster, and others have applied similar approaches to increase the rate and extent of

their infection of the Internet. Code Red’s strategy was as follows (D. Moore et al., 2002):

• With probability 3/8, it would perform short-range dispersal, generating random IP

addresses in the same /16 subnet as that of the infected host;

• With probability 1/2, the worm would perform medium-range dispersal, generating

random IP addresses in the same /8 subnet as that of the infected host;

• With probability 1/8, it would perform long-range dispersal, generating an IP address

consisting of four randomly generated octets, avoiding the 127.0.0.0/8 and 224.0.0.0/8

subnets reserved for loopback and multicast routing, respectively.

The Sasser computer worm, which spread in April and May 2004, utilized a very similar

dispersal strategy with a slightly different probability distribution. In August 2003, the

Blaster worm used a complex dispersal strategy that included a mixture of several movement

patterns. Since that time, worms generally use mixed strategies such as the above.

A second breakthrough in worm propagation was the adaptive preference scanning

algorithm used by a variant of the Zotob worm in August 2005. Zotob began by selecting

target IP addresses from the same /16 subnet as the infected host’s address. The worm would

then change its strategy based on the success of its attacks (Magee, 2007):

• If the first 32 attempts to infect local machines failed, then Zotob would start probing

completely random IP addresses;
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• If at least one of the first 32 local attempts was successful, then the worm would begin

attacking random addresses after 512 local probes.

Zotob received a great deal of media coverage, both because the worm penetrated the

networks of a number of well-known companies including CNN, ABC, General Electric and

UPS, and because of the record turnaround time between Microsoft’s report of a vulnerability

and the dissemination of a worm exploiting that vulnerability (Richtel, 2005). Since Zotob,

that turnaround time has only become smaller while propagation algorithms continue to

improve. Today’s worms are often released on the same day as a software vulnerability

is exposed, making it nearly impossible to patch software before these “zero-day” threats

attack (Bank, 2004). Increasing our understanding of how worms like Code Red and Zotob

spread throughout the vulnerable Internet will shed light on how we can minimize the

damage caused by similar worms to come.

1.1.3 State-based Epidemiological Models

When modeling epidemics, it is useful to compartmentalize the population into a number

of possible states, and try to understand when and how individuals transition between those

states. The two such models that we applied to the spread of worms on the Internet are the

Susceptible–Infected–Recovered (SIR) and Susceptible–Infected–Recovered–Susceptible

(SIRS) models, depicted as state diagrams in Figures 1.1a and 1.1b. In these models,

each individual is in one of three states: Susceptible, Infected, or Recovered/Removed.

Susceptible individuals become infected at a certain rate, and infected individuals either

recover, in the case of the SIRS model, or are removed from the population, as in the SIR

model. In the SIR model, a removed individual can never become infected again whereas a
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recovered individual in the SIRS model can become susceptible and eventually infected all

over again.

With respect to human disease, the difference between SIR and SIRS would be akin

to the difference between an outbreak of chicken pox in a school, where the population is

relatively fixed with few individuals entering and leaving, and Staphylococcus infection in a

hospital, where population turnover is high. In a school, once all the susceptible individuals

have become infected and recovered, there will be no more hosts for the infection to target.

In a hospital, however, a recovered individual will leave the population to be replaced by

another individual who may well be susceptible.

In our model of the Internet, a susceptible host is one that broadcasts itself to be running

software that can be exploited by the Internet worm in question. Removal in the SIR model

corresponds to a system administrator removing the worm and the vulnerability the worm

used to infect the machine, so that recovered hosts may not become reinfected. SIRS

recovery, on the other hand, is only temporary, assuming greater turnover of machines and

software on the Internet; administrators are replacing recovered or removed machines with

those running susceptible software. Because recovered and removed hosts are effectively

immune, we also use this state to represent hosts that do not respond to connection attempts

or whose Internet address may not correspond to a machine at all.

1.1.4 The Household Model

We use the household model in conjunction with the aforementioned state-based models

to represent a hierarchical structure in the population. In the household model, the population

is divided into hierarchical groups, and certain events may occur only between individuals
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susceptible infected removed
φ µ

(a) SIR: Each infected individual attempts to infect others at rate φ, and is
removed at rate µ.

susceptible infected recovered
φ µ

γ

(b) SIRS: In addition to the transitions in the SIR model, each recovered
individual becomes susceptible again at rate γ.

Figure 1.1: State diagrams depicting the SIR and SIRS epidemiological models.

who are in the same group. In our household model, we divide the population into individuals

within a household within a neighborhood within a region, as depicted in Figure 1.2. If

we were modeling the spread of a cold between children in a school, these groups might

correspond to children within families within classes within the school. In the Internet model,

the hierarchical groups consist of individual machines (/32 subnets) within /16 subnets

within /8 subnets within the entire IPv4 address space (the /0 subnet). These partitions arise

naturally from the four-octet format of IP addresses and delineate the different spreading

distances of all known preference scanning worms.

When we integrate the household model with the SIR and SIRS models, the hierarchical

limitations that we enforce are three different distances of infection, as seen in Figure 1.2.

Short-distance infection is between two individuals in the same household, or /16 network,

medium-distance infection is between individuals in the same neighborhood, or /8 subnet,
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region
neighborhood

household
individual

shortmedium

long

/32 subnet

/16

/8 subnet

/0

Figure 1.2: A visual depiction of the hierarchical subdivisions in our household epidemio-
logical model, as well as the three different infection distances.

and long-distance infections occur between individuals in the same region, or /0 network,

the entirety of the Internet. These dispersal distances correspond to those used by Internet

worms such as Code Red and Zotob. As discussed in Section 1.1.2, Code Red would attempt

to infect individuals within the same /16 subnet, short-distance infections, 3/8 of the time,

/8 subnets, medium-distance infections, 1/2 of the time, and the remaining 1/8 of infection

attempts would be long-distance, or anywhere in the Internet. Zotob worms would begin by

only attempting short-distance infections, and switch to long-distance infections depending

on the success of its initial attempts.
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1.2 Related Work

Since the emergence of Internet worms in the late 1980s, many attempts have been

made to characterize their proliferation. Just a few years after Morris, the first computer

worm, infected thousands of university and corporate machines (Eichin & Rochlis, 1989),

IBM sponsored a three year comprehensive study on the dynamics of spread and possible

dangers of these unprecedented Internet infections. Among the earliest to apply models from

biological epidemiology to the spread of Internet worms, Kephart et al. (1993) quickly de-

termined that the simplifying assumption of heterogeneous contact used in many traditional

epidemiological models could not be employed in the case of Internet disease. A significant

factor that determines the dissemination of a worm is the topology of the network on which

it is programmed to spread, which may include peer-to-peer file sharing networks, email

contact lists, or the IP addressing system; just as the spatial distribution of a population

changes the dynamics of an epidemic (Duryea et al., 1999), so too can the topological

distribution of computer hosts on a network have a major impact on the success, or failure,

of an Internet worm epidemic. Random graphs were used to simulate the small software

sharing networks that served as a vector for early worm infections (Kephart & White, 1991,

1993), and the spread of epidemics on small-world social networks has been used to model

the spread of email worms (C. Moore & Newman, 2000; Zou et al., 2004). The topology of

certain social networks as well as the connectivity of the Internet as a whole has recently

been described by many as a scale-free network. Consequently, a great deal of work has

been done regarding the spread of disease, both biological and computer, on scale-free

networks (Zou et al., 2004; Doyle et al., 2005; Albert & Barabási, 2002; Pastor-Satorras
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& Vespignani, 2001, 2004; Newman, 2002; Barthélemy et al., 2005; Hwang et al., 2005;

Balthrop et al., 2004). Others have also looked at hierarchical (Wang et al., 2000; Grabowski

& Kosiński, 2004) and random (Keeling, 2005) network models with clustering, but not in

conjunction with the topology of the IPv4 Internet.

A number of different types of worms have been classified based on the way that

the worm identifies new victims to infect (Staniford et al., 2002; Weaver, 2002), and the

effectiveness of these different strategies assessed (Zou et al., 2006; Vogt, 2004). Random

scanning worms, those that attempt to infect completely random IP addresses, have been

modeled a great deal due to their simplicity (D. Moore, Shannon, et al., 2003; Chen et al.,

2003), while less work has been done to characterize more refined methods of dispersion,

such as the sequential, hitlist, divide-and-conquer or preference scanning techniques. Chen

et al. (2003) assumed homogeneous distribution of susceptible hosts throughout the Internet

in their model of local preference scanning worms, and Avlonitis et al. (2007) developed

a model for such worms on a /16 network made up of smaller networks of varying sizes,

but with no spatial correlation. Existing models from plant epidemiology that incorporate

multiple dispersal distances (Filipe & Maule, 2004; Filipe & Gibson, 1998) are difficult to

apply to preference scanning worms due to the models’ absence of an underlying network

topology. To study the spread of preference scanning worms throughout the IPv4 address

space, we employ a hierarchical household model (Barbour, 1978; Dye & Hasibeder, 1986;

Daley & Gani, 1994; Kotliar & Wiens, 1990; Hiebeler et al., 2011) with clustering of

susceptible individuals as measured from scans of the Internet.
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Chapter 2

METHODS

2.1 Measuring the Internet

We measure the Internet by scanning batches of 5,655,600 IPv4 addresses: 100 addresses

from each routable /16 subnet, with the last two octets chosen uniformly at random. We

exclude certain unroutable subnets from our scans based on the special use IPv4 addresses

defined in RFC 5735 (Cotton & Vegoda, 2010), all of which are listed in Table 2.1. Some

unroutable subnets are /24 subnets, so they make up only a part of a /16 subnet. In this

case, we still generate 100 addresses from that /16 subnet, but exclude addresses that fall

within the /24 subnet. Each scanned address is unique, and we assume that each address

corresponds to a single machine in our model.

When we scan a machine, we simply ask for a file commonly used by search engines to

facilitate Web site indexing. Specifically, we perform an HTTP GET for the file robots.txt

on port 80, the standard HTTP port, and record the contents of the Server response-header

field, if there is one. Addresses are scanned 900 at a time, and we attempt to connect to

one of Google’s IP addresses (74.125.113.99) preceding each batch of 900 to ensure that

our network connection is still active. In order to avoid setting off intrusion or infection

detection software at organizations who might be in charge of an entire /8 or /16 network,
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we take care to scan addresses in an order such that each /8 and /16 network is scanned as

infrequently as possible.

We identify three types of response based on that field: server, empty, and error. A server

response is one in which the Server field contains some non-whitespace text. For example, a

typical response from a Microsoft IIS server might be: Server: Microsoft-IIS/6.0.

We record the text following Server: and preceding a newline character. An empty

response is one that contains a Server field, so we suspect a server is there, but there is no

non-whitespace text following Server: in the response. In this case we record that the

machine responded with an empty Server field. The final possibility is an error response,

which lumps together all attempted connections that do not receive a response within two

minutes. This includes both attempts that receive no response before the two minutes is up,

which we record as a “time out,” and those in which the host refuses the connection.

With this scan data, we can determine whether machines are indeed clustered in IPv4

address space. We define clustering of susceptible machines, QS |S, as the probability that,

given a randomly selected susceptible individual in a neighborhood or a household, another

randomly selected individual in the same neighborhood or household is also susceptible, a

representation of percieved clustering following Hiebeler (2006). We call the probability

regarding individuals in a neighborhood, QSn |Sn , neighborhood-level clustering, and regard-

ing those in a household, QSh |Sh , household-level clustering. We derive the equation for

neighborhood-level clustering by summing over the the probability of selecting the first

susceptible individual from a neighborhood by the probability that a second individual

selected in that neighborhood is also susceptible. The probability that a randomly selected

individual in neighborhood j is susceptible is Sj , where Sj is the proportion of susceptible
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individuals in /8 subnet j, computed as the sum of the proportions Si j of the individuals in

each /16 subnet within the /8 subnet i:

Si =

255∑
j=0

Si j

The probability that the first individual is selected from neighborhood j is:

Sj

255∑
i=0

Si

Multiplying this value by the probability that another individual selected from neighborhood

j is susceptible, Sj , and summing over the values of all the neighborhoods, gives the overall

measurement of neighborhood-level clustering:

QSn |Sn =

255∑
j=0

S2
j

255∑
j=0

Sj

Which is equivalent to dividing the mean of the squares of the proportions of susceptible

individuals in each neighborhood by the mean of the proportions of susceptible individuals

in each neighborhood.

We calculate the household-level clustering similarly, except we must additionally sum

over each household in each neighborhood. To measure clustering at the household level,

we divide the mean of the squares of the proportions of susceptible individuals in each

household by the mean of the proportions of susceptible individuals in each household. Here,
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Si j is the proportion of susceptible individuals in /16 subnet j, which is within /8 subnet i:

QSh |Sh =

255∑
i=0

255∑
j=0

S2
i j

255∑
i=0

255∑
j=0

Si j

We expect to find that the likelihood that two randomly selected hosts in the same /8

subnet or the same /16 subnet are both susceptible is higher than the likelihood that two

hosts selected at random from the entire Internet are both susceptible. If certain types of

Web servers are clustered on the Internet, then the measured values of QS |S for those servers

should be greater than the overall proportion of those types of servers. If QSn |Sn is greater

than the overall proportion, then the Internet exhibits neighborhood-level clustering, and if

QSh |Sh is greater than the overall measured proportion, then we have found household-level

clustering on the Internet. Otherwise, if there is no clustering of Web servers on the Internet,

then the mean of the proportions of susceptible servers would be equal to the measured

values of QS |S.

In taking these measurements, we do not attempt to determine whether hosts are suscepti-

ble to a particular worm, and many worms propagate by exploiting vulnerabilities in software

other than Web servers. Nevertheless, measuring Web servers is an unobtrusive method to

obtain a sample which is likely to be representative of worm susceptibility on the Internet for

a number of reasons. First, administrators running a certain type of Web server software on

their networks are likely to have similar software, and thus similar vulnerabilities, running

on the machines in their network. Second, since their purpose is generally serving Web

pages to the public, probing Web servers for information is not intruding on its owner’s
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privacy without their invitation. Web servers are available via a public IP address, not hidden

within a private network, and thus are available to us as well as the Internet worms we

aim to simulate. Additionally, in response to routine requests, Web servers often identify

their software, version, and additional associated products in the Server response-header

field defined in the HTTP/1.1 standard (Fielding et al., 1999), whereas determining this

information from other machines on the Internet would likely require more intrusive tactics.

Although this information may be easily spoofed, we assume that the number of servers

reporting incorrect or no software and version information is relatively small. Finally, even

if hosts susceptible to a particular worm were randomly distributed among all hosts running

a certain type of software, such machines would still be relatively clustered in the IP address

space because of the clustering of hosts running that certain server software.

We simulate and thus scan the IPv4 system since it was the addressing scheme exploited

by Code Red, Zotob and every Internet worm to date, and is still the exclusive addressing

system used by about 93% of autonomous systems on the Internet as of July 2011 (RIPE

NCC, 2011). Additionally, IPv6 addressing will increase the size of the Internet address

space by 296 times to 2128 possible addresses, so the distribution of actual hosts in the

address space, let alone those susceptible to a worm attack, would likely be much too sparse

for even preferential scanning to remain a viable worm spreading strategy. Regardless, it is

likely that IPv4 will remain in widespread use for quite a while, and consequently worm

creators will continue to favor the simple and effective random scanning method over the

more elaborate and ambitious techniques that would be necessary to infect machines over

IPv6 (Albanese et al., 2004; Bellovin et al., 2006; Chen & Ji, 2007).
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Address Block /16 Subnets Purpose
0.0.0.0/8 256 Broadcast messages to the current network.

10.0.00/8 256 Local communications within a private network.

127.0.0.0/8 256 Loopback addresses to the local host.

169.254.0.0/16 1 Auto-configuration between two hosts when no
IP address is otherwise specified.

172.16.0.0/12 16 Local communications within a private network.

192.0.2.0/24 1/256 Assigned as TEST-NET for use solely in docu-
mentation and example source code.

192.88.99.0/24 1/256 Transmitting IPv6 packets over IPv4 networks.

192.168.0.0/16 1 Local communications within a private network.

198.18.0.0/15 2 Testing inter-network communications between
two separate subnets.

198.51.100.0/24 1/256 Assigned as TEST-NET-2 for use solely in docu-
mentation and example source code.

203.0.113.0/24 1/256 Assigned as TEST-NET-3 for use solely in docu-
mentation and example source code.

224.0.0.0/4 65,536 Reserved for multicast assignments.

240.0.0.0/4 65,536 Reserved for future allocation by the IANA, ex-
cept 255.255.255.255, which is reserved for lo-
cal broadcasting.

Table 2.1: IPv4 addresses reserved for various purposes according to RFC 5735 (Cotton &
Vegoda, 2010), adapted from the table provided by Wikipedia contributors (2012). We do
not scan these addresses.
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2.2 Internet Landscape Generation

An Internet landscape is a lattice, or grid, made up of 256 neighborhoods, each containing

256 households, each of which is comprised of 65,536 individuals. In the initial Internet

landscape, each individual is in one of two states: susceptible or recovered/removed. A

susceptible individual may become infected during the course of the simulation, whereas a

recovered host is not vulnerable to the worm in question and can never be infected.

65,536 256

256

/32 subnets /16 subnets

/8 subnets

Figure 2.1: Cartoon of an Internet landscape.

We have tried two different methods for generating projected Internet landscapes based

on our scan data, one method based on Bayesian statistics, and a more primitive, but slower,

iterative method based on swapping locations of individuals.
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2.2.1 Bayesian Method

In this method, we populate households by drawing from a bionomial probability

distribution with n = 65, 536, the total possible number of susceptible individuals per

houshold, and p, the probability of the occurrence of a susceptible host, estimated from

our scans of the Internet. We employ Bayesian statistics to estimate a different p for each

household based on the number of susceptible individuals that we found in each /16 subnet,

which we define as servers running Microsoft IIS version 6.0. In Bayesian statistics, the

input parameter for a probability distribution, p in our case, is not a fixed value but rather is

drawn from a probability distribution itself, which is called a prior distribution. Combining

the prior distribution with the actual data, in our case the number of susceptible individuals

per household, using Bayes’ theorem gives the posterior distribution. The prior distribution

should be chosen based on previous knowledge of the data set. However, it is important to

base that choice only on concrete knowledge and not on assumptions about the data, because

assuming a certain prior distribution could allow one to obtain expected results instead of

actual results. For this reason, we chose a uniform prior, which assumes no prior knowledge

of the distribution. Because the uniform prior distribution did not provide very accurate

results, we plan to try using a Zipfian distribution as our prior distribution in the future.

Following Bayes’ theorem, we can combine the prior distribution, in our case a uniform

distribution, with the binomial distribution by multiplying them to compute the posterior

distribution. Because the uniform distribution U(0, 1) is a special case of the beta distribution

Beta(a, b) with a = b = 1, when we combine them we get a posterior distribution of

Beta(x + 1, y + 1), where x is the number of susceptible hosts that we found in a given
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/16 network, and y the number of non-susceptible hosts in that subnet as per our Internet

scans. We then use this beta distribution to generate the input parameter p for the binomial

distribution which will give us an estimate of the number of susceptible individuals in each

household based on our scans of the Internet.

2.2.2 Swapping Method

This method works by populating the landscape evenly with the same proportion of

individuals as determined by our Internet scans, then moving those individuals around until

the same level of clustering is achieved at both the neighborhood and household levels. The

method is as follows.

After distributing the projected number of individuals evenly in neighborhoods and then

in households, we begin by clustering individuals at the neighborhood level. To achieve

this, two neighborhoods are selected at random. We compute whether moving an individual

from one neighborhood to the other would increase neighborhood-level clustering, QSn |Sn . If

so, then we move the individual. If not, then we select two new neighborhoods and repeat

the process. Individuals are swapped between neighborhoods until the same quantity of

neighborhood-level clustering as measured in our Internet scans is achieved, within a small

tolerance threshold. Then, we perform the same swapping at the household level, swapping

individuals between randomly selected households until the household-level clustering,

QSh |Sh , is achieved, within the same tolerance.

Although this method is quite slow, the Internet landscapes that we produce using this

method are the best we have been able to achieve, and are the landscapes that we currently

use for running worm simulations. This too will be discussed in more detail in Section
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3.2. We were able to improve the speed of generating these landscapes by weighting the

probability of selecting a neighborhood or household to swap based on the population of

individuals already in that household. This way, neighborhoods and households that have

individuals to swap, and in which swaps will make more of a difference on the level of

clustering, are chosen more often.

2.3 Worm Simulation

We implemented the worm simulation as a continuous-time Poisson process in the C

programming language, using the OpenMPI message passing library to facilitate parallel

processing of many simulations on the University of Maine supercomputing cluster. We

perform many simulations in order to better understand how changing certain parameters of

the simulation, such as the proportions of long- medium- and short-distance dispersal, affect

the success of the worm. Table 2.2 lists the parameters that are input to the simulation.

Parameter Description
φ Rate of infection attempts
µ Rate of recovery/removal
γ Rate of becoming susceptible following recovery
α0 Proportion of Type A long-distance infections
α1 Proportion of Type A medium-distance infections
α2 Proportion of Type A short-distance infections
β0 Proportion of Type B long-distance infections
β1 Proportion of Type B medium-distance infections
β2 Proportion of Type B short-distance infections
I0 Initial number of infected individuals
s Probability that a failed infection attempt causes a type switch

Table 2.2: Possible input parameters for a worm simulation. If s , 0, then the simulation is
adaptive. The epidemiological model to be used, SIR, SIS, or SIRS, is also specified. SIRS
is the only model that uses γ.
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A continuous-time Poisson process models a sequence of events happening in time.

The interval of time between each event is drawn from an exponential distribution with a

mean inverse to the total rate of events, and several different types of events are possible.

Each type of event occurs at a certain rate, and the total rate is the sum of the rates of all

the different types of events. The type of event that occurs at each time step is selected at

random weighted by the rate of that event; events that have a greater rate will thus occur

more frequently.

In our model, we define six possible events that can occur at each time step: long-

distance infection, medium-distance infection, short-distance infection, recovery, becoming

susceptible again following recovery, and an adaptive worm type switch. A long-distance

infection is an infection occurring between any two individuals on the landscape; they

need not be in the same household or neighborhood. This is equivalent to an Internet

worm infecting a host residing at an IP address with all four octets generated randomly

from a uniform distribution, the most common method of target address generation used

by real Internet worms. A medium-distance infection describes an infection between two

individuals within the same neighborhood, which corresponds to a worm infecting a host

whose IP address shares the same first octet, or in other words resides in the same /8 subnet.

Short-distance infections occur between individuals in the same household, simulating

infection between two machines in the same /16 subnet.

In order to simulate adaptive worms such as Zotob, which would switch from one

dispersal distance to another during the course of its infection, we divide the population into

two types of worm, which we call Type A and Type B. The two types differ only in their

dispersal distances. Type A worms are those infecting at the initial distance of infection, and
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Type of event Attempt rate Success rate

Long-distance infection φα0Iα rα0 =
φα0Iα
2564 S

Medium-distance infection φα1Iα rα1 =
φα1

2563

255∑
j=0

Iα j Sj

Short-distance infection φα2Iα rα2 =
φα2

2562

255∑
j=0

255∑
k=0

Iα j k Sj k

Recovery — rr = Iαµ

Susceptible — rs = Rγ

Adaptive type switch — rt =
sφα2

2562

255∑
j=0

255∑
k=0

Iα j k (2562 − Sj k)

Table 2.3: How we calculate the rates of attempts and successes of the six events in the
worm simulation. These computations apply to Type A worms; the Type B calculations
follow from these, replacing α by β, except in the case of an adaptive type switch, which
only applies to Type A worms. Because we only simulate successful events, we use only
the rates of successful events in the simulation. Recovery, becoming susceptible following
recovery, and type switches are always successful, so they have no “attempt rate.”

so all new infections are Type A. In the case of Zotob, Type A worms would perform only

short-distance infections. Type A worms then switch to Type B, which attempt to infect

new hosts at a second and final distribution of distances. For Zotob, Type B worms would

perform only long-distance infections. The two types of worm are not limited to exclusively

short- or long-distance infections, however. In the same way that Code Red’s dispersal

distances followed a simple probability distribution, attempting short-distance infections

3/8 of the time, medium-distance 1/2 of the time, and long-distance 1/8 of the time, a Type

A worm in our simulation could proliferate using those proportions, and then switch to a

Type B that spreads at any other three proportions as long as they sum to 1.

Normally, one would compute the rate of each event by multiplying the given rate
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that corresponds to that event, for example, as listed in Table 2.3, the rate φ of infected

individuals’ attempts to infect others supplied as an input parameter to the simulation, by

the current size of the population that the rate would affect. Returning to the example of

infection, to determine the rate of a Type A infection we would multiply φ by the total

number of Type A infected individuals, Iα, since the overall rate of infection is limited

by the number of infected individuals capable of infecting others. To calculate the rates

of other types of events, we similarly multiply by the number of individuals capable of

performing the event. In our model, we must also integrate the dispersal distance into the

calculation of infection rates. Because each worm has different probabilities of performing

short-, medium- and long-distance infections, we compute separate rates for each infection

distance. For example, to compute a short-distance, Type A infection, we would multiply φ

and Iα by the probability that the infection is short-distance for a Type A worm, or α2. The

final expression for the rate of Type A short-distance dispersals, would be:

Iαφα2

The equations for the rates of all other events for a Type A worm are listed under

“Attempt rate” in Table 2.3. The equations for a Type B worm are equivalent except we

substitute the variable β for α, replacing the parameters associated with Type A with those

for Type B worms.

In our simulation of the Internet, however, that straightforward computation is not quite

sufficient. Because our total population is so large, 2564 or about 4.3 billion individuals,

and the proportion susceptible so small, around about 0.07%, simulating unsuccessful
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infections would decrease the speed of each simulation by orders of magnitude. Instead, we

compute the rates of successful infections and use those in the simulation, so that we only

simulate successful infection attempts. To do this, we incorporate the number of susceptible

individuals, S, into the rate of infection. At different distances of infection, we incorporate

the sum of the product of infected and susceptible individuals at that distance. For example,

to determine the rate of successful Type A short-distance infections, rα0, we would sum over

the product of the number of infected and susceptible individuals in each neighborhood,

giving the equation:

rα0 = φα2

255∑
j=0

255∑
k=0

Iα j k Sj k

The equations for the rates of all other successful events are listed in Table 2.3, under

“Success rate.” Though this method is slightly more computationally intensive at each event

in the simulation, the immense decrease in the number of events required to complete the

simulation more than makes up for that slight increase in operations. Recovery, becoming

susceptible following recovery, and type switches are always successful, so there is no need

to perform special calculations to avoid unsuccessful events of those types.

Although type switches are always successful, we must still incorporate the number of

susceptible individuals in those calculations as well since the rate of switches from Type

A to Type B is based on the rate of failed infections. In fact, the rate of type switches is

equivalent to the rate of failed infections, except we incorporate an additional probability,

s, which is the probability that a failed infection will result in a type switch. For example,

because Zotob would switch from Type A to Type B after 32 failed infections, or after 512
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infection attempts if at least one was successful, we simulate Zotob by choosing s such

that s is greater than 1/512 and less than 1/32. We calculate the rate of failed infections

similarly to the rate of successful short-distance infections, except instead of multiplying

the number of Type A infected individuals in each household by the number of susceptible

individuals in each household, we multiply by the quantity of non-susceptible individuals in

each household, or 2562 − S. The resulting equation for the rate of type switches, rt , is as

follows:

rt =
sφα2

2562

255∑
j=0

255∑
k=0

Iα j k (2562 − Sj k)

The simulated worm infection begins in a neighborhood and household selected at ran-

dom, with neighborhoods and households weighted by the number of susceptible individuals

therein. This is the same procedure by which we select neighborhoods and households

for infection throughout the simulation. Infections are the only type of event that occurs

until the worm achieves an initial population of infected individuals, I0, an input parameter

of the simulation. We believe that the initiator of a real worm infection would similarly

ensure that his or her pestilence took hold of a certain number of machines before leaving

it to spread unattended, perhaps by uploading the worm to a few machines known to be

susceptible, or releasing the worm into the wild via many machines at once. Once the level

of infection reaches that initial threshold I0, events occur based on their rates, which are

calculated anew from the populations of susceptible, infected, and recovered or removed

individuals following each event. The simulation ends when there are no more infected

individuals, which is always the case in simulations based on the SIR model, or when the

26



number of infected individuals is relatively constant.

We assess the success of simulated worms using three measures: initial growth rate,

peak, and final proportion of susceptible individuals who become infected. Measurement

of the latter two values is straightforward; during the course of the simulation, we record

the peak and final proportions of infected individuals. Computing the initial growth rate,

however, is slightly more difficult.

We define the initial growth rate as the slope of the initial, exponential growth of the

population of infected machines plotted over time. We do not include the initial, slow, often

unstable increase in the infection level that sometimes occurs before the infection starts to

spread rapidly in our measurement, unless the infection dies out without achieving a great

spike in infection levels. Instead, we try to isolate the first great spike in infection. The

difficulty thus arises in determining where to begin and end our measurement of the initial

growth rate. Once we have those bounds, taking the logarithm of the data and performing a

linear regression to approximate the rate of growth is straightforward. To find the beginning

of the rapid initial growth period, we compare the slope of the log-transformed last ten data

points to a very large threshold slope that we believe corresponds to very rapid growth. If

the slope is greater than the threshold, then we continue keeping track of the simulation

time and infection level, and start checking whether the slope has decreased. As soon as

the current computed slope is less than the last slope that was calculated, we stop recording

initial growth rate data. We do not compute the slope at every event, but rather every few

events, so very small fluctuations in the number of infected individuals will not prematurely

halt our recording of initial growth rate data. At the end of the simulation, we perform a

final linear regression on the initial growth rate data and record that result along with the
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peak and final infection levels.
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Chapter 3

RESULTS

3.1 Clustering of Servers on the Internet

So far, we have scanned 45,244,800 IP addresses, slightly more than 1% of the Internet.

Because the addresses we have scanned are randomly sampled from throughout IPv4 address

space, we believe that our data so far provide a representative sample of the distribution of

Web servers on the Internet. Our data suggest not only that Web servers are highly clustered

in IP address space at both the neighborhood- and household-levels, but that servers running

certain software, such as Microsoft’s Internet Information Services (IIS) Web server, and

certain versions of software, such as IIS version 6.0, are also clustered. Table 3.1 lists the

clustering that we measured at the neighborhood and household levels of all Web servers, IIS

servers of any version, and servers running IIS versions 6.0 and 7.5, the most common and

newest stable versions of IIS, respectively. As listed in Table 3.1, the clustering parameter, or

Measurement All Servers All IIS IIS 6.0 IIS 7.5
Household-level (/16) clustering 0.179112 0.052788 0.049187 0.036062
Neighborhood-level (/8) clustering 0.019823 0.003706 0.002399 0.000844
Proportion of total sample 0.006596 0.001067 0.000631 0.000214

Table 3.1

probability that a randomly selected machine running a certain type of software in a /8 or /16

subnet would be running the same type of software as another randomly selected individual,

29



was higher than the proportion of that type of software throughout the total sample in every

case. Additionally, we observed clustering in every case at both the neighborhood and

household levels, though the household-level clustering was always greater than that at the

neighborhood-level. In fact, these trends were true for all detected versions of IIS, though

we include only the most popular versions in Table 3.1.

We can also depict the computed clustering levels listed in Table 3.1 in a more intuitive

map of the Internet. The clustering of Web servers of all software types and versions is

depicted in Figure 3.3. We use a Hilbert curve, a space-filling fractal curve illustrated in

Figure 3.1, to map the first and second octets of IP addresses to a grid while maintaining

spatial correlations.

n = 1 n = 2 n = 3 n = 4 n = 5

Figure 3.1: Hilbert curves of orders 1–5. In our depiction of the Internet, we draw each /8
subnet as an order 4 Hilbert curve composed of its /16 subnets, and the entire Internet as a
Hilbert curve of order 4 composed of those /8 subnets.

By using a Hilbert curve to map IP addresses, /16 subnets with consecutive second

octets, such as the /16 subnets 130.110.0.0/16, 130.111.0.0/16, and 130.112.0.0/16, will

appear next to each other in a single blob. Similarly, /8 subnets with consecutive octets,

such as 129.0.0.0/8, 130.0.0.0/8, and 131.0.0.0/8, will also remain grouped on the map, as

depicted in Figure 3.2.

On the Internet map, each small dot on the grid represents a /16 network, and each larger

square, such as those seen in gray, is a /8 subnet. We map IP addresses to a space-filling
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0 1 14 15 16 19 20 21

3 2 13 12 17 18 23 22

4 7 8 11 30 29 24 25

5 6 9 10 31 28 27 26

58 57 54 53 32 35 36 37

59 56 55 52 33 34 39 38

60 61 50 51 46 45 40 41

63 62 49 48 47 44 43 42

n = 3

Figure 3.2: The labels on this order 3 Hilbert curve correspond to the Hilbert distances at
each point on the curve, or the distance from the beginning. We visualize the Internet by
interpreting the first and second octets of the scanned /16 subnets as Hilbert distances.

Hilbert curve to preserve spatial correlations. Colors represent the percent of scanned

addresses that we identified to be servers, which we plot on a logarithmic scale due to the

extreme differences between proportions of servers in different households; the hotter the

color, the more servers, with the darkest red meaning that 99% of the addresses that we have

scanned so far in that household are servers. The gray areas correspond to addresses that

we do not scan because they are reserved for various reasons, as listed in Table 2.1. Single

red or orange dots represent single /16 subnets that are dense with Web servers compared

to their neighbors, or household-level clustering. Larger blobs of hotter colors represent

clusters of /16 subnets, most often within /8 subnets, containing many servers. These blobs,

because they are often smaller than an entire /16 subnet, represent some level of clustering
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Figure 3.3: Our current map of Web servers of all software types and versions from our
scans of the Internet. Refer to text for details.

between the household and neighborhood levels. Clustering at the neighborhood level is

certainly present, but less stark than clustering at the sub-neighborhood and household

levels; there are no entire neighborhoods containing very high density households, though

many neighborhoods are filled with low-density households, where we have detected that

about 5% of IP addresses correspond to servers. At the smaller spatial scales, clustering of
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households containing 20–99% Web servers is more common.
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Figure 3.4: Our current map of Microsoft’s Internet: Clustered IIS servers.

IIS servers show clustering similar to the overall patterns of Web servers, although there

are less of them; the most populous household contains only 71% IIS servers. Still, as listed

in Table 3.1, we see clustering at both the neighborhood and household levels, but much

more at the household level than in neighborhoods.

33



3.2 Simulating the Structure of the Internet

As described in Section 2.2, we experimented with two different methods of generating

Internet landscapes: One method based on Bayesian statistics, and an iterative method based

on swapping individuals between neighborhoods and households. The iterative method

was the first method that we tried, but that process is slow and does not produce extremely

accurate simulated distributions of servers on the Internet. Although the Bayesian method is,

as we expected, much faster, the landscapes that it produces are too dissimilar to the actual

Internet for us to use them as the basis for our simulations.

Consider the following two landscapes, one measured from our scans of the Internet,

and one generated using the iterative method.

Figure 3.5 depicts an Internet landscape generated using the iterative method, whereas

Figure 3.6 illustrates the actual distribution of IIS version 6.0 servers that we have measured.

The two exhibit the same measured clustering at both the neighborhood and the household

levels within 0.00001. At first glance, the two landscapes seem reasonably similar. However,

note that the peak percentage of servers occupying a household in the generated landscape

is 28 whereas that of the actual landscape is 71%. We have not been able to find a superior

method of generating Internet landscapes to this one.

The iteratively generated landscape of Figure 3.5 is much more accurate than a landscape

generated using the Bayesian method, as illustrated in Figure 3.7. The nice property of

this landscape is that it properly encapsulates an additional level of spatial distribution as

measured from the Internet, since the susceptible population of each household is generated

based on the measured population of susceptible individuals from that household. This
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Figure 3.5: An Internet landscape generated using the iterative method, based on our
detection of IIS version 6.0 servers. This is the type of landscape on which we perform
simulations.

method also generates landscapes very quickly, limited only by the efficiency of our beta

and binomial random number generators. Clearly, however, this method has a serious

problem, which is based on our incorrect assumption of a uniform prior distribution. For

that reason, the more populated a neighborhood as determined by our Internet scans, the

more uniform the distribution of susceptible hosts in that neighborhood, which simply does
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Figure 3.6: An Internet landscape depicting all the servers we detected running IIS version
6.0

not model the distribution of hosts on the Internet. We suspect that replacing the uniform

prior distribution with something more similar to the power-law distribution of hosts that we

see from our scans, such as a Zipfian distribution, would significantly improve the accuracy

of the Bayesian generated landscapes. Until we make those changes, we will continue to

use the iterative swapping method for generating Internet landscapes.
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Figure 3.7: An Internet landscape generated using the Bayesian method.

3.3 Worm Proliferation

Our simulations of both adaptive and non-adaptive worms suggest that local preference-

scanning is an effective strategy, but that mixing other levels of dispersal is important for the

robustness of the worm. Figure 3.8 depicts the success, measured in terms of initial growth

rate and peak proportion of susceptible individuals infected, of 1040 worms simulated using
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the SIRS model. Each dot on the plot represents a single worm simulation. Except for Code

Red and Zotob, whose data points are marked in black and gray, respectively, each worm’s

probabilities of short-, medium-, and long-distance infections were generated at random.

We color each data point to represent the distribution of short-, medium-, and long-distance

dispersals; the more short-distance infections that a worm performs, the more red its dot, the

more medium-distance dispersal, the more green, and the more long-distance dispersal, the

more blue.
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Figure 3.8: Results from 1040 SIRS simulations, plotted as peak proportion of susceptible
individuals infected versus initial growth rate (IGR), plus 20 simulations of Code Red (black)
and 20 simulations of Zotob with s = 1/32 (gray). See text for more explanation.

Our simulations strongly suggest that more short-distance dispersal can lead to both

faster proliferation, as measured by the initial growth rate, and more extensive proliferation,

as measured by the peak proportion of individuals infected, than worms that use more
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long- or medium-distance dispersal. The trade-off, however, seems to be the robustness of

the worm. Although worms performing almost all short-distance infections can be very

successful if they happen to enter a highly susceptible pocket of the Internet, they must find

that pocket in order to succeed, and that can take longer when the worm performs less long-

and medium- distance dispersal that infects other areas of the Internet. This explains the huge

variation in initial growth rates of worms performing mostly short-distance dispersal. Even

worms that end up infecting a large proportion of susceptible hosts may take a long time to

find enough highly susceptible areas to quickly infect, and some near-100% short-distance

worms fail to find such a pocket completely, perhaps beginning in a highly unsusceptible

area and dying out quickly.

Indeed, looking at the proportion of long- or medium-distance infection used with

short-distance infection versus the resulting initial growth rate, as depicted in Figure 3.9,

short-distance dispersal has the greatest impact on initial growth rate, but the most successful

worms use a combination of short-, medium-, and long-distance infections. Although short-

distance infections seem to be important for achieving a fast initial growth rate, the worms

with the highest initial growth rates spread using a combination of short-, long- and medium-

distance probes. Moreover, worms using the highest proportions of short-distance dispersal

often perform no better than those performing only medium- or long-distance infections,

as seen in the bright red points interspersed with bright blue points on the plot of medium-

distance dispersal, and with the bright green dots in the plot of long-distance dispersal in

Figure 3.9.

We expected medium-distance dispersal to play a more significant role in successful

worm infestations, but it does not seem to provide much of an advantage over long-distance
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Figure 3.9: Long- and medium-distance dispersal of 1024 worms simulated using the SIRS
model versus the resulting initial growth rates.

infections. Worms performing mostly medium- or long-distance infections seem to spread

nearly equally well, but those performing mostly short-distance dispersal with medium-

distance mixed in do seem to perform a bit better than those with long-distance mixed with

the short, as is suggested by the high initial growth rates persisting further along the x-axis

when looking at medium-distance dispersal as opposed to long-distance. The unexpectedly

small impact of medium-distance dispersal could be explained by the smaller level of

clustering that we measured, and thus simulated, at the neighborhood level compared to the

household level; the two measurements persistently differ by about an order of magnitude.

We found similar trends to be true regarding the peak proportion of individuals infected

in SIRS simulations. Figure 3.10 shows the amount of medium- and long-distance dispersal

compared to the peak level of infection achieved by the worms in our simulations. As in the

case of initial growth rate, short-distance dispersal is important for achieving a high peak
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level of infection. Unlike initial growth rate, however, the worms that infected the greatest

amount of susceptible hosts on the landscape were those employing the most short-distance

dispersal. So, infecting as many susceptible hosts as possible relies less on a combination of

short-medium- and long-distance dispersal, and more on short-distance dispersal quickly

infecting as many hosts as possible in susceptible patches of the Internet.
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Figure 3.10: Long- and medium-distance dispersal of 1024 worms simulated using the SIRS
model versus the resulting final proportion of infected individuals.

Regarding the success of Zotob versus Code Red in the SIRS model, although Zotob

achieved a similar range of initial growth rates as Code Red, its peak level of infection

was consistently lower than that of Code Red. This likely follows from the above analysis.

In the Zotob simulations pictured in Figure 3.8, the probability that a given infection will

cause a type switch, or s, was 1/32. Because Zotob would switch from short- to long-

distance dispersal after 32 short-distance attempts if all of those attempts failed, and after

512 attempts if at least one was successful, s = 1/32 is a worst-case estimate, essentially
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assuming that all short-distance infection attempts are failures, which is most often not the

case. When s = 1/32, Zotob’s adaptive mixing of short- and long-distance dispersal allows

it to achieve initial growth rates akin to those of Code Red, but because Zotob infections

quickly switch from all-short-distance to all-long-distance dispersal distances, the majority

of Zotob infections are long-distance, not short-distance, and so Zotob does not succeed in

infecting as many individuals as Code Red. This distribution of long- and short-distance

dispersing Zotob worms is depicted in Figure 3.11, a plot of the course of a Zotob infection

over time. In SIRS Zotob infections with s = 1/32, short-distance dispersal only dominates
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Figure 3.11: Plot of a Zotob infection versus time with s = 1/32. The thick line is the sum
of the Type A and Type B infections, and is colored according to the proportions of Type A
(red, short-distance) and Type B (blue, long-distance) worms making up the total infection.
Results averaged over 10 Zotob simulations.
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in the very beginning of the epidemic, long-distance dispersal worms soon taking over, with

about twice as many long-distance spreading worms as short-distance at the final, stable

state of the worm infection.

If we simulate Zotob with s = 1/512, a best-case scenario in which every series of

short-distance infections results in at least one success, the results change drastically. As

pictured in Figure 3.12, with s = 1/512, significantly more worms perform short-distance

dispersal throughout the course of the simulation, which makes sense since the worms are

16 times less likely to switch from short-distance Type A to long-distance Type B. The
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Figure 3.12: Plot of a Zotob infection versus time with s = 1/512. The thick line is the sum
of the Type A and Type B infections, and is colored according to the proportions of Type A
(red, short-distance) and Type B (blue, long-distance) worms making up the total infection.
Results averaged over 10 Zotob simulations.
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result of so much more short distance dispersal, still combined with a small amount of

long-distance dispersal, is a worm that exceeds Code Red’s peak infection level at the cost

of initial growth rate. Figure 3.13 depicts the proliferation of a Code Red worm compared

to a Zotob infection with s = 1/32 and another with s = 1/512. Although the Zotob
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Figure 3.13: Plot of Code Red and two types of Zotob infections versus time. Results
averaged over 10 simulations.

infection with more short-distance dispersal suffers from the slowest initial growth rate,

it boasts the greatest overall peak infection level, beating Code Red. The two simulated

extremes of a Zotob infection demonstrate the flexibility of adaptive preference-scanning

worms. Although our model sets s at a fixed value throughout the simulation, in a real

Zotob infection, each instance of the worm would adapt to its level of success, employing
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long-distance dispersal to spread to more areas if it is not successful in its current subnet, or

using more short-distance dispersal if its subnet is highly susceptible. An actual adaptive

worm epidemic would thus likely achieve a near-ideal balance of growth rate and depth,

since each worm modifies its strategy to best suit its area of the Internet.

Also of note are the sequential spikes visible in the initial growth period of the Type A

Zotob worms, seen most distinctly in Figure 3.11. These spikes in the population of short-

distance worms most likely correspond to long-distance dispersal into highly susceptible

pockets of hosts on the Internet, and the resulting bursts of short-distance infections radiating

through those areas. This finding strengthens our conclusion that the success of local

preference-scanning worms depends on the clustering of susceptible hosts on the Internet.

Short-distance dispersal also correlated with success in our simulations using the SIR

epidemiological model. Figure 3.14 depicts the results of 1040 SIR simulations using the

same visualization scheme as described for Figure 3.8. The relative success of worms using

different amounts of short-, medium- and long-distance dispersal in SIR epidemics is very

similar to that of worm epidemics modeled using the SIRS model. The main difference

between the two is that the success of worms modeled using SIR seems more erratic; Code

Red and Zotob’s successes, for example, plotted in black and gray respectively in Figure 3.14,

varied much more than in the SIRS simulations in terms of both peak proportion of infected

individuals and the initial growth rate. This makes sense based on the differences between

the two models. In SIR, recovered individuals cannot become susceptible again. As a result,

when a worm spreads within a highly susceptible pocket of the Internet, the infections

within that pocket will eventually die out once all the susceptible individuals have become

infected. The worm will not be able to remain viable in that area, but must spread to a
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different susceptible area in order to stay alive, continue increasing the proportion of infected

individuals, and spread at a fast rate. Thus the success of a worm in the SIR model is much

more dependent on the random number generator determining which neighborhoods and

households to which the worm will spread. In SIRS simulations, on the other hand, because

recovered individuals can become infected again, worms essentially have a continuous

supply of susceptible hosts to infect, which gives them more time to linger in a susceptible

area, and thus more chances to happen upon another highly susceptible area. The result is

that worms in the SIRS model are more likely to find the available susceptible pockets in the

internet to infiltrate, to do so before dying out, and ultimately to enjoy a more stable success

in their infection of the Internet.
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Figure 3.14: Results from 1000 SIR simulations, plotted as peak proportion of susceptible
hosts infected versus initial growth rate (IGR), plus 20 simulations each of Code Red (black)
and Zotob with s = 1/32 (gray).
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Another notable difference between the SIR and SIRS simulations is the success of

Zotob with s = 1/32 compared to Code Red. Whereas Code Red prevailed in terms of

peak infection in the SIRS simulations, Zotob took the lead in SIR. In behavior exactly the

opposite of SIRS, SIR simulations of Zotob with s = 1/512 performed poorly compared to

Code Red using the SIR model. Figure 3.15 depicts the course of an SIR simulation of a

Zotob worm with s = 1/512 using the same coloring scheme as in the SIRS figures. We
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Figure 3.15: Plot of a Zotob infection versus time with s = 1/512. The thick line is the sum
of the Type A and Type B infections, and is colored according to the proportions of Type A
(red, short-distance) and Type B (blue, long-distance) worms making up the total infection.
Results averaged over 10 Zotob simulations.

expect that this is due to the same reasons as the more erratic overall success discussed

above. Although Zotob infections with s = 1/512 did very well in the more forgiving SIRS
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model, where there is more time in worm-friendly households to find a new susceptible area

to infect, s = 1/512 results in far too much short-distance dispersal to succeed in the SIR

model. The sharp spikes in the population of infected individuals throughout the simulation

likely represent the proliferation, and subsequent recovery, of the worm within susceptible

pockets of the Internet. Unlike SIRS, in which recovered worms can become susceptible

again, worms have a much harder time maintaining a stable population in the SIR model, as

is certainly true of Zotob with s = 1/512 depicted in Figure 3.15. Unless the worms chance
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Figure 3.16: Plot of a Zotob infection versus time with s = 1/32. The thick line is the sum
of the Type A and Type B infections, and is colored according to the proportions of Type A
(red, short-distance) and Type B (blue, long-distance) worms making up the total infection.
Results averaged over 10 Zotob simulations.
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upon highly susceptible households, in which case those employing mainly short-distance

dispersal perform exceptionally well, worms using too much short-distance dispersal, such

as the Zotob worms with s = 1/512, will have a great deal of difficulty infecting new hosts

before the infectious individuals recover permanently.

Zotob worms with s = 1/32, on the other hand, perform well when simulated using the

SIR model for just the opposite reason. The course of such a simulation is provided in Figure

3.16. By employing more long-distance dispersal, these worms have more opportunities to

find new areas of susceptibility before they have exhausted all the once-susceptible hosts in

their current household. Zotob worms with s = 1/32 can spread to many machines via the

0 10 20 30 40 50
Time

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

p
o
rt

io
n
 I
n
fe

ct
e
d

Zotob and Code Red: Proportion Infected vs. Time (SIR)

Code Red
Zotob (s = 1/32)
Zotob (s = 1/512)

Figure 3.17: Plot of Code Red and two types of Zotob infections versus time. Results
averaged over 10 simulations.
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proliferation of some short-distance dispersal while benefiting from the stability of many

long-distance infections seeking out new susceptible areas of the Internet. Indeed, likely

because of this stability, Zotob with s = 1/32 performs even better than Code Red when

simulated using the SIR model, as depicted in Figure 3.17. Zotob with s = 1/32 spreads

not only more quickly but also to more machines at its peak than Code Red or Zotob with

s = 1/512. Long-distance dispersal thus appears to be an important trait for worms spreading

in situations where recovery means permanent removal from the population of susceptible

individuals. Code Red likely suffers from a less extreme version of the spiky behavior

of Zotob with s = 1/512, successfully infecting new areas, but dying out before another

vulnerable pocket of the Internet can be found due to a lack of long-distance dispersal.

Significant medium-distance dispersal likely contributes to Code Red’s success compared to

Zotob with s = 1/512.
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Chapter 4

CONCLUSION

We have found that preference-scanning worms exploit the emergent structure of the IPv4

Internet, spatial clustering of similar software and versions, and thus similar vulnerabilities.

Due to this clustering of vulnerable hosts, short-distance infection attempts should be much

more likely to find new hosts to invade. Nevertheless, if short-distance movement were

the sole strategy, only a small portion of the Internet would become infected, namely those

subnets containing the initial distribution of the worm. Some proportion of infection attempts

must take place between more distant machines in order to colonize new regions of Internet

address space, along with local dispersal to rapidly infect those newly colonized regions.

Additionally, fast dispersal, as measured by the initial growth rate of an infection, and

the extent of a worm’s infiltration, as measured by the peak proportion of susceptible hosts

infected, are based on different distributions of dispersal distances. Successful dispersal

speed depends strongly on a mixture of short- and medium- or long-distance infections,

where medium-distance infections seem to give the worms an extra edge; worms employing

a very high proportion of short-distance dispersal actually tend to spread more slowly.

The extent of an infection, however, does seem correlate directly with the amount of short-

distance infections that the worm performs, with more short-distance dispersal corresponding

to a higher peak level of infection. Knowledge of these characteristics might be helpful in
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analyzing the intent of worms in the wild. Zotob, for example, whose initial infections were

100% short-distance, might have been written with the goal of extremely fast proliferation,

whereas the creators of Code Red, which utilized short-, medium- and long-distance dispersal

throughout its lifetime, might have prioritized the infection of many hosts over a long period

of time.

Our analysis of the differences between the SIR epidemiological model, in which

recovered hosts can never become infected again, and the SIRS model, in which recovered

hosts may become susceptible and thus infected any number of times, demonstrates the

importance of computer literacy when it comes to recovering from a worm infection.

Our simulated worms were markedly more successful when we used the SIRS model,

which corresponds to infected users removing a worm but not updating their software, than

SIR, in which users both remove the infection and update the affected software to prevent

subsequent infections by the same worm. To help dampen the spread of worms, Internet

users should be aware of the important difference between cleansing their machine of the

worm, perhaps by using a malware removal tool, and updating the susceptible software on

their machine.

Internet worms are a serious plague to all users of the Internet, but they can and should be

stopped. Although most Internet worms’ proliferation strategies are not extremely complex,

insufficient work has been done to characterize the dynamics of their epidemics. Fortunately,

we have begun to elucidate the inner workings of preference-scanning worms, which is the

first step towards designing systems that can better prevent future invasions.
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