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Hypnozygote cysts are a known stage in the life cycle of Alexandrium spp. 

Negatively buoyant cysts purportedly fall ,to the benthos where they undergo mandatory 

quiescence until their endogenous clock makes germination possible. If oxygen is 

present and the endogenous clock allows, germination will occur at a rate proportional to 

light and temperature. Offshore in the Gulf of Maine, where Alexandrium blooms are 

well documented, the paradigm of benthic cysts is problematic. Sediment surveys have 

found wide distribution of cysts, with highest cyst concentrations below 100 m in areas 

where deposition is favored. Germination at these depths is likely slow due to light 

inhibition; negative effects of burial on germination rate, and losses of cells during the 

transit from benthos to photic zone also present problems. 



The purpose of this study was to determine if cysts are suspended in the water 

column where they would be better positioned to initiate springtime Alexandrium 

populations. During cruises in February, April, and June of 2000, thirty liter samples 

were taken from the near-bottom, the top of the bottom nepheloid layer, and near surface, 

concentrated and stained with primulin for examination using epifluorescence 

microscopy. Suspended cysts were found widely distributed throughout the Gulf of 

Maine and Bay of Fundy. Generally, cysts were more abundant in near-bottom and top 

of the bottom nepheloid layer samples than in the surface.' Alexandrium hypnozygote 

cysts were most abundant in February and least abundant in April. 

As a first order assessment of the potential for planktonic cysts relative to benthic 

cysts to initiate springtime populations of Alexandrium vegetative cells, the following 

rough calculation was performed using as an example the data from the Bay of Fundy in 

February. In February planktonic cysts numbered on the order of lo2 cysts m" in surface 

waters in the Bay of Fundy; near bottom cyst concentrations were between lo2 - lo3 cysts 

m". Roughly integrating total suspended cysts yields lo4 cysts m-2. Cysts in the Bay of 

Fundy sediments were found at concentrations of lo3 cysts ~ m - ~ .  Conservatively, only 

the uppermost 1 rnm layer of cysts will be able to successfully geminate, which equals 

lo2 cysts cm-2 or lo6 cysts m-2. Studies have shown that only 10 % of benthic cysts 

germinate and that light enhances germination rate 10-fold, which lowers the benthic 

estimate to lo4 cysts m-2, the same concentration as found in the water column. 

The purpose of this study was primarily to determine the presence or absence of 

Alexandriurn hypnozygote cysts in the water column in the Gulf of Maine. The data, 

while significant in that they show the presence of potentially important cyst in the water, 



do not lend themselves well to robust statistical analysis. However, this study provides 

evidence that suspended cysts likely contribute significantly to spring Alexandrium 

populations. Suspended cysts should be considered in future investigations and computer 

modeling designed to predict Alexandrium caused paralytic shellfish poisoning events. 
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1. INTRODUCTION TO ALEXANDRIUM 

Introduction to Dinophyceae 

Dinophyceae, the class to which Alexandrium belongs, are tremendously diverse 

and evolutionarily successful. Dinoflagellates exist in many environments, from fresh 

water ponds to the deep sea, from tidal pools to pore water in sand (Sarjeant 1974). In 

lifestyle they are equally diverse, ranging from autotrophs to heterotrophs, symbionts to 

parasites. They maintain high profile positions in our world as the symbiotic 

zooxanthellae algae in corals, as the most important producers of bioluminescence, and as 

the causative algae in "red tide" or harmful algal blooms from the Biblical plagues when 

the Nile River ran red to present day Gulf of Maine shellfish poisoning events (Sarjeant 

1974). Dinoflagellate diversity is not restricted to differences between various species; 

dinoflagellates have multiple life stages, some of which look different enough from each 

other to have been initially classified as two different organisms altogether. The variety 

extends to skeletal material; different species use silicate, calcite, cellulose, and/or 

sporopollenin in their various life stages to construct their cell walls (Evitt 1985). The 

only clear requirement for membership in the dinoflagellate class is the possession of a 

life stage with two dissimilar flagellae, which cells use to propel themselves (the name 

dinoflagellate comes from the Greek "dino" which means "to whirl") (Taylor 1987). 

Sexual reproduction and hypnozygote stages are recognized in an increasing 

number of dinoflagellate species, but sexual reproduction and cysts are not universally 

documented among dinoflagellates. If sexual reproduction occurs the resulting zygote 

often enters into a dormancy period (in which case the zygote is called a hypnozygote or 

cyst). Sexual reproduction and dormant stages enhance species success in terms of 



genetic variability and evolutionary success. Hypnozygote cysts appear to have at least 

three functions in the life cycle of Alexandrium spp. and other cyst-fonning species. 

They provide an obvious mechanism for species survival during periods of environmental 

conditions adverse to vegetative cells, such as the winter months for marine 

dinoflagellates, and the summer months for some freshwater pond species (Evitt 1985). 

They also provide a mechanism for dispersal; motile cells might not survive a lengthy 

oceanic passage, but a dormant cyst might do so easily. Cysts can also establish 

perennial populations in estuaries and coastal embayments, whereas vegetative cells can 

enter these areas only at the whim of currents, which are just as likely to bring them out 

to sea again. 

Harmful Algal Blooms and the Genus Alexandriunz 

Today, dinoflagellates are receiving increased attention due to their common 

occurrence in harmful algal blooms (HABs) and corresponding causative role in paralytic 

shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), neurotoxic shellfish 

poisoning (NSP), and ciguatera poisoning outbreaks and fish kills. Because members of 

the Alexandrium genus have been implicated in PSP events, its worldwide distribution 

has been recently well documented. It may be that Alexandrium has always been widely 

distributed but environmental conditions have only recently supported blooms, or it may 

be that Alexandrium has only recently been dispersed (Hallegraeff 1993). There has been 

an increase of documented HAB events, specifically PSP events, through time and 

geography. For example, PSP has only been documented in the Southern Hemisphere 

since 1970 (Hallegraeff 1993) but since the late 1800s in the Northern Hemisphere 

(Ganong 1889). There are multiple possible explanations or mechanisms for this 



apparent trend. It may be that the apparent increase is not a trend at all, but a function of 

increased scientific inquiry into and documentation of these events, or a function of the 

increased use of coastal areas for aquaculture. If the increase is real and dispersal of 

HAB species rather than the onset of favorable environments is the cause, the geographic 

increase is likely due to dispersal of the cyst stage; "since [vegetative dinoflagellate cells] 

are not known to survive for long periods in the open ocean, transoceanic dispersal by 

means of ocean currents is highly improbable" (Scholin et al. 1995, citing Hallagraef and 

Bolch 1992). In addition to potential dispersal by currents, dinoflagellate cysts can be 

and are transported in ballast water in commercial tankers (Hallegraeff 1993). In 1995 

Scholin et al. published the results of a genetics study of Alexandrium, a genus of 

dinoflagellates with many toxic taxa, the goal of which was to determine the dispersal 

history of this PSP-causing genus. They concluded that multiple sources and multiple 

dispersal events and probably multiple mechanisms (natural and human-mediated) have 

all conspired together to give us the global presence of Alexandrium we see today. 

There has been much confusion over the years regarding the classification of 

Alexandrium spp. (Anderson et al. 1994). There exist subtle morphological and 

behavioral differences between strains, populations, and species, such as the presence or 

absence of an apical pore or small differences in sulcal plate morphology only observable 

with microscopy. These have presented great challenges to researchers studying harmful 

blooms of these species. The taxonomic difficulty and the fast pace of research needed to 

mitigate poisoning events help explain why Alexandrium tamarense, for example, has 

had so many names through the years, including Gonyaulax tamarensis, Protogonyaulax 

tamarensis, Gonyaulax exavata (Anderson and Lindquist 1985 paper on G. tamarensis 

cite paper on G. excavata Dale 1977; Yentsch, et al. 1980 refer to G. excavata in Gulf of 



Maine; Martin and White 1988 also refer to G. excavata; Ichimi et al. 2001 refer to all 

these as synonyms). 

Three species of the dinoflagellate genus Alexandrium have been identified over 

the years in the Gulf of Maine: Alexandrium tamarense, A. findyense, and a lesser 

abundance of A. ostenfeldii (Anderson et al. 1994; Deitz and Townsend 2000). There is 

little difference in motile cell taxonomy between A. tamarense and A. findyense; A. 

ostenfeldii can be larger (30-70 pm) than the other two species (25-46 p) (Anderson et 

al. 1994; Balech and Tangen 1985; Mackenzie et al. 1996). A. findyense tends to be the 

dominant species in the open waters of the Gulf of Maine (Anderson et al. 1994); for 

convenience, A. findyense is typically used to refer to the saxitoxin-producing 

Alexandrium species in the Gulf of Maine (e.g., A. fiuzdyense and A. tamarense). 

(Saxitoxins are a family of naturally occurring, water-soluble neurotoxins, responsible for 

causing paralytic shellfish poisoning.) It is not yet known whether A. ostenfeldii from the 

Gulf of Maine produces saxitoxin. Worldwide, there are strains of this species that do 

produce toxins of this family, and strains that do not. The Gulf of Maine toxic 

Alexandrium spp. that are the subject of this paper will be referred to simply as A. 

findyense. 

Sexual reproduction resulting in a dormant hypnozygote is present in the three life 

histories of all three Alexandrium species. Alexandrium findyense and A. tamarense 

produce a cyst with an oblong shape, approximately 50 pm by 25 pm in size (Dale 1977; 

Anderson and Wall 1978), which is the subject of this work. A. ostenfeldii cysts have a 

distinctly different round morphology (MacKenzie et al. 1996). Although both A. 

tamarense and A. findyense occur in the Gulf of Maine, A. findyense is more abundant 

and this name shall be used throughout this paper. 



Alexandrium has come under the study of the Ecology and Oceanography of 

Harmful Algal Blooms (ECOHAB) Gulf of Maine project, a large multi-institute research 

program. The majority of this work has been focused on the motile, vegetative cell 

populations, with a goal of developing the capability to predict PSP events. My thesis 

research is designed to complement that work by examining the distribution of A. 

fundyense hypnozygotes suspended in the water column, with the goal of furthering our 

understanding of how blooms are initiated. 

Alexandrium fundyense Life Cycle Stages 

Many dinoflagellates, as noted before, have several life stages. Although the cues 

that trigger an individual or population of dinoflagellates to move from life stage to life 

stage are not perfectly understood, the life cycle of Alexandrium has been described @ale 

1977; Anderson and Wall 1978) (Figure 1). This life cycle includes a motile vegetative 

cell that divides mitotically, a temporary resting cyst or pellicle cyst, motile anisogamous 

gametes, a motile planozygote that develops into a dormant hypnozygote cyst, and a 

motile planomeiocyte, the stage that emerges from the cyst (see Figure 1, Alexandrium 

life cycle). Although most of the previous work has consisted of laboratory experiments, 

studies have also been done in the research-friendly environment of salt ponds. Cape 

Cod salt ponds became inoculated with Alexandrium in a 1972 HAB event and have 

subsequently had yearly blooms of Alexandn'um (Anderson and Wall 1978; Anderson 

and Morel 1979; Anderson et al. 1983). 



Figure 1. Alexandrium life cycle and stages (modified from Anderson 1998). 



Vegetative Cells. A. findyense vegetative cells are found throughout the Gulf of Maine 

as a low concentration component of the phytoplankton community from at least April to 

October. Vegetative cells, or motile cells as they are sometimes called, are roughly 36 

pm in diameter with two flagellae, one transverse and one longitudinal (Dale 1977) 

(Figure 2). Vegetative cells can swim on the order of 10 m per day (Anderson, personal 

communication). Gonyaulax polyedra, a thecate dinoflagellate of comparable size to A. 

findyense, is capable of swimming over 20 m per day (Kamykowski et al. 1992). 

Published growth rates for A. findyense vary considerably, from 0.3 doublings per day 

(Anderson et al. 1983; Flynn et al. 1996; Ichimi et al. 2001) to 0.7 doublings per day 

(Anderson and Lindquist 1985, using culture strain isolated from a salt pond) with most 

field studies measuring 0.3 doublings per day (Anderson et al. 1983; Ichimi et al. 2001) 

(see Table 1). Studies have found different optimal temperature and salinity conditions 

for growth, indicating that some variation exists, as expected, between natural 

populations (Ichimi et al. 2001). 

Much variation has been found in the behaviors of closely related strains of A. 

findyense. In identical studies designed to assess diel vertical migration of seven 

different strains of A. findyense vegetative cells (three from Casco Bay cysts, three from 

Bay of Fundy cysts, and one Gulf of St. Lawrence strain) Cullen (personal 

communication) found enormous variability in behaviors. Some strains migrated, some 

did not, some migrated before nutrients were depleted at the surface, and there was no 

consistency among strains from the same place of origin. Most surprising, the Gulf of St. 

Lawrence strain that had previously been found to perform diel vertical migration in 



Figure 2. Darkfield photomicrograph (100x) of live A. findyense vegetative cells (red 

arrow) with Ceratium sp. (blue arrow), Dinophysis sp. (yellow arrow), and others, from 

qualitative 20 m net tow, July 2001 cruise. Note cingulum (groove with longitudinal 

flagella) and sulcurn (groove that partially contains the latitudinal flagella) on A. 

findyense cells. 



Reference 

Ichimi 2001 

I Anderson and Lindquist 1985 

Flynn, Jones, Flynn 1996 r 
Anderson, Chisholm, Watras 

Where strain is from, what 
species 
NE Japan 

Mill Pond (Cape Cod) 
isolated cyst, strain GTMP 
4 Alexandrium species: 
minutum 
minutum 
tamarense 
afini 

A. tamarense (Casco Bay) 
" Strain 2 
" Strain 3 

A. tamarense (Bay of Fundy) 
" strain 2 
" strain 3 

In situ studies of Perch, Salt, 
and Mill Ponds on Cape Cod 

Growth rate repork 
Doublings 
0.33 divisions day-' 
In situ growth rate 
estimated from 
plotting abundances 
from study, 

0.7 divisions day-' 

0.7 doublings day-' 
0.6 
0.3 
0.7 

0.4 doublings 
0.2 
0.2 

p = 0.5 day" 

p- = 0.5 
hx = 0.45 
hx = 0.23 
bx = 0.5 
hx = 0.41 1 
hx = 0.461 
hx = 0.478 
hx = 0.447 
hx = 0.400 
hx = 0.458 
p = 0.3 day-' 
p = 0.16 day" 
p = 0.16 day-' 

Table 1. Alexandnum vegetative cell growth rates. Values in black were taken from 

paper cited. Values in blue were computed by this author from values cited in each 

paper. 



response to a nitricline (MacIntyre et al. 1997) no longer vertically migrated (Cullen, 

personal communication). These strains were all isolated from individual cells or cysts. 

It is therefore likely that the variation in behaviors exists in stages other than the 

vegetative cells. Variation in A. findyense behavior has been found by many researchers, 

which suggests that this variability is likely not an artifact of laboratory methods, but 

represents true intraspecific variation. Thus, laboratory studies may not be easily 

extrapolated to other strains or populations. 

The implication of these growth rates is that blooms must develop relatively 

slowly, requiring a fairly long time of favorable growth for normal, low concentration 

populations to reach bloom densities. For instance, starting with a population density of 

10 celldliter and using the simple population growth equation P(t) = P&?* (where P(t) is 

the population concentration at some time t, Po is the population at time zero, g is the 

doubling rate, and t is the time in days) and using a g of 0.3 doublings per day, 23 days 

(with no losses) must pass to reach a population density over 1000 celldliter. 

Pellicle cysts. During times of environmental stress, vegetative cells can shed their 

thecae and become pellicle, or temporary cysts - athecate nonmotile cells of spherical or 

ovoid shapes (Anderson and Wall 1978) (Figure 3). Internal structures can either 

resemble those of motile cells or hypnozygotes (Anderson and Wall 1978). A. findyense 

is capable of surviving for one to seven months in this temporary stage while 

environmental conditions are unsuitable before they must resume the vegetative cell stage 

or die. Most pellicle cysts are not viable after only two months (Anderson and Wall 

1978). 



To avoid confusion, the word "cyst" will hereafter refer only to the hypnozygote 

cyst stage. If the temporary or pellicle cysts stage is discussed, it will be referred to 

explicitly as such. 

Sexual stages: gametes, planozygotes, hypnozygote cysts. In response to an 

indeterminate factor or factors vegetative cells split and form gametes that are of 

approximately the same size as vegetative cells (Anderson 1980). Gametes (from 

different parental vegetative cells) fuse into a motile planozygote with a characteristic 

large, deeply pigmented appearance (Turpin et al. 1978). The planozygotes develop into 

the hypnozygote cyst within about a week, although the cellulose cell wall of the 

hypnozygote, or cyst, continues to thicken over the following weeks or months 

(Anderson 1980; Anderson et al. 1983; Yentsch et al. 1980; Anderson and Lindquist 

1985). Newly formed cysts have very distinctive morphology (Anderson 1980); they are 

dark and full of round starch granules (see Figures 4 and 5). Cysts are as toxic or more so 

than vegetative cells @ale et al. 1978). These hypnozygote cysts are usually capsule- 

shaped and 45 -55pm by 25-30pm, although shape and size vary somewhat (Dale 1977; 

Anderson and Wall 1978; Anderson 1980; Anderson, et al. 1985) (Figure 6 and 7). 

Anderson and Wall (1978) reported cysts isolated from a salt pond ranging in length from 

43-72pm, in diameter from 26-39pm and varying in shape from squat to elongated 

capsules, to bean- or peanut- shaped forms (i.e., somewhat dented and bent in the 

middle). Anderson et al. (1985) noted a 44% variation in size that seemed consistent 

with the source of the cysts: cysts from sampling sites offshore of Cape Ann were smaller 

than cysts isolated in Cape Cod salt ponds. 



Figure 3 a 

Figure 3 b 

Figure 3. Photomicrographs (200x) of A. findyeme pellicle cyst, shedded thecae still 

attached, in a) epifluorescence, b) transmitted light. Diameter of pellicle cyst is 28 pm. 

From July 2000 cruise, station 91, near-bottom sample (45m). 



Figure 4 a 

Figure 4 b 

Figure 4. Transmitted light photomicrographs (200x) of newly formed A. fundyense 

hypnozygote cysts produced by David Kulis in D. M. Anderson's laboratory at Woods 

Hole Oceanographic Institution. (a) typical capsule-shaped hypnozygote cyst, (b) round 

form common to new hypnozygote. 



Figure 5 a 

Figure 5 b 

Figure 5. Photomicrographs (200x) of newly formed A. fundyense hypnozygote cyst in a) 

epifluorescence, b) transmitted light. Cyst measures 56 x 30 p. From July 2000 cruise, 

station 116, near-bottom sample (97 m). 



Figure 6. Darkfield photomicrograph (200x) of live A.fundyense hypnozygote cyst from 

qualitative 20 m net tow, July 2001 cruise. 



Figure 7 a 

Figure 7 b 

Figure 7. Photomicrographs (200x) of mature A. jimdyense hypnozygote cyst and empty 

cyst wall (visible best in epifluorescence image) in a) epifluorescence and b) transmitted 

light. Both are 48pm long. From July 2000 cruise, station 70, near-bottom sample 

(212 m). 



With a density of 1.24 - 1.4 g ~ m - ~ ,  A. findyense cysts are negatively buoyant 

(Anderson et al. 1985; Yamaguchi et al. 1995). Empty cyst walls have densities similar 

to that of cellulose, on the order of 1.05 g cm" (Anderson et al. 1985). In a motionless 

water column, cysts would sink with a Stokes velocity of between 8.4 and 14.5 m day-'. 

Larger cysts would fall slightly faster than smaller cysts, a fact that has ecological 

implications for cyst size variability. Anderson et al. 1985 calculated that the sinking rate 

of salt pond cysts was 32% faster than that of the 44% smaller Cape Ann cysts. It is well 

known that the Gulf of Maine water column is far from motionless, so actual sinking 

rates are likely much slower or much faster than Stokes velocity calculations suggest. 

Different sinking velocities among cyst populations are consistent with the idea of two 

different adaptive strategies for cysts occurring in shallow and deep water. Cysts that 

settle quickly might be more likely to establish a perennial population in a shallow 

environment and less likely to be advected out of the area. Cysts that sink slowly might 

never reach the bottom in deep water but remain suspended in turbulent environments 

and therefore might still be in the water column months later when germination occurs. 

Cysts are often, though not always, observed covered in mucilage, which may aid 

their passive decent. Mucus can increase the effective radius of a cyst. If the mucus 

captures particles denser than the cyst, this would increase the density of the cyst. Both 

of these mechanisms would increase sinking rate (Anderson and Wall 1978; Yamaguchi 

et al. 1995). Cysts apparently secrete mucilage themselves, as it is seen in cultured 

Alexandrium cysts (Anderson 1980; Anderson et al. 1985), although mucilage is 

apparently not ubiquitous among Alexandrium cysts. Yamaguchi et al. (1995), in a study 

of cysts from natural sediment samples, found twice as many cysts with associated 

detrital material than cysts with no associated detrital material. Cysts with detrital 



material were found almost exclusively in the greater than 1.4 g ~ m ' ~  fraction of their 

density fractionation study. Cysts that do not have mucilage might remain suspended 

longer in the water column. This dichotomy between fast sinking mucilage-covered cysts 

and slower sinking bare cysts could be advantageous in two ways. Fast-falling cysts 

could act to establish permanent populations in areas where water depth is shallow or 

advection is strong. Slower-sinking cysts would be more effective in dispersing the 

species over wide areas. 

Yentsch et al. (1982) observed changes in cyst wall thickness, toxin content, 

appearance of inner contents, and fluorescence over the course of the winter. These 

authors interpreted these changes, as well as mucilage production, as evidence of 

metabolic activity and perhaps indicative of an endogenous clock or circannual rhythms. 

Other researchers have noted changes in cyst appearance as well, especially when the 

cyst is recently formed or just prior to germination. New cysts appear distinctively dark 

and full of round starch and lipid bodies (Anderson 1980). They can sometimes be less 

elongate than more mature cysts. This appearance lasts only days to a week after the cyst 

is formed. As cysts get close to germination a clear girdle forms through the middle, and 

the internal contents show increased Brownian motion and autofluorescence (Anderson 

and Wall 1978) (see Figure 8). 

Initiation of sexual reproduction and subsequent cyst formation can be a 

significant factor in bloom termination (Anderson et al. 1983; Heiskanen 1993; 

Yamamoto et al. 2002). What triggers sexual reproduction in an A. findyense population 

is unknown, although many theories exist. Using a Pacific strain of Gonyaulax 

tamarensis (later renamed A. tamarense) Turpin et al. (1978) induced cyst formation by 

putting vegetative cells into a low nitrogen medium. Doucette et al. (1989) found in 



Figure 8 a 

Figure 8 b 

Figure 8. Photomicrographs (200x) of autofluorescent A. fundyerase hypnozygote 

cyst (50 x 28p.m) in a) epifluorescence and b) transmitted light. From July 2000 cruise, 

station 104, near-bottom sample (105m). 



laboratory experiments that Fe stress initiated sexuality, however, the study produced low 

encystment rates and Fe stress more often resulted in pellicle cyst formation than 

hypnozygote cyst formation. Anderson and Lindquist (1985), in a series of phosphorus- 

limited batch culture studies, found that nutrient limitation seemed to initiate 

reproduction, although they cited some fieldwork that indicated encystment in the 

presence of high nutrients. In a salt pond study examining sexuality in G. tamarensis 

sexual reproduction was initiated at relatively high nutrient concentrations similar to 

those earlier in the bloom when asexual reproduction was occurring. This lead 

researchers to speculate that nutrient limitation may not have induced sexual reproduction 

in that salt pond environment (Anderson et al. 1983). Alternatively, these authors 

suggest that the increased metabolism and higher growth rates at higher temperatures 

later in the bloom led to nutrient limitation at the same nutrient concentrations present 

during the early stage of the bloom. A drop in temperature did not commence sexual 

reproduction either, as the temperature in the salt ponds remained high (Anderson et al. 

1983). These authors suggested the possibility that initiation of sexual reproduction is 

driven by the depletion of cellular contents; in other words, vegetative cells released from 

a cyst can only divide a set number of times before they must resume their dormant 

phase. But since then, cellular depletion has been ruled out in laboratory studies as a 

mechanism for inducing sexual reproduction in other dinoflagellates (Olli and Anderson 

2002). Because the salt pond study was made in the field away from potential culture 

and laboratory bias, it is perhaps more compelling than the others. It is also consistent 

with observations that cyst formation is an important mechanism by which blooms are 

terminated (Anderson et al. 1983; Heiskanen 1993; Yamamoto et al. 2002). We can 

safely say that cysts do form in surface waters where the vegetative population resides 



and, because fusion of gametes must occur in order for the cysts to form, the 

concentration'of cells must be fairly high when sexual reproduction occurs, i.e., near the 

peak of the vegetative cell bloom. 

Hypnozygote cysts have a mandatory dormancy period on the order of 2-6 months 

(Anderson 1980). There is evidence that the length of dormancy is temperature 

dependent, with excystment being possible earlier in cysts incubated at warmer 

temperatures (Anderson 1980). Cysts can survive burial in sediments for many years and 

still germinate successfully (Keafer et al. 1992). 

Planomeiocytes. Planomeiocytes, also called germlings or germling cells, emerge 

amoeba-like from the archeopyle in the cyst wall (see Figure 9). They are posteriorly 

biflagellated, diploid, and at 40-50 pm, larger than vegetative cells (Anderson and Wall 

1978). Soon after excystment, the planomeiocytes undergo their first division within 24 

hours (Anderson and Wall 1978), within 12-36 hours for a variety of dinoflagellate 

species (Nehring 1996), and within 2-3 days in dinoflagellate cultures from Norway 

@ale 1977)). Although this stage is the link between dormancy and A. fundyense 

vegetative cell populations, no research is published on factors affecting planomeiocyte 

success. 

Environmental Excystment Factors: Oxygen, Temperature, Light 

Oxygen is the factor with the most direct effect on germination; germination will 

only occur under oxic conditions (Anderson et al. 1987). Cysts can, however, survive 

extended periods of anoxia and can germinate successfully once they are exposed to 

oxygen. The effects of other environmental factors on germination are more complex. 

Both warmer temperature and increased light enhance germination rates and 



Figure 9 a 

Figure 9 b 

Figure 9. Photomicrographs (200x) of empty A. fundyense hypnozygote cyst wall with 

archeopyle clearly visible in a) epifluorescence and b) transmitted light. From April-May 2000 

cruise, station 171, near-bottom sample (63m). 



planomeiocyte success, although the literature reports some variation on the extent to 

which germination is affected (Anderson and Wall 1978; Anderson and Morel 1979; 

Anderson 1980; Anderson et al. 1983; Anderson and Keafer 1987). Variations may 

result from differences in experimental design, natural variation among A. fundyense 

populations, or both. Natural variability within A.fundyense species is probable, and 

therefore it may not be possible to determine an accurate estimate of the temperature 

required for germination of A. fundyense in general. What is clear is that germination 

will not occur unless ambient temperatures are above a threshold temperature and rates 

will increase as the temperature rises to an upper limit above which germination will not 

occur (Anderson 1998). Field observations in the Bay of Fundy indicated that cysts 

began to show signs of incipient germination (increase in Brownian motion) when 

temperatures rose above 56°C (White and Lewis 1982; Anderson et al. 1987). 

Laboratory observations of cysts isolated from a salt pond indicated that cysts did not 

show signs of germinating (autofluorescence in chlorophyll) until waters warmed to 

temperatures of 6-8°C (Anderson and Morel 1979). Anderson and Wall (1978), who 

defined excystment to be the full emergence of the planomeiocyte from the cyst wall, 

observed that excystment occurred when cultures were incubated at 16°C. There is also 

evidence for an upper limit to the temperature for successful germination, at least in salt 

ponds in Massachusetts; germination resumed in the fall when temperatures fell below 

-18°C (Anderson and Wall 1978; Anderson and Morel 1979; Anderson 1998). 

Anderson and Wall (1978) tested the effects of several environmental factors on 

germination. They saw no significant effects of light or nutrients on germination from 

different light or nutrient levels, although germinated planomeiocytes showed increased 

motility when germination occurred in light in a highly chelated medium. Later work by 



multiple authors has consistently shown that light does enhance germination (see Table 2 

and references therein). Anderson and Keafer (1985) concluded that if temperatures are 

favorable then light is the next most important environmental factor affecting excystment. 

A. tamarense (= G. tamarensis) cysts isolated from Cape Ann germinated 8 times faster 

in a light treatment (Anderson et al. 1987). Germination in dark incubations occurred at 

extremely low rates (0.01 8 day-'), despite some "intense" light exposure that was 

required for experiment preparation. (Brief exposure to increased temperatures caused 

germination in cysts stored at 5°C; whether brief exposure to light caused similar 

complications was not assessed (Anderson et al. 1987).) The germination rate of G. 

tarnarensis in the light treatment was 0.14 day-' (Anderson et al. 1987). No germination 

of any dinoflagellate cysts (Alexandrium species were not included) from the Baltic and 

North Seas occurred in the dark over a study period of two weeks, while in light studies, 

germination of all cysts was usually completed in seven days (Nehring 1996). Despite 

earlier studies suggesting that light was not an important excystment cue, the 

preponderance of published results indicate that light does enhance germination and 

gemination success. Results of published studies of dark excystment do not 

conclusively establish that Alexandrium can germinate successfully in the total absence 

of light, although there is indication that dark germination may occur at a slower rate 

(Anderson et al. 1987; Nehring 1996). Variation in results (Nehring 1996 versus 

Anderson et al. 1987, for example) is probably due to experimental methods, as the 

former author waited only two weeks to observe dark germination. There may also be 

differences in behaviors between species, strains and even individual cysts (Cullen, 

personal communication). 



I Reference I Gemtination factors I Conclusions 

Anderson and Wall 1978. 

Nutrients 

examined 
Temperature 

I I 
Light 

Anderson and Morel 1979. 
Lab andfield. 

Temperature 

Anderson 1980. Lab. 

I I Light 

Temperature 

Anderson and Keafer 1985. 

1987. Lab. 

Temperature 

I 

Nehring 1996. Lab. Mixed I Warm (18OC) and Light 

Anderson and Keafer 1987. 
Lab. 

Endogenous clock in light 
and warm temperatures 

Temperature increase caused germination 

dinofagellates, no 
Alexandrium. 

No effect on germination rate. Light 
increased motility of planomeiocytes. 
No effect on germination rate. Highly 
chelated medium increased motility of 
planomeioc ytes 
Temperature increase (somewhere between 
6-9°C in field, above 5°C in lab) initiated 
germination. 
Temperature decrease below 20-22°C in fall 
triggered second excystment period. 
Temperature increase (for cysts stored at 
5OC) or decrease (for cysts stored at 22OC) 
initiated germination 
Temperature increase triggers germination. 
Lower temperature induces germination in 
cysts from deeper locations. 
Most important factor after temperature, 
(citing Anderson, unpublished data) 
Oxygen necessary to germinate 

I 
Cold (4OC) and Dark 

Germination occurred in dark (0.018lday). 
light enhanced germination rate 
Germination frequency followed seasonal 
cycle, preferentially occurring between 
December and August 
Germination within 2-7 days 

No in 2 weeks 

Table 2. Summary of results from germination factor studies of Alexandrium. 



Endogenous Clock 

Using cysts isolated from sediment cores taken from 60 and 160 m of water off of 

Cape Ann in the Western Gulf of Maine, Anderson and Keafer (1987) documented the 

first evidence of an endogenous clock in Alexandrium cysts. A bulk mud sample from a 

station offshore of Cape Ann (their station 29 160 m deep) was stored in darkness at 2°C 

and subsampled at monthly intervals over the course of two years. Subsamples were 

taken and placed in culture medium at 15°C in a 14: 10 hour light (150 Ct~m-2s-') dark 

cycle to evaluate germination. Cysts preferentially excysted during the months from 

January to July, with no excystment in September and October (Anderson and Keafer 

1987). The presence of an endogenous clock has been confirmed by recent work by 

Thompson et al. (2000). Endogenous clock-induced germination in darkness at cold 

temperatures has been tested as well and found to occur at low rates, although the 

methods for germination in darkness and germination in light are not identical in addition 

to the obvious difference in light level (Matrai, personal communication). 

If an endogenous clock is driving Alexandrium excystment the importance of 

environmental factors are not necessarily insignificant; germination rates and 

planomeiocyte success are affected by light, temperature, and water chemistry (Anderson 

and Wall 1978; Anderson et al. 1987). Most studies documenting the endogenous clock 

have evaluated excystment readiness by the same methods as Anderson and Keafer 

(1987); a sediment sample containing cysts is held in long-term dark, cold storage and 

subsampled at some time interval. Subsamples are incubated in a 14: 10 hr light dark 

regime at an elevated temperature (-15°C) and germination rates are recorded (Matrai, 

personal communication). Germination experiments in the darkness do give credence to 



the hypothesis that germination can occur in darkness triggered solely by the endogenous 

clock. 

Ecological Implications of Germination Factors and Deep Benthic Cysts 

The importance of light for germination success becomes a critical question when 

evaluating the potential for benthic cysts to initiate vegetative cell blooms. If light is 

necessary for successful germination, cysts on the bottom below the photic zone will not 

contribute directly to the spring bloom unless they are resuspended, as has been 

suggested by numerous authors (Anderson et al. 1983; Anderson, Taylor, and Armbrust 

1987; Nehring 1996; Brown et al. 2001). If the bottom is within the photic zone, as it is 

in salt ponds and shallow estuaries, benthic cysts on the surface of the sediment will 

germinate and contribute to a perennial vegetative cell population. If germination in 

darkness can occur successfully, as recent unpublished studies may indicate, deep cyst 

beds can contribution to spring vegetative cell populations. The contribution that benthic 

cysts can make towards establishing a'springtime vegetative cell population will depend 

on specific light levels and temperatures, and consequent germination rates. 

Although the early division of planomeiocytes is beneficial for increasing 

vegetative cell concentrations, this tendency towards division within 24 hours of 

emergence may hinder rather than enhance a planomeiocyte cell's chance for success if 

that planomeiocyte cell excysted below the euphotic zone and must swim upward through 

darkness before it can photosynthesize (Nehring 1996). (Whether or not cysts 

germinating in darkness in laboratory studies divided as quickly after emergence as cysts 

germinating in light has not been assessed (Anderson, personal communication).) A long 

transit time between a deep benthic cyst bed and the photic zone also increases the 



chances of loss (e.g., grazing, advection). There is evidence that only a small portion of 

benthic cysts germinate each year, although many more are viable, even in the shallow, 

well-lit environment of a salt pond (< 10% say Anderson and Keafer 1985; Martin and 

White 1988; Wyatt and Jenkinson 1997; Anderson et al. 1987; Brown et al. 2001). 

Anderson et al. (1983) summarized this issue by concluding: "the numerical abundance 

of cysts has little bearing on the magnitude of subsequent blooms." To my knowledge, 

the length of time a planomeiocyte or new vegetative cell can survive in darkness has 

never been evaluated; this datum would help constrain the depth from which germination 

might successfully occur. Because planomeiocytes contain significant starch reserves, 

they can presumably survive and possibly even divide in darkness. Due to the important 

implications of planomeiocyte survival in darkness, however, this needs to be verified. 

Benefits and Limitations of Alexandriunz Research in Salt Ponds 

Salt ponds are extremely accessible for the study of Alexandrium, however, there 

are some significant obstacles to extrapolating what is learned in a salt pond to the more 

dynamic environment of continental shelf waters such as the Gulf of Maine. Perhaps the 

most significant differences between the Gulf of Maine and a salt pond are the much 

greater depths and currents in the gulf. In a salt pond all benthic cysts are exposed to 

vernal warming and light and are therefore able to photosynthesize upon germination. In 

the gulf, where light and vernal warming may not reach the bottom, benthic cysts may 

excyst at very low rates or may not excyst at all, and may or may not survive long enough 

to reach the euphotic zone. Researchers observing population dynamics in salt ponds 

have estimated that less than 10% of cysts germinate even in these shallow, well-lit 

environments (Anderson et al. 1983; Anderson and Keafer 1985). It seems likely that 



only a low percentage of the cysts in the Gulf of Maine that can germinate will do so. 

Currents in the gulf can greatly complicate Alexandrium ecology by dispersing and 

accumulating vegetative cells as well as hypnozygote cysts, possibly disconnecting the 

geography of vegetative bloom termination and initiation (see Figure 10). Such physical 

reworking is greatly limited in a salt pond. 

There is evidence that strains of Alexandrium in salt ponds differ from those in 

deeper waters. Cyst sizes and temperature sensitivity of germination vary between cysts 

from Cape Cod salt ponds and from offshore of Cape Ann (Anderson et al. 1985; 

Anderson and Keafer 1985). Cysts from areas farther east have not been studied to the 

extent that Cape Cod salt pond and Cape Ann cysts have been, but variations among cysts 

from these different areas would be expected. Laboratory experiments and Cape Cod salt 

pond observations may or may not be applicable to the greater Gulf of Maine. 

Alexandrium and Paralytic Shellfsh Poisoning in Gulf of Maine 

Paralytic shellfish poisoning h& been documented in the Gulf of Maine and Bay 

of Fundy since 1889, when the first deaths resulted from shellfish ingestion were reported 

(Ganong 1889). Alexandrium was not correlated with PSP toxicity until 1948 (Needler 

1948), and not found to contain saxitoxin until 1963 (Prakash 1963). Wide scale 

monitoring for PSP in the Bay of Fundy started in 1945, and in the State of Maine in 

1957, in response to two large PSP incidents in these areas in the Gulf of Maine (Bond 

1975; Hurst 1975). Toxin has been detected in shellfish by the Maine monitoring 

program every year since its inception (Hurst 1979). In 1972 a wide scale PSP event in 

the Gulf of Maine was recorded following the transit of Tropical Storm Came, with 

Alexandrium densities on the order of lo6 cells per liter, enough to color the water red 



Figure 10. General summertime circulation in the Gulf of Maine (Pettigrew, 

unpublished). 



(Sasner et al. 1975). Expanded monitoring after 1975 also found yearly PSP events. One 

theory was that the cells of the blooms of 1972 formed cysts and thereby established 

perennial populations of Alexandrium in the western Gulf of Maine where it had not been 

found prior to 1972 (Hartwell 1975; Anderson and Wall 1978; Anderson et al. 1982b), 

although Townsend et al. (2001) argue otherwise. The apparent increasing frequency of 

PSP events since the 1972 incident and consequent losses in coastal states' shellfish 

fisheries led eventually to the establishment of the multi-institutional research program 

Ecology and Oceanography of Harmful Algal Blooms in the Gulf of Maine (ECOHAB- 

GOM), funded by the National Science Foundation and the National Oceanic and 

Atmospheric Administration of which this study is a part. 

ECOHAB studies of Alexandrium vegetative cells in offshore waters found 

densities upwards of 4000 cells per liter in the Gulf of Maine in late spring and early 

summer of 1998 (Townsend et al. 2001). The bloom has been documented by large-scale 

ECOHAB samplings in June and July of 1998 and 2000, and is well correlated with the 

Eastern Maine Coastal Current (Pettigrew et al. 1998; Townsend et al. 2001) as well as 

with closures of shellfish beds to harvesting (Hurst 1979). Work is underway to 

determine what light and nutrient conditions correlate with maximum Alexandrium 

bloom densities. Townsend et al. (2001) proposed a light to nutrient ratio scheme for 

identifying waters with the potential of supporting larger blooms of Alexundrium. Little 

work has been done to determine where and how offshore blooms are initiated, or from 

where they originate. An earlier field season in 2000 attempted to constrain the timing 

and location of bloom initiation but failed to answer these questions conclusively as 

Alexandrium vegetative cells were already distributed throughout the Gulf of Maine 

(Townsend, unpublished data). The biological processes involved in bloom initiation are 



not well understood either and hinge on the over-wintering hypnozygote cyst stage of 

Alexandrium. 

Lewis et al. (1979) completed the first survey of benthic Alexandn'um 

hypnozygote cysts in the Gulf of Maine. They found benthic cysts to be widely 

distributed along the coast of Maine, although curiously absent within Frenchman and 

Penobscot Bays. Yentsch and Mague (1979) documented the occurrence of an 

Alexandrium hypnozygote cyst in a surface plankton sample. Benthic cyst surveys in the 

Bay of Fundy also revealed high densities of cysts, especially in the area north and east of 

Grand Manan Island (White and Lewis 1982). Vegetative cells were observed 

throughout the Bay, so the authors supposed that cyst formation also likely occurred 

throughout the bay, and physical processes (sediment dynamics) were responsible for 

concentrating them on the bottom northeast of Grand Manan Island. In the western Gulf 

of Maine, the Cape Ann area was sampled and found to contain widely distributed cysts 

close to shore (Anderson et al. 1982b). In 1997 a Gulf-wide benthic cyst sampling 

project was undertaken. Sediment samples were taken on a transect out to -120km 

offshore. High densities of A. fundyense hypnozygote cysts were found in sample cores, 

especially in the area just south of Penobscot Bay and just south of Casco Bay (over 500 

cystdcubic cm of sediment) (see Figure 1 I). Cysts were found in highest densities in 

deep, offshore waters, generally greater than 80m (see Figure 1 I). This positive 

relationship between cyst abundance and depth is likely due to multiple factors: sediment 

dynamics, as seen in the Bay of Fundy, as well as the biology and ecology of cyst 

formation and germination. 

Aside from the single A. fundyense cyst found by Yentsch and Mague (1979) in 

the surface plankton tow at an unspecified location, one other study briefly looked for 
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Figure 11.  Map showing distribution of benthic A. fundyense cysts in the Gulf of Maine 

(Anderson, Keller, and Keafer unpublished data). 



cysts suspended in the western Gulf of Maine. Anderson and Keafer (1985) reported 

abundances of suspended cysts from 0-2000 cysts m'3, with the vast majority of samples 

containing no cysts; in comparison to cyst concentrations on the bottom that were 3 4  

orders of magnitude greater. They concluded that the numbers of suspended cysts were 

insignificant to bloom inoculation. 

Dinoflagellate cysts in suspension have received more attention in Europe. Reid 

(1978) found a wide variety and distribution of dinoflagellate cysts in the top 30 m of 

water around Great Britain and especially in the North Sea. Nehring (1996) took surface 

water samples as well as sediment samples in the German and Kiel Bights and 

enumerated dinoflagellate cysts within them. Dinoflagellate cysts (25 known species and 

8 unidentified types) were present throughout the two study areas, with the relative 

abundance of each species consistent between water column and sediment. Live cysts 

accounted for roughly 25% of all cysts observed, with empty cyst walls comprising the 

other 75%. There were greater densities of cysts (up to 75 per liter) as well as detritus in 

the water samples taken near shore than those from offshore, which was interpreted as 

evidence that cysts were resuspended and that resuspension is more likely in shallow 

water. Nehring (1996) commented that while only 10% of benthic cysts may excyst 

(citing Anderson et al. 1983) 100% of cysts suspended in the water column may excyst, 

making these water column cysts 10 times as important as the benthic population of 

cysts. 

As cysts are passive, silt-sized particles, cyst distribution patterns in the Gulf of 

Maine are likely controlled, at least in part, by sediment dynamics, as was concluded in 

the Bay of Fundy (White and Lewis 1982). Joint et al. (1997) in a study looking at PSP 

in the northeast United Kingdom also suggested that high benthic cyst concentrations 



might better reflect the depositional environment of the bottom than the source for spring 

bloom inoculum. 

Possible Scenarios for A. firndyense Population Initiation in the Gulf of Maine 

Before addressing the topic of initiation of A. fundyense populations, a distinction 

must be made between population initiation and bloom formation. There are two 

processes that must take place to make an A. fundyense bloom possible: first, A. 

fundyense must be present in the phytoplankton community (population initiation), 

second, conditions (e.g., light, temperature, nutrients, grazers, competitors) must be 

favorable for a proliferation of A. fundyense to occur (bloom formation). Observations in 

salt ponds have shown that cyst germination does not lead directly to bloom density 

populations of A. fundyense as too few cysts germinate at any given time Anderson et al. 

1983). Blooms do arise from the growth of vegetative cells germinated from cysts (there 

is no other source of vegetative cells in these isolated salt ponds), but the size of the 

bloom is not proportional to the inoculum, rather it depends on growth conditions 

subsequent to cyst germination. This discussion of hypnozygote cysts focuses on the first 

process, the establishment of A. fundyense in the plankton, rather than the perhaps more 

complicated question of what causes A. fundyense populations to bloom. 

The possibility that A. fundyense motile cell populations persist through the winter 

months and initiate the spring bloom has not been definitively eliminated. However, 

hypnozygotes are a stage in sexual reproduction, not just a dormant stage (as opposed to 

the pellicle or temporary cysts, which is not sexual but purely resistant). A year-round 

vegetative population that undergoes sexual reproduction (and subsequent encystment) at 

irregular intervals is therefore unlikely as a long time scale explanation. Additionally, if 



hypnozygotes were not important to bloom initiation, coupling between the timing of the 

endogenous clock and the appearance of the vegetative cell population would not be 

expected. Development of blooms likely starts with germination from the encysted 

hypnozygote stage. 

While we do know that cysts are present in sediments in the Gulf of Maine and 

that cysts likely initiate the spring vegetative cell population, we do not know where 

exactly germination occurs. If we knew where germination takes place we would know 

more about the environmental constraints on germination in the field. Three obvious 

sources exist: deep benthic cyst beds, shallow benthic cyst beds (within the euphotic 

zone), or suspended cysts in the water column. All three may contribute to initiation of 

the spring vegetative cell population to some extent. It may be possible to determine 

where the cysts that inoculate the spring vegetative cell population are, or to evaluate the 

relative contribution from these multiple cyst sources. 

Benthic cysts, whether deep or shallow, may be prevented from germinating by 

anoxia or burial within the sediments (Anderson et al. 1987). What the effect of burial in 

sediment is on the success of the emerging planomeiocyte remains undetermined, 

although it is likely that there is a limit to the depth in sediment from which germination 

can occur (Anderson et al. 1982a). Bioturbation certainly affects vertical cyst 

distribution in sediments, but may have no net effect as cysts would be moved both up 

and down by bioturbation processes. Most germination studies sonify sediment samples, 

effectively removing all sediment from the mucilage that can surround cysts, prior to 

isolating cysts for experimentation, so no data is available on this subject (Anderson and 

Wall 1978; Anderson and Morel 1979; Anderson 1980; Nehring 1996). Oxygen has 

never been measured in sediment cores taken for the purpose of benthic cyst 



enumeration, but is thought to be present to the depth of 1 or possibly 2 centimeters in 

sediments in the Gulf of Maine (Watling, personal communication). 

In addition to anoxia and potential adverse effects of burial, deep benthic cysts 

must germinate at low temperatures without light. Evidence for endogenous clock-driven 

gemination in darkness supports the possibility that cysts in deep benthic cyst beds can 

germinate (Anderson et al. 1983). Recent work has shown no difference in gemination 

rate between dark and light regimes at cold temperatures (4-8°C) (Matrai, unpublished 

data). There is, however, enough conflicting evidence regarding germination of 

hypnozygote cysts in darkness that this subject warrants revisiting before conclusions can 

be drawn. Perhaps the discrepancies arise from the use of slightly different strains in 

different studies, or a refinement of techniques, but the reasons underlying the variability 

need to be determined in order to understand A. jkndyense population dynamics. 

Suspended cysts are a potential source for bloom inoculum. As Nehring (1996) 

pointed out, cysts in suspension are much more likely to germinate as they will have 

oxygen, higher temperatures and higher light than their benthic counterparts. Suspended 

cysts may or may not have ever settled to the bottom; the turbulence that would bring 

them up in the water column could also slow or prevent their settling. While turbulence 

is not unidirectional, there is a strong gradient in cyst concentration, the highest 

concentrations occumng in the sediment. Turbulence has the effect of weakening 

gradients, or moving cysts upward into the water column. In the Bay of Fundy, where 

cyst beds are not as deep as they are farther west and where tidal energy (and hence 

current shear stress at the bottom and turbulence) is high, suspended hypnozygote cysts 

are likely numerous. Cysts may be resuspended in the Bay of Fundy during winter when 

stratification is weakest and wind and wave energy can cause deep mixing and 



subsequent dispersal of suspended cysts. Alternatively, tidal currents in the Bay of 

Fundy may be strong enough to cause resuspension throughout the year. Between 

February and August, when the endogenous clock favors germination, the water column 

might contain enough cysts within and without the Bay of Fundy to initiate vegetative 

cell populations. Early germination of cysts could lead to high concentrations in later 

spring, even if the inoculating populations are subject to sup-optimal growth conditions 

and high loss rates. 

Suspended cysts might also be found in the bottom nepheloid layer. Particulate 

matter settling from the surface concentrates at density discontinuities within the water 

column. The bottom nepheloid layer, a layer of increased suspended particulate matter 

lying near the bottom of the water column, is one such layer of increased particulate load. 

Townsend et al. (1992) described a bottom nepheloid layer in the Gulf of Maine as a 

layer of increased particulate matter, biomass, and increased biological activity extending 

15-30m up from the bottom. Although the bottom nepheloid layer is made up primarily 

of resuspended material, it may not be locally resuspended, but rather material 

resuspended elsewhere and advected along isopycnals, consequently being elevated off 

the bottom. In the Gulf of Maine the particulate layer maximum is separated from the 

bottom by a gap of 0.4-lm (in the absence of any significant number of suspension 

feeders), indicating that processes other than resuspension, such as lateral advection, may 

be affecting the layer (Townsend et al. 1992). If A. fundyense blooms do indeed start 

from cysts in the water column those cysts might be found in the bottom nepheloid layer. 

While cysts suspended in the bottom nepheloid layer would not necessarily be exposed to 

optimum germination conditions, they would be free from possible interference of 



sediment and would be more easily entrained in vertical mixing than cysts resting in the 

bottom sediment. 

Objectives of This Study 

The primary objective of this study was to determine whether or not suspended A. 

fundyense hypnozygote cysts are present in the Gulf of Maine. A secondary objective 

was to evaluate the abundance of suspended cysts to determine if they might contribute to 

the initiation of spring vegetative cell populations. Previous study of A. fundyense 

hypnozygotes in the Gulf of Maine have almost exclusively investigated the abundance 

of cysts in sediment. Consideration of the dynamic currents in the gulf (see Figure 10) 

and the control environmental factors have on germination rate lead us to believe that 

suspended cysts would be widely distributed throughout the Gulf of Maine and would be 

essential to the understanding of the ecology of A. fundyense. 

Given the difficulties benthic cysts face in order to successfully germinate, an 

investigation into the presence, and abundance, of suspended A. fundyense hypnozygote 

cysts is warranted. Ample evidence exists indicating that germination from deep cyst 

beds is problematic. Germination rates in darkness may be significantly lower than in 

light (Anderson et al. 1987; Matrai, unpublished data). Benthic cyst germination may be 

complicated due to the effects of burial (lack of oxygen, difficulties in escaping 

sediment). The long time it would take germling cells to reach the euphotic zone from 

the ocean floor increases the chance that these cells would be lost by advection, grazing, 

or some other means before they reach the surface. All these factors are mitigated for 

cysts suspended in the water column. 



If cysts are present in the water column, then the matter of their contribution to 

the spring vegetative population may be tentatively addressed, at least on a first order 

approximation. It would be valuable to know whether or not suspended cysts are worth 

further consideration as researchers work towards more detailed understanding of A. 

fundyense population dynamics. 



2. METHODS 

Shipboard 

To investigate the occurrence of planktonic A. fundyense hypnozygote cyst, water 

samples were collected from three cruises in the Gulf of Maine in 2000: February 20-25 

on the WV Delaware ZI, April 24 - May 2 and June 5 -15 on the WV Cape Hatteras. 

Thirty liter water samples were taken from two depths: 2 m below the surface, 5 m above 

the bottom, and, in all months but June, the top of the bottom nepheloid layer as located 

by transmissometer. Station locations and numbers changed between each cruise. 

In February, the rosette available could not accommodate 30 L Niskin bottles, so 

two casts were necessary at each station. First, a CTD package (CTD, transmissometer, 

fluorometer) on a rosette was deployed; 5L Niskin bottles on the rosette were used to 

sample the water column at 20m intervals for nutrients and chlorophyll a. A wire 

hydrocast was done after the CTD cast on a separate winch with 30L Niskin bottles; 

bottles were attached at the bottom of the wire, at the approximate depth of the top of the 

bottom nepheloid layer as indicated by the transmissometer on the CTD cast, and 2-3m 

below the surface. Wire angle was difficult to determine, and there was evident trouble 

with the winch meter, so bottle depths are not precisely known. 

On the April and June cruises, a larger rosette was available and the 30 L bottles 

were deployed on the same cast as the CTD, transrnissometer, fluorometer, nutrient, and 

chlorophyll sampling. This ensured greater accuracy of depth and hydrographic data 

relative to cyst data. 

On all cruises, the actual volume sampled (between 25 and 29 liters) was 

recorded, then the water was poured through a 20 micrometer sieve, backwashed into a 

50 ml centrifuge tube using filtered seawater to a total volume of 45-48 ml. 2.5 ml of 



buffered formalin was added to the tube, the sample was inverted three times, then stored 

in a refrigerator. 

Laboratory 

The protocol followed in subsequent laboratory work was a modified version of 

that of Yamaguchi et al. (1995) as modified by Maureen Keller in 1997 for the benthic 

cyst study of that year (unpublished; see Table 3). After samples were centrifuged 10 ml 

of supernatant were aspirated to allow for sonification in the original 50 ml centrifuge 

tubes (this and all subsequent centrifugations were at 700 x g for 15 minutes at 18 "C, as 

per protocol of Yamaguchi et al. 1995). Samples were sonified for 60 seconds with a 

Branson 250 probe-style sonifier at setting number 4 to free any debris from the mucilage 

surrounding the cysts (Keller protocol, unpublished). After sonification, samples were 

centrifuged again, and supernatant was aspirated until 5 ml remained in the 50 ml 

centrifuge tubes. At this point, samples were transferred into 15 ml centrifuge tubes, 

using deionized distilled water (DDW). (The smaller tubes made careful aspiration of 

supernatant easier and allowed for more precise measurement at the small volumes 

involved.) Samples were centrifuged again, aspirated to lml, then 10 ml of methanol 

were added to each tube and the tubes were refrigerated. 

After approximately 48 hours, samples were centrifuged again, the methanol 

supernatant was aspirated, and the sample was resuspended with 10 ml DDW, and 

centrifuged again. Again, the supernatant was withdrawn. Two ml of filtered primulin 

stock solution (0.067g primulin powder 150 ml DDW) were added to each tube, samples 

were inverted three times and placed in the refrigerator. Primulin is a fluorochrome 



Step Procedure 

Centrifuge, aspirate 10 ml supernatant 
NOTE: All centrifugations will be for 15 minutes at 700 r g 

2 Sonify for 1 minute at setting 4 1008, Branson 250 horn style sonifier 

3 Centrifuge, aspirate to 5 ml remaining 

4 Transfer sample into 15 ml centrifuge tube 

5 Centrifuge, aspirate to 1 ml 

6 Add 10 ml methanol, resuspend pellet, refrigerate for 2 days 

7 Centrifuge, aspirate methanol supernatant 
- 

8 Resuspend pellet in 10 ml distilled de-ionized water @DW) 

1 9 1 Centrifuge, aspirate supernatant and discard 

10 Add 2 ml primulin solution, refrigerate for 2 hours 

1 1 Add 10 ml DDW, agitate, centrifuge. 

12 Draw off supernatant, resuspend pellet in 10 ml DDW, centrifuge again 

13 Draw off supernatant 

14 Resuspend pellet with minimum mls of DDW to dilute particle concentration for counting 

Table 3. A. fundyense hypnozygote cyst primulin staining protocol (after Keller 1997, 

unpublished). 



compound that stains the cellulose wall, starches, and cell membranes in the cysts 

(Yamaguchi et al. 1995). 

After two hours, 10 ml DDW were added to each tube, samples were inverted and 

centrifuged. Supernatant was aspirated and samples were resuspended in 10 ml DDW 

and centrifuged again. Supernatant was withdrawn for the last time, the sample was 

resuspended in 1-5 ml DDW, depending on the amount of particulate material each 

contained. Each sample was counted in its entirety, 1 ml at a time in a Sedgwick-Rafter 

counting cell with a Nikon Optiphot-2 epifluorescence microscope using an excitation 

330-380 nm filter. Identification was verified by examination under transmitted light. 

Final cyst concentrations were determined relative to the original seawater 

volume sampled at sea. Cyst concentrations are reported as cysts m" to avoid having to 

report partial cysts (for example, 2 cysts counted in a 30L sample would represent 

0.07 cysts L-', or, more sensibly, 67 cysts me3). 

Although intact A. fundyense cysts were the primary targets of counting, empty A. 

fundyense cysts were also enumerated. These were likely both dead cysts and the empty 

cyst walls left behind by germinating planomeiocytes. In most cases it was impossible to 

determine which, as observation of the archeopyle was only possible if the cyst wall was 

oriented optimally in the Sedgwick-Rafter counting cell. The reported abundances of 

empty A. fundyense cysts should be regarded as minimum densities, as the protocol and 

counting did not specifically address empty cysts. 

A note on sonification. As this protocol was originally designed for evaluating cyst 

densities from sediment samples and we were adapting it for water samples it was unclear 

whether sonification would be necessary. The first three samples prepared were not 

sonified. In the first lml of stained sample examined under the microscope one cyst was 



found, with no mucus associated with it. Aggregates of sediment were also observed 

with something stained and fluorescing in the middle that might or might not have been 

an A. fundyense cyst, but the sediment precluded a positive identification. After these 

observations, a sonification step was included in the protocol. 

The original protocol called for a sieving step after sonification. This step was 

omitted from the suspended cyst protocol as the detrital load was very low for most 

samples and the risk of losing cysts in sieving seemed to be greater than the benefits of 

removing extraneous particles. 

Protocol for vegetative cell subsamples of February surface samples. February 

surface samples were subsampled for vegetative A. fundyense cell counts. Five ml 

subsamples were taken from the approximately 48 ml of concentrated surface samples 

(see protocol in Townsend et al. 2001). Although these subsamples were only 5 ml, they 

represented approximately 2 liters, the usual sample size for A. fundyense vegetative cell 

counts. The protocol followed for vegetative cell counts requires samples to be mounted 

on slides on the filter on which they were prepared. This made cyst counts of these 

samples impossible, however, the remaining portion of the original surface samples were 

prepared following the cyst protocol and counted. 



3. RESULTS 

Cysts were present in the water column in February, April, and June, with 

concentrations ranging up to 8000 cysts m-3 (see Tables 4 and 5 for summary). Empty 

cysts were also present in the water column in all months sampled. As sampling density 

and location varied between cruises, comparisons between the three cruise data sets must 

be made with caution. All cruises occurred during neap tidal periods (exact moon phase 

is given after each cruise date). 

February 20-25, RN Delaware ZZ (Full Moon Feb 19, New Moon March 6) 

The February cruise was designed to sample bacteria in the Bay of Fundy (Juliette 

Rooney-Varga) and zooplankton on a transect from coastal Maine to Georges Bank (Ted 

Durbin). Hence, spatial coverage for cyst sampling was spotty at best. Little can be 

concluded about the horizontal distribution of cysts during this month in the Gulf of 

Maine. 

Cysts were present at all three depths sampled in February: surface, top of the 

bottom nepheloid layer, and near bottom (see Figure 12a and b). The distribution of cysts 

with depth varied between stations, but highest concentrations were generally found in 

the near bottom sample. February was the only month in which surface samples 

contained cysts; six of the ten surface samples contained cysts (see Table 5). 

Empty cysts were present at all depths below the surface at all stations; stations 10 

and 11 were the only two stations with no empty cysts at the surface (see Figure 13a and 

b). Empty cyst vertical distributions followed two patterns: virtually no change with 

depth (stations 5, 8, 10, 13) or an increase with depth (stations 4,6,7,9, 11, 12). 



Intact  C y s t s ,  February  2 0 0 0  
10000 7-- - - - - - - - - - - -- 

= l o p  o f b o t t o m  nsphs lo id  I sysr  

7000  - I n c a r  b o l t o m  

6000  - 
5000  - 
4000 - 
3000  - 
2000 - 

-6 6 -6 5 
Figure 12a. 

Figure 12b. 

Figure 12. Intact cysts, February 2000. a) shows station locations and cyst concentrations. 

lOOm and 200m isobaths indicated. b) shows bar graph of total intact cysts at each station 

with contributions from each level. 
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Figure 13. Empty cysts, February 2000. a) shows station locations and cyst concentrations. 

lOOm and 200m isobaths indicated. b) shows bar graph of total empty cysts at each station 

with contributions from each level. 



Although the difference was small, station 8 had the highest empty cyst density at the 

surface and least at the bottom; station 8 was one of the stations where the highest 

concentration of cysts occurred at the top of the bottom nepheloid layer. 

During cyst counts, microscope observations were made of cysts with their 

internal contents withdrawn from the cyst wall and which showed strong red 

autofluorescence under epifluorescent light. Both are signs of imminent germination, or 

of recent cyst formation. These were a very small fraction of total cysts observed in 

February samples (19 of the 575 total cysts observed (3%), in 10 different near bottom 

and top of bottom nepheloid layer samples from 6 stations). The autofluorescent cysts 

made up between 2 and 50% of the cysts in the samples in which they were found. 

Although the density of these autofluorescent cysts was low, their occurrence is very 

interesting, especially in light of the decrease in cyst densities observed in April (see 

April results and discussion following). 

Vegetative cells were found in surface samples from February (see Figure 14). 

Their densities were very low relative to summer abundances. Conclusions that might be 

drawn from these data are considerably weakened by the thin spatial coverage of samples 

and the lack of duplicate samples. Despite the limited sampling, this is still the first 

documentation of vegetative cell population of A. fundyense in winter months in the Gulf 

of Maine. 

April 24-May 2, RN Cape Hatteras (Full Moon April 18, New Moon May 4) 

The April-May cruise (henceforth referred to as the April cruise) was the first 

broad scale survey of the ECOHAB-GOM cruise season and as such included many more 

stations than were sampled during the February cruise. This increased sampling 



Figure 14. V egetative cells, February 2000. Figure shows station locations and vegetative 

cell concentrations. lOOm and 200m isobaths drawn. Counts reported in cells per cubic 

meter for consistency with cysy counts. 



area revealed widely distributed cysts through out the Gulf of Maine, from the Bay of 

Fundy to the Western Gulf of Maine (see Figure 15 a and b). 

One distinct difference between April and February cyst data is that no surface 

April sample examined had any intact cysts or any empty cyst walls (see Figure 15 a and 

b and Figure 16 a and b). Some seasonal stratification develops in the Gulf of Maine in 

April, but vegetative cell densities were still low (Townsend, unpublished data). It seems 

likely that stratification would prevent introduction of cysts to surface waters by vertical 

mixing, and the low vegetative cell population would preclude formation of cysts this 

early in the year. These two factors likely explain the absence of cysts, intact or empty, 

in surface waters. 

A total of 12 autofluorescent cysts were observed in 8 samples from 7 stations 

visited in April. All but two of these autofluorescent cysts came from near bottom 

samples. Because the total number of cysts counted in April samples was only 55, the 

autofluorescent fraction was over 20%, a large increase from the 3% seen in February. 

Again, these percentages and trends afe at best gross analyses of this data, useful only in 

making rough comparisons between months. 

June 5 -15, R N  Cape Hatteras (New Moon June 2, Full Moon June 16) 

The June cruise data differed from that of earlier months in that the top of the 

bottom nepheloid layer was not sampled. No surface samples counted contained cysts. 

Of the bottom samples, far more of the June samples had intact cysts than of the April 

samples; 20 of 28 (71%) near bottom samples had cysts in June, while only 11 of 32 

(34%) near bottom samples had cysts in April (see Figure 17 a and Table 4). This trend 

likely results from the formation of the new cysts observed in the water column (see 
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Figure 15b. 

Figure 15. Intact cysts, A pril-M ay 2000. a) shows station locations and cyst 

concentrations. lOOm and 200m isobaths indicated. b) shows bar graph of total intact 

cysts at stations with near bottom and top of bottom nepheloid layer non-zero data. 
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Figure 16b. 

Figure 16. Empty cysts, A pril-M ay 2000. a) shows station locations and cyst 

concentrations. lOOm and 200m isobaths indicated. b) shows bar graph of total empty 

cysts at  station with near-bottom and top of bottom nepheloid layer non-zero data. 
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Figure 17b. 

Figure 17. Intact cysts, June 2000. a) shows station locations and cyst concentrations. 

lOOm and 200m isobaths indicated. b) shows bar graph illustrating contribution of new 

and mature cysts to total cyst counts for stations with both new and mature cysts. 



Figure 17 b) rather than increased resuspension of benthic cysts; average tidal energy 

from the April cruise to the June cruise should be the same, and the wind experienced by 

both cruises is similar. New cyst formation in June is also consistent with observations 

made in salt ponds; new cysts began accumulating on the bottom before the peak in 

vegetative cell densities in the water column (Anderson et al. 1983). 

New cysts are recognizable because they are entirely filled with starch grains, and 

appear dark under transmitted light (see Figures 5 and 6). Their shape sometimes varies 

from the typical capsule-like form of the more mature cyst. Identifications were made 

chiefly by physical resemblance to photomicrographs of new cysts kindly furnished to me 

by D. M. Anderson. Of the 109 cysts counted from June samples, 18 showed evidence of 

recent formation, which is greater than 15 % of the total cysts. 

Autofluorescent cysts were also counted in the June samples. Their abundance 

was lower than observed in April, which agrees with previous endogenous clock 

germination experiments that have shown that germination begins in February and ends 

in June, with most germination occurring in April and May (Anderson and Keafer 1987; 

Thompson et al. 2000). 

The highest concentration of empty cysts was found well outside of the Bay of 

Fundy at station 85 (see Figure 18). Concentrations of empty cysts in the vicinity of 

Grand Manan Island and the Bay of Fundy were lower in April than February by a factor 

of four or five. Several stations in the gulf proper in April had no empty cysts; no near- 

bottom samples from February lacked empty cysts. 



Figure 18. Empty cysts, June 2000. Figure shows station locations and cyst concentrations. 

1 OOm and 200m isobaths indicated. 



Microscope Observations 

Mature A. fundyense hypnozygote cysts were relatively easy to identify by 

appearance and characteristic shape and size range. Much more variation exists in the 

morphology of new cysts, especially in size and shape (observations of new cysts 

supplied by WHOI). Two alternative cells posed challenges to identification: cells that in 

transmitted light resembled A. fundyense cysts in shape and appearance but in 

epifluorescent light appeared opaque and lacked an eyespot (see Figures 19-22), and cells 

that resembled A. fundyense cysts in all ways but were shorter (35-40 pm long) than the 

published ranges (43-72 pm) for A. fundyense cyst lengths (see Figure 23). (Figure 19 

shows both a "normal" A. fundyense cyst and a cyst lacking an eyespot; Figure 20 shows 

a higher magnification of the cyst lachng an eyespot. Figure 21 shows a new cyst next to 

a cyst lacking an eyespot.) These cyst types were occasionally very numerous (88 cysts 

lachng an eyespot were counted in the bottom sample from station 25), and often as 

numerous as A. fundyense cysts. These similar looking cysts were not counted towards 

A. fundyense cyst abundances. 



Figure 19 a 

Figure 19 b 

Figure 19. Photomicrographs (100x) of two cysts: a "normal-looking" A. fundyense 

hypnozygote cyst (red arrow) and a cyst that lacks an eyespot (blue arrow) in a) 

epifluorescence and b) transmitted light. From June 2000, station 69, near-bottom 

sample (240m). 



Figure 20 a 

Figure 20 b 

Figure 20. Photomicrographs (200x) of cyst without an eyespot (blue arrow) from Figure 

21 in a) epifluorescence and b) transmitted light. From June 2000, station 69, near- 

bottom sample (240 m). 



Figure 21 a 

Figure 21 b 

Figure 21. Photomicrographs (200x) of new cyst in upper right (50 pm long, red arrow) 

and smaller, similar-looking cyst with no eyespot in lower left (blue arrow) in a) 

epifluorescence and b) transmitted light. From June 2000, station 25, near-bottom 

sample (48 m). 



Figure 22 a 

Figure 22 b 

Figure 22. Photomicrographs (200x) of mature A. fundyense hypnozygote cyst at lower 

right (red arrow) and "opaque" or eyespot-less cyst at left (blue arrow) in a) 

epifluorescence and b) transmitted light. From June 2000, station 104, near-bottom 

sample (105 m). 



Figure 23 a 

Figure 23 b 

Figure 23. Photomicrographs (200x) of a small (40 x 25 pm) cyst or cell that strongly 

resembles an A. fundyense hypnozygote cyst in a) epifluorescence and b) transmitted 

light. From June 2000, station 116, near-bottom (97 m). 



4. DISCUSSION 

Vegetative Cells 

Very low concentrations of vegetative cells were found in February (see Figure 

14). The endogenous clock causes germination to begin in February, so the cells we 

observed might have recently germinated or might have persisted through the winter 

months. The latter explanation is unlikely; light is very limited in January and turbulence 

is high, neither of which favors dinoflagellate growth. Although germination is possible 

in February, growth conditions are poor for A. fundyense vegetative cells and losses are 

likely high. Monthly observations in the Bay of Fundy rarely find A. fundyense 

vegetative cells before June (J. Martin, personal communication). Germination 

introduces a regular inoculum of vegetative cells to the water column starting in 

February, but the population does not become established until growth exceeds losses. If 

widespread populations of vegetative cells had been found, even at low concentrations, it 

would have indicated that hypnozygote cysts might not be necessary to spring vegetative 

cell population establishment. The population found was sparse and patchy, likely a 
4 

result of newly germinated cysts rather than an over-wintering population of vegetative 

cells. It remains more likely that cyst germination does reestablish the springtime 

vegetative cell population. 

Temporal Distribution of A. fundyense Hypnozygote Cysts 

Tables 4 and 5 show a summary of the data from the three cruises. As the cruise 

tracks and stations sampled were different on each cruise it is ill advised to base 



conclusions on the data in tabular form (especially given the large standard deviations 

calculated), however, general trends can be identified for further investigation. 

Notably, samples with no cysts were counted in all months at all depths. This 

may be partly a result of insufficient sample size rather than a true absence of cysts in 

certain areas, but it also indicates that cyst presence is patchy, as are most components in 

the plankton (MacAlice 1970). The cause of this patchiness is likely physical rather than 

biological, at least in February and April. Cysts stop forming sometime in the fall. It is 

unknown whether cyst formation happens in isolated areas or throughout the gulf, but the 

dependence of sexual reproduction on the concentration of gametes implies that sexual 

fusion happens only in isolated patches. As soon as hypnozygote cysts develop from 

planozygotes they become irnrnotile particles, falling slowly or held in suspension by 

vertical turbulence and transported by currents. By February planktonic cysts are far 

from where they were formed. The planktonic distribution of cysts is purely a function of 

the physical environment until new cysts form (beginning in June, according to 

microscope observations). 

Intact A. fundyense hypnozygote cysts were one or two orders of magnitude more 

abundant in February than in April. In April empty cysts were nearly four times as 

abundant as intact cysts in near bottom samples, while in February intact cysts were 

nearly twice as abundant as empty cyst walls at that depth (see table 5). At other depths, 

empty cysts were typically twice as numerous as intact cysts. The biological explanation 

may be that the concentration of intact cysts decreases because of germination between 

February and April, but this is not the only possibility. The concurrent drop in 

concentration of intact and empty cysts indicates that physical factors are likely involved. 

Because near bottom vertical turbulence would have decreased or remained the same 



I I February 20-25 1 April 24- May 2 I June 5-15 

Table 4 a. 

Surface 
Top ofBNL 
Near 
Bottom 

Table 4 b. 

Surface 

Top Of 
BNL 

Table 4. a) Number of samples counted for each cruise at each depth and the number of 

samples that contained no intact cysts. b).Average intact and empty cyst concentrations, 

ranges (in parentheses), and standard deviation reported in cysts m". See Table 4 a for 

number of samples counted in each category. 

Total # 
counted 

11 
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3 
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April 24- May 2 June 5-15 
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78 
(0-6 18) 
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(0-1607) 
sdev=367 

IIC'II'  
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11 
(0-69) 

sde~=21 

intact 

0 

131 
(0-464) 

sdev=147 

entpty 
18 

(0-71) 
sdev=36 

225 
(0-1 536) 
sdev=331 



from February to April, the drop in relative concentration of intact versus empty cysts 

could be explained physically rather than biologically. If less energy is available to keep 

cysts in suspension, the denser intact cysts might preferentially settle while the lighter 

empty cysts remain in suspension. As both cruises occurred between a full and new 

moon, or during neap tides as opposed to spring tides, both cruises should have seen 

roughly the same strength of tidal mixing. Wind speeds were different from month to 

month, with greater winds during the April cruise, which experienced a gale during the 

first four days. That said, the relative decrease in intact cysts relative to empty cysts is 

likely a combination of both germination and the decreasingly energetic environment. 

Additionally, empty cysts may persist for years without degradation; empty cysts 

observed may have accumulated over many years, not only from the most recent 

germination. 

Although the difference is not significant, the mean concentration of intact cysts 

in near bottom samples shows an increase from April to June, at least in part because of 

the formation of new cysts (see table 5 and Figure 17). The range, however, is nearly 

identical between April and June. Some of the difference between April and June may be 

attributable to the variation in sample location and number between the April and June 

cruises. 

The increase in empty cysts in the near bottom from April to June can be 

explained by the settling of the empty cysts left over from springtime germination. As 

empty cysts have low densities, it is feasible that they might take a long time to reach the 

bottom. According to evidence from endogenous clock studies, germination continues 

into July, so there is likely a steady supply of newly emptied cyst walls throughout the 

summer. It is unknown how long empty cyst walls persist in the environment, so it is 



impossible to say where the cyst walls originated or when they were abandoned. An 

alternative explanation for the increase in empty cysts is resuspension of very old cyst 

walls. 

Spatial Distribution of A. fundyense Hypnozygote Cysts 

With the exception of February station 11, the highest concentrations of cysts 

were found near the bottom in the Bay of Fundy by all three cruises. This pattern is 

uncertain in February due to the cruise track, but it is supported by subsequent cruise 

results. As well as having the highest cyst concentration, the Bay of Fundy also had the 

most consistent abundances of planktonic cysts. The only area that consistently had cysts 

at multiple depths was that to the northeast of Grand Manan Island in the mouth of the 

Bay of Fundy over the dense benthic cyst deposit mapped by White and Lewis (1982). 

There were also far fewer stations with no cysts inside the Bay of Fundy than outside of 

the Bay of Fundy. Other areas that consistently had cysts were in the western Gulf of 

Maine, directly south of Penobscot Bay (see Figures 13 and 14), although this is poorly 

resolved as only the April and June cruises sampled here. Notably, this area has some of 

the highest sedimentary cyst concentrations of the gulf (see Figure 11) 

When they are in suspension, cysts can be advected by currents throughout the 

gulf. One example of this is the cyst found in the surface sample from February Station 

11. This cyst could not have been brought to the surface by local resuspension events 

because the water here is strongly stratified in February (see Figure 24). Both 

temperature and salinity have strong gradients between 75 and lOOm depth, indicating 

that mixing does not extend from the surface to the bottom. Above 75m there is no 

variation in salinity or temperature, which indicates that the surface waters are well 



temperature v. pressure 

salinity v. pressure 

Figure 24. Station 11, February 2000, hydrographic data from CTD cast. 



mixed. The cyst found in the surface sample at this station was likely held in suspension 

by turbulence in this layer as it traveled away from the area in which the cyst was 

resuspended, or it was held in the surface layer since its formation. Sea surface 

temperature varies so little in February that it is hard to trace surface currents in satellite 

images, however, if surface circulation patterns in February are consistent with those in 

spring and summer, then part or all of the EMCC turns offshore in the vicinity of 

Penobscot Bay and likely carries cysts over Jordan Basin in the cyclonic circulation in the 

eastern gulf. Although it is dangerous to make conclusions on the evidence of only one 

cyst, its occurrence does suggest that cysts can be held in suspension for extended periods 

of time. 

The highest density of cysts was found in the near bottom sample at Station 11 in 

February. Empty cysts were not highly concentrated in the near bottom sample at this 

location. Samples from intermediate depths at this location had slightly more empty 

cysts than intact ones. In the bottom sample intact cysts outnumbered empty cysts by a 

factor of ten. Elsewhere, the relative patterns in distributions of empty cysts to intact 

cysts are fairly consistent (visual comparisons of Figures 12b and 13b, 15b and 16b 

indicate that stations with elevated intact cyst concentrations had elevated empty cyst 

concentrations). A portion of the cysts in this sample may have formed in the 1999 

summer and been entrained in the gyre circulation around Jordan Basin and therefore 

prevented from settling. 

Another interesting pattern revealed by this study is that planktonic cysts are not 

confined to coastal areas, but occur throughout the sampling area. Nor are they confined 

to the eastern Gulf of Maine, although there does appear to be a gradient of abundance 

from east to west, with highest densities mostly in the Bay of Fundy. Cysts were widely 



distributed, although not ubiquitous, in bottom and top of bottom nepheloid layer samples 

throughout the Gulf of Maine, especially over known concentrations of benthic cysts in 

the Bay of Fundy and offshore from Penobscot Bay (White and Lewis 1982; Figure 11). 

The concentrations of cysts found in the offshore transect in February were higher than 

any found in subsequent months, with the exception of the stations offshore from 

Penobscot Bay (Figure 12). These samples (stations 1-3 on Figures 12 a and 13 a) were 

collected for researchers at Woods Hole Oceanographic institution; no cysts were found 

in these samples (Keafer, personal communication). In April and June, cysts were found 

at stations in this vicinity (Figures 15, 17). The cysts found in April and most of the cysts 

found in June were not newly formed cysts; they must have remained in the water 

column for the eight interceding months, or, more likely, they were resuspended, perhaps 

from the high concentration of benthic cysts south of Penobscot Bay (Figure 11). 

Table 5 shows the results of pooling samples and calculating medians, 20", and 

80" percentiles. The pools consisted of: all samples, those within the Bay of Fundy 

northeast of a line drawn from Yarmouth, Nova Scotia, to Cutler, Maine, and those in the 

Gulf of Maine excluding the Bay of Fundy samples (labeled GoM-BoF, including all the 

samples southwest of the Yarmouth-Cutler line). Median cyst concentrations show the 

expected trend if the cysts and empty cysts came from a benthic source, that is, densities 

are greatest near bottom and decrease with distance from the bottom. Complicated 

currents and mixing, especially sporadic mixing events, may help to explain the 

widespread deviation from this expected pattern. For example, a strong storm might 

cause resuspension of sediment and cysts well into the upper water column, with 

sediment and cysts load increasing from surface to bottom. After the mixing event 

subsides, vertical gradients in horizontal advection might leave that water column with a 



Table 5. Pooled data analysis. Average depths are reported in meters; medians, 

percentiles, and ranges are all reported in cysts m'3. 0.2 and 0.8 columns report first and 

fifth quartiles, or 20" and 80" percentiles; one fifth of the samples have cyst 

concentrations below the 20" percentile, and one fifth of the samples have cyst 

concentrations above the 80" percentile. The All Stations pool includes all samples, the 

Bay of Fundy pool includes samples from stations within the Bay of Fundy region 

northeast of a line drawn from Yarmouth, Nova Scotia, to Cutler, Maine, and the Gulf of 

Maine (labeled GoM-BoF) pool is all samples from stations west of the Yarmouth-Cutler 

line. 
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very different pattern from the even gravity-driven gradient initially present. Figures 25 

(a)-(c) are scatter plots of all data points in each pool, plotted by average depth. When 

looking at Figure 25(a), it is important to recall that fully half of the stations visited in 

February were within the Bay of Fundy where planktonic cyst concentrations are 

consistently high. The spread of data points is large for all three categories in all months. 

In February, the Bay of Fundy cyst concentrations were in general larger than those 

outside of the Bay of Fundy. In April, the high concentration points also were found in 

the Bay of Fundy, but zero counts were found there as well, so no clear trend exists. In 

June no patterns are apparent. The strongest pattern this Figure shows may be temporal: 

February samples had more cysts than later months. 

There are a number of likely explanations for the greater concentration of 

planktonic cysts in the Bay of Fundy than elsewhere in the Gulf of Maine. The biological 

explanation rests on the production of cysts. Because they are sexually produced, cysts 

will only be formed where gamete concentration is sufficient for encounter and fusion. 

The minimum abundance of gametes may be reached in typical blooms, or it may only be 

reached in isolated thin layers or patches. In any case, high ambient vegetative cell 

Physical factors also favor high concentrations of planktonic cysts in the Bay of Fundy. 

The highest tides and the highest concentrations of benthic cysts in the Gulf of Maine are 

both found in the Bay of Fundy (White and Lewis 1982), making resuspension of 

sediment and benthic cysts likely. The Bay of Fundy also provides a mechanism by 

which and an environment in which populations might reach bloom density. Gyre 

circulation in the mouth of the Bay of Fundy may act to retain both cells and cysts within 

the Bay, as suggested by Martin and White (1988). These populations may get advected 

periodically out of the Bay of Fundy and entrained into the Eastern Maine Coastal 
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Figure 25. Cyst concentrations in the Bay of Fundy region and in the greater Gulf of 

Maine plotted against depth by cruise. In February cyst concentrations in the Bay of 

Fundy region are slightly higher than in the greater Gulf of Maine. 



Current (EMCC) where they also find favorable growth conditions. Eddies along the 

periphery of the EMCC may give these populations time to grow to the concentrations 

observed during ECOHAB cruise work (Townsend et al. 2001). Another possibility is 

that cysts in the waters west and south of Grand Manan Island, outside of the Bay of 

Fundy proper but inside the track of the EMCC (see Figure 10) initiate the vegetative cell 

population in the offshore eastern Gulf of Maine (Townsend et al. 2001). The high 

nutrient signature of the EMCC has been credited to tidal currents that mix slope water 

up from Jordan Basin into surface waters in the vicinity of Grand Manan Island 

(Townsend et al. 1987). 

There are many possible physical and biological explanations for the decline in 

abundance of suspended cysts from February to June. As stated before, germination 

begins in February and continues through the summer, so some loss of intact cysts is 

expected as cysts begin to germinate. The energetic physical environment of the Bay of 

Fundy also offers an explanation for the higher concentration of cysts in February. 

Stratification is nearly nonexistent in winter in the Bay of Fundy and Gulf of Maine 

(except in deep areas such as Jordan Basin, and near the Northeast Channel). 

Consequently, the mixing energy from winter storms and swell events can penetrate 

deeper into the water column, potentially resuspending sediment and cysts and keeping 

them in suspension. As spring progresses stratification develops, reducing the depth to 

which surface mixing extends. With lower energy in the deep water column, cysts that 

were held in suspension during the energetic winter months may settle to the bottom. 

The elevated concentrations of cysts in February in the Bay of Fundy likely 

reflect both the energetic environment of the Bay of Fundy as well as the persistence of 

the A. fundyense population there. Whether there were high concentrations outside of the 



Bay of Fundy in any of the sample months, February especially, is impossible to 

determine given the limited number of stations sampled. 

Numerical Abundance. of Water Column Cysts and Available Benthic Cysts 

In February cysts were suspended in the surface waters in the Bay of Fundy at 

concentrations on the order of lo2 cysts m" and in the near bottom waters concentrations 

were between 10' - lo3 cysts m-3. The highest published cyst concentrations in the Bay 

of Fundy sediments are lo3 cysts cm-3 in 80-160m of water east northeast of Grand 

Manan Island (White and Lewis 1982). Before we can compare these concentrations 

some attempt must be made to address the fact that most of the benthic cysts are buried. 

An Alexandrium planomeiocyte 4 0 p  long that emerges from a cyst buried lcrn deep 

must swim 250 body-lengths through sediments. No research has been done on 

planomeiocytes' ability to escape sediment burial, but this seems problematic. A 

conservative approach to estimating the number of benthic cysts available to germinate is 

to assume a uniform distribution of cysts in the sediment with depth and to assume that 

only the uppermost lmm layer of cysts will be able to excyst, rather than the full 1 cm3. 

By this calculation, in the Bay of Fundy where benthic cyst concentrations are 10) cm3, 

the number of cysts available to germinate would be 

( 
lo3 cysts lcm - lo2 cysts 

)XT- . Converting this to square meters, we find 
lcrn x lcrn x lcrn 1 Omm lcrn x lcrn x lmm 

that we have lo6 cysts m-2 in the top lmm of sediment available to germinate. Now we 

must calculate how many cysts are available in the water column to germinate. Using a 

conservative concentration of lo2 cysts m'3 throughout the 80-160 m water column, total 

suspended cysts available to germinate are (lo2 cysts m')) x (80-160 m) = 10' - 10' cysts 



m-2, which is two or three orders of magnitude less than benthic cyst densities. 

Observations in salt ponds found that only a small percentage of cysts in bottom 

sediments actually germinate, so the difference between suspended cyst and benthic cyst 

concentrations may be only one or two orders of magnitude (Anderson et al. 1983). 

Benthic cyst concentrations shown in Figure 1 1  are an order of magnitude below 

those found by White and Lewis (1982), even at the five stations inside the Bay of Fundy 

(Anderson et al. unpublished). This may be due to discrepancies in sampling location or 

to annual variation in benthic cyst concentrations due to both the variability in annual A. 

firufyense populations and physical processes. This variability makes it difficult to 

accurately evaluate benthic and suspended cyst numbers without concurrent benthic and 

water column sampling. However, comparing suspended cyst concentrations with Figure 

1 1  benthic cyst concentrations will indicate a range of ratios that might be expected. For 

example, using the same calculation outlined above and evaluating the area southwest of 

Grand Manan, no difference is found between the number of cysts on the bottom and 

cysts available in the water column even before factors controlling germination rate are 

5 x lo2  cysts lcm 100cmx100cm 5x104cysts 
considered [ ( ) x -  x - - on the bottom 

lcm x lcm x lcm lOmm m x m  lm x lm x lmm 

5 x l o 2  cysts 5x104cysts 
and x100m = in the water column]. 

m3 m2 

Germination in light may occur 8 times faster than germination in darkness 

(Anderson et al. 1987). Temperatures in the Gulf of Maine at the onset of germination 

are around 5 O C ,  which is near the minimum required. Given the nearly equal 

abundances of suspended cysts and surficial benthic cysts and the more favorable 

conditions in the water column, suspended cysts could contribute substantially to the 



spring inoculum of the A. fundyense vegetative cell population in the Bay of Fundy and in 

the EMCC and thus they warrant further consideration. 

Spatial and Temporal Resuspension Potential 

In assessing the relative potential for pelagic or benthic cysts to establish the 

spring vegetative cell population it is important to determine whether or not it is 

physically possible for benthic cyst beds to initiate spring blooms. One approach to this 

problem is to evaluate the energy available in the water column for vertical mixing and 

transport. The highest concentrations of benthic cyst are deep (>loom). Elsewhere, 

benthic cyst populations are present but less dense (see Figure 1 I). For any of these 

benthic cysts to contribute to the springtime initiation of the vegetative cell population, 

cysts or germlings must escape the bottom boundary layer and reach the euphotic zone. 

Escape from the boundary layer can happen biologically (planomeiocytes and vegetative 

cells can swim 10 m /day) or physically (resuspension by benthic shear stresses from tidal 

currents and surface waves or physical disturbance of sediment by benthic or pelagic 

animals, trawling, etc.). Once cells or cysts have escaped the boundary layer, they must 

get to the euphotic zone (quickly in the case of cells that have limited energy reserves, 

eventually in the case of cysts). Again, vertical turbulence plays a large role (vegetative 

cells can only swim 10 dday). The largest impediment to this vertical turbulence is 

stratification of the water column. Water column stratification is generally weakest in 

wintertime, when surface cooling and increasingly frequent storms extract buoyancy 

from surface waters. Stratification develops as surface waters warm and freshen with 

increased springtime riverine input. If tidal currents are sufficiently strong and water 

depth shallow, coastal waters may remain unstratified throughout the summer (Simpson 



and Hunter 1974). In the Gulf of Maine areas with near year round top to bottom mixing 

include the area south and west of Grand Manan Island at the entrance to the Bay of 

Fundy, some regions on Georges Bank, the Scotian Shelf, and a near continuous band 

adjacent to the coast of eastern Maine and New Brunswick (Loder and Greenberg 1978). 

Where waters are unstratified, one can expect that vertical turbulence, upwelling, 

etc., might bring cells or suspended cysts from the bottom to the surface; where water is 

stratified, newly hatched dinoflagellates would have to swim upwards through the 

pycnocline (Joint et al. 1997). If vegetative cells depend on vertical mixing to bring them 

to the surface, those cells that germinated from the bottom may have difficulty in 

reaching the surface in waters that are stratified. Under this assumption, benthic cysts 

may only be able to contribute to the establishment of surface vegetative cell populations 

before seasonal stratification develops or in areas that remain well mixed. Planktonic 

hypnozygote cysts above the pycnocline may contribute to surface vegetative cell 

populations regardless of the strength of stratification. The higher in the water column 

cells germinate the shorter their transit to the surface will be and the more likely they are 

to reach the euphotic zone. 

Evaluating the critical benthic shear stress required to resuspend cysts is the first 

step toward determining where and when cysts, or planomeiocytes that emerged from 

benthic cysts, might be resuspended in the Gulf of Maine. The second step is to identify 

the areas in the gulf that are prone to greater shear stress (e.g., shallower areas exposed to 

large waves and swift currents). The Bay of Fundy, with its shallow cyst beds and great 

tidal energy, is one area that likely experiences high benthic shear stresses. The fact that 

this study found A. fundyense hypnozygote cysts in the water column in February on both 



sides of Grand Manan Island and elsewhere is evidence that cysts are resuspended from 

the bottom. 

To determine the shear stress (z) necessary to resuspend a hypnozygote cyst, we 

used a version of the Shields diagram showing the empirically derived relationship 

between the Yalin parameter and shear stress (p. 187, Middleton and Southard 1984). 

I 

The Yalin parameter equals , where p, is the density of the particle (1.3g 

cm3) andp is the density of the water (1.03g cm3), g is the gravitational constant, D is the 

spherical equivalent diameter of a cyst (3.4 x 104cm), and v is the kinematic viscosity 

(1.46 x cm2s-I). Using these values and solving for the Yalin parameter results in 

1 - 
g g cm 2 

(1.3--j--1.~37)x981--i-x(3.4x1~~3cm)3 
cm cm s = 0.2. The intersect of this Yalin 

g cm2 1 . 0 3 - - j - ~ ( l . 4 6 ~ 1 0 - ~  -)' 
cm S 

parameter value with a plot of empirical critical shear stress values is used to find the 

corresponding value for O,, which in turn equals 7, . Solving this relationship 
(P, -PI@ 

for z, give us a value of 0.18- , the critical shear stress. There is some uncertainty 
crns 

g regarding this value, therefore we conservatively assume that values above 0.5- 
crns 

would be sufficient to cause resuspension. 

Benthic shear stress is a nonlinear function of current velocity (tidal or otherwise) 

and surface waves (Grant and Madsen 1979). As a first step in evaluating the benthic 

shear environment in the Bay of Fundy, the area where resuspension is most likely, we 



next evaluate current velocity alone for the benthic shear stress it may cause. If tidal 

currents are found to cause sufficient resuspension alone, we will know that the 

environment favors resuspension and will continue with the more complex evaluation of 

resuspension potential using both wave and tide data. 

During spring tides, current velocities in the entrance to the Bay of Fundy 

regularly reach 3 knots (data from Nobeltec software package). The tidal current shear 

1 
stress (z,) can be calculated using the equation z, = - f,pu2. Using 3 knots (5.556 krn 

2 

hi '  or 154 cm s-I) for U, a value of 0.003 for 1/2f, as recommended by Souza (2001), and 

1 .03&m3 for p, z, equals 73 - (Souza et al. 2001). This shear stress from current 
cms2 

alone is two orders of magnitude greater than the critical shear stress, meaning that all 

1 
cysts and cyst-sized particles will be resuspended. In fact, if we solve t, = - f,pu2 for 

2 

U, using 1- forb, we find that a current as slow as 18 cm s-' (or 0.35 knots) are 
cms2 

sufficient to resuspend cysts. Some loss of tidal current velocity will be expected from 

friction with the bottom, so these results apply to near-bottom currents rather than surface 

currents, especially in deep waters. We will now we continue with a more rigorous 

approach, considering both waves and tides. 

Waves and swell can be more important than tidal current for resuspending 

sediment because they cause near-bed oscillations rather than steady flow. Under 

oscillatory conditions, benthic boundary layers do not have time to develop to the same 

depth that they do under a steady current condition, thus shear and shear stress are several 

orders of magnitude larger than for steady currents of similar magnitude. The largest 



waves and swells commonly observed in winter in the eastern Gulf of Maine or Bay of 

Fundy region are typically 5m with periods of 6s and 12s, respectively (data from 

National Data Buoy Center, buoy 44005, available on the web at www.ndbc.noaa.gov). 

Wave energy is roughly a factor of ten lower during summer months. The wavelength of 

these 6 and 12 s waves was taken to be the deepwater asymptotic limit of the 

transcendental functional relationship T = , where T is the wave period and L is 

the wavelength (L = 225m for 12s swell and L = 56m for 6s wave) (Figure 1.7, Ippen 

1966). The corresponding wave numbers for waves of these wavelengths are = 

2d56m = 0.1 12m" and k12 = 2d225m = 0.028m-'. The orbital velocity of the wave at 

agk cosh k(h + z) 
depth (ub), was determined by solving the relationshipu, = - , where a is 

a cosh kh 

the wave amplitude (112 the wave height), g is the gravitational constant, a is the radial 

frequency of the wave (ZdT), h is the water depth, and z is the depth of interest, 

measured positive downward (Ippen 1966). For a 6s, 5m wave, 

m 
2.5mx107x0.112m~1 

s cosh k(h + z) m cosh0.112m-'(h+z) ub = = 2.68-x , where 
2n - cosh kh s cosh kh 

2.68m s-' is the orbital velocity at the surface. For a 12s. 5m 

2.5mx 1 0 ~ ~ 0 . 0 2 8 m - ~  
s cosh k(h + z) m cosh 0.028m-' (h + z) wave, u, = = 1.33-x , where 
2n cosh kh s cosh kh 

1.33m s" is the orbital velocity at the surface. For a first analysis, we will use l00m as 

the depth; this depth marks the transition between abundant benthic cysts and less 

abundant cysts, and is a good reference depth for use around the Gulf of Maine. At a 



depth of lOOm the orbital velocity, ub, of a 6s wave is equal to zero, that is, the water 

motion caused by a 6s wave does not penetrate to 100m. In 50m of water, a 6s wave 

causes u b  of only 0.02m s-I at the bottom. A 12s wave in lOOm of water, on the other 

hand, causes a u b  of O.16m s-l, and in 50m of water the ub is 0.66m s-'. Although our 

analysis is not yet complete, we can safely guess that the u b  caused by a 6s wave in either 

lOOm or 50m of water will be insufficient to cause resuspension. Therefore, we will 

continue with the 12s wave at 100m. 

This wave orbital velocity is combined with u, the current velocity and used in the 

Iu 1 2 lu I following equation: a = 1 + (A) + 2 ( ~ ) c o s ( p , ,  where 9, is the angle between the 
b b  1 l"b I 

current and wave velocity (Grant and Madsen 1979). Considering current velocities 

predicted by the Nobeltec software package and desiring to select a conservative value 

for u, applicable throughout the Gulf of Maine, we chose 0.5 knots, or 0.25 m s-l. For 9, 

we will use 45". Substituting these values into the above equation, we find 

0.16 ~1 0. l6 51 
a = l + (  l2 + 2( )x 0.707 = 5.8. The friction factor f, value 0.02 is 

2 5  1 0.25 

1% I derived from - and WAb (where k is roughly twice the ripple height, or 2cm on smooth 
lub 1 

mud, the likely topography of a depositional environment with high cyst concentration) 

and Ab, the excursion amplitude, which equals udo were o is the wave frequency in 

radians using Grant and Madsen's (1979) Figure 4. Once a and f, are known, we can 

1 1 1 m 
solve for u* from the relationship: lu,l= (- f_a); = (-0.02 x 5.8); = 0.038- or 

2 2 S 



1 

3.&ms-'. u* is used in turn to solve for shear stress, r, from the relationship u. = (z):, 
P 

g g yielding a value of 14.9---i-, well in excess of our critical benthic shear of 0.18- 
cms cms2 ' 

In short, all cysts, or cyst-sized particles, on the bottom in water lOOm deep or less will 

be resuspended by 5m swells with periods of 12s. 

This analysis of the potential for resuspension in the Gulf of Maine helps to 

explain the apparent relationship between depth and benthic cyst distribution (see Figure 

11) and suggests that the distribution of benthic cysts in the Gulf of Maine is strongly 

affected by resuspension. One can be almost certain that cysts are regularly delivered to 

the water column. To what height in the water column they are raised depends in part on 

the strength of stratification. If stratification is strong, the pycnocline will be the upper 

limit to which cysts may be resuspended. If the water column is well-mixed top to 

bottom, cysts may be resuspended into the surface waters. Thus, there is likely a seasonal 

component to the delivery of cysts to the surface waters; not only is storm swell more 

common in winter months, the lack of stratification ensures that, if turbulent energy is 

sufficient, cysts may be delivered to the surface. Likewise, areas where cysts reach the 

surface may be limited by water depth and tidal velocity. The water over Jordan Basin, 

as Figure 26 illustrates, is always well-stratified, but the water near shore and in the Bay 

of Fundy is always well-mixed. 

These lines of reasoning are equally applicable to hypnozygote cysts and to 

planomeiocytes or vegetative cells trying to swim up to the surface from the benthos. 

This physical mechanism by which motile cells may be delivered to the surface in no way 



negates the fact that cysts in the water column, ensured of oxygen and perhaps exposed to 

light, will be more likely to germinate than those on the bottom. 

Estimate of Error 

The goal of this study was to determine whether or not A. fundyense hypnozygote 

cysts were suspended in the water column in the Gulf of Maine. The methods used were 

adequate to meet this goal of determining absence or presence. Having found suspended 

cysts, the next important step is to evaluate their distribution and abundance. Our 

methods are not as well suited to attaining these goals, although we can begin this 

evaluation using the results of this study if we are sufficiently careful. In order to 

evaluate the importance of the data, potential errors from all sources must be identified 

and addressed. 

Beginning with sample collection, the first source of error comes from the inexact 

method of measuring liters sieved. This was done by eye by estimating the distance 

between the water level and the nearest liter mark on a 20 liter carboy. The average 

amount of water recovered from the Niskin bottles for sieving on the February cruise was 

17.5 liters in surface samples, and 26 liters in top of the bottom nepheloid and near 

bottom samples. Therefore, February sample volumes may have an error of 0.25 liters 

per 17.5 liters, or 1.4% in surface samples, and 0.25 liters per 26 liters in top of the 

bottom nepheloid and near bottom samples, or 1%. In the April-May cruise the average 

sample volume sieved was 27.9 liters, with a possible error of 0.9%. The June cruise 

volumes also had a 0.9% error associated with them. Propagated through the cysts per 

cubic meter calculation, this error remains near 1%; if two cysts were counted in a 



sample, and the volume sieved was 23d.25 liters, the cysts per cubic meter calculation 

gives 8 7 ~ 1  cysts m-3, or 87kl%. This amount of error is not considered serious. 

Perhaps the largest source of uncertainty in the data comes from the lack of 

duplicate samples. Plankton are known to be patchily distributed in space (McAlice 

1970) as a result of microenvironments of physical forces, gradients in physical forces, 

grazing, and biological processes (division rates, behaviors, etc.). The hypnozygote cysts 

are dormant and immotile so the biological factors may be eliminated, but the other 

forces are more than adequate to cause patchiness in suspended sediments or 

hypnozygote cysts. We used the largest Niskin bottles available to us to maximize our 

sample size, which reduced sampling error from what it would have been with smaller 

sample sizes, but no duplicates were taken so we cannot conclude that our samples were 

representative or not of the environments in which they were taken. We cannot know if 

our sample size was adequate because without duplicates we do not know how much 

variation existed between sites. 

There is a possibility that some cysts were lost in the sample preparation, either 

during the initial sieving step or during an aspiration following one of the many 

centrifugation steps. Aspirations were performed very conservatively by hand pipette 

rather than vacuum pump because this method offered more control. Aspirated material, 

however, was not examined so no quantitative assessment of losses exists. Given the 

density of cysts (1.2 g cme3), they were most likely deep in the centrifuge pellet rather 

than still suspended following centrifugations; loss of cysts from aspiration is likely 

negligible. Some loss of cysts may have occurred during the sieving process on the ship. 

No microscopic examinations of sieve screens were performed. 



Counting errors are also unquantifiable, as replicate counts of samples were not 

done. Some samples required multiple counts to complete because they were larger than 

lml, but no attempt was made to make these counts even. That is, the sample was 

vortexed and lml was removed by pipette and dispensed onto the Sedgwick-Rafter cell, 

but that milliliter was taken from the bottom of the centrifuge tube where the heavier 

particles had already begun to settle. Each sample was counted in its entirety, which 

eliminated any error that might have been associated with subsampling. 

Every attempt was made to get all the particulate material from the centrifuge 

tube into the Sedgwick-Rafter counting cell. If there was not a lot of particulate material 

in the sample this was easily accomplished. If the sample contained a lot of particulate 

material the centrifuge tube was rinsed with lml of distilled deionized water and that was 

counted. A. fundyense hypnozygote cysts were identified conservatively. If cysts were 

not in the correct size range (40-60pn by 20-30p), if they lacked the double cyst wall, 

if they did not have the right appearance in transmitted or epifluorescent light they were 

not included in the cyst totals. Therefore, if error exists in the count data, the data 

underestimates, rather than overestimates the actual concentrations of cysts. 

Cysts concentrations are reported per cubic meter of water. If a smaller unit were 

used (a liter, for example), we would be faced with reporting partial cysts. Scaling up to 

one cubic meter from roughly 30 liters does magnify error, but it does not introduce any. 

We report medians as an estimate of central tendency rather than means because of the 

large number of zeroes in the data set. A mean would be inappropriately skewed by these 

zero values. 

Although the potential errors in this suspended cyst data set are many, all of the 

error would result in under-reporting of cyst densities rather than over-reporting. 



Whether or not this data set statistically represents the abundance and distribution of 

suspended cysts in the Gulf of Maine is impossible to determine. 



5. CONCLUSIONS 

When cysts were identified as a stage in the A. fundyense life cycle, they 

explained things that had previously been mysteries: why vegetative cells had not been 

observed in winter months but blooms recurred every spring or summer, why recurring 

blooms were observed in years following first-time ever events (the 1972 event having 

apparently "seeded the Cape Cod region, for example). Further study in salt ponds 

revealed cyst germination triggers: temperature and light seemed most important until 

laboratory studies added oxygen and an endogenous clock to the list of factors. Notably, 

only a small fraction of benthic cysts germinated in a given year, even among those that 

were exposed to favorable conditions. Bloom densities apparently develop by asexual 

reproduction in the vegetative cell stage. The mysteries seemed all but solved, and they 

probably are for salt ponds and other semi-enclosed, shallow bodies of water with 

recurring A. fundyense problems. 

When we began investigating the offshore A. fundyense populations in the Gulf of 

Maine, researchers began to approach this wider, deeper environment using what they 

knew; cysts were on the bottom in great numbers, recurring vegetative cell populations 

were observed in the surface, therefore the endogenous clock must cause benthic cysts to 

germinate. Although the endogenous clock can cause germination in the absence of light, 

germination rates are slow (1-2% per day) (Anderson and Keafer 1987; Matrai, personal 

communication). Oxygen, light, and warmer temperatures have been shown significantly 

enhance germination rates in many research studies (Anderson, Taylor, Armbrust 1987; 

Anderson and Keafer 1987; Anderson and Wall 1978; Anderson and Morel 1979). 



This brings us back to where we began: A. fundyense vegetative cells are observed 

annually in the Gulf of Maine, great densities of A. fundyense cysts are observed in 

bottom sediment samples. The next questions to be addressed are: where exactly are the 

benthic cysts located in the physical environment of the Gulf of Maine, and why are the 

cyst beds where they are and not elsewhere? The second question is perhaps easier to 

address than the first. Cysts form in the water column and then become passive particles, 

just like any other, subject to the physical forces in the water column. They will fall to 

the bottom in areas where deposition is favored. Sporadic high shear stress events will 

likely resuspend them, and then they will resettle to the bottom. Few particles that touch 

the bottom will rest forever where they land. The location of cyst beds, especially deep 

cyst beds, is more likely a reflection of the physical properties of the water and sediment 

dynamics than of the location of any ecological process (cyst formation or bloom 

initiation). 

It should be said, however, that these cyst beds might not represent a pure sink for 

hypnozygote cysts. Areas of cyst accumulation certainly reflect the average environment 

of the area (favorable to deposition), but transient events may resuspend these cysts and 

vertical mixing and convection might bring them to the surface or advection may 

transport them far from their benthic origin. Given the gyre-like circulation in the Gulf of 

Maine, cysts are probably recirculated more than once (Bigelow 1927; Brooks 1985). 

A. fundyense hypnozygotes are found nearly everywhere in the sediments and 

waters of the Gulf of Maine. Which of these sources is most important to springtime 

vegetative cell population initiation is a far more difficult question to answer. It is 

tempting to write off the deep, offshore benthic cysts beds with great accumulations of 

cysts as purely sinks for A. fundyense. They may, however, be great sources of cysts for 



resuspension by sporadic high shear stress events. Even low numbers of cysts suspended 

in the water column can likewise not be dismissed; despite their low numbers, cysts 

suspended in surface waters are ideally positioned for successful germination. Relative 

to the low fraction of benthic cysts that might germinate, the water column cyst densities 

may in fact be significant. 

Whether the suspended cysts sampled in this study represent cysts that were 

resuspended or had not yet settled is not known. Resuspension is likely, given the 

strength of winter storm-generated mixing and the lack of stratification in the wintertime 

gulf. Analysis of late winter storm activity and strength of the subsequent summer 

blooms, however, are not likely to be coupled. Springtime establishment of the 

vegetative cell population and the formation of bloom densities of vegetative cells 

apparently rely on different factors (Anderson et a1. 1983). 

What do the densities of cysts found by this work represent in terms of bloom 

potential? If in February only one cyst per cubic meter germinated, using sub-optimal 

growth rates by April the density of vegetative cells would be in the tens to hundreds of 

cells per liter. In February 2000 there were hundreds of cysts per cubic meter in the Bay 

of Fundy, as well as vegetative cells, whose presence indicated that seasonal germination 

had begun. In April 2000 there were tens of cells per liter in the Bay of Fundy. It is 

therefore possible for suspended cysts to initiate the vegetative cell population. This 

work has reconfirmed previous conclusions that planktonic populations of dormant cysts 

must be considered when assessing potential microalgal inoculums (Nehring 1996). 

In 1978 Dale et a1. argued for the importance of the dormant dinoflagellate stages 

present in sediments to harmful algal bloom research. This work supplies evidence for a 

similarly new and potentially important idea: the inclusion of suspended cysts in harmful 



algal bloom research and theory. A. fundyense is a genus of dinoflagellates present in the 

Gulf of Maine that produces a neurotoxin that can accumulate in shellfish feeding on A. 

fundyense, rendering those shellfish poisonous to humans. A. fundyense produces a 

sexually formed dormant stage called a hypnozygote cyst. Previous work has established 

that A. fundyense blooms develop not from mass germination of these cysts, but from the 

mitotic division of vegetative cells. Although cysts densities in the water column are 

orders of magnitude less than cysts on the bottom, the cysts in the water column are 

exposed to oxygen, light, and temperatures favorable to excystment and are, I argue, 

numerous enough to contribute materially to the vegetative cell densities observed in 

spring and summer. 

Dale et al. (1978) also raised the question of the importance or implications of the 

deep, offshore cyst beds: were they merely sinks where cysts accumulated and 

decomposed, or could they be resuspended by "upwelling or storm activity" and "carried 

back up to the photic zone to reestablish offshore plankton blooms?'The authors 

favored the latter theory, their only reason being the absence of obviously old cysts in 

these offshore beds. While this line of reasoning is fairly tenuous, their conclusion makes 

intuitive sense. Cysts are silt-sized particles, subject to physical processes of deposition, 

erosion, resuspension, etc. The offshore areas where cysts accumulate with sediments are 

likely areas where sedimentation is favored; these cyst and sediment deposits can 

represent a potential source for blooms if they are resuspended into the photic zone. 

A. fundyense vegetative cells are normally present in the Gulf of Maine in low 

densities. Blooms develop only when a number of conditions converge (nutrient levels 

and light high, low losses by advection and grazing, low densities of competitive species, 

etc.). Favorable conditions can lead to bloom densities of vegetative cells, even if cells 



were initially present in only low densities before favorable conditions developed. If just 

one cyst per 1000 liters germinates in the Bay of Fundy in February by April cell 

densities could reach tens to hundreds of cells per liter. Hypnozygote cysts 

concentrations observed in the water column in this study are high enough to contribute 

significantly to the spring vegetative cell populations. 



6. FUTURE WORK 

More rigorous sampling at more depths at regular intervals from February to June 

would refine our understanding of the spatial and temporal concentrations of suspended 

hypnozygote cysts, however, the data from this study are compelling evidence that 

planktonic cysts are important. Further work might be better spent on more novel 

approaches, such as molecular techniques, laboratory studies, in situ observations of 

resuspension of sediment from areas known to have high concentrations of cyst, and in 

situ observations of sexual reproduction. Molecular techniques might be used to 

determine how closely vegetative cells are related to one another as a means of 

determining how many cysts inoculate the spring population. A laboratory study to 

determine how long a planomeiocyte cell, or a vegetative cell, can swim in the dark 

would help constrain the time window in which a planomeiocyte cell, or new vegetative 

cell, must reach the photic zone. More work is needed to resolve germination dynamics 

as well. Better understanding of wheie and when benthic shear stress can resuspend cysts 

and vertical mixing can deliver resuspended cysts to the upper water column would shed 

light on where the spring vegetative population originates. Work characterizing the 

factors leading to sexual reproduction, such as population concentration, nutrient 

concentrations, light, and turbulence would be invaluable for determining the areas of 

origin for cysts. Likely areas for sexual reproduction are in the Bay of Fundy and in the 

frontal region south of Penobscot Bay. 

Germination of even low densities of cysts in February in the Bay and sub- 

optimal growth rates are consistent with the vegetative cell densities observed later in the 

spring. While making these conclusions is tempting, more work needs to be done before 



they can be confidently made. Specifically, an evaluation of cyst concentrations through 

time and in relation to resuspension events (spring tides, significant ocean swell, storms, 

etc.), and more importantly an evaluation of the germination of suspended cysts and the 

survival and fate of these early planomeiocytes must be undertaken. It is likely that low 

concentrations of vegetative cells are present in the Bay of Fundy before June; 

characterizing the population dynamics in the unsettled environment of spring in the Gulf 

of Maine might lead to better understanding of vegetative cell population dynamics in 

general. 

The goal of ECOHAB-GOM is to understand A. fundyense dynamics sufficiently 

to be able to make accurate predictions of the onset of toxicity in shellfish in the Gulf of 

Maine. Hypnozygote cysts are essential to the establishment of new vegetative 

populations of A. fundyense each spring, without which blooms would not occur. Current 

modeling efforts $e focused on benthic cyst populations mapped by Anderson et al. 

(1997 unpublished, Figure 1 I). This work has established the potential of suspended 

hypnozygote cysts to initiate the A. fundyense vegetative cell population. Understanding 

hypnozygote cyst dynamics may never lead directly to accurate predictions of PSP 

toxicity, however, cyst dynamics may help researchers to better understand A. fundyense 

springtime population initiation. 
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