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In practical applications, numerical wave models are used as reliable tools to 

provide near future wave predictions and wave climatology for specific region. 

Obviously models first should go through extensive validationlverification procedures. 

Once validated, models can be used in scientific applications to investigate methods for 

improving performance and to develop better understanding of wave associated physical 

mechanisms and their interactions in specific field experiments. 

Two wave transformation models, SWAN and CGWAVE, are used to simulate 

wave conditions at the Field Research Facility, Duck (North Carolina). The motivation is 

to examine how well these models reproduce observations and to determine the level of 

consistency between the two models. Stationary wave conditions pertaining to three 

different storm-induced bathymetric representations are modeled. It was found that 

SWAN and CGWAVE reproduced the observed wave behavior to a large extent, but 



CGWAVE results tended to be somewhat smaller than the SWAN results and the 

measurements. The differences were attributed to wave-wave interactions and breaking. 

Otherwise the models showed a high level of consistency. SWAN and CGWAVE were 

also used to explore other mechanisms reported in the recent literature; the results were 

either consistent with some observations (in the case of the nonlinear mechanisms) or 

they shed more light on others (in case of the role of the research pier legs). 

An operational high resolution wave prediction system for the Gulf of Maine was 

experimentally developed. Attempts were then made to improve the quality of the 

SWAN model predictions through the assimilation of observed wave data into the model 

simulations. It was demonstrated that a simple data assimilation scheme that uses only 

the observed significant wave height to correct the energy level of the predicted full 2D 

wave spectrum may improve the quality of wave forecasting model predictions for up to 

2 days. Shorter relaxation times were attributed to inaccurate predictions of the wind 

field andlor inadequate representation of the boundary conditions. The results suggests 

that a simple and computationally inexpensive assimilation scheme is sufficient and 

would be of a greater benefit to high resolution operational wave prediction systems for 

the Gulf of Maine. 
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Chapter One 

INTRODUCTION 

1.1 Numerical Wave Modeling (Background) 

Despite the fact that the history of the study of ocean wave dynamics goes back 

several centuries, reasonable understanding of the physical properties of ocean waves did 

not start to develop before the late nineteenth century. With the progress in the 

understanding of the wave dynamics that took place in the early twentieth century, some 

attention has been paid to modeling the ocean waves. Interests in the prediction of the 

sea state started to grow by the middle of the last century especially after the concepts of 

wave spectrum and its evolution were recognized. Nowadays, despite the fact that many 

aspects of the physics of wind generated waves are still not fblly understood (e.g. wave 

breaking), the several numerical wave models that currently exist do, indeed, have the 

ability to predict the wave conditions on geographical scales ranging from coastal to 

global. 



Numerical wave models constitute the most efficient and cost effective tools that 

can provide essential wave information for purposes such as navigational safety and 

coastal protection. Wave measurements are expensive to obtain and yet limited in their 

spatial and/or temporal coverage. Conventional wave measurements from wave buoys are 

largely limited in their spatial coverage. Measurements of the waves obtained from 

satellite mounted instruments have substantially higher spatial coverage but are 

somewhat limited in their temporal coverage and are not always reliable (e.g. near coastal 

areas). Nevertheless, these wave measurements, regardless of their coverage, do not 

provide near future wave predictions. 

Applications of the several existing numerical wave models, nowadays, fall under 

two major categories: one is practical and the other is scientific. In practical applications 

models are used as reliable tools to provide near future wave predictions, wave 

climatology or extreme wave statistics for specific regions. Obviously, models have to 

go through extensive validatiodverification procedures before they can be used in 

practical applications. Scientific applications of wave models involve the investigation of 

methods to improve the model performance, the simulations of extreme cases that rarely 

occur in the real world and the development of better understanding of physical 

mechanisms associated with the waves and the way they interact in specific field 

experiments. 



The research presented in this thesis mainly involves the application of the-state- 

of-the-art numerical wave model SWAN in both scientific and practical aspects. The 

overall objectives of this thesis are as follows: 

1. Verification of the SWAN model on both coastal and marginal sea scales. 

2. Using the SWAN model to investigate the effect of physical mechanisms that 

significantly affect the wave evolution at a coastal area. 

3. Developing an operational wave prediction system for a marginal sea that is 

based on the SWAN model. 

4. Investigating the impact of a simple data assimilation scheme on the quality of 

the SWAN model predictions. 

The outline of the reminder of this introductory chapter is as follows. The general 

characteristics of numerical wave models are provided in subsection 1.2. This is 

followed, in subsection 1.3, by a detailed description of the numerical wave model 

SWAN. The layout of this thesis is given in section 1.4. 

1.2 General Characteristics of Numerical Wave Models 

Numerical wave models strive to simulate the various physical mechanisms that 

can be associated with generation and/or propagation of the waves. However the 



Shoaling 
Zones Harbors )eep Ocean Shelf Seas I Physics 

@ Negligible; 0 Minor Importance; Significant; Dominant 

Table 1.1: The relative importance of the physical mechanisms associated with wave 

evolution in different domains [after Young (1999)l. 



significance of these mechanisms largely varies with respect to the different oceanic 

scales (Table 1.1). For instance, the effect of the winds is not significant on waves 

propagating into a harbor but is significant on waves on a marginal sea. The case is 

exactly the opposite when considering the effect of diffraction. Due to the differences in 

the physical nature of the mechanisms shown in Table 1.1, it is almost impossible to have 

all these mechanisms implemented into a single wave model. Even if such model can 

exist, our current computational resources are not sufficient to operate such an expensive 

model which after all will not be always worthwhile. Therefore, the variety of numerical 

wave models that exist, nowadays, differ in the types of physics that they account for 

based on their nature and their scale of applications for which they were developed. 

According to the spatial scale of their applications, numerical wave models can be 

classified to large and small scale models. The large scale models focus on phenomenon 

that occur on large scales such as the wave generated by extra-tropical storms in the 

North Atlantic Ocean and the swells that travel for thousands of kilometers in the 

Pacific Ocean. Such models are typically applied on global and ocean scales. The small 

scale models mainly focus on the small scale variabilites in the wave conditions that 

result from wave interaction with the local bathymetric and geometric features. Typical 

applications of such models include simulating waves in harbors, coastal and near-shore 

areas. 

Both large and small scale models are, therefore, based on different levels of 

assumptions and simplifications in the physics and numerics that limit their applications 



to the purposes they were developed for. In fact, small scale models widely vary in the 

types of physics that they account for and therefore might not be used interchangeably. 

Variabilities among the large scale models are much less profound. Another aspect on 

which these models vary is their grid resolution. In order to resolve small scale 

variabilites in the wave conditions, the small scale models use much finer resolution grid 

sizes than those used in the large scale models. 

Based on their physical nature, numerical wave models can (loosely) be divided 

into two major types: 

1. Energy Balance Models: Models that are based on energy balance predict the 

spatial and temporal evolution of the full 2D wave energy spectrum. Since models of this 

type resolve only averaged wave properties such as the wave energy spectrum or its 

integral properties (e.g. wave heights, wave periods, etc.) and not the phase of individual 

waves, these models are also known as phase averaging models. 

Models of this class should be used only where wave properties vary slowly 

within few lengths. Domains of application for this model class range from global to 

coastal scales, hence, this model class includes both large scale models such as WAM 

(Komen et al. 1994) and WAVEWATCH (Tolrnan 1989); and relatively small scale 

models such as SWAN(Booij et al. 1999) and STWAVE (Resio 1993). These models 

include the effects of wind, bathyrnetric and current induced refractions, bottom friction, 



whitecapping and. nonlinear wave-wave interactions. Additionally, the small scale 

models of this type include the effect of bottom induced breaking. 

2. Mass and Momentum Conservation models: Models that are based on the 

conservation of mass and momentum predict the amplitude and the phase of the 

individual waves and therefore are also referred to as phase resolving models. This 

model type includes models that are based on the Mild Slope equation and models that 

are based on the Boussinesq equations. 

Models of this class are computationally demanding and therefore should be only 

used where wave properties vary rapidly within few wavelengths. Domains of 

application for this model include regions where wave-structure interactions are 

significant (e.g. harbors) and coastal and nearshore areas with complex geometric andlor 

bathymetric structures such that diffraction is significant. This class includes models like 

RCPWAVE (Ebersole et al. 1986), REFDIF (Kirby and Ozkan 1994), CGWAVE 

(Dimerbilek and Panchang 1998) and HARBD (Chen and Houston 1987). 

The above brief descriptions are intended to provide the very general 

characteristics of numerical wave models. For extensive reviews of existing numerical 

wave models reader is referred to Battjes, (1994), Panchang et al., (1998) and Young, 

(1999). However, detailed description of the energy balance model SWAN, which is the 

focus of this research, is provided in the next section of this chapter. The mass and 

momentum balance model CGWAVE is described in Chapter 2 of this thesis. 



1.3 SWAN Model 

SWAN (Simulating m v e s  Nearshore) is a numerical wave model developed at 

the Technical University of Delft in the Netherlands (Booij et al. 1999; Ris et al. 1999; 

Holthuijsen et al. 2000). The model is based on the following spectral action balance 

equation: 

where N(o,B,x,y,t) is the action density which equals to the energy density E(o,B,x,y,t) 

divided by the relative wave frequency o , 0 is the wave direction, and c, and c,, are 

components of the wave propagation velocity. The first term on the left hand side of 

(1.1) represents the rate of change of action in time and the second and the third terms 

represent the propagation of action in the (x, y) space. The fourth and fifth terms 

represent, respectively, the frequency shift and refraction induced by depth and currents. 

The sourcelsink term (S), on the right hand side of (1 .I), which represents the effects of 

generation, dissipation and nonlinear wave-wave interactions is given by: 

where, 

S,, = generation due to wind Input 

S , ,  = dissipation due to bottom-induced breaking 



Sfic = dissipation due to bottom friction 

S,,, = dissipation due to whitecapping 

S,,,, = triad nonlinear wave-wave interaction 

S,,,, = quadruplet nonlinear wave-wave interaction 

The terms of the above equations implies that SWAN is a third generation wave 

model that accounts for the following physical mechanisms: 

Wave propagation in spatial and temporal domains 

Shoaling and refraction due to depth effect 

Shoaling and refraction due to current effect 

Wave generation by atmospheric input (wind) 

Wave dissipation due to depth-induced breaking 

Wave dissipation due to bottom friction 

Wave dissipation due to whitecapping 

Triad nonlinear wave-wave interaction 

Quadruplet nonlinear wave-wave interaction 

Currently SWAN does not account for diffraction although reasonable ad hoc 

assumptions (e.g. Booij et al., 1997) might be able to remedy this limitation in the future. 

Although, wave transmission through and reflection against obstacles is accounted for in 

the recent SWAN version, the computed wave field in the immediate vicinity of obstacles 



is not accurate. These limitations imply that SWAN is not suitable for modeling the 

waves in harbors or in areas with complex bathymetric or geometric structures. 

SWAN is formulated in terms of the wave action density (Equation 1.1) instead of 

the wave energy density, because in the presence of currents, the wave energy density is 

not conserved whereas the action density spectrum is conserved. The action balance 

equation (1.1) is integrated in SWAN using finite-difference schemes in all five 

dimensions (time(t),geographical space(x,y),spectral space(o,O)). The sourcelsink terms 

(Equation 1.2) are numerically estimated with explicit or implicit approximations (Booij 

et al. 1999). 

Although, Equation (1.1) is written in Cartesian spatial coordinates (x,y), in the 

current SWAN version the user can also use spherical spatial coordinates. This allows 

the model to be easily nested in the coarse grid wave models WAM and WAVEWATCH. 

The more accurate and less diffusive propagation schemes, now implemented in SWAN 

recent version, allow the model to be used on spatial scales from laboratory conditions to 

shelf seas. 

1.4 Thesis Layout 

The research work is presented in chapters 2 and 3 of this thesis. Each one of the 

two chapters was written in a journal article format. Although this has led to occasional 



repetitions of some basic definitions, governing equations, etc., each chapter stands alone 

and may be read with less effort. 

In Chapter 2, two wave transformation models, SWAN and CGWAVE, are used 

to simulate wave conditions at the Field Research Facility (FRF), Duck (North Carolina). 

The motivation is to examine how well these models reproduce observations and to 

determine the level of consistency between the two models. The use of the two models, 

in which some components of the wave physics are similar and others are different, 

allows the isolation of these components and to examine their significance. The 

qualitative performance of the two models is examined by comparing the model results 

for three simulated storm events with some field observations made by other researches 

at FRF during different time periods. The results of the two models are also used in a 

quantitative-qualitative sense to investigate the effect of the piles of the FRF research pier 

on obliquely approaching waves as they pass under the pier during an event that has been 

studied by other researchers. 

In chapter 3, the principal motivation is to develop a high resolution operational 

wave forecasting system for the Gulf of Maine that is based on the numerical wave model 

SWAN, which accounts for the physical mechanisms associated with the wave generation 

and propagation in both deep and shallow waters. The major goal of this research is to 

investigate the extent to which wave buoy data can be cross validated and assimilated 

using the model SWAN. The research is intended to provide answers for two major 

questions, which are very relevant to the future of high resolution wave forecasting in the 



Gulf of Maine. The two questions are: (1) How significant is the impact of the used wave 

data assimilation technique on the quality of SWAN model predictions?, and (2) Is the 

assimilation of the observed wave height data sufficient or is the assimilation of other 

types of observation (e.g. spectral data), which requires higher level of sophistication, 

needed?. 

Chapter 4 contains concluding remarks that summarizes the studies presented in 

this thesis. 



Chapter Two 

SIMULATION OF WAVES AT DUCK (NORTH CAROLINA) USING TWO 

NUMERICAL MODELS 

2.1 Introduction 

In the United States and Europe, the development of ocean observing systems is 

receiving increased attention. These systems are intended to procure and disseminate 

data regarding various ocean parameters to user communities at regular intervals (See 

special issues of Coastal Engineering (Sept 2000, "Operational Oceanography in Coastal 

Waters") and Oceanography (v. 13, 1, 2000)). Mathematical modeling methods 

constitute an integral component of such systems. In the context of waves, models like 

WAM (Komen et al. 1994) and WAVEWATCH (Tolman 1989) are now routinely 

operational and produce ongoing forecasts for much of the global oceans. However, the 

resolution used in these systems is too coarse for obtaining reliable wave information in 

coastal regions. (For example, around the US, the National Weather Service uses grids 

varying between 0.5 and 1.25 degrees) and the models are not intended to handle 

complex geometric features and the resulting wave-scattering effects such as reflections, 

diffraction, etc. that may be important in nearshore areas. 



A suite of models may therefore be needed to perform operational simulations in 

coastal regions and one component may consist of the local use of specialized models in 

the intermediate region between the grid points of the outer-ocean WAM or 

WAVEWATCH operations and the very nearshore areas. This intermediate domain, 

which may be of the order of about 50 lun, may experience wave growth due to wind and 

call for the use of energy balance models. Much closer to the coast (e.g. in regions like 

harbors) where wave transformation is governed by the domain geometry, it may be 

necessary to model the wave motion itself using phase-resolving models (as opposed to 

modeling merely the energy transport). Panchang et al. (1998) provides a review of 

coastal wave modeling tools that have been developed in the last two decades.) 

One difficulty with operational modeling of waves in coastal areas pertains to the 

reliability of the predictions. For the outer ocean wave models, the length scale of the 

wind-induced changes is large and the combination of the available buoy and satellite 

data in the domain are generally sufficient for model validation. In coastal areas, 

however, spatial variability induced by geometric irregularities can be greater and more 

complex. Yet, most model domains will have little or no data for validationlcalibration. 

Satellite data close to the coast are not reliable (Siddabathula and Panchang 1996) and 

buoys, if at all present, are too localized to provide a proper representation of the 

complete wave scattering problem. (Zhao et al. (2001) discuss the effects of 

undersampling while making model-data comparisons.) Even when data are available, 

they would most likely contain the effects of physical mechanisms not modeled. It is 

obvious that unlike regional tidallcirculation models, it is difficult to validate or calibrate 



a regional coastal wave model used in an ocean observing system. Based on their 

examination of several coastal engineering models, Thieler et al. (2000) complain that 

assumptions and predictions associated with many currently-used models are either poor 

or totally invalid. In order to invest faith in the predictions, it is therefore necessary to 

validate the models whenever the opportunity exists and, if satisfactory results are 

obtained, to apply them at other desired sites in the hope that the predictions are reliable. 

The purpose of this paper is to examine the performance of two models, the energy 

balance model SWAN (Booij et al. 1999) and the phase-resolving model CGWAVE 

(Demirbilek and Panchang 1998; Panchang and Demirbilek, 2001) in a field application. 

The domain of interest, the Field Research Facility (FRF) at Duck (North Carolina, 

USA), contains a greater number of measurements than are normally available. The use 

of the two models, in which some components of the wave physics are similar and others 

are different, allows one to isolate these components and to examine their effects. 

The research presented in this paper consists of three parts. First, a comparison is 

made, in a quantitative sense, between the results of the two models themselves and 

between the model results and the observations at two FRF wave gauges. In this part we 

also try to quantify the significance of some of the physical mechanisms that the models 

account for. In the second part, the qualitative performance of the two models is 

examined by comparing the model results for the three storm events with some field 

observations made by other researches at FRF during different time periods. Finally, we 

use the results of the two models in a quantitative-qualitative sense to investigate the 



effect of the piles of the FRF research pier on obliquely approaching waves as they pass 

under the pier during an event that has been studied by other researchers. 

The layout of this paper is as follows. In Section 2.2, a brief description of the 

two models is given. This is followed, in Section 2.3, by some details about the study 

area and the modeling schemes. The results are discussed in Section 2.4. Concluding 

remarks are given in Section 2.5. 

2.2 Description of Models 

The model CGWAVE (Demirbilek and Panchang 1998) is a two-dimensional 

model developed at the University of Maine (USA). It is based on the following 

extension of the "combined refraction-diffraction" equation: 

where, for a given wave frequency a, O(x,y) is the wave potential from which the wave 

height and phase may be estimated, C is the wave velocity, C, is the group velocity, k is 

the wave number, w is a bottom friction factor, and y is the wave breaking parameter. 

This equation is applicable to both long and short waves and hence finds wide 

application. (See Mei (1983) and Panchang et al. (1999) for details.) The mild-slope 

assumption associated with (2.1) requires that for local depth d, ( b d  1 /kd) <<l, a 

criterion that is usually met in practice. Being elliptic, the equation represents a boundary 



value problem, which can accommodate internal non-homogeneities and boundaries. It 

hence forms a well-accepted basis for performing wave simulations in regions with 

arbitrarily-shaped (manmade or natural) boundaries and arbitrary depth variations 

without limitations on the angle of wave incidence or the degree and direction of wave 

reflection and scattering that can be modeled. In essence, it represents the complete two- 

dimensional wave-scattering problem for the non-homogeneous Helmholtz equation. 

Irregular wave conditions may be simulated using (2.1) by superposition of 

monochromatic simulations (e.g. Chawla et al. 1998; Panchang et al. 1990a; Zhao et al. 

200 1 .) 

CGWAVE uses a triangular finite-element formulation with grid sizes varying 

throughout the domain based on the local wavelength. The model allows one to specify 

the desired reflection properties along the coastline and other internal boundaries via a 

Robbins' type boundary condition (6<D/6n = a@, where a is related to the reflection 

coefficient). The model also uses a semi-circle (as an open boundary) to separate the 

model domain from the outer sea. Examples of typical CGWAVE model domains are 

described later (e.g. Fig. 2.3). The input conditions are provided at the offshore ends of 

two one-dimensional cross-shore sections. (In practice, the input condition is known at 

the end of one of the transects. The condition at the offshore end of the other transect is 

obtained by appropriate phase translation.) A combination of the incident and reflected 

waves is computed along these transects using a one-dimensional version of (2.1); this 

partial solution is then mapped on to the semicircle to force the two-dimensional model. 

The remainder of the solution on the boundary consists of a scattered wave that emanates 



from within the domain; this component is allowed to radiate out through the use of an 

impedance boundary condition. (For detailed descriptions, see Panchang et al. 2000; 

Zhao et al. 2001; and Panchang and Demirbilek, 2001). 

The model SWAN is a third generation wave model developed at the Technical 

University of Delft in the Netherlands (Booij et al. 1999; Ris et al. 1998; and Ris et al. 

1999). The model is based on the following spectral action balance equation: 

where N is the action density (= spectral energyla), 0 is the wave direction, and c, and c,, 

are components of the wave propagation velocity. The first term on the left hand side of 

(2.2) represents the rate of change of action in time and the second and the third terms 

represent the propagation of action in the (x, y) space. The fourth and fifth terms 

represent, respectively, the frequency shift and refraction induced by depth and currents. 

The sourcelsink term (S) on the right hand side of (2.2) represents the effects of 

generation, dissipation (due to breaking, bottom-fiction, and whitecapping), and 

nonlinear wave-wave interactions. In the present study, we have used the following 

steady state version of (2.2): 



where it has been assumed that over the length scales of interest, the propagation times 

are small enough so that unsteady effects may be ignored (e.g. Booij et al. 1996). This 

makes the model compatible with CGWAVE, which is a quasi-steady (time-harmonic) 

model. Further, in an ocean observing system, computational efficiency may demand 

that these models be run in the steady mode at frequent time intervals (say 3 hours), 

forced by the output from the outer ocean WAM/WAVEWATCH simulations. (The 

domains for coastal models such as CGWAVE often involve about half a million nodes, 

making unsteady or more frequent simulations impractical.) The effects of currents are 

also not considered in the present study (c, = 0). The governing equation is solved using 

finite differences for a spectral or parametric input specified along the boundaries (Booij 

et al. 1999; Ris 1997). 

SWAN can use either a rectilinear or curvilinear computational grids with a 

uniform grid size in either case. Although, unlike CGWAVE, the grid size in SWAN is 

independent of the water depth, it should be small enough to resolve the changes in 

bathyrnetric, wind, and wave fields. The boundaries of SWAN computational grid are 

either land or water. The land boundary absorbs all incoming waves (reflection is not 

accounted for). The wave input conditions are defined along one of the three water 

boundaries while along the other two, waves cannot enter the domain but can only leave 

freely. This assumption is obviously a source of error and therefore it is necessary to 

select such lateral boundaries to be sufficiently far away from where reliable 

computations are needed in order to minimize the lateral boundary effect on the model 

results at that area of interest. 



The major differences in the two models lie in the fact that (2.1) is based on the 

Laplace equation and hence models the wave motion, while (2.2) models the transport of 

energy. As a consequence, the effects of wind generation cannot be included in the 

former, while the effects of reflection and diffraction cannot be included in the latter. (Ad 

hoc attempts to remedy these limitations have been described by Booij et al. (1997) and 

Pearce and Panchang (1 985).) Thus, CGWAVE is not appropriate for cases where wave 

generation by wind is significant, and simulation with SWAN in areas with complex 

bathymetry, around islands or structures, and in semi-closed areas such as harbors and 

inlets may be difficult. (It is noted that despite such limitations, Bondzie and Panchang 

(1993) found that the wave model HISWA (the predecessor of SWAN) provided 

reasonable simulations in one test involving complex caustic-causing bathymetry.) The 

grid resolution is also generally different: phase resolving models require a resolution that 

is a fraction of the wavelength, while energy balance model grids can be much larger. 

Other differences also exist; these are due to the fact that (unlike SWAN) the version of 

CGWAVE used in this study does not include whitecapping and non-linear wave-wave 

interactions. However, such limitations can be remedied in the future. (To elucidate, 

whitecapping may be regarded as a modification to y, and nonlinear resonant interactions 

can be included in the governing equation (2.1) following Tang and Oullet (1997) and 

Kaihatu and Kirby (1995).) In general, however, the modeler does not a priori know 

how significant these mechanisms are in a given application. If the physics are similar, 

the models should produce similar results despite the difference in their genesis. 



2.3 Study Area and Modeling Details 

The Field Research Facility (FRF) is a unique facility that is operated by the US 

Army Corps of Engineers to study coastal processes and has been internationally 

recognized for its coastal studies. FRF (Fig. 2.1), which faces the North Atlantic Ocean, 

is located near the town of Duck (North Carolina) and is subject to frequent storms and 

hurricanes. A nearshore sand bar, which often forms during the moderate phase of a 

storm, migrates offshore as the storm intensifies. The bottom slope at the FRF varies on 

average between 1 :20 offshore of the sand bar and a steep 1 :5 near the beach. The FRF 

research pier extends 561 m offshore and is supported by 108 concrete-filled steel piles, 

each with diameter of approximately 0.85 m. Under the pier a permanent bathymetric 

trough exists, but its shape and depth changes with the wave conditions. Specialized 

equipment and instruments constantly monitor the changing bathymetry, winds, waves, 

tides, and currents. All measurements made at the FRF can be downloaded from the FRF 

web-site (http://www.fif.usace.arrny.mil). 

Simulations were performed for wave conditions observed during three different 

storm events that occurred at FRF (Table 2.1 and later in Fig. 2.4). These events, which 

occurred in 1994, 1996, and 1998, were selected as a consequence of both the availability 

of the data (mainly bathymetric) and the severity of the storm conditions. Data pertaining 

to the bathyrnetry, waves, winds, and sea levels were used in this study. During the peak 

of the storms, the conditions were largely steady, as illustrated in Fig. 2.2. 
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Figure 2.1: Plan view of the Field Research Facility (FRF), showing the locations of 

instruments. + represents land areas. 



Date 
Time 

Nov. 18,1994 
04:OO - 06: 16 

Sep. 06,1996 
01:OO - O3:l6 

May 13,1998 
13:OO - 15~16 

Location 

8-m Array 
Gauge625 
Gauge64 1 

8-m Array 
Gauge625 
Gauge64 1 

8-m Array 
Gauge625 
Gauge64 1 

Table 2.1: Observed wave conditions at FRF during three storm events. Hs, Tp, Dp, and 

Ds represent significant wave height, peak wave period, peak wave direction and 

averaged wave directional spreading, respectively. All directions are fiom true north. 

The underlined values at the 8-m array location also represent the spectral parameters of 

the input conditions used for simulating each storm event. 



TIME (MINUTES) 

Figure 2.2: Wind speed (Ws), wind direction (Wd), significant wave height (Hs), and 

peak wave period (Tp) data for the time periods investigated (8 192 Seconds) for the three 

storm events, 1 994 (solid lines), 1996 (dashed lines) and 1998 (dotted lines). 



The changing bathymetry at FRF is monitored using the "Coastal Research 

Amphibious Buggy" which records, at irregular intervals, bathymetric data along cross- 

shore sections separated by about 40 m. On each cross-shore transect, measurements are 

made at a spacing of 0.5-0.75 meters. Temporal changes in the bathymetry at FRF are 

quite significant (Howd and Birkemeier 1987) due to the wave action during storm 

events. For instance, Gallagher et al. (1998) observed a 130 m movement of the crest of 

the nearshore sand bar during a two-month period in the fall of 1994 that included three 

storms. As a consequence of such changes, each of the three cases investigated in this 

study is unique and requires a different model grid. Further difficulties arise due to the 

fact that SWAN and CGWAVE use different kinds of grids, so that two different model 

grids must be generated for each storm event. 

For SWAN, a rectilinear computational grid is generated with grid size of 8 m x 8 

m for each case. The three different computational grids extend for 800 m in the cross- 

shore direction between y = 100 m and 900 m (Fig. 2.1). In the long-shore direction, the 

computational domains were extended on each side sufficiently beyond our area of 

interest, which is between 100 m and 900 m long-shore coordinate, in order to minimize 

any effect of the lateral boundaries. (Sensitivity analyses were also performed by using 

even larger domains to check that the area of interest was unaffected by possible spurious 

boundary effects). The generated computational grids contained 13750, 15000, and 

14300 grids for 1994, 1996 and 1998 events respectively. In SWAN, the coastline 

absorbs all the incoming waves. For CGWAVE, grid-generation is more complicated 

since the resolution is based on the wavelength, which is a h c t i o n  of water depth. For 



each case, a mesh of non-equal size triangular finite elements was generated for the 

domain with a semi-circular open boundary using the grid-generation package contained 

in the "Surface-Water Modeling System" (Zundell et al. 1998). The alongshore extents 

of the three CGWAVE domains were almost equal to those used in SWAN domains. For 

each event, a model grid was generated such that there were at least 10 nodes per 

wavelength, and resulted in 72440, 88629, and 76180 finite elements for the three cases. 

Since small features can be more readily accommodated with finite elements, the pilings 

of the FRF research pier were included in the CGWAVE grid (but not in the SWAN 

simulations). This was done because recently Elgar et al. (2001) have investigated the 

effects of the research pier on the data collected at FRF. The 76 research pier pilings that 

were accommodated were considered to be fully reflective. The coastline was assumed to 

be fully absorbing boundary. 

It must be noted here that since all non-homogeneities are enclosed in domains of 

different shapes for the SWAN and CGWAVE simulations, the modeled scenarios are 

similar but not identical. An example of the two different domains is shown in Fig. 3 for 

the bathymetry used for the 1998 storm event. Because of differences in grid resolution, 

the bathyrnetric representation in the two model domains is somewhat different. 

Another feature in which the simulations differ pertains to the open boundary 

conditions used by each model. Input conditions to SWAN are defined along the 

offshore boundary of the rectangular domain (i.e. at y = 900 m). For CGWAVE, the 

input conditions are provided at the offshore ends of the two one-dimensional cross-shore 



sections (Fig. 2.3) that also extends to y = 900 m. The input wave conditions were based 

on frequency-direction spectra, Fig. 2.4, obtained from the Pelement linear array of 

pressure gauges located on the 8 m depth contour about 900 m offshore (Fig. 2.1). Each 

spectrum is based on an 8192-second time-series of data collected at 2 Hz. Each 

spectrum consists of 29 frequency components between 0.04443 Hz and 0.3 1787 Hz with 

frequency resolution of about 0.00977 Hz and 90 directional components distributed into 

45 directional bins on either side of the research pier with a resolution of 2 degrees. The 

resulting 2610 spectral components were used to force SWAN. However, the much 

larger number of grids in CGWAVE simulations precluded the inclusion of such a large 

number of components. The spectral discretization provided to CGWAVE was based on 

eliminating components containing energy less than a prespecificied threshold (9% of the 

total energy) and enhancing the energy content of the remaining components to reproduce 

the desired incident wave conditions. 

Uniform winds were assumed over the SWAN domain based on averaged wind 

measurements at the end of the FRF research pier. Tidal measurements, collected by a 

tide gauge located at the offshore end of the research pier, were also used to adjust the 

water depths in the domains. The observed wave conditions at the two gauges located 

under the FRF research pier (denoted by "G641" and "G625" in Fig. 2.1) are compared to 

the model output to determine the quantitative performance of the two models. At these 

two gauges the wave conditions are measured every 34 minutes; therefore, for each case 

a total of five measurements were averaged at each wave gauge. 
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Figure 2.3: Model domains and bathyrnetries for (a) SWAN and (b) CGWAVE 
simulations. 

a. Model domain and bathymetry for SWAN simulation of the May 1998 storm 

event. 
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b. Model domain and bathyrnetry for CGWAVE simulation of the May 1998 

storm event. 



(a) NOVEMBER 1 8', 1994 ; 0 4 M  - MA6 

V.J  

DIRECTION PEG.) 

Figure 2.4: Input directional wave spectra used to force SWAN (shown normalized) for 

the three simulations (a) 1994, (b) 1996 and (c) 1998. 

a. Input directional wave spectrum used to force SWAN 1994 simulation. Left wall, 

normalized 1-d directional spectrum for peak frequency; facing wall, normalized 

1 -d frequency spectrum. 



(b) SEPTEMBER 6th, 1996 ; 01 .a - 03:16 

b. Input directional wave spectrum used to force SWAN 1996 simulation. Left wall, 

normalized 1-d directional spectrum for peak frequency; facing wall, normalized 

1 -d frequency spectrum. 



(c) MAY 1311: 1998 ; 13:W - 15:16 

DIRECTION @EG.) 

c. Input directional wave spectrum used to force SWAN 1998 simulation. Left wall, 

normalized 1-d directional spectrum for peak frequency; facing wall, normalized 

1 -d frequency spectrum. 



The SWAN model runs were made using a personal computer equipped with an 

AMD Athlon 700 MHz processor and 256 megabytes of RAM. On average a SWAN run 

takes about 1 hour. Spectral CGWAVE runs were made using a highly parallelized 

version of the code (described by Bova et al. 2000) on the US Army Corps of Engineers' 

supercomputer. For non-breaking runs, a typical simulation for 400 spectral components 

using 50 processors takes about 3 minutes. However, when breaking is specified as a 

function of all spectral components (i.e. the significant wave height), the effect of the 

parallelization is diminished and a typical simulation requires about 20 hours. 

2.4 Results and Discussion 

The model results are presented and discussed in the following order. After a 

preliminary quality control examination of model performance, we describe quantitative 

and then qualitative aspects of the results based on the simulation of the three storm 

events. Then we provide a quantitative-qualitative study of the effect of the piles of FRF 

research pier on the waves. 

Before the three storm events were simulated, the performance of the two 

numerical models was preliminary examined in a qualitative sense. This was done by 

simulating several cases with different monochromatic incident wave conditions. While 

this is not a problem with CGWAVE, SWAN does not really run in a monochromatic 

mode; a narrow-peaked spectrum was therefore provided as input. Fig. 2.5 shows the 

results obtained for the 1996 bathymetry for an incident wave of height = 1 m, period = 



10.6 seconds, and angle of approach = 30 degrees to the right of the pier. The phase 

diagram (showing cosine of the phase) obtained from the CGWAVE simulation, Fig. 2.5 

(top panel), shows the expected bending of the phase lines due to refraction across the 

bathymetry and the expected decrease in the wavelength in the shoreward direction. No 

spurious oscillations encountered in earlier models of this category (e.g. Thompson et al. 

1996) are seen. Peak wave directions obtained with SWAN, shown in Fig. 2.5 (bottom 

panel), also appear to be reasonable and orthogonal to the phase diagram shown in Fig. 

2.5 (top panel). These and other tests indicated satisfactory performance. (Note that in 

these and other figures, the offshore extent of the two domains is different; even though 

this dimension is smaller for the CGWAVE domain, as noted earlier, the input waves are 

specified at the same location for both models (Fig. 2.3) by using the two 1-D sections to 

account for the effect beyond the offshore end of the semi-circular domain.) 

2.4.1 Quantitative Model Performance 

All simulations with SWAN have been made with the default formulations for 

wind generation, wave refraction, wave breaking, bottom friction, wave-wave 

interactions, and white-capping (Booij et al. 1999). Initially, SWAN runs were made 

with all the physical mechanisms turned on ("all-on runs") for all 3 conditions. An 

example of the significant wave heights computed with SWAN is shown in Fig. 2.6 (top 

panel) for the 1998 simulation. The results at the gauge locations are given in Table 2.2 

and Fig. 2.7 (top panel) for all three conditions. It may be seen that SWAN simulates the 

observed changes in the significant wave heights very well for the three storm events. 
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Figure 2.5: Phase diagram (a) produced by CGWAVE and peak wave directions (b) 

produced by SWAN for a monochromatic wave. 

a. Phase diagram produced by CGWAVE for a monochromatic wave incident 

from 30 degrees to the right of the research pier with height = 1 m and peak 

period = 10.6 sec. 
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Figure 2.6: Significant wave heights computed by (a) SWAN and (b) CGWAVE for the 

May 1998 simulations. 

a. Significant wave heights computed by SWAN for the May 1998 simulation. 
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b. Significant wave heights computed by CGWAVE for the May 1998 

simulation. 



Physics 

All On 

Wind Off 

Refrc. Off 

Break. Off 

Frict. Off 

Triad Off 

Wtcap. Off 

Date : Nov. 18,1994 
Time : 04:OO - 06: 16 

Gage 
# 

625 
64 1 

625 
64 1 

625 
64 1 

625 
641 

625 
641 

625 
641 

625 
641 

Sep. 06,1996 
01:OO - 03:16 

Hs TP 
(m) (set) 

2.717 8.536 
1.629 8.536 

2.792 8.536 
1.597 8.536 

2.820 8.536 
2.000 9.217 

3.013 8.536 
2.635 8.536 

2.740 8.536 
1.656 8.536 

2.851 8.536 
1.538 8.536 

2.723 8.536 
1.630 8.536 

May 13,1998 
13100 - 15:16 

Table 2.2: SWAN-computed significant wave heights (Hs) and peak wave periods (Tp) 

for three storm events with different physics incorporated. 
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Figure 2.7: Significant wave height comparisons for SWAN (top panel) and CGWAVE 

(bottom panel) for the three storm events. 



In addition to the "all-on" SWAN runs; six additional SWAN runs were made for 

each storm event, by turning off the physical mechanisms one at a time. This allows one 

to determine the significance of each mechanism on the wave transformation near FRF. 

Of these runs, the computed significant wave heights and mean wave periods (Table 2.2) 

deviate from the "all-on" runs and from the observations when refraction and bottom- 

induced breaking are turned off, indicating that these are the two most significant 

mechanisms affecting wave propagation. The other physical mechanisms, viz. wind, 

bottom friction, white-capping, and triad wave-wave interaction showed little 

significance. This validates, to a large extent, the suitability of CGWAVE, in which the 

effects of wind, white-capping, and wave-wave interactions are absent, for simulating 

these cases. 

Fig. 2.6 (bottom panel) shows a contour plot of the significant wave heights 

computed with CGWAVE for the 1998 storm event. From Table 2.3 and Fig. 2.7 

(bottom panel), it can be seen that at gauge G625, CGWAVE results are, on average, 

smaller than the observations (and the SWAN results); the discrepancy is much less at 

gauge G641. Additional CGWAVE runs were made with the breaking turned off to 

quantifl the significance of the breaking mechanism. The results (Table 2.3) showed that 

the bottom-induced breaking is indeed significant. While it is not possible to turn off 

refraction in CGWAVE (since it is inherent in the "combined refraction-diffraction" 

equation), the example in Fig. 2.5 (top panel) clearly shows its importance. Thus the 

results of the two models are compatible insofar as the identification of the dominant 

mechanisms for these simulations is concerned. 



Date : 
Time : 

Physics Gage 
# 

With Breaking 625 
64 1 

WIO Breaking 625 
64 1 

Nov. 18,1994 
04:OO - 06:16 

Sep. 06,1996 
01:OO - 03:16 

May 13,1998 
13:OO - 15:16 

Table 2.3: CGWAVE-computed significant wave height (Hs) for three storm events, with 

and without breaking. 



For comparing the performance of the two models, instead of relying only on the 

two gauge locations, we also examined the significant wave heights obtained by the two 

models along three cross-shore sections (Fig. 2.8). The sections were taken along the 

pier line and to the right and left of the pier at cross-shore coordinates (shown in Fig. 2.1) 

equal to 275m (Right Section) and 775m (Lefi Section). Fig. 2.8 shows that for the 1994 

and 1996 events, significant wave heights computed by CGWAVE were always less than 

those computed by SWAN along all three sections. For the 1998 storm event, CGWAVE 

results along the pier line were closer to SWAN results but along the two other sections, 

the significant wave heights obtained with CGWAVE were again smaller. Despite the 

fact that CGWAVE results were quantitatively lower, the two models show qualitatively 

similar behavior along the three sections for the three events. The two models also 

behaved in the same way when the breaking was turned off for the three storms, as can be 

seen in Fig. 2.9. For both models, the onset of breaking is found to occur far offshore and 

not only in shallow waters. 

In addition to the numerics (relatively coarse finite difference grids versus high- 

resolution finite element grids), the differences in the model results noted in the above 

paragraph may be attributed to the input conditions and the wave physics modeled. To 

examine the effect of the former (i.e. the number of spectral components), the reduced 

spectra were used (as done for CGWAVE) to force SWAN for the three storm events. 

For both 1998 and 1996 storm events there were insignificant changes in the results. The 

1994 case showed a slight change in the significant wave height (of the order of about 0.3 

m at the "G625" and "G641" wave gauges). There were no changes in the SWAN- 



computed peak wave periods. Turning to wave physics, refraction was seen to be 

properly modeled (Fig. 2.5) by both models. (In any case it is not possible to "turn off' 

refraction in CGWAVE). The similarity of the overall results and the discussion 

provided earlier preclude the absence of pier-induced diffraction in SWAN and the 

absence of wind generation in CGWAVE as possible sources of discrepancy. The good 

performance shown by SWAN for the three storm events and also the consistency in the 

results of CGWAVE and SWAN along the research pier line indicate that bathyrnetric 

and structural (piling-induced) diffraction (which is absent in SWAN) is not particularly 

significant for the wave periods investigated. The discrepancies may hence be attributed 

to wave breaking and nonlinear interactions. 

Wave breaking is simulated in the two models in different ways. CGWAVE uses 

the Dally et al. (1985) formulation without tuning the stable wave factor and wave decay 

factor used therein, while SWAN uses the Battjes and Janssen (1978) formulation. For 

examining the effect of these formulations, wave propagation over the bar-trough 

bathymetry (Fig. 2.10) used by Booij et al. (1999) was modeled with a simple, one- 

dimensional version of CGWAVE. The results (Fig. 2.10) and other tests described by 

Zhao et al. (2001) suggest that the Dally et al. (1985) breaking formulation (denoted by 

DDD in Fig. 10) underestimates the observed wave heights somewhat, compared with the 

laboratory data and the Battjes and Janssen (1978) formulation (denoted by BJ). (Of 

course, the values for the two parameters (stable wave factor and wave decay factor) may 

be adjusted according to the bottom slope, but that is difficult for field applications. 

Clearly, the treatment of breaking is a dominant factor influencing the discrepancy 
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Figure 2.8: Water depth profiles and significant wave heights (Hs) obtained with SWAN 

and CGWAVE along three different cross-shore sections for the (a) 1994, (b) 1996, and 

(c) 1998 simulations. 
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a. Water depth profiles and significant wave heights (Hs) obtained with SWAN 

(solid lines) and CGWAVE (dashed lines) along three different cross-shore 

sections for the 1994 simulation. Circles (0) represent observed significant wave 

heights at two gauge locations. 
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b. Water depth profiles and significant wave heights (Hs) obtained with SWAN 

(solid lines) and CGWAVE (dashed lines) along three different cross-shore 

sections for the 1996 simulation. Circles (0) represent observed significant wave 

heights at two gauge locations. 
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c. Water depth profiles and significant wave heights (Hs) obtained with SWAN 

(solid lines) and CGWAVE (dashed lines) along three different cross-shore 

sections for the 1998 simulation. Circles (0) represent observed significant wave 

heights at two gauge locations. 
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Figure 2.9: SWAN (S) and CGWAVE (C) computed significant wave height, with and 

without breaking (WE3 and NB), along the pier line section for the three storm events. 

Circles (0) represent observed significant wave heights at two gauge locations. 
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Fig.2.10: Water depth profile (top panel) and CGWAVE-computed significant wave 

height comparison (bottom panel). 



between the models. However, as described in Sec. 2.4.2, breaking is linked to wave- 

wave interactions as well. 

2.4.2 Qualitative Model Performance 

Chen et al. (1997), Elgar et al. (1997), and Herbers et al. (2000) suggested that 

nonlinear interactions in the FRF surf zone transfer energy to higher frequencies from 

where it is rapidly dissipated by bottom-induced breaking. At the two wave gauge 

locations, however, we have noted that the effect of the wave-wave interactions was 

insignificant (Table 2.2). In light of the suggestions by Chen et al. (1997), Elgar et al. 

(1997), and Herbers et al. (2000), the effect of wave-wave interactions over the entire 

domain was investigated. Fig. 2.1 1 shows the values obtained by subtracting the 

significant wave heights of the "all-on" run from the significant wave heights of the 

"triad-off" run for the 1998 simulation. Maximum positive values are found to occur 

along the surf zone that extends in the cross-shore direction to a distance of about 100 m 

offshore. In these areas, the "triad-off" wave heights are larger than the "all-on" wave 

heights, suggesting that breaking has less of an effect when the interactions are absent. 

This is confirmed by examining the spectral characters for the "all-on" and the "triad-off' 

runs for theses areas; see Figure 2.12. For each simulation, the triad interactions are seen 

to transfer energy from the low frequency part of the spectrum to the high frequency part. 

Thus a greater amount of energy is available for dissipation in the high frequency waves 

(which are more susceptible to breaking), leading to smaller wave heights. These 

numerical results are consistent with the suggestions of Chen et al. (1997), Elgar et al. 

(1997) and Herbers et al. (2000). 



While the effect of wave-wave interactions on the overall SWAN results is 

somewhat small at the gauges, as seen earlier, we have just seen that it influences wave 

breaking in shallow areas. Due to the difference in the breaking formulation, the 

discrepancy between the results of the two models as one approaches the nearshore areas 

could be expected to increase. However the differences diminish (Fig. 2.8), because of 

the role of wave-wave interactions in this area, which is to enhance the effect of breaking 

in SWAN. In a sense, the combination of wave-wave interactions and breaking with the 

Battjes and Janssen (1978) formulation (in SWAN) has the same effect as breaking with 

the untuned Dally et al. (1985) formulation (in CGWAVE) in shallow areas. Further 

offshore, the larger wave heights seen along the transects in Fig. 2.8 for SWAN may be 

attributed to the effect of wave-wave interactions: in this area, the effect of wave-wave 

interactions is to create an energy distribution such that breaking effects are smaller, 

hence enhancing the wave heights (based on Fig. 2.1 1). 

By examining the field data from FRF, Herbers et al. (1999) suggested that wave 

breaking over the sand bar causes significant scattering of wave energy and enhanced 

directional spreading. Their estimates of directional spreading along FRF cross-shore 

transects are shown in Fig. 2.13; these results are based on data collected when the 

nearshore bar was present. Since the location of the nearshore bar frequently changes 

(Gallagher et al. (1998) and Fig. 2.14) and the periods associated with our model 

simulations and the field measurement program of Herbers et al. (1999) are different, we 

may view Fig. 2.13 in a representative sense and use it only for an approximate 

comparison. Fig. 2.14 shows the directional spreading calculated by SWAN along cross- 
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Figure 2.1 1: Difference between "all on" significant wave heights and "triad off' 

significant wave heights obtained from SWAN for the May 1998 simulation. 
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Figure 2.12: Spectra and significant wave heights (Hs) obtained using SWAN with all 

physical mechanisms turned on (All On) and with the triad wave-wave interaction turned 

off (Tri Off) at nearshore locations. 
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Figure 2.13: Water depth profiles (top panel) and the wave directional spreading (bottom 

panel) observed along cross-shore transects for three storm events in 1994 (after Herbers 

et al. 1999). 
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Figure 2.14: Water depth profiles (top panel) and the wave directional spreading (bottom 

panel) with breaking (Break On) and with no breaking (Break Off), along a cross-shore 

transect for the (a) 1 994, (b) 1996, and (c) 1998 simulations. 

a. Water depth profiles (top panel) and the wave directional spreading (bottom 

panel) with breaking (Break On) and with no breaking (Break Off), along a cross- 

shore transect for 1994 simulation. 
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b. Water depth profiles (top panel) and the wave directional spreading (bottom 

panel) with breaking (Break On) and with no breaking (Break Off), along a cross- 

shore transect for 1996 simulation. 
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c. Water depth profiles (top panel) and the wave directional spreading (bottom 

panel) with breaking (Break On) and with no breaking (Break Om, along a cross- 

shore transect for 1998 simulation. 



shore transects for the three events. In general, the model results are similar to the 

estimates of Herbers et al. (1999); the similarity is pronounced when the bathyrnetry is 

similar (compare Fig. 2 .14~ with data for 12 October in Fig. 2.13). 

In Fig. 2.14 we also show directional spreading calculated by SWAN with wave 

breaking turned off. Breaking is seen to enhance the directional spreading in the 

nearshore areas, which agrees with the suggestion of Herbers et al. (1999). Again the 

greatest enhancement is seen for the 1998 case. For the other two cases, however, the 

effect appears to be somewhat minimal. This is probably because the breaking 

mechanism in SWAN is not strongly dependent on wave direction (and also of course, 

because the bathymetries are different). Overall, the results from SWAN tend to confirm 

the observations of Herbers et al. (1999). 

Miller et al. (1983) investigated the effect on the waves of the deep bathymetric 

trough near the offshore end of FRF research pier. Their statistical comparison of 

measurements at two locations (gauge G625 at the end of the pier and another gauge 

(GM83) located about 300 m to the northeast from it) showed that during normal wave 

conditions, the wave parameters were identical at the two locations; however, during 

storm conditions, the high waves were usually about 10 to 15 percent lower at gauge 

G625. CGWAVE and SWAN results were investigated at these two locations for the 

three storm events (Table 2.4). The comparisons showed that the modeled waves were 

lower at wave gauge G625 by approximately 10 % (on average). Thus, the modeled 

results are consistent with the observations of Miller et al. (1 983). 



2.4.3 Effect of the Pilings 

The present modeling study also enables one to address the issue of the pier legs 

on measurements made at the highly-used Field Research Facility. In a recent paper, 

Elgar et al. (2001) presented some data obtained from the north of the pier in the region 

bounded approximately between x =: 700 m and x =: 900 on (long-shore coordinates, see 

Fig. 2.1) and y =: 150 m and y =: 500 m (cross-shore coordinates). Data for two cross- 

shore transects are shown in Fig. 2.15 for waves approaching the pier from the southeast 

during a low-wave event in 1997. Using a simple refraction model, Elgar et al. (2001) 

attributed the observed reduction in the wave heights in the cross-shore direction in the 

immediate shadow of the piers (e.g. x = 703 m) to a 30-50% "wave blocking" effect 

induced by the pier legs. Further away from the pier (e.g. x = 905 m), there is no such 

reduction because wave reaching this area do not traverse through the pier legs. 

CGWAVE can explicitly include internal boundaries in a non-empirical manner. It solves 

the governing equations as boundary value problem with an assigned reflection 

coefficient for the piles. Therefore, it was used to perform two dissipation-less 

simulations with and without the pier legs being accommodated in the model domain. 

Although, the pier legs are not accommodated in SWAN, a simulation using SWAN has 

been also made with wind, nonlinear wave-wave interactions and all dissipation 

mechanism turned off. For grid generation and input conditions for the two models, we 

followed the same modeling schemes presented earlier (section 2.3) for the three storm 

events (i.e. grid generation, spectral discretization, etc.). It must be noted here that our 

model domains are completely different in size from the domain used by Elgar et al. 



Date - SWAN CGWAVE 
G625 GM83 % - - -  - - -  G625 GM83 % 

Nov. 18,1994 3.143 3.593 12.52 2.541 2.754 07.73 

Sep. 06,1996 2.717 2.972 08.60 2.340 2.621 10.72 

May 13,1998 2.692 2.958 09.00 2.580 2.880 10.42 

Average 10.04 09.63 

Table 2.4: Significant wave height comparison between wave gauge G625 and near the 

location of the wave gauge (GM83) used by Miller et al. (1983). 
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Figure 2.15: Observations (OBSV) of Elgar et al. (2001) and modeled significant wave 

height along (a) x = 905 m and (b) x = 703 m for the 1997 case. CGWAVE results with 

pilings (CWP) and with no pilings (CNP); and SWAN results (SWAN). 



(2001) and so are the locations where the input conditions are provided to the model. To 

obtain input conditions, Elgar et al. (2001) performed back-refraction of the frequency- 

directional spectra observed at the 5 m water depth to estimate input wave conditions at 

6.5 m depth. For the sake of consistency in the inter-model comparisons, the energy 

contained in the input spectrum from the 8 m array (8.5 m water depth) was adjusted in 

order to reproduce the farthest observations of Elgar et al. (2001) (i.e. at y = 500 m). 

In Fig. 2.15 the significant wave heights obtained using CGWAVE with and 

without the pier legs (denoted by CWP and CNP) along the two cross-shore transects (x = 

703 m and x = 905 m) are shown. (The oscillations in the wave heights produced by 

CGWAVE are due to diffractive effects, typically seen near areas of complex bathymetry 

such as shoals and trenches (e.g. Bondzie and Panchang 1993).) Although CGWAVE 

results show some underestimation in comparison with the observations (along the x = 

703 m transect), the observed increasing and decreasing trends are still obtained. The 

reasonable agreement between the results with and without the pilings suggests that the 

effect of the pilings is very minimal and cannot account for the 30-50% blocking 

suggested by Elgar et al. (2001). This suggests that the observed reduction in the wave 

heights is probably an effect of the deep bathymetric trench that is located under the pier. 

One way to confirm this suggestion is by using SWAN (which does not accommodate the 

pilings) to simulate this case. Fig 2.15 shows the significant wave heights obtained using 

SWAN for this case. The comparison between SWAN results and the observations along 

the two cross-shore sections showed good agreement. Furthermore, the comparison 

between SWAN computed and observed spectra at three different gauge locations, Fig. 



2.16, showed reasonable agreement. This indicates that the pier legs (not included in 

SWAN domain) have an insignificant effect on the waves for the investigated conditions. 

However, this may not be always the case, since the wave blocking and 

diffractionlreflection by circular objects (e.g. pier legs) are in fact functions of the wave 

conditions. The apparent wave height reduction in the immediate shadow of the pier for 

the case presented here is hence attributable to the deep bathymetric trench located under 

the pier. 

2.5 Concluding Remarks 

It is often necessary to implement wave models on coastal domains where there . 

are insufficient data for validation. Results may have to be accepted at face value 

(without tuning.) This is difficult from the user's viewpoint; for example, see Thieler et 

al. (2000) who suggest that several models may demonstrate poor performance in the 

field. It is therefore important to demonstrate that the models provide reasonable 

predictions using whatever data are available. 

In this paper we have demonstrated that CGWAVE and SWAN provide fairly 

accurate simulations of three events modeled at the FRF, Duck (North Carolina). 

Although the two models are intended for different types of applications as a 

consequence of differing physics, turning various physical mechanisms on and off 

allowed an inter-comparison. It was demonstrated that the underestimation of wave 

heights by CGWAVE was possibly due to the absence of wave-wave interactions and the 
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use of Dally et al. (1985) breaking formulation with unadjusted wave decay factors. 

Inclusion of wind generation on length scale of about 1 km (the approximate size of the 

domains modeled) has little effect. SWAN was able to qualitatively confirm 

observational findings of other researchers regarding wave breaking, triad wave-wave 

interactions, and wave directional spreading at this site. In a recent study, Elgar et al. 

(2001) have suggested including the effects of the pier legs through an empirical wave 

blocking mechanism. Here we have used CGWAVE, which includes structural and 

bathymetric diffraction, to show that the pier legs have little effect for the case examined. 

Further, the trends observed by Elgar et al. (2001) in the shadow of the pier and further 

away from it were replicated by CGWAVE and also by SWAN, which does not 

accommodate the pier legs. While the similarity of the results of SWAN and CGWAVE 

indicated that bathyrnetric and structural diffraction effects were not significant in the 

dissipative simulations, there is no guarantee that this will always be the case for all 

incident wave conditions; e.g. differences can certainly be expected for narrow peaked 

spectra or swell conditions (Bondzie and Panchang, 1993). Here too, variability in the 

wave field is found to be enhanced for non-breaking waves (e.g. Fig. 2.9 and Fig. 2.15). 

The effects of diffraction and reflection cannot be easily estimated a priori, and if the 

domains are small enough to ignore wind generation, it may be best to use combined 

refraction-diffraction models. The analysis and results presented here show that when the 

modeled physics are commensurate with what is occurring in the field, both models 

provide fairly reasonable and compatible predictions. 



Chapter Three 

OPERATIONAL WAVE PREDICTION AND WAVE DATA 

ASSIMILATION AT THE GULF OF MAINE 

3.1 Introduction 

The Gulf of Maine is a region of a very energetic wave climate compared to most 

of the United States Atlantic coastal regions, yet it is a region extremely lacking in wave 

information. Most of the energetic wave conditions that occur in this region are due to 

the extra-tropical storm systems "Northeasters" that typically reach their maximum 

strength as they pass through the region. The high seas generated from such systems 

represent a permanent threat not only to navigation but also to coastal areas. Wave 

observations from buoys and ships are limited in their spatial and temporal coverage. 

Although Satellite-derived wave measurements provide more coverage, these are not 

reliable near the coastal areas where measurements are most needed. Furthermore, 

satellite observations regardless of their coverage, do not provide near future wave 

predictions (forecast) that are essential for both economic and safety reasons. Analysis of 

long records of wave measurements can only provide statistical estimations of chances of 

occurrence for certain wave conditions in a given year at a specific location. 



Numerical wave modeling, therefore, constitutes the only efficient and cost- 

effective approach to provide the required wave information in the Gulf of Maine over a 

large spatial domain at different times. Numerical wave models like WAM (Komen et al. 

1994) and WAVEWATCH (Tolman 1989); are now routinely operational and produce 

ongoing forecasts for much of the global oceans. However, the resolutions used in such 

operations are too coarse for obtaining reliable wave information in coastal regions and 

the models themselves are intended to handle neither the finite depth effects nor the 

complex geometric features and the resulting wave-scattering effects that may be 

important in the near-shore areas. In these contexts, the Gulf of Maine region is not an 

exception. The National Center for Environmental Prediction (NCEP) runs 

WAVEWATCH I11 (hereinafter referred to as WW3) operationally to produce wave 

predictions for the Western North Atlantic region (including the Gulf of Maine region) 

with a grid size of 0.25 degrees. Operational wave predictions produced for the Gulf of 

Maine region by the Naval Oceanographic Office (NAVO) using WAM have a resolution 

of 0.20 degrees. Such coarse resolution range is i n ~ ~ c i e n t  to obtain required wave 

information at coastal and near-shore regions in the Gulf of Maine. Furthermore, even if 

the resolution was sufficient the wave information is still unreliable because these models 

do not account for the physical mechanisms affecting the wave evolution in the near- 

shore region. 

The only possible approach to over come such limitations is through the local use 

of specialized models in the intermediate region between the grid points of the outer- 

ocean WAM or WW3 operations and the very near-shore areas. The off-shore extension 



of the intermediate domain has to be sufficiently large in order to minimize the possible 

differences in the predicted wave conditions between two neighboring grid points of the 

coarse grid model. Such extension is also necessary to avoid any possible shallow water 

effects which are not fully accounted for in the coarse grid models. The intermediate 

domain, which in this case may be in the order of tens to few hundreds kilometers, will 

therefore experience local wave growth due to wind and calls for the use of phase- 

averaging models. 

Traditionally, numerical wave models were run without the use of actual wave 

observations to improve the overall quality of the model results. The limited numbers of 

wave buoy observations were only useful for model validatiodverification studies since, 

for many cases, these buoys are too localized for their measurements to provide a proper 

representation of the complete wave scattering problem. The significant increase in both 

spatial and temporal coverage of wave observations, which occurred over the last two 

decades, is mainly attributed to the wave measurements made available by satellite 

mounted instruments such as the Synthetic Aperture Radar (SAR) and Wave Altimeter. 

This dramatic increase in wave observations was utilized for improving the quality of 

wave model predictions via data assimilation techniques. Studies like those presented in 

Komen et al. (1994) have demonstrated that a considerable improvement in the quality of 

WAM model predictions can be achieved by data assimilation. Similar improvement 

have been also shown in studies by Janssen et al. (1989), Bauer et al. (1992), Lionello et 

al. (1992), Houlthuijsen et al. (1996), Breivik et al. (1998) and Dunlap et al. (1998). The 

increasing number of wave buoys in many marginal and shelf seas also provided wave 



measurements that can be used in data assimilation schemes to improve wave prediction 

in marginal and shelf seas. The study by Voorrips et al. (1996) concluded that the 

assimilation of these "high quality" buoy measurements in addition to the "low quality" 

satellite measurements will lead to more improvement in model predictions compared 

with the use of the satellite measurements alone. 

The principal motivation of the research presented in this chapter is to develop a 

high resolution operational wave forecasting system for the Gulf of Maine. The system is 

based on the numerical wave model SWAN (Holthuijsen et al. 2000); a state-of-the-art 

phase averaging model that accounts for the physical mechanisms associated with the 

wave generation and propagation in both deep and shallow waters. The major goal of 

this research is to examine the impact of assimilating wave buoy measurements on the 

quality of SWAN model predictions for the Gulf of Maine. The research mainly 

investigates the extent to which wave buoy data can be cross validated and assimilated 

using the model SWAN. 

The research attempts to answer two major questions, relevant to the future of 

high resolution wave forecasting in the Gulf of Maine. The questions are: (1) How 

significant is the impact of the wave data assimilation technique used on the quality of 

SWAN model predictions?, and (2) Is the assimilation of the observed wave height data 

sufficient or is the assimilation of other types of observation (e.g. spectral data), which 

requires higher level of sophistication, needed?. 



The layout of this chapter is as follows. A general description of the wave climate 

in the Gulf of Maine is given in section 3.2, along with some details about the events 

simulated in this study. A brief description of SWAN model is given in section 3.3, 

followed by a detailed description of the modeling schemes used in this study. Results 

are presented and discussed in section 3.4. Summary and concluding remarks are given 

in section 3.5 

3.2 Wind and Wave Climates in the Gulf of Maine 

3.2.1 General Background 

The Gulf of Maine (Figure 3.1) is a semi-enclosed sea that is bounded to the south 

and the east by the Western North Atlantic Ocean. The northern and western boundaries 

for the Gulf of Maine are formed by the coastlines of Massachusetts, New Hampshire, 

Maine and Nova Scotia. Due to its location, the Gulf of Maine is rarely hit by hurricanes 

(unlike the U.S. east coast south of Cape Cod). The extreme wind and wave conditions 

in the Gulf of Maine occur primarily due to the extra-tropical storms "Northeasters", 

which (as the name implies) generate the most violent northeast winds in the region. The 

term "Northeaster" refers to a cyclonic (counter-clockwise) storm associated with an 

intense low pressure system that develops off the east coast. After such storm system 

develops it typically progresses northward or northeastward till it reaches its maximum 

intensity as it passes New England and then start declining. While the center of the storm 

is still to south of the coast, the local winds will be blowing from the east or the north east 
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Figure 3.1 : The model region with NDBC buoy locations used in this study indicated. 



and as the center progresses northward or northeastward the local winds will shift to blow 

from north, northwest and west directions. Although Northeasters can typically occur 

any time during the year, these storms are most violent during the period from September 

to April. 

The three buoys located inside the Gulf of Maine (Figure 3.1) are among the 

Western North Atlantic buoys that are operated and maintained by the U.S. National Data 

Buoy Center (NDBC). Since the early 1980's most of these buoys started continuously 

collecting wind and wave observation along with measurements of other atmospheric and 

oceanographic parameters. The relatively long records of wave measurements obtained 

from these buoys have been used in producing long term statistical estimates of wave 

heights at the buoy locations. The monthly mean wave heights, calculated by 

Gaillhousen et al. (1990), for Portland Buoy (44007) showed a low of 0.6 m in July and 

August and a high of 1.2 m in January, indicating strong seasonality of wave 

characteristics. According to their statistics, waves with significant wave height of 5m or 

larger have 0.4% chance of occurrence at buoy 44007 (Portland) in a given year, which is 

equivalent to about 35 hours per year. Dickson (1999) used the archived NDBC buoy 

data to compute the maximum wave heights for each month over a 14 years period. His 

computations showed that the largest wave height at Portland buoy (44007) was 7.3 m 

and was recorded in both February and November and the lowest wave height (2.6 m) 

was recorded in July. The compiled monthly maximum wave heights did not only show 

strong seasonality but also showed large inter-annual variabilities suggesting that the 



long-term averages can be quite different from what might be expected in a given year 

(Dickson, 1999). 

Another approach to produce long term wave height statistics for the Gulf of 

Maine is to use long term historical wind records (> 20 years) to hind-cast wave 

conditions. Using this approach, Jensen (1983) calculated the significant wave height at 

10 m depth contour along Maine coastline. His estimates suggested that the annual 

maximum and minimum wave heights occur in December and July respectively 

indicating strong seasonality. Panchang et al. (1990) computed extreme wave statistics 

for the Gulf of Maine by numerically hindcasting wave conditions associated with 22 

winter Northeasters that occurred over a 34 year period. For each Northeaster, the 

recorded storm characteristics were first fed to a model to generate the wind field, which 

then was used to force a hybrid, parametric type wave model. The wave model results 

for the 22 storm events were then analyzed to produce wave height statistics at each grid 

point of the model domain. The resulting statistics, which agreed very well with 

estimates based on shipboard observations, suggested that the maximum 100-year and 

50-year significant wave heights are in the order of 13 m and 11 m respectively. This 

indicated that a wave with 13 m significant wave height has 1 % chance of occurrence and 

a wave with 1 1 m significant wave height has 2% chance of occurrence in a given year. 



3.2.2 Description of Storms 

The wave conditions simulated in the present study represent the seasonal 

maximum wave conditions that occurred in the year 2001. These maximum wave 

conditions were associated with Northeaster systems that passed over the region in early 

February, late April, early September and late November. The February and November 

Northeasters generated the strongest wind conditions, hence, the largest wave heights. 

These observations are in agreement with the computations of monthly maximum wave 

heights compiled by Dickson (1999) for Portland buoy. Each seasonal maximum 

conditions are contained into an 8 days period which represent the model simulation 

period (Table 3.1). For each storm event, the description of the observed conditions at 

one of the NDBC buoys is provided below as a representation of the general 

characteristics of storms in the Gulf of Maine. 

Storm 1: An intense extra-tropical low pressure passed over the region in the period 

between February 5'" and 8'" (Figure 3.2a). Typically, the wind started blowing from the 

northeast when the storm reached Portland buoy (44007) around noon time on the 5th. 

Less than 24 hours later the winds were blowing from the north before shifting and 

started coming from the northwest until they slackened. This typical winter Northeaster 

lasted for about 36 hours (Figure 3.2a). The maximum wind speed and significant wave 

height recorded at Portland buoy during this storm were 18 m/s and 5 m, respectively. 



I Storm I 

1 Storm 2 

Storm 3 

Storm 4 

Simulation Period 

February 3" - 11" 

April 1 5" - 23" 

September 10" - 18" 

November 4" - 12" 

Strom Period 

February 5" - 8" 

April 18" - 20" 

September 14" - 1 6th 

November 6" - 9" 

Table 3.1 : Simulation period and approximate storm period for year 2001 seasonal 

maximum wave conditions simulated in this study. 



Storm 2: The maximum wind and wave conditions recorded at buoy 44005 (Gulf of 

Maine) between the 18" and the 20" of April were also associated with an intense extra- 

tropical low pressure (Figure 3.2b). The wind started blowing from the northeast in the 

early morning hours of the 18", and by the end of the day, winds were blowing from the 

northwest before slackening significantly by the noon time of the 19". The maximum 

recorded wind and waves at this buoy were 19 m/s and 4 m respectively. Similar to the 

February storm, this mid spring storm also lasted for about 36 hours (Figure 3.2b). 

Strom 3: The wind started to blow from the northeast few hours after the low pressure 

reached its minimum late in the 13" of September at buoy 44005 (Figure 3.2~). The 

wind continued from the north from the late morning till the early evening on the 14" 

before it slightly shifted and started blowing from the northwest. By the end of the day, 

the wind has completely slackened. At this location, the maximum recorded wind speed 

and wave height during this event were 10 m/s and 2.8 m respectively. This mild late 

summer Northeaster lasted only for about 24 hours only (Figure 3.2~). 

Storm 4: The northeast wind started to blow at buoy 44005 around the early morning of 

the 6" of November in association with a very intense low pressure (Figure 3.2d). By the 

late morning the wind was blowing almost from the north and shifted gradually till it 

became fiom the northwest by the early morning of the 7". The wind continued blowing 

fiom the northwest until it slackened in the late hours of the 8". With typical conditions 

maintained for almost 48 hours this fall Northeaster was the longest lasting strong 
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Figure 3.2: Observed and predicted atmospheric parameters at NDBC buoy locations 

during 8-day periods. 

a. Observed and predicted atmospheric parameters at buoy 44005 during an 8-day 

period in February 2001. Observed pressure (top panel), observe wind velocity 

(middle panel) and ETA model predicted wind velocity (bottom panel). 
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b. Observed and predicted atmospheric parameters at buoy 44005 during an 8-day 

period in April 2001. Observed pressure (top panel), observe wind velocity 

(middle panel) and ETA model predicted wind velocity (bottom panel). 
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c. Observed and predicted atmospheric parameters at buoy 44005 during an 8-day 

period in September 2001. Observed pressure (top panel), observe wind velocity 

(middle panel) and ETA model predicted wind velocity (bottom panel). 
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d. Observed and predicted atmospheric parameters at buoy 44007 during an 8-day 

period in November 2001. Observed pressure (top panel), observe wind velocity 

(middle panel) and ETA model predicted wind velocity (bottom panel). 



Northeaster in 2001 (Figure 3.2d). The wind and wave conditions reached their 

maximum of 15 d s  and 3.8 m, respectively at this location. 

3.3 Modeling Details 

3.3.1 SWAN Model 

The model SWAN (http:l/swan.ct.tude1ft.nl) is a third generation numerical wave 

model developed at the Technical University of Delft in the Netherlands (Booij et al. 

1999; Ris et al. 1998; and Ris et al. 1999). The model is based on the following spectral 

action balance equation: 

where N is the action density (= spectral energyla), a is the wave frequency, 8 is the 

wave direction, and c, and c, are components of the wave propagation velocity. The first 

term on the left hand side of (3.1) represents the rate of change of action in time. The 

second and the third terms represent the propagation of action in the (x,y) space. The 

fourth and fifth terms represent, respectively, the frequency shift and refraction induced 

by depth and currents. The sourcelsink term (S) on the right hand side of (3.1) represents 

the effects of generation, dissipation and nonlinear wave-wave interactions on wave 

' energy; and is given by: 



where Sin,, represents the atmospheric wind input, Sbn represents dissipation due to wave 

breaking , Sf, represents the dissipation due to bottom fiction, S,, represents the 

dissipation due to whitecapping; and Swd and Squd represent the effect of triad and 

quadruplet non-linear wave-wave interactions respectively. 

The SWAN model was originally developed to simulate wave conditions in the 

very near-shore area (domain sizes of 25 krn or less). However, the recent developments 

to the model allow its application to areas as large as marginal seas. The recent version 

of SWAN were not, by any mean, intended to replace WW3 or WAM models and 

therefore, it has not been verified on oceanic scales where it is certain to be less efficient 

model since it has not been parallized. 

3.3.2 Modeling Schemes 

Table 3.2 shows the major modeling schemes used in the SWAN-based 

operational wave prediction system developed for the Gulf of Maine. For comparison 

purposes Table 3.1 also shows the modeling schemes used by the other two operational 

wave models (WW3 and WAM) which provide wave predictions for the Gulf of Maine 

region. Model grid size constitutes one of the major modeling schemes in which SWAN 

considerably differ fiom WW3 and WAM models. The smaller grid size used in SWAN 



Domain C 
Frequencies 

Directions 

1 Wind 

Hindcast 

Forecast 

Platform 

SWN 

GOM 

ETA 

12 hours 

48 hours 

WAM 

GOM 

0.2" 

0.2" 

25 

24" 

COAMPS 

12 hours 

48 hours 

S. Computer 

WW3 

WNA 

ETA 

12 hours 

126 hours 

S. Computer 

Table 3.2: Modeling schemes used in three different operational wave prediction systems. 



increases the resolution by a factor of 4 to 5 compared to grids of WAM and WW3 

models. The model domain of SWAN for the Gulf of Maine is shown in Figure 3.3, 

along with the model grid mesh. Other major difference in the modeling schemes 

pertains to the bottom induced wave breaking mechanism included only in the SWAN 

model. 

All three models shown in Table 3.2 use different input boundary conditions and 

data assimilation procedures. The following two subsections provide details of the 

schemes used for incorporating the input boundary conditions and wave data assimilation 

into the SWAN-based system. 

3.3.3 Data Assimilation Scheme 

Attempts to improve the quality of wave models predictions through data 

assimilations started early in the last decade, after being motivated by the large spatial 

and temporal coverage of wave measurements from satellite mounted instruments. 

Although many studies have demonstrated that data assimilation could considerably 

improves wave model predictions, most studies have shown that the obtained 

improvements fade away shortly after turning off the data assimilation scheme. This is 

mainly due to the fact that waves in the model (and also in the real world) are primarily 

controlled by the forcing wind field. Correction to the wind field through assimilating 

wind measurements from satellite scatterometer constitutes one approach to over come 
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Figure 3.3 : SWAN wave model computational domain. 



such limitation. The more sophisticated approach involves correcting the atmospheric 

input source term ''Sin," (e.g. Equation 3.2) through inverse modeling procedures after 

assimilating the wave conditions. 

The availability and reliability of wave data are two key limiting factors of the 

data assimilation. Satellite wave measurements over regional areas might be available 

only few days apart. These measurements are not reliable in the coastal and nearshore 

areas (Siddabthula and Panchang, 1996). The measurements from the available wave 

buoys, most of the times, are too localized to provide a proper representation of the 

complete wave scattering problem, and therefore are of less benefit for data assimilation. 

Data assimilation schemes used in wave modeling vary considerably in their 

levels of sophistication. In general, the assimilation of wave height data obtained from 

satellite altimeter or non-directional buoys requires a lower level of sophistication than 

assimilating the two dimensional wave spectra inverted from satellite SAR measurements 

or obtained from directional wave buoys. Schemes that involve the assimilation of 

integrated wave parameters (wave height and waves period) are referred to as Optimal 

Interpolation of Integrated wave parameters (01-1) schemes. In these schemes the 

modeled wave spectrum is corrected based on the analysis of the observed and modeled 

wave height and period. In operational wave forecasting systems the most used schemes 

are those based on the assimilation of significant wave height since it is the most 

operationally available wave data. Wave height observations; however, are not enough to 

correct the model predicted two-dimensional wave spectrum. More sophisticated 



schemes are based on the assimilation of the full 2D wave spectrum. These schemes 

involve partitioning the observed and modeled wave spectra into several segments that 

represent a distinct wave type (i.e. windsea or swell). The interpolation of the mean 

parameters from the cross-examined observed and modeled partitions provide the 

necessary information to update each segment spectrum. Such schemes are referred to as 

Optimal Interpolation of Partitions (01-P) schemes. 

In this study the (01-1) data assimilation scheme used by Bauer et al. (1992) is 

implemented in the SWAN-based system to assimilate the wave height measurements 

obtained from wave buoys located in the Western North Atlantic (including the Gulf of 

Maine). The comprehensive study by Bauer et al. (1992) has shown that significant 

improvements could be achieved in WAM model predictions by using this scheme. 

Particularly in regions dominated by swell conditions, relaxation times after the data 

assimilation procedure was switched off were as long as 5 days (Bauer et al. 1992). This 

simple and straight forward assimilation scheme was selected for three important reasons: 

(1) Computational Resources: The simulations in this study as well as the 

experimental operational wave prediction system had to run on personal 

computers and therefore a less computationally demanding technique was 

favored. 

(2) Available Data: All the buoys located inside the model domain are non- 

directional; however they provide 1D spectra which without any directional 



information can not be converted in a reliable way to the 2D spectra for 

assimilation purposes. 

(3) Systematic Order: The present research, to the best of the author's knowledge, 

represents one of the earliest studies involving wave data assimilation using 

SWAN model. Therefore, it was necessary to employ a simple scheme that has 

shown to work, i.e. less risk is involved. 

In this scheme, the SWAN-generated 2D wave spectrum at every grid point (i j) 

inside a specified range of influence (L&) is corrected by a factor Cij that relates the 

new spectrum En, ( ~ , 0 )  to the spectrum E,, (~$3) predicted by SWAN model. Thus, 

we have 

The correction factor Cij is defined as 

H, (o bs) ,,, - H, (swan) ,,,, 
H,  (swan),,,, i' 

where HS(obs) and HS(swan) represent the buoy observed and SWAN computed 

significant wave heights at the nearby buoy location (iiji), respectively. The weighting 

function wi j is selected as 



where R is given by 

where the terms [X(i)-X(ii)] and [Y(j)-Ya)] represent the longitudinal and latitudinal 

distances of the model grid point from the observation point respectively. These 

distances are normalized by the corresponding scales L, and L, on either side of the 

measurement point. 

In the present study, the selection of the range of influence for each buoy was 

mainly controlled by how close the buoy of interest is to the nearest buoy. Ranges of 

influence for closely located buoys are small while they are larger for buoys that are 

relatively far away from the other buoys. Several assimilation experiments with different 

ranges of influence were carried out before those shown in Table 3.3 were finally 

selected to be used in this study. Experiments showed considerable variabilities in the 

results obtained with different ranges of influence. In particular, small differences in the 

latitudinal ranges of influence produced significant variabilities in the model results. In 

general, the most acceptable model results were obtained when assigned ranges of 

influence for the buoys did not overlap. 



I Buoys 

Table 3.3: Longitudinal (L,J and Latitudinal (b) ranges of influence used in the 

assimilation of wave data from 5 NDBC buoys into the model simulations. 



3.3.4 Boundary Conditions Schemes 

The use of input boundary conditions is a way to account for the swell conditions 

generated by storms that occur outside the model domain. Storm generated swells 

propagate shoreward for a long distance before their energies start to dissipate. Such 

swell conditions are commonly observed in the Gulf of Maine especially during the 

summer season when the sea-state is relatively calm. Two different boundary conditions 

schemes had to be used in this study. Detailed descriptions of the two boundary 

conditions schemes used are provided below. 

Boundary Condition Scheme 1: Running SWAN in an operational basis to 

provide wave predictions for the Gulf of Maine requires that predicted boundary 

conditions along SWAN open boundaries should be provided to the model on an 

operational basis. The only possible source for the required boundary conditions 

would be the wave predictions obtained by one of the coarse grid wave models. 

The WW3 predictions for the Western North Atlantic are routinely provided on 

the public domain every 12 hours. However, these wave predictions are only 

provided in parametric format (i.e., significant wave height, peak wave period and 

peak wave direction) in 3-hours interval. Two dimensional (2D) wave spectra 

predictions are provided only at the locations of two NDBC buoys (44008 and 

440 1 1 ), inside the model domain of the present study. 



Wave conditions along the open boundaries of SWAN model domain (Figure 3.3) 

vary significantly, and therefore waves at the open boundaries of the model cannot be 

assumed constant. For such a case, waves along the open boundaries of SWAN has to be 

specified in a nested format which consists of 2D wave spectra at points along the 

boundary, that do not have to precisely coincide with SWAN grid points. The boundary 

conditions scheme that was developed for this purpose uses the WW3 parametric wave 

predictions and generates 2D wave spectra at WW3 grid points along SWAN open 

boundaries for the prediction period. In order to improve the quality of the generated 

spectra they are weighted by the WW3 predicted spectra at the location of buoys 44008 

and 4401 1. The generated 2D JONSWAP spectra (at each grid point over time) are then 

written to a file in a format that is recognizable by SWAN as nested boundary conditions 

(as if it was generated by a previous coarser grid SWAN simulation). 

Boundary Condition Scheme 2: For SWAN model simulations that correspond 

to the seasonal maximum conditions the boundary condition scheme 1 (described 

above) could not be used. This is mainly due to the fact that WW3 wave 

predictions for the Western North Atlantic are only archived for a period of 48 

hours. Since SWAN simulation, in this case, are made in hindcast mode, it is 

possible to use the observed data at the two NDBC buoys located outside the Gulf 

of Maine (i.e. 44008 and 4401 1) as replacement for the unavailable boundary 

conditions. Therefore, a second boundary conditions scheme had to be developed 

specifically for the seasonal maximum conditions simulations. This boundary 

conditions scheme (2) is based on the continuous assimilation of observed wave 



heights at the two buoy locations using the data assimilation scheme described 

earlier in subsection (3.3.3). This continuous assimilation is carried out along the 

whole simulation period at an interval of 3 hours which is similar to the interval at 

which the WW3 predictions would be provided if they were available. This 

interval is also similar to that at which the NCEP predicted wind fields (using 

ETA model) are generated. Before this boundary conditions scheme is used it is 

first tested in subsection 3.4.2 below. 

3.4 Results and Discussion 

The results are presented and discussed in the following order. First in the sample 

case presented in subsection 3.4.1, the operation of the developed wave prediction system 

is replicated with the boundary condition scheme 1 and the data assimilation scheme 

implemented. WW3 predictions, available for this case only, are used to provide the 

boundary conditions for SWAN simulation. In the test case presented in subsection 3.4.2; 

the developed boundary condition scheme 2 is examined. This is achieved by comparing 

the results obtained using boundary conditions scheme 2 with results obtained using 

boundary conditions scheme 1. In subsection 3.4.3, the four seasonal maximum wave 

conditions are simulated with the model forced only by the boundary conditions and 

input wind. Attempts are then made to improve the quality of the model results through 

the assimilation of wave buoys data. The effect of data assimilation technique on model 

results is evaluated by switching off the data assimilation scheme after certain time 

periods allows for examining the impact of the used assimilation technique on the model 



results. The spatial effect of the data assimilation during and after the assimilation period 

is examined in subsection 3.4.4. 

3.4.1 Sample Case 

The sample case presented in this subsection experimentally replicates the 

operation of the above described system over a period of 2.5 days. For this specific time 

period, the available WW3 wave predictions were used to provide boundary condition for 

the SWAN simulation. Figure 3.4 shows the observed and predicted wind and wave 

conditions during the simulation period. Model results obtained with atmospheric wind 

inputs and WW3-based boundary conditions show significant underprediction in terms of 

wave heights at buoy location 44005 between the 11' and the 13' of February. Such 

underprediction might not be attributed to the wind effect since the predicted forcing 

winds are overpredicted at this location during that period. Similar underprediction in the 

mean wave period also occurs at this location. With few exceptions, most of the other 

under- and over- predictions in the wave heights at all three buoy might be attributed to 

the under- and over- predictions in the forcing wind fields. 

The data assimilation scheme has been implemented in an operational wave 

prediction system for the Gulf of Maine which runs every 12 hours. The system started 

at February 9' (00 hour) by running the model first in a hindcast mode to simulate the 

wave conditions in the previous 12 hours. For this hindcast simulation, the observed 

wave heights at five NDBC buoys (Figure 3.1) are assimilated in an hourly basis into the 



wave model run. The results obtained at the end of the 12 hours hindcast mode provide 

the initial wave conditions for the subsequent forecast mode simulation. This hindcast 

mode results are also used as initial wave condition for the following hindcast run 12 

hours later. By the time the system has been running operationally for 2.5 days (i.e. by 

12 hour on the 1 1' of February) it has actually completed a total of 6 hindcast mode runs 

subsequently. The results obtained from the last hindcast run provide the hotstart for the 

forecast mode in which the model then ran for a 4.5 day period between the 12 hour on 

the 1 1' and the 00 hour on the 16'. 

The model predictions obtained at the end of each hour during the 2.5 days of data 

assimilations (Figure 3.4) show improvements in the model predicted wave heights in 

comparison with those obtained without assimilation at buoys 44005 and 44013. In 

particular, the underprediction in the wave heights obtained at buoy 44013 without 

assimilation between noontimes of the 9'h and the 1 0 ~  have significantly improved 

(Figure 3.4~). By the end of the assimilation period the predicted wave heights at the 

three buoy locations are in good agreement with the observed wave conditions. During 

the first 36 hours of the forecast mode significant improvements have been obtained at 

buoy location 44005 (Figure 3.4a) in terms of predicted wave heights and periods. 

Beyond the first 36 hours forecast, the model predictions with and without assimilation 

show reasonable agreements with the observed wave conditions at this buoy location. At 

buoy location 4401 3, there are no improvements in the model predictions for the first 24 

hours of the forecast. Beyond that, minor improvements in the predictions occur for 

about 48 hours, however, the wave heights are slightly overpredicted on the 13' due to 
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Figure 3.4: Observed (OBS) and predicted wind speed (top panel), significant wave 

height (middle panel) and mean wave period (bottom panel) for a 7-day period in 

February 2001 at three buoy locations. 

a. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for a 7-day period in 

February 2001 at buoy 44005. ETA represents ETA model predicted wind speed; 

ASM and NAS represent SWAN results with and without data assimilation, 

respectively. 
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b. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for a 7-day period in 

February 2001 at buoy 44007. ETA represents ETA model predicted wind speed; 

ASM and NAS represent SWAN results with and without data assimilation, 

respectively. 
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c. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for a 7-day period in 

February 2001 at buoy 44013. ETA represents ETA model predicted wind speed; 

ASM and NAS represent SWAN results with and without data assimilation, 

respectively. 



the overprediction in the forcing wind field (Fig 3.4~). The model predicted wave field 

during both hindcast and forecast modes at buoy 44007 show no improvement especially 

beyond the 9h (Figure 3.4b). The significant mismatches between the model predictions 

and the observations can be largely attributed to the apparent mismatches between the 

observed and predicted wind fields at this location. 

Figure 3.5 and Table 3.4 show that, for the first 48 hours of the forecast the data 

assimilation yields considerably less scattered wave height predictions at the location of 

buoy 44005. The data assimilation reduced the scatter index at this buoy location by 

more than 13%. The large scatter index computed for wind speeds at buoy locations 

44007 and 4401 3, in comparison with that computed at 44005 buoy, also indicate that the 

mismatches between observed and computed wave conditions can be attributed to winds. 

3.4.2 Test Case 

In this test case, the observed wave conditions presented in the above sample case 

are simulated. The available WW3 wave predictions, for this specific time period, were 

used by boundary conditions scheme 1 to provide the boundary conditions for the for the 

first SWAN simulation. In a second SWAN simulation, the WW3-based boundary 

conditions were replaced by assimilated boundary conditions obtained using the 

boundary conditions scheme 2. 

Figure 3.6 shows reasonable agreements between SWAN results obtained with 

the two different boundary conditions schemes. Such an agreement validates the use of 



COMPUTED 

Figure 3.5: February 2001 inter-comparisons of observed and ETA model computed wind 

speeds (top panel), observed and SWAN computed significant wave heights without buoy 

data assimilation (middle panel); and observed and SWAN computed significant wave 

heights with WAVEWATCH predicted boundary conditions for 48 hours after 

assimilation switched off (bottom panel). (x), (+) and (0) represent buoys 44005, 44007 

and 440 13, respectively. 



Wind Speed 

Gauge Bias RMSE S I Cor . 

Significant Wave Height (Boundary) 

Gauge Bias RMSE S I Cor . 

Significant Wave Height (Assimilation) 

Gauge Bias RMSE S I Cor . 

Table 3.4: Statistical analysis of computed wind speeds and significant wave heights at 

three buoy locations for 48 hours forecast in February 2001. SI = Scatter Index, Cor. = 

Correlation (see Appendix for formulas). 
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Figure 3.6: Observed (OBS) and predicted wind speed (top panel), significant wave 

height (middle panel) and mean wave period (bottom panel) for 7 days period in February 

2001 at three buoy locations. 

a. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for 7 days period in 

February 2001 at buoy 44005. ETA represents ETA model predicted wind speed; 

BC1 and BC2 represent SWAN results obtained with boundary conditions 

schemes 1 and 2, respectively. 
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b. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for 7 days period in 

February 2001 at buoy 44007. ETA represents ETA model predicted wind speed; 

BC1 and BC2 represent SWAN results obtained with boundary conditions 

schemes 1 and 2, respectively. 
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c. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for 7 days period in 

February 2001 at buoy 4401 3. ETA represents ETA model predicted wind speed; 

BC1 and BC2 represent SWAN results obtained with boundary conditions 

schemes 1 and 2, respectively. 



the continuous assimilation procedure, as a replacement for the unavailable boundary 

conditions, in the simulations of the seasonal maximum wave conditions presented in 

following subsection. 

3.4.3 Simulations of Year 2001 Seasonal Maximum Wave Conditions 

The observed seasonal maximum wave conditions are contained into each one of 

the 8 day periods simulated in this part of the study. In each case, model runs were 

initially made with only atmospheric and boundary conditions. In the additional model 

runs made for three of the four cases attempts were made to improve the quality of the 

model predictions through the assimilation of the observed significant wave heights at the 

buoy locations. SWAN results which are obtained during the assimilation periods 

actually represent the model predictions at the end of each hour (i.e. just before the 

assimilation scheme is applied at the start of the subsequent hour). 

Storm 1: Figure 3.7 shows the observed and model predicted wind and wave conditions 

at the locations of three Gulf of Maine buoys. While force with atmospheric and 

boundary conditions the model underpredicted the wave heights at buoy 44005 during the 

whole simulation period with very few exceptions (Figure 3.7a). Similar 

underpredictions also occur over most of the first 3.5 days of the simulation at buoy 

locations 44007 and 44013. The maximum wave conditions are significantly 

underpredicted at the three buoy location. 
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Figure 3.7: Observed (OBS) and predicted wind speed (top panel), significant wave 

height (middle panel) and mean wave period (bottom panel) for an &day period in 

February 200 1 at three buoy locations. 

a. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

February 2001 at buoy 44005. ETA represents ETA model predicted wind speed; 

ASM and NAS represent SWAN results with and without buoy data assimilation, 

respectively. 
t 
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b. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

February 2001 at buoy 44007. ETA represents ETA model predicted wind speed; 

ASM and NAS represent SWAN results with and without buoy data assimilation, 

respectively. 
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c. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

February 200 1 at buoy 440 1 3. ETA represents ETA model predicted wind speed; 

ASM and NAS represent SWAN results with and without buoy data assimilation, 

respectively. 



The observed significant wave heights at the five buoy locations were assimilated 

into the wave model in an hourly basis for a 72 hours period between the 3rd and the 6th of 

February. During the assimilation period, as Figure 3.7 shows, significant improvements 

in the model results at the three buoy locations have been achieved. After the 

assimilation scheme has been switched of at the 00 hour on the 6h the improvements in 

wave predictions at buoy 44005 lasted for nearly 12 hours (Figure 3.7a). In the following 

12 hours, the model largely underpredicts the observed maximum wave height at this 

location. However, the model predictions at this location started to show some 

improvements in terms of both wave heights and periods over 72 hours between the 7h 

and the 1 oh (Figure 3.7a). At buoy 440 13 substantial improvements (in order of 2 m) in 

the prediction of the maximum wave conditions which occur over the first few hours after 

the assimilation scheme is switched off. Beyond the first 12 hours of model prediction 

without assimilation large agreements are found between model predictions (with and 

without assimilations) and the observed wave conditions at this location. The model 

result at buoy location 44007 surprisingly did not improve during most of the first 24 

hours after the assimilation scheme was switched off (Figure 3.7b). As a result the model 

did not reproduce the observed maximum wave conditions that occurred during that 

period. The fact that the forcing wind field at this location is overpredicted during this 

time period (Figure 3.7b) makes the significant underpredictions in the wave heights even 

harder to explain. The detailed investigation of the observed and predicted wind fields 

provided what might be a reasonable justification for this, otherwise, puzzling results. 

The examination of the observed wind field at buoy 44005 location (Figure 3.8) revealed 

that wind have switched its direction for a period of more than 3 hours that coincide with 



the period at which the observed wave height at buoy 44007 reached its maximum value. 

Such reversal in the observed wind direction was not captured by the atmospheric model 

(Figure 3.8) which provides wind predictions every three hours. The observed reversed 

winds probably have generated waves that propagated at a northwesterly direction 

(similar to the wind) and reached Portland buoy. The fact that the predicted wind field 

did not include this reversal might also be the reason for the underestimation of the 

second wave height peak observed at buoy 44005 around the noontime of February 6th 

(Figure 3.7a). 

The overall improvements in the model results for the first 48 hours after 

switching off the assimilation scheme at the three buoy locations can be indicated from 

the inter-comparisons between the computed and the observed conditions shown in 

Figure 3.9. Both Figure 3.9 and the statistical analysis provided in Table 3.5 show that, 

for the first 48 hours following the assimilation period, SWAN model results are less 

scattered compared with the results obtained without data assimilation. The data 

assimilation appears to have reduced the scatter index of the model computed significant 

wave height by more that 10% and 35% at the locations of buoys 44005 and 44013 

respectively (Table 3.5). 

Storm 2: The observed and predicted wind and wave conditions at the locations of three 

Gulf of Maine buoys are shown in Figure 3.10. The model results obtained with input 

winds and boundary conditions at the three buoy locations shows that the model has 

reasonably reproduced the observed changes in the significant wave heights at the three 
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Figure 3.8: Observed and predicted atmospheric parameters at buoy 44005 during an 8- 

day period in February 2001. Observed pressure (top panel), observe wind velocity 

(middle panel) and ETA model predicted wind velocity (bottom panel). 
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Figure 3.9: February 2001 inter-comparisons of observed and ETA model computed wind 

speeds (top panel), observed and SWAN computed significant wave heights without buoy 

data assimilation (middle panel); and observed and SWAN computed significant wave 

heights wave heights with data assimilation (bottom panel) for 48 hours after assimilation 

switched off. (x), (+) and (0) represent buoys 44005,44007 and 44013, respectively. 



Wind Speed 

Gauge Bias RMSE S I Cor . 

Significant Wave Height (Boundary) 

Gauge Bias RMSE S I Cor . 

Significant Wave Height (Assimilation) 

Gauge Bias RMSE S I Cor . 

Table 3.5: Statistical analysis of computed wind speeds and significant wave heights at 

three buoy locations for 48 hours period after assimilation switched off in February 2001. 

SI = Scatter Index, Cor. = Correlation (see Appendix for formulas). 
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Figure 3.10: Observed (OBS) and predicted wind speed (top panel), significant wave 

height (middle panel) and mean wave period (bottom panel) for an 8-day period in April 

2001 at three buoy locations. 

a. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in April 

2001 at buoy 44005. ETA represents ETA model predicted wind speed; (COM) 

represents SWAN computed results. 
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b. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in April 

2001 at buoy 44007. ETA represents ETA model predicted wind speed; (COM) 

represents SWAN computed results. 

a ,. 
- OBS ...... ("'OM 

- 

xw 

0 I I I I I I I 



Boston Buoy (44013) 

0 I I I I I I 1 

15 16 17 18 19 20 21  22 23 
Days (April 2001) 

c. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in April 

2001 at buoy 44013. ETA represents ETA model predicted wind speed; (COM) 

represents SWAN computed results. 



buoy locations for the four days of the simulation. Most of the relatively small 

mismatches between the observed and predicted wave heights, during the last four days 

of the simulation, can probably be attributed to the mismatches between the observed and 

computed wind field at the buoy locations. 

For this storm condition, data assimilation procedure was not applied mainly due 

to two reasons. First, the observed wave conditions during the early hours of the storm 

event were reasonably well predicted by the model, Figure 3.10, indicating that minor 

improvements will probably be gained by the buoy data assimilation. Second, most of 

the mismatches in the wave heights are of small order that is comparable in magnitude to 

some of the mismatches that occur in other simulations predictions after the data 

assimilation procedure is switched off. 

Storm 3: Figure 3.1 1 shows the observed and modeled wind and wave conditions at the 

three buoy locations inside the Gulf of Maine. Observed conditions at buoy 44007 are not 

available for the first 3.5 days of the record (Figure 3.1 lb). At the location of buoys 

44005 and 44013, the model; forced with boundary and wind conditions; largely 

underestimated the significant wave heights and the mean wave periods in comparison 

with the observations during most of the period between the l l th and the 15' of 

September. The large underestimations in the wave heights cannot be attributed to the 

forcing wind fields which are actually overpredicted during most of three day period at 

the two buoy locations. The underestimations can possibly be attributed to the large 

mismatches in the mean wave periods which probably resulted fiom inadequate boundary 



conditions. In particular, the mean wave periods are significantly underpredicted 

between the 1 1" and the 13' at the two buoy locations as shown in Figure 3.1 1. The 

observed long period waves at the two buoy locations indicate that these waves have been 

generated far away before and propagated to the buoy locations. Such waves will 

experience much less dissipation compared to the short period waves generated by the 

model. 

Wave buoy data were assimilated into the wave model in an hourly basis for the 

first 72 hours of the 8 days simulation period. Obviously, no data from buoy 44007 were 

available for assimilation during this period. Model results obtained at the end of each 

hour at buoy locations 44005 and 44013, Figure 3.1 1, indicate significant improvements 

in the model computed wave heights during the assimilation period. Near the end of the 

assimilation period some improvements in the model predicted mean wave periods has 

been also achieved at the two buoy locations (Figure 3.1 1). Reasonable improvements in 

the model predicted wave heights and period at the two buoy locations were obtained 

during the first 24 hours after the assimilation scheme has been switched off. During the 

second day, after switching off the assimilation scheme, the wave heights predictions at 

three Gulf of Maine buoy locations have improved significantly (Figure 3.1 1). This is the 

period during which the wave heights reached their seasonal maximums at the three buoy 

locations. Despite the fact that no data assimilation has been made at the location of 

buoy 44007 the effect of the assimilation procedure carried out at the other buoy location 

is still evident at this buoy location. Figure 3.1 1 shows that significant increases in the 

predicted mean periods occurred during the morning hours of September 14' at the three 
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Figure 3.1 1: Observed (OBS) and predicted wind speed (top panel), significant wave 

height (middle panel) and mean wave period (bottom panel) for an 8-day period in 

September 2001 at thee buoy locations. 
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a. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

September 2001 at buoy 44005. ETA represents ETA model predicted wind 

speed; A& and NAS represent SWAN results with and without buoy data 

assimilation, respectively. 
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b. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

September 2001 at buoy 44007. ETA represents ETA model predicted wind 

speed; ASM and NAS represent SWAN results with and without buoy data 

assimilation, respectively. 
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c. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

September 2001 at buoy 44013. ETA represents ETA model predicted wind 

speed; ASM and NAS represent SWAN results with and without buoy data 

assimilation, respectively. 



buoy locations. This probably indicates that the significant improvements in the 

predicted wave heights at the three buoy locations have resulted from the assimilation of 

the observed wave conditions at the outside two buoys (i.e. 44008 and 440013) at an 

hourly interval during the first 72 hours of the assimilation instead of the regular 3-hour 

interval. It can be also seen from Figure 3.1 1 that although the model went back to 

underpredicting the wave height around the end of the day on the 1 5 ~ ,  additional 

improvements in the model predictions occurred few hours later at the three buoy 

locations. 

The inter-comparison of the observed and computed wave heights, Figure 3.12, 

shows that the model predicted wave heights obtained with data assimilation are less 

scattered compared to those obtained without data assimilation. This is also shown by 

the statistical analysis provided in Table 3.6, which also indicates that the data 

assimilation have reduced the scatter index by more than 19% and 23% at the locations of 

buoys 44005 and 440 1 3, respectively. 

Storm 4: For the simulated period, the observed and computed wind and wave conditions 

are shown in Figure 3.13 at the locations of the three Gulf of Maine wave buoys. Forced 

only by the predicted wind field and the boundary conditions the model largely 

underpredicted the significant wave heights after the first day of the simulation at three 

buoy locations. The significant underpredictions have lasted for about 4 days at buoy 

location 44005 and about 2 days at the locations of buoys 44007 and buoy 44013 (Figure 

3.13). These underpredictions could result from apparent underpredictions in the forcing 
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Figure 3.12: September 2001 inter-comparisons of observed and ETA model computed 

wind speeds (top panel), observed and SWAN computed significant wave heights without 

buoy data assimilation (middle panel); and observed and SWAN computed significant 

wave heights with data assimilation (bottom panel) for 48 hours after assimilation 

switched off. (x), (+) and (0) represent buoys 44005,44007 and 44013, respectively. 



Wind Speed 

Gauge Bias RMSE S I Cor . 

Significant Wave Height (Boundary) 

Gauge Bias RMSE S I Cor . 

Significant Wave Height (Assimilation) 

Gauge Bias RMSE S I Cor . 

Table 3.6: Statistical analysis of computed wind speeds and significant wave heights at 

three buoy locations for 48 hours period after assimilation switched off in September 

2001. SI = Scatter Index, Cor. = Correlation (see Appendix for formulas). 
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Figure 3.13: Observed (OBS) and predicted wind speed (top panel), significant wave 

height (middle panel) and mean wave period (bottom panel) for an 8-day period in 

November 2001 at three buoy locations. 

a. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an 8-day period in 

November 2001 at buoy 44005. ETA represents ETA model predicted wind 

speed; ASM and NAS represent SWAN results with and without buoy data 

assimilation, respectively. 
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b. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an %day period in 

November 2001 at buoy 44007. ETA represents ETA model predicted wind 

speed; ASM and NAS represent SWAN results with and without buoy data 

assimilation, respectively. 



Boston Buoy (44013) 

4 I Assimilation Period I I I I I I I I 

- OBS --- ASM 

I I I I I I I 

04 05 06 07 08 09 10 11 12 
Days (November 200 1) 

c. Observed (OBS) and predicted wind speed (top panel), significant wave height 

(middle panel) and mean wave period (bottom panel) for an %day period in 

November 2001 at buoy 44013. ETA represents ETA model predicted wind 

speed; ASM and NAS represent SWAN results with and without buoy data 

assimilation, respectively. 



wind field during this period. Possible contribution from inadequate boundary conditions 

can not be ruled out. It is noticed that a large mismatch also occurs between the observed 

and the model predicted mean wave period during the first 3 days of the simulation at the 

three buoy locations. Model predictions beyond November 7' are in less disagreement 

with the observed conditions at the three buoy locations mainly because fewer 

underpredictions occur in the predicted wind fields. 

The observed significant wave heights at the three buoy locations were 

assimilated into the model in an hourly basis for the first 60 hours of the simulation 

period. The results shown in Figure 3.13 indicate that significant improvements in the 

model wave height predictions were obtained at the end of each hour during the 

assimilation period at the three buoy locations. Minor improvements in the predicted 

mean wave period were also achieved near the end of the assimilation periods especially 

at buoy 44005 location. After the assimilation has been switched off on the noon time of 

the 6', the effect of the agreement between the observed and model computed wave 

conditions lasted for only 6 hours at buoy 44005 (Figure 3.1 3a). Beyond that, the model 

still largely undepredicts the wave heights for more than 24 hours at this location. This 

underprediction can be attributed to the underpredicted wind field (Figure 3.13a). Some 

minor improvements in the wave heights predictions occur at this location during the gn 

of November. Improvements in wave height predictions at buoy locations 44007 and 

44013 have lasted for about 12 hours after switching off the assimilation. At buoy 

location 44007, model predictions beyond the 6' are almost similar to those obtained 

without data assimilation. Wave heights over predictions occur at buoy location 4401 3 



during most of the period between the 7' and the 12'. The mismatches between the peak 

periods obtained with assimilation and those obtained without assimilation over most of 

this period probably indicates that the wave height overpredictions did not result from 

local effects. The underpredicted wind field during most of the period between the 7th 

and the 9' at this location might also support this argument. 

The inter-comparisons between the observed and computed wave heights with 

and without data assimilation (Figure 3.14) indicate that over the 48 hours following the 

assimilation period the model computed wave heights obtained with data assimilation are 

less scattered compared to those obtained without assimilation. Results in Table 3.7 

indicate that, the data assimilation have reduced the significant wave height scatter index 

at buoys 44005 and 4401 3 locations by more than 12% and 24% respectively. 

3.4.4 Spatial scale of assimilation impact 

The results presented in the above subsections (3.4.2 and 3.4.3) allowed for 

quantifying the temporal scale of the assimilation effect. In this subsection an attempt to 

quantify the scale of the assimilation influence on spatial domain is made. Differences in 

SWAN results obtained with and without assimilation, for storm 1 in the above 

subsection, are examined at different time steps. Figure 3.15 shows contour plots of the 

values obtained by subtracting SWAN computed significant wave heights without 

assimilation from SWAN computed wave heights with assimilation. 
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Figure 3.14: November 200 1 inter-comparisons of observed and ETA model computed 

wind speeds (top panel), observed and SWAN computed significant wave heights without 

buoy data assimilation (middle panel); and observed and SWAN computed significant 

wave heights with data assimilation (bottom panel) for 48 hours after assimilation 

switched off. (x), (+) and (0) represent buoys 44005,44007 and 44013, respectively. 



Wind Speed 

Gauge Bias RMSE S I Cor . 
# (m/s) (m/s) ( .  1 

44005 -0.94 1.66 13.22 0.87 
44007 -0.82 2.13 22.75 0.77 
44013 -1.48 2.24 20.55 0.79 

Significant Wave Height (Boundary) 

Gauge Bias RMSE S I Cor . 
# (m) (m) ( 8 )  ( . )  

44005 -0.90 0.96 38.84 0 . 6 1  
44007 -0.13 0.24 27.30 0.73 
44013 -0.43 0.54 38.00 0.62 

Significant Wave Height (Assimilation) 

Gauge Bias RMSE S I Cor . 

Table 3.7: Statistical analysis of computed wind speeds and significant wave heights at 

three buoy locations for 48 hours period after assimilation switched off in November 

2001. SI = Scatter Index, Cor. = Correlation (see Appendix for formulas). 
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Figure 3.15: Differences between "with assimilation" significant wave heights and 

"without assimilation" significant wave heights obtained from SWAN at different times. 

a. Difference between "with assimilation" significant wave heights and "without 

assimilation" significant wave heights obtained from SWAN at 12 hours after the 

simulations start times. 
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b. Difference between "with assimilation" significant wave heights and "without 

assimilation" significant wave heights obtained fiom SWAN at 72 hours after the 

simulations start times. 
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c. Difference between "with assimilation" significant wave heights and "without 

assimilation" significant wave heights obtained from SWAN at 120 hours after 

the simulations start times. 



The results obtained 12 hours after the start of the runs, shown in Figure 3.154 

indicate that the effect of the assimilation at buoy 44005 has a spatial scale of more than 

1" in both longitudinal and latitudinal directions. The longitudinal scale is almost twice 

the longitudinal range of influence (0.54" per Table 3.3) for this buoy location. However, 

the latitudinal spatial scale is about five times larger than the latitudinal range of 

influence (0.18"). This indicates that the assimilation effect at this buoy location has 

propagated with the waves as they were forced by the northwesterly winds shown in 

Figure 3.8. At the location of buoy 44013, the spatial scale of the assimilation effect is of 

the order of about OSO, Figure 3.15a. This scale is about double the assimilation ranges 

of influence (longitudinal and latitudinal) for this buoy. For buoy 44007, Figure 3.154 

the spatial scale of the assimilation is less pronounced compared with the other two Gulf 

of Maine buoys. This is probably not surprising, considering the fact that the assimilation 

latitudinal range of influence for this buoy is significantly smaller compared with that for 

the other two bayous. 

Figure 3.15b shows the results obtained 72 hours after the runs started. The 

results indicate that the effect of the assimilation has spread allover the Gulf of Maine 

with the exception of the Bay of Fundy region. The effect has also extended well in the 

southeast direction toward the Georges Bank. These results probably suggest that the 

most significant effect is due to assimilating buoy 44005 observed wave data. This effect 

is to be expected since buoy 44005 is located fairly distant from coastlines unlike the two 

other Gulf of Maine buoys (44007 and 4401 3). 



After 120 hours from the runs start times, similar to the temporal scale, the spatial 

scale of the assimilation has faded by a considerable amount (Figure 3.1 5c). Although 

the assimilation was switched off 48 hours earlier, its effect around buoy 44005 and buoy 

44007 can still be seen. It can be also seen from Figure 3 .15~ that the effect of the 

assimilation became considerably smaller in comparison with the effect obtained during 

the assimilation period. Note that the scales in Figure 3.15 are different. Figure 3 .15~  

also shows that for the location of buoy 44013, the results obtained with and without the 

assimilation are almost equal which can be also seen from Figure 3.7~.  

Further evidence for the significance of the effect of assimilation in spatial scale 

can be seen from the results for storm 4 (subsection 4.3.3) which showed that while data 

at buoy 44007 were not available for assimilation in this case; significant improvements 

in wave height predictions can be still seen at this buoy location. Obviously, these 

improvements have resulted from the assimilation made at other buoy locations. It must 

be noted here that the spatial scale of the assimilation effect is largely controlled by the 

assimilation longitudinal and latitudinal ranges of influence. This indicates that using 

ranges of influence different than those given in Table 4.3 will most likely yield 

differences in the spatial scale of the effect of assimilation. 

3.5 Summary and Conclusions 

The research presented in this chapter was motivated by a desire to develop a high 

resolution operational wave forecasting system for the Gulf of Maine. Such a system is 



essentially needed for obtaining reliable wave predictions for the Gulf of Maine 

nearshore areas at an adequate resolution. The system is based on the state-of-the-art 

numerical wave model SWAN which accounts for physical mechanisms that affect the 

wave evolution in both deep and shallow waters. Attempts are made, in this research, to 

improve the prediction quality of the SWAN-based system through the assimilation of 

observed wave data at buoys located inside and outside the Gulf of Maine into the wave 

model. The research mainly investigates the extent to which wave buoy data can be cross 

validated and assimilated using SWAN model. 

In the developed system, the wave model is forced by the ETA predicted wind 

field which is routinely provided by the National Center for Environmental Predictions 

(NCEP) obtained in three hours interval. For boundary conditions the system had to rely 

on wave predictions fiom the coarser grid wave model WW3 also provided routinely by 

NCEP. A boundary conditions scheme had to be developed for converting WW3 

parametric wave predictions along SWAN domain open boundaries into 2D wave spectra 

in an operational basis. Data assimilation scheme has also been developed for 

operationally assimilating the observed significant wave heights at the five buoy 

locations into the hindcast model simulations. This simple scheme adjusts only the 

energy levels of the SWAN predicted 2D wave spectra at grid points within the range of 

influence of each buoy. 

The operation of the developed system has been experimentally replicated in a 

sample case presented in this study. Results obtained for this sample case showed that an 



improvement in wave model forecast was achieved at buoy location 44005 as a result of 

the implementation of the data assimilation scheme. The statistical analysis of the model 

results have shown that the data assimilation reduced the predicted wave height scatter 

index by more than 13% in the first 48 hours of the model forecast at the location of buoy 

44005. The relaxation time for the effect of assimilation is approximately 36 hours at this 

buoy location. The data assimilation has a minimal effect at the location of buoys 44007 

and 44013, which can be attributed to a significant underprediction of the wind field. 

This leads to a significantly shorter relaxation time a these two buoy locations. 

SWAN model was also used, in this study, to simulate Gulf of Maine seasonal 

maximum wave conditions observed in the year 2001. To substitute for the un-archived 

wave predictions by WW3, another boundary conditions scheme had to be developed 

specifically for this study case. This boundary conditions scheme is based on the 

continuous assimilation of the observed wave data at the two buoys located outside the 

Gulf of Maine. In some of the simulated cases in this study, SWAN was able to 

reproduce most of the changes in the observed wave conditions at the locations of the 

three buoys inside the Gulf of Maine. In other cases, however, significant differences 

between model results and observed wave conditions were found. These differences 

were partially attributed to the mismatch between observed and predicted wind field, 

while other mismatches may have resulted from an adequate representation of the 

boundary conditions. For the assimilation-based boundary conditions only the energy 

levels of the predicted spectra are corrected, while no corrections to the energy 

distribution over the frequency domain are made. Since the wave period (frequency) is in 



fact a controlling factor for wave dissipation, boundary conditions based on poorly 

distributed spectral energies yield poor wave predictions. 

Attempts were made to improve the quality of the model predictions, in three of 

the seasonal maximum wave conditions simulations, through the assimilation of observed 

wave data at five buoy locations. Buoy data have been assimilated in an hourly basis into 

the model simulation for the first 60 or 72 hours before the assimilation scheme is 

switched off. Results obtained at the end of each hour during the assimilation period 

showed improvement in wave height model predictions at the locations of three Gulf of 

Maine buoys. After the assimilation schemes was turned off, the improvements in the 

wave height predictions were maintained for more than 2 days at one or more buoy 

locations, while in other cases the relaxation time for the assimilation effect was as short 

as few hours. For all cases, the data assimilation has reduced the predicted wave height 

scatter index in the first 48 hours following the assimilation by more than 10% and 20% 

at the locations of buoys 44005 and 44013 respectively. The overall minimal 

improvement at buoy location 44007 was not surprising since the largest scatter index in 

predicted wind speeds always occur at this location. 

In addition to the significant temporal scales that have been seen for the 

assimilation effect, the spatial scales were also shown to be significant. Both scales are 

probably controlled to large extents by the selection of the assimilation range of influence 

around each buoy. The effect of assimilation on spatial scale could be seen at the 

location of one of the Gulf of Maine buoys for which no data were available for 



assimilation. Comparisons of the differences between SWAN results obtained with and 

without assimilation have shown how significant the effect of the assimilation can be on 

the spatial scale. The comparisons made at different time step during and after the 

assimilation have also shown the temporal variability in the spatial scale of the 

assimilation effect. 

The concluding remarks provided below intended to answer the following two 

major questions, relevant to the future of high resolution wave forecasting in the Gulf of 

Maine. (1) How significant is the impact of the wave data assimilation technique used on 

the quality of SWAN model predictions?, and (2) Is the assimilation of the observed 

wave height data sufficient or is the assimilation of other types of observation (e.g. 

spectral data), which requires higher level of sophistication, needed?. 

The data assimilation scheme used in this study had a significant impact in 

improving the quality of significant wave height predictions. Minor improvements in the 

predicted mean wave periods occasionally occurred. To a large extent, differences 

between observations and the model predictions have resulted from mismatches between 

the observed and predicted wind fields (e.g. buoy 44007). The difference between the 

two wind fields shortens the relaxation time of the assimilation, hence reducing its effect. 

This is due to the fact that waves in the model (as in the real world) are mainly controlled 

by the forcing wind field. 



The assimilation of the observed wave heights at the two buoys located outside 

the Gulf of Maine have not always served adequately as boundary conditions for SWAN 

model simulations. This is mainly because the assimilation technique used in this study 

adjusts only the total wave energy levels of the model predicted wave spectra, without the 

capability of adjusting the energy distribution over the frequency domain. The 

implementation of the boundary conditions scheme which provides full 2D spectral 

boundary is probably essential to overcome this limitation. 

Correcting the wind field and the use of a more sophisticated assimilation scheme 

will improve the quality of model predictions. However, the implementation of such 

techniques in an operational system will be computationally expensive. Nevertheless, 

expected improvement from any computationally expensive technique will shortly fade 

away if the model is forced, in the forecast mode, with inaccurately predicted wind fields 

or boundary conditions. Therefore, no matter how sophisticated the assimilation scheme, 

the wave model will produce poor results if is forced by poorly predicted wind fields or 

boundary conditions. 

This research has demonstrated that a simple data assimilation scheme that uses 

only the observed significant wave height to correct the energy level of the predicted full 

2D wave spectrum may improve the quality of wave forecasting model predictions. The 

effect of the assimilation is seen in the model predictions with relaxation times up to 2 

days. This suggests that a simple and computationally inexpensive assimilation scheme 

is suficient. 



In conclusion, the research presented in this chapter has shown that data 

assimilation would be of greater benefit to high resolution operational wave prediction 

systems for the Gulf of Maine. Additional studies are necessary to evaluate the 

applicability and robustness of the Gulf of Maine operational wave prediction system 

developed in this study. 



Chapter Four 

SUMMARY AND CONCLUDING REMARKS 

Applications of the several existing numerical wave models, nowadays, fall under 

two major categories: one is practical and the other is scientific. In practical applications 

models are used as reliable tools to provide near future wave predictions, wave 

climatology or extreme wave statistics for specific regions. Scientific applications of 

wave models involve the investigation of methods to improve the model performance, the 

simulations of extreme cases that rarely occur in the real world and the development of 

better understanding of physical mechanisms associated with the waves and the way they 

interact in specific field experiments. 

Obviously, models have to go through extensive validationlverification 

procedures before they can be used in practical applications to provide wave predictions. 

For the outer ocean wave models, the length scale of the wind-induced changes is large 

and the combination of the available buoy and satellite data in the domain are generally 

sufficient for model validation. In coastal areas, however, spatial variability induced by 



geometric irregularities can be greater and more complex. Yet, most model domains will 

have little or no data for validationlcalibration. Satellite data close to the coast are not 

reliable and buoys, if at all present, are too localized to provide a proper representation of 

the complete wave scattering problem. Even when data are available, they would most 

likely contain the effects of physical mechanisms not modeled. It is obvious that unlike 

regional tidal/circulation models, it is difficult to validate or calibrate a regional coastal 

wave model used in an ocean observing system. In order to invest faith in the 

predictions, it is therefore necessary to validate the models whenever the opportunity 

exists and, if satisfactory results are obtained, to apply them at other desired sites in the 

hope that the predictions are reliable. 

In the first part of this thesis, two wave transformation models, SWAN and 

CGWAVE, were used to simulate wave conditions at the Field Research Facility (FRF), 

Duck (North Carolina). The domain of interest (FRF) contains a greater number of 

measurements than are normally available and therefore provided great opportunity for 

the verification of the two models. The motivation was to examine how well these 

models reproduce observations and to determine the level of consistency between the two 

models. Stationary wave conditions pertaining to three different storm-induced 

bathymetric representations were modeled. It was found that SWAN and CGWAVE 

reproduced the observed wave behavior to a large extent, but CGWAVE results tended to 

be somewhat smaller than the SWAN results and the measurements. The differences 

were attributed to nonlinear wave-wave interactions and breaking. Otherwise the models 

showed a high level of consistency. Once verified, the two models were also used to 



explore other mechanisms reported in the recent literature were it was able to 

qualitatively confirm observational findings of other researchers regarding wave 

breaking, triad wave-wave interactions, and wave directional spreading at this site. 

SWAN and CGWAVE were also used in a quantitative-qualitative sense to investigate 

the effect of the piles of the FRF research pier on obliquely approaching waves as they 

pass under the pier during an event that has been studied by other researchers. In contrast 

to the suggestion made by the other researchers, the results of SWAN and CGWAVE 

indicated that research pier legs did not have significant effect on the observed wave 

conditions for the investigated event. The analysis and results presented in this part of 

the thesis have demonstrated that when the modeled physics are commensurate with what 

is occurring in the field, numerical wave models provide fairly reasonable and compatible 

predictions. 

Traditionally, numerical wave models were run without the use of actual wave 

observations to improve the overall quality of the model results. The limited numbers of 

wave buoy observations were only useful for model validation/verification studies since, 

for many cases, these buoys are too localized for their measurements to provide a proper 

representation of the complete wave scattering problem. The significant increase in both 

spatial and temporal coverage of wave observations, which occurred over the last two 

decades, is mainly attributed to the wave measurements made available by satellite 

mounted instruments such as the Synthetic Aperture Radar (SAR) and Wave Altimeter. 

This dramatic increase in wave observations was utilized for improving the quality of 

wave model predictions via data assimilation techniques. Although many previous 



studies have demonstrated that data assimilation considerably improves wave models 

predictions, most of these studies; however; have shown that the obtained improvement 

fades away shortly after turning off the data assimilation scheme. This is mainly due to 

the fact that waves in the model (and also in the real world) are primarily controlled by 

the forcing wind field. 

The research presented in the second part of this thesis was motivated by the 

desire to develop a high resolution operational wave forecasting system for the Gulf of 

Maine. The system is based on the numerical wave model SWAN which accounts for 

physical mechanisms associate with wave evolution in both deep and shallow waters. 

The major goal of this research was to examine the impact of buoy data assimilation on 

the quality of SWAN model predictions for the Gulf of Maine. The extent to which buoy 

data can be cross validated and assimilated using the wave model was investigated. The 

data assimilation scheme used in this study had a significant impact in improving the 

quality of significant wave height predictions. To a large extent, differences between 

observations and the model predictions have resulted from mismatches between the 

observed and predicted wind fields (e.g. buoy 44007). The difference between the two 

wind fields shortens the relaxation time of the assimilation, hence reducing its effect. 

The assimilation of the observed wave heights at the two buoys located outside have not 

always served adequately as boundary conditions for SWAN model simulations. This is 

mainly because the assimilation technique used in this study adjusts only the total wave 

energy levels of the model predicted wave spectra, without the capability of adjusting the 

energy distribution over the frequency domain. The implementation of the boundary 



conditions scheme which provides full 2D spectral boundary is probably essential to 

overcome this limitation. Correcting the wind field and the use of a more sophisticated 

assimilation scheme will improve the quality of model predictions. However, the 

implementation of such techniques in an operational system will be computationally 

expensive. Nevertheless, expected improvement fiom any computationally expensive 

technique will shortly fade away if the model is forced, in the forecast mode, with 

inaccurately predicted wind fields or boundary conditions. Therefore, no matter how 

sophisticated the assimilation scheme, the wave model will produce poor results if is 

forced by poorly predicted wind fields or boundary conditions. This research has 

demonstrated that a simple data assimilation scheme that uses only the observed 

significant wave height to correct the energy level of the predicted full 2D wave spectrum 

may improve the quality of wave forecasting model predictions. The effect of the 

assimilation is seen in the model predictions with relaxation times up to 2 days. This 

suggests that a simple and computationally inexpensive assimilation scheme is sufficient. 

It can be concluded fiom this study that data assimilation would be of greater benefit to 

high resolution operational wave prediction systems for the Gulf of Maine. Additional 

studies are necessary to evaluate the applicability and robustness of the Gulf of Maine 

operational wave prediction system developed in this study. 

The major contributions of the research presented in this thesis are: 

1. In the model validation study presented in the first part of this thesis, scientific 

model application allowed to explore other mechanisms reported in the recent literature; 



the results were either consistent with some observations or they shed more light on 

others . 

2. The second part of the research presented in this thesis represents, to the best of 

the author's knowledge, one of the earliest studies involving wave data assimilation using 

SWAN model. The results indicate that even a simple data assimilation scheme can have 

significant impact on wave forecasting in practical model applications. 
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Appendix 

STATISTICAL PARAMETERS 

For time series of length (N) the observed (obs) and model computed (com) wind or 

wave parameter (X) are used to calculate the bias according to the following relation: 

1 
Bias = - (xc0,,, - Xobs ) 

N 1 

The root mean square of the error (RMSE) is calculated as follows: 

Normalizing the RMSE by the mean of the observations yield the scatter index (SI): 

" obs 

The correlation is calculated as follows: 
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