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Abstract 

The immune system protects us against disease through a variety of mechanisms 

that result in pathogen elimination. Host innate immune cells can control infections by 

activating NADPH oxidase, which generates reactive oxygen species (ROS) to kill 

pathogens directly. A defective NADPH oxidase leads to chronic granulomatous disease 

(CGD), which causes recurrent infections within the host. Autophagy, a cellular recycling 

pathway, can also target pathogens for destruction and may be a pathway that is 

compromised within a CGD patient. Recent work suggests that autophagy can be 

activated by ROS in vitro. By utilizing transparent zebrafish, we are able to characterize 

the role of ROS and autophagy in innate immunity during fungal infection with Candida 

albicans. We administered DPI, α-tocopherol, and PMA to infected zebrafish to alter the 

levels of ROS then quantified the effects on autophagy using confocal microscopy. Our 

data suggests differences in autophagy activation in vivo. Additionally, we were able to 

enhance our understanding of loose phagosomes and provide a possible physiological 

difference between tight and loose phagosome morphologies. Further research is required 

in order to confirm new hypotheses regarding interactions between ROS and cell receptor 

signaling pathways that might activate autophagy and reasons for the distinct dichotomy 

of phagosomes observed within a live vertebrate host.  
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Introduction 

The immune system provides protection from pathogens 

 The immune system is the body’s line of defense that helps protect from and 

eliminate any pathogens through a variety of cellular and molecular mechanisms. There 

are two main branches of the immune system: innate immunity and adaptive immunity. 

Innate immunity is constantly active and protects against pathogens by physical barriers 

and cellular defenses. Phagocytic immune cells recognize microbes through pathogen-

associated molecular patterns (PAMPs), which are antigens common to many pathogens 

(Janeway and Medzhitov, 2002). Adaptive immunity utilizes chemicals and immune cells 

that create a very specific response to and memory of pathogens (Kindt et al., 2007). 

Though both branches work together to remove microbial threats from the body, innate 

immunity plays a decisive role in many infections, such as candidiasis. 

 The innate immune system protects the body in a number of ways from 

pathogens. Physical barriers of the body are the first line of protection. These barriers 

include epithelial and mucosal membranes of the body (Janeway and Medzhitov, 2002). 

These physically block pathogens from entering the body and also secrete mucus and 

enzymes, such as lysozyme, that can neutralize the pathogen. Though the physical 

barriers prevent many pathogens from entering the body, disruptions in mucous 

membranes or skin provide pathogens with access routes. When entry occurs, cellular 

mechanisms of innate immunity take over.  

 A pathogen is quickly detected by cellular recognition and chemical signals 

released from local tissues. Chemokines and cytokines are major signaling molecules 

within the immune system. These are released during physical damage or infection and 
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recruit immune cells to the location of the attack (Kindt et al., 2007). The cells that are 

first to respond to the scene of infection are phagocytes.  

There are three main types of phagocytes within the innate immune system: 

dendritic cells, neutrophils, and macrophages. Dendritic cells are embedded in the 

epithelial layers of the skin and are the first to respond to a pathogen because of their 

proximal location to most infections. Neutrophils and macrophages, also, are extremely 

important within the innate immune system. These white blood cells (WBCs) are able to 

detect pathogens by common PAMPs through a variety of Toll-like receptors (TLR) on 

their surfaces and engulf the intruder through phagocytosis (Akira et al., 2006). Once 

engulfed, pathogens are killed and degraded by different mechanisms in the phagocyte. 

One major killing pathway is fusion of the phagosome with lysosomes, which contain 

enzymes to break down the intruder. Another route of pathogen degradation utilizes 

reactive oxygen species (ROS) that are produced by a specialized enzyme called NADPH 

oxidase during an infection. Figure 1 shows the production of superoxide anion by 

NADPH oxidase. Subsequent reactions of superoxide anion with other enzymes in the 

phagocyte produce additional ROS. Also known as free radicals, ROS have the 

characteristic of having one or more unpaired electrons (Valko et al., 2007), which allows 

them to be extremely reactive with other substances in the cell; they can cause major 

damage to the pathogen as well as host cells. This method of pathogen elimination is 

known as respiratory burst, which phagocytes use to kill pathogens directly because of 

ROS toxicity. However, ROS may also have indirect roles of pathogen elimination that 

are in preliminary stages of exploration.  
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NADPH oxidase is important in innate immunity 

NADPH oxidase, also known as phagocyte oxidase (PHOX), plays an essential 

role in innate immunity and pathogen elimination. It is responsible for producing 

superoxide anion (O2
-
), which can react with a number of other oxidants creating ROS 

(Fig. 1, (Babior, 2004)). NADPH oxidase activation also causes changes to the redox 

potential (Rybicka et al, 2010) and pH within the phagosome (Jankowski et al., 2002), 

while also possibly activating proteases within the phagosome (Assari, 2006). Together 

these changes can help kill phagocytosed pathogens.  

NADPH oxidase consists of multiple subunits that are separated into a membrane 

bound complex and a cytosolic complex. The membrane bound complex contains 

gp91
phox

 and p22
phox

 subunits, while the cytosolic complex contains p47
phox

, p40
phox

, and 

p67
phox

 subunits (Assari, 2006; Babior, 1999). Phagocytosis of a pathogen causes 

phosphorylation of the cytosolic subunit p47
phox

, facilitating translocation of the cytosolic 

complex to the membrane (Groemping et al, 2003; Clark et al., 1990). Interactions 

between the complexes at the membrane complete the activation cascade and NADPH 

oxidase becomes an active enzyme (DeLeo and Quinn, 1996; Babior, 1999), as shown in 

Figure 2 (Assari, 2006). Once active, the enzyme is able to use molecular oxygen to 

produce superoxide anion. NADPH oxidase activity can also be artificially activated by 

stimulation of protein kinase C (PKC), which phosphorylates p47
phox

 (Fontayne et al., 

2002). How phagocytosis is coupled with phosphorylation of p47
phox

 to activate NADPH 

oxidase is still unknown; however, it may be the result of interactions with antibodies 

through Fcγ receptors (FcγR) or recognition of a pathogen by TLR signaling (Segal, 

1996).  



 4 

Defects within NADPH oxidase complex may arise from genetic abnormalities 

causing loss of function within the protein. The major subunits of NADPH oxidase that 

make up most of the genetic defects are gp91
phox

 and p47
phox

 (Dinauer, 2005). Because of 

these genetic defects, phagocytes cannot produce a sufficient amount of ROS to attack 

and destroy the pathogen. These mutations result in chronic granulomatous disease 

(CGD), which cause patients to be susceptible to more serious and recurrent infections 

(Babior, 1999; Heyworth et al., 2003). Understanding molecular mechanisms of how 

reduced amounts of ROS cause CGD patients to be more susceptible to disease will 

enhance treatment options and help recognize alternative ways in which the innate 

immune system fights infection. While ROS are understood to be important in killing 

pathogens directly, it is possible there are other important pathways that utilize ROS and 

ultimately require a functional NADPH oxidase, specifically autophagy activation.  

 

Links between the innate immune system and autophagy 

Autophagy is a general recycling pathway within all cells that has been shown to 

play an important role in controlling and eliminating intracellular pathogens (Levine and 

Deretic, 2007). Autophagy is usually initiated during periods of starvation, but has 

recently been shown to be active during an infection. There are different types of 

autophagy including microautophagy, chaperone-mediated autophagy, and 

macroautophagy (Klionsky, 2005; Mizushima et al., 2008). All types of autophagy 

recycle proteins and organelles of the cell; however, macroautophagy (known as 

autophagy throughout this thesis) is the major type of autophagy utilized during pathogen 

elimination (Schmid and Münz, 2007).  
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Autophagy is regulated through a number of different mechanisms. Inhibition of 

autophagy comes mainly from the target of rapamycin (TOR) kinase, which blocks 

autophagy when ample nutrients are available (Levine and Kroemer, 2008). Activation 

of autophagy has been shown to occur through interferon-γ (IFN-γ), tumor necrosis factor 

(TNF), and TLR signaling (Virgin and Levine, 2009; Sanjuan et al., 2007), and possibly 

as a result of ROS generated from NADPH oxidase (Huang et al., 2009, Mitroulis et al., 

2010). Once autophagy is activated, a cascade of events occurs where various signals and 

proteins accumulate near the phagosome. One important protein, light chain 3-I (LC3-I), 

becomes conjugated with phosphotidylethanolamine (PE) to become LC3-II (Ichimura et. 

al, 2000; Virgin and Levine, 2009), and is inserted into the autophagosomal membrane 

(Kabeya et al., 2000; Mizushima, 2004). When LC3 is fused with enhanced green 

fluorescent protein (EGFP), autophagy can be visualized because of the bright, green 

rings that are associated with the phagosomes surrounding the pathogen during confocal 

imaging. LC3-EGFP has been shown to be a useful method in identifying autophagic 

events (Mizushima, 2004). Using this method, we can quantify changes in autophagy 

activation by counting the number of LC3-EGFP phagosomal rings.  

Recently, evidence supports that an active NADPH oxidase and presence of ROS 

is required for LC3 accumulation on zymosan, Salmonella (Huang et al., 2009), and E. 

coli phagosomes (Mitroulis et al., 2010) in vitro. This suggests that NADPH oxidase-

generated ROS is an important activating signal of autophagy. Because these results are 

from in vitro experiments, it has lead us to investigate whether ROS do, in fact, have an 

indirect role in activating autophagy during an infection in vivo.  
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Along with ROS, TLR signaling has been shown to play a role in autophagy 

activation (Huang et al., 2009; Mitroulis et al., 2010). However, there has also been 

conflicting evidence that TLR activation causes LC3 to accumulate on the phagosome in 

an autophagy-independent way (Sanjuan et al., 2007). TLR signaling is an important 

aspect of the innate immune response and must be considered when exploring autophagy 

activation in vivo. 

Limited research has been conducted in order to understand the dynamics and role 

of autophagy in the innate immune system. Understanding its connection in the context of 

other components of innate immunity is important and may lead to more effective or 

alternative treatments during an infection. We utilized the LC3 protein as a method of 

observing interactions between autophagy and NADPH oxidase, in vivo, during a 

Candida albicans infection. 

 

Immunity to Candida albicans 

 C. albicans is a human commensal fungus that is kept under control by the innate 

immune system within healthy individuals. It is a dimorphic fungus, capable of living as 

yeast or hyphae (Mitchell, 1998). The innate immune system normally recognizes C. 

albicans through TLRs that detect specific components of its cell wall (Netea et al., 

2008); this prevents proliferation of the fungi, but still permits commensal living within 

the gut.  

C. albicans can cause mucosal infections or disseminated candidiasis. Mucosal 

infections are localized infections within a mucosal layer, such as the common yeast 

infection in women (Sobel et al., 1998). Disseminated candidiasis occurs when C. 
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albicans spreads throughout the body. This infection occurs in a high percentage of 

immunocompromised and hospitalized patients, who have weakened immune systems 

(Pfaller and Diekema, 2007). The dynamics of in vivo disseminated candidiasis has had 

limited research, providing us the opportunity to expand our understanding of how the 

innate immune system and autophagy work together in combating disseminated 

candidiasis.  

 

Zebrafish as a model organism for candidiasis 

 Danio rerio, or zebrafish, has become an extremely useful tool in modeling 

infection. The zebrafish is an ideal model organism because it reproduces quickly, 

produces high amounts of offspring, and there are a variety of transgenic lines already 

established (reviewed by Tobin et al., 2012). They also have transparent larva, which is 

important when observing pathogen-host interactions and autophagy activation in vivo. 

They have been shown to exhibit characteristics of disseminated candidiasis (Brothers et 

al., 2011), which is essential in order to study the dynamics between innate immunity and 

autophagy during early stages of candidiasis. 

During our research, we used a transgenic LC3-EGFP line of zebrafish (He, 

2009). These fish have enhanced green fluorescent protein (EGFP) fused to LC3, the 

protein important when identifying autophagy and, because of their small size and 

transparency, we are able to image and visualize LC3-EGFP localization directly using 

confocal microscopy. Another important advantage of zebrafish is the ability to 

investigate the innate immune system on its own, since the adaptive immune system does 

not fully develop until 4-6 weeks post-fertilization (reviewed by Sullivan and Kim, 
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2008). By infecting the zebrafish at 36 hours post-fertilization  (prim-25 stage; Figure 3), 

we took advantage of this delay in adaptive immunity and focused solely on innate 

immunity.  

 There are numerous advantages to using zebrafish over the mouse model and in 

vitro approaches with regards to confocal microscopy. During infection in mice, the 

animals must be sacrificed and slides prepared in order to view infected tissues. This 

limits the observational time points and may destroy valuable data when prepping the 

tissues. The zebrafish model avoids these constraints, as we are able to see directly into 

the fish without causing any damage. We are also able to observe transient processes and 

collect data about overall dynamics of the infection that may be overlooked in a mouse 

model. In vitro approaches can use confocal microscopy, however these experiments do 

not consider the interactions of multiple types of immune cells and the pathogen in a live 

host. These advantages, along with the recent establishment of disseminated candidiasis 

in zebrafish, makes the LC3-EGFP transgenic zebrafish a good candidate for 

characterizing autophagy activation using chemical treatments that alter ROS 

concentration. 

 

Chemical treatments used to characterize the role of ROS in autophagy activation 

 A variety of chemicals are available that enable us to observe how NADPH 

oxidase-generated ROS play a role in autophagy activation in vivo. Treatments include 

diphenylethyliodium (DPI), which inhibits NADPH oxidase activity; α-tocopherol, which 

acts as an antioxidant to remove ROS; and phorbol myristate acetate (PMA), which 

stimulates NADPH oxidase activity (O’Donnell et al., 1993; Wang and Quinn, 1999; 
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McPhail et al., 1984). Distribution of LC3 during these treatments helped us elucidate 

whether or not ROS are involved in the activation of autophagy during an in vivo 

infection.  

 DPI acts to decrease NADPH oxidase activity by binding noncompetitively to the 

enzyme (O’Donnell et al., 1993). DPI has been used in vitro when studying autophagy, 

showing a significant decrease in the number of LC3+ phagosomal rings, which are 

indicative of autophagy (Huang et al., 2009). Evidence showing an effect of DPI 

treatment in vitro leads us to investigate this substance further in a live host. Also, by 

using this chemical inhibitor, we can potentially mimic CGD in zebrafish larvae to 

understand autophagy within patients suffering from this disease.  

 α-tocopherol, a type of vitamin E, is an antioxidant, which removes ROS and 

potentially inhibits autophagy. The major reason the general population uses antioxidants 

are to prevent the appearance of aging, which is commonly associated with tissue damage 

caused by ROS. However, the use of these chemicals may actually be interfering with the 

immune system’s ability to fight infection. α-tocopherol acts extremely fast in a non-

enzymatic reaction by transferring hydrogen to form tocopheroxyl radical. This radical is 

more stable than ROS, and does not cause tissue damage. The ability of α-tocopherol to 

be regenerated is an important function of the antioxidant allowing it to be reused 

multiple times to quench ROS (Wang and Quinn, 1999). It has also been shown to inhibit 

the respiratory burst of neutrophils by interacting with protein kinase C and inhibiting 

NADPH oxidase activity (Azzi et al., 2000). Autophagy research using α-tocopherol has 

shown decreased numbers of LC3+ phagosomal rings in vitro (Huang et al., 2009), 
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indicating a potential effect in vivo as well. Additionally, our research investigated how 

antioxidants may interfere with the immune system’s ability to fight infections.  

 Phorbol myristate acetate (PMA) is known to artificially stimulate NADPH 

oxidase by acting upon protein kinase C (McPhail et al., 1984; Karlsson et al., 2000; 

Lundqvist et al., 1996; Wolfson et. al, 1985). Since PMA can stimulate NADPH oxidase 

intracellularly (Karlsson et al., 2000; Lundqvist et al., 1996), we can apply this treatment 

during infection with C. albicans because the fungus lives inside the phagocyte after it is 

engulfed. NADPH oxidase stimulation will allow us to fully assess how ROS may 

influence autophagy activation.  

 A summary of phagocytosis, ROS, and where they are thought to initiate 

autophagy activation is depicted in Figure 4. Included in this figure are the different 

treatments that we used to block or induce certain components of the activation pathway. 

With these different treatments and observations of LC3-EGFP distribution in the 

phagocyte, we can determine if ROS affect autophagy activation in vivo during an 

infection with C. albicans.  

 

Materials and Methods 

Zebrafish care 

All zebrafish were maintained in recirculating systems (Aquatic Habitats, 

Apopka, FL) at the University of Maine Zebrafish Facility with water temperatures kept 

at 28°C. All zebrafish care protocols and experiments were conducted following NIH 

guidelines under Institutional Animal Care and Use Committee (IACUC) protocol 

A2009-11-01. Larvae were grown at a density of 100/dish in 10-cm petri dishes with 60 
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ml egg water. Egg water contained deionized water with 60 mg/liter Instant Ocean salts 

(Spectrum Brands, Mentor, OH). Fish strains used were LC3-EGFP (kindly provided by 

Daniel Klionsky, University of Michigan) and MPO-mCherry transgenic fish (plasmid 

provided by Anna Huttenlocher, University of Wisconsin-Madison; transformation 

conducted by Remi Gratacap, University of Maine). Microbial growth was prevented 

during the first 24 h of development by adding 0.00003% methylene blue. All zebrafish 

care and procedures were performed as previously described (Westerfield, 2007).  

 

Fungal strains and growth conditions 

Candida albicans CAF2-dTomato strain (kindly provided by Remi Gratacap, 

University of Maine) was used throughout these experiments. C. albicans was grown on 

yeast-peptone-dextrose (YPD) agar (Difco; 20g/liter peptone, 10 g/liter yeast extract, 20 

g/liter glucose, 2% agar). Liquid cultures of C. albicans were grown overnight in YPD at 

37°C for infections. Overnight cultures were washed in calcium- and magnesium-free 

phosphate-buffered saline (PBS; Lonza, Walkersville, MD) three times, counted on a 

hemocytometer, and adjusted to a final concentration of 1 x 10
7
 yeast cells/ml.  

 

Microinjection 

Zebrafish at the prim-25 stage (36 hpf) were staged according to the method of 

Kimmel et al. Larvae were manually dechorionated and anesthetized in Tris-buffered 

tricaine methane sulfonate (tricaine; 200 μg/ml) (Western Chemicals, Inc., Frendale, 

WA). To infect, 5 to 10 nL of C. albicans suspension at 1 x10
7
/ml in PBS was 

microinjected through the otic vesicle into the hindbrain ventricle (Figure 3). Our goal 
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was to achieve a dose of approximately 10 CFU. Larvae were immediately screened after 

infection using a Zeiss Axiobserver Z1 microscope equipped with a Vivatome system 

(Carl Zeiss Microimaging, Thornwood, NJ) in order to limit the range of the initial 

infection to 10-25 yeast cells.  

 

Fluorescence microscopy 

An Olympus IZ-81 inverted microscope with an FV-1000 laser scanning confocal 

system was used for confocal imaging (Olympus). An objective lens with a power of 

x40/0.75 NA was used. Fish were anesthetized as previously described with tricaine and 

further immobilized in a mixture of 0.5% low-melting-point agarose (Lonza, Walkerville, 

MD) in egg water including tricaine (200 μg/ml). Images are overlays of fluorescence 

image panels (red-green) or overlays of differential interference contrast (DIC) and 

fluorescence images. Optical filters were used to detect dTomato and enhanced green 

fluorescence protein (EGFP) with excitation/emission at 554/581nm and 488nm/510nm, 

respectively.  

 

Treatments and incubations 

Zebrafish were treated with diphenylethyliodium chloride (DPI; 100 μM; Enzo, 

Farmingdale, NY) in 0.825% DMSO (v/v), α-tocopherol (100 μM, Sigma-Aldrich, St. 

Louis, MO) in 0.1% DMSO (v/v), phorbol 12-myristate 13-acetate (PMA, 0.304 μM; 

Sigma-Aldrich, St. Louis, MO) in egg water. DPI and α-tocopherol treated fish were 

immersed immediately after injection and incubated for 4 h at 28°C. PMA treated fish 

were immersed for 30 min at 3.5 hpi, immediately before confocal imaging. Shortened 



 13 

exposure of PMA was due to extreme chemical sensitivity and reduced zebrafish survival 

during extended exposure.  

Respiratory burst assay 

 The respiratory burst assay was conducted using dihydrodichlorofluorescein-

diacetate (H2DCF-DA) as previously described (Hermann and Kim, 2005) with some 

minor changes. Twelve larvae per treatment were induced with PMA (Sigma-Aldrich, St. 

Louis, MO), while twelve larvae were not induced for each treatment (control DMSO, 

DPI, or α-tocopherol). A Synergy2 plate reader (Biotek, Winooski, VT) was used to 

measure fluorescence every hour for a total of 8 h and nine readings (one reading at 0 h). 

Excitation and emission wavelengths were 485 nm and 528 nm, respectively. Differences 

in the ratios (induced/uninduced) of control and DPI or α-tocopherol treated fish were 

examined using bootstrapped confidence intervals obtained from 1,000 replicates, using 

the Pop-Tools add-in for Microsoft Excel. The degree of significance was determined by 

observing whether 95%, 99%, and 99.9% confidence intervals overlapped.  

 

 

Results 

 

Development of a classification scheme for phagosome morphology and LC3-EGFP 

distribution was necessary for quantitative analyses.  

C. albicans can be contained within tight or loose phagosomes in human 

neutrophils and mouse macrophages (Marquis et al., 1991; Fernandez-Arenas et al., 

2009); however, the mechanisms of exactly how these morphologies arise are still 

unknown. There has been work showing that damage to the cell wall of C. albicans and 

killing of the parasite Leishmania donovani occur more often within loose phagosomes 
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(Marquis, 1991; Gueirard et al, 2008). Investigating potential physiological differences 

between these types of phagosomes are important in understanding pathogen elimination 

within host immune cells. Additionally, it has been shown that NADPH oxidase activity 

is associated with loose phagosomes (Reeves et al, 2002). Similar to these observations, 

we found two types of morphologies, tight and loose, in the phagosome population in 

vivo, enabling us to assess potential differences between these two morphologies. 

Furthermore, LC3 accumulation has also been shown to be dependent on NADPH 

oxidase production of ROS in vitro (Huang et al., 2009; Mitroulis et al., 2010). To 

characterize how LC3-EGFP localization varies as a function of NADPH oxidase 

activity, ROS, and phagosome morphology in vivo, it was necessary to create a 

classification scheme.  

Figure 5 depicts the different types of phagosomes and LC3-EGFP distributions 

seen throughout the experiments. These categories were seen during most treatments and 

represent over 1000 phagosomes observed. Tight phagosomes (Fig 5A) and loose 

phagosomes (Fig. 5B) were associated with weak cytoplasmic LC3-EGFP, strong 

cytoplasmic LC3-EGFP, and LC3-EGFP phagosomal rings.  

There was a clear dichotomy of phagosome morphology during the infections in 

vivo. Tight phagosomes displayed no visible space between the phagosomal membrane 

and fungal cell wall during analysis of differential interference contrast (DIC) or 

fluorescent images. Loose phagosomes exhibited a phagosomal lumen larger than the 

enclosed fungi, which could be seen in DIC images. Furthermore, there was a strong 

distinction and separation between the phagosomal membrane and fungal cell wall with 
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DIC and fluorescent imaging, where dTomato and EGFP were noticeably separated. Both 

fluorescence and DIC images were used to confirm phagosome morphology. 

To understand the relationship between ROS and autophagy clearly, it was 

necessary to describe and separate different LC3-EGFP distributions. Preliminary 

experiments showed cytoplasmic and phagosomal LC3-EGFP distributions. From these 

experiments, categories of strong cytoplasmic LC3-EGFP (s. cyt), weak cytoplasmic 

LC3-EGFP (w. cyt), and LC3-EGFP phagosomal rings (phag. rings) were created (Fig. 

5). The strength of cytoplasmic LC3-EGFP fluorescence was analyzed in relation to other 

images of the same experiment to differentiate between strong and weak. Phagosomal 

rings were defined as having stronger expression of LC3-EGFP directly associated with 

the phagosomal membrane surrounding C. albicans than the cytoplasmic LC3-EGFP 

expression. In some phagocytes containing phagosomal rings, there was cytoplasmic 

LC3-EGFP visible, but in others the only appearance of LC3-EGFP was in the ring. Once 

phagosome morphology and distribution of LC3-EGFP categories were established, we 

were able to sort our images and conduct quantitative analyses to compare control and 

treated zebrafish.  

 

ROS are not necessary for activating autophagy but absence may influence phagocytosis 

and proliferation of C. albicans within phagocytes. 

  ROS have been shown to be an essential activator of autophagy. Treatment with 

α-tocopherol has previously been used in vitro and was found to reduce the number of 

LC3+ phagosomal rings (Huang et al., 2009). After infection, we treated zebrafish with 

α-tocopherol to characterize the activation of autophagy in vivo. We also examined the 
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relationship between LC3-EGFP localization and phagosome morphology. Data obtained 

from these experiments demonstrate that most phagosomes were tight, with the majority 

of those having cytoplasmic LC3-EGFP (Fig. 6A). There seemed to be a decreased 

frequency of loose LC3-EGFP phagosomal rings (Fig. 6B), but this was not found to be 

statistically significant (p=0.066).  

 We also looked at the percentage of tight phagosomes with LC3-EGFP rings 

compared to the percentage of loose phagosomes with LC3-EGFP rings (Fig. 7). 

Analyzing the frequency of LC3-EGFP rings within the phagosome populations provides 

a possible physiological distinction between these morphologies. Raw numbers of LC3-

EGFP rings were similar between tight and loose populations; however, relative 

percentages of each are significantly different (Fig. 7A).  

 Comparing the percentages of tight and loose LC3-EGFP phagosomal rings 

within either the α-tocopherol or the control treatment suggests that this bias towards 

loose phagosomes having LC3-EGFP phagosomal rings is independent of treatment, and 

therefore independent of ROS (p≤0.0001 by Fisher’s Exact Test; Fig. 7B). Control tight 

and loose phagosome populations are broken down into the percentages of LC3-EGFP 

rings or no LC3-EGFP rings, highlighting the bias of LC3-EGFP to accumulate on loose 

phagosomes (Fig. 7C). These results present one physiological difference between tight 

and loose phagosomes.  

 During analysis of LC3-EGFP distribution, phagocytes and phagosomes were 

observed to have various amounts of C. albicans, causing us to question if the absence of 

ROS affects the amount of fungi within phagocytes or phagosomes. Previous data have 

shown that macrophages commonly contain three or more fungi (≥3) while neutrophils 



 17 

only have one or two (<3; Brothers et al., 2011). Because the zebrafish do not have a 

marker for the different cell types, we tried to separate neutrophils and macrophages 

based on the amount of C. albicans. Eventually, we decided this was not an ideal method 

of distinguishing phagocyte type; however, interesting data were still apparent.  

A phagocyte with ≥3 C. albicans was determined by counting all the fungi, 

regardless of the number of phagosomes (Fig. 8A). Phagosomes with ≥3 C. albicans were 

determined by analyzing LC3-EGFP of the phagocyte around the fungus to elucidate how 

many fungal cells the phagosome encompassed (Fig. 8B). Phagocytes with ≥3 C. 

albicans increased significantly in α-tocopherol treated fish compared to control fish 

(p≤0.001 by Fisher’s Exact Test; Fig. 8C). Additionally, phagosomes with ≥3 C. albicans 

increased during α-tocopherol treatment; however, it was not determined to be significant 

(Fig. 8D). These results suggest that phagocytes have a decreased ability to kill the fungi 

directly. Together, our findings imply that ROS do not have an effect on autophagy 

activation, but may alter the host’s ability to control C. albicans infection.  

 

PMA-enhanced respiratory burst does not significantly increase autophagy 

 According to in vitro data, autophagy activation increases when NADPH oxidase 

is stimulated by PMA (Mitroulis et al., 2010). We tested if NADPH oxidase stimulation, 

in vivo, also produced a higher rate of autophagy. Because of sensitivity to the chemical, 

zebrafish were exposed to PMA for only 30 min, after a 3.5-h incubation period to allow 

C. albicans to establish an infection. We hoped that exposure at the end of incubation 

would still allow us to observe the full effects of increased ROS during imaging. Two 

types of transgenic zebrafish were utilized in these experiments, our normal LC3-EGFP 
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cross and LC3-EGFP:MPO-mCherry to determine if our findings were sensitive to 

zebrafish strain background. These fish had no qualitative differences among them, and 

showed similar results (individual data not shown). This suggests that this phenotype is 

not strain background-dependent. The graphs therefore show PMA data combined from 

both types of zebrafish (Fig. 9). We found similar characteristics to α-tocopherol results, 

where the majority of phagosomes were tight with cytoplasmic LC3-EGFP (Fig. 9A). 

There was an increase within the total LC3-EGFP phagosomal ring population; however, 

it was not significant by Fisher’s Exact Test (Fig. 9B). These data suggest that, in vivo, 

NADPH oxidase stimulation does not have the same effect on autophagy activation as 

previously found in vitro. 

 

NADPH oxidase inhibition does not significantly decrease autophagy 

 α-tocopherol treatments showed that ROS do not reduce autophagy activation 

significantly, however, this treatment removed ROS from the phagocyte after it had 

already been produced, potentially allowing activation to occur within the short lifespan 

of ROS. In order to understand the relationship between ROS and autophagy activation 

fully, production of ROS must be blocked, which can be accomplished by inhibiting 

NADPH oxidase activity using DPI. DPI treatment has been shown to significantly 

decrease autophagy in vitro (Huang et al., 2009). We expected that DPI might elicit 

stronger changes in LC3-EGFP localization than seen with α-tocopherol, but this was not 

observed. 

We found tight phagosomes with cytoplasmic LC3-EGFP dominating the 

phagosome population (Fig. 10A). DPI treated zebrafish showed no significant difference 
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in amount of LC3-EGFP phagosomal rings compared to control zebrafish (Fig. 10B). 

There was an increase in percent of phagocytes (Fig. 10C) and phagosomes (Fig. 10D) 

with ≥3 C. albicans, similar to α-tocopherol. Phagocytes, however, were not significantly 

different between DPI and control zebrafish, rather the percent of phagosomes was 

significantly greater between treatment and control (p≤0.05 by Fisher’s Exact Test). 

These results, again, suggest that ROS removal does not affect autophagy activation as 

extensively in vivo, but may affect the phagocyte’s ability to control the fungal infection.   

 The DPI experiments yielded similar populations of tight and loose LC3-EGFP 

phagosomal rings as α-tocopherol treatment (Fig. 11). Raw numbers between these tight 

and loose populations were comparable, but the percentages of each respective 

population showed a significant difference (Fig. 11A). Biased accumulation of LC3-

EGFP on loose phagosomes, seen previously in α-tocopherol treatments, was visible 

within DPI treatment and control as well (Fig. 11B). This tendency of loose phagosomes 

to have LC3-EGFP phagosomal rings was apparent even without any chemical addition 

(Fig. 11C).  This suggests something, that we are unaware of, is driving LC3-EGFP to 

accumulate more frequently on loose phagosomes.   

 

Respiratory burst assay confirms α-tocopherol’s antioxidant activity, while contradicting 

expected action of DPI 

 DPI and α-tocopherol had similar results with each analysis conducted, however it 

was not clear why DPI did not have more of a dampening effect on autophagy activation, 

since DPI consistently reduces autophagy events significantly in vitro (Huang et al., 

2009). In the essence of time, we found DPI and α-tocopherol concentrations from 
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sources that showed significant decreases in the number of LC3+ phagosomal rings 

(Huang et al., 2009; Mitroulis et al., 2010), but that also allowed for survival of the 

zebrafish (Yoo et al., 2006; Niethammer et al, 2009; Cordero et al., 2009). In order to 

understand what is occurring in vivo, it was necessary to confirm the actions of the 

chemicals in zebrafish by conducting a respiratory burst assay (RBA). After wild-type 

AB zebrafish were injected at the prim-25 stage with PBS and incubated for 4 h at 28°C 

in α-tocopherol, DPI, or their controls at the same concentrations previously used in our 

experiments, respiratory burst was induced by phorbol myristate acetate (PMA). The 

amount of fluorescence by oxidized dihydrodichlorofluorescein-diacetate (H2DCF-DA) 

was measured at 3 h post-PMA addition (7 h post-PBS injection). Monte Carlo analysis 

with 1,000 replicates was used to find the average ratio of induced to uninduced 

fluorescence (Fig. 12). Respiratory burst was significantly dampened in α-tocopherol 

treated zebrafish compared to control treated zebrafish (p<0.001; Fig. 12A). In contrast, 

DPI treated zebrafish did not have a dampened respiratory burst compared to control 

zebrafish (Fig. 12B) These results indicate that α-tocopherol was quenching ROS as 

expected, but DPI was not blocking ROS production efficiently. This information is 

important in order to interpret our previous results and what they indicate within the 

context of autophagy activation and infection control in the immune system.  

 

Discussion 

 We demonstrated that it is possible to explore the relationship of autophagy and 

its role in the immune system within a live host. Utilizing the zebrafish, we were able to 

characterize autophagy activation in vivo through non-invasive imaging and describe a 
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potential physiological difference between tight and loose phagosomes. Additionally, we 

were able to explore how changing the amount of ROS can affect the ability of the 

immune system to control infection.  

 

Autophagy activation is not dependent on ROS in vivo 

 The main focus of this research pertains to the relationship between NADPH 

oxidase-generated ROS and autophagy activation. We hypothesized that autophagy 

activation would be comparable to in vitro studies when exposed to chemical treatments 

that alter the amount of ROS within a live host. (Huang, 2009; Mitroulis, 2010).  

Our research showed that the amount of ROS does not affect autophagy, which 

differs from in vitro data. Because we determined DPI did not inhibit NADPH oxidase 

efficiently (Fig. 12B), we cannot use the DPI data for conclusive evidence. However, α-

tocopherol and PMA treatments, which were shown to reduce and increase the amount of 

ROS respectively during the respiratory burst assay, had no significant differences in the 

number of LC3-EGFP phagosomal rings, and therefore no significant differences in 

autophagy activation, when compared to controls. Previous research in vitro has shown 

that autophagy is dependent upon the presence of ROS, and detoxifying these reactive 

molecules with α-tocopherol results in decreased rates of autophagy (Huang, 2009). 

Additionally, PMA-stimulated NADPH oxidase induces respiratory burst and has 

previously shown to increase autophagy (Mitroulis, 2010). These differences from 

previous research launched our investigation into potential defects in the immune system 

of the inbred LC3-EGFP zebrafish strain. However, we found our LC3-EGFP:MPO-

mCherry crosses mirrored the LC3-EGFP results indicating there were no obvious 
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genetic defects within the immune system of the LC3-EGFP transgenic fish, leading us to 

believe there are actual differences in autophagy activation in vivo.  

Differences in methodology may also be a reason our data do not reflect previous 

research. The zebrafish model allows for multiple interactions from a variety of cells and 

soluble signaling factors that may not be replicated in cell culture experiments, as well as 

the physical location within a live host compared to a petri dish. These experimental 

differences may be the culprit of the discrepancies.  

Figure 13 proposes that ROS and cell surface receptors, such as FcγR or TLR 

signaling, work together to fully activate autophagy in vivo. Further experiments, like 

using morpholinos to knockdown cell surface receptor genes, would help determine if 

these interactions are indeed necessary to activate autophagy. 

 

Loose phagosomes may elicit a stronger immune response causing autophagy activation 

to be morphologically biased 

 Another aspect of this research was to address potential physiological differences 

between tight and loose phagosomes. We observed a dichotomy of morphologies in the 

phagosomes surrounding the fungi, similar to previous observations (Marquis, 1991; 

Fernandez-Arenas, 2009). We wanted to understand if there was any relationship 

between phagosome morphology and autophagy.  

 We found a high frequency of loose phagosomes was associated with LC3-EGFP 

phagosomal rings, which is indicative of autophagy activation (Fig. 7). Previous in vitro 

research has not had a formal discussion of a potential link between loose phagosomes 
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and autophagy, but representative images of these studies are consistent with this idea 

(Sanjuan et al. 2007).  

It has been suggested that an active NADPH oxidase, and therefore an increase in 

ROS, is associated with loose phagosomes (Reeves et al., 2002). With this information, 

and the in vitro model of autophagy activation (Huang, 2009; Mitroulis, 2010), this bias 

of autophagy to loose phagosomes would be easily explained. However, as we have 

previously described, autophagy activation does not depend on ROS in vivo, providing a 

reason to believe another mechanism, specifically associated with loose phagosomes, 

plays a role in activating autophagy. One mechanism could be that a maturation process 

of tight phagosomes into loose phagosomes occurs, potentially creating a stronger 

immune response within the loose phagosomes. This maturation hypothesis is indicated 

in Figure 13, which also shows, by the relative weights of the arrows, the frequency of 

LC3-EGFP associated with loose and tight phagosomes.  

Our findings of autophagy occurring preferentially within loose phagosomes may 

be an additional reason for the increased capacity of loose phagosomes to kill pathogens. 

Loose phagosomes have been shown to be more capable of killing C. albicans and 

Leishmania donovani (Marquis 1991; Gueirard et al, 2008). Though we didn’t witness 

any fungi degradation between 4-6 hpi, killing may occur at later time points. It would be 

interesting to extend the imaging period to understand more about pathogen killing in 

loose phagosomes or LC3-EGFP phagosomal rings. Ultimately, we were successful in 

observing a physiological difference between the morphologies, however additional 

experiments must be conducted in order to confirm our hypotheses. 
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Antioxidants may affect immune function negatively because of the role of ROS in 

pathogen containment within phagocytes 

 α-tocopherol and DPI treatments seemed to have an effect on the number of 

phagocytes and phagosomes containing ≥3 C. albicans.  However, because DPI was not 

blocking ROS production in the context of PMA-induced respiratory burst, we focused 

our attention only on the effects of α-tocopherol. There was an increase in phagocytes 

and phagosomes containing multiple fungi during α-tocopherol treatment; however, only 

the increase in phagocytes was statistically significant (Fig. 8C). Reduced neutrophil 

migration and phagocytosis has been observed in NADPH oxidase knockdown and DPI-

treated zebrafish (Brothers and Wheeler, unpublished). This may account for what is 

happening during our α-tocopherol treatment; more macrophages, which commonly 

phagocytose three or more C. albicans, must migrate to the site of infection and 

phagocytose fungi in order to compensate for depleted neutrophil activity. We were 

unable to confirm this hypothesis in our experiments because we do not have a marker 

differentiating neutrophils and macrophages in the LC3-EGFP zebrafish line.  

Another hypothesis relates to the hypothesis that ROS are capable of directly 

damaging the pathogen (Segal, 2005). It is possible that phagocytosis occurs normally; 

however, once inside the phagocyte, reduced amounts of ROS may diminish the ability of 

the phagocytes to destroy the fungi, which are subsequently able to divide more readily. 

Though we did not confirm these theories experimentally, they could be addressed by 

observing migration of neutrophils and macrophages using transgenic zebrafish that 

differentiate between the two, and by assessing the fungal burden during α-tocopherol 

treatment and controls.  
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 Our research showed that autophagy activation was not inhibited when the 

antioxidant α-tocopherol was administered, but more research will need to be conducted 

to fully understand activation in vivo. Autophagy was activated more frequently in loose 

phagosomes, regardless of ROS presence, illustrating differences between tight and loose 

phagosomes that have yet to be fully understood. Furthermore, we found that antioxidants 

may have a negative impact on the ability of the immune system to directly attack 

pathogens. Additional investigations must be conducted to confirm our new hypotheses 

about ROS, autophagy activation, and the role of autophagy in controlling fungal 

infection. Ultimately, we have shown that it is possible to address these questions 

pertaining to autophagy within a live, vertebrate host.  
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Figures 

 

 
Figure 1: Reactive oxygen species (ROS) production pathway. Oxygen and NADPH 

oxidase react to produce superoxide anion, which reacts with other enzymes to form 

additional ROS.  
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Figure 2: Translocation of NADPH oxidase. Cytosolic subunits translocate to the 

membrane, which activates the enzyme and leads to production of superoxide anion 

(Assari, 2006).  
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Figure 3: Infection of the hindbrain ventricle in larval zebrafish. Zebrafish at the prim-25 

stage (~36 hpf) were infected in the hindbrain ventricle, outlined in red, through the otic 

vesicle, indicated by the red arrow, with 10-25 Candida albicans yeast, and immediately 

screened using a Zeiss Axiobserver Z1 microscope to confirm ideal infection. After 

injection, fish were incubated for 4 h at 28°C and imaged between 4-6 hpi using confocal 

microscopy. Images were analyzed using Fluoview Software to classify phagosome 

morphology, LC3-EGFP distribution, and to count the number of C. albicans within 

phagocytes and phagosomes.  
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Figure 4: Hypothesized autophagy pathway with chemical treatments. Upon recognition 

and phagocytosis of C. albicans, NADPH oxidase translocates to the phagosomal 

membrane and reacts with molecular oxygen to produce ROS. In vitro, activation of 

autophagy by ROS leads to localization of LC3-EGFP on the phagosome containing the 

pathogen, forming phagosomal rings that can be visualized by confocal microscopy. 

Changes in the frequency of LC3-EGFP phagosomal ring appearance are indicative of 

changes in autophagy activation. DPI, which inhibits NADPH oxidase from producing 

ROS, and α-tocopherol, which acts as an antioxidant and removes ROS, treatment and 

was expected to reduce the frequency of LC3-EGFP phagosomal rings. PMA treatment 

stimulates NADPH oxidase activity, increasing ROS production, and was expected to 

increase the frequency of LC3-EGFP phagosomal rings. The changes in concentration of 

ROS will help us characterize autophagy activation in vivo.  
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Figure 5: Classification scheme of phagosome morphology and LC3-EGFP localization. 

LC3-EGFP zebrafish were infected as described in Figure 3 with CAF2-dTomato C. 

albicans. Phagosome morphology was characterized as either tight (A) or loose (B) by 

analysis of DIC and fluorescent images. Both morphologies showed LC3-EGFP 

localization as weak cytoplasmic (w. cyt), strong cytoplasmic (s. cyt) or as phagosomal 

rings (phag. ring). Images are representative of over 1000 tight phagosomes and over 50 

loose phagosomes that were the result of 16 independent experiments. Scale bars = 5 μm. 
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Figure 6: Removal of ROS by α-tocopherol does not affect LC3-EGFP distribution 

significantly. LC3-EGFP zebrafish were infected as described in Figure 3 with CAF2-

dTomato C. albicans and treated with α-tocopherol (100 μM) and DMSO (0.1%) or 

control DMSO (0.1%) during incubation. Phagosomes were categorized accordingly. The 

graphs show the mean percentage of each category out of total phagosomes from five 

independent experiments, with bars representing standard error. (A) Total distribution of 

phagosome population during α-tocopherol treatment compared to control. (B) LC3-

EGFP phagosomal ring distribution during α-tocopherol treatment compared to control. 

Tight, loose and combined total of LC3-EGFP phagosomal rings are shown. Tight LC3-

EGFP phagosomal rings and total LC3-EGFP phagosomal rings show little difference 

between control and α-tocopherol treatment groups. Percent of loose phagosomes with 

LC3-EGFP phagosomal rings did decrease during α-tocopherol treatment, but not 

significantly (p=0.066 by T-test).  
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Figure 7: LC3-EGFP localizes more frequently on loose phagosomes than tight 

phagosomes. LC3-EGFP zebrafish were infected as described in Figure 3 with CAF2-

dTomato C. albicans and treated with α-tocopherol (100 μM) and DMSO (0.1%) or 

control DMSO (0.1%) during incubation. Data are pooled from five independent 

experiments. (A) Raw data and percentages of tight and loose LC3-EGFP phagosomal 

rings. (B) Percentage of tight phagosomes with LC3-EGFP rings compared to percentage 

of loose phagosomes with LC3-EGFP rings within each treatment. n represents the 

number of total tight or total loose phagosomes quantified during α-tocopherol or control 

treatment. *** p≤0.0001 by Fisher’s Exact Test. (C) Percentages of control tight and 

loose phagosomes with LC3-EGFP rings and without LC3-EGFP rings are shown 

beneath pictorial representations of each to illustrate the biased nature of LC3-EGFP 

accumulation on loose phagosomes in the absence of any treatment.  
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Figure 8: Removal of ROS by α-tocopherol may impact phagocyte ability to control C. 

albicans. LC3-EGFP zebrafish were infected as described in Figure 3 with CAF2-

dTomato C. albicans and treated with α-tocopherol (100 μM) and DMSO (0.1%) or 

control DMSO (0.1%) during incubation. The number of C. albicans fungi within 

phagocytes and phagosomes was quantified. Images show phagocytes (A) and 

phagosomes (B) that contained ≥3 C. albicans or <3 C. albicans. Images are 

representative of over 600 phagocytes and 1000 phagosomes from 12 independent 

experiments. Scale bars = 5μm. (C) Phagocytes with ≥3 C. albicans. Percentage of 

phagocytes increased significantly in α-tocopherol treated zebrafish. ***p≤0.0001 by 

Fisher’s Exact Test. (D) Phagosomes with ≥3 C. albicans. Percentage of phagosomes 

increased during α-tocopherol treatment, however not significantly. Graphs show mean 

percentages from 5 independent experiments, with bars representing standard error.  
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Figure 9: LC3-EGFP distribution is not significantly affected during NADPH oxidase 

stimulation. LC3-EGFP and LC3-EGFP:MPO-mCherry zebrafish were infected as 

described in Figure 3 with CAF2-dTomato C. albicans. Fish were incubated for 3.5 hpi at 

28°C in egg water then submersed in PMA (0.304 μM) and egg water or control egg 

water for 30 min prior to imaging. Fish were imaged, analyzed and phagosomes were 

categorized accordingly. The graphs show the mean percentages of combined data from 

both types of zebrafish from 4 independent experiments, with bars representing standard 

error. (A) Total distribution of phagosome population during PMA treatment compared to 

control. (B) Total percentage of LC3-EGFP phagosomal rings during PMA treatment 

compared to control. Increased amounts of LC3-EGFP phagosomal rings were seen, 

however they were not found to be statistically significant.  
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Figure 10: NADPH oxidase inhibition does not affect LC3-EGFP distribution or 

phagocytosis, but may impact infection control. LC3-EGFP zebrafish were infected as 

described in Figure 3 with CAF2-dTomato C. albicans and treated with DPI (100 μM) 

and DMSO (0.825%) or control DMSO (0.825%) during incubation. Phagosome 

morphology, LC3-EGFP distribution, and number of C. albicans were categorized 

accordingly. The graphs show the mean percentages of seven independent experiments, 

with bars representing standard error. (A) Total distribution of phagosome population 

during DPI treatment compared to control. (B) LC3-EGFP phagosomal ring distribution 

during DPI treatment compared to control. Tight, loose and combined total LC3-EGFP 

phagosomal rings are shown with little difference in number of LC3-EGFP rings between 

control and DPI treated zebrafish. (C) Phagocytes with ≥3 C. albicans. Percentage of 

phagocytes increase in DPI treated zebrafish, however not significantly. (D) Phagosomes 

with ≥3 C. albicans. Percentage of phagosomes increased significantly during DPI 

treatment. *p≤0.05 by Fisher’s Exact Test.  
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Figure 11: LC3-EGFP localizes more frequently on loose phagosomes than tight 

phagosomes. LC3-EGFP zebrafish were infected as described in Figure 3 with CAF2-

dTomato C. albicans and treated with DPI (100 μM) and DMSO (0.825%) or control 

DMSO (0.825%) during incubation. Data is pooled from seven independent experiments. 

(A) Raw data and percentages of tight and loose LC3-EGFP phagosomal rings. (B) Per-

centage of tight phagosomes with LC3-EGFP rings compared to percentage of loose 

phagosomes with LC3-EGFP rings during DPI or control treatment. n represents the 

number of total tight or loose phagosomes quantified during each treatment.  

*** p≤0.0001 by Fisher’s Exact Test. (C) Percentages of control populations are shown 

beneath diagrams depicting tight and loose phagosomes with LC3-EGFP rings and 

without LC3-EGFP rings to illustrate the biased nature of LC3-EGFP accumulation on  

loose phagosomes even in the absence of any treatment.  
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Figure 12: α-tocopherol and DPI differ in respiratory burst dampening. Wild-type AB 

zebrafish were injected with PBS into the hindbrain ventricle through the otic vesicle at 

the prim-25 stage and immediately submersed in (A) α-tocopherol (100 μM) and DMSO 

(0.1%) or control DMSO (0.1%) or (B) DPI (100 μM) and DMSO (0.825%) or control 

DMSO (0.825%) and incubated at 28°C for 4 h. After 4 h, respiratory burst was induced 

by PMA addition in the presence of H2DCF-DA and was assayed. Monte Carlo analysis 

with 1,000 replicates was used to find the average ratio of fluorescence between induced 

and uninduced fish at 3 h post-PMA addition (7 h post-PBS injection). Graphs are 

representatives of three independent trials, with bars showing 95% confidence intervals. 

(A) α-tocopherol treatment shows significant dampening of respiratory burst (p<0.001) 

compared to the controls, indicating it is removing NADPH oxidase-generated ROS as 

expected. (B) DPI treatment does not show a dampened respiratory burst compared to the 

controls, indicating it is not blocking ROS production by NADPH oxidase as efficiently 

as expected.  
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Figure 13: Summarizing our experimental findings and new hypotheses. Two 

phagosomes morphologies were observed, with the majority of them being tight 

cytoplasmic LC3-EGFP. When loose phagosomes are present, there is a high frequency 

of LC3-EGFP rings, which seems to be independent of ROS. Our findings question the 

role of ROS in autophagy activation in vivo. Additionally, there may be a maturation 

process of tight phagosomes into loose, which might be the reason autophagy is biased 

toward loose phagosomes. We hypothesize that ROS work in conjunction with cell 

surface receptors (TLRs, FcγRs) to complete the activation pathway, but necessitates 

additional investigation. Weights of the arrows in the diagram represent relative 

frequencies of each type of phagosome and LC3-EGFP rings according to our data. 
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