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Acoustic analysis of die1 vertical migration in the Darnariscotta River estuary, 

Maine, showed a fairly regular nightly increase in biovolume (mm3 m'3) of organisms in 

the water column, presumed to be due to emergence, the entry of hyperbenthic organisms 

into the water column. Timing of these events was significantly correlated with time of 

sunset and time of sunrise for more than 50% of the dates where emergence and re-entry 

could be identified, between June and October 2002. Emergence traps indicate that the 

mysid shrimp, Neomysis americana, is the predominant migrator. Daily fluctuations in 

irradiance influence the timing of emergence fiom the hyperbenthos. Local variability in 

irradiance that may cause populations to emerge before sunset or leave the surface after 

the beginning of nautical twilight is accommodated in speed of ascent or descent. 

Emergence before sunset is marked by a slow ascent rate, and leaving the surface after 

the initiation of nautical twilight is marked by a fast descent rate. This pattern would be 



expected for populations avoiding visual predators by concealing themselves in dark 

waters. Mean ascent (f 1 SE) (0.29 f 0.03 cm s-') and descent (-0.26 f 0.02 cm s-') rates 

show little difference, suggesting that a similar mechanism controls both. Variations in 

the light regime as both a cue and mechanism for migration under the isolume hypothesis 

and rate of change hypothesis are discussed. 
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INTRODUCTION 

Vertical migration is common in aquatic environments. It is characterized by an 

active vertical movement of organisms, on scales fiom several hundreds of meters (Frank 

and Widder, 1997; Tarling et al., 2001; Luo et al., 2000) to only a few meters (Akiyama 

and Yoshida, 1990) or less. Benthic, hyperbenthic, and pelagic zooplankters may 

perform this migration, usually on a diel cycle (Bollens et al., 1994; Herman, 1963; 

Kringel et al., 2003; Roe, 1984; Rudstam et al., 1989). Types of diel vertical migration 

are nocturnal, twilight, and reverse (Hutchinson, 1967). In the most frequently observed 

pattern, nocturnal migration, maximal abundance occurs near the surface during the 

night; reverse vertical migration is defined by a maximum in abundance near the surface 

during the day; twilight migration is defined as two daily maxima near the surface 

associated with sunset and sunrise, and a component known as "midnight (or nocturnal) 

sinking," where zooplankters descend in the water column, either to subsequently rise 

again or to stay down for the night (Forward, 1988). It is hypothesized that the benefits 

of migrating are avoidance of visual predators such as fishes (Alldredge and King, 1985), 

access to food (Lasenby and Langford, 1973), avoidance of high light intensities 

(Herman, 19623, and facilitation of reproductive behavior and molting (Clutter, 1969). 

The correlation of vertical migration with irradiance and its time variation is well 

known (Alldredge and King, 1980; Bainbridge et al., 1966; Forward 1976,1988; Foxon, 

1939; Frank and Widder, 1997; Gal, 1999; Herman, 1962; McFarland, 1986). Several 

hypotheses address the specific light-mediated mechanism that cues emergence. Three 

hypotheses involve the changing characteristics of light during twilight: the preferendum 

or isolume hypothesis, the rate of change hypothesis, and the relative rate of change 



hypothesis. The preferendum or isolume hypothesis (Russell, 1927) postulates that there 

is a specific light intensity, or isolume, that migrating organisms follow in their 

movement in the water column. The rate of change hypothesis (Clarke, 1930) postulates 

that the rate and duration of the change in light intensity fiom the ambient intensity (the 

adaptation intensity) serves as the cue to emerge, or given that organisms may undergo 

some level of adaptation to the ambient intensity, the cue may better be described by the 

relative rate of change of light intensity (AIII). Two hypotheses stemming fiom fish 

vision research also may play an important mle. The sensitivity hypothesis (Munz, 1958) 

postulates that the spectral sensitivity of an organism is matched to that of the 

environment in which they live. The contrast hypothesis (Lythgoe, 1968) postulates that 

the visual sensitivity of an organism is set to maximize the contrast between the object 

viewed and its background. These latter two hypotheses may be true for zooplankton 

with complex eyes (Cronin, 1986), such as mysid shrimp, and certainly can be used to 

infer a great a deal about the migrators fiom their predators. 

Optical properties of the water also contribute to the mechanisms (Han and 

Straskraba, 2001) and timing (DeRobertis, 2002) of vertical migration. A higher 

attenuation coefficient (k (m-')) may lower the effect of predation pressure, which lowers 

migration velocity (Han and Straskraba, 2001). A higher attenuation coefficient may also 

increase the difference in time of emergence between smaller (10 mm) and larger (20 

mm) euphausiids (DeRobertis, 2002). 

Die1 vertical migration has been studied in the lab and in the field. Lab studies 

have generally focused on phototaxes in response to directional light (Ringelberg, 1964) 

in a column, where flow properties and food preferences are not introduced or measured. 



Field studies have included many net trawls and subsequent enumeration of organisms 

caught at various depths and times (Clutter, 1969). Some acoustic measurements of 

DVM have been conducted, but have been limited to single-frequency instruments 

measuring Doppler shift (Liljebladh and Thomasson, 2001; Luo et al., 2000; Tarling et 

al., 2001; Fischer and Visbeck, 1993), and measuring backscatter intensity (Kringel et al., 

2003). Although initial acoustic methods were able to characterize the deep scattering 

layer in depth and time, single-frequency measurements have the disadvantage of 

sampling only those particles within the size range resolved by the acoustic frequency of 

the instrument, thus underestimating the actual abundance of particles in the area of the 

acoustic beam. 

One disadvantage of using acoustics is the inability to discern the type of particles 

constituting the signal. Here, the concurrent use of a method to trap particles becomes 

vital. Kringel et al. (2003) observed acoustically the presence of a regular DVM at West 

Sound, Orcas Island, which was discerned by emergence traps as a mysid shrimp- 

dominated population. Mysid shrimp are very abundant in coastal waters and are a very 

important food source to economically valuable fish species. They are a potentially 

important vector for coupling between the benthic and pelagic environment, as they dwell 

on the surface of bottom sediments (the hyperbenthos) or in the sediments during the day. 

The dynamic nature of mysids in space and time places an importance upon gathering 

information related to their behavior. 

This study is novel in that an acoustic instrument with six frequencies is used to 

observe and characterize DVM in a relatively shallow (- 1 Om), tidally well-mixed, turbid 

(k = 0.5 m-1) estuary with little freshwater input. The use of a multi-frequency, high 



temporal- and spatial-resolution acoustic instrument allows a large range of particle sizes 

to be represented in the signal, thus more accurately sampling the total volume and 

abundance of particles. 

The objectives of this study are to observe and quantify vertical migration using 

this multi-frequency acoustic instrument, to characterize daily and seasonal patterns of 

emergence of local fauna, to characterize the underwater light field at the study site, and 

to relate the timing of vertical migration of local fauna to the underwater light field, 

specifically targeting above-mentioned prevailing hypotheses on properties of light as 

cues for initiation of vertical migration. 



METHODS 

Study site 

This study was conducted in the Damariscotta River, at the University of Maine's 

Darling Marine Center campus in Walpole, Maine (Figure 1). The Damariscotta River 

estuary is a unique environment in which to study vertical migration. The water 

properties more closely resemble coastal oceanic water because of the strong tides (height 

5 3 = 3 m) and little freshwater input (0.63 x 10 m per tidal period in mid-summer, 

McAlice, 1993). Tidal velocities are 25 cm i' on average (Mayer et al., 1996). The 

strong tidal currents and relatively shallow depth (- 10 m) at the study site promote a 

tidally-mixed, fairly homogenous water column. Generally, the water is very turbid (k = 

0.5 1 m-' at 10 m, Mayer et al., 1996). Bottom type varies along the 29-km length of the 

river, fiom rock and gravel to primarily sand and silt. The bottom type at the study site is 

classified as silty sand (McAlice, 1993). Water temperatures range from 1 "C in February 

to 18OC in September. Diatom blooms occur on the bottom (-10 m) in the spring and fall 

(observed while diving). 

Acoustic measurements and data processing 

Acoustic records were collected using TAPS (Tracor Acoustic Profiling System, 

BAE Systems). TAPS was mounted in a frame, moored on the seafloor at the study site 

by divers, and positioned looking upward toward the air-water interface. Transducers at 

six frequencies (265,420,700, 1100, 1800,3000 kHz) ping simultaneously twenty-four 

times and integrate backscatter (S,, in dB) over either one- or two-minute intervals, at 

each 12.5-cm depth bin in the water column above. As the height of the water column 

changes with tidal height, so does the number of depth bins recording backscatter. Due 



Figure 1. Study site at the Darling Marine Center, on the Darnariscotta River, Maine. 

(Modified from Watling et al. 2001). Tidal velocities are 25 cm s" on average. Bottom 

type is classified as silty sand. Average water depth is 10m. 



to the position of TAPS in the frame, the transducers were approximately I m above the 

seafloor, and the average height of the water column above the transducers was 9m. 

Raw backscatter matrices are processed using Matlab (Appendix, makemt1h.m). 

Calibration constants and beam spreading functions are applied in the first steps of 

processing, but underestimate the vertical extent of beam spreading. To correct for this 

problem, an additional algorithm is applied (Appendix, n0spread.m). Due to the effect of 

ringing of the fiame, backscatter data within 2 m above the transducers (3 m above the 

seafloor) were eliminated. Backscatter data fiom 3m off the bottom to the surface were 

smoothed in time using a nineteen-point median smoother (Appendix, smo0thdata.m). 

Smoothed backscatter data are inverted to biovolume (mm"m3) using an equivalent 

spherical radius model based on the temperature and salinity of the water (Appendix, 

makets.m, invsndr.m). Using an under-determination factor of 5, six frequencies yields 

thirty size classes in the inversion. In this analysis, only the sum of the biovolume across 

all size classes, or total biovolume, is used (Figure 2). 

Analysis of Total Biovolume: Finding emergence and re-entry 

The algorithm created for finding time of emergence and re-entry involved fitting 

a line to points generated by finding the difference between each one- or two-minute 

interval of total biovolume at each depth bin (Appendix 1, findfirstpm.m, find1astam.m). 

For each depth bin, backward differences (timez - time,) was calculated per time period 

and translated to percent differences. For emergence, increases of at least 20% from the 

previous minute were noted. For re-entry, decreases of at least 20% fiom the previous 

minute were recorded. For both emergence and re-entry, this method yielded a cluster of 

points during the night and few points during the day (Figure 3). Using the time of sunset 
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Figure 2. Total biovolume (rnrn3 m") for August 2 to 5,2002. Due to ringing of the 

fiame, the first reliable measurement above the bottom is at 2 m above TAPS, or 3 m 

above the bottom. The height of the surface is dynamic due to tides, but has been cut at 9 

m. Ticks indicating dates signify midnight. Biovolume increases during the night from 

the background level (- 200 mm3 m-3) during the day. Red streaks near the surface 

during the day may be fishes. Note the variability in the night- time signal over the three 

dates. 



Date 

Figure 3. Index of total biovolurne (mm3 m-3) where the percent change is at least 20% 

greater than the minute before, for August 2 to 5,2002. Tick indicating dates signify 

midnight. Black dashed lines parallel the rate of 20% increase for emergence, and are for 

visualization purposes only. 



for emergence and the time of morning civil twilight (the time at which the sun is 6" 

below the horizon) for re-entry, all points within an hour of this time were plotted as a 

scatterplot, with time as the independent variable and height above TAPS as the 

dependent variable. A line was fitted to the resulting points; only days with at least three 

points were considered. If the fit was significant, the line was extrapolated to its intercept 

with the bottom (0 m) to yield either time of emergence or time of re-entry, and ascent or 

descent rate (cm s-') was calculated fiom the slope of the fitted line (Figure 4). This 

process was iterated for all of the days for which there were data, fiom July to October, 

2002. Descent rates are indicated by a negative sign, while the magnitude of the descent 

rate is the absolute value. For emergence, this method yielded n = 28 points; for re-entry 

it yielded n = 34 points. 

The first date in 2002 for which the emergence and re-entry algorithms yielded 

points was July 19. Due to instrument failure, the last day of the study was October 9, 

2002. Data fiom another TAPS instrument suggests that vertical migration may have 

continued past this date, and in 2001, vertical migration could be seen in November. In 

July to October 2002 there were 55 d in which enough emergence points could be found 

to fit a line; for re-entry there were 64 total days in which a line could be fitted. 

However, only those days in which the fit of the line was significant at a = 0.05 were 

used in subsequent analyses. Using only those days that were significant disqualified 

slightly fewer than 50% of the days fiom analysis, for both emergence and re-entry. 

While this sample-size reduction may seem disastrous, the algorithm worked well given 

the high complexity of the acoustic record. Acoustic data fiom the period September 26 
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Figure 4. Example of finding emergence and ascent rate, for August 4,2002. Points 

3 -3 mark depth and time indices where total biovolunle (mm m ) is at least 20% greater than 
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intercept of the line with the bottom is the start time of emergence. 
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to October 8, and September 15,2002 were recorded at 2-min intervals, and the 

remainder of the days in the period were recorded at 1 -min intervals. 

Light measurements 

Surface PAR (photosynthetically available radiation, 400-700 nm, Licor 190SA) 

was averaged from continuous data over 1 -min intervals. The threshold of the instrument . 

-2 -1 was lo4 pmol quanta m-2 s-I, but no value lower than pmol quanta m s was used 

due to the realization that the raw voltage of the datalogger may have been confounding 

the readings. Bottom PAR (400-700 nm, Biospherical Instruments QCP-200) 

measurements were made at the height of TAPS (lm above the seabed) from September 

25 to October 9,2002, also recording continuous data, averaged over one- minute. The 

light attenuation coefficient, k (m-I), was calculated using Beer's Law (Kirk, 1983). 

Isolumes were modeled using Beer's Law with inputs of measured surface PAR 

(P&) data and k = 0.5 m-' for 1-m intervals from just below the water surface to 10 m 

(PARlom). The shape of an isolume (0.01 p o l  quanta ma s-I, chosen from the resulting 

plot) was modeled best by a quadratic polynomial for both direct (0" < 0 < 90") and 

diffise (0 > 90") irradiance, where theta (0) is the sun zenith angle. 

The rate of absolute change of irradiance over time and depth was modeled using 

a backward difference approximation for the derivative, i.e. for each 1 m depth interval of 

data modeled as described above, the rate of absolute change was the difference in 

irradiance at time2 - irradiance at timel, divided by 1 min (60 s), in units of pmol quanta 

m-2 i2. The rate of relative change of irradiance was the rate of absolute change at each 

minute divided by the irradiance at timel, in units of s-'. Instantaneous comparisons were 

made between the time of emergence and the absolute irradiance, rate of change of 



absolute irradiance, and rate of relative change of absolute irradiance. Rates of change at 

the time of emergence are negative to indicate a decrease in irradiance in time; 

magnitudes are the absolute value. Re-entry began much earlier than the threshold of 

surface PAR was reached, and thus no correlation with the rate of absolute or relative 

change was made. 

Emergence traps 

Four emergence traps were placed in the vicinity of the study site from June to 

December 2001, and June to November 2002. Alurninum-fiamed traps were pyramidal 

with a 1 m2 base and 1 mm mesh walls. The traps were topped with inverted clear 1 L 

collection bottles, with clear tubes extending fiom the neck to three-fourths of the height 

of the bottle. A hole was drilled in the top of the inverted collection bottle and replaced 

with lmrn mesh to allow water exchange. Traps were lowered by hand with the base 

perpendicular to the seafloor, and pulled upright upon reaching the bottom, the to allow 

the base to sit flush with the sediment. Collection bottles were changed daily, and 

emergent animals placed in 4% formaldehyde, followed by 70% ethanol. Neomysis 

americana was divided into stages following work by Mauchline (1980). Males were 

classified by elongated fourth pleopods, females were classified by the presence of a 

brood pouch, either empty or containing various stages of young, and juveniles were 

classified by having none of these sexual characteristics. 



RESULTS 

Analysis of acoustic data 

Testing the hypothesis that die1 vertical migration is modulated by a light cue 

during twilight, calculated emergence and re-entry times were compared with times of 

sunset and sunrise, respectively, for July to October, 2002. To avoid assumptions of 

binormality, Spearman's rho (p) was used as a measure of correlation (Conover, 1999). 

Rho squared is analogous to the square of Pearson's product moment correlation 

coefficient, but is an estimate of the proportion of the variance in the ranks of one 

variable that can be explained by variation in ranks of the other. 

The timing of emergence and re-entry is correlated with setting and rising of the 

sun, respectively. There is a significant correlation between the timing of emergence and 

sunset (p2 = 0.67, p < 0.001, Figure 9, and between the timing of re-entry and sunrise (pZ 

= 0.74, p < 0.001, Figure 6). Seasonal decrease of day- length and corresponding 

increase of night- length is reflected in the timing of emergence and re-entry, with 

emergence occurring earlier and re-entry later as the season progresses. Night- length 

(time of sunset to time of sunrise, USNO Astronomical Tables) in the earliest 24-h period 

of the acoustic study, July 19 -20,2002, was 7 h 55 min; the time between emergence 

and re-entry was 8 h 27 min. On the last day of the study, October 8-9,2002, night- 

length was 12 h 40 min; the time between emergence and re-entry was 12 h 1 0 min. 

Emerging populations did not always leave the hyperbenthos after sunset (68%), 

although this behavior was more common than leaving before sunset (32%). Emergers 

left the seabed an average (f 1 SE; n = 28) of 2 (f 7) min after sunset throughout the 

study period (earliest = 1 h 17 min before sunset; latest = 39 min after sunset). Migrators 
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Figure 5. Time of sunset versus time of emergence, for July to October 2002. There is a 

significant positive correlation at a = 0.05 (p2 = 0.67, p < 0.001) (n = 28). The date 

corresponding to the time of sunset is shown on the lower x-axis. 
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Figure 6. Time of sunrise versus time of re-entry, for July to October 2002. There is a 

significant positive correlation at a = 0.05 (p2 = 0.74, p < 0.001) (n = 34). The date 

corresponding to the time of sunrise is shown on the lower x-axis. 



reached the surface an average of 15 (f  7) min after the end of nautical twilight (n.t.) - the 

time at which the sun is 12" below the horizon (earliest = 43 min before n.t.; latest = 2 h 

14 rnin after n.t.). In two cases where migrators reached the surface in excess of 1 S h 

after the end of nautical twilight, moonset occurred at least 30 min after the end of 

nautical twilight. The mean ascent rate of the emerging population was 0.29 (f 0.03) cm 

s-I. Using this calculated ascent rate and the actual tidal height at the time of emergence, 

the average length of time it took the emerging population to reach the surface was 1 h 2 1 

rnin (k 5min). The time lag between sunset and emergence was significantly correlated 

with the ascent rate (P2 = 0.55, p < 0.001, Figure 7). When emergence occurred before 

sunset (negative lag), the ascent rate was slower than when emergence occurred after 

sunset (positive lag). 

Re-entry times also bracketed sunrise. Re-entering populations arrived at the 

seabed on average (n = 34) 15 (f 4) min before sunrise (earliest = 1 h 9 min before 

sunrise; latest = 55 min after sunrise). They arrived at the seabed before sunrise on 75% 

of the days, and arrived at the seabed after sunrise on 25% of the days. Migrators left the 

surface an average of 27 (f  7) min before the beginning of nautical twilight. The mean 

descent rate of the re-entering population was -0.26 (f 0.02) cm s-'. Using this calculated 

descent rate and the actual tidal height at the time of re-entry, the average length of time 

it took the re-entering population to reach the hyperbenthos was 1 h 22 min (f 8 min). 

The time lag between the beginning of nautical twilight and leaving the surface was 

correlated significantly with descent rate (p2 = 0.59, p < 0.001, Figure 8). When 

populations left the surface before the beginning of nautical twilight (negative lag), the 
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Figure 7. Lag between time of emergence and sunset versus ascent rate, for July to 

October 2002. There is a significant positive correlation at a = 0.05 (p2 = 0.55, p < 

0.001) (n = 28). Sunset is used as an indicator of the initiation of evening twilight, as 

irradiance is no longer direct, but diffise. A negative lag indicates emergence fiom the 

seabed before sunset; a positive lag indicates emergence after sunset. 



Lag between time leaving the surface and mutical twilight (min) 

Figure 8. Lag between time at which migrating populations leave the surface and 

nautical twilight versus descent rate, for July to October 2002. There is a significant 

positive correlation at a = 0.05 (p2 = 0.59, p < 0.001) (n = 34). Time of nautical twilight 

is used as an indicator of the initiation of morning twilight. Descent rates are negative 

merely to indicate downward direction of migration; magnitudes of descent are read as 

absolute values. A negative lag indicates populations left the surface before the 

beginning of nautical twilight; a positive lag indicates that populations left the surface 

after the beginning of nautical twilight. 



descent rate was slower than when populations left the surface after nautical twilight 

(positive lag). 

There was a significant positive seasonal trend in both ascent (p2 = 0.20, p = 

0.009) and descent (8 = 0.22, p = 0.004) rates (Figures 9, 10). As day- length became 

shorter, both ascent and descent rates slowed, but the variability was large. 

The temperature measured by TAPS, at a distance of approximately 10 cm from 

the sediment, fluctuated throughout the study period. On the first day on which 

emergence and re-entry could be found using the algorithm, July 19 - 20,2002, the mean 

temperature was 15°C (min = 14.33"C, max = 16.33"C). On the last day that emergence 

and re-entry could be found, October 8 - 9,2002, the mean temperature was 14.75"C 

(min = 14.1 5"C, max = 1 5.32"C). At the middle of the study period, August 14 - 15, 

2002, when the water temperature was roughly at its peak, the mean temperature was 

17.56"C (min = 16.7"C, m a .  = 18.9S°C). Since die1 vertical migration was observed 

throughout the study period, no attempt was made to correlate emergence and re-entry 

with water temperatures at that time. It is therefore clear that the most abundant 

migrator, N. americana, will migrate in water temperatures of at least 14°C. 

Correlation of measured irradiance and acoustic data 

A significantly better correlation exists between the time at which PARlo, is 

estimated to equal lo-' pmol quanta m-2 s-' and the time of emergence (d = 0.87, p < 

-2 -1 0.00 1, Figure 1 1). The time at which PARlo, equals 1 0-' p o l  quanta m s takes into 

account the relative daily irradiance incident upon the water surface, and thus available in 

the hyperbenthic environment. Atmospheric clouds result in a darker hyperbenthic 

environment and prompt migrators to emerge earlier than on a clear day. There is no 



Time of sunset 

l0IS 9/19 8/19 
Date in 2002 

Figure 9. Seasonal trend in ascent rate, for July to October 2002. There is a significant 

positive correlation between the time of sunset and the ascent rate at a = 0.05 (p2 = 0.20, 

p = 0.009) (n = 28). The date corresponding to the time of sunset is shown on the lower 

x-axis. 



Time of sunrise 

8/19 911 1 1019 
Date in 2002 

Figure 10. Seasonal trend in descent rate, for July to October 2002. There is a significant 

positive correlation between the time of sunrise and the descent rate at a = 0.05 (p2 = 

0.22, p = 0.004) (n = 34). The date corresponding to the time of sunrise is shown on the 

lower x-axis. 



Time when PAR at 10m = 10" umol quanta m-Z s" 

-2 -1 Figure 1 1. Time when modeled PARlom = pmol quanta m s versus time of 

emergence, for July to October 2002. There is a significant positive correlation at a = 

0.05 (p2 = 87, p < 0.001) (n = 28). This suggests that daily changes in irradiance due to 

atmospheric variation influences the time of re-entry more than the time of sunset (i.e. 

time of iniation of twilight). 



-2 -1 better correlation between the time at which PARlo, equals 10" p o l  quanta m s and 

the time of re-entry (p2 = 0.55, p < 0.001, Figure 12), presumably due to the many factors 

affecting timing of return to the hyperbenthos once the migrators have been at or near the 

surface for some portion of the night (e.g. satiation, presence of predators, completion of 

molting or copulation, release of brood). 

The modeled shape of an isolume over time was found to fit very closely to a 

quadratic polynomial, for both direct (0" 8 I 90") and diffise (0 > 90") irradiance, and 

was always concave upward (Figure 13). For 26% of the dates that could be described 

significantly by a linear fit, a quadratic fit could significantly better describe the points. 

Further analysis of the concavity showed that only 24% of those significant quadratic fits 

(or only 6% of significant fits to any line or curve) were concave upward, i.e. the same 

shape as an isolume (Figure 14 and Table 1). Mysids do not appear to be tracking an 

isolume. 

The modeled shape of the rate of change in absolute irradiance after sunset in time 

and depth was also closely approximated by a quadratic fit. No further analyses were 

performed using this parameter, since it was already demonstrated that emergence and re- 

entry is not well described by a quadratic fit. The mean instantaneous rate of change in 

absolute irradiance at 10 m at the time of calculated emergence was -0.00034 f 0.0003 

-2 -2 p o l  quantam s . 

The disadvantage of modeling the rate of relative change of irradiance at 1 m 

intervals to the bottom from PA& was that there was no change in this property of light 

with depth, as it mirrored the relative change of P&. However, the instantaneous rate 

of relative change of irradiance at 10 m at the time of calculated emergence was -0.0023 



-2 -1 Figure 12. Time at which modeled PARlo, = pmol quanta m s versus time of re- 
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atmospheric variation influences the time of re-entry less than the time of sunset, as 

migrators generally leave the surface before the initiation of nautical twilight (see Figure 



Time 

Figure 13. Shape of an isolume during twilight (difise irradiance) on September 26, 

2002. Isolunles were modeled at lm increments from 0 m (surface) to 10 m (bottom) 

using measured surface PAR (400-700 nm) and Beer's Law with a k = 0.5 m-'. The 

shape of an isolume for both direct (0 < 90") and difise (0 < 90") irradiance closely fit a 

quadratic polynomial (fit not shown). 



Time 

Figure 14. Second-order fit to emergence points on September 26,2002. In this case, 

and several others (see Table 1) a second order polynomial fits better than a line (8 = 

0.63, n = 33), but given that the concavity of the majority of quadratic polynomials is 

opposite of that for an isolume, it does not show support for the isolume hypothesis. 



Emergence Re-entry Total 
Days with significant 1st order fit 29 3 7 66 
Days with significant 2nd order fit 8 9 17 

Concave down 6 7 13 
Concave up 2 2 4 

Table 1. Comparison of linear and quadratic fit for calculated emergence and re-entry 

points. Of the 66 days that a linear fit is significant (p < 0.05), a quadratic fit is also 

significant (p < 0.05) for 17 (or 26%) of the days. Of the 17 days that a quadratic fit is 

significant, only 4 (or 24%) are the concave up, i.e. the same shape as an isolurne. 



f 0.0002 s". The modeled instantaneous irradiance at 10 m using measured PA& at the 

-2 -1 calculated time of emergence varied between 0.0002 and 2.58 pmol quanta m s (mean 

f 1 SE = 0.21 f 0.12). 

Emergence trap samples 

Emergence traps deployed daily from May to October 2001 showed a 

predominance of the mysid shrimp, Neomysis americana. In 2001, N. americana 

composed 93% of the individuals of all species caught in the emergence traps. Both 

sexes of N. americana were present in the traps; at times, various females were present 

with three distinct stages of brood pouches: eggs, eyeless larvae, and eyed larvae. 

Juvenile N. americana (no secondary sexual characteristics) were always the most 

abundant; in 2001 juveniles composed 59% of the total number of N. americana 

individuals. Also present in the traps, but accounting for a total of only 7% of all 

individuals caught, were individuals of the larger mysid shrimp, Mysis mixta, the seven- 

spine bay shrimp, Crangon septemspinosa, cumaceans, amphipods, hydromedusae, and 

pol ychaetes. 



DISCUSSION 

Given that the most abundant species caught in our emergence traps throughout 

the study was Neomysis americana, an assumption is that they contribute 

overwhelmingly to our signal, especially at the lower frequencies which represent their 

size well (Kringel et al., 2003). Mysid shrimp are known to be abundant in demersal and 

pelagic fish diets (Mauchline, 1982). Since N. americana dwells in the hyperbenthic 

environment during the day and emerges into the water column during the night (Corey, 

1988), this species is a link in benthic-pelagic coupling, although its relative contribution 

to this coupling is not known. My hrther discussion focuses on this species, keeping in 

mind that traps may underestimate the diversity and abundance of emergent fauna to our 

acoustic signal. 

Reduced risk from visual predation is a leading hypothesis for the fitness benefit 

of vertical migration (Zaret and Suffern, 1976; Alldredge and King, 1985; Lampert, 

1993; DeRobertis et al., 2000; Frost and Bollens, 1992). Although this hypothesis has 

been well documented for deepwater environments in which food may be limited, but 

risk of visual predation is low (Stich and Lampert, 1981), it raises additional questions in 

our shallow-water environment. Here, hyperbenthic animals that are performing vertical 

migration may have a food source available to them even during daylight, in the form of 

organic matter-covered sediments and detritus. Neomysis americana is an omnivore. 

Gut studies have shown mysid diets to consist of detritus, organic-matter covered 

sediments, phytoplankton, and smaller zooplankton (Mauchline, 1980; Rudstarn et al., 

1989). Their versatile thoracic appendages allow mysids to both generate feeding 

currents and filter feed, and to pick up a bolus of food and macerate it with mandibles, as 



we have observed in an aquarium. The presence of highly developed and stalked eyes 

allows Neomysis americana to feed visually on smaller zooplankton prey, at which in the 

laboratory they are not successful in the dark (Fulton, 1982a; Ramcharan and Sprules, 

1986; Viherluoto and Viitasalo, 2001). Conversely, field studies (Rudstam et al., 1989) 

found that Mysis mhta stomach contents indicated a greater intake of zooplankton during 

the night, and detritus during the day. 

It seems that in 2002, our acoustic record of abundance in the water column is 

correlated with spring and fall diatom bloonls on the bottom, i.e., die1 vertical migration 

begins after the conclusion of a benthic bloom in June and ends at the commencement of 

a benthic bloom in late October at approximately 8 m near the location of TAPS 

(observed while diving). Mysids (Gastrosaccuspsammodytes) in a shallow surfione 

have been correlated with the presence of diatoms during the day, becoming carnivorous 

during the night when diatoms migrate into the benthos (Wooldridge, 1989). Since the 

quality of organic-matter covered sediments or detritus is low for the energy-intensive 

activities of reproducing and egg production, richer food sources in the water column 

would provide a metabolic advantage. The seasonal offshore migration of Neomysis 

americana in the fall (Corey, 1988) may also play a role in the seasonal initiation and 

conclusion of vertical migration seen in our acoustic record, and may be tied to the lack 

of food availability both in the hyperbenthos and water column. Whitley (1 948) observed 

N. americana on Georges Bank at depths less than 75 m throughout the year, but in 

greater abundance during winter. My observations while diving indicate this species is 

not at our study site in winter, and they may move offshore to exploit a different food 

source. 



In terms of proximate causes, die1 vertical migration is modulated by light, as 

seen by the significant positive correlation of emergence and re-entry with sunset and 

sunrise, respectively. It is less clear what might cause populations to migrate before 

sunset or after sunrise, especially if the risk of being preyed upon is greater in light than 

dark. On most occasions migrating populations moved under cover of relative darkness, 

indicated by the larger percentages of days where emergence occurred after sunset (68%) 

and re-entry occurred before sunrise (75%). It would be especially detrimental to an 

individual or population to be at the surface when light intensities are too great. Again, 

on 64% of the dates, migrators arrived at the surface after darkness (here defined as the 

end of nautical twilight); on 75% of the dates, migrators left the surface before the 

beginning of first light (defined as the beginning of nautical twilight). Although being at 

the surface when it is light seems counter to the predator-avoidance hypothesis (Zaret and 

Suffern, 1976), these results are not unique; Clutter (1 969) found that mysids were caught 

in surface waters fiom one hour after sunset to one hour after sunrise. Since calculated 

emergence and re-entry times did not correlate with a specific irradiance at that time, it is 

probable that factors other than absolute irradiance reduce the capabilities of visual 

predators during twilight or that the associated risk was balanced by fitness benefits of 

other activities such as feeding, mating, or dispersal. 

Given that variability in the light regime due to clouds affects the time of 

emergence, it also suggests dependence of emergence on water- column properties such 

as turbidity. If emergence were tied to an endogenous rhythm only, there would be no 

effect of short-term factors on the timing of emergence. Emerging earlier in more turbid 



conditions might be a response to reduced predation pressure. Aksnes and Giske (1 993) 

showed that the visual range of aquatic predators decreases with increasing turbidity. 

Measured swimming speeds for mysids with body lengths in the range of 5 - 10 

mm are as high as 20 cm s-' (Mauchline, 1980). Clutter (1969) found that mysids 

(Metamysidopsis elongata) in the same size range as juvenile N. americana - 4-7 mm, did 

not swim slower than 3 cm s", and the swimming rate was slower in dim than bright 

light. Swimming speeds derived from our acoustic data are at least one order of 

magnitude lower than in both of these studies. Horizontal tidal currents (25 cm s" on 

average) in our region may influence the amount of time it takes for a school of vertically 

migrating mysids to ascend or descend through the water column. Alternatively, feeding, 

on reverse- migrating copepods, for example (Fulton, 1982b; Ohrnan, Frost, and Cohen, 

1983) on ascent or descent may slow progress. Furthermore, there is evidence that not all 

members of a population migrate to the same depth, and some may not migrate at all 

(Mauchline, 1980; Rudstam et.al., 1989). The algorithm is most likely to detect distinct 

patches of animals, and thus the swimming speeds that I estimate are group velocities. 

The similarities of the calculated swimming speeds (mean f 1 SE) upon ascent (0.29 f 

0.03 cm s-I) and descent (-0.26 f 0.02 cm s-I) - do suggest that a similar mechanism is 

governing their vertical movement during emergence and re-entry. 

Variation in ascent and descent rates with lags between time of initiation of 

vertical movement and time of atmospheric increase or decrease in light (Figure 9,lO) 

suggests a feedback mechanism controlling vertical movement of populations during 

migration. When local variability (i.e., passing atmospheric clouds, turbidity events) in 

the light regime prompt populations to emerge before they might otherwise do so in clear 



conditions, they may slow their speed on ascent in accordance with some property of the 

light regime to remain concealed fiom visual predators. Likewise, when populations 

emerge after they are effectively concealed, it is expected that their rate of vertical 

movement would be less restricted. This inference is supported by an increase in 

swimming speed if emergence occurs after sunset and if populations leave the surface 

before the beginning of nautical twilight. 

The same seasonal trend is observed in both ascent and descent rates. As day- 

length shortens, both ascent and descent rates decrease. While the correlation 

coefficients are not high, the correlation is significant. Some ideas driving this result 

might be seasonal changes in water- column properties (.e.g. turbidity) or food sources. 

Literature dating to the early 1900s on die1 vertical migration focuses on two 

different aspects of migration - the cue to migrate and the controlling mechanism by 

which animals migrate. Prominent hypotheses addressing the former are the rate of 

absolute change (of irradiance) and the rate of relative change, proposed by Clarke in 

1930. The preferendum or isolume hypothesis (Russell, 1927) addresses the latter. In 

most instances in the literature, these hypotheses have been tested one at a time. Largely 

this approach has stemmed fiom the variation in study habitat - the isolume hypothesis is 

generally applied to depths on the order of one hundred to several hundred meters, where 

migrating populations are not necessarily associated with the benthos (Frank and Widder, 

1997; Widder and Frank, 2001). Rate of change hypotheses have traditionally been 

applied to laboratory experiments involving measured phototaxes in response to a light 

source (Ringelberg, 1964). 



The isolurne hypothesis prevails as a mechanism controlling rates of vertical 

migration in water on the order of hundreds of meters in deep. This has been 

demonstrated both by submersible (Frank and Widder, 1997), by acoustic Doppler 

current profilers (Liljebladh and Thomasson, 2001; Luo et al., 2000; Tarling et al., 2001; 

Fischer and Visbeck, 1993), and by net sampling methods (Roe, 1984). Rudstam et al. 

(1989) observed Mysis mixta migrating in avoidance of light levels above approximately 

1 0 ~ 1 w ,  in water < 100 m deep. 

In some cases, the isolume hypothesis has not been supported merely because the 

data did not show that a constant intensity surrounded migrating zooplankton (Roe, 

1984). Richards et al. (1996) address this misconception in their model of isolumes and 

zooplankton vertical distribution by assuming that if a migrating animal can detect a 

specific light intensity, it can also detect the magnitude of the difference between a 

preferred light level and the actual light level. Use of a threshold difference in actual 

versus preferred intensity to elicit a swimming response in their model suggested that 

zooplankton can catch and maintain a depth distribution on or near a preferred isolume 

for the duration of the day. 

Due to the high spatial and temporal resolution of our acoustic record, the results 

supporting a significant linear fit to the points representing emergence and re-entry for 

75% of the days in which vertical migration could be found give great strength to the 

argument against the tracking of an isolume by migrating populations at our study site. 

Calculations of the speed of an isolume (i.e. the derivative of the quadratic that models 

the shape of an isolume) at points near the beginning, middle, and end of the study show 

that isolumes travel through the water with average speeds at least one order of 



magnitude lower than the calculated ascent and descent rates for vertical migration. This 

result contrasts with deeper- water measurements of the speed of an isolume (Frank and 

Widder, 1997). The difference is largely due to the high attenuation coefficient in the 

Darnariscotta River estuary. In clearer water isolumes move more quickly. 

Richards et al. (1996) calculated isolumes as the temporal change in light 

intensity divided by the attenuation coefficient and the adaptation light intensity (the light 

intensity at timel) (Wdt = l/kE * dE/dt). Using this formula for an isolume of 0.005 

(unitless) in intensity yielded maximum speeds of 0.6 cm i1 for this isolume at sunset 

and sunrise. Factoring in the attenuation coefficient and adaptation light intensity to our 

calculation of speeds of isolumes yields magnitudes on the order of the calculated ascent 

and descent rates. 

The isolumes modeled by Richards et al. (1 996) in time and depth (20 m) were 

also parabolic, and calculated isolume velocities reached a maximum of 0.6 cm s-I during 

sunrise and sunset. As our calculated daily ascent and descent rates were never higher 

than this theoretical value (max. descent= 0.63 cm s"; max. ascent = 0.6 cm s-'), this 

result seems to lend support to the isolume hypothesis in our environment. Although ow 

results generally support a constant vertical migration speed of the population in a non- 

linearly changing light regime, the estimated nonlinearities in the time- depth distribution 

of isolumes are not large. 

The rate of change of irradiance over time is also approximated by a quadratic 

equation. I have already been shown that a quadratic fit did not describe the distribution 

of emergence or re-entry points better than a straight line, and the large standard error of 



the mean (-0.00034 f 0.0003 pmol quanta m'2 sS) and range (min = 0.00001; max = - 

0.006 pmol quanta m-2 i 2 )  also do not support the rate of change hypothesis. 

The rate of relative change of irradiance changes over time, being small for some 

time after sunset, before accelerating at some point after sunset. The time at which this 

rapid decrease begins varies daily, depending on atmospheric and water- column 

properties, but may serve as a signal to emerge. The maximum rate of relative decrease 

of light intensity at sunset coincides with onset of migration in several marine and 

freshwater species (Rmgelberg, 1995). In our environment, this theory may be supported 

by the relatively low standard error of the mean (-0.0023 f 0.0002 s-I) about the 

instantaneous rate of relative change of irradiance at the time of calculated emergence 

(minimum = 0.00012; maximum = -0.004 s"). Whether this mechanism also plays a role 

in controlling vertical migration needs M e r  investigation. The large range (minimum 

= 0.0002; maximum = 2.58 pmol quanta m'2 s-I) and variance (0.21 f 0.12 pmol quanta 

-2 -1 m s ) around the absolute irradiance at the calculated time of emergence does not lend 

support to a particular light level as a cue for emergence or re-entry. 

Juveniles of N. americana were the most abundant stages of this dominant 

migrator caught in our emergence traps. Clutter (1969) found juvenile Metamysidopsis 

elongata dominant in surface waters at night. However, in the laboratory, he also 

observed copulation to occur only at night, and to be correlated with molting of mature 

females. Herman (1963) also noted that juvenile N. americana migrate throughout the 

year, while mature animals migrated only during spawning. It is not known in our 

environment and of N. americana if juveniles, which have no secondary sexual 

characteristics, molt into a stage where sexual characteristics needed for mating are 



present, enabling the individual to copulate within the same night. If not, then the 

abundant juveniles caught in our traps have other reasons for emerging into the water 

column. 

A regular and important aspect of twilight underwater is the spectral shift in the 

wavelength of maximum transmission from longer blue wavelengths to shorter blue- 

green wavelengths (Forward, 1988, Fig. 2). Zooplankton spectral sensitivity has been 

shown to match that of wavelengths prevalent during twilight - 475 to 525 nm (Forward, 

1988) in coastal and estuarine waters. Neomysis americana has a peak sensitivity at 5 15 

nm (Herman 1962). This match between the spectrum and zooplankton sensitivity to that 

spectrum at twilight lend credence to the sensitivity hypothesis. The spectral sensitivity 

of many fishes is not adapted to the spectral shift that occurs at twilight; wavelength of 

maximum sensitivity in fishes is generally above 600 nm (Cronin, 1986). Thus, the 

advantage of migrating zooplankton having a spectral sensitivity matched to the 

wavelength of maximum transmission during twilight may be twofold. It may serve as a 

cue to initiate migration after predation pressure fiom fishes is lifted, and to then utilize 

the maximum transmission at that wavelength to feed visually. 

Shape of isolumes and their rates of relative change modeled from surface PAR 

serve as proxies for the shapes and rates of isolumes of smaller bandwidths. The 

extinction of irradiance fiom the surface to some depth follows an exponential decay, at 

both broadband and individual wavelengths. The shape of an isolume of any wavelength, 

modeled in time and depth, would also be closely approximated by a quadratic equation. 

Thus the only properties of light which remain to be explored as mechanisms governing 

migration in our environment are the timing of the spectral shift in irradiance during 



twilight as a cue to emerge or re-enter, and the changes in polarization underwater 

(Forward 1988) as a mechanism governing orientation during navigation. Orientation 

perpendicular to the plane of polarization has been shown both for terrestrial arthropods 

(Jander and Waterman, 1960) and for a marine mysid (Bainbridge and Waterman, 1958) 

in turbid water. Investigation of both of these aspects of the light field would involve 

very sensitive and not-yet commercially available instrumentation. 

Given that acoustically-observed diel vertical migration did not directly support 

the isolume hypothesis, and only weakly supported the rate of relative change hypothesis 

using broadband PAR, the strength of the argument for a spectral cue is enhanced. It 

seems unlikely that migrating populations respond to one property of light for emergence 

fiom the hyperbenthos, and a second for control of their ascent toward the surface. 

Future research should be directed toward spectral properties of light during twilight and 

their correlation with diel vertical migration observed acoustically. 
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APPENDIX 

Matlab m-files 

% findfirstpm.m 
% this program uses the same algorithm as findemergence2.m 
% but instead of finding all the points within a specified time frame, 
% it finds the first points after sunset, civil twilight, or whatever 
% time you specify 
% use after loading smoothed data 
% HUA 1-2 1-03 

% compute first difference and convert to percent difference 
for i=l :min(c) 
diffiow(i,:)=diflsmooth(i,:)); 
xm(i,:)=(difiow(i,:)* 1 OO).Ismooth(i,2:end); 

end 

[r,col]=fmd(xm(l5:min(c),:)>=20); % take data above 2m 
m 1 4 ;  % add 14 to r will represent the correct depth 
zcol=zdatenew(col); 
depdMr); 
d 1 =datestr(zdatenew( l),2); 
d2=datestr(zdatenew(end),2); 
figure 
plot(zco/depr,'.','markersizd, 1 1) 
s e t ( g c a , ' f o n t n a m e ' , ' t i r n e s n e w o m a n ' ~ f o n ~ ' ,  12) 
datetick('xt,6) 
grid on 
tl=['Index of BVT wl >= 20% difference between minutes']; 
title(t 1) 
ylabel('Height above TAPS (m)') 
xlabel('Datet) 
axis tight 
hold on 

%filename=input('Enter filename for saved plot: ','st); 
%[img,cmap]=capture; 
%imwrite(img,cmap,filename,'tif) 
%disp('Plot saved') 

[rbot, colbot]=fmd(xm( 15:min(c),:)>=20); 
rbot=rbot+l4; 
zcolbot=zdatenew(colbot); 
deprbot=dep(rbot); 

n=input(Wow many re-entry events (i.e. days) are there in this file? I); 
for i=l :n 

if i=l 
disp('Finding first emergence event...'); 

elseif i=2 
disp('Finding second emergence event...'); 

elseif i=3 



disp('Finding third emergence event...'); 
elseif i==4 

disp('Finding fourth emergence event...'); 
elseif i-5 

disp('Finding fifth emergence event...'); 
end 

da=input('Enter DAY: I); 

h=input('Enter HH: '); 
m=input('Enter MM: I); 
s e 4 ;  
[yr,mo] = datevec(zcolbot( 1)); 
t-datenum(yr,mo,da,h,m,se); 
[ztime]=fmd(zcolbou=t); 
e 1 =zcolbot(ztime( 1)); 
h2=h+ 1 ; 
t2=datenum(yr,mo,&,h2,m,se); 
[ztime2]=frnd(z~olbot<~); 
e2=zcolbot(ztime2(end)); 

% restrict point to those within an hour of the 
% time specified 

for j=15:min(c) 
begall=find(rbot==j); 
[first]=find(begall>=ztime(l) & begall<=ztime2(end)); 
if isempty(first) 

beginning(j)=O; 
else 
beginning(j)=begall(first( 1 )); 

end 
end 

% eliminate all points above 6m that occur earlier than the first point 
% below 6m and 
% eliminate all points below 5m that occur later than the last point 
% above 5m 
[below]=fmd(enddep<=5); 
[above]=find(enddep>=6); 
belowtime=endtime(below); 
abovetime=endtime(above); 
sortbelow=sort(belowtime); 
sortabove=sort(abovetime); 

if isempty(above) I isempty(be1ow) 
newtime~ndtime; 
newdepnddep; 
sorttimenew=sort(newtime); 

elseif sortbelow( 1 )>sortabove(end) 
[fl=tind(endtime>=sortbelow( 1)); 
newtime=endtime( f); 
newdep=enddep(f); 
sorttirnenew=sort(ne wtime); 

elseif sortabove>sortbelow( 1) & sortabove<sortbelow(end) 



newtime=endtime; 
newdep=enddep; 
sorttimenew=sort(ne wtime); 

else 
[fl=find(endtime>=sortbelow( 1) & endtime<=sortabove(end)); 
newtime=endtime(f); 
newdep=enddep(f); 
sorttimenew=sort(ne wtime); 

end 

for i= 1 :length(sorttimenew)- 1 % chop any times that are greater than 15 rnin 
ifsorttimenew(i+l)-sorttimenew(i)>=O.0105 % away fiom the rest of the points 

f l  (i,:)=l; 
else fl(i,:)=O; 
end 

end 

i f s u m ( f l p 0  
newtimeu=newtime; 
newdepu-ewdep; 
sorttimeu=sorttimenew; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu( 1)); 
[yr,mo,da,M,d,se] = datevec(sorttimeu(end)); 

end 

ifsum(fl)* 
[fk]=find(fl = 1); 
v=size(fl , 1 ); 
if size(ik,l)==l 

i fWv>0 .75&Wv< 1 
u=f~nd(sorttimenew(fk)==newtime); 
newtimeu=newtime; 
newdepu=newdep; 
~wtimeu(u)=[l; 
newdepu(u)=[]; 
sorttimeu=sort(newtimeu); 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,d,se] = datevec(sorttimeu(end)); 

elseif Wv < 0.25 
u=find(sorttimenew(fkF-newtime); 
newtimeu=newtime; 
newdepu=newdep; 
newtimeu(u)=[]; 
newdepu(u)=[]; 
sorttimeu=sort(newtimeu); 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,d,se] = datevec(sorttimeu(end)); 

elseif Wv = 1 
u=fmd(sorttimenew(fk+ 1Fnewtime); 
newtimeu=newtime; 
newdepu=ne wdep; 



newtimeu(u)=[]; 
newdepu(u)=[]; 
sorttimeu=sort(ne wtimeu) ; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,h4,m4,se] = datevec(sorttimeu(end)); 

else 
newtimeu=newtime; 
newdepu=newdep; 
sorttimeu=sorttimenew; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,m4,se] = datevec(sorttimeu(end)); 

end 
elseif size(fx, 1 )>l 

iffx(end)/v > 0.75 1 fx(end)/v < 0.25 
for bfx(1  :end) 
u(k)=fmd(sorttimenew(k)=newtime); 

end 
newtimeu=newtime; 
newdepu=ne wdep; 
newtimeu(u)=[]; 
newdepu(u)=[] ; 
sorttimeu=sort(newtimeu); 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,m4,se] = datevec(sorttimeu(end)); 

else 
newtimeu=newtime; 
newdepu=newdep; 
sorttimeu=sorttimenew; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,m4,se] = datevec(sorttimeu(end)); 

end 
end 
if size(newtimeu, 1 p= 1 

disp('No emergence to be found') 
end 

end 

ifh4-b3>0 
space360-m3)+m4; 

e lse i fh4-b34 
space-d-m3; 

end 

newdepu=newdepu'; 
d=datestr(e1,2); 
p-polyfit(newtimeu,newdepu, I); 
xi=linspace(sorttimeu( 1 ),sorttimeu(end),space); 
figure 
yi=polyval(p,xi); 
plot(newtimeqnewdepu,%.','~~~ilrke~~ize', 10) 
hold on 
plot(xi, yi,'r-') 
grid on 
datetick('xl, 1 5) 
t 1 =['Emergence - ' dl; 
title(t1) 

% fit a line to just the minutes 



ylabel('Depth (m)'); 
xlabel(Timel) 
hold on 

byi- (1)-slope*xi(l); % y-intercept 
xeq=(O-b)/slope; 
rate=slopem* 1.6667; % change units to cmls 
txt 1 =datestr(xeq, 15); 
txG!=num2str(rate); 
co=o~~coe~newtimeu,newdepu); 
r2=cor( 1,2)"2; 
txt3=num2str(r2); 
g2=[W = ' txt31; 
g-prnergence begins at ' kt11 % x-value at y=O (depth=Om) 
gl=['Ascent rate is ' kt2(1,1:5) ' cmls']; 
text(xi( 1 ),max(newdepu),g); 
text(xi(l),max(newdepu)-0.5,gl); 
text(xi(end),max(newdepu),g2); 

filenarne=input('Enter filename for saved variables: ',Is'); 
folder=('c:\Taps\efilesqm'); 
cmd=['cd ' folder]; 
eval(cmd); 
cmd=['save ' filename ' newdepu newtimeu slopem slope b k t1  rate xi yi r2'1; 
eval(cmd) 
f p ~ t f ( D a t a  saved to diskb') 

clear f l  newtimeu newdepu newtime newdep endtime enddep sorttimenew sorttime 

elseif size(newtime, 1)<=2 
disp('No emergence to be found') 

end 
end 



% find1astam.m 
% this program uses the same algorithm as fmdentry.m 
% but instead of finding all the points within a specified time frame, 
% it finds the last points before sunrise, civil twilight, or wbatever 
% time you specify 
% use after loading smoothed data 
% HUA 1-21-03 

% compute first difference and convert to percent difference 
for i=l :min(c) 
diffrow(i,:)=di@smooth(i,:)); 
xm(i,:)=(dif£kow(i,:)* 1 OO)./smooth(i,2:end); 

end 

% take data above 2m 
% add 14 so r will represent the correct depth 

[r,col]=find(xm( 1 5:min(c),:)<=-20); 
&14; 
zcol=zdatenew(col); 
depdWr); 
dl=datestr(zdatenew( l),2); 
&=datestr(zdatenew(end),2); 
figure 
plot(zcol,depr,'.','markersizeI, 10) 
datetick('xq, 15) 
grid on 
tl=['Index of BVT w/ <= -20% difference between minutes, ' dl  ' - '&I; 
title(t 1) 
ylabel('Depth (m)') 
xlabel(Time') 
hold on 

%filename=input('Enter filename for saved plot: ','s'); 
%[img,cmap]=capture; 
%imwrite(img,cmap,filename,'ti f) 
%diisp('Plot saved') 

n=input('How many re-entry events (i.e. days) are there in this file? '); 
for i= 1 :n 

if i=l 
disp('Finding first re-entry event...'); 

elseif i=2 
disp('Finding second re-entry event.. .I); 

elseif i=3 
disp('Finding third re-entry event...'); 

elseif i==4 
disp('Finding fourth re-entry event...'); 

elseif i=5 
disp('Finding fifth re-entry event...'); 

end 

da=input('Enter DAY: '); 
h=input('Enter HH: '); 

% for re-entry, it seems that time of am 
% civil twilight works well 



m=input('Enter MM: '); 
se=O; 
[yr,mo] = datevec(zcolbot( 1 )); 
-tenum(yr,mo,da,h,m,=); 
[ztime]=find(zcolbot<=t); 
e 1 =zcolbot(ztime(end)); 
h2=h+ 1 ; 

the 
t2=datenum(yr,mo,da,h2,m,se); % time specified 
[ztime2]=fmd(zcolbot~=t2); 
e2=zcolbot(ztime2(end)); 

% restrict point to those within an hour of 

for j=l5:min(c) 
lastall=find(rbot=j); 
[last]=fmd(lastall>=ztime(end) & lastall<--ztime2(end)); 
if isempty(1ast) 

ending(j)=O; 
else 
ending(j)=lastall(last(end)); 

end 
end 

% eliminate all points below 6m that occur earlier than the first point 
% above 6m and 
% eliminate all points above 5m that occur later than the last point 
% below 5m 
[above]=fmd(enddep%); 
[below]=fiind(enddep<s); 
abovetime=endtime(above); 
belowtime=endtime(below); 
sortabove=sort(abovetime); 
sortbelowrsort(be1owtime); 
if isempty(above) 
[fJ=fmd(endtime<sortbelow(end)); 

elseif isempty(be1ow) 
[fJ=fmd(endtime<sortabove( 1 )); 

else 
[fJ=fmd(endtime>=sortabove( 1) & endtime<=sortbelow(end)); 

end 
newtime=endtime(f); 
ne wdep=enddep(f); 
sorttimenewrsort(newtime); 

for i= 1 :length(sorttimenew)- 1 % chop any times that are greater than 15 min 
if sorttimenew(i+l)-sorttimenew(i)>=O.0105 % away from the rest of the points 

fl(i,:)=l; 



else fl(i,:)=O; 
end 

end 

if sum(fl)===tl 
newtimeu=newtime; 
newdepu=newdep; 
sorttimeu=sorttimenew ; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,m4,se] = datevec(sorttimeu(end)); 

end 

if sum(fl)>O 
[fx]=find(fl= 1); 
v=size(fl , I  ); 
if size(fx,l)==l 

iffx/v > 0.75 ( Mv < 0.25 
u=fmd(sorttimenew(fx)-newtime); 
newtimeu=newtime; 
newdepu=newdep; 
newtimeu(u)=[]; 
newdepu(u)=[]; 
sorttimeu=sort(newtimeu); 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu( 1)); 
[yr,mo,da,M,m4,se] = datevec(sorttimeu(end)); 

else 
newtimeu=newtime; 
newdepu=newdep; 
sorttimeu=sorttimenew; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu( 1)); 
[yr,mo,da,h4,d,se] = &tevec(sorttinaeu(end)); 

end 
elseif size(fx, 1 )>l 

if fx(end)/v > 0.75 1 fx(end)/v < 0.25 
for k=fx( 1 :end) 
u(k)=fmd(sorttimenew(k)=newtime); 

end 
newtimeu=newtime; 
ne wdepu-ewdep; 
newtimeu(u)=[]; 
~ewdepu(u)=[l; 
sorttimeu=sort(newtimeu); 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu( 1)); 
[yr,mo,da,M,m4,se] = datevec(somimeu(end)); 

else 
newtimeu=newtime; 
newdepu-ewdep; 
sorttimeu=sorttimenew; 
[yr,mo,da,h3,m3,se] = datevec(sorttimeu(1)); 
[yr,mo,da,M,m4,se] = datevec(sorttimeu(end)); 

end 
end 
if size(newtimeu, l)<=l 

disp('N0 reentry to be found') 
end 

end 



if h4-h3>O 
space=(60-m3)+m4; 

elseif h4-h3==O 
space=m4-m3 ; 

end 

newdepu=newdepu'; 
d=datestr(el,2); 
p==lyfit(newtimeu,newdepu, 1); 
xi=linspace(sorttimeu(1),sorttimeu(end),space); 
figure 
yi=polyval@,xO; 
plot(newtimeu,newdepu,%.','markersize', 10) 
hold on 
plot(xi, yi,'r-') 
grid on 
datetick('xW, 15) 
t l=[Reentry - ' dl; 
title(t 1) 
ylabel('l3ept.h (m)'); 
xlabel(Time') 
hold on 

slope=(yi(end)-yi( 1 ))/(xi(end)-xi( 1 )); 
slopem=(yi(end)-yi(l))/space; % in d m i n  

% fit a line to just the minutes 

b=yi( 1 )-slope*xi( 1 ); 
xeq=(O-b)/slope; 
rate=slopem* 1.6667; 
txt l=datestr(xeq, 1 5); 
txt2=num2str(rate); 
co=orrcoe~newtimeynewdepu); 
r2=cor(1,2)"2; 
txO=num2str(r2); 
g2=['R2 = ' txO]; 
g=[aeentry begins at ' txtl] % x-value at y=O (depth*) 
gl=['Descent rate is ' txt2(1,1:5) ' cds']; 
text(xi( 1 ),max(newdepu),g); 
text(xi(l),max(newdepu)-0.5,gl); 
text(xi(end),max(newdepu),g2); 

% y-intercept 

% change units to c d s  

filename=input('Enter filename for saved variables: ','sf); 
folde*c:\Taps\efiles-am'); 
cmd=['cd ' folder]; 
eval(cmd); 
cmd=['save ' filename ' newdepu newtimeu slopem slope b txtl rate xi yi ~2'1; 
eval(cmd) 
@rintf(Data saved to disk\n') 
clear fl 

elseif size(newtime, 1 )<=2 
disp('No reentry to be found') 

end 
end 
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