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Fisheries research on the green sea urchin in Maine has been limited despite its 

importance to the state's fishing industry. The objective of this thesis was to generate 

critical information for the management and monitoring of the Maine green sea urchin 

fishery. In particular there are three main areas of interest: (1) an investigation of 

biological reference points; (2) spatial analysis and biomass estimation, and (3) the 

development of a simulation framework approach to determine an optimal sampling 

strategy for the fishery-independent survey program. 

Biological reference points are markers conlrnonly used to monitor and manage 

fisheries. For the Maine sea urchin fishery, no biological reference point had been 

estimated as a management target, which made it difficult to determine the status of the 

stock and develop appropriate management plans. The purpose of this study was to 

investigate if Fo., and Fmax are appropriate management targets for the Maine sea urchin 

fishery and how uncertainties associated with them affect their suitability as management 



targets. A Monte Carlo simulation approach was used with fishery-dependent data to 

estimate uncertainties in the biological reference points FOJ and Fmx. F O . ~  was considered 

a more suitable as a management target than Fmx because it is precautionary, more robust 

to estimation uncertainty and usually well defined. Current fishing mortality was greater 

than Fo,, for all tested variations; in other words, the stock is overfished. 

Estimates of exploitable biomass and current exploitation rate are essential for 

determining the current status of the sea urchin stock. With the onset of a fisher- 

independent survey program, it became possible to conduct a stock assessment that 

incorporates spatial variability. The objective of this study was to investigate the large- 

scale spatial patterns in sea urchin abundance to estimate the fishery's exploitable 

biomass. Triangulated irregular networks (TINS) were used to characterize the large- 

scale patterns in the fishery-independent density data by size category and depth. 

Exploitable biomass estimates were almost identical to estimates calculated using a 

length-structured fisheries population dynamics model on fisheries-dependent data, 

providing independent validation of the estimates. 

The 2001 pilot study for the fishery-independent survey program was extensive, 

time-consuming and costly, and needed to be optimized to ensure its feasibility as a long- 

term scientific survey. The high degree of spatial variability in sea urchin abundance, 

however, prevented us fiom using standard optimization techniques, such as traditional 

statistics or even geostatistics. Kernel estimation and computer simulations were 

combined to create a framework for survey optimization. Optimization must decrease 

sampling intensity, yet produce accurate realizations of the large-scale spatial structure 

and be compatible with the planned statistical analysis. Considering that the sea urchin 



data will continue to be analyzed by traditional and spatial statistics, we chose the 

original fishery-independent survey with a reduction to 10 locations per strata as the 

optimal strategy. 

The research presented in this thesis provides the DMR with essential information 

on the sea urchin stock, suggests new analysis techniques, and recommends a cost and 

time effective plan for collecting quality long-term fishery-independent data. 
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Chapter 1 

INTRODUCTION 

The green sea urchin, Strongylocentrotus droebachiensis, is a benthic echinoderm 

with a wide arctic-boreal distribution (Scheibling and Hatcher 2001). It is most 

commonly found on rocky substrate in the shallow subtidal, but can be found down to 

300111 in depth. The green sea urchin is generally associated with laminarian kelps, but 

destructive grazing can reduce the kelp beds to "barrens" dominated by crustose coralline 

algae. Urchin densities vary considerably by habitat; low densities of cryptic adults occur 

within kelp beds but high densities occur within barrens and feeding fronts. 

The green sea urchin is omnivorous, however, most of its diet consists of 

macroalgae (Scheibling and Hatcher 2001). Laminarian kelps are the primary component 

of the diet and can be in the form of attached fronds, drifting fronds or detritus. Urchin 

aggregations occur primarily because of food availability, leading to the formation of 

feeding fronts (Vadas et al. 1986). Individual growth rates vary considerably due to food 

quality and availability, as well as sea urchin density; therefore, growth is greatest for 

individuals in kelp beds and lowest in urchin barrens. 

The green sea urchin stores nutrients in its gonads year-round prior to the 

production of gametes (Scheibling and Hatcher 2001). The rich gonadal tissue is the 

target for the commercial fishing industry. The urchin populations in Maine reproduce 

and spawn once a year, between February and May ( ~ a d a s e t  al. 1997). There are spatial 

and temporal differences in spawning within the Gulf of Maine. Western populations 

spawn 4 to 6 weeks earlier than eastern ones, whereas, eastern populations spawn for 4 to 



6 weeks longer than western ones. Fertilization is external and the planktotrophic larvae 

can remain in the water column for 4 to 21 weeks (Scheibling and Hatcher 2001). There 

are large-scale recruitment patterns within the Gulf of Maine that correspond to coastal 

circulation patterns and depth. At smaller scales, recruitment is spatially and temporally 

variable and appears to be lower in kelp beds than in barrens. Post-settlement mortality 

rates are higher in fleshy macroalgal habitats, possibly due to higher densities of 

micropredators (McNaught and Steneck 1998) 

The green sea urchin can profoundly alter the rocky subtidal habitat. Destructive 

grazing can transform lush, diverse kelp beds into urchin barrens (Scheibling and Hatcher 

2001). High levels of sea urchin recruitment and low mortality rates, along with high 

levels of algal predation, help to maintain the urchin barren state. Conversely, high levels 

of algal recruitment, along with low levels of sea urchin recruitment and high urchin 

mortality rates, help to maintain the kelp bed state. For these reasons, kelp beds and 

urchn barrens have been considered alternate stable states, and may be locally stable for 

decades (Vavrinec and McNaught 2001). 

Urchin barrens are currently targeted for the sea urchin fishery; however, these 

barrens may be an artifact of the historic fishing industry in Maine. Research has 

suggested that an anthropogenic release in predation on sea urchins, due to intensive 

fishing on lobster and predatory fishery, may have allowed the development of high- 

density feeding fronts and barrens (Vadas and Steneck 1995). The large-scale removal of 

urchins through the commercial fishing industry could feasibly shift urchin barrens back 

to kelp beds (Vavrinec and McNaught 2001). In fact, researchers have documented this 



type of habitat switch in eastern portions of the Gulf of Maine, which historically 

received the earliest and heaviest fishing pressure. 

The green sea urchin is an important component of the fishing industry in the state 

of Maine, currently ranking fourth by value. Commercial landings began in the late 

l98O's, quickly reaching a peak of more than 22,000 metric tons in 1993 (Figure 1.1 .). It 

has since experienced a continuous declining trend in yield, with landings of less than 

5000 metric tons in 2001. This decline has been attributed to decreasing stock abundance 

over the last decade (Chen and Hunter 2003). 

Figure 1.1. Commercial landings in metric tons for the Maine sea urchin fishery. 

The sea urchin fishery is managed by the Maine Department of Marine Resources 

(DMR) using a number of management tools, including limited entry, opportunity days 

and minimum (52mm) and maximum (76mm) size limits. The fishing grounds are 

divided into two management zones based on spatialhemporal variations in spawning, in 



which management differs only by fishing seasons (Vadas et al. 2002) (Figure 1.2.). 

Fishery-dependent data, including landings and catch size compositions, have been 

collected by the DMR since the commercial fishery started. This information has formed 

the basis of subsequent management decisions. A fisheries-independent survey program 

commenced in 2001 and provides annual estimates of abundance, spatial distribution and 

population structure for the green sea urchin stock along the coast of Maine. 

+ + + + + S +  

0 30 80 90 Miles 

Figure 1.2. Management zones for the Maine sea urchin fishery. 



The objective of this research is to utilize the fishery-dependent data and the fishery- 

independent survey to generate critical information for the management and monitoring 

of the Maine green sea urchin fishery. In particular there are three main areas of interest: 

(1) an investigation of biological reference points, (2) spatial analysis and biomass 

estimation, and (3) development of a simulation framework approach to determine an 

optimal sampling strategy for the fishery-independent survey program. A determination 

of the sea urchin stock status demands an estimate of the current stock biomass as well as 

target fishing rates. The best way to gather this information is from a carefully designed 

fishery-independent survey program. However, if the annual survey places an unrealistic 

burden of time and cost on fishery managers, it is less likely to continue over the years. 

Fisheries research on the green sea urchin in Maine has been limited despite its 

importance to the state's fishing industry. This research is of critical importance to the 

DMR because it provides essential information on the sea urchin stock, as well as a cost 

and time effective plan for collecting quality long-term fishery-independent data. 



Chapter 2 

INCORPORATING UNCERTAINTY INTO THE DEVELOPMENT OF 

BIOLOGICAL REFERENCE POINTS Fo., and F,,, 

Chapter Abstract 

The first formal stock assessment of the Maine green sea urchin fishery was 

conducted in 2001; however no biological reference points have been developed to 

monitor and manage the fishery. The purpose of this study is to investigate if F0.l and 

Fmx are appropriate management targets for the Maine sea urchin fishery and how 

uncertainties associated with them affect their suitability as management targets. A yield 

per recruit model is developed with parameters derived in the 2001 stock assessment to 

estimate F,,x and F0.l. Using a Monte Carlo simulation approach, we estimate 

uncertainties of F0.1 and Fmx. This study suggests that F0.1 is more suitable as a 

management target than Fmx for the Maine sea urchin fishery because it is precautionary, 

more robust to estimation uncertainty and usually well defined. Since different biological 

reference points indicate different aspects of the fish stock structure and may result in 

different conclusions on the fishery status, we suggest that further investigations into 

other reference points be conducted before final selection and implementation of a 

management target for the Maine sea urchin fishery. 

Introduction 

The first formal stock assessment of the Maine green sea urchin fishery was 

conducted in 2001 (Chen and Hunter 2003). This study used fishery data and urchin life 



history parameters estimated independently fi-om scientific studies to assess the 

population dynamics of the Maine urchin stock. A robust Bayesian approach was used 

with a length-based stock assessment model to determine current and historical stock 

biomasses and exploitation rates. Determining the current status of the Maine urchin 

stock, however, requires a comparison of the current stock biomass and/or exploitation 

rate estimated in the stock assessment with a biological reference point. 

Biological reference points are markers commonly used to monitor and manage 

fisheries (Hilbom and Walters 1992). They perform three main functions: (1) 

management target; (2) management threshold; and (3) management limit. A 

management target is a reference point that is aimed for, and can be either a rate, such as 

fishing mortality, or an absolute target, such as spawning stock biomass. Threshold and 

limit reference points represent maximums that if reached necessitate action to enhance 

the stock and rebuild stocks fi-om over-exploitation (Jennings et al. 2001). 

For the Maine sea urchin fishery, although the current stock abundance and 

exploitation rate were derived in the 2001 stock assessment (Chen and Hunter 2003), no 

biological reference point had been estimated as a management target, which made it 

difficult to determine the status of the stock and develop appropriate management plans. 

For a given fishery, biological reference points can be determined through a 

variety of means, such as a yield-per-recruit (YPR) analysis, a stock-recruitment model, 

or a production model (Jennings et al. 2001). Different biological reference points 

represent different aspects of the fish stock structure and may result in different 

conclusions on the fishery status. Fo,, and Fmx are biological reference points derived 

from YPR models. Fmx corresponds to the fishing mortality that results in the highest 



YPR and is often considered a management target (Ricker 1975). F0.1 is always less than 

F,,, and corresponds to a fishing mortality beyond which increases in fishing effort 

produce marginal increases in YPR values (Rivard and Maguire 1993). Even though the 

designation of F O . ~  was not based on theoretical grounds, there are a number of benefits of 

using as a management target instead of higher fishing mortalities such as Fmx 

(Deriso 1987). Since F0.l corresponds to a lower YPR value, overexploitation of the 

stock is less likely to occur when a YPR model is not well parameterized. Thus using F0.1 

as a management target is consistent with the precautionary management strategy 

proposed by FA0 (Food and Agriculture Organization 1995). F0.l usually can be well 

defined, whereas Fmx, on the other hand, can be difficult to define or even indefinable. 

Finally, F0.l is less sensitive than Fmx to changes in model parameters, especially when 

YPR curves have a poorly defined Fmx Wvard and Maguire 1993). Fo., is regarded as a 

more appropriate management target (Mace 1994), compared with F,,, and has been 

widely used in management of many fisheries in the world (Quinn and Deriso 1999; 

Restrepo 1999). In this study we evaluate the status of Maine sea urchin stock by 

comparing current fishing mortality in the urchin fishery with Fo.1 and Fmx as biological 

reference points and discuss the suitability of using F0.1 and Fmx as a management target 

in managing the Maine sea urchin stock. 

Regardless of which biological reference point is chosen, there are uncertainties 

associated with the process and model that can have large effects on the estimation of 

biological reference points, and subsequently on the status assessment of a fish stock 

(Helser et al. 2001; Chen and Wilson 2002). The importance of incorporating 

uncertainties in fisheries advice has been well noted in recent literature (e.g. Hilborn and 



Walters 1992; Restrepo 1999; Mace 2001). Uncertainty originates from various sources. 

Francis and Shotton (1997) reviewed the literature and summarized six types of 

uncertainties: process, observation, model, estimation, implementation and institutions, of 

which, the first four are most relevant to this study. Process uncertainty arises fiom 

natural variability in populations, such as annual variations in recruitment. Observation 

uncertainties occur because of measurement and sampling errors associated with 

sampling programs. Model uncertainty arises from the "lack of complete information on 

the population and community dynamics of the system" (Fogarty et al. 1996). Estimation 

uncertainty is caused by the choice of statistical approach used for parameter estimation 

(Francis and Shotton 1997). In this study we evaluate how uncertainties in parameters of 

the YPR model may affect the estimation of F0.1 and Fmx for the Maine sea urchin 

fishery. 

The inclusion of uncertainties in stock assessment is important to prevent 

erroneous conclusions about the status of the fish stock (Smith et al. 1993). However, 

few studies have investigated how uncertainty in both current fishing mortality/biomass 

and biological reference points may affect the assessment of stock status. Helser et al. 

(2001) and Chen and Wilson (2002) demonstrated that uncertainties in both current 

fishing mortality and biological reference points could have a large impact on the status 

assessment of a fishery. High uncertainty makes it more difficult to conclude that a stock . 

is overfished (Chen and Wilson 2002). 

In this study, we estimate F0.1 and Fmx and evaluate the uncertainty associated 

with them for the Maine sea urchin stock, and then compare them with fishing mortality 

rate and its associated uncertainty estimated in the 2001 sea urchin stock assessment. 



Such a study will provide us with insights on suitability of using Fo., and Fmx as 

management targets for the Maine sea urchin stock, and help gauge the current status of 

the Maine sea urchin stock. 

Materials and Methods 

Estimation of Foal and FmaX and their associated uncertainties 

The commonly used discrete YPR model can be written as 

where Y is the attained yield, t~ is the age of entry into the fishery, and tA is the maximum age of 

fish that still contribute to 'the fishery. D, is the proportion of fish caught at age t that are 

discarded at sea. W, is the weight of fish at age t, and is commonly calculated as 

(2) W ,  = a ~ !  

where a and b are two parameters to be estimated. L, is the length at age t, and is often related to 

age through a growth function. In many studies, the relationship between length and age is 

described by the von Bertalanffy growth hction,  

(3) Lt = L, (1 - e-K(t- t~)  ) 9 

where L, is defined as the average asymptotic length an organism may attain, K is the Brody 

growth parameter describing how fast organisms approach to L,, and to is a hypothetic age at 

length of 0 (Ricker 1 975). 

Given mortality rates and selectivity coefficients, catch-at-age C, can be calculated from 

the catch equation as 



where St is the selectivity coefficient for fish of age t, F is the fishing mortality for fully recruited 

fish, M is the natural mortality rate, and Nt is the number of fish still alive at the beginning of age 

t. The relationship between recruit R (i.e. number of fish at the beginning of age tR) and Nt is 

given by 

Thus, the attained YPR value can be calculated from equations (1) to (5) as 

Parameters L,, K, to, a, and b in equation (6), obtained from the 2001 sea urchin stock 

assessment (Chen and Hunter 2003), are 100,O. 1006, 1.0019, and 2.6234, respectively. 

The selectivity and discarding parameters were set with hfe-edges at the 

minimum legal size limit, with the selectivity at 100% and discarding at 0% once urchins 

have recruited to the fishery. Natural mortality, M, was set at 0.147, which is consistent 

with natural mortality estimated for the Maine sea urchin in management zone 1. 

Fmx is estimated by taking the derivative of Y/R with respect to fishmg mortality 

in equation (6) as. 

By definition, Fo.l is the instantaneous rate of fishing mortality where the slope of the 

yield per recruit F is 10% of the maximum slope which is at F=O. Thus, it can be 

estimated from the following equation: 



Fmx and Fo.1 estimated fiom equations (7) and (8) are deterministic estimates. To 

estimate uncertainties associated with them, we used a Monte Carlo simulation approach 

described in Chen (1 996) to incorporate variability in parameters of the YPR model. This 

approach involves simulating a large number (say N) of size-at-age and weight-length 

data with a given level of variation, using these simulated data in equations (2) and (3) to 

estimate N sets of parameters in equations (2) and (3), and then using the N sets of 

simulated parameters in equation (6)  to estimate N sets of Fmx and Fo.l. Detailed 

description is described in Chen (1996) and Chen and Wilson (2002). 

In this study three scenarios were simulated with varying levels of variation in 

simulating the length at age and weight at age data. For the base scenario (II), the 

standard deviation for length at age data was set at 0.25, and 0.1 5 for the weight at age 

values, which we considered to be a medium level of uncertainty (Table 2.1 .). The other 

two scenarios, high variation (LII) and low variation (I), have higher and lower variation 

than the base scenario, respectively. For each scenario, 300 sets of observed lengths and 

weights were simulated for each age category in the analysis. 

The parameters in the von Bertalanffy growth equation and the length-weight 

relationship were then estimated using non-linear estimation. Parameters are fit to each 

set of observed length at age and weight at length data. A nonlinear least squares (NU) 

analysis was conducted to estimate parameters in equations (2) and (3). If the estimation 

was converged in the NLS, the program outputted the parameter estimates and repeated 



the process on the next set of length at age and weight at length data. If the estimation 

did not converge, the NLS skipped to the next set of data. 

Table 2.1. Summary of the scenarios incorporating variation into the fishery data for the 

simulation study. 

Scenario I Scenario I1 Scenario I1 

Low Variation Medium Variation High Variation 

STD for length at 0.15 

age values 

STD for weight at 0.10 

age values 

Variability in natural mortality M was found to follow lognormal distribution as 

M = Me", where E c N (0, 02). a is the mean value (i.e. 0.147) estimated in the stock 

assessment (Chen and Hunter 2003), and E is the error term following normal distribution 

with a mean of 0 and standard deviation of o ,  which was estimated to be 0.1 in the stock 

assessment. Three hundred simulation runs were conducted and for each run F,, and 

Fo., were estimated using equations (7) and (8) The probability distributions of Fmx and 

Fo,, were estimated fiom the resultant estimates. The procedure is graphically 

represented in a flowchart diagram (Figure 2.1 .). 
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Figure 2.1. Flowchart diagram of the simulation method used to calculate probabilistic 

estimates of the biological reference points Fo., and F,,. 



Comparison of the current fish in^ mortality with F,,, and Fo.l 

An empirical distribution of current exploitation rate for the Maine sea urchin 

fishery was estimated in the 2001 stock assessment (Chen and Hunter 2003). To 

determine if the stock was being over-fished, traditional methods would simply compare 

the current fishing mortality (Fcur) with a biological reference point, such as Fo.J. 

However, to incorporate uncertainty in both current fishing mortality and biological 

reference point in the decision-making process, we must compare their empirical 

distributions. One method to incorporate uncertainty is to determine the probability that 

FCu>Fo.l at a given decision confidence level (Helser et al. 2001; Chen and Wilson 2002) 

(Figure 2.1). The decision confidence level is synonymous with the one tailed 

probability of the empirical probability distribution for Fo.~.  Therefore, a decision 

confidence level of 90% corresponds to an F-value at which 90% of the area under the 

Fo .~  (Target) probability distribution is to the left of that value (Figure 2.2.a.). We can 

then determine the probability that Fcur is greater than that F-value by tallying the area 

under the Fcur distribution that is to the right of the F-value. Detailed description on this 

approach was described in Helser et al. (2001) and Chen and Wilson (2002). Since each 

decision confidence level corresponds to a probability, P(FCu>Fo,~), we can generate a 

probability profile (Figure 2.2.b.). The probability profile provides fisheries managers 

with a means to assess current stock status inclusive of uncertainties in both the indicator 

(i.e. Fcur) and management reference points. 
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Results 

From the 2001 stock assessment, the median estimate of current exploitation rate 

for the Maine sea urchin fishery was calculated at 0.371 (Chen and Hunter 2003). The 

exploitation rate was converted into an instantaneous fishing mortality rate, with a 

probability distribution ranging fiom 0.20 to 1.30 and a median at 0.46 (Table 2.2.). This 

rate can be compared with estimates of biological reference points to gauge the stock 

status. 

Table 2.2. Summary statistics for F O . ~  and Fmx estimated in the simulation study and for 

the Fcur obtained fiom the urchin stock assessment (Chen and Hunter 2003). 

Scenario Min Max Mean Median CV Count 

Fo. 1 1 -low variation 0.121 0.235 0.161 0.160 0.118 290 

2-medium variation 0.126 0.328 0.169 0.166 0.148 2 10 

3-high variation 0.119 0.230 0.161 0.159 0.118 236 

Fmx 1 -low variation 0.154 0.993 0.465 0.442 0.305 290 

2-medium variation 0.148 1.354 0.445 0.428 0.369 210 

3-high variation 0.152 1.018 0.460 0.443 0.315 236 

Fcur 0.197 1.29 0.486 0.464 0.263 2495 

A YPR analysis was conducted and produced deterministic estimates of Fmx and 

Fo., at 0.447 and 0.148, respectively (Figure 2.3.). 
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Figure 2.3. Yield per recruit vs. fishing mortality with no variations incorporated in the 

length-at-age and weight-at-length data, the deterministic estimates of Fmx and F0.1 are 

0.447 and 0.148, respectively. 

The three scenarios simulated to determine probabilistic estimates were identical 

except for the variation incorporated into the length at age and weight at length data. The 

probability distributions for the estimated von Bertalanffy and weightllength parameters 

illustrate these incorporated variations (Figures 2.4,2.5. and 2.6.). Scenario I1 represents 

medium variation and had a Fo,1 probability distribution ranging from 0.13 to 0.33 with 

the median at 0.17 (Table 2.2.). F0.1 and Fcur distributions were substantially different 

with only a slight overlap (Figure 2.7.). Since the distributions differ greatly, there is 

little variation in P(Fcu>Fo,l) over most confidence levels. P(Fcu>Fo,l) remained 1 .OO for 

all confidence levels up to a 100% decision confidence level, where it dipped down to 

0.94. The Fmx distribution for scenario I1 was very similar to the Fcur distribution, 

ranging from 0.15 to 1.35, with a median at 0.43 (Table 2.2. and Figure 2.8.). The 



probability profile suggests that the probability that current fishing mortality is greater 

than Fmax varies considerably with confidence levels. For example, at the 50% decision 

confidence level, P(Fcu>Fm) was 0.64, but as confidence level increased to loo%, the 

probability decreases to 0. 

F0.1 and Fmx probability distributions were similar for all three scenarios, with 

comparable means and medians, which were also similar to the deterministic estimates 

(Table 2.2.). The range of values and the presence of outliers did vary with scenario. 

Probability distribution for the high and low variation scenarios were similar to the base 

scenario in that the distribution of current fishing mortality is distinctly different than Fo. 1. 

In scenario I, the lower variation in length at age and weight at length values resulted in 

less variation in F0.1 and Fmx. The F0.1 probability distribution did not overlap with Fcur 

(Table 2.2. and Figure 2.9.). Since Fcur was always greater than Fo.J, P(Fcu>Fo,l) 

remained at 1 .OO for all decision confidence levels. Similar results were obtained for 

scenario 111, despite a higher variation in the YPR analysis. The Fo .~  probability 

distribution for scenario I11 had a lower standard deviation and smaller range than 

scenario I1 (Table 2.2 and Figure 2.10.). Probability distributions of Fmx for the low and 

high variation scenarios were similar to Scenario I1 (Figures 2.8., 2.11 and 2.12.). 

Summary statistics for the Fmx distribution for all three scenarios were very similar, and 

overlapped considerably with Fcur. This translated into similar probability profiles, in 

which P(Fcu>Fmx) varies with decision confidence levels, from 1 .OO at 0% down to 0 at 

100% decision confidence level reaches (Figures 2.7., 2.8. and 2.9.). 



Figure 2.4. Probability distributions of the estimated parameters used in the low-variation 

scenario (I): Top and middle rows, estimated VBGF parameters; bottom row, estimated 

weightllength parameters. 



Figure 2.5. Probability distributions of the estimated parameters used in the medium- 

variation scenario (11): Top and middle rows, estimated VBGF parameters; bottom row, 

estimated weightllength parameters. 



Figure 2.6. Probability distributions of the estimated parameters used in the high- 

variation scenario (111): Top and middle rows, estimated VBGF parameters; bottom row, 

estimated weightflength parameters 
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Figure 2.7. Simulation summary of the probabilistic estimate of Fo .~  for the medium- 

variation scenario (11): Top panel, probability distribution of Fo.~;  bottom panel, 

probability profile specifying the P(Fcu>Fo.l) for varying decision confidence levels. 
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Figure 2.8. Simulation summary of the probabilistic estimate of Fmx for the medium- 

variation scenario (11). Top panel, probability distribution of Fmax; bottom panel, 

probability profile specifying the P(Fcu>Fmx) for varying decision confidence levels. 
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Figure 2.9. Simulation summary of the probabilistic estimate of Fo., for the low-variation 

scenario (I). The layout is the same as in Figure 2.7. 
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Figure 2.10. Simulation summary of the probabilistic estimate of Fo., for the high- 

variation scenario (111). The layout is the same as in Figure 2.7. 
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Figure 2.1 1.  Simulation summary of the probabilistic estimate of Fmx for the low- 

variation scenario (I). The layout is the same as in Figure 2.8. 
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Figure 2.12. Simulation summary of the probabilistic estimate of Fmx for the high- 

variation scenario (111). The layout is the same as in Figure 2.8. 



Discussion 

The 2001 stock assessment determined a probabilistic estimate of the current 

fishing mortality for the Maine sea urchin fishery, although no biological reference points 

had been derived. Therefore, without management targets or limits it is difficult to gauge 

the status of the sea urchin stock. In this study we investigated the use of Fo., and Fmx as 

biological reference points in this fishery. Specifically, we were interested in how 

uncertainty in model parameters affects these reference points and the implications they 

have in assessing the stock status. 

Fmax corresponds to the fishing mortality that results in the highest W R ,  and has 

been historically used as a management target (Ricker 1975). However, Mace (1994) 

demonstrated that Fmx might not be ideally suited as a management target. Specifically, 

she found that Fmx tended to exceed F,, (fishing mortality that yields maximum 

sustainable yield), which calls into question its desirability as a management target. 

Therefore, since Fmx may be too high for a target, it has been suggested for use as a 

management threshold (Mace 1994). However, F,,'s capacity as a management 

threshold is often limited because it is sensitive to variations in model parameters and it 

can be difficult to define or even indefinable (Rivard and Maguire 1993). Fmx becomes 

indefinable when the instantaneous rate of growth exceeds the instantaneous rate of 

natural mortality (Mace 1994). In this situation, F,, is useless as a biological reference 

point, leaving the stock status assessment in ambiguity. F,, estimates can also be 

sensitive to variations in W R  analysis. In this study, the coefficient of variance was 

nearly three times greater for F,, than Fo,, (Table 2.2.). We conclude that Fmx should 



not be used as a management target biological reference point, and may not be a reliable 

management threshold biological reference point for the Maine sea urchin fishery. 

F0.1 appeared to be a more rational choice as a management target for several 

reasons. First, F0.1 corresponds to a fishing mortality where increases in fishing intensity 

result in marginal increases in YPR. This means that F0.1 is always less than Fmx, and 

has comparatively lower YPR values. Therefore overexploitation of the stock is less 

likely to occur when using Fo.,, which is consistent with the FA0 precautionary approach 

to fisheries management (Food and Agriculture Organization 1995). Second, Fo. is more 

robust to uncertainties in model parameters than F,, especially when YPR curves are 

poorly defined (Rivard and Maquire 1993). In this study, the coefficient of variations 

was much greater for F,,, than F0.1, although we did not observe significantly greater 

variability in Fmx as parameter variation increased (Table 2.2.). This may be partly due 

to the non-linear estimation techniques used to estimate F0.1 and F,. The high variation 

scenario (111) had the highest variability in model parameters, which may have been more 

difficult to converge to a global minimum. This may explain why CV's for Fo., and Fmx 

in scenario 111 are comparable to the low variation scenario (11). Third, F0.1 is usually well 

defined and has been used extensively as a management target in other marine fisheries 

(Quinn and Deriso 1999). For these reasons we believe that Fo., is better suited to serve 

as the management target than F, for the Maine sea urchin fishery. 

Uncertainty in model parameters can have a large impact on the estimation of 

biological reference points (Helser et al. 2001; Chen and Wilson 2002). By incorporating 

uncertainties into both the stock assessment and biological reference points, we can 

investigate their combined effects on the stock status assessment. To achieve this we 



have used probability profiles, which present the current stock status inclusive of 

uncertainties in both the indicator and management reference points. Despite the 

variability in F0.1 and F,, estimates caused by the uncertainty in model parameters, the 

probability profiles did not change substantially between scenarios (Figures 2.7., 2.8., 

2.9., 2.1 O., 2.1 1. and 2.12.). Our interpretation of the stock status remains consistent with 

all levels of uncertainty. - In all three scenarios, P(Fcu>Fo,l) remains at 1 .OO for virtually 

all decision confidence levels. Therefore, we can conclude that the current fishing 

mortality is greater than the estimated F0.1 for all tested variations. It is important to 

remember that biological reference points can be derived fiom a number of different 

models. Therefore the conclusions drawn fiom their use must be placed in context with 

their respective models. 

This study is a preliminary investigation into the development of biological 

reference points for the Maine sea urchin fishery. We chose to use YPR analysis because 

it incorporates the effects of age of recruitment, natural mortality and growth rate and 

produces biological reference points that are widely used and accepted in marine fisheries 

management. Nonetheless, since other biological reference points represent different 

aspects of the fish stock structure and may result in different conclusions on the fishery, 

extensive studies into other models should be conducted before final selection and 

implementation of a biological reference point for monitoring and managing the Maine 

sea urchin fishery. 



Chapter 3 

ESTIMATING EXPLOITABLE STOCK BIOMASS USING A SPATIAL 

STATISTICS APPROACH 

Chapter Abstract 

The first formal stock assessment for the Maine green sea urchin fishery was 

conducted in 200 1 using fisheries-dependent and biological data. The annual fishery- 

independent survey program was established in 2001 to provide spatially referenced 

fisheries-independent information. The objective of this study was to investigate the 

large-scale spatial patterns in sea urchin abundance to estimate the fishery's exploitable 

biomass. Triangulated irregular networks (TINs) were used to linearly interpolate urchin 

densities, characterizing large-scale patterns. The resulting density surfaces were 

modified to only include areas of the appropriate substrate type and depth zone and were 

used to calculate total biomass. Exploitable biomass was calculated as the total weight of 

legal-sized urchins that are at a density (1 0 urchins m-2) high enough to be attractive to 

fishermen. Exploitable biomass was estimated at 5878 and 7101 metric tons for 

management zones 1 and 2, respectively. These estimates are almost identical to 

estimates calculated using a length-structured fisheries population dynamics model on 

fisheries-dependent data. We conclude that TINs are useful for stock biomass estimation 

in the green sea urchin fishery. 



Introduction 

The first fomal stock assessment for the Maine green sea urchin fishery was 

conducted in 2001 (Chen and Hunter 2003). Fishery-dependent data and urchin life 

history parameters were used to assess the population dynamics of the Maine urchin 

stock. A length-based stock assessment model was used with a Bayesian approach to 

determine current stock biomass and exploitation rate. The study estimated that the 

current stock biomass was extremely low, about 10% of the virgin biomass. 

Data sampling technique has a large impact on the quality of the stock 

assessment. The quality of fishery-dependent data is more questionable than fishery- 

independent data and its sole use in stock assessments may lead to large uncertainty or 

even bias (Hilborn and Walters 1992). Only fishery-dependent data were available for 

the first stock assessment (Chen and Hunter 2003), however in 2001 the DMR began an 

extensive fishery-independent survey program. This large, spatially referenced, scientific 

data set can be used in both traditional stock assessments and in those incorporating 

spatial analysis techniques. 

Scientists have realized the importance of incorporating spatial variability into 

stock assessments and have adapted a number of spatial analysis techniques to explore 

spatial trends and to estimate or predict stock abundances. Moving averages, kernel 

estimation, spline methods, and tessellation are all spatial analysis techniques that can be 

used to estimate spatial patterns of population abundance (Ripley 1981 ; Bailey and 

Gatrell 1995). 

Spatial statistics or spatial analyses are employed to model first and second order, 

or large and small-scale, spatial variability of a variable in order to estimate the value at 



unobserved locations (Bailey and Gatrell 1995; Petitgas 2001). Intrinsic second-order 

methods, along with kriging, have become the most popular geostatistical tools and are 

now commonly used to estimate exploited fish stock biomass (e.g., Simard et a1 1992; 

Pelletier and Parma 1994; Maravelias 1996; Lembo et al. 1998; Maynou et al. 1998; 

Rivoirard et al. 2000; Petitgas 2001). First, the spatial distribution of the stock cannot be 

affected by the geometry of the region, i.e. the spatial distribution cannot differ near the 

borders of the zone (Petitgas 1993; Bailey and Gatrell 1995; Warren 1998; Rivoirard et 

al. 2000). Second, the process must exhibit some degree of second-order stationarity, or 

spatial dependence, which means that small-scale deviations in variables are similar in 

neighboring sites. If these assumptions are violated, we must use other spatial analysis 

techniques to estimate the spatial patterns. 

Tessellation investigates first-order, or large-scale, spatial variability in a variable, 

meaning it estimates how the mean values vary over a study area (Peucker et al. 1976; 

Ripley 1981 ; Bailey and Gatrell 1995). The triangulated irregular network (TIN), or 

Delauney triangulation, is the simplest and most common tessellation technique for the 

creation of surfaces. The TIN surface consists of contiguous, non-overlapping triangles 

created by linear interpolation of the variable. TINs are most commonly used for 

visualization purposes but have been used to estimate stock biomasses (Simard 1992; 

Guan et al. 1999). 

The objective of this study is to investigate the large-scale spatial trends in green 

sea urchin abundance using spatial analysis techniques in order to estimate biomass of the 

stock. This paper addresses how suitable TINs are for biomass estimation, specifically 

for the green sea urchin fishery. This study can provide the DMR with critical 



information on the sea urchin stock that can aid in the development of future management 

plans and help ensure a sustainable fishery. 

Materials and Methods 

Urchin density and size frequency information were obtained from the 2001 pilot 

study for the State's annual fishery independent survey. The Department of Marine 

Resources sampled 144 sites along the Maine coast using SCUBA. At each site, they 

randomly sampled 90 quadrats (lm2) along a linear transect set perpendicular to shore. 

Sampling intensity was equally divided amongst three depth zones: 0-5m, 5- 1 Om, and 10- 

15m. At each site, size frequency data were obtained by subsampling one quadrat per 

depth zone, in which test diameters were measured for all individuals in the quadrat. In 

the 15-40 m depth zone, an additional 148 sites were sampled using a video camera that 

recorded 10 quadrats (0.5m2) at each site. Due to the low urchin densities, test diameters 

were measured for all recorded urchins. Mean urchin density values were calculated for 

each site (n=292), and by depth zone within each site (n=580). 

Five test diameter categories were created to more accurately represent the wide 

range of individual urchin weights. The categories were based on the State's minimum 

and maximum size restrictions, allowing us to separately estimate the biomass of urchins 

that have not yet recruited to the fishery, urchins within the fishery, and urchins that have 

escaped the fishery. Urchin density values were scaled by the size frequency data, to 

generate urchin density values for each size category. Weight per urchin was calculated 

based on the mean length of the category using a length-weight relationship (Scheibling 

et al. 1999). 



Representations of the large-scale trends in sea urchin density were created using 

the TIN method (Arcview 3.2a, 3D and Spatial Analyst Extensions). TIN surfaces were 

generated for 40 different scenarios, according to the size category, depth zone and 

management zone (Figure 3.1). The surface was then modified to only include areas of 

the appropriate depth and substrate type, using a customized C++ program. A map of 

surficial geology was used to identify areas of urchin habitats predominately including 

gravel or rock substrate (Kelley et al. 1999) (Figure 3.2). Digital gridded bathymetry 

data with 15 arc second resolution were used to create a plot of 5m isoline contours 

(Figure 3.3). This data source consists of digital bathymetry datasets fiom sources such 

as NOAA and the Naval Oceanographic Office (Roworth and Signell 2002). Modified 

urchin density plots were created for each scenario (Figure 3.4). The volume beneath the 

modified TIN surface was calculated, based on Riemann sums, and multiplied by the 

mean weight to determine total urchin biomass for each scenario. Fishable biomass is 

defined as the biomass of all legal sized urchins, and is simply the subset of the total 

biomass corresponding to legal sized urchins. Exploitable biomass was calculated by 

incorporating a threshold, or cut-off, density value for legal sized urchins, so volume was 

calculated only for areas with more than 10 urchins mJ. This value was considered as 

the minimum density that could attract fishermen to fish in the urchin fishery. Estimation 

uncertainty was estimated using cross validation (n=60), which involves randomly 

removing sites and then modeling the process to calculate residuals. Urchin biomass 

values for depth zones and management zones were calculated based on the arithmetic 

mean to provide comparisons to the spatially derived estimates. Exploitation rates, or the 

ratio of commercial landings for the 2000-2001 fishing season to the exploitable biomass 



estimates, were calculated to facilitate comparison to the results generated from a 

tradi tionai stock assessment (Chen and Hunter 2003). 

Figure 3.1. Plot of the urchin density surface for 50-65 mm urchins within the 0-5 m 

depth zone for the Mt. Desert Island area, in management zone 2, created using a 

triangulated irregular network (TIN). 



Figure 3.2. Plot of rock and gravel substrate within 40 m depth for the Mt. Desert Island 

area, in management zone 2. 



Figure 3.3. Plot of bathymetry (in meters) for the Mt. Desert Island area, in management 

zone 2, showing the 4 depth zones used in this study. 



Figure 3.4. Plot of urchin densities for 50-65 rnm urchins within the 0-5 m depth zone for 

the Mt. Desert Island area, in management zone 2. This plot was created by limiting the 

original triangulated irregular network (TIN) (Figure 3.1 .) to areas of rocWgrave1 

substrate (Figure 3.2.) within the 0-5 m depth zone (Figure 3.3) 



Results 

Sea urchin densities per m2 and standard deviations varied by survey strata, being 

lowest in the western strata and highest in the eastern one (Table 3.1 .). Average site 

densities had a mean number of 4.93 and were highly skewed to the right, with a 

skewness coefficient of 7.21 (Figure 3.5.). Mean density was similar for the three 

shallow depth zones with approximately 9.50 urchins m'2, however the 1 5-40m zone was 

substantially less with 0.32 urchins m-2. Urchin diameters varied from 8 mm to 114 mm 

with a mean at 35.90 mrn (Figure 3.6.). 

Table 3.1. Descriptive statistics for quadrat density counts (m-2) by management zone and 

survey strata 

Zone Stratum Density St Dev Density Density N 

Mean Min Max 

1 1 0.17 1.62 0 3 6 1706 

1 2 2.57 10.63 0 130 1600 

1 3 3.20 1 1.29 0 141 1580 

2 4 4.20 14.13 0 180 1490 

2 5 4.24 12.52 0 127 1580 

2 6 10.06 17.59 0 147 1530 

2 7 7.90 13.85 0 113 1498 

2 8 13.50 20.38 0 113 1570 

2 9 34.45 44.03 0 280 1540 
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Figure 3.5. Histogram of urchin density values per m2 for all sites, excluding one outlier 

with 174 urchins m-2. 
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Figure 3.6. Histogram of urchin test diameters for all sampled quadrats. Dashed lines 

delineate the 5 size categories. Mean density is 35.90rnn-1, with category mean densities 

of 18.5,39.25, 55.35,70.59, and 86.30mm. 



Total sea urchln biomass was estimated at approximately 250,000 metric tons, in 

which over 80% was found in management zone 2 (Table 3.2.). Half of the total biomass 

was found in the 0-5m depth zone in management zone 2 (Figure 3.7.). The majority of 

the estimated total biomass was comprised of 50-80 mm and 39-64 mm urchins for 

management zones 1 and 2, respectively (Figure 3.8.). Fishable biomass was estimated at 

approximately 165,000 metric tons (Table 2.2.). The majority of the fishable biomass in 

each zone was within the 0-5m depth zone, with approximately 75% of the total fishable 

biomass within zone 2 (Figure 3.9.). There was no fishable biomass estimated for the 15- 

40 m depth zone for either management zone. 

Patterns in exploitable biomass by depth differed from the patterns seen in total 

and fishable biomass (Figures 3.7., 3.9. and 3.10.). Over 95% of the fishable biomass in 

management zone 1 was found in the 0-5 m depth zone, which exceeded the 

corresponding estimate for management zone 2. However, the exploitable biomass 

estimate for management zone 2 was higher than zone 1 due to higher biomass estimates 

in the 5-10 m and 10-15 m depth zones. 

The exploitable biomass estimates closely approximated the landings for the 

2000-2001 fishing season (Table 2.2.). Exploitation rates calculated from the exploitable 

biomass estimates were 0.37 and 0.45 for management zones 1 and 2, respectively. Cross 

validation of sea urchin density surfaces estimated a mean residual of 0.50 (median=O, 

standard deviation=1.86, skewness=2.80, n=60). 



Table 3.2. Summary of biomass estimates derived using the TIN method, the arithmqtic 

mean, and a fishery population dynamics approach for 2001, in comparison to the 2000- 

2001 commercial landings. 

Zone 1 Zone 2 Total 

TIN Method 

Total Biomass 45868 204304 2501 72 

Fishable Biomass 39060 126725 165786 

Exploitable Biomass 5878 7101 12979 

Arithmetic Mean 

By Zone 74168 38 1809 455977 

By Zone and depth 24409 24201 7 266426 

Fish. Pop. Dynamics 6550 8452* 15002 

2000-2001 Landings 2148 3213 5361 

* 2000 value 



0-5m 5-1 Om 10-1 5m 1540m 

Depth 

Figure 3.7. Total biomass estimates by depth zone according to management zone. 
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Figure 3.8. Total biomass estimates by sea urchin test diameter according to management 

zone. Urchins between 50 and 80 mrn are legal sized urchins and constitute the fishable 

biomass. 
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Figure 3.9. Fishable biomass estimates by depth zone according to management zone. 

Depth 

Figure 3.10. Exploitable biomass estimates (densities >10 urchins m-*) by depth zone for 

the entire Maine coast. 



Discussion 

The objective of this study was to investigate the large-scale spatial patterns in sea urchin 

abundance to estimate the stock biomass. There are a number of spatial analysis 

techniques available that can generate this type of information. The most widely 

employed spatial analysis technique in fisheries is intrinsic geostatistics, which along 

with kriging can generate precise estimates of biomass based on the small-scale 

variations. 

Intrinsic geostatistics are applicable to spatially auto-correlated processes based 

on two assumptions (Petitgas 1993; Bailey and Gatrell 1995; Warren 1998; Riviorard et 

al. 2000). First, the variable and the region's geometry are independent of one another. 

This cannot be assumed for sea urchin abundance data, which are not independent of the 

study area, but are dependent on the depth and substrate type. Second, there must be 

some degree of stationarity, either strict stationarity or stationarity of increments. The 

sea urchin data are highly skewed and spatially variable; stationarity does not exist so the 

variogram is an unreliable representation of the spatial continuity (Rossi et al. 1992). For 

example, an empirical variogram of site density means shows no spatial correlation 

(Figure 3.1 1 .). There are ways to modify the data to make them more appropriate for 

variogram analysis, such as trend removal, lognormal transformation of data and 

stratification of the region based on variances (Rossi et al. 1992; Simard 1992; 

Maravelias 1996; Riviorard et al. 2000). However, these techniques are labor-intensive 

and provide marginal improvements in the variogram analysis for the sea urchin data. 

Since we cannot assume that the data is appropriate for intrinsic geostatistics, we used 



another spatial analysis technique, triangulated irregular networks, to characterize the 

large-scale spatial patterns in sea urchin abundance. 
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Figure 3.1 1. Sample empirical variogram representing the spatial covariance of average 

urchin density values per site, excluding one outlier with 174 urchins m-*. 

TINs are a simple spatial analysis technique for exploring the spatial variability of 

a process. They have received limited uses in fisheries stock assessment; however, 

because most stocks exhibit some degree of stationarity so intrinsic geostatistics provide 

more precise biomass estimates (Simard 1992; Guan et al. 1999; Bailey and Gatrell 

1995). When sampling locations are relatively evenly spaced, as in the sea urchin 

abundances by depth zones, TINs are a good estimator of the large-scale spatial patterns 

for spatially uncorrelated processes (ESRI 1998; Guan et al. 1999). The technique 

requires no complex statistical decisions, making it an accessible tool for fisheries 

managers (Bailey and Gatrell 1995). However, this technique does not incorporate a 



variance structure into the estimation process, so uncertainty cannot be directly 

quantified. In this study, cross-validation showed that mean residuals of the modified 

density surfaces were greater than zero. This result suggests that there is a global bias in 

the TIN surfaces and that the biomass estimates were likely overestimated (Simard 1992). 

However, exploitable biomass estimates were probably less affected than total biomass 

estimates because the subdivision of abundance estimates by management zones, depth 

zones and size categories minimizes the spatial variability and the impact of outliers. 

Exploitable biomass, not fishable biomass, was uses as an estimation of the stock 

biomass (Table 2.2. and Figure 3.10.). This distinction was necessary because some 

areas incorporated in the estimation technique were not subjected to fishing pressure due 

to geographic isolation or low urchin densities. The exploitable biomass estimates 

accounted for this difference because a threshold density value of 10 urchins m-2 was 

incorporated into the analysis, upon recommendation by fishermen, ecologists and DMR 

fisheries biologists. Areas with densities below the threshold receive negligible 

commercial fishing pressure, and are not incorporated in the biomass estimations. Their 

impacts on the fishery, in particular in their contributions to the recruitment of the 

fishery, need to be assessed in future studies. 

Biomass estimates generated using spatial analysis approaches were similar to 

ones generated using different assessment techniques. Total biomass estimated based on 

arithmetic means, stratified by zone and depth, was comparable to the TIN estimate for 

total biomass (Table 2.2.). Even more significant, the exploitable biomass estimates 

based on TINS were almost identical to ones calculated using traditional stock assessment 

techniques (Table 2.2.). This similarity is evident in the calculated exploitation rates, for 



which spatial analysis estimates (2001) were 0.37 and 0.45 for management zones 1 and 

2, respectively, and the traditional techniques estimates were 0.38 (2001) and 0.57 (2000) 

for the management zones, respectively. These techniques are based on fundamentally 

different theories and the analyses used entirely different data sources; fishery- 

independent data for the spatial analysis assessment but fishery-dependent and biological 

data for the traditional fisheries stock assessment. Despite these differences, the biomass 

estimates and exploitation rates were almost identical. The implications of this lie in the 

status and management of the sea urchin fishery. Stock biomasses and exploitation rates 

can be used to gauge the stock status. The work on biological reference points (Chapter 

2) suggests that current exploitation rates far exceed target reference points, signifying 

that the Maine sea urchin stock is over-fished. The confirmation of the two independent 

assessments not only validates the techniques, but also indicates that we are generating 

good biomass estimates and providing quality information to the stock managers. 



Chapter 4 

A SIMULATION FRAMEWORK FOR ESTIMATING OPTIMAL SAMPLING 

STRATEGIES 

Chapter Abstract 

Fishery-independent surveys are scientific studies that provide essential 

information for stock assessments and for developing appropriate management plans. 

Pilot studies are conducted prior to the start of a survey program, to gain information 

about the spatial distribution of the stock in order to optimize the survey. A pilot study 

for the annual fishery-independent survey program for the green sea urchin fishery was 

initialized in Maine in the summer of 2001. The pilot study was extensive, time- 

consuming and costly, and needed to be optimized to ensure its feasibility as a long-term 

scientific survey. The high degree of spatial variability in sea urchin abundance, 

however, prevented us from using standard optimization techniques, such as traditional 

statistics or even geostatistics. Kernel estimation and computer simulations were used to 

characterize the large-scale spatial density structure of the sea urchin population and 

investigate how different sampling strategies effected realizations of the density structure. 

Since realizations of the large-scale density structure are the vital components of the sea 

urchin stock assessment (Chapter 3), any changes in this structure would dranlatically 

alter the outcome of the assessment. Therefore, we defined an optimal sampling strategy 

as a design that produces realizations of the large-scale spatial structure that are similar to 

the original population while using less sampling intensity than the original sampling 

strategy. Using the original survey strategy, a reduction of sampling intensity to 10 sites 



per strata, or 90 total sites, was optimal because it corresponded to a large decrease in 

effort but only a marginal decrease in precision. However, a regular sampling strategy, 

with approximately 90 grids arranged along the coastline, provided the highest precision 

for the green sea urchin fishery when analyzed solely with spatial statistics. Considering 

that the sea urchin data will be analyzed by traditional and spatial statistics, we believe 

that the original stratified random sampling design reduced to 10 locations per strata is 

the most sensible optimization for the Maine green sea urchin fishery-independent survey 

program at this time. 

Introduction 

Fishery-independent surveys are scientific studies designed to provide biological 

and ecological information on a fish stock (Hilborn and Walters 1992; Jennings 2001). 

They can generate high quality data, with small variances and biases, which are 

representative of the entire targeted fish population. Stock assessments based on fishery- 

independent data have less uncertainty and bias than ones based on fishery-dependent 

data, which are generated from normal fishing activities. Therefore, fishery-independent 

surveys are essential for stock assessments and for developing appropriate management 

plans (Hilborn and Walters 1992). To establish an effective fishery-independent survey 

program, pilot studies should be conducted prior to the start of the survey program in 

order to gain information about the spatial distribution of the stock and to identify 

environmental variables that influence this distribution. The pilot study is then 

redesigned, or optimized, based on the infom~ation collected and on the future analysis 

plan (Andrew and Mapstone 1987; Kitsiou et al. 2001). According to Andrew and 



Mapstone (1987), "Optimization of the design of sampling programmes is achieved by 

determining the most efficient allocation of resources-i.e., minimizing decreases in 

precision andfor resolution imposed by cost or by logistical constraints." 

A pilot study for an annual fishery-independent survey program was initialized in 

the summer of 2001 for the green sea urchin fishery in Maine. The pilot study was 

designed and implemented to provide detailed information on the population structure, 

spatial variability and biological/ecologica1 characteristics of the sea urchin stock along 

the coast of Maine. The pilot study was extensive, time-consuming and costly, and could 

not be maintained for the annual survey. Therefore, the pilot study needs to be optimized 

to reduce the cost while maintaining high precision and accuracy of the annual survey. 

Many statistical techniques have been developed to optimize sampling programs, 

including traditional experimental design, geostatistics and Monte Carlo computer 

simulation (Cochran 1977; Rivoirard 2000; Petitgas 2001). Traditional statistical 

methods are primarily based on random sampling and optimization usually involves 

stratification of the study area based on the spatial structure of the stock (Cochran 1977; 

Hilbom and Walters 1992). The study area is divided into smaller regions, or strata, 

using variables that influence the spatial structure of the stock, such as depth or habitat, in 

order to increase sampling precision and accuracy. Optimization with traditional 

statistics is limited, though, because these methods assume that the fish stock is 

distributed randomly over the study area or strata. Truly random distribution in a fished 

stock is rare, however, most stocks exhibit spatial patterns or dependence, also known as 

spatial heterogeneity. A different branch of statistics, known as spatial statistics, is 



specifically designed to investigate the spatial distribution of a stock and can be used for 

survey design optimization. 

Spatial statistics or spatial analyses are employed to model first and second-order, 

or large and small-scale, spatial variability of a variable, such as fish abundance, in order 

to estimate the value at unobserved locations (Bailey and Gatrell 1995; Petitgas 2001). 

Intrinsic second-order methods have become the most popular geostatistical tools and the 

kriging variance, or mean square prediction error, can been used to compare survey 

designs for optimizing fishery surveys (Pelletier and Parrna 1994; Rivoirard et al. 2000; 

van Groenigen 2000; Petitgas 2001). Two assumptions must be met in order to use 

intrinsic geostatistical methods. First, the spatial distribution of the stock cannot be 

affected by the geometry of the region, i.e. the spatial distribution cannot differ near the 

borders of the zone (Petitgas 1993; Bailey and Gatrell 1995; Warren 1998; Rivoirard et a1 

2000). Second, the process must exhibit some degree of second-order stationarity, or 

spatial dependence, which means that small-scale deviations in variables are similar in 

neighboring sites. In chapter 3, the suitability of the green sea urchin data for analysis 

with intrinsic geostatistics was addressed. The data did not satisfy the assumptions, 

especially for stationarity; the sea urchin data are too highly skewed and spatially 

variable. Since the assumptions are violated, we must use other spatial analysis 

techniques to characterize the spatial variability of the stock (Bailey and Gatrell 1995; 

Warren 1998; Petitgas 2001). . 

Several spatial analysis techniques are available for investigating the large-scale 

variations in fish stock abundance (Bailey and Gatrell 1995). For example, in Chapter 3, 

triangulated irregular networks (TINS) were used to estimate exploitable biomass for the 



green sea urchin fishery. TINS are good estimators of large-scale spatial patterns but 

require relatively evenly spaced sampling locations; its performance decreases when 

sampling locations become clustered (ESRI 1998; Guan et al 1999). Kernel estimation is 

an advanced form of weighted spatial moving averages that can be used with any type of 

sampling strategy: random, clustered or grids (Bailey and Gatrell 1995). It does not 

require any major assumptions nor does it require complex statistical decisions or 

modeling. Therefore, kernel estimation is used to estimate the large-scale patterns in sea 

urchin stock abundance, but since it does not incorporate a variance structure, it cannot be 

directly used for sample design optimization. 

Kernel estimation paired with computer simulations may provide the franlework 

necessary for optimizing survey programs. Computer simulation approaches have been 

increasingly used in fisheries due to their ability to incorporate different sources of 

variations, especially spatial and temporal heterogeneity (e.g. Hilborn and Walters 1987; 

Horppila and Peltonen 1992; Andrew and Chen 1997). A simulation approach allows 

researchers to investigate how uncertainty in the spatial structure of a fished stock can 

affect survey programs and stock assessments. Sampling programs based on random 

sampling theory can have countless realizations, and the precision of one realization may 

not represent the precision of the sampling program. Simulations allow us to produce 

multiple realizations and estimate the mean precision of a sampling strategy. 

The objective of this project is to develop a framework that incorporates spatial 

statistics and computer simulations to identify an optimum sampling strategy. An 

optimal sampling strategy should provide the most accurate and precise information on a 

stock, as possible. Since we are using spatial statistics, we are most interested in the 



large-scale spatial structure of sea urchin density. The combination of kernel estimation 

and computer simulation allows us to estimate the large-scale spatial density structure 

and determine how different sampling strategies effect realizations of this structure. 

Since these realizations are the vital components of the sea urchin stock assessment 

(Chapter 3), any changes in these structures would dramatically alter the outcome of the 

assessment. Therefore, we define an optimal sampling strategy as a design that produces 

realizations of the large-scale spatial structure that are similar to the original population 

while using less sampling intensity than the original sampling strategy. 

Materials and Methods 

Urchin density and size frequency information were obtained from the 2001 pilot 

study for the State's annual fishery independent survey. The Department of Marine 

Resources employed a stratified random sampling design, where 16 sites were sampled in 

each of 9 strata along the Maine coast exclusively in potential urchin habitat (rock or 

gravel substrate) (Figure 4.1 .). To minimize the sample variances within the strata, the 

width of each stratum was inversely proportional to the commercial landings in the 

region. At each site, 90 quadrats (lm2) were randomly sampled along a linear transect set 

perpendicular to shore using SCUBA. All urchins within the quadrat were counted and 

test diameter was measured. Sampling intensity was equally divided over three depth 

zones: 0-5m, 5-10m, and 10-1 5m. Mean site densities were calculated, as were mean site 

densities by depth zones to allow each depth stratum to be analyzed separately. 
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Figure 4.1. Mean urchin densities (urchins m'2) for the 0-5 m depth zone from the 2001 

pilot study. Strata from the original stratified random strategy are labeled. 



A simulation framework was developed to test the ability of different sampling 

programs to recreate the large-scale spatial structure of the sea urchin population (Figure 

4.2.). Mean sea urchin densities by depth zone, as well as bathyrnetry and suitable urchin 

substrate data, were the initial inputs for the framework. Kernel estimation was used to 

estimate the large-scale variations in the green sea urchin stock by depth zone (Bailey and 

Gatrell 1995). The kernel estimate for mean urchin density at a location is calculated as 

where ji , is the mean urchin density; k is the kernel, or bivariate probability function; s 

is the location (x,y) where the urchin density is being estimated; si are the locations where 

the urchin densities were sampled; z is the bandwidth, or the radius of the moving 

window; and yi is the urchin density. The study area was converted into an ASCII raster 

image (1500 x 1 178 pixels, pixel=236.93 m) and weighted averages were computed for 

every pixel based on a quartic kernel. A bandwidth, in pixels, was selected to minimize 

error and ensure adequate coverage and smoothness. The kernel estimation technique 

produced plots of smoothed urchin densities by depth zone. These plots were modified to 

only include areas of the rocWgravel substrate, in effect producing spatial representations 

of the population density structure (Figure 4.3). 
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Figure 4.2. Flowchart of simulation approach to estimate the variance associated with a 

sampling strategy for the Maine sea urchin fishery. 
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Figure 4.3. Original density plot characterizing the large-scale spatial variations in stock 

for density (urchins m'2) depth zone 1 (0-5m) in areas west of Mt. Desert Island. 



These original density plots were used to test different sampling strategies and gauge 

their relative performance. The sampling strategies varied based on the number of sites 

and number and size of strata, allowing us to test the following survey designs: random, 

stratified random with equal strata width, and stratified random with strata based on the 

original survey design (Table 4.1 .). These sampling designs were chosen because they 

were feasible for the program and are routinely used in fishery surveys. Resampling was 

conducted randomly within the potential urchin habitat in the appropriate depth zone, 

producing sets of urchin densities by location. New urchin density plots were created 

from these observations using the kernel estimation technique. The number of 

simulations was limited to 50 due to restraints placed on computing power imposed by 

the large size of the files. 

The performance of a sampling strategy was evaluated using mean squared error 

(MSE). The MSE has been used to determine optimal sampling strategies for fisheries 

and is calculated as 

where Q, is the stock density value from the original density plot, Qs is the stock density 

value from the sampled plot, and N is the number of simulations (Cochran 1977; Guan et 

al. 1999). MSE was calculated for each pixel in the urchin density plots (n=1,767,000), 

creating a plot of MSE for each sampling strategy. A mean MSE value was calculated 

for each plot from the pixel MSE values to facilitate selection of an optimal sampling 

strategy. An optimal sampling strategy is a design that minimizes mean MSE while 

using less sampling intensity than the original pilot study. 



Table 4.1. Summary of the sampling strategies evaluated in this study. 

Sampling strategy Number of strata Sites per strata 

Original Stratified Random 9 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,  

Strata width dependent on 12, 13, 14, 15, 16 

landings 

Random 

Stratified Random 

Equal strata width 

For thc stratified random strategics with equal strata \~.idtl~, strata are defined as 
equal subdi\isions of the coast along an east-m-est axis. 



Table 4.1. Contd 

Sampling strategy Number of strata Sites per strata 

Stratified Random. 9 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,  

Equal strata width 12, 13, 14, 15, 16 



Results 

The first kernel estimation step produced the original density plots, which 

characterizes the large-scale spatial variations in the sea urchin stock (Figure 4.3.). After 

implementing a sampling strategy, the second kernel estimation step created the sampled 

density plots (Figure 4.4.). Finally, plots of MSE were created for each scenario by 

calculating MSE per pixel (Figure 4.5.). 

The stratified random strategy fiom the pilot study was tested using the 3 depth 

zone datasets and an average site dataset. MSE values for depth zone 1,O-5 m, were 

considerably higher than the other datasets (Figure 4.6.). This result suggested that depth 

zone 1 had the highest spatial variability, so recreations of the large-scale variations in 

urchin density were the least precise. This dataset was used in all subsequent analyses 

because it is the most variable urchin density structure; it represents a worst-case 

scenario. A reduction of sampling intensity to 10 sites per strata, or 90 total sites, 

corresponded to a large decrease in effort but only a marginal decrease in precision 

(Figure 4.6.). MSE at a sampling intensity of 90 sites was used as a reference point for 

comparison between sampling strategies. 

None of the tested sampling strategies had consistently lower MSE values than 

the original pilot study design, over all sampling intensities (Figure 4.7.). At low 

sampling intensities (less than 27 sites) random sampling had the lowest MSE. At greater 

than 27 sites, the original survey had the lowest MSE values over the majority of 

sampling locations. However, when sampling intensity was set at 90 sites, MSE values 

for the stratified random strategies with equal strata width dropped below the original 

survey design at higher levels of stratification. 
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Figure 4.4. One simulation of a sample density plot (urchins m'2) created by sampling the 

original density plot with the original stratified random design using 10 sites per strata in 

areas west of Mt. Desert Island. 
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Figure 4.5. Plot of MSE for the original stratified random design using 10 sites per strata 

in areas west of Mt. Desert Island. Mean MSE is 2.90. 
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Figure 4.6. Mean squared error (MSE) as a function of the number of sites sampled per 

strata, using the original survey design by depth zone. The dashed line represents 90 

sampling locations, 10 sites in each of 9 strata, which was used for comparisons amongst 

different sampling strategies. 
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Figure 4.7. Mean squared error (MSE) as a function of the number of sites for the original 

stratified random sampling strategy (Strat Rand), random sampling, and stratified random 

sampling with equal strata width (3-12 strata) for depth zone 1 using the simulation 

framework approach. 
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At 90 sites, sampling strategies with greater than 9 equal sized strata had lower 

MSEs than the original survey design (Figure 4.8.). MSE values decreased with 

increasing stratification, reaching a minimum at 45 strata with 2 sampling locations. The 

original survey strategy performed better, with 90 sites, than random sampling (1 strata) 

and all stratified random strategies with less than 9 equal sized strata. 

I- Number of Strata 

Figure 4.8. Mean squared error (MSE) for stratified random sampling strategies with 

equal strata width using 90 samples. The dashed line represents the MSE for the original 

sampling strategy with 90 sites, 10 in each of the 9 unequally sized strata. 

Discussion 

In optimization studies, we assume that the population was oversampled so the 

data collected is representative of the entire population. We believe that this assumption 

is valid for the 2001 pilot study for the green sea urchin fishery-independent survey; 

therefore we can legitimately optimize the survey. We defined an optimal sampling 



strategy as a design that produces realizations of the large-scale spatial structure that are 

similar to the original population while using less sampling intensity than the original 

sampling strategy. Within the original survey design, MSE quickly decreased and 

leveled off as sampling intensity increased (Figure 4.6.). We chose 90 sites as a reference 

point for this sampling strategy because it corresponded to a large decrease in sampling 

effort, a marginal increase in MSE and was buffered from the high MSE values at lower 

sampling intensities. When comparing amongst other sampling designs, however, the 

original sampling strategy did not have the lowest MSE. 

In our study, the stratified random strategy with equal strata width had 

comparable or higher precisions than the original stratified random strategy. In 

particular, sampling strategies with more than 9 equal sized strata had considerably lower 

MSE values than the original sampling strategy (Figure 4.8.). Interestingly, MSE 

decreased further with added stratification. The high levels of stratification most likely 

caused this increase in precision. As the number of strata incresased, and correspondingly 

the number of sampling locations per strata decreased, the sampling strategy more closely 

resembled a regular, or grid, sampling strategy. Grids have long been considered ideal 

sampling strategies for analysis with spatial statistics (Haining 1990, Rivoirard et al. 

2000; Petitgas 2001). In fact, as long as the spatial process is not periodic, gnds are the 

preferred option (Haining 1990; Simard et al. 1992). Accordingly, a regular sampling 

strategy, with 90 grids arranged along the coastline, would provide the highest precision 

for the green sea urchin fishery when analyzed with spatial statistics. 

Currently the green sea urchin fishery is not analyzed solely with spatial statistics, 

though. Fishable biomass was estimated with spatial statistics (Chapter 3), while stock 



assessments (Chen and Hunter 2003) and investigations into biological reference points 

(Chapter 1) have been conducted using fisheries population dynamics and computer 

simulation techniques. Therefore, the optimal sampling strategy not only needs to satisfy 

the original criteria, i.e. minimizing decreases in precision while reducing sampling 

intensity, but, additionally, must be suitable to the hture analysis plans (Andrew and 

Mapstone 1987). A regular sampling strategy may be the preferred design for analyzing 

the sea urchin stock with spatial statistics but it is not preferred for traditional statistics. 

When used with traditional statistics, regular sampling strategies can yield greater 

precision, but estimates are usually biased and sample variance cannot be directly 

estimated fiom the samples (Cochran 1977: Hilborn and Walters 1992). Conversely, 

stratified random sampling strategies are appropriate for both traditional statistics and 

spatial statistics. In traditional statistics, stratified random strategies have greater 

precision than random designs if the variance of a variable per strata is less than the 

overall variance (Hilborn and Walters 1992). In spatial statistics, stratified random 

strategies can have lower variances than random and grid designs, especially if there is a 

spatial trend (Haining 1990). So, a carehl designed stratified random strategy, where 

strata size reduces sampling variance, would be more flexible for analysis than a regular 

sampling strategy. 

An optimal sampling strategy must balance many factors, ranging fiom logistics 

and cost, to precision and analysis techniques. We believe that the original stratified 

random sampling strategy with reduced sites per strata is the best compromise and a 

sensible optimization for the Maine green sea urchin fishery-independent survey program 



at this time. Further simulation work on optimization should continue in order to 

investigate different sampling designs using more simulations. 



Chapter 5 

CONCLUSIONS 

The objective of this thesis was to utilize fishery-dependent data and a fishery- 

independent survey to generate critical information for the management and monitoring 

of the Maine green sea urchin fishery. In particular there were three main areas of 

interest: (1) investigation of biological reference points, (2) spatial analysis and biomass 

estimation, and (3) development of a simulation framework approach to determine an 

optimal sampling strategy for the fishery-independent survey program. 

These topics are intrinsically linked with one another. In Chapter 2, we calculated 

a target fishing mortality rate for the Maine sea urchin fishery. We used a Monte Carlo 

simulation approach on fishery-dependent data to estimate uncertainties of Fo., and F,,. 

This work suggested that Fo., is more suitable as a management target than F,, because 

it is precautionary, more robust to estimation uncertainty and usually well defined. We 

concluded that the current fishing mortality was greater than the estimated Fo.* for all 

tested variations; in other words, the stock was overfished. In Chapter 3, we estimated 

the exploitable biomass and the current exploitation rate using the fishery-independent 

survey and spatial analysis techniques. These estimates were almost identical to 

estimates calculated using a length-structured fisheries population dynamics model on 

fisheries-dependent data (Chen and Hunter 2003). These techniques are based on 

hndamentally different theories and the analyses used entirely different data sources; 

fishery-independent data for the spatial analysis assessment but fishery-dependent and 

biological data for the traditional fisheries stock assessment. Despite these differences, 

the biomass estimates and exploitation rates were almost identical. The fact that we have 



two equivalent, independent assessments of the current stock indicates that we are 

generating realistic biomass estimates and providing quality information to the stock 

managers. This convergence is also significant because it strengthens our conclusions 

that the current stock is overfished. However, this status depends heavily on the 

biological reference point used in the study. Different biological reference points 

indicate different aspects of the fish stock structure and may result in different 

conclusions on the fishery status. Therefore, we suggest that further investigations into 

other reference points be conducted before final selection and implementation of a 

management target for the Maine sea urchin fishery. 

Finally, in Chapter 4, we recognized the importance of including fishery- 

independent data in stock assessments, because they decrease uncertainty and bias in the 

estimates. An annual fishery-independent survey must be carefully designed to ensure 

statistical integrity, but it must also be cost and time effective to ensure its feasibility and 

longevity. An optimal sampling strategy must also address what types of analysis 

techniques will be used on the data. Considering that the data will be analyzed by both 

traditional and spatial statistics, we concluded that the origmal stratified random sampling 

design reduced to 10 locations per strata was the most sensible optimization for the 

Maine green sea urchin fishery-independent survey program at this time. 

The research presented in this thesis will hopefully provide the DMR with 

essential inforn~ation on the sea urchin stock, suggest new analysis techniques, and 

recommend a cost and time effective plan for collecting quality long-term fishery- 

independent data. 
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APPENDICES 



Appendix A 

C++ COMPUTER CODE FOR CALCULATING PROBABLISITIC ESTIMATES 

#include<stdio.h> 
#include<math.h> 
#include<stdlib.h> 
#include<alloc. h> 
#define SWAP(a, b) {float temp=(a);(a)=(b);(b)=temp;) 
#define ROTATE(a, i, j, k, 1) g=a[i]lj]; h=a[k][l]; a[i]lj]=(g-s*(h+g*tau));\ 

a[k] [l]=(h+s*(g-h*tau)); 
float gasdev(int *idurn); 
float ran1 (int *idum); 
void nrerror(char *error-text); 
float *vector(int nl, int nh); 
int *ivector(int nl, int nh); 
void free-ivector(int *a, int nl, int nh); 
void free-vector(float *a, int nl, int nh); 
void gaussj(float **a, int n, float **b, int m); 
float **matrix(int nrl, int nrh, int ncl, int nch); 
void free-matrix(float **m, int nrl, int nrh, int ncl, int nch); 
void ludcmp(float **a, int n, int *in&, float *d); /* SUBRUTINE FOR MATRIX*/ 
void lubksb(float **a, int n, int *in&, float *b); /* INVERSE */ 
float lfunc(float *F); 
float afunc(float *F); 
float *W, *S, *dT, M, JA, LO, *Lt, *D, F; 
float S-a, S-b, S-K, S-to, S-L, S-m, S-L50, S-M, S-disl, S-diB; 
int N2, A2, Index; 
FILE *fp3; 

void main() 
{ 
FILE *fp, *fpl, *@2; 
int idum, N, A, k, i, j, B, BB; 
float *a, *b, m, L50, *K, *to, *L, temp, d; 
float vL, va, vb, vrn, vL50, vK, vtO, vM, Lt2; 
float x l ,  x2, xacc, dx, f, h i d ,  xrnid, r, age-x; 
float disl, dis2, vdisl, vdis2; 
int NN, NNN, I; 
int JMAX4O; 
I* * * *Define parameter values*/ 
d=l .O; 
idurn=- 100; 



xacc=0.000 1 ; 
N=60; 
A=30; 
m=0.6676; 
L50=26.6; 
L0=40.0; 
disl=0.3 168; 
dis2=34.1; 
printf("Input the number of sets of simulated VBGF and W-L pararnetersh"); 
scanf("%dW, &NN); 
/* printf("Input the number of sets of simulated W-L parametersh"); 
scanf("%dW, &NNN); */ 
NNN=NN; 
/*****End***/ 

K=vector( 1, NN); 
L=vector(l , NN); 
tO=vector( 1, NN); 
a=vector(l , NNN); 
b=vector(l , NNN); 
Lt=vector(l , N); 
S=vector( 1, N); 
W=vector(l, N); 
dT=vector(l , N); 
D=vector(l , N); 
fp=fopen("sum", "w"); 
fp3=fopen("testV, "w"); 
fp 1 =fopen("vbgf.dat", "r"); 
fp2=fopen("wt.datW, "r"); 
for(i=l ; i<=NN; i++) 
fscanf(fp1, "%f %f % h " ,  &L[i], &K[i], &tO[i]); 
for(i=l ; i<=NNN; i++) 
fscanf(fp2, "%f % h " ,  &a[i], &b[i]); 
printf("Input the Natural mortality rateh"); 
scanf("%f ', &M); 
/* printf("Input errors for L50W); 
scanf("%f ', &vL50); 
printflWInput errors for mW); 
scanf("%f ', &vm); 
printf("Input errors for dislh"); 
scanf("%f', &vdisl); 
printf("Input errors for dis2hW); 
scanf("%f ', &vdis2); 
*/ 
vm=O.O; 
vL50=0.0; 
vdisl=0.0; 



vdis2=0.0; 
printf("Input error in natural mortality rate Mh"); 
scanf("%ff, &vM); 
/* printf("Input number of simulation to be doneb"); 
scanf("%dW, &BB); */ 
BB=NN; 
/***********start 
for(B=l; B<=BB; B++) 
{ 

I* 
I=ranl (&idum)*NN+l ; 
if(I>NN) I=NN; 

*/ 
S-K=K[B] ; 
S-L=L[B] ; 
S-tO=tO[B] ; 

/* 
I=ranl (&idum)*NNN+ 1 ; 
if(I>NNN) I=NNN; 

*/ 
S-a=a[B] ; 
S-b=b [B] ; 

printf("K=%6.3f L=%4.lf t0=%4.3f a=%4.3f b=%4.3f\nU, S-K, S-L, S-to, S - a, S - b); 

for(i=l ; i<=500; i++) 
{ 
S~L50=L50*exp(vL5O*gasdev(&idum)); 
if(S-L50<(L50* 1.3) && S-L50>(L50*0.7)) i=502; 
else printf("No suitable L50 was found in simulation run %db", B); 
1 
for(i= 1 ; i<=500; i++) 
{ 
S-m=m*exp(vm*gasdev(&idum)); 
if(S - m<(m* 1.3) && S m>(n1*0.7)) i=502; 
else printf("No suitablem was found in simulation run %db", B); 
1 
for(i=l; i<=500; i++) 
{ 
S-M=M* exp(vM*gasdev(&idum)); 
if(S-M<(M* 1.3) && S-M>(M*0.7)) i=502; 
else printf("No suitable M was found in simulation run %dh", B); 
1 
for(i=l ; i<=500; i++) 
{ 
S-dis 1 =dis 1 * exp(vdis 1 *gasdev(&idum)); 



if(S-disl<(disl* 1.3) && S-disl>(disl *O.7)) i=502; 
else printf("No suitable disl was found in simulation run %d\nW, B); 
1 
for(i=l ; i<=500; i++) 
{ 
S~dis2=dis2*exp(vdis2*gasdev(&idum)); 
if(S_dis2<(dis2* 1.3) && S-dis2>(dis2*0.7)) i=502; 
else printf("No suitable dis2 was found in simulation run %d\n", B); 
1 
JA=S-to- 1 IS-K*log(l .O/S-L); 
A2=JA; 
if(A2>A) A2=A; 
JA=S-L-LO- 1 .O; 
N2=JA; 
i f(N2>N) N2=N; 
Lt[ l]=LO; 
for(i=2; i<=N2; i++) Lt[i]=Lt[i-l]+l .O; 

/*Calculate FO.l from age-based YPR model*/ 
for(Index=l ; Index<=2; Index++) 
{ 

I* 
for(i=l; i<=A2; i++) 
{ 
Lt2=S-L*(1 .O-exp(-S-K*(i-S-to))); 
S[i]=l ,041 .O+exp(-S-m*(Lt2-S-L50))); 
if(Lt2>=50) S[i]=l .O; 
else S[i]=O; 
D[i]=l .O/(l .O+exp(S-disl *(Lt2-S-dis2))); 
D[i]=O.O; 
W [i]=S_a*pow(Lt2, S-b); 
1 
xl=O; 
x2=10.0; 
finid=afimc (8~x2); 
f-afunc(&x 1); 
if(Pfinid>O) 
{ 
printf("Need to redefine x 1 and x2\nU); 
return; 
1 
if(Pfmid<O) 
{ 
if(f<O) 
{ 



/***End of using age-structured model***/ 
/**Using length-structured model to estimate FO.l **/ 

for(i=l ; i<=N2; i++) 
{ 
Lt2=Lt[i]; 

I* S[i]= 1 .O/(l .O+exp(-S-m*(Lt2-S-L50))); */ 
if(Lt2>=50) S[i]=l .O; 
else S[i]=O.O; 
W[i]=S_a*pow(Lt2, S-b); 
1 
x 1 =o; 
x2=10.0; 
fmid=lfunc(&x2); 
f=lfunc(&x 1); 

/* 
if(f*finid>O) 
{ 
printf("Need to redefine xl  and x2\nW); 
return; 

r=x 1 ; 
dx=x2-x 1 ; 
1 
else 
{ 
-2; 
dx=x 1 -x2; 
1 
1 
for(j = 1 ; j <=MAX; j t t )  
{ 
dx=dx*0.5; 
xmid=r+dx; 
fmid=afunc(&xmid); 
if(fmid<=O) -mid; 
if( fabs(dx)<xacc) 
{ 
printf("dx=%f\n", fabs(dx)); 
j=JMAX+l; 
1 
if(fmid=O) j=JMAX+ 1 ; 
1 
fprintf(fp, "%d %5.4f ", B, xmid); 
printflWPASS SlMULATION RUN %d USING AGE MODEL F=%5.4f\nW, B, xmid); 
age-x=xmid; 



if(P finidC0) 
{ 
if(f<O) 
t 
-1; 
dx-2-x 1 ; 
1 
else 
{ 
-2; 
dx-x 1 -x2; 
1 
1 
for(j=l ; j<=JMAX; j++) 
{ 
dx=dx*0.5; 
xmid=r+dx; 
finid=lfunc(&xmid); 
if(finid<=O) -mid; 
if(fabs(dx)<xacc) 
{ 
printf("dx=%fh", fabs(dx)); 
j=JMAX+l; 

1 
fprintf(fp, "%d %5.4f ", B, xmid); 
printf("PASS SIMULATION RUN %d USING LENGTH MODEL F=%5.4hW, B, 

xmid); 
1 
fprintflfp, "h"); 

/***End of using length-structured model***/ 
1 
fclose(fp); 
fclose(fp 1); 
fclose(fp2); 
fclose(fp3); 
free-vector(K, 1, NN); 
free-vector(L, 1, NN); 
free-vector(t0, 1, NN); 
free-vector(a, 1, NNN); 
free-vector(b, 1, NNN); 
free-vector(S, 1, N); 
free - vector(W, 1, N); 



free-vector(dT, 1, N); 
fiee vector(Lt, 1, N); 
freeIvector(~, 1, N); 
1 

void nrerror(error-text) 
char error-text[] ; 
{ void exit(); 
fprintf(stderr, "Run-time error ...W); 
fprintf(stderr, "%s\nW, error-text); 
fprintf(stderr, "...now exiting to system. 
exit(1); 

1 

float *vector(nl, nh) 
int nl, nh; 
{ float *v; 
v=(float *)malloc((unsigned)(nh-nl+l)*sizeof(float)); 
if(!v) nrerror("al1ocation failure in vector()"); 
return v-nl; 

1 

void free-vector(v, nl, nh) 
float *v; 
int nl, nh; 
{ 
free((char*) (v+nl)); 
1 

void gaussj(a, n, b, m) 
float **a, **b; 
int n, m; 
{ 
int *indxc, *indxr, *ipiv; /*three arrays are used for bookkeeping*/ 
int i, icol, irow, j, k, 1,11, *hector(); /*on the pivoting*/ 
float big, dum, pivinv; 
void nrerror(), free-ivector(); 
indxc=ivector(l ,n); 
indxr=ivector(l ,n); 
ipiv=ivector(l ,n); 
forCj=l; j<=n; j++) ipivlj]=O; 
for(i=l ; i<=n; i++) 
{ 
big=0.0; 
for(j=l; j<=n; j++) /*outer loop of the search for a pivot element*/ 
if(ipivlj1 !=I) 



for(k=l ; k<=n; k++) 
{ 
if(ipiv[k]=O) 
{ 
if(fabs(alj1 [k])>=big) 
{ 
big=fabs(alj] [k]); 
irow=j ; 
icol=k; 
1 
1 
else if (ipiv[k] > 1) nrerror("GAUSSJ: Singular Matrix-1 "); 
1 

++(ipiv[icol]); 
if(irow !=icol) 
{ 
for(l= 1 ; l<=n; I++) S WAP(a[irow] [1], a[icol] [1]) 
for(l= 1 ; l<=rn; I++) S WAP(b[irow][l], b[icol] [1]) 
1 
indxr[i]=irow; /*ready to divide the pivot row by the pivot element*/ 
indxc[i]=icol; /*located at irow and icol*/ 
if(a[icol][icol]=0.0) nrerror("GAUSSJ: Singular Matrix-2"); 
pivinv=l .O/a[icol] [icol] ; 
a[icol][icol]=l .O; 
for(l=l; l<=n; I++) a[icol][l] *=pivinv; 
for(l=l ; l<-; I++) b[icol] [1] *=pivinv; 
for(ll=l ; ll<=n; 11++) /*reduce the row...*/ 
iqll !=icol) /*except for the pivot one*/ 
{ 
dum=a[ll][icol]; 
a[ll][icol]=O.O; 
for(l= 1 ; l<=n; I++) a[ll] [1] -=a[icol] [I] *durn; 
for(l= 1 ; l<-; I++) b[ll] [1] -=b[icol] [I] *durn; 
1 
1 
for(l=n; 1>=1; I--) 
{ 
if(indxr[l] !=indxc[l]) 
for(k=l ; k<=n; k++) 
S WAP(a[k] [indxr[l]], a[k] [indxc[l]]); 
1 
free ivector(ipiv, 1, n); 
freeivector(indxr, 1, n); 
freeIivector(indxc, 1, n); 

1 



/*Gaussian noises*/ 
float gasdev(idurn) 
int *idurn; 
{ 
static int iset=O; 
static float gset; 
float fac, r, vl ,  v2; 
float ran 1 (); 
if(iset==O) 
{ 
do 
{ 
vl=2.0*ranl(idum)-1 .O; 
v2=2.0*ranl (idurn)- 1 .O; 
l=v 1 *v 1 +v2*v2; 
1 
while(r>=l .0); 
fac=sqrt(-2.0*log(r)/r); 
gset=v 1 *fac; 
iset=l ; 
return v2*fac; 
1 
else 
{ 
iset=O; 
return gset; 
1 
1 

/*generate random number*/ 

#define MI259200 
#define IAl 7 141 
#define IC 1 54773 
#define RM1 (l.O/Ml) 
#define M2 134456 
#define IA2 8 12 1 
#define IC2 2841 1 
#define RM2 (1 .O/M2) 
#define M3 243000 
#defineIA34561 
#define IC3 5 1 340 

float ran1 (idum) 
int *idurn; 
{ 



static long ix 1, ix2, ix3; 
static float r[98]; 
float temp; 
static int if60; 
int j; 
void nrerroro; 
if(*idurn<O I( ifF=O) 
{ 
i*l; 
ix 1=(IC 1 -(*idurn)) % MI; 
ixl=(IA1*ixl+IC1) % MI; 
ix2=ixl % M2; 
ixl=(IAl*ixl+ICl) % MI; 
ix3=ix1 % M3; 
for (j=l; j<=97; j++) 
{ 
ixl=(IAl*ixl+ICl) % MI; 
ix2=(IA2*ix2+IC2) % M2; 
rlj]=(ixl +ix2*RMZ)*RMl; 
1 
*idum= 1 ; 

I 
ixl=(IA1*ixl+IC1) % MI; 
ix2=(IA2*ix2+IC2) % M2; 
ix3=(IA3*ix3+IC3) % M3; 
j=1 + ((97*ix3)/M3); 
if(j>97 ( 1  j<l) nrerror("ran1: this cannot happen."); 
temp=rlj] ; 
rlj]=(ix 1 +ix2*RM2)*RMl; 
return temp; 
1 

int *ivector(nl, nh) 
int nl, nh; 
{ int *v; 
v=(int *)malloc((unsigned)(nh-nl+l)*sizeof(int)); 
if(!v) nrerror("al1ocation failure in ivector()"); 
return v-nl; 

1 

void free-ivector(v, nl, nh) 
int *v, nl, nh; 
{ 
fiee((char*) (v+nl)); 
1 



float **matrix(nrl, nrh, ncl, nch) 
int nrl, nrh, ncl, nch; 
{ int i; 
float **m; 
m=(float **)malloc((unsigned)(nrh-nrl+l)*sizeof(float*)); 
if(!m) nrerror("al1ocation failure 1 in matrix()"); 
m---I; 

for(i-1; i<=nrh; i++) 
{ 
m[i]=(float *)malloc((unsigned) (nch-ncl+ I)* sizeo f( float)); 
if (!m[i]) nrerror("al1ocation failure 2 in matrix()"); 
m[i] -=ncl; 
1 
return m; 

1 

void free-matrix(m, nrl, nrh, ncl, nch) 
float **m; 
int nrl, nrh, ncl, nch; 
{ 
int i; 
for(i-~h; i>=lzrl; i--) fiee((char *) (m[i]+ncl)); 
fiee((char *) (m+nrl)); 
1 

float lfbnc(F) 
float *F; 
{ 
int i, k; 
float x l ,  x2, x3, templ, temp2, temp3, temp, TI, T2, T3, T4, T5; 
xl=O.O; 
x2=0.0; 
for(i= 1 ; i<=N2; i++) 
{ 
templ=O.O; 
temp2=0.0; 
temp3=log((S-L-Lt [i])/(S-L-Lt [i]- 1))IS-K; 
for(k= 1 ; k<i; k++) 
{ 
temp=log((S-L-Lt[k])/(S-L-Lt [k]- l))/S-K; 
temp 1 +=S [k] * temp; 
temp2+=S - M*temp; 
1 
Tl=S-M-(S[i]*(*F)*(*F)+(*F)*S-M)*templ ; 
T2=S-M-(S[i]*(*F)*(*F)+(*F)*S-M)*(templ +S[i]* temp3); 



T3=(S[i]*(*F)+S_M)*(S[i] *(*F)+S-M); 
T4=-(*F)*temp 1 -temp2-(S[i] *(*F)+S-M)* temp3 ; 

/* T5=1 .O-1.0/(1 .O+exp(S-disl *(Lt[i]-S_dis2)));*/ 
T5=l .O; 

xl +=T5*S[i] * W[i]*(Tl *exp(-(*F)*temp 1 -temp2)-T2*exp(T4))/T3 ; 
if(Index-1) x2+=T5*O. 1 *S[i]*W[i]*(l-exp(-S-M*temp3))*exp(-temp2)IS-M; 
else x2=0.0; 
1 
x3=x 1 -x2; 
return x3; 
} 

float afunc(F) 
float *F; 
{ 
int i, k; 
float x l ,  x2, x3, templ, temp2, TI,  T2, T3, T4, T5; 
x14.0;  
x2=0.0; 
for(i=l; i<=A2; i++) 
{ 
temp1=0.0; 
temp2=0.0; 
for(k=l; k<i; k++) 

temp 1 +=S [k] ; 
temp2+=S-M; 
1 
Tl=S-M-(S[i]*(*F)*(*F)+(*F)*S-M)*templ ; 
T2=S M-(S[i] *(*F)*(*F)+(*F)*S-M)*(temp l+S [i]); 
T~=($]*(*F)+s-M)*(s[~]*(*F)+s_M); 
T4=-(*F)*temp 1 -temp2-S[i]*(*F)-S-M; 

I* T5=l.O-D[i]; */ 
T5=l .O; 
x l+=T5*S[i]* W[i]*(Tl *exp(-(*F)*templ -temp2)-T2*exp(T4))/T3; 
if(Index=l) x2+=T5*0.1 *S[i]*W[i]*(l-exp(-S-M))*exp(-temp2)IS-M; 
else x2=0.0; 

fprintf(fp3, "%d %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5 .3hn ,  i, templ, 
temp2,T1, T2, T3, T4, xl); 

/*fprintf(fp3, "x l=%5.3f x2=%5.3h ", xl,  x2);*/ 



x3=xl-x2; 
return x3; 
1 



Appendix B 

PROCEDURE AND COMPUTER CODE FOR ESTIMATING EXPLOITABLE 

BIOMASS 

Procedure for estimatin~ exploitable biomass us in^ TINS 

1. Create size (length) categories for the fish species. If the fishery has size 

restrictions, they should be considered when creating the size categories. 

2. Calculate mean size for each category based on the size frequency information. 

Use a length-weight relationship to estimate the mean weight per urchin for each 

size category. 

3. Using the size frequency information, calculate the proportion of fish at each site 

that belong to each size category. 

4. Calculate mean densities by depth zone for each site 

5. Scale each site's mean density value based on the size category proportions. So if 

you have 3 depth zones and 8 size categories, each site should have 24 different 

density values, which should sum to the total site average. Also, you will now 

have 24 different scenarios to run in order to estimate biomass. 

6. Create text files with site locations and densities for each scenario. 

7. Import each text file as a table into ArcView GIs 3.2a. ("Add table" command). 

8. Add as an event theme to the view. 

9. If the locations are not in the correct coordinate system, the data must be 

projected before you can continue. The following is one way to project data. 

a. Convert the text file to a shapefile 



b. Open the ArcToolbox Program in ArcINFO 7.1 

c. Define the coordinate system used in the density information 

d. Project the data to the correct coordinate system 

e. Add the projected shapefile back into ArcView GIs. 

10. Choose the Extensions command under the File heading. Select 3D Analyst. 

1 1. Activate the themes and select "Create TIN from features" under the Surface 

heading. Choose the following settings: 

a. Class=Point 

b. Height Source=Density ' 

c. Input ==Mass Points 

d. Value Field=<none> 

12. Create Tins for all of the scenarios. 

13. Convert TINS to Grids ("Convert to Grid" command under Theme heading) 

14. Convert Grids to an ArcASCII format, using ArcToolbox 

15. Repeat steps 9-14 to create ArcASCIIs for bathyrnetry and habitat. I recommend 

converting all of the files to Grids (step 1 1) at the same time, to ensure they all 

have the same resolution and orientation. 

16. Once all ASCIIs are created, rename the urchin density ASCII to "gridA.asc," the 

habitat ASCII to "gridB.asc," and the bathyrnetry ASCII to "gridC.asc." Place 

these files in the same folder as the C++ biomass estimation program. 

17. Run the C++ biomass estimation program. Follow the directions on the program. 

Note: Threshold values are density values used for estimating exploitable 

biomass. To estimate total or fishable biomass, enter a threshold value of 0. 



18. The program will output the total number of urchins and the urchin biomass. An 

ASCII raster image will also be created for each scenario. 

C++ Computer code for estimatinp biomass usiw ASCII files 

biomass.cpp : calculates biomass of an arc ascii grid A based on constraints 
defined by arc ascii grids B and C. 

#ifdef -DEBUG 
#define new DEBUG-NEW 
#undef THIS-FILE 
static char THIS-FILE[] = FILE- ;  
#endif 

............................................................................. 
// The one and only application object 

//using namespace std; 

int -tmain(int argc, TCHAR* argv[], TCHAR* envp[]) 
{ 

int nRetCode = 0; 

// initialize MFC and print and error on failure 
if (!AfiWinInit(::GetModuleHandle(NULL), NULL, ::GetCornrnandLine(), 0)) 
{ 

// TODO: change error code to suit your needs 
cerr << -T("Fatal Error: MFC initialization failed") << endl; 
return nRetCode = 1 ; 

1 
............................................................................... 
I/////// MY CODE 



ifstream inFile; N Input data file. 
ofstream outFile; // Output data file. 
CMatrix gridA, @dB, gridC; 
char chardummy; 
int grid& gridAy, gridBx, gridBy, gridCx, gridcy; 
int intdurnmy = 0, i, j, nodata, zone; 
double gridAres, gndBres, gridcres, doubledummy, biomass, count, weight, 

minx, miny, coor, limit; 

cout << "Enter 1 to load gridA, gridB, and gridCW; 
cin >> intdummy; 

gridA.Empty(); // open and read grids 
gridB.Empty(); 
gridC.Empty(); 

{ 
tout << "Error opening fileh"; 
return nRetCode; 

1 

I1 Prime gridA with data 
inFile >> chardurnrny >> chardummy >> chardumrny >> ~hardummy >> 

chardurnmy; 
inFile >> gridAx; 
inFile >> chardurnmy >> chardummy >> chardummy >> chardummy >> 

chardummy; 
inFile >> gridAy; 
inFile >> chardumrny >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardurnmy >> chardummy >> chardurnmy >> chardummy; 
inFile >> minx; 
inFile >> chardummy >> chardummy >> chardurnmy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> miny; 
inFile >> chardurnmy >> chardummy >> chardummy >> chardummy >> 

c h a r d m y  >> chardummy >> chardummy >> chardummy; 
inFile >> gridAres; 



inFile >> chardummy >> chardummy >> chardummy >> chardurnmy >> 
chardurnmy >> chardummy >> chardurnmy >> chardummy >> chardummy >> 
chardurnmy >> chardummy >> chardummy; 

inFile >> nodata; 

for (i=O;i<gridAy;i++) 

inFile >> doubledummy; 
gridA.SetAt(CPoint (j,i), doubledumnly); 

1 
1 

{ 
tout << "Error opening fileh"; 
return nRetCode; 

1 

11 Prime @dB with data 
inFile >> chardurnrny >> chardurnrny >> chardummy >> chardummy >> 

c hardumm y; 
inFile >> gridBx; 
inFile >> chardummy >> chardurnrny >> chardummy >> chardummy >> 

c hardurnmy; 
Wi le  >> gridBy; 
inFile >> chardummy >> chardummy >> chardurnmy >> chardummy >> 

chardummy >> chardurnmy >> chardummy >> chardummy >> chardummy; 
inFile >> coor; 
inFile >> chardurnmy >> chardummy >> chardurnmy >> chardummy >> 

chardummy >> chardurnmy >> chardummy >> chardummy >> chardummy; 
inFile >> coor; 
inFile >> chardummy >> chardummy >> chardurnmy >> c hardurnmy >> 

chardummy >> chardumnly >> chardummy >> chardummy; 
inFile >> gridBres; 



inFile >> chardurnrny >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardurnmy >> chardumrny >> chardummy >> 
chardummy >> chardummy >> chardurnmy; 

inFile >> nodata; 

for (i=O;i<gridBy;i++) 
{ 

for (j=Oj<gridBx$++) 
{ 

inFile >> doubledurnmy; 
gridB.SetAt(CPoint Cj,i), doubledurnmy); 

{ 
tout << "Error opening fileh"; 
return nRetCode; 

I 

// Prime gridC with data 
inFile >> chardummy >> chardummy >> chardurnmy >> chardurnrny >> 

c h a r d m y ;  
inFile >> gridCx; 
inFile >> chardummy >> chardumrny >> chardummy >> chardummy >> 

c hardurnmy; 
inFile >> gridCy; 
inFile >> chardumrny >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> minx; 
inFile >> chardummy >> chardurnmy >> chardummy >> chardurnmy >> 

chardumrny >> chardurnrny >> chardummy >> chardumrny >> chardunmy; 
inFile >> miny; 
inFile >> chardummy >> chardummy >> chardurnrny >> chardumrny >> 

chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> gridcres; 



inFile >> chardummy >> chardurnmy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardurnmy; 

inFile >> nodata; 

for (i=O;i<gridCy;i++) 
{ 

for (j=O;i<gridCx;i++) 
{ 

inFile >> doubledummy; 
gridC.SetAt(CPoint (j,i), doubledummy); 

1 
1 

intdummy = 1 ; 

if ((gridAx != gridBx) )I (gridAy != gridBy) 11 (gridAres != gridBres) 11 (gridAx != 
gridCx) I( (gridAy != gridCy) I( (gridAres != gridcres)) . 

{ 
tout << 'lhtt << "gridA, gridB, and gridC are not congruent! ! ! !W 

<< Ir\nrl; 

1 

biomass = 0; 



count = 0; 

cout << "Please enter a threshold density: "; 
cin >> limit; 
tout << l'b*l; 

{ 
tout << "Error opening fileb"; 
return nRetCode; 

1 

outFile << "NCOLS " << gridAx << "b"; 
outFile << "NROWS " << gridAy << "b"; 
outFile << "XLLCORNER " << minx << "b"; 
outFile << "YLLCORNER " << miny << "b"; 
outFile << "CELLSIZE " << gridAres << "b";  
outFile << "NODATA-VALUE " << nodata << "W; 

if (intdurnmy == 1) 
{ 

tout << " b "  << "Plese enter the weight of 1 urchin: "; 
cin >> weight; 
cout << "b"; 
cout << "Please make your depth choice:b"; 
zone = 0; 
tout << "1 ... 0 >= zone >= -5b"; 
tout << ''2 ... -5 > zone >= - lobw;  
cout << "3 ... -10 > zone >= -15b"; 
cout << "4 ... -1 5 > zone >= -40bV; 
cin >> zone; 
cout << "b";  

for (i=O;i<gridAy;i++) 
{ 

for (j =0 j  <gridAx;j ++) 
{ 

if ((gridB.GetAt(CPoint (j ,i))) ! = nodata) 
{ 

if ((gridA.GetAt(CPoint (j,i))) != nodata) 



switch(zone) 
{ 

case 1 : if 
((gridC.GetAt(CPoint (j,i)) <= 0) && (gridC.GetAt(CPoint (j,i)) >= -5)) 

{ 
if 

(gridA.GetAt(CPoint (j,i)) >= limit) 
{ 

count += gridA.GetAt(CPoint (j,i)); 

else 
{ 

outFile << nodata; 

1 
else outFile 

<< nodata; 
break; 

case 2: if 
((gridC.GetAt(CPoint (j,i)) < -5) && (gridC.GetAt(CPoint (j,i)) >= -10)) 

{ 
if 

(gridA.GetAt(CPoint (j,i)) >= limit) 

count += gridA.GetAt(CPoint (j,i)); 

outFile << gridA.GetAt(CPoint (j,i)); 

else 
{ 

outFile << nodata; 



1 
else outFile 

<< nodata; 
break; 

case 3: if 
((gridC.GetAt(CPoint (j ,i)) < - 10) && (gridC.GetAt(CPoint (j,i)) >= - 15)) 

{ 
if 

(gridA.GetAt(CPoint (j,i)) >= limit) 
{ 

count += gridA.GetAt(CPoint (j,i)); 

else 
{ 

outFile << nodata; 

<< nodata; 

1 
1 
else outFile 

break; 

case 4: if 
((gridC.GetAt(CPoint (j,i)) < -15) && (gridC.GetAt(CPoint (j,i)) >= -40)) 

{ 
if 

(gridA.GetAt(CPoint (j,i)) >= limit) 
{ 

count += gridA.GetAt(CPoint (j,i)); 

else 
{ 



outFile << nodata; 

1 
else outFile 

<< nodata; 
break; 

case 5: if 
((gridC.GetAt(CPoint (j,i)) <= 0) && (gridC.GetAt(CPoint (j,i)) >= -15)) 

{ 
if 

(gridA.GetAt(CPoint (j,i)) >= limit) 
{ 

count += gridA.GetAt(CPoint (j,i)); 

else 
{ 

outFile << nodata; 

1 
else outFile 

<< nodata; 
break; 

default: cout << "You can 
only select one of the zones 1 to 5, try again! ! ! ! ! !h"; 

1 

else outFile << nodata; 
1 

else 
{ 



outFile << nodata; 
1 

count = count * gridAres * gridAres; 

biomass = count * weight; 

cout << "biomass: " << biomass << "h"; 
cout << "total # of urchins: " << count << "h"; 
cout << "resolution: " << gridAres << "h"; 
cout << "the raster overlay is stored in the file output.asc\nW; 
cout << "enter 1 to finishh"; 
cin >> intdwnmy; 

return nRetCode; 
1 



Appendix C 

PROCEDURE AND COMPUTER CODE FOR IDENTIFYING OPTIMAL 

SAMPLING STRATEGIES 

Procedure for identify in^ optimal samplin~ stratepies 

1. Create a text file of fish densities by location. Place the x coordinate in the first 

column, the y coordinate in the second column and the density value in the third 

column. Do not include column headings in the text file. 

2. Create an ArcASCII template file. This file indicates what regions have suitable 

habitat and potential fish abundance. The sampling program will be limited to 

these regions. Note: a buffer zone should be created around the region of interest 

in valid.asc. The width of the buffer zone should be equal to or greater than the 

size of the moving window (kernel). 

a. The file can be created directly in an ASCII format or it can be converted 

from other spatial formats, such as shapefiles, TINS, and grids, using the 

ArcToolbox program from ArcInfo 7.1. 

3. Rename the urchin density text file "obs.txt" and the template ASCII to 

"valid.asc." and the bathyrnetry ASCII to "gridC.asc." Place these files in the 

same folder as the C++ kernel estimation program. 

4. Run the C++ kernel estimation program. Follow the directions on the program. 

Note: The C++ code is designed for a stratified random strategy with a set number 

and size for the strata. The "Size of the moving window" is the kernel length and 



is equivalent to the radius of a circle in pixels. We recommend limiting the 

number of simulations because the ArcASCII files can be very large. 

5. When the program terminates, enter 1. Then run the C++ mean squared error 

(MSE) estimation program. The program will output the mean MSE and create 

an ASCII file of MSE. 

C++ computer code for kernel estimation and implementation of a stratified , 

random sampling strategy 

// biomass.cpp : calculates biomass of an arc ascii grid A based on constraints 
// 

definde by an arc ascii grid B. 

#ifdef -DEBUG 
#define new DEBUG-NEW 
#undef THIS-FILE 
static char THIS-FILE[] = FILE- ;  
#endif 

// Macro to get a random integer with a specified range 
#define getrandom(min, max) \ 

((randO%(int)(((max) + 1)-(min)))+ (min)) 

CString int-to-string(int number, CString startstring) 
{ 

boo1 done = false; 

while (!done) 
{ 



if ((number11 0) < 1) 
{ 

if (number == 0) 
startstring = "0" + startstring; 

if (number == 1) 
startstring = " 1 " + startstring; 

if (number == 2) 
startstring = "2" + startstring; 

if (number == 3) 
startstring = "3" + startstring; 

if (number == 4) 
startstring = "4" + startstring; 

if (number == 5) 
startstring = "5" + startstring; 

if (number == 6) 
startstring = "6" + startstring; 

if (number == 7) 
startstring = "7" + startstring; 

if (number == 8) 
startstring = "8" + startstring; 

if (number == 9) 
startstring = "9" + startstring; 

done = true; 
I 

if ((number11 0) >= 1) 
{ 

startstring = int-to-string((number-(int(number/ l O) * 1 O)), 
startstring); 

number = int(number/lO); 
I 

1 

return startstring; 
I 

............................................................................. 
// The one and only application object 

//using namespace std; 

int -trnain(int argc, TCHAR* argv[], TCHAR* envp[]) 



{ 
int nRetCode = 0; 

/I initialize MFC and print and error on failure 
if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0)) 
{ 

/I TODO: change error code to suit your needs 
cerr << -T("Fatal Error: MFC initialization failed") << endl; 
return nRetCode = 1 ; 

1 
............................................................................... 
///I//// MY CODE 

ifstream inFile; I/ Input data file. 
ofstream outFile; I/ Output data file. 
CMatrix gridA, mastergridA, tempgrid, validgrid; 
char chardummy; 
int ncols, mows, umwin, urywin, xsample, ysample; 
int intdummy = 0, i, j, k, nodata=-9999, n, max=O, min=O, maxout, runs=O; 
double res, doubledummy, urchins, tau, kf, d; 
boo1 data; 
CLocation sample, tempobs; 
CList<CLocation,CLocation&> observations; 
CString filename, filename2; 

double llx, lly, llxwin, llywin, count; 
double winllx, winlly, winum, winury, winarea; 
int windowsize, sampleloop; 
double wincentem, wincentery; 

cout << "Enter 1 to load observations (obs.txt):"; 
cin >> intdummy; 
cout << "W; 



{ 
tout << "Error opening fileb"; 
return nRetCode; 

1 

while(inFi1e) 
{ 

inFile >> samp1e.x >> samp1e.y >> sample.urchincount; 

cout << "Enter 1 I 
resolution): in"; 

:o load th ~e valid. .asc grid outlin le (will be used for llx, lly, and 

cin >> intdummy; 
cout << b" ;  

tout << "Error opening fileb"; 
return nRetCode; 

1 

inFile >> chardurnrny >> chardummy >> chardummy >> chardummy >> 
chardummy; 

inFile >> ncols; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy; 
inFile >> mows; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardumrny >> chardurnmy >> chardummy >> chardummy; 
inFile >> llx; 
inFile >> chardummy >> chardumrny >> chardurnmy >> chardummy >> 

chardunmy >> chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> lly; 
inFile >> chardummy >> chardurnrny >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> res; 



inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardurnmy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardurnmy; 

inFile >> nodata; 

validgrid.SetMatrixSize(CSize (ncols, mows)); 

for (i=O;i<mows;i++) 
{ 

for (i=O;i<ncols;i++) 
{ 

inFile >> doubledummy; 
validgrid.SetAt(CPoint &i), doubledummy); 

1 
1 

cout << "Please enter the size of the moving window (half the side in pixel): h"; 
cin >> windowsize; 
tout << 'W'; 

tau = (windowsize*res) + (res*0.5); 

winarea = ((2*windowsize*res + res) * (2*windowsize*res + res)); 

for (i=O;i<mows;i++) 
{ 

for (i=O;j<ncols;j++) 

POSITION pos = observations.GetHeadPosition(); 

for (i=windowsize;i<(nrows-windowsize);i++) 
{ 



for (j=windowsize;j<(ncols-windowsize)$-+) 
{ 

urchins = 0; 
count = 0; 

wincentem = llx + j *res + 0.5 *res; 
wincentery = lly + nrows*res - (i*res + OS*res); 
winllx = wincentem - (0.5*res + windowsize*res); 
winlly = wincentery - (0.5*res + windowsize*res); 
winurx = wincenterx + (0.5*res + windowsize*res); 
winury = wincentery + (0.5*res + windowsize*res); 

pos = observations.GetHeadPosition(); 

for (k=O;k<observations.GetCount();k++) 
{ 

tempobs = observations.GetNext(pos); 

if ((temp0bs.x >= winllx) && (temp0bs.x < winurx) && 
(temp0bs.y >= winlly) && (temp0bs.y < winury)) 

{ 
d = sqrt(((wincentem - tempobs.x)*(wincentem - 

temp0bs.x)) + ((wincentery - tempobs.y)*(wincentery - temp0bs.y))); 

if (d <= tau) 
{ 

kf = (3/pi)*((l-((d/tau)*(d/tau)))*(l - 

urchins = urchins + (kf * 

count = count + kf; 

if ((validgrid.GetAt(CPoint (j,i)) != nodata)) 
{ 

if (count = 0) 
gridA.SetAt(CPoint (j,i),nodata); 

else 
gridA. SetAt(CPoint (j ,i),(urchins/count)); 



cout << "Number of Samples per Strata: "; 
cin >> n; 
tout << tfhll; 

cout << "Number of runs is set to 20"; 
runs = 20; 
tout << llhtl; 

for (i=O;i<nrows;i++) 
{ 

for (i=O;j<ncols;j++) 
{ 

mastergridA.SetAt(CPoint (j,i), (gridA.GetAt(CPoint (j,i)))); 
I 

1 

for (sampleloop=O;sampleloop<runs;sampleloop++) 
{ 

filename = ""; 
filename = int~to~string((sampleloop+l),filename); 
filename = "sample - set" + filename + ".txtW; 

for (i=O;i<nrows;i++) 

for (i=O;j<ncols;j++) 
{ 

gridA.SetAt(CPoint (j,i), (mastergridA.GetAt(CPoint 

outFile.open(filename); 
if(!outFile) 
{ 

tout << "Error opening fileh"; 
return nRetCode; 



llxwin = int((362383.06-llx)/res); 
llywin = (nrows - int((4768863.7-lly)/res)); 
urxwin = int((43 1450.46-1lx)lres); 
urywin = (nrows - int((4866671.22-lly)/res)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (xsample,ysanlple)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((nrows - 

data = true; 
1 

maxout = (maxout + I); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 1 did not contain enough valid data 

points! ! ! h"; 



llxwin = int((43 1450.46-1lx)lres); 
llywin = (nrows - int((4833354.37-1ly)Ires)); 
urxwin = int((469027.7-1lx)Ires); 
urywin = (nrows - int((4883055.12-1ly)lres)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 200000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
{ 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
- { 

outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\tW; 

outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "h"; 

gridA.SetAt(CPoint (xsample,ysanlple), 
double(nodata)); 

data = true; 
I 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
, cout << "Zone 2 did not contain enough valid data 

points! ! ! \nu; 



llxwin = int((469027.70-llx)/res); 
llywin = (mows - int((4849736.33-1ly)Ires)); 
urxwin = int((499998.65-llx)/res); 
urywin = (mows - int((49 16303.1 -1ly)Ires)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
{ 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((mows - 
ysample)*res+lly) << "\t"; 

outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< I1\n"; 

gridA.SetAt(CPoint (xsample,ysarnple), 
double(nodata)); 

data = true; 
I 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 3 did not contain enough valid data 

points! ! ! \n"; 



llxwin = int((499998.65-llx)/res); 
llywin = (nrows - int((4866320.69-lly)/res)); 
urxwin = int((535269.05-1lx)lres); 
urywin = (nrows - int((4940833.53-1ly)Ires)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
f 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
f 

outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 

outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\nu; 

gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 

data = true; 
1 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 4 did not contain enough valid data 

points! !! \nu; 

llxwin = int((535269.05-llx)/res); 
llywin = (nrows - int((487 1969.5 1 -lly)/res)); 
umwin = int((56 1878.3-llx)/res); 
urywin = (nrows - int((4940833.5 3-1ly)Ires)); 



for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
{ 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,ll ywin); 

if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((mows - 
ysample)*res+lly) << "\tW; 

outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< f 'hfl ;  

gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 

data = true; 
1 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 5 did not contain enough valid data 

points! ! ! h" ;  

llxwin = int((56 1878.3-1lx)Ires); 
llywin = (mows - int((4905491.63-1ly)lres)); 
urxwin = int((587744.29-1lx)Ires); 
urywin = (mows - int((4940833.53-lly)/res)); 

for (i=O;i<n;i++) 
{ 



data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
{ 

xsample = getrandom(llxwin,umwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (xsanlple,ysample)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 

outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "h"; 

gridA.SetAt(CPoint (xsample,ysample), 
double(n0data)); 

data = true; 
1 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 6 did not contain enough valid data 

points!!! W; 
i = n; 

1 
1 

1 

llxwin = int((5 87744.29-llx)/res); 
llywin = (nrows - int((4905784.11-1ly)Ires)); 
umwin = int((6 17253.62-llx)/res); 
urywin = (nrows - int((4950690.77-1ly)Ires)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 



{ 
xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (~sample~ysample)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 

outFile << gridA.GetAt(CPoint (~sample~ysample)) 
<< "h"; 

gridA.SetAt(CPoint (xsarnple,ysample), 
double(nodata)); 

data = true; 
1 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 7 did not contain enough valid data 

points! ! ! h " ;  
1 = n; 

1 
1 

1 

llxwin = int((6 17253.62-1lx)lres); 
llywin = (nrows - int((4917368.44-lly)/res)); 
urxwin = int((662 104.01-1lx)Ires); 
urywin = (mows - int((4963889.58-lly)/res)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
{ 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 



if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((mows - 
ysample)*res+lly) << "\tW; 

outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\nu; 

gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 

data = true; 
1 

maxout = (maxout + 1); 

points! ! ! \nu; 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 8 did not contain enough valid data 

llxwin = int((637903.62-llx)/res); 
llywin = (mows - int((4963889.58-lly)/res)); 
urxwin = int((662104.01-llx)/res); 
urywin = (mows - int((4985552.27-lly)/res)); 

for (i=O;i<n;i++) 
{ 

data = false; 
maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 

while (!data) 
{ 

xsample = getrandom(llxwin,urxwin); 
ysample = getrandom(urywin,llywin); 

if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
{ 

outFile << (xsample*res+llx) << "\t" << ((mows - 
ysample)*res+lly) << "\tW; 



data = true; 
1 

maxout = (maxout + 1); 

if (maxout = 0) 
{ 

data = true; 
cout << "Zone 9 did not contain enough valid data 

points! ! ! \nu; 

for (sampleloop=O;sampleloop<runs;sampleloop++) 
{ 

filename = ""; 
filename = int~to~string((sampleloop+l),filename); 
filename = "mean - result" + filename + ".ascW; 

filename2 = ""; 
filename2 = int~to~string((sampleloop+l),filename2); 
filename2 = "sample-set" + filename2 + ".txtn; 

while (!observations.IsEmpty()) 
{ 

observations.RemoveTail(); 
1 

for (i=O;i<nrows;i++) 
{ 

for (j=O;j<ncols;j++) 



tempgrid.SetAt (CPoint (j,i),nodata); 
1 

{ 
tout << "Error opening fileh"; 
return nRetCode; 

1 

POSITION pos = observations.GetHeadPosition(); 

for (i=windowsize;i<(nrows-windowsize);i++) 
{ 

for (j=windowsize;j<(ncols-windowsize);jtt) 
{ 

urchins = 0; 
count = 0; 

wincenterx = llx + j*res + 0.5*res; 
wincentery = lly + nrows*res - (i*res + OS*res); 
winllx = wincenterx - (0.5*res + windowsize*res); 
winlly = wincentery - (0.5*res + windowsize*res); 
winum = wincenterx + (0.5*res + windowsize*res); 
winury = wincentery + (0.5*res + windowsize*res); 

pos = observations.GetHeadPosition(); 

for (k=O;k<observations.GetCount(j;k++) 
{ 

tempobs = observations.GetNext(pos); 



if ((temp0bs.x >= winllx) && (temp0bs.x < winurx) 
&& (temp0bs.y >= winlly) && (temp0bs.y < winury)) 

{ 
d = sqrt(((wincentem - 

tempobs.x)*(wincenterx - temp0bs.x)) + ((wincentery - tempobs.y)*(wincentery - 
temp0bs.y))); 

if (d <= tau) 
{ 

kf = (3/pi)*((l -((d/tau)*(d/tau)))*(l- 

urchins = urchns + (kf * 

count = count + kf; 
1 

1 
1 

if ((validgrid.GetAt(CPoint (j,i)) != nodata)) 
{ 

if (count = 0) 
tempgrid.SetAt(CPoint (j,i),nodata); 

else 
tempgrid.SetAt(CPoint (j,i),(urchins/count)); 

1 

outFile.open(filename); 
if(!outFile) 
{ 

tout << "Error opening fileh"; 
return nRetCode; 

1 

outFile << "NCOLS " << ncols << "h"; 
outFile << "NROWS " << mows << "h";  
outFile << "XLLCORNER " << llx << "h"; 
outFile << "YLLCORNER " << lly << "h"; 
outFile << "CELLSIZE " << res << "h"; 
outFile << "NODATA - VALUE " << nodata << "h";  



for (i=O;i<nrows;i++) 
{ 

for (i=O;j<ncols;j++) 
{ 

outFile << tempgrid.GetAt(CPoint (j,i)); 
outFile << " "; 

I 

outFile << "h"; 
1 

tout << %'l; 
cout << "The output is stored in 40 files: h "  << " 20 with sample locations and 

20 resulting averages"; 
tout << "h"; 
cout << "enter 1 to finishh"; 
cin >> intdurnmy; 

return nRetCode; 
I 

C++ computer code for ~eneratiw plots of mean squared error WSE) and mean 
MSE - 
//Calculates MSE. Arc ASCII gridA is the original density file, arc ASCII tempgrid is 
//the simulated density file, and arc ASCII grid B is the depth and habitat constraints 

#include "stdafx. h" 
#include "biomass.h" 
#include <fstream.h> 
#include "math.hW 
#include "Matrix.h" 
#include "Locati0n.h" 

#ifdef -DEBUG 
#define new DEBUG-NEW 
#undef THIS-FILE 
static char THIS-FILE[] = F I L E - ;  



CString int-to-string(int number, CString startstring) 
{ 

boo1 done = false; 

while (!done) 
I 

if ((numberIl0) < 1) 
{ 

if (number == 0) 
startstring = "0" + startstring; 

if (number == 1) 
startstring = " 1 " + startstring; 

if (number == 2)  
startstring = "2" + startstring; 

if (number == 3) 
startstring = "3" + startstring; 

if (number == 4) 
startstring = "4" + startstring; 

if (number == 5) 
startstring = "5" + startstring; 

if (number == 6) 
startstring = "6" + startstring; 

if (number == 7) 
startstring = "7" + startstring; 

if (number == 8) 
startstring = "8" + startstring; 

if (number = 9) 
startstring = "9" + startstring; 

done = true; 
1 

{ 
startstring = int-to-string((number-(int(number/l O)~, 

startstring); 
number = int(numberll0); 

1 
1 

return startstring; 



............................................................................. 
N The one and only application object 

//using namespace std; 

int -tmain(int argc, TCHAR* argv[], TCHAR* envp[]) 
{ 

int nRetCode = 0; 

// initialize MFC and print and error on failure 
if (!Ah Winhit(: :GetModuleHandle(NULL), NULL, : :GetCornmandLine(), 0)) 
{ 

N TODO: change error code to suit your needs 
cerr << T("Fata1 Error: MFC initialization failed") << endl; 
return s e t c o d e  = 1 ; 

1 
............................................................................... 
//////// MY CODE 

ifstream inFile; // Input data file. 1 

ofstream outFile; // Output data file. 
CMatrix gridA, tempgrid, result; 
char chardurnmy; 
int ncols, mows; 
int intdummy = 0, i, j, nodata=-9999; 
double res, doubledummy, llx, lly; 
CString filename; 
int sampleloop; 
double a, b, c; 

int runs = 2; 

cout << "Enter 1 to load gridA.asc (will be used for llx, lly, and resolution): h " ;  
cin >> intdummy; 
tout << If h" ;  



{ 
tout << "Error opening file\n"; 
return nRetCode; 

1 

inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 

inFile >> ncols; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy; 
inFile >> mows; 
inFile >> chardummy >> chardummy >> chardummy >> chardurnmy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> llx; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardumrny; 
inFile >> lly; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> res; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy; 

inFile >> nodata; 

gridA.SetMatrixSize(CSize (ncols, mows)); 

for (i=O;i<nrows;i+t) 
{ 

for (j=O$ncolsj++) 
{ 

inFile >> doubledummy; 
gridA.SetAt(CPoint (j,i), doubledummy); 

1 
1 



for (i=O;i<nrows;i++) 
{ 

for (j=O$ncols;i++) 
{ 

result.SetAt(CPoint (j,i), 0.0); 
1 

1 

for (sampleloop=O;sampleloop<runs;sampleloop++) 
i 

filename = ""; 
filename = int~to~string((sampleloop+l),filename); 
filename = "mean-result" + filename + ".asc"; 

{ 
tout << "Error opening fileh"; 
return nRetCode; 

1 

inFile >> chardumnly >> chardummy >> chardummy >> chardummy >> 
chardummy; 

inFile >> intdummy; 
inFile >> chardumnly >> chardurnmy >> chardumrny >> chardummy >> 

chardummy; 
inFile >> intdummy; 
inFile >> chardummy >> chardummy >> chardurnmy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardurnmy >> chardummy; 
inFile >> doubledummy; 
inFile >> chardurnrny >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> doubledummy; 
inFile >> chardummy >> chardummy >> chardumrny >> chardummy >> 

chardummy >> chardumrny >> chardummy >> chardummy; 
inFile >> doubledummy; 
inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardurnrny >> 
chardurnrny >> chardummy >> chardununy; 

inFile >> intdummy; 



for (i=O;i<nrows;i++) 
{ 

for (j=O;i<ncols;j++) 
{ 

inFile >> doubledummy; 
tempgrid.SetAt(CPoint (j ,i), doubledummy); 

1 
1 

for (i=O;i<nrows;i++) 
{ 

for (j=O;j<ncols;j++) 
{ 

if (tempgrid.GetAt(CPoint (j,i)) != nodata) 
I 

a = tempgrid.GetAt(CPoint (j,i)); 
b = gridA.GetAt(CPoint (j,i)); 
c = (b-a)*(b-a); 
c = c + result.GetAt(CPoint (j,i)); 
result.SetAt(CPoint (j,i), c); 

I 
1 

I 

for (i=O;i<wows;i++) 
{ 

for (j=O;j<ncolqj++) 
{ 

if (result.GetAt(CPoint (j,i)) != nodata) 

a = (result.GetAt(CPoint (j ,i))/runs); 
result.SetAt(CPoint (j,i), a); 

1 
1 

1 



if(!outFile) 
{ 

tout << "Error opening fileh"; 
return nRet Code; 

1 

outFile << "NCOLS " .c< ncols << "W; 
outFile << "NROWS " << mows << "b"; 
outFile << "XLLCORNER " << llx << "W; 
outFile << "YLLCORNER " << Ily << "b"; 
outFile << "CELLSIZE " << res << "h"; 
outFile << "NODATA-VALUE " << nodata << "h"; 

for (i=O;i<nrows;i++) 
{ 

for Cj=O;j<ncols;j++) 
i 

outFile << result.GetAt(CPoint (j,i)); 
outFile << " "; 

1 

cout << lf\nlt; 
cout << "The output is stored in output.ascV; 
cout << "b"; 
cout << "enter 1 to finishb"; 
cin >> intdummy; 

return nRetCode; 
1 

ten~p~d.Empty();  // open and read grid 

inFile.open("somegrid. txt"); 
if(!inFile) 



{ 
tout << "Error opening filch"; 
return nRetCode; 

1 

inFile >> chardummy >> chardumrny >> chardummy >> chardumrny >> 
c hardurnmy; 

inFile >> intdummy; 
inFile >> chardummy >> chardummy >> chardummy >> chardumrny >> 

chardummy; 
inFile >> intdummy; 
inFile >> chardurnmy >> chardummy >> chardurnrny >> chardummy >> 

chardurnmy >> chardurnmy >> chardurnrny >> chardummy >> chardummy; 
inFile >> doubledummy; 
inFile >> chardummy >> chardummy >> chardummy >> chardurnrny >> 

chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
inFile >> doubledummy; 
inFile >> chardummy >> chardummy >> chardurnmy >> chardumrny >> 

chardummy >> chardurnmy >> chardummy >> chardummy; 
inFile >> doubledummy; 
inFile >> chardummy >> chardurnmy >> chardurnmy >> chardumrny >> 

chardurnmy >> chardummy >> chardummy >> chardummy >> chardummy >> 
c hardurnmy >> chardummy >> c hardurnmy; 

inFile >> intdummy; 

for (i=O;i<nrows;i++) 
{ 

for (j=O;j<ncolsj++) 
{ 

inFile >> doubledummy; 
tempgrid.SetAt(CPoint (j ,i), doubledummy); 

1 
1 
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