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RELATIONSHIPS BETWEEN OCEANOGRAPHIC SATELLITE DATA AND
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An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the
Degree of Master of Science
(in Oceanography)
December, 2001

An examination is made of the qualitative and quantitative relationships between
satellite derived sea-surface temperature (SST) and chlorophyll patterns and the
distribution of Alexandrium, the toxic dinoflagellate species responsible for HABs in the
GOM. Daily images coincident with five ECOHAB survey cruises in 1998 and 2000 are
composited over each cruise period to create mean patterns for each sample period.
Contours of surface Alexandrium cell concentrations are superimposed on the images as
well as images showing the strength and location of SST frontal zones to examine
qualitative relationships. Results indicate that high concentrations of Alexandrium are
located primarily in the eastern Maine coastal current (EMCC) and that frontal zones in
this region generally act as boundaries to their surface distributions. Linear regressions
are used to explore quantitative relationships between location-specific satellite data
extracted from the composites and in situ parameters important to the ecology of

Alexandrium.



The most consistent results of these analyses were a linear relationship between
satellite SST and Alexandrium that was used in a simple model to extrapolate/interpolate
the distribution of Alexandrium based on satellite data. The regression results also
suggest a seasonally shifting optimal temperature range for maximum Alexandrium
concentrations. No qualitative or quafntitative relationships between the SeaWiFS
chlorophyll data and Alexandrium distributions in the GOM were found.

Relationships between satellite-measured SST patterns and toxicity in the western
GOM were examined during a paralytic shellfish poisoning (PSP) closure in western
GOM in May 2000 to test the hypothesis that toxicity events in the western GOM require
a transport mechanism for Alexandrium cells in the EMCC to get into the western GOM
and inshore. Thermal patterns evident in the satellite SST data at the time of the May
2000 closure were consistent with enhanced connectivity and advection from the EMCC
to western GOM.

Ten years (1990-1999) of retrospective toxicity data from five sites along the
coast of Maine and coincident AVHRR SST data are used to test the temporal stability of
the observed May 2000 relationship between toxicity events in the western GOM and
satellite-measured SST patterns. Results show that the occurrence of strong thermal
gradients between eastern and western GOM, indicative of reduced alongshore
connectivity, plays a key role in the occurrence and timing of toxicity event in the
western GOM.

The results of this work indicate the utility of satellite derived SST data in

defining hydrographic patterns associated with elevated Alexandrium cell concentrations



and in the detection and monitoring of oceanographic features that are conducive of
toxicity events along the coast of western Maine.

Future work making use of the optical and biological information in SeaWiFS
data, wind data and other SST products will likely improve the utility of satellite data in

understanding the ecology of Alexandrium in the GOM demonstrated here.



ACKNOWLEDGEMENTS

I would like to thank Laurie Bc?an and John Hurst at Maine DMR for all their help
with the toxicity data and information about the May 2000 closure. Also, thanks to Jim
Churchill of WHOI who supplied the drifter data for the May 2000 closure. The
Townsend lab at the University Of Maine is greatly appreciated for their processing of
the in situ data from all of the survey cruises in the GOM in 1998 and 2000. In addition,
I would like to acknowledge Peter Cornillon at the University of Rhode Island for access
to Pathfinder AVHRR data for the toxicity analysis.

I would also like to extend a special thanks to Jennifer Bosch and Ryan
Weatherbee for all their help and support, Neal Pettigrew and Dave Townsend for
agreeing to be on my committee and, especially, Andrew Thomas for advising me and
guiding me through this project.

Funding for this project was provided by NASA grant #NAG5-6558 and NOAA

ECOHAB grant #NA66RG0495.

i



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt e e n e il
LISTOF TABLES ...ttt ittt e s et saeanenanaaeeons \

LISTOFFIGURES .....otiiiitiiiiediii e vi

Chapter

1. JUSTIFICATION AND OBJECTIVES .....ccoviiiiiiiiiieneeee 1
1.1. Background Research ..........coooevmiuiiiiiiiiiiiiii 1

1.1.1. Gulf of Maine Circulation .............oeoiivniiinininiiiiieniiienann 4

1.1.2. Phytoplankton ECOlOgY .........ccviiiiiiiiniiiiiiiiiiiiiiiiiiiieeeene 6

1.1.3. Alexandriuminthe GOM ...............ocoiiiiiiiiiiiiiiiiii, 10

1.1.4. Satellite Oceanography ..........cocvueveveiiiiiiiiiiiiiiraeniiiiien., 13

1.2. Goals and ObBJECHIVES .. cuuiuenrrniniiiiiiiiiiiiiitiii e 16

2. DATAAND METHODS ....ouiuiniiiiiiiiiic e e e 19

2 B D T ROy PO 19

211 InSiuData ..c.oeeniniiniiiiiieiii e 19

2.1.2. Satellite Data ......cccoevevniniiiiiiiiiiiii e 19

2.1.2.1. OceanColorData ........c.ccceiviiiiiiiiiiiiiiniiiiiennn, 19

2.1.2.2. Sea-Surface Temperature Data ....................oooeii 23

2.1.3. ToxXicity Data .....ooviuiiniiiiiiiiiiiiiiiii e e 26

2.2, MEthOS ..ot e e 28

2.2.1. Noise Reduction ..........cocvvvviiiiiiiniiiiiiiiin 28

ii



2.2.2. COMPOSILES ..cuenennrninereenrnieteeeaeeienansaneaeenenserteenensananans 30

2.2.3. CONLOULS ..utiniiniintiteiei et ieieee et et eaetnenaeneenenseanns 31

2.2.4. Two-Dimensional SST Gradients ..........c.cccveviviviiiiininenenan. 32

2.2.5. Linear Regression Analyses ........c.cceeeeveineeriniennnineeennnninnans 33

3. RESULTS AND DISCUSSION ..i.c.uutiiruniiiiieiiiiiieiiiiiieniienenineeninenenenes 35
3.1, CONLOULS .ouinninitiiiiii e e 35

3.2. Two-Dimensional SST Gradients .............cccoeiviiiiiiiiiiiiineiienenen. 52

3.3. Linear Regression ANalyses ......ccoueieiinirruinieeneeereinneeernernrenrenenns 58

3.4. Alexandrium and the EMCC ...ttt 66

3.5. A Specific PSP Closure Case Study ........ccccoiiiiiiiiiiiiiiiiiininenenenns 68

3.6. GOM SST Patterns Associated with Toxicity Events .......................... 73

4. CONCLUSIONS ...ttt ettt e te e e e e s e aa e eaeneneeneneaaes 95
BIBLIOGRAPHY ....uiiiiiiiiiiiiiiiiie et et e ettt e e e e en e e eaea 100
APPENDICES ...t e ettt et e e e 106
Appendix A: Latitude and Longitude Locations for Each Cruise Station ...... 107
Appendix B: Available In SituData ...........coceviiiiiiiiiiiiiiiiieieneen, 117
Appendix C: Available Satellite Data .............cccooeiiiiiiiiiiiiiiiiiiinn, 120
Appendix D: Available Pathfinder AVHRR Data ............c..occvviienannne. 129
Appendix E: Sampling Stations in GOM Data Subsets ............cccoeeveien.n. 131
Appendix F: Correlation Results of Linear Regression Analyses ................ 133
Appendix G: Alexandrium and the EMCC Results ............cccoeevivininnnnn... 143
BIOGRAPHY OF THE AUTHOR .....cciuiiiiiiiiiiiiiiiii et 149

v



Table 2.1.

Table 2.2.

Table 3.1

Table 3.2.

LIST OF TABLES

Thresholds used to reprocess AVHRR data

for better cloud MasKing .......ccevveiiiiiiiiiiiiiriieieeee e
Date range, yeardays and number of images making up

each weekly CruiSe COMPOSILE ....vvuvnnineieininiiiiiiiiiniirineee e
Correlation results from regression analyses using

satellite data and in situ surface Alexandrium concentrations

for the entire GOM for all cruise periods ...........ccoeeiviiiiiiniiiniiinin,
Correlation results from regression analyses using

LOG in situ surface nitrate and AVHRR SST for the

entire GOM for all cruise periods .........cccceeeviviiiiiiiiiiiiiiiiiinin



Figure 1.1.
Figure 1.2.
Figure 1.3.

Figure 2.1.

Figure 2.2.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

LIST OF FIGURES

Circulation and Bathymetry of the Gulf of Maine ......................
General Physiology of the Dinoflagellate ...................oooiiniil.

Dinoflagellate Reproductive Cycle ..........ccovviiiiiiiiiiiiiiinnnnnn.

Maps of station locations for all five of the ECOHAB

SUIVEY CTUISES veenenrrnennenuenenneneensrnennesmensersensesersesessnssssnnns

Location of subsets INGOM ...ooiiiiiiiiiiii it ereeeees

AVHRR SST cruise composites with surface

Alexandrium concentration contours (cells/L) overlaid ................

SeaWiFS chlorophyll cruise composites with surface

Alexandrium concentration (cells/L) contours overlaid ................

AVHRR SST cruise composites with surface

in situ nutrient concentration (ng/L) contours overlaid ................

Two-dimensional SST gradient cruise composites with surface

Alexandrium concentration (cells/L) contours overlaid .....................

Plot of LOGAlexandrium (cells/L) versus AVHRR SST (°C)

for the entire GOM for the June 1998 cruiSe ......ccovvvvninrnnennnnns

Modeled surface LOGAlexandrium cell distributions (cells/L)

derived from linear regression results .........ccoccoiiiiiiiii

Examples of temperature transect plots

for June 1998 and May 2000 .........cccoeiiiiiniiiiiiiiiiiiiieiinn,

vi

.. 53



Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15

Figure 4.1.

Time series of AVHRR SST images (°C) around the
time of the May 2000 closure showing the connection of the
EMCC to the western GOM and Georges Bank ...........cccooeieiniiinnnn 69
AVHRR SST image (°C) from June 8, 2000 with
drifter #01915 and #21771 tracks overlaid ..o, 71
SeaWinds image from May 10th, 2000 (yearday 131, ascending pass)
showing strong downwelling favorable winds (southwesterly)
that could cause transport of toxic cells onshore
and down the coast .........oiiiiiiiiiiiiii e 73
Map of the five stations chosen to study toxicity
inthe western GOM .......oooniiiiiiiiii e 75
Time lines of relative toxicity level (ug toxin/100 g tissue)
over the sampling season for all ten years of data
available (1990-1999) at five DMR sampling stations ...................... 76
An example AVHRR SST 8-day composite ("C)
and its respective gradient image ("C/Km) ........cooviiiiiiiiiiinininnnnen.. 84
Contours of maximum two-dimensional SST gradient ("C/km)
along a swath from western to eastern GOM for the
summer sampling season (April 30 — August 4)
for ten years of available data ... 86
Ilustration of the three toxicity SCENarios ..........c.coceeviviiieiiieeiennennn 91
July 2001 AVHRR SST cruise composite (July 6-16)

with surface Alexandrium concentration contours overlaid .................. 98

vii



Chapter 1
JUSTIFICATION AND OBJECTIVES
1.1. Background Research

Harmful algal blooms (HABs) attract public attention in the Gulf of Maine
(GOM) because of their health and economic implications (Blaxter and Southward,
1997). After ingesting toxic phytoplankton, filter feeding bivalves bioaccumulate toxins
in their tissue creating health problems when humans ingest them. In the GOM the toxin
associated with HABs causes paralytic shellfish poisoning (PSP). Ailments in humans
associated with PSP range from slight numbness, nausea, and diarrhea, to death throuéh
respiratory paralysis in severe cases (Hallegraeff, 1995). HABs, therefore, pose a threat
to human health, recreation and commercial interests in the GOM.

Maine’s PSP monitoring program is one of the best in the United States. To
ensure safe products on the market, the Maine Department of Marine Resources monitors
toxin levels in shellfish. The toxins responsible for PSP in the GOM can be fatal to
humans in doses as small as 500 pg/100 g tissue (Hallegraeff, 1995). If the toxin level,
detected via mouse assay, approaches or exceeds 80 pg toxin/100 g shellfish meat, the
shelifish beds are closed to further harvesting (Bean, personal communication, January
2001).

In 1992, commercial fisheries contributed a total of $1.1 billion to the Maine
economy. In 1993 commercial fish landings alone in Maine (fish and shellfish) were

valued at $255 million (MEPP, 1996). There is no good way to estimate economic losses



resulting from shellfish closures due to the numerous variables involved, but the cost of
closures in Casco Bay alone was estimated at $1.6 to $1.7 million in 1994 (MEPP, 1996).
When harvesting beds are closed, the price of shellfish rises. Restaurants may then
decide to import their shellfish rather than pay the high Maine prices, further effecting the
state's economy. Closures may also ha",we a negative effect on tourism. According to the
Maine Department of Environmental Protection (MEPP, 1996) 46% of tourists enjoy
fishing, boating, or some other water activities while vacationing in Maine and
knowledge of a closure may deter them from pursuing these activities.

HAB:s are considered toxic if they are composed of predominantly toxic
phytoplankton (Blaxter and Southward, 1997), but only about 40 identified
phytoplankton species have the ability to produce toxins (Hallegraeff, 1995). Nontoxic
HAB:S can still be detrimental due to shading, nutrient depletion, and the reduction of
oxygen concentration in the water column through bacterial degradation. These anoxic
conditions stress fish, making them more vulnerable to disease (Hallegraeff, 1995).

Since monitoring began in 1972, there has been an increase in the number of
annual PSP events recorded in the GOM. It has been argued that this increase is caused
by excessive nutrient input, resulting in eutrophication (Blaxter and Southward, 1997).
Anderson (1989) found a strong correlation between the number of HAB occurrences and
increases in coastal pollution. Nutrient-rich wastewater discharged into coastal waters
alters nutrient ratios, potentially favoring dinoflagellates (including the toxic
phytoplankton in the GOM) over diatoms (Hallegraeff, 1995). It has also been proposed
that increases in humic substances in the water, resulting from changes in land-use

patterns such as deforestation, could be responsible for shifts in phytoplankton species



composition (Hallegraeff, 1995). Definitive statements quantifying and defining causes
of the increase in frequency of HABs are difficult, due to an increase in monitoring
frequency over the past few decades (Blaxter and Southward, 1997). Prior to 1972, no
monitoring program was in place in Maine, consequently, PSP events were not
documented. Since 1972 PSP events flave been recorded every year. Thus, the lack of
PSP events recorded prior to 1972 may simply be a result of the absence of monitoring,
not the lack of toxic phytoplankton species.

The oceanographic ecology of the toxic dinoflagellate responsible for PSP,
Alexandrium, in the GOM is poorly understood at present. Recently, research into this
ecology has become the focus of a major multi-institution research collaborative. As part
of this collaborative, the overall goal of this thesis project is to examine the extent to
which available satellite data can contribute to our understanding of the distribution of
Alexandrium in the GOM. More specifically, I will look at the qualitative and
quantitative relationships of satellite data to in situ surface Alexandrium concentrations
and to toxic events in the GOM. Satellite images provide a synoptic view of the study
area, allowing repetitive measurements at smaller spatial and temporal scales and over
larger areas than a traditional ship sampling grid. The satellite data that are used in this
study are sea surface temperature (SST) measured by the advanced very high-resolution
radiometer (AVHRR) and chlorophyll concentration measured via the Sea-viewing Wide
Field of view Sensor (SeaWiFS). SST data are the most frequently measured ocean
parameter from space, enabling the study of surface temperature patterns that are
suggestive of physical processes (currents, vertical mixing, water-mass boundaries, etc.)

in the GOM. These processes may play a direct role in the ecology of Alexandrium



and/or the single advective distribution of Alexandrium, making an understanding of the

general circulation of the GOM important to this study.

1.1.1. Gulf of Maine Circulation

The GOM system contains feaitures of widely varying dynamics such as river
plumes, thermohaline influences, strong coastal currents and tides, wind-driven flows and
gyres which create meso-scale circulation features and a complex coastal circulation
system (Xue et al., 2000). Bathymetrically, the GOM is a partially isolated marginal sea
with sufficient freshwater input to be classified as estuarine-like in its overall circulation.
Freshwater inputs to the GOM include the St. John, Kennebec, Penobscot, and
Androscoggin Rivers as well as St. Lawrence River water that enters the GOM from the
Scotian Shelf (Pettigrew et al., 1998). A schematic of residual circulation and bathymetry

of the GOM are shown in Figure 1.1.

Figure 1.1. Circulation and Bathymetry of the Gulf of Maine (Xue et al., 2000)



Residual circulation in the GOM is counterclockwise, driven by buoyancy, with
freshwater entering the system from the Scotian Shelf overlying the more dense, saline
waters that enter through the Northeast Channel. Some surface and intermediate waters
exit the GOM circulation via the Grea{ South Channel, located southwest of the Northeast
Channel and the rest exit through the Northeast Channel (Pettigrew et al., 1998).

Inflow from the Scotian Shelf continues along the Maine coast, creating the GOM
coastal current that has two major legs; the eastern Maine coastal current (EMCC) and
the western Maine coastal current (WMCC). A mix of St. Lawrence River and Labrador
Current water enter the GOM and EMCC from the Scotian Shelf, which extends from the
mouth of the Bay of Fundy southwestward along the coast to the vicinity of Penobscot
Bay. Extensive tidal mixing keeps surface waters of the EMCC relatively cold and
nutrient-rich all year long. This feature is considered the dominant hydrographic feature
in the eastern GOM (Brooks and Townsend, 1989). In the vicinity of Penobscot Bay, the
EMCC turns offshore. At this point, portions of the EMCC contribute either to the gyre
over Jordan Basin or feed into the WMCC. Brooks and Townsend (1989) examined the
variability of the turnoff point of the EMCC showing that in August of 1987 the turnoff
point moved 50 kilometers to the west over a three week period. The mechanisms of this
turnoff are not well understood. Brooks (1994) found that the front associated with the
Penobscot River plume might partly block and redirect the EMCC. Lynch et al. (1997)
agree that the effects of the Penobscot River plume are the main mechanism for steering
the coastal current offshore. The EMCC, however, is likely present before the spring

runoff period and can turn offshore east of Penobscot Bay (Pettigrew et al., 1998). It has



also been argued that the offshore turning point of the EMCC is closely related to the
distribution of slope water in Jordan Basin. Hydrographic surveys support this
hypothesis (Brooks and Townsend, 1989).

The WMCC begins immediately west of Penobscot Bay and continues
southwestward along the coast of Maihe and New Hampshire to Massachusetts Bay
(Brooks, 1985). The WMCC has cyclonic turning points east of Massachusetts Bay and
near the Great South Channel where it moves offshore. At the latter branch point, it
contributes to the anti-cyclonic circulation around Georges Bank and the Nantucket
Shoals (Xue et al., 2000). Freshwater input is a major physical feature of the WMCC.
River runoff entering the western GOM produces plumes that extend along-shore from
the mouth of the river to Massachusetts Bay in some instances (Franks and Anderson,

1992).

1.1.2. Phytoplankton Ecology

The general physiology and ecology of dinoflagellates underlies an understanding
of the distribution of Alexandrium, a dinoflagellate, in the GOM. Dinoflagellates are
mixotrophic (Broekhuizen, 1999), unicellular organisms classified as either plant or
animal as not all species contain chlorophyll. Dinoflagellates are divided into two
general groups, armored (Peridinales) and naked (Gymnodinales) (Charton and Tietjen,
1988). Both groups have two flagella (Figure 1.2.) that enable them to be motile. One
flagellum is transverse, located in the horizontal groove that divides the cell into its

anterior and posterior parts, making the cell spin. The other flagellum is longitudinal,



anchored in a shallow groove with the flagella itself trailing, allowing for vertical and

horizontal movement (Raymont, 1963).

Figure 1.2. General Physiology of the Dinoflagellate (Raymont, 1963)

Dinoflagellates reproduce asexually via binary fission. Unarmored
dinoflagellates typically produce two identical daughter cells of smaller size. In armored
cells there are many patterns of division due to differences in how the theca splits. Both
rate and occurrence of division are dependant on environmental conditions.
Dinoflagellates divide only at certain times of the day causing differences in
photosynthetic rates that vary with species. Marine dinoflagellates are generally said to
divide late at night or in the early morning. Dinoflagellates only divide when cells are at
optimum physiological states under suitable light, temperature, nutrient and salinity
conditions. This can result in what Hastings and Sweeney (1964) termed “phased cell
division,” with some cells being physiologically ready to divide when the conditions are
right and others having to wait for the next cycle. Environmental conditions also affect
growth rate. Under unsuitable conditions, dinoflagellates may form a resting stage, thus
halting any growth and allowing the cell to survive until conditions become suitable

again (Walker, 1984).



Dinoflagellates also have a sexual reproductive phase. This is less common in
marine dinoflagellates, but is observed in an increasing number of species every year.
Marine species may lack a sexual phase or may have a shortened sexual phase lacking a
hypnozygote. In the sexual phase, gametes are produced under optimal conditions and
fuse to form a diploid planozygote. The planozygote is characterized by having two
longitudinal flagella and the cell usually swells and becomes darker than the original
vegetative cell. At this point the planozygote can either undergo meiosis or, more
commonly, develop into a resting cyst called a hypnozygote (Walker, 1984). The stages

of reproduction for dinoflagellates are illustrated in Figure 1.3 below.
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Figure 1.3. Dinoflagellate Reproductive Cycle (Walker, 1984)

The planozygote sheds its outer layer and its cell walls thicken, developing three
layers to form the hypnozygote (cyst). It has been suggested that cysts may be the
primary source of elevated summer concentrations of Alexandrium in the GOM
(Anderson, 1997). These cysts are resistant to bacterial degradation, extreme

temperatures and salinities as well as anoxic conditions and some degree of dessication



(Walker, 1984). The amount of time that a cyst can remain dormant varies on the order
of years. Anderson (1980) found that cooler waters produced cysts with longer dormancy
periods. Suitable, but poorly quantified environmental conditions are required for cyst
germination. Changes in temperature, light, or other environmental parameters all can
trigger excystment (Walker, 1984). Méiosis can occur within the cyst or after excystment
in order to restore the vegetative haploid condition.

Dinoflagellates compete for light and nutrients with diatoms in the GOM
throughout the year. Each have differing optimal light and nutrient requirements with
maximum photosynthetic rates (Pmax) and light intensity at half of P,y (Ic) varying from
species to species (Ryther, 1965). Saturation light intensities differ between species,
suggesting that there are differences in environmental preferences, providing competitive
advantage. Diatoms which have a lower Iy value and a higher initial low photosynthesis
slope, tolerate lower light levels than dinoflagellates and tend to dominate in spring.
Under increasing light levels, dinoflagellates tend to dominate. Nutrient half saturation
constants (K;) also vary with species (Lalli and Parsons, 1993). In general,
dinoflagellates have a lower K than diatoms, enabling them to dominate during times of
nutrient limitation (Holligan, 1985). Thus, dinoflagellates tend to dominate the
population in surface waters at the end of spring and into the summer under stratified
conditions of low nutrient concentrations and increased irradiance.

Dinoflagellates may also be the sole component of the fall phytoplankton bloom if
one does occur (Eppley et al., 1969; Sieracki et al., 1993). Conditions more suitable for
dinoflagellates than diatoms are created when vertical upwelling velocities are not strong

enough for nutrient-rich subsurface waters to reach the surface. Motile dinoflagellates



are able to utilize both surface light and subsurface nutrients. Conditions of silica
limitation in the water column can also lead to a dinoflagellate dominated population

(Blasco, 1975).

1.1.3. Alexandrium in the GOM

Alexandrium, the genus of dinoflagellate in the GOM responsible for HABs,
produces a saxitoxin that is dangerous to humans. In 1997, Anderson identified two
species of Alexandrium in the North Atlantic; Alexandrium fundyense and Alexandrium
tamarense. Anderson (1997) stated that within the GOM, only A. ftamarense has been
identified, but both species were present in waters further south. Deitz and Townsend
(personal communication, March 2001) identified a possible third species of Alexandrium
in the GOM, Alexandrium ostenfeldii, which was generally wide spread in April and May
2001 and present in high concentrations just north of Casco Bay. Together, their data
suggest that Alexandrium species coexist, although A. tamarense is the dominant species
in the GOM. In this thesis I do not distinguish species. The genus name Alexandrium
will be used to refer to the combined grouping of all identified Alexandrium species.

Until very recently, the distribution of Alexandrium in the GOM was poorly
understood and based primarily on observations close to shore. Townsend et al. (2001),
however, observed large Alexandrium cell densities in offshore waters in the GOM
during the summer months in 1998, spatially continuous with distributions in the Bay of
Fundy (Martin and White, 1988). Within the Bay of Fundy, highest cell densities are
found in the southeastern part of the Bay near the coast of Nova Scotia (Martin and

White, 1988). Alexandrium cells have also been found to accumulate at frontal zones

10



(Seliger et al., 1981) where a combination of high nutrients and a shallow mixed layer,
creates optimal conditions for increased phytoplankton growth (Pingree,1975).
Townsend et al. (2001) also observed that Alexandrium cells tend to accumulate on the
seaward side of high chlorophyll areas. These authors noted that the location of highest
cell concentrations (ca. 5.5X10° cells/iiter) were coincident with the cold, nutrient-rich
core of the EMCC possibly due to increased light penetration and elevated nutrient
concentrations in surface waters. In the stratified and nutrient depleted surface waters of
the western GOM the cell densities are uniform and low (ca. <50 cells/liter) suggesting
less than optimal growth conditions. Subsurface data suggest that populations of
Alexandrium are advected beneath the warmer, more stratified waters of the western
GOM (Townsend et al., 2001).

The limited data available to date on overall distributions in the GOM (research
cruises in 1998 and 2000) suggest that general temporal and spatial variability of
Alexandrium is similar from year to year. Highest concentrations are found during the
early summer (June) primarily in the EMCC. These concentrations decrease and recede
to the eastern GOM and Bay of Fundy as the summer progresses (Townsend et al., 2001).
Townsend et al. (2001) argue that as there are vegetative Alexandrium cells in the water
column year round and these cells could provide the seed population for bloom initiation
the following spring.

Anderson (1997) suggests that because of cyclonic offshore branching of the
EMCC in the vicinity of Penobscot Bay it is highly unlikely that the cells present in the
western GOM are transported there from eastern Maine. This would necessitate an

independent population of Alexandrium in the western GOM, having its own source of
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cells to initiate blooms and separate transport pathways (Anderson, 1997). Townsend et
al. (2001) argue that Alexandrium in the EMCC can be transported into the western GOM
meaning that a single Alexandrium population, possibly originating in the Bay of Fundy,
could affect the entire GOM. The degree of connection between eastern and western
GOM is highly variable (Townsend eti, al., 2001), however, and it is hard to generalize the
nature of the connection between high offshore cell densities and toxicity of inshore
shellfish beds (Pettigrew et al., 1998).

Toxicity in shellfish beds is found in both the eastern and western GOM, but there
is a coastal area at the downstream end of the EMCC, in the vicinity of Penobscot Bay
that is toxin-free. Shumway et al. (1988) coined the phrase the “PSP Sandwich,” referring
to this region. One possible explanation for this toxin-free area is an interaction of
Alexandrium concentrations with offshore circulation patterns. The "PSP Sandwich" is
located near the point where the EMCC most commonly turns cyclonically offshore. If
the EMCC is a pathway along which Alexandrium are transported, such dynamics could
leave the Penobscot Bay region toxin free. Interestingly, no Alexandrium cysts were
found in Penobscot Bay (Lewis et al., 1979) eliminating this area as a site of local bloom
initiation.

In the WMCC, Franks and Anderson (1992) found that Alexandrium cells tend to
be most abundant in the buoyant freshwater plume from the Kennebec River, usually as
subsurface populations. They hypothesize that coastal toxicity events in the western
GOM are a function of the interaction of river plume dynamics and alongshore wind
stress. This "plume advection hypothesis" suggests that the buoyant plume of freshwater

originating from the Androscogin and Kennebec Rivers acts as a source of cells and
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becomes coastally trapped, transporting Alexandrium cells to the southwest. Winds from
the southeast induce offshore Ekman transport and move the plume (and toxic cells)
offshore. Northeast winds have the opposite effect and may enhance coastal toxicity. In
years of high freshwater runoff, increased surface velocities might overcome any effects
of sustained upwelling winds and decriease the transit time of toxicity along the coast. In
years of low runoff, wind-forcing could dominate plume dynamics and upwelling-
favorable winds may slow down the alongshore transport of toxicity.

The distribution of Alexandrium cysts within the GOM differs from that of the
vegetative cells. Keafer and Anderson (1985) found high concentrations of cysts in the
deep basins of the GOM where clays and fine particles settle. White and Lewis (1982)
found the highest concentration of cysts in the winter in offshore waters north and east of
Grand Manan Island. This region is coincident with the location of an area of active
sediment deposition, confirming what Keafer and Anderson (1985) found in the western
GOM. High vegetative cell concentrations in the Bay of Fundy indicate that these cysts

could be a major source for summer bloom initiation (Martin and White, 1988).

1.1.4. Satellite Oceanography

Satellite remote sensing provides a synoptic view of the ocean impossible to
obtain through conventional ship sampling (Stewart, 1985, Njoku and Brown, 1993).
Over the last two decades, as data and technology have become increasingly available,
satellite remote sensing has been applied to many aspects of oceanographic research
(Minnett, 1995). Two satellite data parameters commonly used in oceanographic

research are sea surface temperature (SST), calculated from infrared measurements, and
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chlorophyll concentrations, calculated from ocean color measurements. Because of the
role of temperature in density, SST measurements provide direct insight into physical
processes. Chlorophyll measurements provide an estimate of biological spatial patterns
and can also act as a Lagrangian tracer of flow dynamics.

The literature contains numerohs examples of satellite SST and chlorophyll data
used to document and/or quantify the spatial distribution of phytoplankton, surface
hydrography and their interaction. Two examples suggest that both SST and chlorophyll
data contribute to an improved understanding of phytoplankton distributions. Satsuki et
al. (1989) used Coastal Zone Color Scanner (CZCS) data to map phytoplankton pigment
concentrations resulting from mixing patterns at large frontal eddies around Japan. They
also used the channel six infrared data from the CZCS to determine sea surface
temperature, examining the temperature and chlorophyll profiles of a frontal eddy.
Differences between SST patterns and pigment patterns forced them to conclude that
coincident analysis of temperature and chlorophyll are needed to isolate mechanisms for
chlorophyll production. Holligan et al. (1983) used hydrographic cruise data from a two
and a half month time period in 1981, along with coincident CZCS chlorophyll data and
AVHRR sea surface temperature data to look at the spatial distribution of surface
phytoplankton in the western English Channel. They found that satellites effectively
monitor blooms and the CZCS data provided the basis for the first complete description
of the spatial and temporal distribution of a Gyrodinium aureolum Hulburt bloom. They
reported that if the chlorophyll images could be processed within hours the data could

greatly aid in the process of choosing station locations.
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Satellite data have previously been used in studies of harmful algal blooms to
monitor their short time scales and large spatial scales (Yentsch, 1989). Blooms of the
toxic dinoflagellate Gymnodinium breve along the Florida coast are associated with the
transport of cells onshore by the Gulf Loop current. In February 1996 this association
was demonstrated when toxic cells trahsported within the surface waters killed manatees
in coastal waters (Landsberg and Steidinger, 1998). Similar thermal patterns could be
identified in AVHRR SST imagery, making satellite data useful as a monitoring tool for
G. breve blooms in Florida.

In the early 1990's a bloom of G. breve off the coast of North Carolina and
Florida resulted from transport of toxic cells in the Gulf Stream to the shore waters
(Tester et al., 1991). About a month after the bloom was identified, AVHRR SST images
revealed a surface temperature feature that implied shoreward movement of a filament of
Gulf Stream water onto the shelf near Cape Hatteras and Cape Lookout, North Carolina.
This feature is the proposed source of the toxic cells (Tester and Stumpf, 1998),
illustrating the use of satellite data in managing HABs.

Keafer and Anderson (1993) showed that satellite sea surface temperature data
were helpful in studying Alexandrium bloom dynamics in the western Gulf of Maine,
locating and tracking physical features such as fronts and specific water masses. They
found a buoyant plume of water associated with the transport of Alexandrium and
concluded that remote sensing gives an improved understanding of the short-term

oceanographic processes responsible for the development and behavior of Alexandrium.
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1.2. Goals and Objectives

ECOHAB is a national program funded by the National Science Foundation
(NSF), National Oceanic and Atmospﬁeric Administration (NOAA), and the National
Aeronautic and Space Administration (NASA) whose goal is an improved understanding
of the ecology and oceanography of HABs. In 1997, a multi-institutional research
proposal led by Woods Hole Oceanographic Institution was funded under the ECOHAB
program to study the ecology and oceanography of the harmful algal species,
Alexaﬁdrium, in the GOM (ECOHAB-GOM). Within this proposal, some of the specific
areas of study include the transport and distribution of Alexandrium, cyst dynamics,
grazing rates, and the food-web transfer of toxins. Research is supported by numerical
modeling to study the physical processes in the GOM as they relate to the distribution of
Alexandrium. My thesis research investigates the use of satellite imagery as a tool for
understanding the distribution of Alexandrium in the GOM. The overall goal is to
quantify the extent to which satellite measured sea surface temperature and chlorophyll
can model patterns of Alexandrium in time and space.

Riley (1946) showed that phytoplankton concentrations illustrate quantifiable
relationships to specific physical and chemical parameters in their environment, but that
the quantitative nature of their relationship varied in both time and space. An initial
working hypothesis for this study is that quantifiable relationships will exist between
satellite derived surface parameters and various in situ measurements but that the actual

quantitative relationships will vary or even disappear, in time and/or space. For example

16



Kamykowski and Zentara (1991) documented a general inverse relationship between sea
surface temperature and surface nutrient concentrations. In the GOM, however, this may
hold true only for the spring and early summer and only in the more strongly physically
forced areas such as the EMCC. However, if nutrient distributions are an important
component of Alexandrium spatial disiributions, relationships between satellite measured
fields and nutrients could be a valuable tool in modeling Alexandrium distributions.
Similarly, times and places where patterns of Alexandrium distribution have relationships
with satellite-derived patterns can be expected to vary depending on the dominating
processes. If physical processes dominate distributional ecology and Alexandrium is
acting primarily as a Lagrangian tracer of flow structure, this hypothesis predicts a strong
relationship to SST data. If phytoplankton ecological processes dominate and
Alexandrium growth mimics that of the general phytoplankton biomass the hypothesis
predicts a closer similarity to the surface chlorophyll patterns.

My hypothesis will be examined through qualitative and quantitative analyses of
the relationships between surface Alexandrium concentrations from two years of
ECOHAB cruise data (1998 and 2000) and coincident AVHRR SST and SeaWiFS
chlorophyll data. Qualitative analyses will generally consist of examining the
distribution of Alexandrium in the GOM in relation to the AVHRR SST and SeaWiFS
data. More specifically, the analysis will look at the location of high Alexandrium cell
densities in relation to the location of physical features in the GOM, such as the EMCC
and include of a number of linear regression analyses using the in situ and the satellite
data. Relationships revealed through these analyses will be quantified and applied to the

satellite data to create a synoptic view of the in situ parameter. In addition to any linear
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relationships, this regression analysis may reveal non-linear relationships groupings or
clusters which imply ecological boundaries involved in Alexandrium distribution. Lastly,
I will investigate the utility of satellite data in defining the connection between the
EMCC and toxicity events in the western GOM. Assuming the high Alexandrium
concentrations are in the EMCC, a coﬁnection of the EMCC to the western GOM is
necessary to cause a toxicity event (Townsend et al., 2001). Quantification of this
connection might allow satellite data to be used as a monitoring or management tool in

predicting toxicity events in the western GOM in any given year.
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Chapter 2

DATA AND METHODS

2.1. Data ‘

2.1.1. In Situ Data

This study uses in situ data collected during the 1998 and 2000 ECOHAB field
seasons. Three broad-scale survey cruises were conducted in 1998; June 6-16, July 6-16,
and August 4-16. Two broad scale survey cruises were conducted in 2000; April 22-May
4 and June 5-15. The station locations for each of the five cruises are shown in Figure
2.1a-e with specific locations listed in Appendix A. In general, parameters measured at
each station include vertical profiles of temperature, salinity, fluorescence, chlorophyll,
pheopigments, dissolved nutrients (NO; and NO;, NHy, PO,, SiO,), and Alexandrium
cells (see Appendix B). Redefinition of cruise objectives and methodologies resulted in
differences between parameters measured in 1998 and 2000 (see Appendix B for details).

Townsend et al. (2001) provide details on both lab and field protocols.

2.1.2. Satellite Data

2.1.2.1. Ocean Color Data Ocean color is measured by the reflectance of
sunlight in the visible range (400 to 700 nanometers). Quantitative reflectance varies as a
function of wavelength-dependant backscatter and absorption in the surface waters

(Amone and Gould, 1998) which in turn is a function of differences in concentrations of
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Figure 2.1. Maps of station locations for all five of the ECOHAB survey cruises; (a)
June 1998, (b) July 1998, (c) August 1998, (d) May 2000, and (e) June 2000.
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particles, primarily chlorophyll and sediment, in the water (Mobley, 1994). Reflected
light is detected by the satellite and the concentration of substances in the water can be
deduced if the nature of how they absorb and scatter light is understood (Mobley, 1994).

Remotely sensed ocean color measurements from Ocean Color and Temperature
Sensor (OCTS), CZCS, SeaWiFS§, and“, now the Moderate Resolution Imaging
Spectroradiometer (MODIS) allow surface chlorophyll estimation from space. The
earliest sensor, CZCS, provided an estimate of total pigment in the water (sum of both
chlorophyll and pheopigments). Advances in spectral band selection and algorithms,
allow SeaWiFS to make reliable estimates of chlorophyll from the detected water-leaving
radiance in the open ocean. The color of the ocean, as seen from above, is the spectral
and angular result of incident solar energy being backscattered and absorbed in the ocean
surface and interior. Oligotrophic waters of the deep ocean central gyres appear dark
blue because pure water absorbs red light and scatters mostly blue light. Closer to shore,
productivity increases and chlorophyll, colored dissolved organic material (CDOM) and
sediments become an increasing percentage of the particles in the water column. With
increasing chlorophyll concentration, the water column absorbs more strongly in the blue
wavelengths and shifts the spectral backscatter into green wavelengths. If the color-
producing particles of the water are dominated by phytoplankton (case 1 water) the water
will appear green due to the chlorophyll reflecting green light. Waters in which sediment
and CDOM are dominant and pigment absorption is less important (case 2 waters) the
waters will appear more brown or red (Morel and Prieur, 1977). The ocean color

algorithms for SeaWiFS attempt to deal with the increased backscatter of sediments and
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CDOM, but still tend to overestimate chlorophyll in coastal areas where case 2 waters
dominate.

In addition to radiance backscattered out of the surface layer of the ocean, the
radiance that is detected by the satellite includes that from the sky reflected off the ocean
surface as well as that scattered back tbward the satellite by atmospheric gases and
particles (Mobley, 1994). This atmospheric component is modeled from radiance
measurements made by the satellite and an atmospheric model, and then subtracted from
the total signal. The largest source of error in satellite ocean color estimates results from
this interference, which can account for up to 90% of the electromagnetic radiation
received by the instrument. Sun glint can also be a large source of error in ocean color
remote sensing but is avoided by tilting the sensor.

The ocean color data used in this study were received from the SeaWiFS
instrument on the ORBIMAGE satellite, SeaStar, and sent to the Satellite Oceanography
Data Lab at the University of Maine, monthly, from the National Aeronautic and Space
Administration (NASA) Goddard Space Flight Center. L1A data (radiance values for
each channel) are received and processed using NASA’s SEADAS software resulting in
L2 data (chlorophyll values). Both semianalytic and empirical models are used to make
chlorophyll estimates, usually using the ratio of two sensor channels. Different
algorithms, equations and band ratios are used to calculate chlorophyll in different optical
water conditions. The SeaWiFS§ algorithm uses a modified cubic polynomial function
with the ratio 490/555 to simulate the sigmoidal relationship between log radiance ratios
and in situ chlorophyll concentrations found by O'Reilly et al. (1998):

[Chl] = -0.040 + 10°[0.341 - 3.001 * X + 2.811 * X*- 2.041 * X?]
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where X = LOG[Rrs(490)/ Rrs(555)].

Recent work has shown that a larger than expected area of the GOM is considered
to be case 2 waters (work by M. Keller and Thomas, O' Reilly, personal communication,
August 2001) and measurements derived from the SeaWiFS images may be
overestimates of the actual concentrations. Algorithms are continually being improved to
better derive chlorophyll concentrations in case 2 waters. Data used in this study were

processed using the third SeaWiFS reprocessing (2000) algorithm coefficients.

2.1.2.2. Sea-Surface Temperature Data Sea surface temperature (SST)
measurements are based on the quantification of infrared radiation leaving the ocean
surface (Njoku, 1990) within the spectral range of 650 to 1200 nanometers. The largest
source of uncertainty in SST measurements is interference from the atmosphere. The
atmospheric constituent contributing most strongly to this uncertainty is water vapor.
Clouds totally obscure the signal leaving the sea surface but even a "clear sky"
contributes to the radiance measured (Minnett, 1995). Radiance contributed by the
atmosphere, the largest component of which is water vapor, needs to be removed to
calculate SST. The NOAA five-channel AVHRR data was the first to use multiple
channels for both cloud masking and atmospheric attenuation corrections. In this
method, three classes of cloud masking tests are used; visible and visible-near-infrared
bi-directional reflectance thresholds, spatial coherence thresholds using visible and
infrared data, and a multi-channel infrared intercomparison test. Pixels failing this test

are masked as clouds and SST estimates are not possible from them. Accurate
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measurements of SST depend on the isolation of cloud-free data and subsequent
correction for interfering atmospheric absorption and radiation.

Once the cloud contaminated pixels are flagged, a multiple-window technique is
used to calculate SST estimates from the remaining ocean pixels. This technique uses a
linear relationship between brightness% temperatures observed in two or more independent
infrared channels and the SST. McMillin (1975) showed that a simple linear combination
of radiances at two wavelengths gives a good estimate of the water leaving radiance,
providing an SST estimate. A forward radiative transfer model is used to calculate the
coefficients of the linear relationship, but due to uncertainties in the model and in the
absolute calibration of the AVHRR, empirical adjustment of the coefficients is needed.
The empirical adjustment is performed by regressing the brightness temperatures against
a global array of collocated drifting buoy SST measurements. This method has a global
accuracy of ~ 0.7°K (Bernstein, 1982).

The telemetry data stream from three NOAA satellites (NOAA-12, NOAA-14,
NOAA-15) is downloaded at the University of Maine Satellite Oceanography Data Lab's
(SODL) ground station. The three NOAA satellites each pass over the study area (the
GOM) two to three times a day, allowing for six to nine images to be archived daily. The
telemetry received is a full (2400 km wide) swath covering the east coast of the United
States, including the GOM. In the lab, brightness temperatures in each channel are
passed through a multi-channel SST (MCSST) algorithm, a linear algorithm with a weak
dependence on view angle. The algorithm considers data in the three infrared channels;
channel four and five are used in processing day images and channel three is used only

when processing night images because the reflected solar radiation cannot be removed
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during the day (Bates and Diaz, 1991). Channels one and two (visible wavelength
reflectance) are used for cloud masking in daytime images.

The time period of satellite data examined for this study extended from five days
prior to each cruise to five days after each cruise had ended. This allows cloud-free
images from immediately outside the icruise period to contribute to any days at the
beginning or end of the cruise period in which there were no cloud-free images.
Appendix C is a list of the original data collected for this study. The AVHRR data were
used not only to provide synoptic sea surface temperature fields, but also to calculate
higher order descriptions of the ocean such as frontal location and strength, patterns
indicative of advection, and current locations that may provide insight into Alexandrium
distributions.

Archived, historical AVHRR data from the Pathfinder program, sponsored by
NOAA and NASA, were used in an analysis of retrospective toxicity data. The goal of
the Pathfinder program is to produce a long time-series of accurate SST data for global
climate change studies. Intercalibration of sensors on the AVHRR instruments, as well
as revised processing procedures and improved quality control algorithms make this data
set a consistent and accurate estimate of SST over extended time periods (Kilpatrick et
al., in press). For example, the Pathfinder SST data set makes use of a better cloud
masking scheme than the MCSST data, using a two-tier technique. The first tier uses the
same procedure as the MCSST algorithm. The second tier incorporates comparisons of
the SST to a reference SST field defined from the actual time series and a match-up
database. This two-tier approach makes the Pathfinder data set less noisy and more

precise. In addition, because the Pathfinder algorithm regresses the satellite measured
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SST estimates against buoy data, the measurements more closely represent the bulk
temperature, not a surface skin temperature such as that returned by the original AVHRR
SST algorithm (Schluessel et al., 1990).

High spatial resolution (1.25 km) Pathfinder data for the east coast of the United
States are processed by the Graduate School of Oceanography at the University of Rhode
Island. The individual images received from the University of Rhode Island were
composited over eight-day periods, a time period that exceeds the mean decorrelation
time scale of GOM SSTs, thus allowing each composite to be statistically independent.
Composites covering the months in 1990 to 1999 coincident with the sampling period of
toxicity data (March to August) provided by the Maine Department of Marine Resources

(DMR) were used in this study.

2.1.3. Toxicity Data

Maine DMR samples shellfish for PSP toxicity at approximately 300 stations
along the coast of Maine each year. Ten years of retrospective toxicity data (1990-1999)
for all the stations were acquired for this analysis. A number of species of shellfish,
including Atlantic and Arctic surf clams (Spisula solidissima and Mactromeris
polynyma), horse mussels (Modiolus modiolus), razor clams (Ensis directus), soft shell
clams (Mya arenaria), ocean quahogs (Arctica islandica), and most commonly, blue
mussels (Mytilus edulis) are sampled at each station. The frequency of sampling for each
site varies depending on the presence of toxin. Stations are sampled once a week, but

when found to have increased or rising toxin levels they are more frequently monitored.
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The level of toxicity in the shellfish is measured using a standard mouse bioassay
method. A 100g sample of shellfish meat is collected and made into an extract. One ml
of the extract is injected into each of three mice. The mouse is then weighed and the time
of injection and apparent health and behavioral changes and/or time of death are
recorded. Calculations are made to cohven times to mouse units (MU) using Sommer's
Table. The MU data is then corrected for weight by multiplying the time of death of each
by a weight correction to give the corrected mouse unit (CMU) for each mouse. The
median value of the three corrected mouse units is calculated and the concentration of
toxin is determined using a standard formula which includes the CMU, a correction factor
and a dilution factor (Bean, personal communication, September 2001). The level of
toxin detection in mice is 40 pug/100g tissue, thus a toxin level of 40 pg/100g indicates
no toxicity. If the toxin level at a station is at or approaching 80 ug/100g tissue, the area
is closed to the taking of that species of shellfish (Bean, personal communication,
January 2001).

The multiple shellfish species tested and the hundreds of stations sampled
represent a wealth of information. To simplify the analysis, attention was focused on five
specific DMR sampling sites that were relatively exposed and therefore determined to be
more likely influenced by large-scale circulation patterns of the GOM rather than small-
scale local processes occurring within individual bays and harbors. Similarly, I have
used only the blue mussel (Mytilus edulis) as a key to general toxicity levels. Mytilus
edulis is widely regarded in environmental and toxicity literature as an excellent indicator

species. Timelines of toxicity level (ug/100g tissue) in Mytilus edulis over the sampling
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season, usually from February to November, were created for the five sampling stations

(four stations in western Maine and one in eastern Maine).

2.2. Methods "_

2.2.1. Noise Reduction

Day-to-day operations in the University of Maine SODL process the brightness
temperatures of each AVHRR pass using the MCSST calculation and cloud masking
algorithm set with seasonally-determined coefficients and thresholds. These generalized
coefficients work for the majority of the images, but can be improved upon by
customizing for specific study periods. All five channels of data are used in the
determination of a cloud mask, but not all parameters have an equal impact on the
amount of data masked. A sensitivity analysis was performed. The channel two
maximum reflectance criteria and the channel four minimum temperature criteria were
the threshold parameters that seemed to have the strongest influence on cloud masking
success. The channel two maximum reflectance and channel four minimum temperature
thresholds are adjusted seasonally at the University of Maine SODL to optimize the cloud
masking. As the waters get colder in the GOM, the channel two maximum reflectance
threshold needs to be increased and the channel four minimum temperature needs to be
decreased.

In order to optimize the cloud masking for each individual AVHRR scene used in

this study, the brightness temperature data were reprocessed using customized
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coefficients for the atmospheric correction applied to either each cruise period or, in some
cases, each iﬂdividual image. Different thresholds were sometimes chosen for images
coincident with the early part of the cruise and thellate part of the cruise to obtain more
rigorous cloud masking. Table 2.1 lists the thresholds used for each cruise period and

each satellite,

Crulse Period "8
June 1998 12 2 0
| ] 14 | 3 6
July 1998 12 - 2 0
| 14 ] 2 7
| August 1998 12 15 L 0
14 22 | 6.91
April - May 2000 12 | 1 2
14 2 3
15 2 3
14 | 2(early)3 (ate) | 5 (carly)7 (late)
15 2 (early) 1 (late) 7

Table 2.1. Thresholds used to reprocess AVHRR data for better cloud masking.

The largest problem with trying to improve the cloud masking, especially for
those images in early spring, is that surface waters off the Scotian Shelf are sometimes
just as cold, if not colder, than cloud surfaces. Attempts to mask all the clouds in these
images based on thresholds often resulted in masking the coldest water as well. Optimal
cloud masking in the five available channels of AVHRR data is an ongoing area of active

research in Satellite Oceanography.
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2.2.2. Composites

Temporal composites were created from the AVHRR and SeaWiFS image time
series in order to map the mean pattern of physical and biological features representative
of specific time periods (over a week or the entire cruise period). The compositing
process also created images with bettér cloud-free coverage. Composites are not a true
mathematical mean of the images used. A composite computes the mean at each pixel
location using only valid (cloud-free) data from that location. Thus, the number of valid
pixels entering into the calculation of the mean varies from location to location due to
varying cloud cover.

All daily AVHRR and SeaWiFS images from the study period were visually
inspected and any extremely cloudy images that would contribute little or no data to
temporal composites were eliminated from the time series. The remaining images were
used to form both weekly and cruise composites for each of the 1998 and 2000 ECOHAB
cruise periods. The week one and week two split was determined by dividing the cruise
period into two equal lengths. The dates used are specified in Table 2.2, along with the

number if images used in each composite.
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June 1998
Date Range: | June 6 - 11 June 12t - 16
Yeardays: | 152, 153, 155-158, 160-162 163
| #ofimages: | 9 1
July 1998
Date Range: | July 6 - 11 July 12 - 16
Yeardays: | 183-185, 187, 189-192 193-196, 199, 200, 202-204
# of images: | 8 . 9
August 1998
Date Range: | August 4 - 10 August 11 - 16
Yeardays: | 213-218, 220-222 225, 226, 228, 231, 232,234
# of images: | 9 16
May 2000
Date Range: | April 22 - 28 April 29 - May 4
Yeardays: | 108 120-125, 127
# of images: | 1 ] 7 i
June 2000
Date Range: | June § - 10 June 11 - 15
Yeardays: | 155-157, 159, 160 166-168, 170-172
# of images: | § 7 16

Table 2:2. Date range, yeardays and number of images making up each weekly cruise
composite.

Compositing can result in images with increased noise artifacts in areas where
only a few temporally discontinuous pixels contribute to the mean. To reduce some of
this noise, both 5 X 5 pixel mean and median spatial filters were applied sequentially to
the AVHRR composites and a 5 X 5 pixel median filter was applied to the SeaWiFS

composites.

2.2.3. Contours
Contours of the near surface (less than five meter depth) measurements of each of
the in situ nutrient concentrations (nitrate/nitrite, ammonium, silicate, phosphate) and

biological parameters (pheopigment, chlorophyll, Alexandrium, fluorescence) were
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overlaid on the weekly, cruise and daily composites of both the AVHRR and SeaWiFS
data to qualitatively investigate their relationship with the satellite data. Qualitative
relationships evident from visual inspection were used in quantitative regression

analyses, described below.

2.2.4. Two-Dimensional SST Gradients

If physical oceanographic processes in the GOM play a role in the distribution of
Alexandrium, strong horizontal thermal gradients, or frontal zones, may be important. In
addition to being hydrographic boundary regions, fronts are also regions of convergence.
Using Van Woert's (1982) study of subtropical fronts as a model, two-dimensional SST
gradient images were created by applying a two-dimensional gradient operator:

T(ey) = 1/24h) {[T(x - 4hy) - Tx + 4hy)])° + [Ty - Ah) - Ty + a1}

to the AVHRR cruise composites for all five cruise periods. The operator is an
unweighted central difference with final units of °Ckm’’, where T is the temperature at
any pixel location x,y in the image and Ah is the pixel separation in the x and y direction
over which the gradient is calculated. After sensitivity tests on the images, a Ah of three
(3.3 km) was used, resulting in gradients computed over seven pixels (~8 km) in the x
and y directions. Surface Alexandrium concentrations for each cruise period were
contoured on top of temporally respective gradient images to explore qualitative

relationships between Alexandrium distribution and frontal zones.
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2.2.5. Linear Regression Analyses

In order to quantify any relationships evident in the qualitative image/contour
overlay comparisons, scatterplots were created using available spatially coincident
satellite and in situ data. A line or a curve was fit to the data in a least-squares sense and
a correlation coefficient was computeé'j to examine the degree of relationship between the
two. Two approaches were used. First all the data for the entire GOM were treated as a
single data set and examined. Second, subsets of the GOM were analyzed individually.
The second approach anticipates that statistically significant relationships between the
satellite data and the in situ data might vary in time and space and thus not be evident in a
treatment of the GOM as a whole. Subsets of the data (eastern Maine vs. western Maine
and, more specifically, the EMCC, Jordan Basin, Scotian shelf, Wilkinson Basin or
WMCC) were analyzed to determine if relationships improve if a particular area is
isolated. Figure 2.2 shows the rough location of these subsets in the GOM and Appendix

E lists the stations in each subset for each cruise.

Figure 2.2. Location of subsets in GOM. (1) WMCC, (2) Wilkinson Basin, (3) EMCC,
(4) Jordan Basin, (5) Bay of Fundy, and (6) Scotian Shelf
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An additional set of scatterplots in which the distribution of a third parameter was
represented in symbol was created for each cruise period. This allowed examination of
any relationships between the third parameter and the other two data sets being regressed.
Combinations of in situ and in situ data were plotted as well as combinations of in situ

and satellite data to quantitatively asse&s relationships.
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Chapter 3

RESULTS AND DISCUSSION

3.1. Contours

All nutrient and biological data contours were overlaid on daily, weekly and
cruise composites of AVHRR SST and SeaWiFS chlorophyll. Dominant surface
hydrographic features, such as the EMCC and mixing at the mouth of the Bay of Fundy,
were more clearly evident in multiple day composites so daily composites are not
presented.

In situ surface Alexandrium data contoured over AVHRR SST cruise composites
are shown in Figures 3.1a-e. The contours for 1998 (Figures 3.1a,b,c) show a large
population of Alexandrium at the mouth of the Bay of Fundy and extending southwest
along the coast of eastern Maine associated with the colder SST of the EMCC consistent
with advection. As the EMCC turns cyclonically offshore the Alexandrium cells are
carried with it, resulting in an offshore population immediately south of Penobscot Bay.
This Alexandrium population offshore decreases in concentration from June to August,
the distribution pattern retracting back toward and into the mouth of the Bay of Fundy.
These results are consistent with those of Townsend et al. (2001), who suggested the
offshore populations of Alexandrium in the GOM were related to surface nutrient
availability and the light field. They also found that the western GOM had uniformly low

cell concentrations, most likely due to less than optimal growth conditions. Figure 3.1a-c
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(a) June 1998
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Figure 3.1. AVHRR SST cruise composites with surface Alexandrium concentration
contours (cells/L) overlaid for (a) June 1998, (b) July 1998, (c) August 1998, (d) May
2000, and (e) June 2000.
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(b) July 1998
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Figure 3.1. Continued
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(c) August 1998
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(d) May 2000
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(e) June 2000
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shows these results and illustrates the association of these low concentrations with
warmer SSTs when compared with the station locations in Figure 2.1.

In May 2000 (Figure 3.1.d) Alexandrium was present in low concentrations
throughout the entire GOM, showing both a different spatial pattern and relationship to
AVHRR SST than was present in 199I8. The populations are not spatially coincident with
any specific surface physical feature. This is likely due to the fact that May is early in the
season and detectable surface thermal features have not yet developed. By June 2000
(Figure 3.1e), the regular seasonal features of the GOM (Xue et al., 2000), such as the
EMCC, have started to develop a surface SST expression, resulting in a more obvious
relationship between SST and Alexandrium concentration. The distribution of
Alexandrium in June 2000 is similar to that observed in each of the months in 1998, with
highest Alexandrium concentrations associated with the cold waters of the EMCC, and
thus consistent with the findings of Townsend et al. (2001). Two differences are noted,
however. In June 2000 the EMCC turns offshore just south of the Penobscot Bay,
whereas in 1998 it separates from the coast just north of the Penobscot Bay, consistent
with variability in separation point observed by Brooks and Townsend (1989). In 2000
(Figure 3.1.d,e), there is also a population of Alexandrium in Jordan Basin that does not
appear to be associated with the EMCC. In both 1998 and 2000, Alexandrium cells are
not present in high concentrations near the frontal region separating the eastern and
western GOM, as would be expected if dinoflagellates consistently congregate in frontal
regions as Seliger et al. (1981) observed.

SeaWiFS cruise composites (Figure 3.2a-¢) show high chlorophyll concentrations

along the coast and near the frontal region which separates the eastern and western GOM
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(a) June 1998
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Figure 3.2. SeaWiFS chlorophyll cruise composites with surface Alexandrium
concentration (cells/L) contours overlaid for (a) June 1998, (b) July 1998, (c) August
1998, (d) May 2000, and (¢) June 2000.
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(b) July 1998
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(c) August 1998

[CHL]

B

039 310 155 078 620 1237 2470

Figure 3.2. Continued



(d) May 2000
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(e) June 2000
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(see Figures 3.1a-¢ for exact location). Contours of Alexandrium concentration
superimposed on these images show that cells are generally not found in high
concentrations within areas of high chlorophyll. The decreased abundance of
Alexandrium cells in the high chlorophyll regions indicates two things. First,
Alexandrium is not the dominant chlori,ophyll pigment contributor to the signal detected
by the SeaWiFS sensor and, second, that the dinoflagellate Alexandrium attains a
competitive advantage in differing environmental conditions than diatoms (the major
component of the SeaWiFS chlorophyll signal) and, therefore, tends to accumulate where
overall chlorophyll concentrations are lower. Townsend et al. (2001) also observed that
high chlorophyll regions were located shoreward of elevated Alexandrium concentrations
in the GOM.

The distribution of other ship-measured parameters may also be important in the
ecology and resulting spatial distribution of Alexandrium in the GOM. Nitrate,
phosphate, and silicate were contoured over both the AVHRR SST and SeaWiFS
chlorophyll composites for all five cruise periods. Qualitatively, contours of surface
nutrient concentrations show a strong negative relationship to AVHRR SST, but no
obvious relationship to SeaWiFS chlorophyll.

With the exception of May 2000, surface distributions of these nutrients were
relatively consistent over each of the cruise periods. For this reason, Figure 3.3a-c shows
only the June 1998 nutrient contours over the AVHRR SST composites. Elevated
nitrate/nitrite distributions follow the surface temperature pattern of the EMCC with the
highest concentrations in the cold core along the eastern Maine shore. This relationship

arises because the EMCC is tidally well-mixed, forcing high nitrate and nitrite
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(a) Nitrate
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Figure 3.3. AVHRR SST cruise composites with surface in situ nutrient concentration
(ug/L) contours overlaid; () nitrate , (b) silicate, and (c) phosphate.
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(b) Silicate
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(c) Phosphate
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concentrations to the surface (Brooks and Townsend, 1989). While the distributions of
Alexandrium show offshore populations, the nitrate distributions do not extend offshore.
Concentrations of all nutrients decrease as the summer progresses, possibly due to uptake
by phytoplankton. Silicate and phosphorus (Figure 3.3.b,c) have similar distributions
except in May 2000. i

In May 2000 the distribution of phosphate is similar to that of Alexandrium;
uniformly low concentrations over the entire GOM. Nitrate, though, follows a pattern
similar to the other cruise periods, with highest concentrations close to shore in eastern
Maine. Silicate concentrations are highest along the entire coast of Maine, decreasing
with increasing distance offshore, similar to the distribution of chlorophyll according to
the SeaWiFS image for the cruise period. Concentrations of nutrients in May 2000 are
higher than in any other cruise period, likely due to winter mixing and the data relative to
seasonal hydrographic development. The distribution of nutrients in the GOM are those
described by Townsend et al. (2001) presented in a manner which allows direct
comparison to satellite-measured patterns.

Qualitatively, the nutrient data contoured over the SeaWiFS cruise composite
images show little relationship between surface distributions of nutrients and the spatial
patterns of chlorophyll in the GOM as measured by SeaWiFS. Surface nutrient
distribution patterns are more similar to that of Alexandrium than that of chlorophyll
concentrations. In the summer, increased (decreased) surface nutrients are associated
with areas of decreased (increased) chlorophyll concentrations suggesting active uptake
of nutrients by phytoplankton. These findings are consistent through each of the 1998

and the June 2000 cruise periods.
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Measurements made early in the season (May 2000), however, show
concentrations of all three nutrients are highest nearshore, associated with high
chlorophyll concentrations. One explanation is that early in the season surface nutrients
have not yet been depleted. It is also possible that the similar patterns at this time of year
may be a result of nutrient loading dué to increased runoff into coastal waters. This
runoff could also cause an increase in colored organic material and suspended sediments

which could lead to an overestimation of chlorophyll by SeaWiFS in coastal regions.

3.2. Two Dimensional SST Gradients

Qualitative examination of satellite patterns and Alexandrium distributions
(Figure 3.1a-e) suggest that frontal zones may play a role as boundaries to the distribution
of Alexandrium within the EMCC. Frontal areas can be identified in satellite SST images
as cold, tidally mixed water adjacent to warm, stratified water (Yentsch and Garfield,
1981). SST spatial patterns transformed into two-dimensional SST gradient images
(Figures 3.4 a-c) (see Chapter 2) revealed two major frontal systems in the ECOHAB
study area in the 1998 cruise composites. First, strong fronts form inshore and offshore
of the EMCC. Pettigrew et al. (1998) also observed the front on the offshore side of the
EMCC that forms because of the intense tidal mixing over the eastern Maine shelf. The
second system is a large front that developed just south of Penobscot Bay as the summer
progressed in 1998. This front forms a boundary between the EMCC and the stratified
western GOM surface water (Xue et al., 2000). In 2000, the May (Figure 3.3d) gradient
image does not show any distinct fronts, due to the presence of relatively well-mixed

waters throughout the GOM. Later in the season (June 2000), as stratification in the
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(a) June 1998
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Figure 3.4. Two-dimensional SST gradient cruise composites with surface Alexandrium
concentration (cells/L) contours overlaid for (a) June 1998, (b) July 1998, (c) August
1998, (d) May 2000, and (e) June 2000.
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(b) July 1998
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(c) August 1998
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(d) May 2000
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(e) June 2000
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western GOM increases, the front separating the east and west surface water regimes
develops and is seen in the cruise gradient image (Figure 3.3¢). Contours of Alexandrium
overlaid on these two-dimensional SST gradients suggest that high concentrations of
Alexandrium are being constrained by the frontal regions defining the EMCC. In
addition, the SST front just south of anobscot Bay appears to consistently limit the
cast/west extent of Alexandrium distributions. Qualitatively, contours of Alexandrium on
the June 2000 gradient image show a similar relationship to that of the 1998 images.
These data suggest that frontal zones may play an important role in the spatial and
temporal distribution of Alexandrium in the GOM. Significantly, satellite data are well

suited to monitoring both the time, space and magnitude variability of these fronts.

3.3. Linear Regression Analyses

The analyses above indicate that there are qualitative relationships between
satellite and in situ parameters that might be quantified. Linear regression analyses were
conducted to determine if there are any direct correlations between the satellite data and
Alexandrium distributions as well as other in situ measured parameters which may be
important in their distributional ecology. Correlations that are consistently high could be
used to model the spatial distribution of that parameter using readily available satellite
data. This model would aid in the monitoring of blooms and bloom development in the
GOM.

Prior to regression analysis, the distribution of each in situ parameter was tested

for statistical normality. The nitrate, silicate, chlorophyll, fluorescence, and Alexandrium
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concentrations proved not to be normally distributed and were log-transformed prior to
regression with satellite data. Phosphate concentrations were normally distributed.

As a first step, satellite-measured SST and SeaWiFS chlorophyll from the cruise
composites were regressed against in situ SST and surface chlorophyll to examine the
ability of the ship data to reproduce sa&ellite fields. The in situ temperature and AVHRR
SST regression slope was 0.89 for June 1998, 1.19 for July 1998, 0.68 for August 1998,
and 0.82 for June 2000. Each of these regressions explains over 50% of the variability in
the data. In May 2000, the slope of the best-fit line was 0.34 and explained only 16% of
the variability. The fact that the slope between the in situ and the satellite-measured SST
is not one is due to the fact that the satellite measures surface skin temperature and the in
situ measurements are of bulk temperature (<5 m below the surface) and to differences in
the quantity actual sampled in space and time. These differences are also be the reason
that the least-square fit regressions explain less than 100% of the variance. The in situ
chlorophyll versus SeaWiFS chlorophyll (not LOG values) analysis for 1998 revealed
slopes ranging from 0.15 in June 1998 to 0.53 in August 1998. In May 2000 the slope is
-0.04 explaining 11% of the variability. In June 2000, the slope is 0.93 and explains 29%
of the variance in the relationship. The deviation of the slopes in 1998 from a one-to-one
relationship suggests that the NASA SeaWiFS algorithm was not doing an adequate job
at predicting chlorophyll in the GOM. This could be due to an overestimate of
chlorophyll in the coastal zone due to increased backscatter from other particles (not
containing chlorophyll), increased absorption by CDOM, inadequate atmospheric

correction or the mismatch of the in situ data with the satellite data in time and space.
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Regressions of in situ surface Alexandrium with AVHRR SST showed a negative
linear relationship over the five cruise periods that may be useful in creating a model of
LOGAlexandrium distribution in the GOM from AVHRR SST data. Over all the cruises
in 1998, a least squares fit to the data explained close to 50% of the variability in the log-
transformed data; 48% in June (Figuré 3.5.), 57% in July, and 59% in August. In 2000

the regression explains less of the variability; 15% in May 2000 and 14% in June 2000.

Alexandrium and Satellite Derived SST

B I A e Sl S B ey B S
B
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R-value: -0.482312
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diamond = Alexandrium < 200.0 cells/L
triangle = Alexandrium >= 200.0 cells/L

Figure 3.5. Plot of LOGAlexandrium (cells/L) versus AVHRR SST (°C) for the entire
GOM for the June 1998 cruise. Sampling stations with Alexandrium concentrations
above 200 cells/liter are represented in red triangles, showing the temperature range in
which most Alexandrium are present.

The results of the linear regression analysis also showed consistent values for the
slope and y-intercept of the least-squares fit line over the cruise periods in 1998. June

regression coefficients were then applied to the July 1998 cruise SST composite in an

attempt to model the distribution of LOGA/lexandrium in the GOM. Figure 3.6.a shows
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Figure 3.6. Modeled surface LOGAlexandrium cell distributions (cells/L) derived from
linear regression results. June 1998 and July 1998 results are applied to (a) July 1998 and
(b) August 1998 AVHRR SST cruise composites, respectively. Actual surface
LOGAlexandrium concentrations (cells/L) from the same cruise period are overlaid.
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the modeled distribution with contours of actual surface LOGAlexandrium concentrations
for July 1998 superimposed and Figure 3.6.b shows the modeled distribution of
LbGAlexandrium for August 1998, created from July 1998 regression coefficients, with
the actual surface LOGAlexandrium cell densities superimposed. As expected, this
simple model appears to do a good joﬁ of predicting elevated Alexandrium concentrations
in the EMCC, but does not capture the offshore populations at all. Note also that the
prediction of high Alexandrium concentrations on the Scotian Shelf cannot be verified as
the survey cruises had no stations in that region in 1998. The model also does a good job
of forecasting the low concentrations of Alexandrium in the western GOM. The
prediction does well in terms of magnitude, predicting LOGAlexandrium concentrations
on the order of 2 cells/L consistent with the contours. Predicted distributions do not,
however, capture detail regarding the larger cell densities in the core of the EMCC.
Regressions do not work well in the late spring (May 2000) when Alexandrium
concentrations are uniformly low over the entire GOM and the SST dynamic range is
low, explaining only 15% of the variability.

Regressions of Alexandrium concentration and AVHRR SST from both 1998 and
2000 also consistently show a group of stations (red triangles indicate Alexandrium
concentrations >200 cells/liter in Figure 3.5.), suggesting that highest surface
AIexéndrium concentrations are found within an intermediate temperature range. The
minimum and maximum values of this range increase as the summer progresses. In June

1998, this range is 8-10°C, in July 1998 the range extends to 8-12°C, and by August 1998

the range increases to 10-14°C. In May and June 2000 the ranges are 5-8°C and 11-
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14°C, respectively. Although not pursued further here, these results are a potentially
useful link between Alexandrium distributions and satellite data.

Correlation coefficients from the regression of SeaWiFS chlorophyll and
Alexandrium concentrations are low (maximum of 0.20 in August 1998). The low
correlations support the earlier sugges{ion that Alexandrium do not co-vary with the main
population of diatoms, the dominant contribution to the signal measured by the SeaWiFS
Sensor.

Table 3.1 summarizes the correlations of Alexandrium and satellite data.

Cruise - Lpteicepl @ Slope - Revalue

June 1998 |

AVHRR, Alexandrium | 387 | -023 | -048

July 1998 AVHRR, Alexandrium 3.90 -0.19 -0.57
August 1998 | AVHRR, Alexandrium 478 -0.23 -0.59
May 2000 AVHRR, Alexandrium 0.55 0.10 0.15
June 2000 AVHRR, Alexandrium 1.40 0.08 0.14
June 1998 SeaWiFS, Alexandrium 1.78 0.27 0.15
July 1998 | SeaWiFS, Alexandrium 1.56 0.38 0.04
August 1998 | SeaWiFS, Alexandrium 1.56 0.08 0.20

May 2000 | SeaWiFS, Alexandrium 1.16 -0.007 -0.002
June 2000 SeaWiFS, Alexandrium 2.64 -0.67 -0.20

Table 3.1. Correlation results from regression analyses using satellite data and in situ
surface Alexandrium concentrations for the entire GOM for all cruise periods. Note that
Alexandrium and SeaWiFS chlorophyll concentrations are LOG concentrations.
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The literature documents numerous instances of hydrographic and oceanographic
parameters correlated with blooms of harmful phytoplankton (Holligan et al., 1983;
Satsuki et al., 1989; Sullivan et al., 1993; Keafer and Anderson, 1993; Yentsch, 1989;
Uno and Yokota, 1989; Tester and Stumpf, 1998; Goes et al., 1999). If similar linkages
can be demonstrated in the GOM and ihese parameters can be modeled with satellite
data, improved space and time predictions and/or extrapolations might be made.
Townsend et al. (2001) suggest that surface nutrients might be important in determining
Alexandrium distributions in the GOM. Morin et al. (1993) successfully estimated
surface nitrate in a tidal front using a regression relationship to satellite-derived SST.
They caution that the first order relationship they use will only work under specific
conditions. For example, areas of strong advective diffusion might not show good
relationships. In these areas, high surface nitrate concentrations (associated with cold,
upwelled or mixed waters) are transported downstream and if biological uptake is slow
the nitrate-rich surface waters will warm, destroying the linear relationship. Satellite-
derived SST data were regressed with in situ surface nitrate measurements (Table 3.2.).
In June 1998 the regression shows little relationship. In July and August 1998, however,
SST explains over 50% of the variability in the nitrate data. These results suggest that
satellite SST data could be used to model nitrate distributions in the GOM, another
contribution that satellite data might provide to the understanding and/or monitoring of

Alexandrium distributions.



June 1998 | AVHRR SST, nitrate 0.30 0.04 -0.16
July 1998 | AVHRR SST, nitrate 2.24 022 -0.59
August 1998 | AVHRR SST, nitrate 243 -0.21 -0.65
May 2000 | AVEHRR SST, nitrate 147 20.13 -0.51
June 2000 | AVHRR SST, nitrate 0.97 -0.16 -0.30

Table 3.2. Correlation results from regression analyses using LOG in situ surface nitrate
and AVHRR SST for the entire GOM for all cruise periods.

Therriault et al. (1985) suggest that freshwater runoff, resulting in low salinity,
high temperature, and high nutrients as well as an increased stability of the water column,
is beneficial to the growth of dinoflagellates. Holligan (1985) found that the steepness of
the pycnocline ultimately controls bloom development. Franks and Anderson (1992)
show Alexandrium cells associated low salinity water from river outflow in the GOM.
These results suggest that salinity may play a role in determining Alexandrium
concentrations in the GOM. In situ salinity data and surface LOGAlexandrium
concentrations were regressed. June and July 1998 show little relationship, explaining
less than 40% of the variability. In August 1998 there is a better relationship, explaining
54% of the variance in the LOGAlexandrium data. These results indicate that at certain
times of the year relationships might exist between low salinity waters and Alexandrium
in the GOM as Franks and Anderson suggest. It is difficult, though, to separate a simple
relationship of Alexandrium cells directly to salinity from a relationship to the structure

of the water column. Temperature differences between river discharge and the waters of
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the GOM often make plumes detectable in the AVHRR SST data. This possibility for
AVHRR data to help monitor and predict HABs is only weakly tested here. Detailed
sampling in the vicinity of river plumes would be needed to more fully explore this link.
Attempts to identify improved linear relationships by spatially isolating sub-
regions (see Chapter 2) based on diffe}ent hydrographic functions did not result in
improved correlations with in situ parameters and satellite measured parameters.

All individual linear regression results are summarized in Appendix F.

3.4. Alexandrium and the EMCC

Qualitative comparisons between two-dimensional SST gradient patterns and
Alexandrium distributions (Section 3.2) suggested high concentrations of Alexandrium in
the EMCC were bound by frontal zones. Available in situ data allows an examination of
the details of their relationships for comparison to the findings of Townsend et al. (2001),
who observed high Alexandrium located within and at the frontal edges of the EMCC.
This analysis compares the location of stations with high 4lexandrium concentrations
(typically >200 cells/liter) to the cross-shelf temperature structure of the EMCC to
determine the consistency with which high Alexandrium cell densities lie within or at the
frontal edges of the EMCC.

Surface temperature along the transects from just south of Penobscot Bay to
Grand Manan Island were plotted and compared to stations at which surface Alexandrium
cell concentrations were relatively high for that cruise period (>200 cells/liter in 1998,
>40 cells/liter in May 2000, >300 cells/liter in June 2000). Figure 3.7 shows two

example temperature transects illustrating the overall characteristics of the results.
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Appendix G shows the transect plots for all the 1998 and 2000 cruises. In 1998 the
transects indicate that stations with high Alexandrium concentrations are generally in the
cold core and on the frontal edges of the EMCC, consistent with the findings of
Townsend et al. (2001). In both cruises of 2000, however, stations with elevated
Alexandrium concentrations are not eﬁclusively in the EMCC and/or along its frontal
edges. In May 2000, this could be due to the very weak frontal definition between the

EMCC and the surrounding waters, since the GOM is still well mixed.
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Figure 3.7. Examples of temperature transect plots for June 1998 and May 2000.
Asterisks indicate stations along the transect where Alexandrium concentrations exceeded
200 cells/L for June 1998 and 30 cell/L for May 2000.

The results of this analysis are consistent with those from the previous qualitative

analyses using contours of Alexandrium concentrations overlaid on AVHRR SST

composite images and SST gradient images. Details revealed by these plots, however,
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show inconsistencies in certain locations between Alexandrium concentration and both

cross-shelf SST and its gradient. These inconsistencies are why the regressions are weak.

3.5. A Specific PSP Closure Case Study

In mid-May 2000, toxin concei,ntrations greater than 80 pug/100g tissue in shellfish
samples caused Maine DMR to issue a closure for all shellfish beds from the New
Hampshire border to Marshall Point, Port Clyde (Hurst, personal communication, June
2000). This provided a localized, temporally specific, HAB event with concurrent
AVHRR SST satellite data. The satellite images could be examined for patterns
suggestive of mechanisms of advection or connection between a suspected source of
Alexandrium cells in the EMCC and the closure area.

Townsend et al. (2001), and the data in Figure 3.1 identify elevated
concentrations of Alexandrium in surface water of the EMCC and in offshore locations.
A coastal closure in southern Maine therefore implies a mechanism for the transport of
cells alongshore and onshore to the affected shellfish beds. Daily satellite SST data
coincident with the May 2000 closure were examined for evidence of a surface pattern
indicating onshore advection. A time series of these images bracketing the closure event
is shown in Figure 3.8. In early May (May 2nd and 3rd), cold surface water continuous
with that of the EMCC is observed pushing along the coast and past the mouth of
Penobscot Bay. This pattern contrasts strongly with the later seasonal pattern (see Figure
3.1.) of the EMCC turning offshore. The continuous flow past Penobscot Bay is
therefore capable of providing a mechanism for transporting Alexandrium populations

from the eastern GOM to the western GOM. Evidence of surface onshore movement is
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Figure 3.8. Time series of AVHRR SST images (°C) around the time of the May 2000
closure showing the connection of the EMCC to the western GOM and Georges Bank.
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also present in the satellite data. On May 12 a cold water plume from the EMCC is
observed meandering inshore into close proximity of the coast near Wells Beach (Figure
3.8). This plume appears at the same time that the DMR PSP closure was imposed.
These SST patterns, then, are consistent with an advective mechanism capable of
transporting offshore populations of A_Iaxandrium in the EMCC along the coast and,
potentially causing toxicity events and shellfish bed closures in coastal areas of the
western GOM. Townsend et al. (2001) also observed a filament of cold water at the end
of the EMCC connecting to the coast in 1998.

Later in the month (May 15th and 16th), this shoreward meander of cold surface
water disappears. At the same time, cold SST continuous with the EMCC is again
observed pushing past the mouth of the Penobscot Bay. Here it continues all the way
down the coast of western Maine, New Hampshire and Massachusetts and contributes to
surface patterns indicative of circulation around Georges Bank (Figure 3.8). This feature
is evidence of a direct transport mechanism for Alexandrium from the EMCC onto
Georges Bank. The existence of Alexandrium cells on Georges Bank have been
confirmed during GLOBEC field work (Townsend, personal communication, September
2001). By May 27th (at least the surface expression of) this feature is less obvious and
the EMCC is observed turning offshore near Penobscot Bay.

Support for advective pathways inferred from the surface temperature patterns in
the AVHRR SST data comes from two drifters deployed on April 30™ 2000 (#01915)
and June 8™, 2000 (#21771) in the EMCC (J. Churchill, Woods Hole Oceanographic
Institute, personal communication, July 2000). Paths of these drifters are plotted in

Figure 3.9. Although not concurrent, the April drifter shows a connection of the EMCC
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Figure 3.9. AVHRR SST image (°C) from June 8, 2000 with drifter #01915 (white) and
#21771 (pink) tracks overlaid.
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to Georges Bank, confirming what was seen in the May 2000 AVHRR SST images. The
June drifter followed a path past the mouth of Penobscot Bay and onshore near Wells
Beach, confirming advection from the EMCC to the west and inshore to the coast.

Onshore wind-driven advection could also play a role in the transportation of an
offshore population of Alexandrium iﬁto coastal shellfish beds through Ekman transport
(Townsend et al., 2001). Franks and Anderson (1992) suggest that upwelling-favorable
winds (from the southwest) push a plume of water running along the coast offshore,
slowing any alongshore transport. They argue that downwelling-favorable winds (from
the northeast) were found to constrict the plume close to shore and quicken the flow
alongshore. Satellite-measured wind velocities from the SeaWinds instrument, a
microwave scatterometer on the NASA QuikSCAT satellite are available twice daily for
the May 2000 closure period. These data are delivered from the Jet Propulsion Lab to the
Satellite Oceanography Data Lab at the University of Maine where they are processed
and archived. These data were examined for the presence of southwesterly,
downwelling-favorable winds associated with the May 2000 closure that would assist
onshore transport.

Data from a six day window (four days before and two days after) around the date
of the closure (yeardays 129-135 of 2000 with an ascending and descending pass each
day) were examined for the presence of downwelling-favorable winds. The time series
indicates downwelling favorable winds present only on May 10" (yearday 131), two days
before the closure (See Figure 3.10.). Wind-driven onshore surface advection (and/or
increased alongshore transport), consistent with the processes described by Franks and

Anderson (1992) could therefore have resulted in Alexandrium cells being transported
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from upstream and offshore locations to the coast, assuming the populations were
relatively close to shore already. One day of downwelling-favorable winds would not
transport the Alexandrium very far. The AVHRR data (Figure 3.8.) indicate that this

water was continuous with cold SSTs of the EMCC.

QUIkSCAT L3 ~'Ascending Orbit 2000 131 0600
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Figure 3.10. SeaWinds image from May 10th, 2000 (yearday 131, ascending pass)
showing strong downwelling favorable winds (southwesterly) that could cause transport
of toxic cells onshore and down the coast. Arrows indicate direction and magnitude of
the wind. The color bar also indicates magnitude, high winds represented by red arrows
and low winds represented by blue arrows.

3.6. GOM SST Patterns Associated with Toxicity Events

Specific oceanographic features evident in the satellite data during the May 2000
closure period suggested that SST patterns associated with surface water movement
might be related to the location and/or timing of GOM PSP closures. Toxicity data (from

Maine DMR) and coincident, archived Pathfinder AVHRR SST data for 1990-1999 were
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used to investigate SST patterns at sampling sites where there was a high toxicity event to
see if a consistent series of patterns could be observed.

The overwhelming majority of the DMR toxicity sampling stations are deep in
bays and estuaries, likely quite removed and disconnected from the overall GOM
circulation patterns. Small-scale, locail processes are more likely to govern
phytoplankton (and Alexandrium) ecology in these locations. The exact location of each
sampling site was located on maps and charts. Five stations were subjectively chosen
based on their location on points or outside bays. These stations were thought to be more
exposed and therefore more strongly influenced by the large-scale circulation of the
GOM.

The stations chosen reflect a focus on the western GOM, with three stations
chosen in that area. One station was chosen in the eastern GOM so that the timing and
amount of toxicity in both areas could be compared. One additional station was chosen
in the transition area near Penobscot Bay where a front develops that is thought to restrict
the flow of EMCC waters (and Alexandrium cells) to the western GOM. The stations are
located at Ogunquit River, Cape Porpoise, Little River Kennebunkport, Pemaquid Point,

and East Pond Cove (see Figure 3.11.).
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Figure 3.11. Map of the five stations chosen to study toxicity in the western GOM.

Toxicity was determined by the Maine DMR using mouse bioassay (see Chapter
2). The toxicity levels used in this analysis were only that of the blue mussel (Mytilus
edulis), measured in pg toxin/100 g tissue. Time series of the toxicity level at each of the
five sampling sites for all ten years were plotted (Figure 3.12a-¢). These data show
strong interannual variability in both the timing and magnitude of toxicity events in the
GOM. In general, the data indicate that toxicity is consistently lowest at the eastern
GOM station (East Pond Cove), second lowest at the central station (Pemaquid Point),
and highest at the three western GOM stations (Ogunquit River, Little River
Kennebunkport, and Cape Porpoise). The plots also showed that toxicity events in

western GOM happen consistently earlier than toxicity events in the eastern GOM.
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Figure 3.12. Timelines of relative toxicity level (ug toxin/100 g tissue) over the
sampling season for all ten years of data available (1990-1999) at five DMR sampling
stations; (a) Ogunquit River, (b) Cape Porpoise, (c) Little River, Kennebunkport, (d)
Pemaquid Point, and (e) East Pond Cove .
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Figure 3.12. Continued
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Little River,Kennebunkport
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Pemaquid Point
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Figure 3.12. Continued
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East Pond Cove
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Toxicity events in the western GOM begin in May and early June. East of Penobscot
Bay (Figure 3.12.¢) toxicity events occur closer to the end of June and into July in all ten
years.

One hypothesis explaining why toxicity events in the western and eastern GOM
occur at different times of the year is l;ased on the idea that the two regions have separate
source populations. Anderson (1997) found the eastern and western GOM to be
independent from one another with respect to 4lexandrium populations. Franks and
Anderson (1992) suggest that the onset of toxicity in the western GOM is due to a source
population of Alexandrium located in the Androscoggin and Kennebec River estuary that
is advected alongshore in a buoyant freshwater plume controlled by wind-forcing. In
April the flow of freshwater runoff is greatest, thus there is an increase in the transport of
toxic cells at that time. In eastern Maine the source population is thought to be in the Bay
of Fundy and advection of those cells is controlled by the Scotian Shelf waters that drive
the EMCC (Smith, 1983). The difference in source populations and advective
mechanisms would account for the differing times of the toxicity events.

- Another hypothesis explains why toxicity events in eastern GOM are later in the
season. The EMCC is strongest in June (Xue et al., 2000), so any Alexandrium cells that
are growing in the EMCC are promptly advected along the coast and into western GOM.
By late July the front between the eastern and western GOM becomes well defined and
the EMCC turns offshore, decreasing advection of EMCC waters to western GOM.
When the strength of the EMCC begins to decline at the end of the summer, those cells
growing in the EMCC are no longer advected so rapidly downstream (Xue et al., 2000),

increasing the probability of a toxic event. In addition, there is a strong difference in the

81




seasonal temperature regime of the two regions early in summer (June) eastern Maine
and the EMCC are still colder than the surrounding waters of the GOM so cells do not
grow as fast, whereas in western GOM sea surface temperatures are warmer, thus
phytoplankton grow more rapidly. Later in the season, the surface waters of eastern
Maine increase in temperature, possibiy creating conditions more favorable for
Alexandrium growth.

Although toxicity events in the western GOM consistently occur early in the
season, interannual variability is evident in the timing of the onset of toxicity (Figure
3.12.). Interannual variability in advection and east/west connection, which would affect
the delivery of EMCC Alexandrium cells to the western GOM, could explain these
variations in the timing of toxicity events from year to year. Increased connection and
advection would occur before the development of the strong SST front separating eastern
and western GOM. Differences in the timing of the development of this front would alter
the timing or even the occurrence of an increase in toxicity.

This advective response could also be coupled with a nutrient response. The
overall phytoplankton productivity in the GOM depends primarily on nutrient rich slope
water and intense tidal mixing, especially in the EMCC (Brooks and Townsend, 1989).
The transport of these nutrient rich waters to the stratified western and central gulf via the
EMCC plays a significant role in the growth and transport of Alexandrium (Anderson,
1997), which may, in turn, lead to shellfish toxicity events in the western GOM.

Based on the above observations, the data presented by Townsend et al. (2001)

and the results presented earlier in this thesis, I hypothesize that years with large toxicity
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events in the western GOM should be years of increased or better connection between the
EMCC and the western GOM.

The development of strong cross-shelf SST fronts, such as that evident in
midsummer (Figure 3.13.), which suggest low connectivity, can be identified using
satellite data. This front develops in tﬁe area where cold EMCC waters meet the warm
stratified surface waters of western GOM. The front can be quantitatively located by
plotting the average temperature along a path from western to eastern GOM. Two-
dimensional SST gradient images (see Section 3.2.) make it easier to visualize location
and magnitude of fronts in the GOM (Figure 3.13.) and quantify interannual variability of
frontal development.

Eight-day composite Pathfinder AVHRR SST images from April 30-August 4
were used to create two-dimensional SST gradient images (see Chapter 2) quantifying the
frontal (high gradient) regions in the GOM. Figure 3.13 shows an example eight-day
composite and its respective gradient image showing the location of the fronts in relation
to the SST patterns. Relative connection between the eastern and western GOM was
characterized as the strength of the SST gradient within a 20 km wide box extending
alongshore from 43.1°N, -70.5°W to 44.3°N, -68.1°W (see Figure 3.13.). Gradients
within this box were quantified as the maximum SST gradient present at each alongshore
location over the 20 km in the cross-shelf direction. Use of the maximum gradient rather
than a simple cross-shelf mean prevented large frontal zones oriented away from a
strictly cross-shelf direction from being averaged out. Figure 3.13 shows an example of
the position and strength of the maximum SST gradient at each location between eastern

and western GOM (from west to east) for the eight-day gradient image. An overview of
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the ten year time series suggested that stronger gradients were well characterized as those
over 0.2°C/km. The strong front south of Penobscot Bay in Figure 3.13 is an example of
such a front.

These SST gradients along the swath were contoured as a function of time and
east/west location from the eight-day iimages from March 30 to August 4 (yearday 89-
216) in each year to show the location and duration of fronts (Figure 3.14 a-j). The
gradient operator is two-dimensional and therefore does not distinguish between
alongshore and cross shelf fronts. Note that the 1998 and 1999 contours were created
using the AVHRR SST data collected at the University of Maine ground station (cloud
masking not as good) so the contours look slightly different from those created using the
Pathfinder SST data.

The timelines of toxicity data were plotted beside each maximum thermal
gradient contour for all ten years to illustrate similarities and differences between the
timing and duration of frontal formation and that of the toxicity events for each year (see
Figure 3.14a-j). Black bars between the plots indicate times of the year when the
maximum gradient anywhere within the swath exceeds 0.2°C/km, indicating restricted
connection (and perhaps flow of toxic cells) between the EMCC and the western GOM.
The bars assist visualization of connections between frontal presence and toxicity events.

The toxicity time series reveal that 1999 and 1996 are years of little to no toxicity
at most of the stations in western GOM and 1990 and 1993 are years of highest toxicity.
The other years have moderate toxicity, with 1994, 1991 and 1998 having higher toxicity

than 1992 and 1997. Comparison of these time series to the coincident maximum SST
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Figure 3.14. Contours of maximum two-dimensional SST gradient (°C/km) along a
swath from western to eastern GOM for the summer sampling season (April 30 - August
4) for ten years of available data; (a) 1990, (b) 1991, (c) 1992, (d) 1993, (e) 1994, (f)
1995, (g) 1996, (h) 1997, (i) 1998, and (j) 1999. Coincident toxicity timelines (ug
toxin/100g tissue) for five sampling stations are shown on the right. The black bars
between the plots indicate those images that had a maximum gradient of over 0.2 °C/km
somewhere along the swath, suggesting the presence of a front.
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gradient contours indicates that the timing of frontal development plays a role in the year
to year variability of the magnitude and timing of toxicity events.

The most important feature is the strong thermal gradient that develops between
eastern and western GOM (50-100 km along the swath). Presence of this front indicates
low connectivity of the EMCC to the"_westem GOM, possibly restricting the transport of
cells to the western GOM. Note that this front will not have any effect on the East Pond
Cove station which is located upstream of the front, in eastern Maine.

Both 1990 and 1993, years of large toxicity events, show consistent patterns in
frontal development and timing (Figure 3.14.a,d) that are different from other years.
Strong (>0.2°C/km) SST gradients are present in relatively few (<6) eight day images
along the path between eastern and western GOM. More importantly, when strong
gradients are present in these years they develop late in the season (mid June) and/or far
to the east, thus allowing a long period of connectivity of the EMCC to western GOM.
Figure 3.15.a illustrates this idea that with the door open (little restriction of flow due to
lack of frontal development) there would be an increased probability of high toxicity. In
1991, toxicity levels were relatively high and, as expected, the cross shelf front between
eastern and western GOM developed later in the season (early July), allowing ample time
for Alexandrium cells to be transported to western GOM in the EMCC. The strong
gradients seen earlier in the time series in 1991 likely have little influence on the
connectivity between the EMCC and western GOM because they occur in the eastern
GOM (>100 km along the swath). The fronts represented in the 1991 contours are

similar to those seen in Figure 3.4 b and c occurring on the outer edge of the EMCC.
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Figure 3.15. Illustration of the three toxicity scenarios; (a) high toxicity due to increased
connectivity of the EMCC to western GOM (door open), (b) low toxicity due to low
connectivity (door closed); and (¢) intermediate toxicity due to moderate connectivity

(door slightly open).

The connectivity implied by the gradient contours between the EMCC and the
western GOM in years of high toxicity is markedly different from that of years that
experienced little to no toxicity in the western GOM (1992, 1996 and 1999). Contours in
these years (Figure 3.14c¢,g,j) indicate strong thermal gradients present throughout most
of the sampling season, starting relatively early in the season (by beginning of June)
(illustrated in Figure 3.15.b). The connection between the EMCC and western GOM is
not present long, if at all, and may limit the amount of Alexandrium cells transported to

western GOM. As strong SST gradients persist throughout the summer, the early season
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represents the only delivery of cells to the western GOM, possibly leading to small
toxicity events in these three years.

Years with moderate toxicity (1994, 1995, 1997, 1998) represent the intermediate
situation (Figure 3.15.¢c). They develop a strong front between 50 and 100 km later in
June than years with little toxicity. Thls later development of the front allows for an
early period of enhanced connectivity. Assuming environmental conditions are favorable
to dinoflagellate growth, a toxic event could occur. Nutrient concentrations decrease
with time due to uptake by phytoplankton, however, SST and light increase with time. At
some point optimal growth conditions will occur when there is ample supply of all three
parameters. The timing of the development and/or breakdown of the front in rélation to
the when optimal growth conditions are present could explain the variability of the
magnitude of toxicity events in these years. If the front breaks down, allowing
connectivity to re-establish, when optimal growth conditions are present in western GOM
a large toxicity event could occur. If the connectivity is re-established before or after
favorable growth conditions are present, cells will not grow as well and a smaller toxicity
event is expected.

The issue of global climate change is important in this situation as well. With the
changing climate the frequency and intensity of storms is thought to increase (M. Wells,
personal communication, November 2001). Increased wind events and runoff in the
GOM could affect the occurrence of toxicity blooms, due to their effects on frontal
structure.

These comparisons of frontal development and toxicity explain much of the

interannual variation in the magnitude of the toxicity events in the western GOM. The

92



results indicate that years when the front between eastern and western GOM forms later
in the sampling season there is high toxicity. These results are consistent with the
situation, allowing a large population of Alexandrium cells to be transported into the
western GOM. The sustained transport of toxic cells throughout the season allows for
development of a bloom when growth conditions are optimal. Contours of nitrate
concentrations superimposed on May 2000 AVHRR SST cruise composite indicate that
the western GOM is still vertically mixed and nitrate concentrations are high. As the
western GOM begins to stratify, surface Alexandrium populations will have favorable
conditions for growth — high nutrients and warm surface temperatures.

It is important to consider the fact that the timing of the development of the front
between eastern and western GOM affects only the TRANSPORT of Alexandrium cells
to the western GOM. Large toxicity events in the western GOM still require optimal
environmental conditions in order for Alexandrium cells to bloom. Biological conditions
required for optimal growth are not necessarily linked to the connection described here.

Toxicity events at the East Pond Cove (eastern Maine) occurred consistently later
in the season than the western GOM toxicity events. This could be due to the fact that
early in the season when western Maine is experiencing toxicity events, the waters in
eastern Maine are still too cold for cells to grow fast enough to elevate toxicity. Toxicity
levels were also consistently lower than those in western GOM with little variation in
magnitude, consistent with the idea that simple seasonal forcing, such as surface
temperature, might be a controlling factor. No relationship was found between the
magnitude of events in western GOM and those in eastern GOM. The sampling station at

Pemaquid Point showed consistently lower toxicity levels than those in western GOM,

93



with the exception of 1992 and 1996 when all stations had little to no toxicity. The fact
that this station is located very close to what Shumway et al. (1980) call the “PSP
Sandwich,” could explain why there are very few toxicity events there.

The resuits of this toxicity analysis present a relatively consistent story linking
large-scale hydrographic features of {he GOM to interannual variability of toxicity events
in the western GOM at stations that are most likely influenced by the large-scale
circulation of the GOM. If we assume that Alexandrium is present in low numbers quite
ubiquitously, then DMR sampling stations deep within bays and estuaries are probably
not going to have toxicity records affected by the transport of cells from the EMCC.
These sampling stations will have toxicity records more strongly influenced by the local

processes within bays and harbors.
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Chapter 4

CONCLUSIONS

Consistent qualitative relatioillships between patterns of sea surface temperature
and spatial distributions of Alexandrium in the GOM were observed using contours of
Alexandrium concentration superimposed on time averages (composites) of satellite SST
data representing the cruise periods. Elevated Alexandrium concentrations were present
primarily in offshore regions associated with cold EMCC water. Low cell densities were
present in regions of warm SST. This qualitative relationship was present during each of
the cruises in 1998 (June, July and August) and in June 2000. It was not present in May
2000, most likely due to the fact that stratification in unmixed waters had not yet
developed so the EMCC was not visible in the AVHRR SST cruise composite.
Composites of SeaWiFS chlorophyll with Alexandrium contours overlaid do not show a
consistent relationship. Alexandrium makes up a small proportion of the phytoplankton
community in the GOM. Other phytoplankton with differing distributions make up the
pigment signal measured by SeaWiFS. The Alexandrium concentration is so small
comparably that it is undetectable. Contours did show that high chlorophyll regions are
located shoreward of Alexandrium. Townsend et al. (2001) suggest this pattern indicates
that chlorophyll has a high nanophytoplankton contribution.

Statistically significant quantitative relationships between either Alexandrium or
other ship-measured parameters important to the distributional ecology of Alexandrium,

and the satellite data would allow the distribution of the in situ parameters to be modeled
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from the satellite data. Attempts to quantify the above relationships using linear
regressions did produce some significant results. A relationship between AVHRR SST
and Alexandrium concentrations in the GOM was found to be consistent throughout the
cruise periods in 1998. Using the regression results of this analysis, models of the
distribution of Alexandrium for July hnd August 1998 were created allowing
extrapolation and interpolation between measurement sites. The regression analyses
show that there is a temperature range in which Alexandrium seem to congregate.
Regressions based on subsets of the overall data set were examined for simple
relationships between satellite and in situ data parameters to test the hypothesis that
isolated regions of the GOM may be oceanographically similar and thus result in better
correlations. Some correlations of subsets improved but the relationships were not
consistent.

Tester et al. (1991) suggest that dinoflagellate blooms are generally a result of cell
transportation into an area of environmental conditions favorable for bloom development.
It is hard to separate alongshore advection of cells from local growth responding to
locally favorable conditions. Franks and Anderson (1992) suggest that Alexandrium in
western GOM is a result of vegetative cells being advected down the coast by a buoyant
wind-driven plume of freshwater. In this study it is shown that Alexandrium cell
densities are highest in the Bay of Fundy and the EMCC and patterns are consistent with
advection down the coast of eastern Maine in the EMCC, possibly delivering cells to
western GOM.

Transformation of SST patterns into two dimensional gradient images reveals the

presence and location of large thermal gradients, or fronts. These occur preferentially
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along the inshore and offshore edges of the EMCC and separate stratified western GOM
surface waters from the eastern GOM. Contours of surface Alexandrium concentrations
overlaid on the frontal patterns show elevated cell densities to be constrained by the
fronts, supporting the strong hydrographic linkage evident in the SST patterns.

Further evidence of strong h)'idrographic control of Alexandrium populations in
the GOM was obtained during a shellfish harvesting closure issued by the Maine DMR in
May 2000. The timing and location of this closure in the western GOM was compared to
AVHRR SST patterns just before the time of the closure. Results suggested one
mechanism whereby offshore dynamics could explain the closure. In 2000, EMCC was
observed in the AVHRR SST data to flow past Penobscot Bay and into coastal regions of
the western GOM. In addition, AVHRR SST patterns showed a plume of cold water,
continuous with the EMCC, connecting to the coast of western Maine on the day of the
closure. These two features could have provided a mechanism for Alexandrium cells to
move from the EMCC into the western GOM and then onshore. Drifter tracks and wind
data support this hypothesized mechanism.

The qualitative relationships between Alexandrium and SST patterns and
dynamics associated with the May 2000 closure suggest that toxicity events in coastal
regions of the western GOM require a mechanism for delivery of offshore eastern GOM
Alexandrium populations. Enhanced connections between the EMCC and the western
GOM would provide such a mechanism. Analysis of ten years of coastal toxicity data
and coincident SST patterns suggest that the occurrence of strong surface thermal
gradients, or frontal zones, in the EMCC/WMCC region influence the occurrence of

toxicity events in the western GOM. Years with little toxicity are years when relatively
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strong gradients (> 0.2 °C/km) are present during most of the growing season. Years
with delayed increases in toxicity have a front early in the season, and cell advection into
the western GOM is restricted until later in the season. Years of higher toxicity have

reduced fronts until later in the season, allowing delivery of cells into western GOM.
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Figure 4.1. July 2001 AVHRR SST cruise composite (July 6-16) with surface
Alexandrium concentration contours overlaid
The results of this study point to a story linking surface hydrologic processes,
advection and water mass distribution with spatial patterns of Alexandrium concentration
and the occurrence of toxic events in the coastal regions of the GOM. Despite their
inability to directly measure Alexandrium concentrations, satellite data are clearly able to

measure and monitor many surface oceanographic parameters indicative of these
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hydrologic processes. In some specific cases, the satellite data can even be used to model
in situ parameters potentially useful in predicting and monitoring HABs in the GOM.

Future work will test the temporal integrity of the relationships presented in this
study. As an initial extrapolation, surface Alexandrium concentrations for July 2001 are
superimposed on the cruise composiie AVHRR SST image (Figure 4.1.). These data are
clearly consistent with my observations that, during summer, higher Alexandrium
concentrations are associated with colder waters of the EMCC and furthermore, advective
transport of cells into offshore regions of the GOM is affected by the cyclonic turn of the
EMCC in the vicinity of Penobscot Bay.

A better spatial clarification of ecological regimes based on other oceanographic
parameters available from the satellite data may prove useful in future work. For
example, SeaWiFS data provides estimates of the depth of the 10% light level and the
diffuse attenuation coefficient, both of which are indicative of the vertical light regime
which Townsend et al. (2001) deem important in the distribution of Alexandrium. Lastly,
this study shed some light on interannual differences in the timing and magnitude of
toxicity events in the western GOM. Future research might investigate the timing and
magnitude of toxicity events in the very different hydrographic regime of the eastern

GOM and their relationship with patterns evident in satellite data.
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Appendix A

LATITUDE AND LONGITUDE LOCATIONS FOR EACH CRUISE STATION
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June 1998 July 1998 August 1998

Station # Latitude Longitude Statlon# Latitude Longatude Station # Latitude Longltude

43.1032 -70.6107 1 43.0985 -70.6138 T 1 43102 -706112
43.0662 -70.5825 2 43.0635 -70.5815 43.0635 -70.582

1
2
429938 -70.5253 3 42.9945 -70.5252 3 42.9967 -70.5232
42.9238 -70.4658 4 42.9247 -70.4658 4 42.9258 -70.4672
42854 -70.4095 5 42.8533 -70.4088 5 42854 -70.4093
42.7807 -70.351 6 42,7792 -70.3502 6 42.7805 -70.3512
42.7055 -70.297 7 42.706 -70.2975 7 42.7072 -70.2987
42,6337 -70.2365 8! 42.634 -70.2373 8 42.6327 -70.2977
42.6663 -69.9703 9 42,6652 -69.9698 9 42,665 -69.9698
42.7403 -70.0168 10 42.741 -70.0188 -10 42.7405 -70.0233
428163 -70.0843 11 42.8155 -70.084 11 42.8182 -70.0903
42.8913 -70.1335 12 42,8918 -70.1333 12 42.8937 -70.1332
429577 -70.1917 13 42.9592 -70.1898 13 42961 -70.191
43.0243 -70.2495 14 43.0263 -70.2483 14 43.0262 -70.2493
43.1003 -70.3092 15 43.1007 -70.307 15 43.0983 -70.3075
43.1715 -70.3627 16 43.1715 -70.362 16 43.1705 -70.3612

43.2445 -70.4182 17 43.2442 -70.4175 17 43.2447 -70.4167
432798 -70.4483 18 43.2797 -70.4478 18 43.2787 -70.4485
43.4695 -70.3048 19 43.4692 -70.3052 19 43.4682 -70.3055
43.3992 -70.2465 20 43.3973 -70.2468 20 43.399 -70.2453
43.3267 -70.1877 21 43.326 -70.1887 21 43.326 -70.1875
43.2535 -70.1333 22 43.2532 -70.1325 22 43.2522 -70.1322
43.1815 -70.0757 23 4318 -70.079 23 43.1803 -70.078

43.1082 -70.023 24 43.1088 -70.0218 24 43.1095 -70.021

43.0405 -69.9607 25 43.0392 -69.9623 25 43.04 -69.9622
42,9697 -69.9065 26 4297 -69.9093 26 429702 -69.9092
429018 -69.8512 27 42.9005 -69.8535 27 42,9013 -69.8533
42.8297 -69.7953 28 42.829 -69.7982 28 42.8292 -69.7982
42.7592 -69.7398 29 42.7595 -69.7403 29 42.7602 -69.7395
428623 -69.5095 30 42.8625 -69.5083 30 42.8612 -69.5107
42.9355 -69.5708 31 42 9367 -69.5698 31 429357 -69.5708
43.0077 -69.6262 32 43.0083 -69.626 32 43.008 -69.6263
43.0783 -69.684 33 43.0775 -69.6818 33 43.0777 -69.6837
43.1485 -69.743 34 43.1485 -69.7413 34 43.1487 -69.7423

WWWWANRNNRNMNMNNNNRN2 2 2 aaaaaaa
RERBUEBENBY RSN RS s Icoromic0®NOO A WN

35 43.2217 -69.8017 35 43.2203 -69.7987 35 43.2208 -69.8018
36 43.297 -69.8595 36 43.295 -69.8572 36 43.295 -69.8605
37 43.3698 -69.9157 37 43.368 -69.9135 37 43.3695 -69.9152
38 43.4415 -69.9717 38 43.4428 -69.9732 38 43.4412 -69.973

39 435145 -70.033 39 43.5132 -70.0317 39 43.5138 -70.0335
40 43.5842 -70.087 40 43.5847 -70.084 40 43.5838 -70.0838
41 43.6543 -70.142 41 43.6532 -70.141 41 43.6542 -70.1413
42 43.7258 -69.907 42 43.7252 -69.9098 42 43.7248 -69.9078
43 43.6595 -69.8342 43 43.6603 -69.835 43 43.6603 -69.8355
44 43.583 -69.7788 44 43.5832 -69.7782 44 43.5832 -69.7773
45 43.5112 -69.7235 45 43.5117 -69.7237 45 43.5112 -69.7223
46 43.444 -69.666 46 43.4427 -69.6665 46 43.4432 -69.6657
47 43.3702 -69.6103 47 43.3692 -69.6098 47 43.3702 -69.6088
48 43.3003 -69.557 48 43.2988 -69.5563 48 43.299 -69.556

49 43.2292 -69.4998 49 43.2305 -69.4987 49 43.2338 -69.4978
50 43.1572 -69.4428 50 43.1587 -69.4432 50 43.159 -69.4425
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June 1998 July 1998 August 1998

51 43.0848 -69.3897 51 43.0865 -69.3903 51 43.0872 -69.387
52 43.015 -69.3305 52 43.0142 -69.3317 52 43.0147 -69.3303
53 42942 -69.275 53 42.9408 -69.273 53 429407 -69.2733
54 43.0593 -69.0477 54 43.06 -69.048 54 43.0583 -69.0472
55 43.131 -69.103 55 43.1338 -69.1032 55 43.1315 -69.1023
56 43.2043 -69.1615 56 43.2027 -69.1613 56 43.2023 -69.1592
57 43274 -69.2182 57 43.275 -69.2155 57 43.275 -69.212
58 43.3478 -69.2745 58 43.3475 -69.274 58 43.3462 -69.2773
59 43.419 -69.3332 59, 43.4195 -69.3312 59 43.4188 -69.3335
60 434893 -69.3848 60 43.4925 -69.386 60 43.4905 -69.3888
61 43.5615 -69.4455 61 43.5613 -69.4457 61 43.5627 -69.4478
62 43.6328 -69.5057 62 43.6347 -69.5035 62 43.6333 -69.5053
63 43.7062 -69.5613 63 43.7068 -69.5597 63 43.7048 -69.5627
64 43.766 -69.6388 64 43.778 -69.6353 64 43.7697 -69.6318
65 43.8887 -69.4027 65 43.8878 -69.403 65 43.888 -69.402
66 43.8398 -69.3677 66 43.8393 -69.3683 66 43.8342 -69.3627
67 43.7895 -69.3155 67 43.7892 -69.3153 67 43.7917 -69.3158
68 43.708 -69.2515 68 43.7052 -69.2543 68 43.7058 -69.2517
69 43.6355 -69.1928 69 43.6357 -69.1965 69 43.6352 -69.191
70 43.5637 -69.1363 70 43.5635 -69.1363 70 43.5647 -69.1347
71 43.494 -69.0762 7 43.4945 -69.0777 71 43.4952 -69.0753
72 434187 -69.0198 72 434172 -69.02 72 43.4172 -69.018
73 43.3488 -68.964 73 43.349 -68.9617 73 43.3472 -68.9603
74 43.2755 -68.9087 74 43.2753 -68.9083 74 43.2762 -68.907
75 43.2037 -68.8492 75 43.2033 -68.8493 75 43.2018 -68.8475
76 43.132 -68.793 76 43.1313 -68.7938 76 43.1298 -68.7913
77 43.2597 -68.5823 77 43.2603 -68.582 77 43.2615 -68.5845
78 43.3317 -68.6408 78 43.3305 -68.6407 78 43328 -68.64
79 43.4038 -68.6967 79 43.4027 -68.695 79 43.4027 -68.6982
80 43.4767 -68.7558 80 43.4763 -68.7538 80 43.4743 -68.7563
81 43.5465 -68.8137 81 43.5472 -68.8125 81 43.5462 -68.8132
82 43.6207 -68.87 82 43.62 -68.8688 82 436168 -68.8708
83 43.6923 -68.9267 83 43.6925 -68.9263 83 43.6915 -68.9263
84 43.7658 -68.986 84 43.7648 -68.9862 84 43.7657 -68.9873
85 43.8383 -69.0442 85 43.838 -69.0442 85 43.8393 -69.0438
86 43.9093 -69.0993 86 43.9108 -69.1003 86 439112 -69.0987
87 43.9662 -69.1438 87 43.9655 -69.1428 87 43.9653 -69.1492
88 44,1088 -68.9825 91 43.8917 -68.8098 88 441085 -68.9807
89 44,0288 -68.9472 92 43.8188 -68.7528 89 44.0223 -68.9098
90 43.962 -68.8647 93 43.7467 -68.6943 90 43.9518 -68.8688
91 43.8915 -68.8103 94 436732 -68.633 91 43.8927 -68.8065
92 43818 -68.7523 95 43.5995 -68.578 92 43.8198 -68.7498
93 43.747 -68.6928 96 43.5285 -68.5202 93 43.7477 -68.6933
94 43.6747 -68.6372 97 43.454 -68.464 94 43.6758 -68.6372
95 43.6005 -68.579 98 43.3847 -68.4065 95 43.6015 -68.578
96 43.5298 -68.522 99 43314 -68.3483 96 43.531 -68.5232
97 43.4573 -68.4643 100 43.41 -68.137 97 43.455 -68.4645
98 43.3853 -68.4087 101 43.483 -68.1963 98 43.3865 -68.4048
99 43.3148 -68.349 102 43.555 -68.2537 99 43.3145 -68.3495
100 43.4115 -68.1383 103 43.6263 -68.3102 100  43.4107 -68.138
101 43.4833 -68.1968 104 43.6995 -68.3678 101 434832 -68.1962
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June 1998 July 1998 August 1998
102 43.5553 -68.2527 105  43.7707 -68.427 102 43.5545 -68.254
103  43.6262 -68.3103 106  43.8415 -68.485 103  43.6268 -68.3077
104  43.6997 -68.3683 107 43.914 -68.5417 104  43.7012 -68.3648
105 43.774 -68.4303 108  43.9863 -68.6017 105  43.7685 -68.4273
106  43.8418 -68.484 109  44.0332 -68.7015 106  43.8422 -68.4855
107 43.9127 -68.5422 110 44106 -68.7422 107  43.9128 -68.542
108  43.9873 -68.6007 111 441712 -68.7672 108  43.9873 -68.6025
109  44.0347 -68.7053 112 44137 -68.5497 109  44.0363 -68.7008
110 441053 -68.742 1131 442073 -68.3993 110 44.103 -68.7402
111 441715 -68.7665 114 440732 -68.396 111 441693 -68.7653
112 441392 -68.55 115 44.002 -68.3343 112 44139 -68.5342
113 44.2082 -68.3995 116 43.9278 -68.278 113 44.2068 -68.3968
114  44.0737 -68.3985 117 43.8558 -68.2178 114 44.074 -68.3938
115  44.0013 -68.3327 118  43.7845 -68.1612 115 44.0035 -68.3355
116 43.927 -68.2758 119 43.7143 -68.1028 116 43.9287 -68.2782
117 43.8565 -68.2173 120  43.6427 -68.0457 117 43.8572 -68.2192
118  43.7858 -68.0766 121 43.5707 -67.9867 118  43.7855 -68.16
119 43.713 -68.1008 122 43.499 -67.9302 119 43.7138 -68.1032
120  43.6422 -68.0447 123 4361 -67.7275 120  43.6412 -68.045
121 43.5705 -67.9862 124  43.6842 -67.7827 121 43.5683 -67.9882
122 434982 -67.93 125  43.7532 -67.8412 122 43.4953 -67.9305
123 43.6105 -67.7252 126  43.8263 -67.8987 123 43611 -67.7277
124  43.6818 -67.784 127 43.8993 -67.9565 124  43.6828 -67.7858
1256  43.7552 -67.842 128  43.9703 -68.015 125 43.757 -67.8413
126 43.827 -67.9002 129  44.0405 -68.0752 126 43.828 -67.8997
127 43.8993 -67.9573 130 441113 -68.133 127 43.901 -67.9603
128 43.97 -68.0148 131 44185 -68.1832 128  43.9692 -68.0138
129  44.0408 -68.074 132 442262 -68.2187 129  44.0432 -68.0728
130  44.1125 -68.1326 133  44.3453 -68.1338 130  44.1125 -68.1312
131 44187 -68.1852 134 44331 -68.0103 131 44.1857 -68.1867
132 44.2268 -68.2225 135 44262 -67.9523 132 44227 -68.2218
133 44.3485 -68.1323 136  44.1893 -67.8955 133 44.3468 -68.1327
134 443332 -68.01 137  44.1187 -67.8357 134 443327 -68.0105
136  44.2608 -67.9523 138 44.0442 -67.7765 135  44.2607 -67.9522
136  44.1893 -67.8948 139 439708 -67.7213 136  44.1887 -67.8947
137 441155 -67.8362 140  43.8992 -67.6642 137 441172 -67.834
138 44.0445 -67.7798 141 43.8288 -67.605 138  44.0445 -67.7758
139  43.9723 -67.7213 142 43.7568 -67.5463 139  43.9747 -67.7183
140  43.8995 -67.6622 143 43.6838 -67.4895 140  43.9003 -67.661
141 43.828 -67.6032 144 43.7903 -67.2947 141 43.8288 -67.6043
142 43.7562 -67.546 145  43.8625 -67.3512 142  43.7565 -67.5478
143 43.6839 -67.4887 146 43934 -67.412 143  43.6837 -67.4892
144 43.7925 -67.2922 147 44.006 -67.4678 144  43.7903 -67.2952
145  43.8645 -67.3523 148  44.0798 -67.527 145  43.8635 -67.3535
146 43935 -67.4107 149  44.1513 -67.5908 146  43.9313 -67.4142
147  44.0063 -67.4682 150 442217 -67.6425 147  44.0052 -67.4693
148  44.0813 -67.5255 161 442945 -67.7 148  44.0798 -67.5277
149  44.1537 -67.5853 162  44.3683 -67.7578 149 44,152 -67.5858
150 44223 -67.6422 163 444065 -67.7923 150  44.2227 -67.6415
151 44.2945 -67.6995 154  44.4508 -67.5158 151 44.2912 -67.669
152 44.3695 -67.7605 155  44.3787 -67.4638 152 443572 -67.7207
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June 1998 July 1998 August 1998

153 44408 -67.7928 156 443077 -67.4067 153 44,407 -67.7942
154 444535 -67.5197 157 44.2348 -67.3467 154 44.4508 -67.5215
155 443785 -67.4635 158 441593 -67.2885 155 443752 -67.465
156 44,3075 -67.4043 159 44089 -67.23 156 443058 -67.4045
157 442318 -67.3432 160 44,0152 -67.1698 157 44 2307 -67.3435
158 44.1588 -67.287 161 439442 -67.1155 158  44.1597 -67.2868
159 44.0887 -67.2305 162 43.8717 -67.0578 159 44,092 -67.2287
160  44.0167 -67.1722 163 43.9612 -66.8432 160 44.0173 -67.1713
161 43.9442 -67.1165 164  44.0325 -66.8997 161 43.9447 -67.1147
162 43.8732 -67.0572 165 44.104 -66.9565 162 43.8738 -67.0585
163 43.9622 -66.841 166 44,1752 -67.0102 163 43.9625 -66.843
164 44,0338 -66.8983 167 44.2475 -67.075 164 44.032 -66.8962
165  44.1057 -66.9558 168 443165 -67.1308 165 44,1037 -66.9575
166 441753 -67.012 169 44,3933 -67.1837 166 441732 -67.015
167  44.2483 -67.073 170 44 4668 -67.2447 167 442477 -67.0763
168  44.3187 -67.1323 171 44,5385 -67.3003 168  44.3157 -67.1333
169 443923 -67.184 172 445765 -67.3263 169 44391 -67.1888
170  44.4638 -67.2432 173 446532 -67.0778 170 44 4655 -67.245
171 44,5357 -67.304 174 44,6002 -67.0218 171 44.5418 -67.3022
173 44653 -67.0778 175 445348 -66.946 172 44.6065 -67.3418
174 446018 -67.0208 176 44437 -66.8422 173 44.6578 -67.0752
176  44.5345 -66.9467 177 443662 -66.753 174 446018 -67.0197
176 44,437 -66.8422 178 44,3062 -66.6847 175 44.5343 -66.9455
177  44.3665 -66.7565 179 442625 -66.627 176 44.4338 -66.8432
178 44.3065 -66.6833 180 44,2097 -66.5553 177 44.366 -66.7515
179 442608 -66.6235 181 44128 -66.4638 178 443072 -66.6842
180  44.2105 -66.5507 182 444485 -66.233 179 442575 -66.6248
181 44105 -66.4473 183 44.5132 -66.3077 180 442043 -66.5537
182 44 4487 -66.2338 184 44576 -66.3792 182 444515 -66.2295
183 445142 -66.3058 185 44 6433 -66.4595 183 44 5157 -66.3045
184 44.5767 -66.3807 186 447015 -66.5285 184 44.5795 -66.3772
185 44641 -66.4587 187 44768 -66.6087 185 44.6467 -66.4565
186 447058 -66.5335 188 448317 -66.6837 186 44.7088 -66.5312
187 447715 -66.606 189 44.8985 -66.7538 187 44.7685 -66.6102
188 44 8328 -66.6847 190 44,959 -66.8335 188  44.8318 -66.6842
189  44.8995 -66.7558 191 45.0267 -66.8845 189 44,8983 -66.7582
190 44.964 -66.8313 192 45.068 -66.9813 190 449585 -66.8328
193  45.0308 -66.413 193 45.0323 -66.4115 191 45.0212 -66.8855
194 440682 -66.34 194 44 9678 -66.3385 193 45.0325 -66.416
185  44.9037 -66.2638 195 44904 -66.2625 194 44,9662 -66.3368
196 44.841 -66.1887 196 448387 -66.1893 195  44.9053 -66.2607
197 447757 -66.1123 197 44774 -66.111 196 44841 -66.1842
198 447113 -66.0358 198 44,7113 -66.0378 197 447745 -66.1105
199 446495 -65.9625 199 44645 -65.9687 198 44712 -66.0325
200 442569 -66.3539 200 44115 -66.4285 199  44.6485 -65.9633
201 43.8643 -66.7453 201 43.8642 -66.743 200 440468 -66.3672
202 43.7762 -66.9773 202 43.776 -66.9748 201 43.8643 -66.7448
203 43.676 -67.1998 203 43.6745 -67.2018 202 43.7602 -66.9755
204 43.5845 -67.4175 204 43.5835 -67.4165 203  43.6757 -67.2
205  43.4928 -67.6338 205 43491 -67.6318 204 43.5845 -67.4142
206 43.398 -67.8473 206 43.398 -67.8465 205 43.4923 -67.6318
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June 1998 July 1998 August 1998

207  43.3172 -68.0485 207  43.3163 -68.0467 206  43.3962 -67.8443
208  43.2212 -68.2675 208 43222 -68.2668 207  43.3163 -68.0485
209  43.1328 -68.4957 209 43.131 -68.4947 208  43.2218 -68.2698
210  43.0332 -68.7077 210  43.0327 -68.7065 209  43.1305 -68.4942
211 42933 -68.9492 211 429325 -68.9452 210  43.0325 -68.7075
212 428412 -69.1765 212 428403 -69.1755 211 42,9298 -68.948
213 42.7372 -69.4122 213 42,7367 -69.4118 212 428402 -69.1763
214 426373 -69.6469 214 42,6368 -69.6483 213 42,7355 -69.4118
215 425411 -69.8724 216 42.5417 -69.8725 214  42.6368 -69.6488

‘ 215 425415 -69.8723
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May 2000 . June 2000

Station # Latitude Longitude _Station # Latitude Longitude

1 43.10 -70.61 1 43.651 -70.142

2 43.05 -70.56 2 43.584 -70.085

3 43.00 -70.52 3 43.514  -70.033

4 42.92 -70.47 4 43.451  -69.981

5 4285 -70.41 5 43.369  -69.917

6 42.78 -70.35 6 43.296  -69.859

7 42.71 -70.30 7 43.221 -69.796

8 42.64 -70.23 8 43.149  -69.735
19 43.47 -70.30 9 43.079 -69.683
20 43.40 -70.25 10 43.004 -69.634
21 4333 -70.19 11 42935 -69.579
22 43.25 -70.13 12 42849  -69.511
23 43.18 -70.08 13 42752  -69.443
24 43.11 -70.02 14 42928 -68.961
25 43.04 -69.96 15 43.039  -69.037
26 42.97 -69.91 16 43122  -69.104
27 42.90 -69.85 17 43.188  -69.160
28 42.83 -69.80 18 43.267 -69.214
29 42.76 -69.74 19 43.341 -69.276
42 43.72 -69.91 20 43412  -69.300
43 43.66 -69.83 21 43492  -69.391
44 43.58 -69.78 22 43.562 -69.446
45 43.51 -69.72 23 43.633 -69.505
46 43.44 -69.67 24 43.706  -69.561
47 43.37 -69.61 25 43.766  -69.555
48 43.30 -69.56 26 43.888 -69.402
65 43.89 -69.40 27 43.840 -69.368
66 43.84 -69.37 28 43.790 -69.315
67 43.79 -69.32 29 43.725  -69.266
68 43.71 -69.25 30 43648 -69.206
69 43.64 -69.20 31 43.575 -69.145
70 43.56 -69.14 32 43.506 -69.089
71 4349 -69.07 33 43954 -69.135
72 43.42 -69.02 34 43.885 -69.083
73 43.35 -68.96 35 43.818  -69.032
74 43.27 -68.91 36 43.748 -68.973
75 43.20 -68.85 37 43.672 -68.912
76 43.13 -68.80 38 43.601 -68.852
90 43.96 -68.89 39 43.530 -68.795
91 43.89 -68.81 40 43.456  -68.736
92 43.82 -68.75 41 43.383  -68.687
93 43.75 -68.69 42 43309 -68.624
94 43.67 -68.64 43 43.234  -68.565
95 43.60 -68.58 44 43.130 -68.478
96 43.53 -68.52 45 43.221  -68.267
97 43.46 -68.46 46-1 43.326  -68.350
98 43.39 -68.41 46-2 43321 -68.339
99 43.32 -68.35 46-3 43316  -68.329
114 4407 -68.39 46-4 43302  -68.322

115 44.00 -68.34 46-5 43293 -68.318
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May 2000 June 2000
Station# Latitude Longitude _Station # Latitude Longitude

116 43.93 -68.28 46-6 43.283 -68.316
117 43.85 -68.22 46-7 43.278  -68.311
118 43.78 -68.16 46-8 43.275 -68.313
119 43.71 -68.10 46-9 43.280 -68.310
120 43.64 -68.04 46-10 43.288 -68.316
121 43.57 -67.99 46-11 43.298 -68.320
122 43.50 -67.93 46-12 43.310 -68.316
123 43.61 -67.72 46-13 43.322 -68.314
124 43.68 -67.78 46-14 43.322  -68.312

125 43.75 -67.84 46-15 43.331 -68.301
126 4383 -67.90 46-16 43.331  -68.289

127 43.90 -67.96 46-17 43327 -68.274
128 43.97 -68.01 46-18 43.327  -68.265
129 44.04 -68.07 46-19 43324  -68.257
130 44 11 -68.14 46-20 43321  -68.245
131 4419 -68.18 46-21 43.325 -68.240
132 44 .22 -68.22 46-22 43333 -68.233
133 44.34 -68.13 46-23 43.357 -68.230
134 44.33 -68.01 46-24 43.350 -68.223
135 44.26 -67.95 46-25 43357 -68.217
136 44.19 -67.90 47 43.394 -68.412
137 44.12 -67.84 48 43470  -68.463
138 44.04 -67.78 49 43.530 -68.521
139 43.97 -67.72 50 43.600 -68.578
140 43.90 -67.66 51 43.657 -68.629
141 43.83 -67.60 52 43.746  -68.694
142 43.76 -67.55 53 43.818 -68.752
143 43.68 -67.49 54 43.893 -68.809
144 43.79 -67.29 55 43.967 -68.867
145 43.86 -67.35 56 44.029 -68.947
146 43.93 -67.41 57 44109 -68.983
147 44.01 -67.47 58 44106  -68.742
148 44.08 -67.53 59 44140  -68.553
149 44.15 -67.59 60 44073  -68.396
150 4422 -67.64 61 44.002 -68.340
151 4429 -67.70 62 43930 -68.276
152 4437 -67.76 63 43.857 -68.217
153 44.41 -67.79 64 43.786  -68.160
154 44 .45 -67.52 65 43.714  -68.105
155 4438 -67.46 66 43643 -68.045
156 44.31 -67.41 67 43.572  -67.986
157 4423 -67.35 68 43499  -67.932
158 44.16 -67.29 69 43.398 -67.849
159 4409 -67.23 70 43.583 -67.417
160 44.02 -67.17 7 43682  -67.491
161 43.94 -67.12 72 43.755  -67.551
162 43.87 -67.06 73 43826 -67.606
163 43.96 -66.84 74 43900 -67.661
164 44.03 -66.90 75 43976 -67.725

165 4411 -66.96 76 44045 -67.778
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May 2000 June 2000

Station # Latitude Longitude _Station # Latitude Longitude

166 44 .18 -67.01 77 44117  -67.835
167 44 25 -67.07 78 44189  -67.895
168 44 .32 -67.13 79 44.261 -67.952
169 44.39 -67.18 80 44317  -68.006
170 44 46 -67.24 81 44453  -67.521
171 44 .54 -67.31 82 44379  -67.467
172 44 61 -67.34 83 44308 -67.406
173 44 .65 -67.08 84 44232  -67.345
174 4460 -67.02 85 441569  -67.289
175 44.53 -66.95 86 44,089 -67.232
176 44 44 -66.84 87 44.016  -67.173
177 44.37 -66.76 88 43.945  -67.115
178 44 31 -66.68 89 43.873 -67.059
179 44 26 -66.63 90 43.776  -66.977
180 44.21 -66.55 91 44132  -66.466
181 44.11 -66.45 92 44.199  -66.547
182 44 .45 -66.23 93 44259 -66.619
183 44.52 -66.30 94 44316  -66.686
184 44.58 -66.38 95 44377  -66.753
185 44 .64 -66.46 96 44.447  -66.838
186 44.71 -66.53 97 44540 -66.945
187 44.77 -66.61 98 44602 -67.020
188 44.83 -66.68 99 44666 -67.093
189 44.90 -66.76 101 45.026  -66.884
190 44.96 -66.83 102 44960 -66.813
191 45.03 -66.88 103 44898  -66.758
192 45.07 -66.98 104 44833 -66.685
193 45.03 -66.41 105 44768  -66.611
194 4497 -66.33 106 44706  -66.533
195 44 91 -66.26 107 44644  -66.459
196 44.84 -66.19 108 44577  -66.382
197 4478 -66.11 109 44515  -66.307
198 44.71 -66.03 110 44449  -66.234
199 44,65 -65.96 111 44649  -65.965
200 43.92 -66.50 112 44712  -66.036
300 43.75 -66.30 113 44776  -66.113
301 43.71 -66.41 114 44 841 -66.189
302 43.69 -66.54 115 44902 -66.265
303 43.67 -66.67 116 44969  -66.341
304 43.65 -66.81 117 45.031 -66.414
305 43.63 -66.95 118 44048  -66.368
306 43.60 -67.08 119 43.881 -66.368
307 43.58 -67.21 120 43.705 -66.369
308 43.56 -67.35 121 43518 -66.368
309 43.53 -67.48 122 43.335 -66.368
310 43.52 -67.60 123 43.153  -66.375
342 43.73 -69.91 124 44977  -66.369
343 43.66 -69.83 125 42800 -66.367
344 43.58 -69.78 126 42,654  -66.367

345 43.51 -69.72 127 42515  -66.367
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May 2000 June 2000
Station # Latitude Longitude _Station# Latitude Longitude

346 4344 -69.67 128 42513 -66.817
347 43.37 -69.61 129 42654 -66.831
348 43.30 -69.56 130 42.798 -66.832
349 43.23 -69.50 131 42980 -66.833
350 43.16 -69.44 132 43.154  -66.834
351 43.09 -69.39 133 43152  -67.065
352 43.01 -69.33 134 43.153  -67.292
353 42.94 -89.27 135 43.151 -67.521

136 43.156  -67.742
137 43150 -67.967
138 43150 -68.190
139 43.250 -68.333
140-1 43.328  -68.456
140-2 43327  -68.459
140-3 43.331 -68.466
140-4 43.335  -68.467
140-5 43342  -68.470
140-6 43.346  -68.468
140-7 43.351 -68.470
140-8 43354 -68.470
140-9 43.354  -68.469
140-10 43.347  -68.457
140-11 43.337  -68.452
140-12 43.330 -68.453
140-13 43.324  -68.456
140-14 43.320 -68.457
140-15  43.313  -68.464
140-16 43.317  -68.460
140-17  43.320 -68.456
140-18 43.327  -68.459
140-19 43332  -68.462
140-20 43.339 -68.459
140-21 43.341 -68.458
140-22 43.339 -68.458
140-23  43.331 -68.454
140-24 43328  -68.453

140-25 43.320 -68.459
946 43.319  -68.352
947 43394  -68.411
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AVAILABLE IN SITU DATA
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s, DS AT B

In situ Parameter Measured

Dates of Available Data

Salinity

Temperature (°C)

6,

Depth of Sample Measurement

Depth of Water Column

Pressure (db)

Fluorescence (v)

Chlorophyll a (ng/L)

Phaeopigments

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 - May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 - July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998
July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998

April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000
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NO4/NO, (uM)

SiO4 (M)

NH, (uM)

PO, (WM)

Alexandrium (cells/L)

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998
July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 —- May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000

June 6, 1998 — June 16, 1998

July 6, 1998 — July 16, 1998
August 4, 1998 — August 16, 1998
April 22, 2000 — May 4, 2000
June 5, 2000 — June 15, 2000
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Appendix C

AVAILABLE SATELLITE DATA
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AVHRR SST
June 1998

n12.98152.1132.mcsst
n12.98152.2117.mcsst
n12.98152.2257.mcsst
n12.98153.1110.messt
n12.98153.2234.mcsst
n12.98154.1048.mcsst
n12.98154.2211.mcsst
n12.98155.1027.mcsst
n12.98155.1208.mcsst
n12.98155.2149.mcsst
n12.98156.1144.mcsst
n12.98156.2128.mcsst
n12.98157.1122.mcsst
n12.98157.2107.mcsst
n12.98157.2246.mcsst
n12.98158.1100.mcsst
n12.98158.2223.mcsst
n12.98159.1038.mcsst
n12.98159.2201.mcsst
n12.98160.1017.mcsst
n12.98160.1157.mcsst
n12.98160.2139.mcsst
n12.98161.1134.mcsst
n12.98161.2118.mcsst
n12.98162.1112.mcsst
n12.98162.2236.mcsst
n12.98163.1050.mcsst
n12.98163.2213.mcsst
n12.98164.1028.mcsst
n12.98164.1210.mcsst
n12.98164.2151.mcsst
n12.98165.1146.mcsst

n12.98165.2130.mcsst
n12.98166.2109.mcsst
n12.98166.2248.mcsst
n12.98167.1102.mcsst
n12.98167.2225.mcsst
n12.98168.1040.mcsst
n12.98168.2203.mcsst
n12.98169.1019.mcsst
n12.98169.1159.mcsst
n12.98169.2141.mcsst
n12.98170.1136.mcsst
n12.98170.2120.mcsst
n12.98173.2153.mcsst
n12.98174.2131.mcsst
n12.98175.1126.mcsst
n12.98175.2110.mcsst
n12.98175.2250.mcsst
n14.98152.0747.mcsst
n14.98152.1917.mcsst
n14.98153.0736.mcsst
n14.98153.1905.mcsst
n14.98154.0725.mcsst
n14.98154.1854.mcsst
n14.98155.0715.mcsst
n14.98155.1843.mcsst
n14.98156.0704.mcsst
n14.98156.0845.mcsst
n14.98156.1832.mcsst
n14.98157.0833.mcsst
n14.98157.1821.mcsst
n14.98158.0822. mcsst
n14.98158.1810.mcsst

¢ filename meaning: sss.yyddd.hhmm.mcsst
s=satellite (i.e. n12, NOAA 12), y=year (i.e. 98, 1998), d=yearday (i.e. 213), h=hour (GMT), m=minute
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n14.98159.0811.mcsst
n14.98159.1759.mcsst
n14.98160.0759.mcsst
n14.98161.0748.mcsst
n14.98161.1918.mcsst
n14.98162.0737.mcsst
n14.98162.1906.mcsst
n14.98163.0726.mcsst
n14.98163.1855.mcsst
n14.98164.0716.mcsst
n14.98164.1844.mcsst
n14.98165.0705.mcsst
n14.98165.0846.mcsst
n14.98165.1833.mcsst
n14.98166.0834.mcsst
n14.98166.1822.mcsst
n14.98167.0823.mcsst
n14.98167.1811.mcsst
n14.98168.0812.mcsst
n14.98168.1800.mcsst
n14.98169.0800.mcsst
n14.98169.1750.mcsst
n14.98169.1931.mcsst
n14.98170.0749.mcsst
n14.98170.1919.mcsst
n14.98173.1845.mcsst
n14.98174.1834.mcsst
n14.98175.0657.mcsst
n14.98175.0835.mcsst
n14.98175.1823.mcsst



AVHRR SST
July 1998

n12.98182.1032.mcsst
n12.98182.2155.mcsst
n12.98183.1150.mcsst
n12.98183.2133.mcsst
n12.98184.1127.mcsst
n12.98184.2112.mcsst
n12.98184.2253.mcsst
n12.98185.1105.mcsst
n12.98185.2229.mcsst
n12.98186.1043.mcsst
n12.98186.2207.mcsst
n12.98187.1022.mcsst
n12.98187.1203.mcsst
n12.98187.2145.mcsst
n12.98188.1140.mcsst
n12.98188.2123.mcsst
n12.98189.1117.mcsst
n12.98189.2242.mcsst
n12.98190.1055.mcsst
n12.98190.2219.mcsst
n12.98191.1034.mcsst
n12.98191.2157 mcsst
n12.98192.1152.mcsst
n12.98192.2135.mcsst
n12.98193.1129.mcsst
n12.98193.2114.mcsst
n12.98193.2255.mcsst
n12.98194.1107.mcsst
n12.98194.2231.mcsst
n12.98195.1045.mcsst
n12.98195.2209.mcsst
n12.98196.1024.mcsst
n12.98196.1205.mcsst
n12.98196.2147.mcsst
n12.98197.1142.mcsst
n12.98197.2125.mcsst
n12.98198.1119.mcsst

n12.98198.2244 mcsst
n12.98199.1057.mcsst
n12.98199.2221.mcsst
n12.98200.1035.mcsst
n12.98200.2158.mcsst
n12.98201.1015.mcsst
n12.98201.1154.mcsst
n12.98201.2137.mcsst
n12.98202.1131.mcsst
n12.98202.2115.mcsst
n12.98202.2257.mcsst
n12.98203.1109.mcsst
n12.98203.2233.mcsst
n12.98204.1047.mcsst
n12.98204.2210.mcsst
n12.98205.1026.mcsst
n12.98205.1207.mcsst
n12.98205.2148.mcsst
n14.98182.0718.mcsst
n14.98182.1846.mcsst
n14.98183.0707.mcsst
n14.98183.0848.mcsst
n14.98183.1835.mcsst
n14.98184.0657.mcsst
n14.98184.0836.mcsst
n14.98184.1824.mcsst
n14.98185.0825.mcsst
n14.98185.1813.mcsst
n14.98186.0814.mcsst
n14.98186.1802.mcsst
n14.98187.0802.mcsst
n14.98187.1752.mcsst
n14.98187.1932.mcsst
n14.98188.0751.mcsst
n14.98188.1921.mcsst
n14.98189.0740.mcsst
n14.98189.1909.mcsst
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n14.98190.0730.mcsst
n14.98190.1858.mcsst
n14.98191.0719.mcsst
n14.98191.1847.mcsst
n14.98192.0708.mcsst
n14.98192.0849.mcsst
n14.98192.1836.mcsst
n14.98193.0658.mcsst
n14.98193.0837.mcsst
n14.98193.1825.mcsst
n14.98194.0826.mcsst
n14.98194.1814.mcsst
n14.98195.0815.mcsst
n14.98195.1803.mcsst
n14.98196.0804.mcsst
n14.98196.1753.mcsst
n14.98196.1934.mcsst
n14.98197.0752.mcsst
n14.98197.1922. mcsst
n14.98198.0742. mcsst
n14.98199.0731.mcsst
n14.98199.1859.mcsst
n14.98200.0720.mcsst
n14.98200.1848.mcsst
n14.98201.0709.mcsst
n14.98201.0850.mcsst
n14.98201.1837.mcsst
n14.98202.0659.mcsst
n14.98202.0838.mcsst
n14.98202.1826.mcsst
n14.98203.0827.mcsst
n14.98203.1815.mcsst
n14.98204.0816.mcsst
n14.98204.1804.mcsst
n14.98205.0805.mcsst
n14.98205.1754.mcsst
n14.98205.1935.mcsst



AVHRR SST
August 1998

n12.98213.1049.mcsst
n12.98213.2212.mcsst
n12.98214.1027.mcsst
n12.98214.2150.mcsst
n12.98215.1145.mcsst
n12.98215.2128.mcsst
n12.98216.1123.mcsst
n12.98216.2108.mcsst
n12.98216.2248.mcsst
n12.98217.1100.mcsst
n12.98217.2224. mcsst
n12.98218.1039.mcsst
n12.98218.2202.mcsst
n12.98219.1018.mcsst
n12.98219.1158.mcsst
n12.98219.2140.mcsst
n12.98220.1135.mcsst
n12.98220.2119.mcsst
n12.98221.1112.mcsst
n12.98221.2237.mcsst
n12.98222.1051.mcsst
n12.98222.2214.mcsst
n12.98223.1029.mcsst
n12.98223.2152.mcsst
n12.98224.1147.mcsst
n12.98224.2130.mcsst
n12.98225.1124.mcsst
n12.98225.2109.mcsst

n12.98225.2249.mcsst
n12.98231.2216.mcsst
n12.98232.1031.mcsst
n12.98232.2153.mcsst
n12.98233.1149.mcsst
n12.98233.2132.mcsst
n12.98234.1126.mcsst
n12.98234.2111.messt
n12.98234.2251.mcsst
n12.98235.1104.mcsst
n14.98213.0817.mcsst
n14.98213.1805.mcsst
n14.98214.0806.mcsst
n14.98214.1755.mcsst
n14.98214.1936.mcsst
n14.98215.0754.mcsst
n14.98215.1924.mcsst
n14.98216.0744.mcsst
n14.98216.1912.mcsst
n14.98217.0732.mcsst
n14.98217.1901.mcsst
n14.98218.0722.mcsst
n14.98218.1850.mcsst
n14.98219.0711.mcsst
n14.98219.0852.mcsst
n14.98219.1839.mcsst
n14.98220.0701.mcsst
n14.98220.0841.mcsst
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n14.98220.1828.mcsst
n14.98221.0829.mcsst
n14.98221.1817.mcsst
n14.98222.0818.mcsst
n14.98222.1806.mcsst
n14.98223.1756.mcsst
n14.98223.1937.mcsst
n14.98224.0755.mcsst
n14.98224.1925.mcsst
n14.98225.0744.mcsst
n14.98225.1913.mcsst
n14.98226.0733.mcsst
n14.98226.1902.mcsst
n14.98227.0723.mcsst
n14.98227.1851.mcsst
n14.98228.0712.mcsst
n14.98228.0853.mcsst
n14.98228.1840.mcsst
n14.98229.0841.mcsst
n14.98229.1829.mcsst
n14.98230.0830.mcsst
n14.98230.1818.mcsst
n14.98231.0819.mcsst
n14.98231.1807.mcsst
n14.98232.1757.mcsst
n14.98233.1926.mcsst



AVHRR SST
May 2000

n12.00108.1042.mcsst
n12.00108.2027.mcsst
n12.00108.2207.mcsst
n12.00109.1020.mcsst
n12.00109.2143.mcsst
n12.00110.0957.mcsst
n12.00110.2120.mcsst
n12.00111.0936.mcsst
n12.00111.1116.mcsst
n12.00111.2058.mcsst
n12.00112.1052.mcsst
n12.00112.2036.mcsst
n12.00113.1029.mcsst
n12.00113.2153.mcsst
n12.00114.1007.mcsst
n12.00114.2130.mcsst
n12.00115.0945.mcsst
n12.00115.2107.mcsst
n12.00116.1102.mcsst
n12.00116.2045.mcsst
n12.00117.1039.mcsst
n12.00117.2024.mcsst
n12.00117.2203.mcsst
n12.00118.1016.mcsst
n12.00118.2139.mcsst
n12.00119.0954.mcsst
n12.00119.2117.mcsst
n12.00120.0933.mcsst
n12.00120.1112.mcsst
n12.00120.2054.mcsst
n12.00121.1048.mcsst
n12.00122.1025.mcsst
n12.00122.2149.mcsst
n12.00123.1003.mcsst
n12.00123.2126.mcsst
n12.00124.0941.mcsst
n12.00124.2103.mcsst
n12.00125.1058.mcsst
n12.00125.2041.mcsst
n12.00126.1035.mcsst
n12.00126.2159.mcsst
n12.00127.1012.mcsst
n12.00127.2136.mcsst
n12.00128.0950.mcsst

n14.00108.1942.mcsst
n14.00109.0943.mcsst
n14.00109.1930.mcsst
n14.00110.0931.mcsst
n14.00110.1919.mcsst
n14.00111.0920.mcsst
n14.00111.1908.mcsst
n14.00111.2050.mcsst
n14.00112.0908.mcsst
n14.00112.1858.mcsst
n14.00113.0856.mcsst
n14.00113.2025.mcsst
n14.00114.0845.mcsst
n14.00114.2013.mcsst
n14.00115.0834.mcsst
n14.00115.2001.mcsst
n14.00116.0823.mcsst
n14.00116.1950.mcsst
n14.00117.0812.mcsst
n14.00117.0951.mcsst
n14.00117.1938.mcsst
n14.00118.0939.mcsst
n14.00118.1927.mcsst
n14.00119.0928.mcsst
n14.00119.1916.mcsst
n14.00120.0916.mcsst
n14.00120.1905.mcsst
n14.00120.2046.mcsst
n14.00121.0904.mcsst
n14.00121.2033.mcsst
n14.00122.0853.mcsst
n14.00122.2021.mcsst
n14.00123.0841.mcsst
n14.00123.2010.mcsst
n14.00124.0830.mcsst
n14.00124.1958.mcsst
n14.00125.0819.mcsst
n14.00125.1000.mcsst
n14.00125.1946.mcsst
n14.00126.0948.mcsst
n14.00126.1935.mcsst
n14.00127.0936.mcsst
n14.00127.1924.mcsst
n14.00128.0924.mcsst
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n14.00130.0901.mcsst
n15.00108.1237.mcsst
n15.00109.0001.mcsst
n15.00109.1215.mcsst
n15.00109.2338.mcsst
n15.00110.1153.mcsst
n15.00110.2316.mcsst
n15.00111.1310.mcsst
n15.00111.2254.mcsst
n15.00112.1248.mcsst
n15.00112.2233.mcsst
n15.00113.0012.mcsst
n15.00113.1225.mcsst
n15.00113.2349.mcsst
n15.00114.1203.mcsst
n15.00114.2326.mcsst
n15.00115.1143.mcsst
n15.00115.1321.mcsst
n15.00115.2304.mcsst
n15.00116.1258.mcsst
n15.00116.2242.mcsst
n15.00117.1236.mcsst
n15.00118.1213.mcsst
n15.00118.2336.mcsst
n15.00119.1152.mcsst
n15.00119.2314.mcsst
n15.00120.1309.mcsst
n15.00120.2252.mcsst
n15.00121.1246.mcsst
n15.00122.0010.mcsst
n15.00122.1224. mcsst
n15.00122.2347.mcsst
n15.00123.1202.mcsst
n15.00123.2324.mcsst
n15.00124.1320.mcsst
n15.00124.2302.mcsst
n15.00125.1257 .mcsst
n15.00125.2241.mcsst
n15.00126.0022.mcsst
n15.00126.1234.mcsst
n15.00126.2358.mcsst
n15.00127.1212.mcsst
n15.00127.2335.mcsst
n15.00128.1150.mcsst



n12.00128.2113.mcsst
n12.00129.1108.mcsst
n12.00129.2050.mcsst
n12.00130.1044.mcsst
n14.00108.0955.mcsst

n14.00128.1913.mcsst
n14.00128.2055.mcsst
n14.00129.0912.mcsst
n14.00129.1902.mcsst
n14.00129.2042.mcsst
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n15.00128.2313.mcsst
n15.00129.1307.mcsst
n15.00129.2251.mcsst
n15.00130.1245.mcsst



AVHRR SST
June 2000

n12.00152.1046.mcsst
n12.00154.2123.mcsst
n12.00155.0938.mcsst
n12.00155.2101.mcsst
n12.00156.1055.mcsst
n12.00156.2039.mcsst
n12.00157.1032.mcsst
n12.00157.2156.mcsst
n12.00158.1009.mcsst
n12.00158.2133.mcsst
n12.00159.0947.mcsst
n12.00159.2110.mcsst
n12.00160.1105.mcsst
n12.00160.2047.mcsst
n12.00161.1041.mcsst
n12.00161.2026.mcsst
n12.00161.2206.mcsst
n12.00162.1019.mcsst
n12.00162.2142.mcsst
n12.00163.0956.mcsst
n12.00163.2119.mcsst
n12.00164.0935.mcsst
n12.00164.1114.mcsst
n12.00164.2057 .mcsst
n12.00165.1051.mcsst
n12.00165.2035.mcsst
n12.00166.1028.mcsst
n12.00166.2152.mcsst
n12.00167.1005.mcsst
n12.00167.2128.mcsst
n12.00168.0943.mcsst
n12.00168.2105.mcsst
n12.00169.1100.mcsst
n12.00169.2043.mcsst
n12.00170.1037.mcsst
n12.00170.2022.mcsst
n12.00170.2201.mcsst
n12.00171.1014.mcsst
n12.00171.2138.mcsst
n12.00172.0952.mcsst
n12.00172.2115.mcsst
n14.00152.0948.mcsst
n14.00152.1935.mcsst

n14.00154.2054.mcsst
n14.00155.0912.mcsst
n14.00155.1903.mcsst
n14.00155.2042.mcsst
n14.00156.0901.mcsst
n14.00156.2030.mcsst
n14.00157.0850.mcsst
n14.00157.2018.mcsst
n14.00158.0838.mcsst
n14.00158.2006.mcsst
n14.00159.0827.mcsst
n14.00159.1008.mcsst
n14.00159.1954.mcsst
n14.00160.0956.mcsst
n14.00160.1943.mcsst
n14.00161.0944.mcsst
n14.00161.1932.mcsst
n14.00162.0932.mcsst
n14.00162.1920.mcsst
n14.00163.0920.mcsst
n14.00163.1910.mcsst
n14.00163.2050.mcsst
n14.00164.0909.mcsst
n14.00164.2038.mcsst
n14.00165.0857.mcsst
n14.00165.2026.mcsst
n14.00166.0846.mcsst
n14.00166.2014.mcsst
n14.00167.0834.mcsst
n14.00167.2002.mcsst
n14.00168.0823.mcsst
n14.00168.1004.mcsst
n14.00168.1951.mcsst
n14.00169.1939.mcsst
n14.00170.0940.mcsst
n14.00170.1928.mcsst
n14.00171.0928.mcsst
n14.00171.1917.mcsst
n14.00171.2058.mcsst
n14.00172.0916.mcsst
n14.00172.1906.mcsst
n14.00172.2046.mcsst
n15.00152.1251.mcsst
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n15.00154.2330.mcsst
n15.00155.1145.mcsst
n15.00155.1325.mcsst
n15.00155.2307.mcsst
n15.00156.1302.mcsst
n15.00156.2246.mcsst
n15.00157.1239.mcsst
n15.00158.0003.mcsst
n15.00158.1217.mcsst
n15.00158.2340.mcsst
n15.00159.1155.mcsst
n15.00159.2318.mcsst
n15.00160.1312.mcsst
n15.00160.2255.mcsst
n15.00161.1250.mcsst
n15.00161.2234.mcsst
n15.00162.0014.mcsst
n15.00162.1227.mcsst
n15.00162.2350.mcsst
n15.00163.1205.mcsst
n15.00163.2328.mcsst
n15.00164.1144.mcsst
n15.00164.1323.mcsst
n15.00164.2306.mcsst
n15.00165.1300.mcsst
n15.00165.2244. mcsst
n15.00166.1237.mcsst
n15.00167.0001.mcsst
n15.00167.1215.mcsst
n15.00167.2338.mcsst
n15.00168.1153.mcsst
n15.00168.2316.mcsst
n15.00169.1310.mcsst
n15.00169.2254.mcsst
n15.00170.1248.mcsst
n15.00170.2233.mcsst
n15.00171.0012.mcsst
n15.00171.1225.mcsst
n15.00171.2348.mcsst
n15.00172.1203.mcsst
n15.00172.2326.mcsst



SeaWiFS Chlorophyll

June 1998

S$1998152170400_remap3.L2_HBIO
§1998153x0xxxxx_remap3.L2_MULT
S$1998154165446_remap3.L.2_HBIO
S$1998155x00xxx_remap3.L.2_MULT
S$1998156164658_remap3.L.2_HNSG
S$1998157173108_remap3.L2_HNSG
S$1998158163808_remap3.L2_HNSG

$1998159172158_remap3.L2_HNSG |

S$1998161171249_remap3.L2_HNSG
$1998162xxxxxx_remap3.L2_MULT
S$1998163170337_remap3.L2_HNSG
$1998164x00xxx_remap3.L.2_MULT

$1998165165439_remap3.L.2_HNSG
S$1998166x000xxx_remap3.L.2_MULT

$1998167164530_remap3.L.2_HNSG
$1998168172927_remap3.L.2_HNSG
S$1998169163628_remap3.L2_HNSG
S$1998170172018_remap3.L.2_HNSG
$1998171162718_remap3.L2_HNSG
S1998172171058_remap3.L2_HNSG
S$1998173x00xxx_remap3.L.2_MULT

S1998174170158_remap3.L2_HNSG
S$1998175x00xxx_remap3.L.2_MULT

SeaWiFS Chiorophyll

July 1998

$1998182162539_remap3.L.2_HNSG
S$1998183170918_remap3.L.2_HNSG
S$1998184x00xxx_remap3.L.2_MULT

S$1998185170007_remap3.L2_HNSG
S$1998186x000xx_remap3.L2_MULT

S$1998187165107_remap3.L.2_HNSG
S$1998188173508_remap3.L2_HNSG
S$1998189164158_remap3.L2_HNSG
S1998190172557_remap3.L2_HNSG
S$1998192171648_remap3.L.2_HNSG

S1998193162358_remap3.L2_HNSG
S1998194170738_remap3.L2_HNSG
$1998195xx00x_remap3.L2_ MULT

S1998198164918_remap3.L2_HNSG
$1998200164008_remap3.L2_HNSG
S$1998201172408_remap3.L2_HNSG
S$1998202163118_remap3.L2_HNSG
S1998203171459_remap3.L2_HNSG
S$1998204x0xxxx_remap3.L.2_MULT

S1998205170547_remap3.L.2_HNSG

SeaWiFS Chlorophyil

August 1998

S$1998213162918_remap3.L.2_HNSG
$1998214171308_remap3.L2_HNSG
$1998215xxxxxx_remap3.L2_MULT

$1998216170358_remap3.L.2_HNSG
S$1998217x000x_remap3.L2_MULT

S1998218165437_remap3.L.2_HNSG
$1998219xx00xx_remap3.L.2_MULT

S$1998220164539_remap3.L.2_HNSG
$1998221172938_remap3.L.2_HNSG
S$1998222163637_remap3.L2_HNSG
S$1998223172028 remap3.L.2_HNSG
$1998224162728_remap3.L.2_HNSG

S$1998225171107_remap3.L.2_HNSG
§1998226xxxxxx_remap3.L.2_MULT

$1998227170159_remap3.L.2_HNSG
S$1998228xxxxxxx_remap3.L.2_MULT

S$1998229165258_remap3.L.2_HNSG
S$1998230xx00xx_remap3.L.2_MULT

S1998231164349_remap3.L.2_HNSG
S1998232172739_remap3.L.2_HNSG
S1998233163437_remap3.L.2_HNSG
$1998234171828_remap3.L2_HNSG
S$1998235162538_remap3.L.2_HNSG

¢ filename meaning: Syyyydddhhmmss_remaps3.L.2_HNSG

y = year (i.e. 1998), d=yearday (i.e. 213), h=hour (GMT), m=minute, s=seconds, L2= level 2 data
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SeaWiFS Chlorophyll

May 2000

S$2000108xx000x_remap3.L2_MULT

$2000109170449_remap3.L.2_HNSG
$2000110174810_remap3.L.2_HNSG
S$2000111165350_remap3.L.2_HNSG
$2000112173701_remap3.L2_HNSG
$2000114172559_remap3.L2_HNSG
S$2000115163210_remap3.L.2_HNSG

$2000116171459_remap3.L.2_ HNSG '

S$200011700xxx_remap3.L.2_MULT
$2000118170358_remap3.L.2_HNSG
$2000119x00xxxx_remap3.L.2_MULT

$2000120165259_remap3.L2_HNSG
§2000121173609_remap3.L2_HNSG
§2000122164209_remap3.L2_HNSG
§2000123172459_remap3.L2_HNSG
§2000124163059_remap3.L2_HNSG
S$2000125171359_remap3.L2_HNSG
§2000126x0xxx_remap3.L.2_MULT

$2000127170259_remap3.L2_HNSG
S$2000128xxxxxx_remap3.L.2_MULT

§2000129165158_remap3.L2_HNSG
S$2000130173459_remap3.L2_HNSG

SeaWiFs Chlorophyil

June 2000

$2000152170939_remap3.L.2_HNSG
S$2000153xxxxxx_remap3.L.2_MULT

S$2000154165839_remap3.L.2_HNSG
S$2000155x000x_remap3.L.2_MULT

S$2000156164729_remap3.L2_HNSG
$2000157173030_remap3.L.2_HNSG
$2000158163619_remap3.L.2_HNSG
$2000159171919_remap3.L.2_HNSG
S$2000160162519_remap3.L.2_HNSG
S$2000161170810_remap3.L.2_HNSG
§2000162x000xx_remap3.L.2_MULT

S$2000163165649_remap3.L2_HNSG
S$2000164x00xx_remap3.L.2_MULT

$2000165164539_remap3.L2_HNSG
$2000166172839_remap3.L.2_HNSG
S$2000167163439_remap3.L2_HNSG
S$2000168171729_remap3.L.2_HNSG
$2000169162339_remap3.L2_HNSG
S$2000170170620_remap3.L2_HNSG
S200017 1xx00x_remap3.L.2_MULT

$2000172165500_remap3.L2_HNSG
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Appendix D

AVAILABLE PATHFINDER AVHRR DATA
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Pathfinder AVHRR SST 8day composites
(1990-1999)

March 30-April 6 (yeardays 89-96)
April 7-14 (yeardays 97-104)

April 15-22 (yeardays 105-112)
April 23-30 (yeardays 113-120)
May 1-8 (yeardays 121-128)

May 9-16 (yeardays 129-136)

May 17-24 (yeardays 137-144)
May 25-Junel (yeardays 145-152)
June 2-9 (yeardays 153-160)

June 10-17 (yeardays 161-168)
June 18-25 (yeardays 169-176)
June 26-July 3 (yeardays 177-184)
July 4-11 (yeardays 185-192)

July 12-19 (yeardays 193-200)
July 20-27 (yeardays 201-208)
July 28-August 4 (yeardays 209-216)
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Appendix E

SAMPLING STATIONS IN GOM DATA SUBSETS
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All 1998 Subsets:
Subset Stations included

Eastern Maine 1-99, 208-215
Western Maine 100-207

EMCC 169-176, 152-154, 129-132, 134-136, 114-117, 104-107
WMCC 85-87, 63-67, 44, 43, 40, 39, 17-20, 1-8, 90-92
Jordan Basin 156-162, 138-149, 119-127, 202-207, 100-102

Wilkinson Basin | 93-99, 208-215, 68-84, 45-62, 21-38, 9-16
Bay of Fundy 183-188, 194-198
Scotian Shelf 178-180, 163, 164, 200, 201

May 2000 Subsets:
Subset Stations included

Eastern Maine 114-200, 300-310
Western Maine 1-8, 19-29, 42-48, 65-76, 90-99, 342-353

EMCC 114,115, 130-132, 134-136, 151-153, 170-176
WMCC 1-8, 19-21, 43, 44, 65-67, 90-92, 342-344
Jordan Basin 118-127, 138-149, 156-162

Wilkinson Basin | 22-29, 45-48, 68-76, 93-99, 344-353
Bay of Fundy 183-188, 194-198
Scotian Shelf 163, 164, 177-181, 200, 300-303

June 2000 Subsets:
Subset Stations included

Eastern Maine 58-137
Western Maine 1-57, 138-140

EMCC 60-62, 78-80, 81, 82, 96-99
WMCC 2,3, 25, 24, 26-29, 33-36, 53-56
Jordan Basin 65-69, 70-76, 83-90, 133-137

Wilkinson Basin | 4-23, 30-32, 37-52, 138-140
Bay of Fundy 104-110, 112-116
Scotian Shelf 91, 92, 118-123
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Appendix F

CORRELATION RESULTS OF LINEAR REGRESSION ANALYSES
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pel

Year | Month Area X LOG? Y Y-intercept Slope r-value N
1998{June All GOM AVHRR yes Alexandrium 3.87348 -0.22567 -0.476528 | 153
1998|June All GOM AVHRR no Alexandrium 767.132 -54.9817 -0.178849 | 236
1998 |June WM AVHRR yes Alexandrium 6.80974 -0.510667 -0.670645 65
1998 |June EM AVHRR yes Alexandrium 3.33439 -0.154831 -0.247133 87
1998 {July All GOM AVHRR yes Alexandrium 3.90386 -0.187262 -0.565019 | 140
1998|July All GOM AVHRR no Alexandrium 1249.98 -75.9977 -0.250198 | 218
1998|July WM AVHRR yes Alexandrium 1.93706 -0.0674101 -0.3158 50
1998|July EM AVHRR yes Alexandrium 3.8464 -0.177545 -0.337766 90
1998(August _|All GOM AVHRR yes Alexandrium 4.77747 -0.225342 -0.592013 | 132
1998|August _[All GOM AVHRR no Alexandrium 1190.48 -60.985 -0.153492 [ 204
1998(August [WM AVHRR yes Alexandrium 1.563217 -0.0467997 -0.236055 41
1998|August |EM AVHRR yes Alexandrium 3.91283 -0.156799 -0.341829 91
2000|May All GOM AVHRR yes Alexandrium 0.550715 0.099204 0.147208 119
2000 (May All GOM AVHRR no Alexandrium -15.1976 7.12095 '0.137873 164
2000|May EM AVHRR yes Alexandrium 0.605583 3.49971 0.131167 77
2000]June All GOM AVHRR yes Alexandrium 1.40294 0.0778236 0.138734 160
2000]June All GOM AVHRR no Alexandrium -7.70742 42.3237 0.100029 130
1998|June All GOM SeaWifs yes Alexandnium 1.78238 0.270937 0.146174 153
1998|June All GOM SeaWifs no Alexandrium 264.459 -4.29423 -0.0092728 | 228
1998|June WM SeaWifs yes Alexandrium 1.46879 0.150606 0.0664906 65
1998|June EM SeaWifs yes Alexandrium 2.01443 0.327873 0.228194 88
1998 (July All GOM SeaWifs yes Alexandrium 1.5591 0.0778775 0.0401115 | 140
1998 |August |All GOM SeaWifs yes | Alexandrium 1.56139 0.379432 0.20331 132
2000|May All GOM SeaWifs yes Alexandrium 1.16271 -0.00649899 | -0.00293767 | 48
2000jJune All GOM SeaWifs yes Alexandrium 2.64255 -0.667496 -0.203542 55
1998|June All GOM AVHRR yes nitrate 0.298798 -0.0404045 -0.157014 | 177
1998|June All GOM AVHRR no nitrate 3.84029 -0.255022 -0.355757 | 177
1998 |July All GOM AVHRR yes nitrate 2.23585 -0.218694 -0.586268 69
1998 [July All GOM AVHRR no nitrate 8.56347 -0.599744 -0.560743 69
1998|August (Al GOM AVHRR yes nitrate 2.43177 -0.206115 -0.650912 | 152
1998[August [All GOM AVHRR no nitrate 7.91008 -0.475168 -0.668751 152




Sel

Year | Month Area X LOG? Y Y-intercept Slope r-value N
2000|May All GOM AVHRR yes nitrate 1.47119 -0.13472 -0.50652 158
2000|May All GOM AVHRR no nitrate 13.6588 -1.42859 -0.513606 | 158
.2000{June All GOM AVHRR yes nitrate 0.970542 -0.161484 -0.29964 210
2000}June All GOM AVHRR no nitrate 5.24186 -0.407493 -0.510839 | 210
1998|June All GOM SeaWifs yes nitrate -0.0961816 0.175676 0.133345 262
1998}June All GOM SeaWifs no nitrate 0.9441877 0.319912 0.217412 280
1998{June WM SeaWifs yes nitrate -0.16884 -0.139891 -0.0824112 | 94
1998|June EM SeaWifs yes nitrate -0.0321849 0.51617 0.334349 84
1998 [June WMCC SeaWifs yes nitrate 0.0476534 -0.210015 -0.186181 19
1998|June WB SeaWifs yes nitrate -0.221277 0.099212 0.0158154 71
1998(June EMCC SeaWifs yes nitrate 0.358535 0.224971 0.25066 21
1998|June JB SeaWifs yes nitrate -0.284547 2.30948 0.563258 26
1998|June BF SeaWifs yes nitrate 0.361681 -1.49671 -0.574544 11
1998 (June SS SeaWifs yes nitrate -0.155246 -0.04548 -0.129649 7
1998 |July All GOM SeaWifs yes nitrate -0.136592 0.3003 0.24282 78
1998{July All GOM SeaWifs no nitrate 1.95099 0.0453615 0.0295008 98
1998|July WM SeaWifs yes nitrate -1.08543 0.934425 0.903355 11
1998|July EM SeaWifs yes nitrate -0.254503 0.524704 0.236234 58
1998|July WMCC SeaWifs yes nitrate -1.1998 1.00977 0.959353 3
1998|July EMCC SeaWifs yes nitrate 0.00708763 0.790181 0.298926 18
1998 |July JB SeaWifs yes nitrate -0.907787 4.85895 0.8121 11
1998 {July BF SeaWifs yes nitrate -1.21507 4.00242 0.709735 7
1998|July SS SeaWifs yes nitrate -1.37086 7.76404 0.99513 3
1998 |August _|All GOM SeaWifs yes nitrate -0.572874 | -0.00843593 | -0.00561541 | 236
1998|August _|All GOM SeaWifs no nitrate 1.02577 -0.0230198 | -0.0260882 | 258
1998|August  |WM SeaWifs yes nitrate -1.00021 0.349524 0.220703 63
1998 |August |EM SeaWifs yes nitrate -0.450042 0.192856 0.0825746 89
1998{August jWMCC SeaWifs yes nitrate -1.02241 0.148899 0.11814 20
1998|August |WB SeaWifs yes nitrate -1.1643 1.76714 0.380035 39
1998|August |EMCC SeaWifs yes nitrate -0.324691 -0.16576 -0.084452 25
1998|August |JB SeaWifs yes nitrate -0.817649 0.813373 0.174561 28
1998|August |BF SeaWifs yes nitrate -0.34935 1.03274 0.281852 5




9¢l

Year | Month | Area X LOG? Y Y-intercept Slope r-value N
1998|August SS SeaWifs yes nitrate 0.304767 -3.39624 -0.180362 6
2000{May All GOM SeaWifs yes nitrate 0.637104 0.0285144 0.064382 228
2000|May All GOM SeaWifs no nitrate 3.98213 0.46537 0.348962 242
2000{June All GOM SeaWifs yes nitrate -0.908552 0.102518 0.0411867 | 114
2000|June WM SeaWifs yes nitrate -0.916015 -0.0500041 -0.0203197 | 135
2000|June EM SeaWifs yes nitrate -0.852803 0.261805 0.102434 48
1998(June All GOM AVHRR yes SeaWifs 0.551191 -0.0545542 -0.240174 | 198
1998|June All GOM AVHRR no SeaWifs 2.65216 -0.133814 -0.217325 [ 198
1998 July All GOM AVHRR yes SeaWifs 0.097637 -0.00384233 | -0.0241521 | 212
1998 [July All GOM AVHRR no SeaWifs 1.18738 0.0305795 0.0955155 | 212
1998|August _|All GOM AVHRR yes SeaWifs 0.460048 -0.0235758 -0.135665 | 213
1998]August {All GOM AVHRR no SeaWifs 3.51744 -0.115476 -0.179935 | 213
1998}June All GOM nitrate yes Alexandrium 1.81204 0.0822375 0.0513484
1998 |July All GOM nitrate yes Alexandrium 2.001321 0.394569 0.38216
1998|August |All GOM nitrate yes | Alexandrium 1.7347 0.46674 0.432192
2000|May All GOM nitrate yes Alexandrium 0.699917 | -0.000993411 | -0.201738
2000]June All GOM nitrate yes Alexandrium -0.76283 -0.000271224 | -0.183375
1998|June All GOM chlorophyll yes Alexandrium -0.20822 0.108279 0.244867 199
1998|June All GOM chlorophyil no Alexandrium 1.34985 0.000121769 | 0.0472745 | 199
1998|June WM chiorophyll yes Alexandrium -0.213439 0.0572264 0.140784 65
1998June EM chiorophyil yes Alexandrium -0.153374 0.0956224 0.19181 88
1998 |July All GOM chlorophyil yes Alexandrium -0.429695 0.190262 0.407584 212
1998|July WM chiorophyil yes Alexandrium -0.275339 0.0644045 0.0893329 50
1998|July EM chlorophyil yes |- Alexandrium -0.538323 0.23705 0.466973 89
1998)|August _|All GOM chlorophyil yes Alexandrium 0.237467 0.240872 0.504058 213
1998)|August (WM chlorophyll yes Alexandrium -0.465438 0.485342 0.48914 41
1998|August |EM chlorophyll yes Alexandrium 0.129401 0.190262 0.417464 89
1998|June All GOM temperature yes nitrate 0.863438 -0.998165 -0.307286
1998[June WM temperature yes nitrate -0.598183 0.0411124 0.122097
1998 (June EM temperature yes nitrate 2.28185 -0.251579 -0.694547




LEl

Year | Month Area X LOG? Y Y-intercept Slope r-value N
1998|June JB temperature yes nitrate 2.42346 -0.274466 -0.720471
1998{June BF temperature yes nitrate 5.2185 -0.585638 -0.798275
1998{June SS temperature yes nitrate 2.71785 -0.321521 -0.844164
1998|July All GOM temperature yes nitrate 1.71793 -0.174954 -0.685182
1998 |July WM temperature yes nitrate -1.36814 0.0205105 0.175801
1998 [July EM temperature yes nitrate 2.94631 -0.293335 -0.759986
1998 |July WMCC temperature yes nitrate -5.1998 0.307948 0.832517
1998 [July WB temperature yes nitrate -1.10963 0.00362825 0.0756908
1998 |July EMCC temperature yes nitrate 6.8545 -0.730334 -0.841736
1998{July JB temperature yes nitrate 2.52263 -0.257805 -0.823084
1998iJuly BF temperature yes nitrate 3.36879 -0.310679 -0.508852
1998 |July SS temperature yes nitrate 2.1868 -0.243894 -0.928681
1998|August _|All GOM temperature yes nitrate 1.60315 -0.154299 -0.665058
1998|August  |WM temperature yes nitrate 1.04458 -0.117157 -0.549677
1998|August |EM temperature yes nitrate 2.25549 -0.209461 -0.644509
1998 |August  |WMCC temperature yes nitrate 0.608258 -0.0985045 -0.459982
1998 (August |WB temperature yes nitrate 1.17396 -0.120731 -0.537346
1998(August |EMCC temperature yes nitrate 7.40931 -0.676667 -0.865325
1998|August |JB temperature yes nitrate 1.36965 -0.139249 -0.646089
1998|August |BF temperature yes nitrate 3.52722 -0.297246 -0.440974
1998]August [SS temperature yes nitrate 7.22407 -0.673931 -0.947707
1998|June All GOM salinity yes chlorophyll -1.53244 0.0466118 0.0705857
1998|June WM salinity yes chlorophyill -1.57056 0.0442985 0.0519858
1998|June EM salinity yes chlorophyil 14.3229 -0.451193 0.53699
1998|June WMCC salinity yes chlorophyil -16.5241 0.538696 0.45879
1998|June WB salinity yes chlorophyll -6.61262 0.203606 0.381856
1998|June EMCC salinity yes chlorophyil 14.5664 -0.456471 -0.276934
1998|June JB salinity yes chlorophyil 14.1042 -0.450104 -0.359535
1998|June BF salinity yes chlorophyil -1.37903 0.0537791 0.213008
1998|June SS salinity yes chlorophyil 1.7871 -0.364026 -0.292308
1998 |July All GOM salinity yes chlorophyll 1.78761 -0.0637963 -0.250229 | 212
1998 |July EM salinity yes chlorophyil 9.64793 -0.308765 -0.328848 107




8¢l

Year | Month Area X LOG? Y Y-intercept |  Slope r-value N
1998|July WM salinity yes chlorophyll 3.60973 -0.128614 -0.69347 104
1998[August _[All GOM salinity yes chlorophyil -8.16531 0.259289 0.372977 213
1998|August |EM salinity yes chlorophyil 12.1862 -0.374784 -0.243095 | 101
1998]August |WM salinity yes chlorophyil -2.58553 764100 0.102277 103
1998|June All GOM salinity yes Alexandrium -15.3966 0.548088 0.349522 199
1998 |July All GOM salinity yes Alexandrium -6.3527 0.253367 0.368964
1998 | July WM salinity yes Alexandrium -0.456611 0.0462526 0.16178
1998 |July EM salinity yes Alexandrium -4.31262 0.194888 0.0763555
1998 |July WMCC salinity yes Alexandrium 0.194948 0.029106 0.153048
1998 |July WB salinity yes Alexandrium -3.7653 0.152734 0.48248
19981{July EMCC salinity yes Alexandrium -21.2945 0.741904 0.212932
1998|July JB salinity yes Alexandrium -68.3992 2.19402 0.381439
1998 {July BF salinity yes Alexandrium -28.9473 1.01153 0.509795
1998|July SS salinity yes Alexandrium 26.0987 . -0.780171 -0.571325
1998|August _|All GOM salinity yes Alexandrium -27.1832 0.906324 0.539376 213
1998{June All GOM nitrate yes silicate 0.0775838 0.411593 0.473702 199
1998|June All GOM nitrate no silicate 0.858908 0.559473 0.581156 199
1998|June All GOM nitrate yes chlorophyil -0.0923008 | 0.00635256 | 0.00898169
1998 |June WM nitrate yes chlorophyll -0.216986 -0.102883 -0.149725
1998|June EM nitrate yes chiorophyil 0.0475443 0.0244371 0.0374211
1998(June WMCC nitrate yes chlorophyll 0.0602097 -0.444433 -0.481418
1998)June WB nitrate yes chlorophyll -0.332158 -0.113255 -0.276304
1998 |June EMCC nitrate yes chlorophyll 0.412693 -0.828512 -0.745098
1998{June JB nitrate yes chlorophyll -0.0880582 0.28135 0.616876
1998jJune BF nitrate yes chlorophyll 0.289958 -0.117419 -0.458669
1998jJune SS nitrate yes chlorophyll 0.276307 0.605344 0.920984
1998|June All GOM temperature no phosphate 1.25735 -0.0851075 -0.560587
1998|June WM temperature phosphate 0.923165 -0.0585178 -0.423792
1998 |June EM temperature phosphate 1.20092 -0.0725929 -0.476706




6tl

Year | Month Area X LOG? Y Y-intercept Slope r-value N
1998|June WMCC temperature phosphate 0.757002 -0.0458112 -0.465099
1998{June WB temperature phosphate 1.10046 -0.0743835 -0.511245
1998|June EMCC temperature phosphate 1.68229 -0.127166 -0.599708
1998|June JB temperature phosphate 1.15189 -0.0627349 -0.323828
1998|June BF temperature phosphate 1.85682 -0.159468 -0.834671
1998|June S8 temperature phosphate 0.606825 -0.0118599 -0.33519
1998 | July All GOM temperature phosphate 0.888901 -0.0466011 -0.847575 | 212
1998]August _|All GOM temperature phosphate 0.813381 -0.0363382 -0.65328 213
1998|June All GOM sigma-t no temperature 53.2805 -1.80844 -0.70025
1998|June All GOM fluorescence no chlorophyll -3.38785 26.0728 0.805886
1998|June All GOM fluorescence yes chlorophyil 2.3875 3.23437 0.826499
1998 (July All GOM fluorescence yes chlorophyil 0.923548 1.13501 0.831789
1998 |July All GOM fluorescence no chlorophyil -0.273773 9.70491 0.830926
1998/August [All GOM fluorescence yes chlorophvyll 0.0161993 1.15516 0.926183
1998|August [All GOM fluorescence no chlorophyll -0.147971 1.31964 0.940772
1998|June All GOM phosphate no AVHRR 12.1753 -5.30809 -0.627876 | 318
1998 |July All GOM phosphate AVHRR 16.8438 -13.2817 -0.773517 | 348
1998 |August _|All GOM phosphate AVHRR 16.8807 -6.61271 -0.48555 364
1998 |May All GOM phosphate AVHRR 6.5163 -0.346781 -0.0599345 | 242
1998{June All GOM phosphate AVHRR 12.071 -1.80103 -0.264175 | 206
1998|June All GOM temperature no AVHRR 1.08769 0.894008 0.580424 199
1998|June WM temperature no AVHRR 5.28819 0.569836 0.592194 90
1998|June EM temperature no AVHRR 4.25113 0.500113 0.613602 87
1998 |June WMCC temperature no AVHRR 6.58979 0.448584 0.737087 15
1998 |June wB temperature no AVHRR 4.51496 0.639739 0.57508 73
1998 |June EMCC temperature no AVHRR 5.11746 0.37471 0.462409 16
1998|June JB temperature no AVHRR 4.36071 0.47762 0.520086 33
1998|June BF temperature no AVHRR 4.64007 0.502229 0.517853 10
1998|June SS temperature no AVHRR -0.0616891 0.998777 0.877036 7




ovl

Year | Month Area X LOG? Y Y-intercept Slope r-value N
1998 |July All GOM temperature no AVHRR 2.23116 1.19459 0.578253 306
1998|August _|All GOM temperature no AVHRR 5.08677 0.684202 0.890042 354
2000|May All GOM temperature no AVHRR 4.36736 0.337379 0.163122 262
2000{June All GOM temperature no AVHRR 3.84571 0.81854 0.70077 278
1998|June All GOM SeaWiFS yes chlorophyll -0.0784696 0.151435 0.0801181 | 199
1998 June All GOM SeaWiFS no chlorophyil 0.751996 0.339044 0.273512 320
1998|June WM SeaWiFS yes chiorophyll -0.225644 -0.449747 0.20338 99
1998|June EM SeaWiFS yes chlorophyll 0.0348888 0.232379 0.144808 100
1998June WMCC SeaWiFS yes chlorophyll 0.0521883 -0.702058 -0.368161 21
1998|June WB SeaWiFS yes chlorophyll -0.351755 -0.607253 -0.372681 74
1998|June EMCC SeaWiFS yes chiorophyll 0.0359472 0.364365 0.26789 24
1998|June JB SeaWiFS yes chlorophyll -0.212851 0.261372 0.252916 34
1998{June BF SeaWiFS yes chlorophyil 0.288237 -1.52096 -0.609912 11
1998|June SS SeaWiFS yes chlorophvll 0.190817 -1.94742 -0.388209 7
1998|July All GOM SeaWiFS no chiorophyll 0.691202 0.234914 0.244994 360
1998|August |All GOM SeaWiFS no chlorophyll 0.784794 0.528756 0.468884 362
2000|May All GOM SeaWiFS no chlorophyil 1.17323 -0.0410191 -0.113785 | 242
2000}June All GOM SeaWiFS no chlorophyll 2.14989 0.931911 0.287776 218
2000}June All GOM temperature yes Alexandrium 3.70352 -0.204135 -0.334631
2000{June WM temperature yes Alexandrium 2.65223 -0.119 -0.184324
2000|June EM temperature yes Alexandrium 3.64005 -0.179827 -0.308672
2000{June WMCC temperature yes Alexandrium -0.14044 0.158771 0.359479
2000{June WB temperature yes Alexandrium 4.22551 -0.260758 -0.347609
2000|June EMCC temperature yes Alexandrium 0.456696 0.212936 0.29133
2000{June JB temperature yes Alexandrium 5.94542 -0.425413 -0.695998
2000}June BF temperature yes Alexandrium -0.367326 0.0752527 0.480273
2000}June SS temperature yes Alexandrium -2.46364 0.473257 0.771807
1998|June All GOM temperature yes chiorophyil 1.2653 -0.136765 -0.543394
1998|June WM temperature yes chlorophyil 1.0471 -0.120326 -0.51577
1998|June EM temperature yes chlorophyll 1.14057 -0.117777 -0.409644
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441

Year

Month

Area

X

LOG?

Y

Y-intercept

Slope

r-value

1998

June

SS

temperature

yes

fluorescence

-0.356878

-0.0406263

-0.674872




Appendix G

ALEXANDRIUM AND THE EMCC RESULTS
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