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A high-temperature region associated with Acadian deformation extends 200 km 

through north-central New England. The scale of this heat source is investigated in order 

to better understand the rheology and mechanics of deforming orogens. In central Maine, 

on the boundary of the high-temperature region, isograds in pelitic rocks are normal to 

the accretionary structures and record a steep northeast-southwest thermal gradient. The 

isogradic sequence, geobarometry, and the mineral assemblages indicate low-pressure, 

high-temperature metamorphism, moderately low pressures of 3 kbar, and temperatures 

ranging from 600° to 450° C over a 10 km region. The spacing between these isograds 

and the temperature at each isograd are used in combination with thermal modeling to 

extract information about the scale and nature of the heat source. Three-dimensional 

conductive thermal models fall into two broad categories based on scale and type of heat 



source: models with a local plutonic heat source and models with a regional 

asthenospheric heat source. The results show that the likely source of the isograds in 

central Maine is local granitic plutons that dip shallowly to the northeast, but the regional 

thermal structure is best described by models with an asthenospheric heat source at 

crustal depths. 

Integrating existing Bouguer gravity data with the thermal models, I found that, 

on the local scale, the quality of gravity data is such that it cannot confirm or refute the 

presence of a shallowly dipping pluton. On a regional scale, there is a large mass 

deficiency over southern Maine that cannot be explained entirely by low-density plutons 

and implies an overthickened crust. The presence of a thick crust contradicts the high-

density signature expected from a region of shallow, cooled asthenosphere. These 

opposing pieces of evidence may be a sign of flat subduction in which the asthenospheric 

heat source was replaced by crustal material. 

Using information from the thermal and gravity modeling, I constructed three-

dimensional mechanical models that deform the orogen obliquely with west-dipping 

subduction. The patterns of strain that emerge show curvature at the transition between 

the strong and the weak rheological zones, and high uplift in the weakened zone relative 

to the strong region. This curvature in the orogen is not observed in Maine. Further 

numerical modeling could explore possible ways of accommodating both a shallow 

asthenosphere and a lack of curvature, but this discrepancy suggests that there may not be 

an abrupt change in rheology in central Maine. In turn, the possibility of along-strike 

rheological uniformity supports the idea that central Maine represents a change in the 

erosional level associated with underplating. 
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Chapter 1 

INTRODUCTION 

Eastern North America has experienced multiple episodes of deformation and 

metamorphism associated with a long history of subduction. In Maine this history has 

been preserved in multiply strained rocks, major structural faults, polymetamorphosed 

rocks, and a large number of plutonic bodies. Of particular interest in this study are the 

intrusive bodies and the metamorphism associated with the Acadian orogeny (Figure 

1.1). 

Southern Maine was the site of a large thermal anomaly recorded by the high-

grade metamorphic rocks. This high-temperature region extends into New Hampshire and 

central Massachusetts where migmatites and gneiss domes are preserved. Intriguingly, 

this thermal anomaly is normal to the general grain of the Appalachians (Figure 1.2). 

The anomalously high temperatures recorded in southern Maine potentially could 

have caused a change in the rheology of the crust. Large-scale along-strike weakening in 

an active orogen could have a significant effect on the distribution of strain within the 

orogen. The goal of this study is to understand the potential effects of a high-temperature 

anomaly on the mechanics of a deforming orogen. To accomplish this goal, I numerically 

explore the scale and source of the heat that produced the thermal anomaly in Maine; I 

construct a possible thermal and rheological structure produced by the heat source; and I 

incorporate this rheological structure into a mechanical model of an obliquely deforming 

orogen. 

1 
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1.1. Tectonic Setting 

1.1.1. Geometric Considerations 

Devonian-aged deformation in eastern Canada and eastern Massachusetts is 

referred to as the Acadian orogeny, which was the site of a subduction related collision 

between the composite microcontinent of Avalon and the continent of Laurentia (Barr et 

al., 2002a). For simplicity, references to Devonian-aged deformation in Maine will also 

be referred to as Acadian deformation. The period of active deformation is thought to 

have lasted from 423-385 Ma (Robinson et al., 1998). Various tectonic models have been 

proposed for the Acadian deformation. These models are based on the location, type, and 

timing of plutonism, metamorphism, deformation, and structures in the Appalachians. 

By tracking the deformation front through time, the convergence rate has been 

conservatively estimated as 10 to 12mm a"1 (Robinson et al., 1998, Bradley et al., 1998). 

Regions of high-strain contain sense of shear indicators, which record significant 

evidence for right lateral movement (Swanson 1992, 1999, Solar and Brown, 2001, Short 

and Johnson, in press). 

The Coastal Volcanic Zone in eastern Maine is usually considered to be part of 

the Acadian terrane (Robinson et al., 1998, Bradley and Tucker, 2002). The volcanic 

units in this region are syndeformational. However, there are also syndeformational 

plutons that have intruded into western Maine, New Hampshire, New Brunswick, and 

Quebec, which were part of the Laurentian continent (Robinson et al., 1998). The 

presence of magmatism on both sides of the orogen led to confusion about the geometry 

of the subduction zone; in a simple subduction zone, magmatism would be expected only 
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in the lithosphere above the subducting slab. The plutons of western Maine and the 

Coastal Volcanic Zone include both gabbroic and granitic plutons (Tucker et al., 2001, 

Aleinikoff and Moench 1987). Some of the granitic plutons are interpreted to have 

formed entirely from a crustal source, but the gabbroic plutons require a mantle 

contribution (Murphy et al., 1999, Bradley and Tucker, 2002). An additional piece of 

information is that, at the same time that the magmatism was taking place in Maine, the 

deformation front of the Acadian orogen was moving northwest across Maine (Bradley et 

al., 1998). 

Some researchers suggested that the volcanic rocks in the Coastal Volcanic Zone 

imply that the slab dipped east beneath Avalon (Keppie and Dostal, 1994, Tucker et al., 

2001). With this model, the presence of volcanism in Laurentia, the overlying slab, was 

explained through lithospheric flexure (Bradley and Kidd, 1991) or through a onetime 

event such as slab break-off or mantle delamination (Tucker et al., 2001). Such a onetime 

event could expose the asthenosphere to the base of the crust beneath Laurentia and cause 

melting. The weaknesses of this model are that it does not explain the spatial gap in 

magmatism in central Maine or the northwest movement of the deformation front across 

Maine. 

Other researchers suggested that the record of Acadian related volcanism is 

evidence for two-sided subduction (McKerrow and Zeigler 1971, Bradley, 1983, Ludman 

et al., 1993). In this model the oceanic slab separating Avalon from Laurentia was 

subducting in two locations with one zone dipping east beneath Avalon and the other 

dipping west beneath Laurentia. The advantage of this model is that as Laurentia and 

Avalon approached one another, the oceanic slab separating them could delaminate and 

5 



#' 

sink into the mantle. This would expose the asthenosphere to the base of the crust, and it 

would explain the high-temperature regions that were recorded in the Appalachians. 

However, there are few modern examples of this type of mechanical situation. This has 

led to skepticism about the realism of this type of model (Robinson et al., 1998). 

Additionally, because high-temperature regions and complex patterns of volcanism have 

been produced in modern orogenic settings without two-sided subduction (Bibby et al., 

1995, McMahon, 2000), this raises the possibility that two-sided subduction is an 

unnecessarily complicated and unlikely model. 

Still others have suggested a west-dipping subduction zone. In this scenario, the 

igneous rocks of the Coastal Volcanic Zone formed in a backarc setting. Supporting this 

idea is the presence of subduction-like melange in New Hampshire (Eusden et al., 1996). 

One proposal places a mantle plume beneath the subduction zone, and as the subduction 

zone overrode the plume, the plutons of western Maine were formed in a continental arc 

setting, and this model can explain the westward movement of the deformation front by 

means of flat subduction. This region of underplating could have pushed the location of 

subduction and deformation farther into the interior of Lavirentia. This event would have 

produced a gap in magmatism beneath the underplated region and pushed the zone of 

deformation towards the interior of the continent (Murphy et al., 1999). However, other 

causes for flat subduction are possible (Cloos, 1993), and mechanisms other than flat 

subduction could explain the magmatic gap (Nelson, 1992, McMahon, 2000). 

Additionally, there is now evidence that the Coastal Volcanic Zone does not represent a 

part of Avalon (van Staal et al., 2002, Barr et al., 2002b). This eliminates the confusion 

over the relationship between subduction geometry and volcanism in this part of the 
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orogen, and in parts of the orogen where Avalon is visible, there are no igneous rocks 

with syndeformational ages (Hibbard et al., 2006). 

It is possible that during Maine's long history of subduction, the dynamics of the 

region changed significantly, and there have been several kinematic models proposed for 

subduction during the Acadian orogeny. Despite this uncertainty, I will assume 

subduction was oblique, right lateral, and that the subduction zone dipped to the west, 

under North America. 

1.1.2. Thermal and Metamorphic Age Considerations 

The metamorphic history of Maine has been shown to be complex. A high-

temperature region extended through southern Maine, New Hampshire, and central 

Massachusetts. Temperatures throughout this region were likely greater than 500° C 

(West et al., 1988). However, age dating and petrographic analyses show that the high-

temperature region was not produced by a single event (Eusden and Barreiro, 1988, West 

et al., 1988, Lux and Guidotti, 1985). Rather, the high-grade metamorphism is the result 

of polymetamorphism from spatially overlapping but temporally disparate heating events. 

Most significantly, much of the highest temperature metamorphism in southern Maine 

was likely a late event, possibly associated with the emplacement of the Sebago Pluton 

(Lux and Guidotti, 1985). However, a petrographic analysis suggests that this high-

temperature event overprinted the more widespread metamorphism associated with the 

Acadian orogeny (Holdaway et al., 1982, Guidotti, 1970). Thus the Acadian event likely 

overprinted existing metamorphism, and subsequently was overprinted by later events. 

This integration of metamorphic events with time makes it difficult to determine the 
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spatial extent of Acadian metamorphism, but it does not decrease the likelihood that there 

was a widespread heating event associated with the Acadian deformation. Even within 

the Acadian orogeny, two possible episodes of metamorphism have been identified. They 

have typically been distinguished from one another by the presence or absence of 

andalusite. This petrographic change has been attributed to a slight increase in pressure 

between the two events (Holdaway, et al., 1982). 

The cause of this metamorphism has been modeled as deep-level contact 

metamorphism (Guidotti, 1989, DeYoreo et al., 1989). This model suggests that the 

normal geothermal temperatures at a depth of 12-15 km along with the additional heat of 

plutons emplaced at and above this level combine to significantly increase the geothermal 

gradient and produce unusually high-grade metamorphism at low to moderate pressures 

(DeYoreo et al., 1991). In this model, the cause of the petrologically inferred increase in 

pressure during the Acadian orogeny, referred to above, is attributed to an increase in the 

volume of plutonic and volcanic material overlying the currently exposed section of the 

mid-crust (Guidotti, 1989). 

The high-temperature region coincides with a region of deeper crustal exposure 

levels. Although temperature is expected to increase with depth, the high temperatures 

that are reached could not be attained with a normal geotherm (DeYoreo et al., 1989). 

However, this deepening of the exposure surface does raise the possibility that the high 

temperature region may have extended farther to the north at depth, and the high 

temperature record may not be visible in the north because the exposure level is too 

shallow for the anomaly to be visible. 
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1.2. Modern Analogues 

There are numerous areas of the world in which active subduction is currently 

taking place. Some of these regions may be similar enough in their geometry or 

kinematics that a comparison between these modern orogens and the Acadian orogen 

may be helpful in improving our understanding of certain aspects of the dynamics of the 

Acadian orogen. In particular, the volcanism of New Guinea and the high temperatures 

associated with the Taupo Volcanic Zone of the North Island, New Zealand may be 

instructive modern analogues. Knowledge of the tectonics of these locations can serve as 

a guide when thinking about the possible processes that were at work during the Acadian 

orogeny. 

1.2.1. Taupo Volcanic Zone 

In the North Island of New Zealand, convergence of 50 mm a"1 causes the Pacific 

Plate to subduct obliquely beneath the Australian Plate at the Hikurangi Trough. The 

coupling between these two plates at the subduction zone becomes stronger to the south 

along the length of the South Island. The subduction of sediments in the north has led to 

an area of flat subduction, and the presence of these sediments is thought to be 

responsible for the weak interface between the two plates in this part of the subduction 

zone (Eberhart-Phillips and Reyner, 1999, Bourne and Stewart, 2000). The flat 

subduction has essentially thickened the crust in the northern part of the North Island, and 

crustal thickening has led to high uplift rates (Reyner et al., 1999, Bourne and Stewart, 

2000). Numerical modeling has shown that a weakly coupled subduction zone can lead to 

extension in the overlying slab when the overlying slab is much stronger than the 
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interface (Upton et al., 2003). Additionally, slab rollback likely accounts for some of the 

extension (Upton et al., 2003, Hochstein, 1995). Another proposed explanation for the 

extension is the presence of a mantle plume initiated by subduction-induced flow in the 

backarc (Hochstein, 1995). These various mechanisms of producing extension within a 

convergent setting are probably not incompatible with one another. 

Associated with the extension in the North Island are a number or geophysical 

anomalies observed in the Central Volcanic Region (CVR). A smaller region within the 

CVR, the Taupo Volcanic Zone (TVZ), produces active rhyolitic and andesitic 

volcanism. Seismic surveys have indicated that the Moho in the CVR is at a shallow 

depth of 15 km, and the lithosphere may be thinned to as little as 30 km (Stern and Davey 

1987, Bibby et al., 1995). Bibby et al. (1995) studied many other geophysical anomalies 

associated with the TVZ. Strong seismic reflections in the lower crust and near the Moho 

suggest that there may be partial melting in the lower crust. Seismicity indicates that most 

faulting is normal and that earthquakes rarely extend to depths greater than 10 km. Heat 

flow is high in the TVZ, and is convectively concentrated into volcanic and geothermal 

fields. The average heat flow across the central TVZ, where most of the geothermal 

activity takes place, is 700 mW/m (Bibby et al., 1995). Some studies have suggested that 

these high values of heat flow require a combination of lithospheric thinning and a mantle 

plume (Hochstein, 1995). 

Taupo demonstrates the possibility of extension within a convergent setting. It 

demonstrates the effect of lithospheric thinning on heat flow, and gives several possible 

mechanisms for generating extremely high heat flow. 

10 



1.2.2. New Guinea 

New Guinea is the site of a recent arc-continent collision at the boundaries 

between the Australian and Pacific plates which produced a complex pattern of 

volcanism. A belt of Miocene plutons extends along the eastern side of the island. To the 

south, farther from the subduction zone, there is a belt of younger igneous rocks that are 

less than 7 Ma. In the central portion of the island, there is a gap in the magmatism, and 

on the western side of the island, there is a second group of Miocene plutons as well as 

plutons less than 5 Ma (McMahon, 2000a). Additionally, there are volcanic rocks that 

form the collided arcs. 

The only area of current volcanism is offshore of New Guinea above a north-

facing subduction zone. In fact, this volcanism is part of one of the only modern 

examples of a double-sided subduction zone. Convergence on the south facing 

subduction zone in this system is very slow, and currently no volcanism is taking place in 

this region. The geometry of the double-sided subduction zone suggests that it may have 

extended farther to the west previously, and some of the complexity in the volcanism on 

the eastern side of New Guinea is attributed to the closing of this subduction zone 

(McMahon, 2000b). 

On the western side of the island, the tectonic response to collision was different 

from the east. Some models involve south-dipping subduction on the western side of New 

Guinea that later changes polarity to north-dipping (McMahon, 2000b, Cloos et al., 

1998). However, the evidence for this switch is ambiguous. There is a temporal gap in 

magmatism at this point. A common explanation for the younger igneous rocks on this 

side of the island is lithospheric delamination of the subducting slab. The delamination 

11 
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exposed the asthenosphere to the base of the crust causing the volcanism (McMahon, 

2000b). 

The tectonics of New Guinea are complex, and despite the relative youth of this 

orogen, there have been various tectonic models and geologic processes proposed to 

explain the features observed on New Guinea. The processes that have been postulated 

for New Guinea are not necessarily the same ones that took place in the development of 

the Acadian orogen. The relevance of New Guinea to the Acadian orogen is that New 

Guinea demonstrates that there are significant temporal and along-strike variations in 

subduction geometry, volcanism, and heat flow. 

12 



Chapter 2 

STUDY AREA AND PETROLOGY 

The rock types that occur in the Waterville region are of interest for two reasons. 

First of all, the rock type provides information about the thermal and mechanical 

properties of the region. This geological information can be used to constrain numerical 

models. Secondly, the initial rock type and composition determine the type of 

metamorphic rock that will be produced under given P-T conditions. 

There are three small plutons in the southern portion of the study area and one 

larger pluton in the northwest. Because the southern plutons appear to have a spatial 

relationship to the local metamorphic isograds, these plutons are of most interest for this 

study. Two of these plutons, the Hallowell and Togus plutons, have a binary quartz 

monzonitic composition, and the third, the Threemile Pond pluton, has a biotite 

granodioritic composition (Osberg, 1968). There are also very small amounts of diorite 

found in the same location as the larger plutons. Radiometric dating has shown the 

Hallowell pluton to be 387±11 Ma, the Togus pluton to be 378±1 Ma, and the Threemile 

Pond pluton to 381±1 Ma (Zartman et al., 1970, Dallmeyer and van Breeman 1981, 

Tucker etal., 2001). 

Osberg (1968) has described the stratigraphy of the three relevant formations, 

Sangerville (Vassalboro), Mayflower Hill, and Waterville. The Sangerville Formation is 

primarily a calcareous wacke. In addition to the wacke, there are smaller amounts of two 

phyllites, one dominated by biotite and the other by muscovite. 

The Mayflower Hill Formation is primarily a wacke with minor phyllites. 
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The Waterville Formation contains four members: a pelite, a wacke, a limestone, 

and a phyllite. The pelite contains biotite, chlorite, garnet, variable amounts of quartz, 

and muscovite at low grades of metamorphism. At high grades it contains quartz, biotite, 

muscovite, garnet, andalusite, staurolite, and cordierite. The wacke contains clasts of 

quartz, feldspar, slate, and volcanic fragments in a matrix of quartz, biotite, muscovite, 

chlorite, and calcite. In the chlorite and garnet zones of metamorphism, the limestone 

contains biotite, actinolite, garnet, calcite, and variable amounts of quartz. At the higher 

grades of metamorphism, the limestone has been metamorphosed to a marble containing 

quartz, biotite, actinolite, diopside, garnet, and calcite. The limestone alternates with the 

phyllite, which contains muscovite, quartz, graphite, and pyrrotite (Osberg, 1968). 

The rock in the study area has undergone low-pressure, high-temperature 

metamorphism. Garnet, andalusite-staurolite, cordierite, and sillimanite isograds record 

an increase in temperature with increasing proximity to the plutons (Figure 1.2). The 

distance of each isograd from the pluton is variable, but roughly sillimanite is 1 km, 

cordierite is 3 km, andalusite-staurolite is 6 km, and garnet is 10 km from the edge of the 

pluton. 

The mineral assemblages in each metamorphic zone were determined by Osberg 

(1968), and the geochemistry of the pelitic and calcareous units of the Waterville and 

Sangerville formations was determined by Ferry (1976a, 1976b, 1982). The assemblages 

and geochemistry suggest that K2O, FeO, MgO, AI2O3, SiC>2, H2O, and MnO are the 

dominant components in the pelitic rocks. The presence of magnetite in some of the 

lower-grade rocks suggests^ that Fe2C>3 may also be an important component. 
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Ferry (1980) used biotite-garnet-andalusite-sillimanite, garnet-plagioclase-quartz-

andalusite-sillimanite, biotite-garnet-plagioclase-quartz-aluminum silicate, and garnet-

cordierite-sillimanite-quartz geobarometry to determine that the pressure was between 3.0 

and 4.0 kbar. Based on this analysis, I used a depth of 12 km as the present day erosional 

surface. 

If the temperatures of each of the isograds can be determined, thermal modeling 

of heat flow around the pluton can put some constraints on what conditions could have 

created the present day distribution of metamorphism. Ideally, the temperature of each 

isograd would be determined petrologically from the reactions implied by the 

assemblages on either side of each isograd. A petrogenetic grid could then be used to 

determine the temperature of each reaction at 3.5 kbar. However, in this region, there are 

complications that make this approach difficult. There is a disequilibrium assemblage, 

cordierite, staurolite, biotite, and muscovite, found in some areas surrounding the pluton 

(Pattison et al., 1999). Polymetamorphism is a likely cause of this disequilibrium 

assemblage but does not necessarily mean that the isograds are also in disequilibrium. 

However, the possibility of polymetamorphism does raise the question: which 

metamorphic event caused the isograd to form? Because the purpose of the modeling is to 

evaluate different sources of heat as causes of metamorphism, the modeling itself may be 

able to address the issue of polymetamorphism. For the purposes of modeling, it is 

enough to know that the temperature at each isograd is approximately constant. However, 

the requirement of constant temperature may not apply to at least one isograd. The 

andalusite and staurolite isograds are lumped together as one because the order in which 

these two minerals first appear is not consistent (Osberg, 1968). This may be an 
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indication that these two reactions are sensitive to bulk composition and that variations in 

bulk composition caused significant variations in the temperature at which these reactions 

took place. 

The minerals are in the KFMASH system for which numerous petrogenetic grids 

have been determined (Hess, 1969, Spear and Cheney, 1989, Xu et al., 1994). However, 

garnet has a significant amount of Mn2+, which changes the stability of garnet in P-T 

space. The effects of bulk composition and disequilibrium make it difficult to determine 

the reactions that took place here, and the effect of the extra components outside of the 

KFMASH system make it uncertain whether a reaction temperature determined from the 

KFMASH system has validity. Instead, the minimum temperature at which each 

isogradic mineral is stable is used as an estimate of temperature at each isograd (Figure 

2.1). 

Because quartz behaves ductilly, the background temperature is assumed to have 

been at least 350° C (Brace and Kohlstedt, 1980). This temperature is also supported by 

thermal closure data from muscovite and biotite (Dallmeyer and van Breeman, 1981). 

Ferry (1980) measured the composition of numerous garnet samples from this area. His 

measurements showed a significant spessartine content, leading to a ratio of 

Mn/(Mn+Fe+Ca) of approximately 0.2 (Ferry, 1980). This ratio places the lower limit on 

the garnet stability at 460° C (Spear, 1993). At 12 km depth, the lower range of staurolite 

is slightly below the value for garnet, and the lower range for andalusite is significantly 

below the value for garnet (Spear and Cheney, 1989). Given that staurolite and andalusite 

first appear at a higher grade than garnet, the staurolite value seems to be more realistic 

than the andalusite value. The ordering of garnet before staurolite can easily be explained 
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by variations in bulk composition, geobarometrical error, or penological error. For this 

reason, a value of 470° C was used for the andalusite-staurolite isograd. Of the four 

isograds considered, this is the most questionable, and may not be a good indicator of 

temperature. The lower limit of cordierite stability is placed at 550° C (Xu et al., 1994). 

The sillimanite isogradic temperature is based on the andalusite-sillimanite transition, and 

is placed at 600° C (Xu et al., 1994). However, the sillimanite formed on biotite rather 

than on andalusite. This may be an indication that the metastability of andalusite was 

significant, and the estimated temperature at this isograd may be an underestimate. Closer 

to the pluton, sillimanite and K-feldspar coexist, suggesting a temperature of 660° C was 

reached. 

Based on the petrological uncertainty presented above, as well as the uncertainty 

in thermodynamic data, I estimate that there is an error of ± 50° C in the temperature at 

each isograd. Because of the close spacing between some of the isograds, there is 

significant overlap in the temperature range that is possible at these isograds (Figure 2.2). 

The degree of overstepping that is required at each isograd to cause each reaction to 

proceed from a metastable state is unknown. Overstepping is likely at the sillimanite 

isograd and could cause the actual temperature at other isograds to be higher than 

estimated as well. Additionally, it is unclear whether the temperature recorded by the 

isograds is the peak temperature or whether retrograde metamorphism may cause a lower 

temperature to be recorded. Both of these unknowns would cause the peak temperature at 

each isograd to be higher than my estimate. 
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Figure 2.2. Temperatures of relevant metamorphic reactions. Each color represents the 
preferred petrogenetically determined temperature of each isograd and the error 
associated with the petrological data. Sillimanite is shown in blue, cordierite in red, 
staurolite in black and garnet in orange. There is overlap in the temperature range of 
garnet, staurolite, and cordierite and in the range of cordierite and sillimanite. 
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Chapter 3 

LOCAL-SCALE THERMAL MODELS 

3.1. Model Setup 

3.1.1. Horizontal Pluton Geometry 

This group of models was designed to determine whether the steep thermal 

gradient recorded on the edge of the regional thermal anomaly in southern Maine could 

have been produced locally by plutons. 

Local heat flow is modeled with a rectangular volume of dimensions x=50 km, 

y=50 km, z=30 km (Figure 3.1). The grid spacing is 2 km in the x-direction, 0.5 km in the 

y-direction, and 1 km in the z-direction. The box has a geothermal gradient for which the 

temperature varies with depth and is constant in the horizontal directions. An area of 

anomalously high temperature is placed into this steady-state geotherm, which represents 

an instantaneously emplaced pluton. In this model, the pluton is placed in the center of 

one edge of the model. The pluton extends 20 km along the edge in the x-direction, 10 

km towards the center of the model in the y-direction, and is 2 km thick. 

This geometry is a simplification of the actual geometry. In Augusta there are 

three small plutons. Radiometric dating has shown that, within error, these plutons could 

be the same age, but, within error, they could be separated in age by over one hundred 

thousand years (Dallmeyer and van Breeman 1981, Tucker et al., 2001). I have chosen to 

assume that the plutons were emplaced simultaneously and to simplify the geometry by 

combining the three plutons into a single larger pluton with approximately the same area 
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Figure 3.1. Small-scale thermal model setup for horizontal plutons. Image A shows the 
model dimensions and the steady-state geothermal gradient in the z-direction. Image B 
shows the location of the pluton in a map view at a depth of z=12 km. Image C shows a 
cross-section through the pluton. The black lines going across images B and C show the 
lines along which the temperature-time data were recorded, and likewise, the lines going 
across image C show the variation in depth of the erosional surfaces that was explored. 
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of surface exposure. The importance of the timing and lifespan of the plutons is discussed 

below in Sections 3.1.2 and 3.2.2.2. 

The background steady-state geothermal gradient used in this model was reached 

by applying a constant heat flux to the base of the model, a constant temperature of 20° C 

to the top of the model, and a constant radioactive heat source throughout the volume of 

the model (Table 3.1). The edges of the models have adiabatic boundaries. Under these 

conditions, the model was allowed to run until it reached a steady state. 

The model assumes that heat flow is primarily conductive, based on the 

. dT 
equation— = K 

rd2T d2T d2T^ 
+ —r- + -2 a, .2 a _ 2 dxl dy1 dzl 

+ A, where T is temperature, t is time, A is a source 

k 
term and K is the thermal diffusivity, which is equal to — where k is the thermal 

pc 

conductivity, p is the density, and c is the specific heat. This assumption is valid because 

the low permeability at 12 km depth impedes convection. Additionally, although in all 

cases the release of metamorphic fluids would accelerate cooling, Dutrow (2002) has 

shown that the amount of fluid produced by the pluton is unlikely to transport significant 

amounts of heat. The conductive heat flow equation was solved in three-dimensions with 

a finite difference code, FLAC3D (Itasca, 2005). 

Many of the thermal parameters that went into this model can vary significantly 

within the earth, and some factors constrained by petrology are not well known. An 

understanding of the role these factors play, why certain values were chosen, and the 

effect that a variation in these properties has on the result is important. In order to 

determine the range of outcomes that might reasonably be expected, I varied the values of 
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several thermal properties as well as some variables related to the pluton geometry. Table 

3.1 shows the values for the thermal properties used in each model. 

The standard basal flux used in this model was 0.04 Wm"2. This is a realistic value 

for the mantle contribution to the geotherm in a normal geothermal environment 

(Turcotte and Schubert, 2002). This condition resulted in a steady-state geotherm with a 

basal temperature of 670° C. In some areas of a subduction zone, the geothermal gradient 

is elevated because of backarc extension, slab break-off, or slab induced upward mantle 

flow. To account for the possibility of a high mantle contribution to the thermal gradient, 

some models use a fixed basal temperature of 900° C. (Chapter 4 addresses the 

possibility of high regional heat flow). Near the basal boundary, the use of a fixed 

temperature base will affect the downward flow of heat away from the pluton. However, 

the base of the models was sufficiently far from the plutons that this effect is unlikely to 

be significant. 

The standard conductivity in the model was 2.9 Jm '^cV 1 . This is a value 

appropriate for typical crustal material. The conductivity was varied to 1.9 Jm'^C'V1, a 

value appropriate for a rock which is coarse grained, has a low percentage of quartz, or 

has a high porosity, and 3.9 Jm '^cV 1 , a value for a rock with high quartz or calcite. A 

value of 2.9 Jm"loC" s"1 is sensible in this area because the rock in the study is 

sedimentary and has a significant amount of quartz. At the time of metamorphism, the 

rock was at 12 km depth, thus it probably had a low permeability. Because the 

conductivity of the rocks could have changed with grain size during metamorphism, 

testing the variation in conductivity is important, but 2.9 Jm'^C's"1 is probably a 

reasonable value to use as a starting point. 
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Table 3.1. Local Scale Thermal Modeling Parameters. The model names correspond to the labeling of the figures in Section 3.2. 
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Changing the value of any of the thermal variables in Table 3.1 will affect the 

geotherm. I have chosen to vary only two of these properties: the basal boundary 

condition and the thermal conductivity. Changing the basal boundary condition will 

affect the geotherm without affecting how a given amount of heat will flow through an 

area of the model with a specified thermal gradient. Changing the conductivity will affect 

both the geothermal gradient and the ease with which heat will flow through a region 

with a given gradient. For this reason, the effect of changing these two variables has a 

fundamentally different effect on the model, and it is important to see the effect of these 

two types of changes. If other thermal variables were varied, they too would change the 

geotherm and some would also affect the ease of heat flow in the model. Changes in each 

thermal property might result in a geotherm of a slightly different shape. However, the 

change in shape resulting from a variation of these parameters is not as significant as the 

overall increase or decrease in the geotherm, which can be observed as easily from 

changing the basal boundary condition and conductivity as from changing any other 

thermal parameter. 

The standard temperature used for the pluton was 700° C. This is based on the 

minimum melting temperature of a granite (Turtle and Bowen, 1958) (Figure 2.1). This 

temperature was varied to 900° C to consider the possibility that the melt was heated to 

significantly higher than the minimum temperature before it was emplaced. These two 

situations represent end members with the actual temperature of emplacement probably 

closer to the 700° C end. 

In some models, the pluton temperature was allowed to decay as soon as it was 

emplaced. In other models, the temperature was held constant at the initial temperature 
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for the duration of the run. The first situation represents emplacement that is rapid 

relative to the timescale of heat flow, while the second situation represents emplacement 

that is on the same timescale as heat flow. Neither of these two cases perfectly represents 

reality. Clearly, emplacement of a pluton will never be entirely instantaneous. Thus, the 

size of the pluton will increase as it is emplaced. The two cases used here, can be seen as 

end members between which reality is likely to lie. Given the small size of the pluton, the 

emplacement time is likely to be short. This means that the first case is probably the more 

realistic of the two. In some models, where more control over the time span of 

emplacement was needed, the pluton temperature was held constant for a set period of 

time, after which, the temperature was allowed to decay. Rates of emplacement are 

discussed further in Section 3.1.2. 

In addition to varying the thermal properties of the model, the sensitivity of the 

model to changes in geometry was evaluated. Because of uncertainty in the geobarometry 

the depth of the current erosional surface was varied from 11 to 13 km (Figure 3.1C). 

This changed the location within the model at which the temperature was observed 

without changing anything about the setup or thermal structure of the model. Because it 

is certain that the pluton is exposed at the earth's surface today, the surface depth was not 

varied by more than 2 km, the thickness of the pluton in the model. The other way to 

accomplish a relative change in the position of the pluton and the erosional surface is to 

change the depth of emplacement of the pluton. Again, in this case, the depth of the 

pluton was changed only to such an extent, relative to the erosional surface, that the 

pluton would be exposed at the surface. 
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3.1.2. Dipping Pluton Geometry 

Because gravity data were not able to determine whether or not the pluton dips 

beneath the study area (Chapter 5), models were run with a pluton dipping relative to the 

erosional surface (Figure 3.2). In these models a different grid was used because it was 

necessary to have a higher resolution in the z-direction. For most of the volume of the 

model, the spacing was 2 km in each direction. However, in one section, the spacing was 

2 km in the x-direction, 0.5 km in the y-direction, and 0.1 km in the z-direction. This 

high-resolution zone encompassed the entire region where metamorphic isograds are 

found. 

In some models, the erosional surface was assumed to be horizontal and the 

pluton to be dipping beneath it. In other models the pluton was assumed to be initially 

horizontal, and the erosional surface to have formed at an angle relative to the pluton. 

These two situations differ from one another because, the orientation of the pluton and 

the erosional surface relative to the geothermal gradient are not the same. In the latter 

case, the background temperature changes with location along the erosional surface while 

in the former case the background temperature is uniform along the erosional surface. 

Many of the variations in thermal properties that were described above were also 

examined with a dipping pluton geometry. Models were run where the pluton 

temperature was allowed to decay immediately, models were run where the pluton 

temperature was held constant for the duration of the run, models were run where the 

pluton temperature was elevated to 900° C, and models were run in a setting with an 

elevated geotherm. In addition to these variables some models were run where the pluton 
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Figure 3.2. Small-scale thermal model setup for dipping plutons. The scale is the same as 
in Figure 3.1. Image A shows a pluton dipping at 5°. Image B shows a pluton with a dip 
of 12°. Image C also shows a pluton with a dip of 12°, but the pluton thickness has been 
increased such that the intersection of the pluton and the erosional surface is 
approximately equal to the intersection for the pluton in image A. Image D shows a map 
view of a horizontal pluton, and image E shows a cross-section of the same pluton with 
an erosional surface dipping at 12°. For all cross-sections, the black lines represent the 
erosional surface where temperature-time data was collected. Visible on most of these 
images is the location where the pluton crosses from the finely gridded portion of the 
model to the portion with a coarser grid. This transition is not very close to the locations 
at which temperature-time data is collected and should not have a significant effect on the 
results. 
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had a 12° dip while others were run where the pluton had a 5° dip. For some models, the 

results were such that it was appropriate to look more closely at the effect of the length of 

time over which plutonic activity lasted. For this reason, there were models in which the 

pluton temperature was held constant for a set period of time, and after this time, the 

temperature of the pluton was allowed to decay. 

In the models with a dipping pluton, the effect of pluton thickness was examined. 

The reason for this was that, because these plutons are modeled as sheet-like bodies, the 

current exposure area of the pluton on the surface of the earth depends on the thickness, 

dip angle, and width of the pluton. The pluton dimension normal to the dip direction will 

be determined by the width, but the dimension of interest is the length of the pluton in the 

dip direction. This dimension is determined by the thickness of the pluton and the dip of 

the pluton relative to the erosional surface. The plutons in Augusta have a length, in the 

dip direction, of about 20 km. Models with a 5° dip that are 2 km thick have a dimension 

comparable with that observed in Augusta. Models that dip at 12° were tested with a 

thickness of 2 km as well as 4 km. For a 2 km thick pluton that dips at 12°, the 

intersection of the pluton and the erosional surface produces a surface exposure for the 

pluton that is less than what is observed in Augusta, but with a thickness of 4 km, the 

surface exposure is comparable. 

Models were run for a period of time that varied from 140 kyr to 1400 kyr. Some 

information is known about the amount of time a pluton remains active. Assuming dike 

emplacement, one way of estimating the time scale for emplacement is to look at the 

minimum speed at which melt can move through a dike (Gerbi et al., 2004). With this 

constraint, it would be difficult for a small pluton, such as is found in Augusta, to remain 
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active for much longer than 5 kyr. Other methods of estimating emplacement times result 

in comparable amounts of time. (Johnson et al., manuscript in preparation, White et al., 

2006). Thus the timescale for which these models were run is long. However, this 

timescale allows for the possibility that the pluton was emplaced at the tectonic rate at 

which space dilatationally becomes available in the lithosphere; a life of one million 

years is appropriate for a small pluton emplaced at a strain rate of 10"14s_1. Regardless of 

the length of time the pluton was active, running a model for a long period of time means 

that the full extent of the conductive heating is visible. The time step for each model was 

determined based on the thermal properties and the grid spacing. The time steps used for 

these models ranged from 4.287-109 to 1.299-10ns. Based on the time step, I ran models 

for 328 to 1000 steps, such that the time elapsed during a run would be constant for each 

group of models. 

3.2. Model Results 

References to a model producing sillimanite metamorphism, for example, are 

shorthand for the model having reached the temperature of sillimanite stability. Likewise, 

references to the sillimanite isograd, within the context of modeling, refer to the 

temperature at which sillimanite becomes stable. 

3.2.1. Horizontal Pluton Geometries 

Figure 3.3 shows temperature-time plots at the position of each isograd for 

different models. These plots are compared with the petrologically calculated temperature 

at each isograd to see how closely each model matches the field data. 
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3.2.1.1. Pluton temperature allowed to decay: models A-E and K-P. With one 

exception, the temperatures required for metamorphism were not reached in any model 

where the pluton was horizontal and had a temperature that was allowed to decay. The 

one exception was the model with low conductivity (C). In this model the temperatures 

were high enough to produce garnet and staurolite. However, the thermal perturbation 

caused by the pluton was similar to that of other models, and the reason metamorphism 

could take place was that the background temperature was elevated to an extent that 

garnet and staurolite were produced regionally. This means that the pluton was not the 

cause of these isograds, and because these minerals are not found regionally, this model 

is unrealistic. 

Despite the lack of metamorphism, several instructive observations can be made 

from these models. Unsurprisingly, the largest effect caused by changing the conductivity 

was that the geothermal gradient changed. The change in temperature caused by the 

pluton was comparable in models with similar background temperatures regardless of the 

conductivity. Since the background geotherm is most easily controlled with the basal 

temperature, the conductivity is kept at 2.9 J m'^C'V1 for all subsequent models. 

The distribution of isograds was fairly insensitive to small variations in the depth 

of the pluton or the present day erosional surface (models K-P). Changing the current 

erosional depth affects two things: the background temperature and the position of the 

erosional surface relative to the pluton. The latter of these two factors affects whether 

heating from the pluton is being caused predominantly by vertical or lateral heat flow. 

The results suggest that most of the change in these models came from changing the 

background temperature with depth rather than changing the direction of heat flow. 
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For these geometries, it appears that there are only small thermal perturbations 

caused by the pluton. For this reason a necessary factor for metamorphism is a 

background temperature that is close to the temperature necessary for metamorphism. 

Because of the wide range of metamorphic temperatures near Augusta, it is not possible 

to meet this condition for all of the isograds. 

3.2.1.2. Pluton temperature is constant: models F-J. Several models reached 

the temperatures needed to produce metamorphism, but there were also reasons that these 

models are unlikely to be a realistic representation of the situation that produced the 

metamorphism in Augusta. The model that required the shortest amount of time to reach 

sillimanite grade metamorphism, model J, had an elevated pluton temperature of 900° C. 

This model required 30-60 kyr to produce sillimanite metamorphism. This is a long time 

for a small pluton to be active, and this model required an even longer amount of time to 

produce lower grades of metamorphism. (Section 3.1.2 provides constraints on the 

amount of time that a small pluton is likely to remain active). Many of the models 

required significantly more than 60 kyr to produce any metamorphism. Based on the 

timescale of plutonic activity required to cause metamorphism, none of the thermal 

models explored here could produce a temperature distribution that can match all of the 

isograds found in Augusta. 

Additionally, for some models, in the time required to reach low-grade 

metamorphism 10 km from the pluton, sillimanite forms in locations where there should 

only be cordierite-grade metamorphism. This consideration places a time limit on some 

of the models; the pluton cannot be active so long that it causes overheating that results in 

metamorphism higher than that which is observed. Given that these models represent a 
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wide range of realistic physical conditions, it is unlikely the thermal structure recorded by 

the isograds in Augusta was caused by plutons with a geometry similar to the one used in 

these models. 

3.2.2. Dipping pluton geometries 

3.2.2.1. Constant Pluton Temperatures and Decaying Pluton Temperatures. 

The results for shallowly dipping plutons are shown in Figure 3.4. In model A, the pluton 

has a 12° dip and the temperature is allowed to decay. The peak temperature at each 

model isograd is not high enough to produce metamorphism. Varying the angle of the 

erosional surface and the dip of the pluton (models B and C) produced similar results. 

Subsequent models also look at variation in dip angle but under different thermal 

conditions. 

In models D-F, the pluton temperature was increased. With the increase in 

temperature, two of the models were within error of the appropriate metamorphic 

temperature at the sillimanite, cordierite, and staurolite isograds. 

When the pluton temperature was held constant (models G-I), all of the models 

reached the temperatures needed for sillimanite, cordierite, and staurolite metamorphism, 

but the amount of time required to produce this metamorphism varied considerably 

between models. Model I produced metamorphism in the least amount of time. In this 

model, it took 2-5 kyr to produce sillimanite, 5-7 kyr to produce cordierite, 6-9 kyr to 

produce staurolite, and 17-20 kyr to produce garnet. However, overheating in which 

sillimanite would be produced at the cordierite isograd begins to take place at 17-20 kyr. 
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For this reason, it is unlikely that model I could produce garnet metamorphism, even if 

the pluton were active for a long time. Other models produced sillimanite in a reasonable 

amount of time but require at least 23 kyr to produce cordierite. However, as is shown 

below, the length of plutonic activity that appears to be needed to reach the metamorphic 

temperature at each isograd may be an overestimate. The reason for this overestimate is 

that it takes a significant amount of time for heat to flow, for example, the 10 km from 

the pluton to the garnet isograd. This idea is explored further below. 

All the models with a high geothermal gradient (J-L), within petrological error, 

produce staurolite metamorphism. Additionally, the plutons with a 12° (J) and 5° (L) dip 

produce garnet metamorphism. When considering these results it is significant that the 

plutons in these two models were free to thermally decay; if either of these models, when 

run with a fixed pluton temperature, could produce sillimanite and cordierite 

metamorphism in a reasonable amount of time, this model could account for all of the 

observed metamorphism. The models with a fixed pluton temperature and a high 

geothermal gradient (M-O) explore this possibility. 

For the pluton with a 12° dip (M), sillimanite and cordierite metamorphism are 

produced in less than 14 kyr when the pluton temperature is fixed and the background 

temperature is high. Similarly, for a horizontal pluton with a dipping erosional surface 

(N), sillimanite and cordierite metamorphism are produced in less than 14 kyr. For a 

pluton with a 5° dip (O), sillimanite and cordierite are reached in less than 5 kyr. This 

means that a pluton dipping at 5° can account for all of the isograds observed in Augusta 

in a time period of less than 5 kyr. Even though staurolite and garnet do not appear to be 
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produced quickly in this model, model L showed that these minerals will eventually form 

as the thermal pulse travels away from the pluton with no additional heat. 

3.2.2.2. Plutons with a set period of plutonic activity. The idea that all the 

observed isograds could be produced from a single pluton was suggested by models L 

and O and is refined in the models shown in Figure 3.5. The following models allow the 

pluton to remain active with a constant temperature for a set period of time. At the end of 

this time, the temperature is allowed to decay. Model A shows results for a pluton that 

has a 5° dip, is active for 1 kyr, and is emplaced into an region with an elevated 

geotherm. Model B has the same conditions as model A, but extends the life of the pluton 

to 3 kyr. Both models produce results that are within error of the metamorphism observed 

in Augusta. However, model B is slightly more likely because it places the temperature at 

each isograd well into the range that produces metamorphism. This is important because 

there are several factors that could contribute to the peak isogradic temperatures being 

higher than estimated or higher than recorded. In each of these models, the temperature at 

the staurolite isograd is slightly over 50° C above the minimum temperature needed to 

produce staurolite. Despite the fact that staurolite is the most uncertain of the isograds, 

this result raises some doubt as to whether this isograd could be produced by this 

geometry. Similarly, the temperature at the garnet isograd is high enough that the 

petrology indicates that staurolite should be produced. However, because of the close 

temperature spacing estimated between the garnet and staurolite isograds, there is a 

necessary overlap in the temperature range of these two minerals. Although the model 

temperature at the garnet isograd is high in both models A and B, this result highlights 
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the uncertainty in the petrological data rather than the impossibility of producing garnet 

from this model. 

Model C has a pluton that is 2 km thick and dips at 12°. The thickness of the 

pluton in model C is the same as in models A and B, but because the dip is greater, the 

area of the pluton exposed at the earth's surface was smaller than it would be in models A 

and B or than what is observed in Augusta. In model D, the conditions are the same as 

model C, but the pluton thickness was increased to 4 km. Thus the surface area was 

similar to what it had been in previous models. For model C, to produce metamorphism 

comparable to that observed in Augusta, the pluton needed to be active for over 11 kyr, 

but model D it took only 6 kyr to produce comparable metamorphism. Models C and D 

show that when the pluton temperature is allowed to decay, the thickness of the pluton 

can substantially change the peak temperature at any given isograd. This is because the 

amount of total heat available to the system changes. The models with a 5° dip and model 

D shows that there is a balance between the size and angle of the pluton. The steeper the 

angle, the larger the pluton can be without changing the surface exposure, but as the total 

available heat increases with size, the distance between the pluton and the observed 

locations of the isograds increases. 

Models E and F have plutons that dip at 5° in a normal geothermal environment. 

The plutons in these 2 models are active for 3 and 4 kyr, respectively. As with the 

previous models, the results are a reasonable fit to the metamorphism observed in 

Augusta. With the given level of petrological uncertainty, it is not possible to determine 

whether these results are more or less likely to account for the observed metamorphism 

than models A and B. By varying the geothermal gradient, the time scale of plutonic 
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activity, and the angle of the pluton, it may be possible to build models that more closely 

match the observed metamorphism for the region. However, given the high uncertainty in 

the petrological data, this does not seem to be a worthwhile goal. The importance of 

models E and F is that they demonstrate that an elevated geotherm is not necessary to 

produce the observed metamorphism. 

3.2.3. Summary of Results 

There are a number of models with dipping plutons or dipping erosional surfaces 

that can account for some of the isograds observed near Augusta, and some models can 

produce all of the isograds. The simplest method of producing the isograds around 

Augusta is with a short-lived shallowly dipping pluton. Although this model does not 

perfectly fit the petrological data, it is likely that this geometry could account for all of 

the observed isograds. The angle, thickness, and geothermal gradient cannot be uniquely 

determined from these models. The alternative to this model is that the pluton had a 

geometry such that it was able to produce only some of the isograds, and the remainder of 

isograds were produced by another heat source. This type of solution may allow for more 

flexibility in the thermal distribution, and this flexibility may allow for solutions that 

more closely approximate the petrogenetic data. However, given the degree of 

uncertainty in the petrology, there is no reason to think that this trade of simplicity for 

accuracy is necessary. 
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Chapter 4 

OROGEN-SCALE THERMAL MODELS 

4.1. Model Setup 

This group of models is designed to evaluate crustal thinning and asthenospheric 

upwelling as a source of heat for widespread regional metamorphism. 

This model is a rectangular volume for which x=320 km, y=500 km, z=50 km 

(Figure 4.1). The grid spacing in this volume was 10 km in the x-direction, 12.5 km in the 

y-direction, and 2.5 km in the z-direction. This spacing is large relative to the isograd 

spacing, and if it were found that this heat source was a possible cause of those isograds, 

a finer grid would have been necessary to further evaluate that possibility. Like the small-

scale models, the system initially has a steady-state vertical geothermal gradient. On one 

edge of the model, extending along the entire length in the x-direction is an area of 

elevated temperature, representing a mantle heat source. 

The top surface of the model was fixed at 20° C. The bottom surface had a 

constant heat flux of 0.04 Wm", which simulated the mantle contribution to the 

geotherm. Because the model was 50 km thick, giving the model crustal levels of 

radioactivity throughout the model yields a gradient that is inappropriately high except 

for areas with a long history of crustal overthickening. For this reason, models were 

tested with a radioactive input in only the top 30 km of the model. Other models were 

tested with crustal levels of radioactivity throughout the model. The value given for 

radioactive heat production in the upper 30 km was 1.5-10" Wm" . Clearly, the amount of 

radioactive heat produced in the mantle lithosphere is greater than zero, but these two 
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**320 km 

Figure 4.1. Orogen-scale thermal model setup. Image A shows the model dimensions, the 
background geotherm, and the grid spacing. B shows a 3-dimensional view of the location 
and geometry of the mantle source. C shows the same setup as B but in a cross-sectional 
view. Like C, image D shows a cross-sectional view of the model, but the top of the 
mantle source has been lowered from a depth of 30 to 40 km below the surface. Several 
other depths were tested as well. Image E is similar to C, but the dip angle of the source 
has been increased from 12° to vertical. 
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models of radioactive production provide end members of likely levels of heat 

production. With these boundary conditions, the model was run until it reached a steady 

state. 

The standard model used a temperature of 1400° C for the mantle heat source. 

This was changed to 1100° C in some models. This variation allows for the possibility 

that the transition to the asthenosphere takes place at less than 1400° C or that a process 

such as adiabatic cooling is significant. 

The standard model had the asthenospheric source extend horizontally in the y-

direction for 100 km. At this location the source dipped at an angle of 12°. This geometry 

was compared to one with a dip angle of 90°. In addition, the standard model had the 

asthenosphere extend upward to a depth of 30 km below the surface. The depth of the 

source was varied to 25, 35, and 40 km below the surface. 

Two models looked at the effect of radioactive heat production in the lithosphere. 

One of these models established a steady-state geotherm with a constant radioactive heat 

source throughout the entire model. This simulates a situation where the crust has long 

been overthickened before the emplacement of the asthenospheric heat source. The other 

model started with the standard steady-state geotherm with radioactive heat production in 

only the upper 30 km. At the time the asthenospheric heat source was added, the volume 

of the model that included radioactive heat production was expanded to include the entire 

model. This model looked at the case where crustal thickening in one part of the model 

occurs simultaneously with crustal thinning in another part of the model. In addition to 

looking at the effect of crustal thickening, these models look at the variation that might be 

expected in radioactive heat production in the upper mantle. It can be expected that the 
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mantle contribution to radioactive heat will be less than the contribution in the first 

model. This gives some limit to the possible background temperature. 

Each model was run for 500 steps with a time step of 12-10ns. This means that 

each model run covers a time period of approximately 20 Myr. This is a reasonable 

amount of time for a mantle source to be active. This time span was varied to 10 Myr 

4.2. Results 

Figures 4.2 and 4.3 show the thermal profiles that result after running each 

regional scale model for 20 Myr. Also shown are the locations where the petrologically-

determined temperature of each isograd is found and the present day erosional surface, a 

depth of 12 km. Future references to the sillimanite isograd, for example, refer to the 

petrologically determined temperature at which sillimanite becomes stable. 

Geometrically, there are two distinct geothermal regions. One is the normal 

background geothermal gradient, and the other is an elevated geothermal region above 

the mantle heat source. The isograd spacing is determined by the thermal contrast 

between these two distinct regions as well as the steepness of the transition between these 

two areas. 

An increase in the depth of the mantle source caused all of the isograds to 

translate, horizontally along the 12 km erosional surface, closer to the edge of the source. 

Increasing the depth of the source also caused an increase in the spacing of the isograds, 

but this effect was minor compared to the horizontal movement of all of the isograds. The 

change in spacing was most noticeable in the isograds closest to the source. For all the 

depths tested, the spacing between each pair of isograds was too large, except for the 
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Figure 4.2 Continued. Image B is repeated for reference. 
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Figure 4.3. Orogen-scale thermal model results: magnified. These profiles show the 
same results as Figure 4.2, but these cross-sections show an enlarged view of the four 
isograds as they cross the 12 km erosional surface. In addition to showing the four 
isograds, the solid pink line marks the depth of z=12 km, and the dashed pink line 
shows an erosional surface that dips at 3.5°, the angle suggested by DeYoreo et al. 
(1989). The labeling of the images corresponds to the labeling in Figure 4.2. 
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andalusite-staurolite and garnet isograds, and the spacing between the andalusite-

staurolite and garnet isograds, was quite similar for heat sources of different depths. 

The effect of decreasing the source temperature was similar to the effect of 

increasing the depth of the source. At a depth of 12 km the isograds moved horizontally 

closer to the source, and the isograd spacing increased. Again, the change in the spacing 

between the andalusite-staurolite and garnet isograds was very small, and the isograd 

spacing was too large between each pair of isograds except andalusite-staurolite and 

garnet. 

Changing the dipping contact to a vertical contact steepened the horizontal 

thermal gradient between the elevated and normal geothermal regions. The decrease in 

the spacing of the isograds was considerable, but the spacing between isograds was still 

too large for each isogradic pair except andalusite-staurolite and garnet. 

If the background geothermal gradient is increased by thickening the crust such 

that the levels of radioactive heat production in the lower 20 km of the model are 

increased, the isograd spacing is increased. This effect is most noticeable in the isograds 

farthest from the source. In some cases, the background temperature was high enough 

that garnet, andalusite, and staurolite were produced regionally at a depth of 12 km. 

These results are important because they suggest that crustal thickening and the 

accompanying increase in radiogenic heat production are not capable of producing 

temperatures high enough to account for the metamorphism in Maine. 

It is worth noting two potential problems with the interpretation of the large-scale 

modeling. The andalusite-staurolite isograd is the most difficult one to characterize 

petrologically. Its high dependence on bulk composition makes the assumption of 
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constant temperature along this isograd questionable. For this reason, despite the 

excellent agreement between the isograd spacing of andalusite-staurolite and garnet in the 

model with the spacing in Augusta, the spacing should be taken as no more than a rough 

estimate. The second problem is that there is some waviness to lines that should be 

smooth. This is an artifact of the grid spacing in the model and the method of contouring. 

This problem seems to be most pronounced near boundaries, where the error caused by 

the waviness can exceed 4 km, the spacing between the andalusite-staurolite isograd and 

the garnet isograd. However, this problem appears to be much less significant away from 

boundaries. For this reason, it may not have a significant effect in the region of interest. 

The large-scale profiles show isograds every 100° C. This representation of the 

thermal structure gives a rough idea of the uncertainty in isograd location caused by 

petrologic error. Clearly, even with the uncertainty in the sillimanite, cordierite, and 

andalusite-staurolite isograds, the spacing between each of these isograds is still much 

larger than the spacing between isograds in Augusta. 

Modeling of a local heat source suggested that all the isograds in Augusta could 

have been produced from a single dipping pluton. The large-scale mantle heat source was 

able to produce isograds of the approximate spacing of the andalusite-staurolite and 

garnet isograds, but the spacing between all other isograds was too large. Unlike the local 

heat source, the mantle heat source could not produce the distribution of isograds by 

itself. Although the distribution of isograds could have resulted from an overlap of 

isograds produced by a local source and isograds produced by a mantle source, there is no 

reason to suspect that this is the case. 
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The regional thermal structure is well matched by the large-scale models. The 

large-scale heat source produces a thermal distribution in which temperatures of greater 

than 600° C can be maintained for hundreds of kilometers. This model can be used to 

explain the thermal gradient across Maine and the high-temperature rocks in central 

Massachusetts. However, the scale of heating that is necessary is unclear because not all 

metamorphism in central New England was produced at the same time (Robinson, 1998). 

The thermal models presented here assume an exhumation rate that was essentially 

constant over the small area studied in Augusta and exhumation rates that changed 

linearly over the regional scale. However, within these constraints, there are many 

models that produce a thermal distribution similar to that which is observed. 

There are other possible heat sources that could produce a large high-temperature 

area. For example, the aureoles around many plutons could overlap to produce a large 

region of elevated temperature (DeYoreo et al, 1989). However, results from the pluton 

modeling show that a small pluton cannot produce temperatures over 600° C .3 km from 

the edge of the pluton after 3 ka of activity. This suggests that in order to maintain high 

temperatures over a large region, the plutons would need to have a very close spacing or 

be much larger than the plutons modeled. Additionally, there are areas of the Acadian 

orogeny which record high temperatures in which very few plutons are found. Another 

possibility is that the thermal gradient was constant over the region, and the exhumation 

rate was much higher in the south than in the north. This possibility is explored in Figure 

4.4 where the temperature is fixed at 1100° C at 30 km depth. It is found that if, as in 

previous models, the gradient in exhumation is linear, then the thermal gradient is too 

high in northern Maine. This implies that for a constant geotherm to have caused the 
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Figure 4.4. Various models of exhumation. Model A shows a situation where exhumation is constant on an or 
and C show a situation where the exhumation rate linearly increases to the south as DeYoreo et al. (1989) sug 
shows a situation where the exhumation rate increases nonlinearly in the south. Depicted on each figure is an 
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high-temperature region, the exhumation rate would need to be low across northern 

Maine and increase rapidly in central Maine. In this scenario, the Augusta area would 

represent a transition between high and low exhumation rates rather than a transition 

between a high and a low geothermal gradient. Geobarometry has shown that the exposed 

crustal level increases from 2 km in northern Maine to 25 km in central Massachusetts 

(DeYoreo et al., 1989). It is not clear whether the crustal level increases linearly. 

Differential erosion remains an alternative to horizontal variation in the geotherm. 

Differential erosion rates would signify a greater amount of uplift in the southern 

portion of Maine than in the north. If this mechanism for producing the regional thermal 

pattern were adopted, a mechanism to explain the high erosion rate would need to be 

found. Additionally, this model does not take into account the high degree of deformation 

that likely took place around the time of metamorphism. This deformation adds 

complexity to the situation, and the relationship between crustal thickening and 

metamorphism must be understood. 

The two most likely causes for the regional thermal pattern are a high geotherm in 

the south and high erosion rates in the south. These two possibilities should be 

geologically distinguishable from one another. A shallow asthenospheric heat source in 

southern Maine would produce a thermally weakened rheology in an isolated portion of 

the orogen. Differential weakening within the orogen would localize strain, and these 

strain patterns would be visible in the regional geology. The alternate possibility is that 

the geotherm was horizontally uniform throughout the orogen but the erosion rate was 

high in the south. Geological support for this model would consist of using regional 

geobarometric data to establish the depth of the erosional surface. Additionally, with this 
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information, it would be possible to determine the steepness of the regional geotherm, 

and thus determine whether the geotherm was normal or elevated at the time of 

metamorphism. If there were an elevated geotherm, thermal weakening could be 

expected to take place in this model as it did in the first model. However, despite this 

weakening, the rheology would be uniform throughout the model, and this would cause 

the strain partitioning to be minimal in comparison to the partitioning expected in the first 

model. Thus, this model should be distinguishable from the first model through regional 

strain patterns and geobarometry. 

The problem of polymetamorphism and the overlap of several temporally distinct 

metamorphic regions is a difficult one. Even when looking at a smaller section of the 

high-grade rock of central New England, which is all of the same metamorphic age, it is 

difficult to explain such a widespread thermal anomaly without a regional source of heat. 

However, the presence of multiple overlapping metamorphic lobes of different ages 

suggests the need for this regional heat source to either shift with time or to periodically 

reoccur. This problem is not well addressed by this modeling. 
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Chapter 5 

GRAVITY 

Bouguer gravity data over Maine show that there is a pronounced regional low with a 

magnitude of-40 mgal over much of central Maine (Figure 5.1) (Stewart et al., 1991, 

National Image and Mapping Agency, 2001). In places this anomaly reaches values of-

70 mgal. On a smaller scale, there is a steep gradient to the northwest of the study area. 

This gradient is an indication that the study area is on the edge of a regional low. 

My gravity modeling uses the software GM-SYS (Northwest Geophysical 

Associates, Inc, 2004), and it looks at plutons as a possible source of the anomaly. A 

region of granitic material in the first 10 km of the earth's crust creates an anomaly of 

approximately -30 mgal (Figure 5.2). This result is the same approximate change in 

gravity as observed in Maine, but the modeling shows the gravitational gradient at the 

edge of the pluton is steep. This means that to maintain the anomaly over a large area, the 

granitic layer would need to be nearly continuous. Additionally, many plutons with a 

surface exposure are visible as small-scale gravitational anomalies within the regional 

low. For these reasons, it would be difficult for the regional anomaly to be caused by 

plutons. More likely, the anomaly is the result of thickened crust displacing mantle 

material. Modeling of this situation shows that a crust thickened by 2 km would cause an 

anomaly of-50 mgal. This anomaly is of a similar magnitude to the one observed in 

Maine. 

Over the pluton, there appears to be a slight decrease in gravity of -2 to -6 mgal in 

magnitude. The small magnitude of this decrease indicates that the pluton is quite thin. 
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Figure 5.2. Gravity models of a regional mass deficit. Shown are two upper 
lithospheric cross-sections and their associated gravitational profiles. Dark blue 
represents low-density plutonic rocks with a density of 267 kg m"3, light blue 
represents crustal rocks with a density of 275 kg m"3, and orange represents the 
mantle lithosphere with a density of 335 kg m"3. The upper cross-section looks at the 
possibility of a thickened crust to explain the gravitational deficit in southern Maine, 
and the lower cross-section looks at the possibility of low-density plutonic material 
in the upper crust to explain the same gravitational feature. In the two situations, the 
gradient in gravity differs. 
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This geometry is consistent with the sheet-like geometry of other plutons in Maine that 

was inferred from detailed gravity studies (Joyner, 1963, Nielson et al., 1976, Sweeney, 

1976). 

Gravity modeling shows that a tabular granitic pluton 2 km thick would produce 

an anomaly of about -6 mgal (Figure 5.3). This is consistent with what is observed in 

Augusta. Doubling the thickness of the pluton approximately doubles the magnitude of 

the anomaly. Thus, a 4 km thick pluton produces an anomaly approximately 12 mgal in 

magnitude. For this reason, a thin pluton geometry is preferred. If the pluton dipped 

beneath the surface, the shape of the gravity anomaly would be affected by the dip angle. 

The gravity data in Augusta is consistent with a dipping pluton because there is an 

increase in gravity of about 2 mgal 10 km north of the pluton. However, the data is 

sparse, and there are clearly three-dimensional effects in the regional gravity. These 

factors make it difficult to make a strong case that the low gradient in gravity is caused 

by a dipping pluton. Additionally, the gravity models show that 20 km from the edge of 

the surface exposure of a pluton, the difference between the gravity anomalies produced 

by plutons dipping at 5° and a 12° is approximately 1 mgal. Given the scarcity of data, it 

is not possible to distinguish between a dipping and a horizontal pluton let alone 2 

plutons of different dip angles. However, for tabular plutons dipping at 5° and 12°, the 

12° pluton would need to be thicker than the 5° pluton to produce the same area of 

surface exposure. Because a 12° pluton would need a thickness of about 4 km, at its 

maximum, it produces an anomaly of 12 mgal. Despite the quality of the gravity data, it 

is unlikely that such an anomaly would not be visible in Augusta. For this reason, a 

horizontal or very shallowly dipping thin pluton is preferred. 
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The possibility that the asthenosphere reached a shallow depth is raised in Chapter 

4. The gravitational signature of an elevated asthenosphere evolves with time. If the 

asthenosphere intrudes into the crust, it displaces crustal material and causes a positive 

anomaly (Figure 5.4). However, depending on the geometry, there may be a region where 

the asthenosphere is displacing the more dense lithospheric mantle, and this situation 

could create a small region of negative gravity. Once the asthenospheric source has 

cooled, it increases in density. This increase in density will cause the magnitude of the 

positive anomaly to increase and the region of negative gravity to be incorporated into the 

positive anomaly. Such a gravitational feature would be difficult to mask. Even a 

continuous layer of 10 km thick granitic material would not mask a cooled 

asthenospheric source that had reached a depth of 25 km below the earth's surface. The 

evolution of such a region would be different if the asthenospheric source extended to, 

but not into, the crust. In this case, the asthenospheric source initially displaces mantle 

material creating a region of low gravity (Figure 5.5). When the asthenospheric source 

has cooled, it is the same density as the adjacent lithosphere, thus the existence of the 

asthenospheric source is gravitationally invisible. 
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Figure 5.5. Gravitational effects of a shallow asthenosphere with no crustal intrusion. 
This situation is similar to the one shown in Figure 5.4. However, in this figure the 
asthenosphere does not intrude into the crust. The color scheme is the same as Figure 
5.3. Figure A shows the gravitational signature while the asthenosphere is hot, and 
figure B shows how the gravitational measurements change when the asthenosphere has 
cooled. 
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Chapter 6 

MECHANICAL MODELS 

6.1. Model Setup 

The mechanical models used in this project were modified from numerical models 

of New Zealand created and used by Upton et al. (2003), Koons et al. (2003), and Upton 

and Koons (in review). 

The mechanical models were created with FLAC3D, a three-dimensional finite 

difference code (Itasca, 2005). A model created with FLAC3D represents materials as a 

three-dimensional volume that is broken into a grid of polyhedra. The corners of each 

polyhedron are assigned velocities and stresses, and the system responds to the imposed 

conditions according to the equation — - + pbt = p—'-, where Oy = the components of 
dxt dt 

the stress tensor, Xj=components of the position vector, p=density, bj=components of the 

body forces, Vj=the components of the velocity vector, and t=time. This equation is 

solved explicitly for each time step for which the model is run. 

The upper crust is modeled with a Mohr-Coulomb rheology because this rheology 

is strongly pressure dependant, and the lower crust and mantle lithosphere are modeled 

with a von Mises rheology (Kohlstedt et al., 1995). In FLAC3D, each of these rheologies 

is modeled in such a way that the material deforms plastically after it reaches a yield 

stress. Different equations govern the failure and flow of materials for each type of 

rheology. The yield condition that governs the Mohr-Coulomb behavior is 

cr. = -a.N + 2CJN, , where ai=maximum normal stress, a3=minimum normal stress, 
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C=eohesion, Ns 
^1 + s i n ^ 

1 - sin ^ 
, and <|>=the internal angle of friction, and the flow law for 

plastic shear flow= <r, -<r3N , where N = — ; ^ ^ xf/=the dilatation angle. The 
yl-siny/J 

yield condition that governs the von Mises flow is x=k, where x is the shear stress and k is 

the shear strength, and the flow law for plastic shear flow= x. 

The model setup consists of a rectangular volume with dimensions x=380 km, 

y=500 km, and z=50 km. Within this volume, the grid spacing is 10 km in the x-

direction, 12.5 km in the y-direction, and 2.5 km in the z direction. The transition 

between the Mohr-Coulomb and von Mises rheologies takes place at 400° C. The 

transition from a pressure dependent to a thermally activated rheology is based on the 

ductility of quartz. This transition is typically thought to take place at 350° C, although 

the value depends on strain rate (Brace and Kohlstedt, 1980). In this model, the rheology 

was determined every 100° C, as discussed below. For this reason, the brittle-ductile 

transition was approximated as 400° C. Yield stresses in the von Mises rheology are 

based on a quartz diorite rheology deforming at a strain rate of 10"14 s"1 (Ranalli, 1995), 

and the shear strength is altered incrementally with temperature, following a power law 

relationship (Brace and Kohlstedt, 1980). The quartz diorite rheology was used 

throughout the 50 km thickness of the model. Typical upper crustal material will likely 

have more quartz than a diorite while the upper mantle will have less quartz. The choice 

of diorite is an approximation from which neither crustal nor upper mantle material will 

likely diverge widely in behavior. The western edge of the model has an elastic rheology 

which serves as a backstop to limit x- and y-displacement (Figure 6.1). This backstop 

simulates the cold non-deforming portion of the Laurentian continent. Such asymmetric 
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380 km 

Figure 6.1. Mechanical model setup: rheological distribution. Shown are the locations of the three rheology types 
Red represents a Mohr-Coulomb rheology, light blue represents a von Mises rheology, and dark blue represents el 
depth of the transition from a Mohr-Coulomb to a von Mises rheology is determined by the temperature. 



deformation is observed in a number of modern orogens such as the Southern Alps, the 

Himalaya, and Taiwan and is well modeled by an indentor that is strong relative to the 

deforming material (Koons, 1990, Davis et al., 1983). 

The rheological structure of the model is based on the thermal structure that 

resulted from the large-scale modeling described in Chapter 5. In the thermal models, the 

locations of isotherms, with a 100° C interval, were used as the approximate planes of 

transition separating material with different shear strengths (Figure 6.2). However, the 

power law relationship between shear strength and temperature becomes inaccurate at 

very high temperatures. For this reason, the shear strength was held constant between 

temperatures of 600° and 1400° C. The rheology is consistent with an asthenospheric 

source that reached a depth of 30 km below the earth's surface. An additional model was 

tested in which the asthenosphere only reached a depth of 40 km below the earth's 

surface. The rheology is heterogeneous across the model; it is assumed that within the 

overriding slab, the asthenospheric source is not continuous across the length of the 

model. Thus within the overriding plate, there is a transition from a normal to an elevated 

thermal rheology along strike. Within the subducting slab, it is assumed that the presence 

of the high-temperature region is not able to significantly affect the thermal structure of 

the subducting slab in the upper 50 km of the earth because advection is the dominant 

mechanism of heat transfer in this portion of the model (Koons et al., 2003, Peacock, 

1996). For this reason, the subducting slab was given a normal rheology (Figure 6.3). 

Various geometries of the Theologically weakened region were tested. The extent 

of the weakened region was varied in the y-direction (Figure 6.4). Endmembers with no 
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Figure 6.2. Mechanical model setup: rheological weakening. The different shear 
strengths used in the von Mises rheology are shown. Cross-sections are shown normal to 
x and normal to y. The cross-section across-strike of the orogen shows that the crust is 
anomalously weak only in the overriding plate. In the subducting slab, the rheology is 
normal. The cross-section along the strike of the orogen shows that the weakening is 
non-continuous along the orogen. In the north, there is a transition back to a normal 
rheology. Areas with a Mohr-Coulomb or elastic rheology are shown in grey. 
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Figure 6.3. A schematic diagram of the model setup. Blue represents the asthenospheric source, yellow repr 
region of ductile deformation in the overriding plate, light green represents the subducting slab, which also d 
ductilely, dark green represents the region that deforms brittlely, and pink represents the elastic backstop, w 
the stable, non-deforming continental interior. 
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Figure 6.4. Mechanical model setup: variations in geometry. Six different along-strike 
cross-sections were used in different models. These diagrams show the variations in the 
horizontal and vertical extent of the weakened region that were tested. Models were 
tested that had no weakened region, weakening along the entire orogen, two 
intermediate models, and two models where the asthenosphere only reached a depth of 
40 km. Colors are the same as those used in Figure 6.2. 
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rheological weakening and weakening along the entire y-extent of the model were tested 

as well. 

The eastern side of the model, on which subduction is taking place, has velocity 

conditions imposed on it (Figure 6.5). The edge and base of the subducting slab are given 

x- and y-velocities with the y-velocity four times greater than the x-velocity. A study of 

vorticity within one lithologic unit in central Maine found vorticity to be compatible with 

an obliquity of 4 to 1 (Short and Johnson, in press). The vorticity of a single lithologic 

unit cannot necessarily be correlated to orogen-scale obliquity because local effects may 

be significant. However, because there are not other reliable sources of information about 

the obliquity and because this obliquity is known to be realistic in other orogens (Upton 

et al., 2003), it was assumed for the model geometry. The base of the subducting slab is 

given a z-velocity that increases with proximity to the overriding slab. The z-velocity is, 

at its maximum, four times smaller than the x-velocity. To avoid imposing unrealistic 

velocity conditions on the northern and southern sides of the models, the velocities at 

each y-boundary of the model are taken from velocities calculated within the interior of 

the model. This assumption is most appropriate when the velocities do not vary 

significantly in the y-direction between the edge of the model and the x-location from 

which the boundary conditions are taken. 

The model includes erosional conditions in which points between x=-80 km and 

x=-160 km are eroded if they reach an elevation higher than 50 m. The value of x=-80 

km was based on the location of the down-going slab in the model, and the value of x=-

160 km is the location of the elastic backstop. This erosion condition was based on 

patterns of erosion in New Zealand, where the highest levels of erosion are between the 
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Figure 6.5. Velocity conditions on the model. Image A shows the locations at which x- and y- velocities were app 
the locations at which z-velocities were applied. In both of these diagrams, blue represents high velocity while wh 
velocity. C shows the same velocity conditions represented by vectors. 



Main Divide and the west coast (Hicks et al., 1996). As a comparison, a model with no 

erosion was tested as well. 

6.2. Model Results 

The results of the mechanical models are represented in map view at a depth of 12 

km beneath the earth's surface. Because 12 km is the approximate depth of the erosional 

surface in central Maine, this representation is intended to make a comparison between 

the model results and the geology easier. Near the y-boundaries of the models, the results 

are significantly affected by the oblique boundary conditions. For this reason, the results 

from the central portion of the model, away from the northeast and southwest boundaries, 

are the most representative. 

Much of this analysis depends on components of strain in the x-y plane. These 

components are most correctly calculated from velocities. However, if there is no 

significant evolution in the behavior of the model and if the total displacement is small 

compared to the size of the model, the displacements can be used as well. The advantage 

of using displacements under such conditions is that transient features that are seen in the 

instantaneous velocities are smoothed out. Because these transient features are often 

unimportant in the overall long-term behavior of the model, they serve as distractions. 

However, if there are significant changes in the behavior of the orogen with time, using 

displacements for the calculation of strain will create a time average of these changes 

leading to a masking of the changes and confusion over the behavior of the orogen. In my 

case, the deformation is small relative to the size of the orogen and the orogen is 
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deforming in a manner that is close to a steady state. For this reason, the use of 

displacements in the calculation of strain is appropriate. 

6.2.1. Model 1: No Rheological Weakening 

When there is no rheological weakening in the model, the x- and y-displacements 

are nearly constant along the length of the model (Figure 6.6). There is positive z-

displacement on the northwest side of the subducting slab with a magnitude of 260 m. 

There is negative z-displacement farther to the southeast with a magnitude of 260 m. The 

reason for this negative displacement is that this section of the model is above the 

downgoing slab, and the downward motion of the slab dominates the kinematics in this 

part of the viscoelastic model. Farther to the southeast, there is again positive 

displacement of a magnitude of 80 m. The z-displacements are non-constant along the 

length of the model with the highest positive displacements in the southwest and the 

highest negative displacements in the northeast. This is a consequence of the oblique 

boundary conditions. 

Rotation 
if 3D, dDvy\ . . . . fdDr dDv] 

V2 dy dx 
and simple shear • + • y 

JJ y dy dx j 
are evaluated in the 

x-y plane, where x and y are components of the position vector, and Dx and Dy are 

components of the displacement vector (Figure 6.7) (Koons and Henderson, 1995). The 

rotation and simple shear are uniform along the length of the model, and the only large 

along-strike variations are at the boundaries. The rotation and simple shear are both 

dominated by the term dDy jdx. Thus the region with high rotation and simple shear is 
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the region in the model where the most along-strike, orogen-parallel motion is 

accommodated. 

Dilatation 
f\(dD, 3D ^ 

V2v 
• + -

dx dy 
and pure shear 

J) 

3D dDv 

dx dy 
were also evaluated in 

the x-y plane (Figure 6.8). Away from the boundaries, the pure shear and dilatation are 

dominated by 8DX /dx. Thus the regions with high pure shear and dilatation are the ones 

where the greatest amount of shortening is being accommodated. 
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Figure 6.7. Model 1 rotation, simple shear, 8DX jdy, and 8Dy jdx. In this x-y plane 

reference frame, negative values represent sinistral simple shear or counterclockwise 
rotation while positive values represent dextral shear or clockwise rotation. The contour 
interval is 0.002. The color scale is the same as the scale used for subsequent plots of 
rotation and simple shear. 

dDx jdy is insignificant compared to dDy jdx. Thus the distribution of 8Dy jdx, 

rotation, and simple shear are all very similar. The high values of each of these factors are 
distributed over a broad region of the orogen across-strike, but along-strike, there is little 
variation. 
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Figure 6.8. Model 1 dilatation, pure shear, 8DX /dx, and dDy jdy. In the x-y plane 

negative dilatation indicates shortening in the x and y directions while positive dilatation 
indicates extension in the x and y directions. Negative pure shear indicates shortening 
in the x-direction and extension in the y-direction while positive pure shear indicates 
extension in the x-direction and shortening in the y-direction. The contour interval is 
0.002. The color scale used is the same as the scale used for subsequent plots of 
dilatation and pure shear. 

dDy jdy is insignificant away from the boundaries. Thus dilatation and pure 

shear are controlled by dDx /dx. 
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6.2.2. Model 2: Weakening in the Southwest 

When the southwestern portion of the model is differentially weakened relative to 

the northeastern portion, the pattern of displacement is significantly different than in 

model 1 (Figure 6.9). The x-displacement is increased in the region where the transition 

between the strong and weak rheologies is located. Within the weakened region, the 

displacement is approximately equal to the displacement in the strong region. It appears 

that the displacement increases again at the southwestern edge of the model, but this is 

more likely to be a boundary effect caused by the oblique velocity conditions than a 

rheological effect. The pattern of the y-displacements seems to be affected very little by 

the presence of a weak zone, but there are differences from model 1. These changes are 

difficult to pick out visually, but become more obvious when looking at maps of 

gradients in y-displacement. The areas of both positive and negative z-displacement have 

a greater magnitude in this model than in the previous model. The area of uplift has a 

magnitude of 540 m while the area of negative displacement has a value of-300 m. 

In the strong region, the map of dDy/dx is very similar to model 1, and has a 

similar effect on the rotation and simple shear (Figure 6.10). Within the weak region, 

there is a steep gradient in dDy/dx and simple shear. The location of this gradient is 

parallel to the orogen and occurs at the boundary between the subducting slab and the 

overriding slab. This region represents an across-strike transition from a strong to a weak 

rheology, and because it is likely that large rheological contrasts do exist across 

subduction zones, this kinematic gradient may be realistic in the earth. Unlike model 1, in 

this model, dDx /dy also makes a significant contribution to the rotation and simple 

shear. As noted above, the transition between the two rheologies represents a region of 

92 



significant variation in the x-displacement in the y-direction. This causes an increase in 

clockwise rotation on the strong side of the transition and a decrease on the weak side. 

Similarly the simple shear decreases on the strong side of the transition and increases on 

the weak side. In this model, the along-strike variation in 8DX /dy caused by the 

weakening does not take place smoothly. This jaggedness is an artifact of the model 

geometry rather than a result that would be expected in the earth. The reason for these 

jumps is that the rheology in the model was changed in finite increments. Across the 

transition zone each rheological layer dips, which causes the thickness of the layers to 

vary depending on their position relative to the rectilinear grid. The strongest, uppermost 

ductile layer is very thin and dips shallowly; to approximate the shallow dip, the 

thickness of this layer varies from 2.5 km to 5 km depending on the position of the layer 

relative to the grid. Because the thickness of this layer can vary by a factor of two, the 

strength of the model in the vicinity of this layer is significantly affected by the changes 

in the thickness of this layer, and at each change in the thickness of this layer, there is a 

jump in the x-displacement. This problem could be solved by using a finer grid spacing in 

the z-direction. However, a finer grid spacing also leads to other numerical problems. 

The pattern for 8DX /dx is similar to model 1, but there is a region with high 

values within the weak zone (Figure 6.11). Values seem to be particularly high at the 

along-strike rheological transition and are probably related to the perturbation in x-

displacement that occurs there. There are high values of 8Dy /dy in the weak zone. These 

high values are very close to the southwestern boundary of the model, and there was a 

similar feature in model 1 that I attributed to the boundary. Because of the increase in 

magnitude relative to model 1, it seems probable that the high values of dDy jdy are real, 
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and not entirely a boundary effect. Another interesting feature that is observable in the 

map of dDy/dy is the zone of positive values on the strong side of the along-strike 

rheological transition. This feature suggests that, like x-displacements, y-displacements 

are affected by the rheological transition. However, because this effect is of a small 

magnitude and spatial extent, it is of minor importance in the behavior of the model. The 

values of dDx /etc and dDy Idy combine to produce a high negative dilatation value in 

the weakened region. Pure shear is highest in the rheological transition. 
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Figure 6.9. Model 2 displacements, x-, y-, and z-displacement is shown for a model 
with rheological weakening that extends part way along the strike of the model. 

The x-displacement is significantly increased at the along-strike rheological 
transition. The y-displacement is, visibly, not much different from the previous model. 
The uplift in this model is much larger than the previous model. 
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dDx/dy 

Figure 6.10. Model 2 rotation, simple shear, dDx/dy, and dDy/dx. 

Plots of 8Dy jdx are similar to model 1 in the strong region but are 

concentrated into the transition between the two plates in the weakened section, and 
there is high rotation and simple shear in the areas with high values of dDy Jdx. 

dDx/dy is positive to the north of the along-strike rheological transition and negative 
to the south. This means that deformation is preferentially taken up through rotation to 
the north and through simple shear to the south. 
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Figure 6.11. Model 2 dilatation, pure shear, dDjdx, and 8Dy/dy. 

There are high values of dDx /dx in the weakened zone and especially at the 

along-strike rheological transition. dDy/dy is positive to the north of this rheological 

boundary and negative to the south of the boundary. This leads to high values of 
dilatation and pure shear in the weakened zone and transition zone. 
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6.2.3. Model 3: Weakening in the Southwest — Increased y-Dimension of 

the Weakened Area 

The x-, y-, and z-displacements in this model are similar to model 2 (Figure 6.12). 

The region of increased x-displacement has been translated to a new y-location that 

corresponds to the new rheological transition. By comparison to this model, it becomes 

clear that the increase in displacement along the southwestern boundary observed in 

model 2 is a boundary effect and not a rheological effect. The magnitude of the z-

displacement varies from 450 m to -350 m. The area of high uplift appears to extend 

along the entire extent of the weakened zone. However, the areas where high uplift can 

be expected will be further discussed below. 

The rotation, simple shear, pure shear, and dilatation show very similar patterns to 

model 2, but the dominant features have shifted northeast along the length of the orogen 

(Figure 6.13 and 6.14). The orogen-parallel gradient in simple shear is more easily visible 

in this model than in model 2 because of the increased length of the weak interface 

between the slabs. In this model it also becomes clear that along this rheological 

boundary, there is not only a high gradient in dDy jdx but also a localization of the high 

values into this region. Thus, if there is rheological weakening across the subduction 

zone, the location of high rotation and simple shear are shifted southeastward such that 

they coincide with the rheological boundary. In this model, it becomes clear that although 

there are high dDx jdx values throughout the weakened region, the highest values occur 

only in the along-strike rheological transition. Similarly, the only significant variation in 

8Dy J By away from the boundaries occurs in the transition. 
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Figure 6.12. Model 3 displacements. In this model there is a larger extent of along-strike 
rheological weakening than in model 2. 

The region of high x-displacement has shifted north relative to model 2 to the new 
rheological transition. The plot of y-displacement looks very similar to corresponding 
plots in model 1 and 2. The magnitude of the uplift in the map of z-displacement is 
smaller than the uplift in model 2, but it is spread over a greater along-strike region of the 
orogen in model 3. 
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Figure 6.13. Model 3 rotation, simple shear, dDjdy, and dDy/dx. 

These maps are very similar to the corresponding maps in model 2. Because 
there is a greater area of weakening, there is a greater length of the model along which 
high values of 8Dy jdx are concentrated into the transition between plates. Similarly, 

the high values of dDx /dy have been shifted to the north relative to model 2, where the 
new along-strike transition is located. 
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Figure 6.14. Model 3 dilatation, pure shear, dDjdx, and 8Dy/dy. 

These plots are very similar to the corresponding plots from model 2. However, 
the region where there are high 8DX jdx values and where dDy jdy values switch from 

positive to negative has shifted north to the new rheological transition zone. 

101 



6.2.4. Model 4: Weakening Along the Entire y-Extent 

The patterns of displacement look similar to model 1 because x- and y-

displacements are nearly uniform across the length of the model (Figure 6.15). However, 

displacements are higher in the interior of this model; there is a steeper gradient in 

displacement in this model, and a shorter distance over which deformation is 

accommodated. The distribution of z-displacement is similar to model 1, but the 

magnitude of the displacement is different. The magnitude of the z-displacement varies 

from 360 m to -200 m. Thus, the uplift is greater in this model than in model 1, and the 

magnitude of downward motion is smaller. 

The rotation and simple shear are both nearly uniform across the length of the 

model (Figure 6.16). As in models 2 and 3, each is strongly affected by the across-strike 

rheological boundary separating the two slabs. At this location there is a high gradient in 

strain. Again this feature is caused by a steep gradient in dDy /dx. As in the model 1, 

there is very little along-strike variation in dilatation or pure shear away from the 

boundaries (Figure 6.17). 
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Figure 6.15. Model 4 displacements. In this model there is rheological weakening along 
the entire y extent of the model. 

The plot of x is higher within the interior of the orogen compared to model. In 
other words, the deformation is taking place over a smaller x-extent. On the eastern side of 
the model, the y-displacement is higher relative to the y-displacement in model 1, and in 
the western side of the model, the y-displacements are similar in models 1 and 4. The 
uplift is greater in model 4 than in model 1, but the distribution of uplift is very similar. 

103 



Rotation "•% 

I, .V 

« tt, i 

dDx/dy 

I 0 04 0 034 
0 028 
0 022 
0 016 
0 01 
0 004 
-0 002 
4)008 
-0 014 
-0 02 
-0 026 
-0 032 
-0 038 
-0 044 

Figure 6.16. Model 4 rotation, simple shear, dDjdy, and 8Dy/dx. 

The plot of dDy jdx shows a concentration of this gradient into the plate boundary 

along the entire y-extent of the model. For this reason, rotation and simple shear are also 
concentrated into this boundary. As in model 1, dDx /dy makes an insignificant 
contribution to the rotation and simple shear in model 4. 
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Figure 6.17. Model 4 dilatation, pure shear, dDjdx, and dDy/dy. 

As with previous models, there are high values of dDx /dx in the weakened 

zone. Like model 1, the values of dDy jdy are insignificant away from the boundaries. 
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6.2.5. Model 5: Decrease in the Vertical Extent of Weakening & Weakening 

Only in the Southwest 

The patterns of displacement look similar to those in model 3. However, because 

the weakening does not extend as far into the crust, there is a smaller increase in x-

displacement in the along-strike rheological transition zone compared to model 3. 

Correspondingly, there is a decrease in the uplift in the along-strike transition relative to 

model 3. 

Because the subducting slab dips, a decrease in the vertical extent of the 

weakened zone results in a net horizontal shift in the across-strike rheological transition, 

and because the location of the across-strike transition has shifted to the northwest 

relative to model 3, the region of high dDy/dx values has correspondingly shifted to the 

northwest. 

Patterns of dilatation and pure shear are similar to those in model 3. Relative to 

model 3, there is a decrease in values of dDx/dx at the along-strike rheological 

transition, which is caused by the relative decrease in the perturbation of x-displacement 

at this boundary. Additionally, there is a shift in the high values of dDx /dx to the 

northwest which corresponds to the shift in the across-strike rheological transition. 
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Figure 6.18 Model 5 displacements. 
The perturbation in x displacement at the along-strike transition is smaller than 

in model 3. 
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dDx/dy 

Figure 6.19 Model 5 rotation, simple shear, dDjdy, and dDyjdx. 

Regions of high dDx/dy values have shifted to the northwest with the new across-
strike transition. 
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6.20 Model 5 dilatation, pure shear, dDjdx, and dDy/dy. 

Values of 8DX /dx have decreased relative to model 3 in the transition zone. 
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6.2.6. Model 6: Decrease in the Vertical Extent of Weakening & Weakening 

Along the Entire y-Extent 

Relative to model 4, it is clear from the x- and y-displacements that the 

deformation is taking place over a smaller distance in the across-strike direction. The 

reason for this decrease in length is that the across-strike rheological transition has shifted 

to the northwest. Because most of the deformation takes place within the weakened 

region, a decrease in the across-strike width of this region results in a concentration of the 

deformation into a smaller area. Additionally, in this model the uplift is 440m, an 

increase relative to model 4. 

Compared to model 4, most of the simple shear and rotation are taken up over a 

smaller area, which matches the pattern of x- and y-displacement noted above. Similarly, 

because the decrease in y-displacement takes place over a smaller region, values of 

dDy jdx are higher than they were in model 4, where this deformation was slightly less 

concentrated. 

Patterns of pure shear and dilatation are similar to those in model 4, except, as 

discussed above, they are taken up over a smaller across-strike distance. 
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Figure 6.21 Model 6 displacements. 
Decreases in x- and y-displacements take place over a smaller region than they 

did in model 4. 
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Figure 6.22 Model 6 rotation, simple shear, dDx jdy, and 8Dy jdx. 

Values of 8Dy Jdx are concentrated into a smaller across-strike width of the model 

relative to model 4. 
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Figure 6.23 Model 6 dilatation, pure shear, 8DX jdx, and dDy jdy. 

Values of dDx/dx are concentrated into a shorter across-strike width of the model 

relative to model 4. 
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6.2.7. Effect of Erosion 

When there is no erosion included in the models, the results are very similar to the 

previous models, except that the degree of uplift is smaller (Figure 6.18). In the first 

model the highest uplift was 260 m, and when ran with no erosion, the uplift was 200 m. 

The erosion conditions affect the absolute values of the model but do not seem to affect 

the qualitative patterns that arise. 
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Figure 6.24. Displacements in a model with no erosion. Like model 1, there is no 
rheological weakening in this model. 

These plots are similar to corresponding plots in model 1, but the magnitude of 
the uplift has decreased. 
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6.2.8. Summary and Physical Meaning 

Differential weakening along-strike in the overriding slab of a subduction zone 

affects the x-displacement. By comparing models 1 and 4, it appears that a weakened 

rheology causes a slight increase in displacement. The reason for this increase is that 

when there is weakening, the strong material on the southeastern side of the model moves 

as a nearly rigid block and the majority of the deformation takes place within the 

weakened region. In contrast, when there is no weakening, the deformation is forced to 

take place in the strong material. Because the rheology is laterally uniform in model 1, 

deformation takes place fairly uniformly throughout the model when compared to model 

4. However, this difference between models 1 and 4 is relatively minor compared to the 

increase in x-displacement that is found in the along-strike rheological transition of 

models 2 and 3, but when the depth of the weakened region was increased in model 5, the 

increase in x-displacement at the transition became less significant. A comparison of y-

displacement between models 1 and 4 shows a similar pattern to x-displacement; there is 

a slight increase in the y-displacement in the weakened model. 

The absolute values of z-displacement within a model are of little importance 

because they depend on the total amount of convergence. However, comparing the degree 

of uplift between models is useful. When there was no weakening (model 1), the highest 

uplift was 260 m. When theri was weakening in the southwest (model 2), the highest 

uplift increased to 550 m. When the lateral extent of the weakening was increased along-

strike (model 3), the highest value was 450 m, and the area over which the high uplift 

occurred became more diffuse. When there was weakening along the entire orogen 

(model 4), the high value was 360 m. When there was weakening along the entire orogen, 
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but the depth of the weakened region was lowered (model 6), the highest value was 

440m. Comparing models 1 and 4, it appears that uniform rheological weakening 

increases the magnitude of the uplift, but it does not increase the spatial extent of this 

uplift. Comparing models 4 and 6 shows that lowering the depth of the weakened region 

increases the uplift. This result seems counterintuitive, but decreasing the vertical extent 

of the weak zone, with this geometry, also decreases the width of the weak zone. It 

appears that for the limited geometries tested, decreasing the width of the weak zone is 

more significant than decreasing the vertical extent of the weak zone. When the weak 

zone is narrow, material is forced upwards during deformation. Although deformation is 

still focused into the weak zone when the weakened region is wider, this weak area is not 

able to support the high shear stresses that are associated with uplift. Thus, with this 

geometry, there is a balance between an increase in depth and a decrease in width. This 

result is likely to be highly dependent on geometry; for some geometries increasing the 

depth of the weakened region may be the dominant factor. In contrast to models 1, 4, and 

6, model 3 does show an increase in the y-extent of the high uplift. It is possible that two 

separate effects are visible in this model. One is a region of high uplift on the 

southwestern boundary, which is similar to the pattern of uplift visible in model 1. The 

other effect is a separate region of uplift in the along-strike transition between the strong 

and weak rheologies. This idea is supported by model 2, which has the highest uplift of 

all the models. The high uplift in this model may be the result of having the rheological 

transition close to the southwestern boundary of the model, and the two regions of high 

uplift may overlap such that they appear as one region of extremely high uplift. 
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Rotation and simple shear are significant in all of the models because of the 

obliquity. In models 1 and 4, these two strain components are uniform along the length of 

the model because the rheology is uniform along strike, and because there is very little 

along-strike variation in displacement, the dDy Idx term controls rotation and simple 

shear. Thus, simple shear and rotation in these two models represent areas where high 

attenuation of the y-velocity is occurring. In a discontinuous medium, this region might 

represent one where an orogen-parallel fault zone may develop. In model 4, the region of 

high orogen-parallel shear was in a different location within the model than in model 1, 

and the shear was concentrated into a narrower region in the x-direction. Specifically, 

weakening the overlying slab transfers the majority of the shear to the southeast and 

localizes the high shear into a narrow zone at the boundary between the two slabs. This 

steep gradient indicates that the orogen-parallel velocity is not well transmitted from the 

strong to the weak region; the high simple shear is the result of a rapid decrease in the y-

velocity. Thus, if there is a rheological change between the two slabs, it is likely that this 

region will represent a mechanical and kinematic boundary as well as a rheological 

boundary. This localization of the y-displacement gradient also matches the displacement 

structure noted above in which the y-displacements were greater in the weakened model. 

In the east the y-displacement is greater in the weakened model, but much of this 

displacement is taken up at the plate boundary, and the gradients are lower in model 4 on 

the northwestern side of the model. When the weakening was discontinuous across the 

length of the model, there was an additional region of rotation and simple shear caused by 

the curvature in the x-displacement. This curvature led to positive values of dDx jdy on 

the northeastern side of the transition and negative values on the southwestern side. Thus 
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there is a decrease in rotation on the southwestern side, an increase in rotation on the 

northeastern side, an increase in simple shear on the southwestern side, and a decrease in 

simple shear on the northeastern side. 

When there is a uniform rheology along the length of the orogen (models 1 and 

4), dilatation and pure shear are dominated by dDx /dx. As with simple shear, in model 4, 

there is some concentration of high dDx/dx values into the transition between the two 

plates. In model 4 there is also some concentration of 8DX /dx on the northwestern side of 

the model as the displacement decreases at the backstop. This suggests that the velocities 

within the orogen are higher when there is weakening, and that the velocities must 

decrease rapidly as the material approaches the backstop. This is supported by the 

increased displacements in model 4 that were noted above. The elastic backstop 

represents the cold non-deforming continent. It is unlikely that the transition between an 

asthenospheric heat source and the cold continent would take place over as short a 

distance as it does in these models. A more gradual change in rheology may force the 

decrease in velocity to take place over a broader area than it did in model 4. 

When there is differential weakening in the rheology (models 2 and 3), there is an 

additional region with high dDx /dx values at the along-strike rheological transition. The 

reason for the high dDx /dx values near the along-strike rheological transition is the same 

as the reason for the high dDx /dx values near the backstop; there are high x-velocities in 

the transition zone, and these velocities decrease rapidly with proximity to the backstop. 

The gradient in dDx/dx in front of the backstop explains the high z-displacement that 

occurs on the northwestern side of the orogen, and the high displacements at the 
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transition zone explain why there are two zones of high uplift that occur along strike as 

discussed above. Increased uplift in the weakened models is explained through increased 

x-velocities in the interior of the model and increased x-velocity gradients and shortening 

near the backstop. Similarly, the high uplift near the transition is explained through high 

displacements in the transition zone, which attenuate rapidly at the backstop. 

Values of dDy jdy are insignificant when there is no along-strike rheological 

variation. When there is differential weakening, there are positive 8Dy jdy values on the 

northeast side of the along-strike rheological border while there are negative values on 

the southwestern side. This gradient is the result of a slight curvature in the map of y-

displacements. The velocity gradients dDx/dx and 3D y jdy result in a pattern of pure 

shear that, in the weak zone, is concentrated in two locations. There is high pure shear in 

the southeast at the boundary between the two slabs and in the northwest near the 

backstop. In the strong region, pure shear is more evenly distributed across the orogen, 

but it is strongly concentrated at the along-strike rheological boundary. Similarly, 

dilatation is highest near the backstop and the along-strike rheological transition. 
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Chapter 7 

DISCUSSION 

The metamorphism in Maine implies that there was a large region of the crust that 

was anomalously hot during the Acadian orogeny. The steepest parts of the gradient in 

temperature on the edges of this anomaly are well modeled by plutonic activity. 

However, it is the steepness of the thermal gradients produced by this type of heat source 

that make it improbable that plutons could sustain a thermal anomaly over long 

wavelengths. Thus, I have modeled the heat source for the large-scale anomaly as a 

shallow asthenosphere, and this explanation is capable of producing the observed thermal 

effects within error. Although, this anomaly can account for the metamorphism in Maine, 

it is still possible that other or multiple heat sources could be used to explain the 

metamorphic record (Gerbi et al., 2006, Hochstein 1995). Future modeling could evaluate 

other heat sources for suitability to the Acadian orogen. 

Mechanical modeling has shown an increase in uplift above the thermally 

weakened region. This phenomenon provides a mechanism for increasing the erosional 

depth in southern Maine. Additionally, the presence of a shallow asthenosphere requires 

the lithosphere to have thinned, and if the lithospheric thinning were accomplished 

through preferential removal of the mantle lithosphere, as opposed to uniform thinning, 

this event could provide an isostatic component to the uplift. However, the uplift caused 

by weakening may be partially the result of the abrupt change in rheology between the 

asthenosphere and the backstop in the models. Future modeling could explore the 

sensitivity of the models to this rheological transition, and determine if uplift can be 
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expected when there is more gradual transition. An additional problem is that this 

mechanical model predicts a prominent curvature in the orogen at the edge of the thermal 

anomaly, which is not observed in Maine. There are several ways of explaining this 

discrepancy. One possibility is that the kinematics of the mechanical model do not 

adequately reflect the complexity of the orogen. Modern orogens with regions of 

lithospheric thinning and a shallow asthenosphere frequently display some degree of slab 

rollback. By ignoring this possible dynamic of the subducting slab, I have simplified the 

kinematics such that regions of extension are not produced in my models. It is possible 

that by combining a rheology consistent with slab rollback with boundary conditions 

consistent with a stable subduction point, I have produced some features that would be 

unrealistic in a natural orogen. Future modeling could attempt to address this issue. It 

may be possible to dynamically change the velocity conditions on the base of the model 

as it is running in an attempt to simulate slab rollback. 

Another possibility is that the asthenospheric source was at a depth greater than I 

tested in my models. The variation in depths tested in the mechanical models suggests 

that the curvature in the orogen decreases when the heat source is deeper. Because the 

heat source is required to produce metamorphism, there are thermal limitations on the 

depth of the heat source. For a horizontal erosional surface, the heat source cannot be 

significantly deeper than 40 km, the deepest asthenospheric level tested with the 

mechanical models. However, for a dipping erosional surface, the heat source can be 

much deeper than 40 km. Further numerical testing could explore the effect of 

asthenospheric depth on orogen curvature. 
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Another parameter that should be explored further numerically is the obliquity of 

the model. Because the along-strike transitional effects appear to be associated almost 

entirely with the x-velocity, changes in the obliquity of the model could have a 

significant effect on the overall curvature observed in the model. 

A fourth possibility is that the heat source extended farther to the north. This 

possibility would explain the lack of curvature in the orogen, but another mechanism 

would be needed to increase the uplift in the south. One possibility is that an episode of 

flat subduction in southern Maine thickened the crust, leading to net isostatic uplift in the 

southern part of the state relative to the north. Thus the high-temperature metamorphism 

would be exposed only in the south, and the lateral extent of the high-temperature region 

at depth would be poorly constrained. 

In this scenario, central Maine would represent an erosional transition rather than 

a thermal transition. It is known that the rocks of southern Maine were metamorphosed at 

a greater depth than those of northern Maine, and it is possible that central Maine 

represents a rapid increase in the erosional depth instead of a rapid increase in 

temperature at a nearly constant depth. The geobarometry for the region is not accurate 

enough to reliably distinguish between a gradual change in depth and an abrupt nonlinear 

change (Ferry, 1980). 

The regional gravitational data is consistent with underplating, but it is unable to 

provide definitive evidence of flat subduction. As discussed previously, there is a mass 

deficit over southern Maine that is suggestive of thickened crust, and the thickened crust 

could be the result of underplating. Additionally, the sequence of events in which 

underplating follows a period of lithospheric thinning provides a mechanism by which 

123 



the high-density signature of a thinned crust could be removed. Another important 

consideration about the gravitational data is that, if the region of shallow asthenosphere 

extended farther north and underplating exposed the metamorphism in the south, the 

gravitational limit on the depth of the asthenosphere to no shallower than 30 km may still 

apply. If differential thermal weakening is adopted in place of underplating as the cause 

of uplift, a new mechanism must be found to explain the gravity data. However, in 

general in an orogen with a protracted history and a high degree of deformation, it is 

unclear that gravitational evidence for a shallow asthenosphere would be well preserved. 

Because of the curvature that is expected with differential along-strike weakening and 

because gravitational data provides marginally more support for underplating than for 

differential weakening, underplating is the model which is tentatively favored. 

Underplating could have been accomplished through the overriding of a plume 

that kinematically prevented subduction, the partial subduction of continental material, or 

the subduction of oceanic sediments. Murphy et al. (1999) used the possibility that the 

subduction zone had overridden a mantle plume to explain many of the features of the 

volcanism in the Acadian orogeny. The effect of a mantle plume below a subduction zone 

is complex. The increase in temperature associated with a plume would decrease the 

viscosity and decrease the density contrast between the subducting slab and the 

asthenosphere. Both of these factors would increase the forces on the slab favoring 

subduction. Thus, to cause flat subduction, the upward velocity of the plume and the 

thermally induced thinning and density changes of the overlying slab would need to 

overcome all the forces promoting subduction. Another consequence of plume-related 

flat subduction is that the underplating would last only as long as the plume was active, 
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and it is unclear that crustal thickening would persist beyond the life of the plume and the 

subduction zone. Additionally, there are numerous examples of flat-slab geometry that 

have been documented, which do no invoke the presence of a plume (Gutcher and 

Peacock, 2003). For these reasons, it is unclear that the presence of a plume is a realistic 

model. The partial subduction of continental material and the subduction of ocean 

sediments are similar mechanism to each other and similar to what is taking place in 

Taupo, New Zealand. In Taupo, it is known that there is high temperature metamorphism 

taking place and rapid uplift. Thus Taupo suggests that this method of underplating is 

compatible with the features seen in Maine. For these reasons, the subduction of 

sediments or continental material is the preferred method of underplating. 

125 



REFERENCES 

Aleinikoff, J. N. and Moench R. H., 1987; U-Pb geochronology and Pb isotopic 
systematics of plutonic rocks in northern New Hampshire; ensimatic vs. ensialic 
sources; Abstracts with Programs - Geological Society of America, vol.19, no.l, 
pp. 1-2. 

Barr, S. M., White, C. E., Miller, B. V., 2002b; The Kingston Terrane, southern New 
Brunswick, Canada; evidence for an Early Silurian volcanic arc; Geological 
Society of America Bulletin, vol.114, no.8, pp.964-982. 

Barr, S. M., White, C. E., Miller, B. V., van Staal, C. R., 2002a; The myth of "Avalonia"; 
did it constitute a single terrane or several different terranes in the early 
Paleozoic?; Abstracts with Programs - Geological Society of America, vol.34, 
no.l, pp.28. 

Bibby, H. M., Caldwell, T. G., Davey, F. J., Webb, T. H., 1995; Geophysical evidence on 
the structure of the Taupo volcanic zone and its hydrothermal circulation; Journal 
of Volcanology and Geothermal Research, vol.68, no.1-3, pp.29-58. 

Bourne, M. and Stuart, G., 2000; ScSp observed on North Island, New Zealand; 
implications for subducting plate structure; Geophysical Journal International, 
vol.142, no.3, pp.925-932. 

Brace, W.F., Kohlstedt, D., 1980; Limits on lithospheric stress imposed by laboratory 
experiments; Journal of Geophysical Research, 89, 6248-6252. 

Bradley, D. C, 1983; Tectonics of the Acadian Orogeny in New England and adjacent 
Canada; Journal of Geology, vol.91, no.4, pp.3 81-400. 

Bradley, D. C. and Kidd, W. S. F., 1991; Flexural extension of the upper continental crust 
in collisional foredeeps; with Suppl. Data 91-27; Geological Society of America 
Bulletin, vol.103, no.ll, pp.1416-1438. 

Bradley, D. C. and Tucker, R., 2002, Emsian synorogenic paleogeography of the Maine 
Appalachians; Journal of Geology, vol.110, no.4, pp.483-492. 

Bradley, D. C, Tucker, R. D., Lux, D. R., Harris, A. G., McGregor, D. C , 1998; 
Migration of the Acadian Orogen and foreland basin across the Northern 
Appalachians. Open-File Report - U. S. Geological Survey, Report: OF 98-0770, 
79 pp. 

126 



•»' 

Cloos, M., 1993; Lithospheric buoyancy and collisional orogenesis; subduction of 
oceanic plateaus, continental margins, island arcs, spreading ridges, and 
seamounts; Geological Society of America Bulletin, vol.105, no.6, pp.715-737. 

Cloos, M., Sapiie, B., 1998; Continental margin subduction, collision, and lithospheric 
delamination in New Guinea; Abstracts with Programs - Geological Society of 
America, vol.30, no.7, pp.208. 

Dallmeyer, R. D. and van Breeman, O., 1981; Rb-Sr whole-rock and 40Ar/ 39Ar mineral 
ages of the Togus and Hallowell quartz monzonite and Three Mile Pond 
granodiorite plutons, South-central Maine; their bearing on post-Acadian cooling 
history; Contributions to Mineralogy and Petrology, vol.78, no.l, pp.61-73. 

Davis, D., Suppe, J., and Dahlen, F. A., 1983; Mechanics of fold-and-thrust belts and 
accretionary wedges; Journal of Geophysical Research. B, vol.88, no.2, pp.1153-
1172. 

DeYoreo, J.J., Lux, D. R., Decker, E. R., Osberg, P. H., 1989; The Acadian thermal 
history of western Maine; Journal of Metamorphic Geology, vol.7, no.2, pp. 169-
190. 

DeYoreo, J. J., Lux, D. R., Guidotti, C. V., 1991; Thermal modelling in low-
pressure/high-temperature metamorphic belts; Tectonophysics, vol.188, no.3-4, 
pp.209-238. 

Dutrow, B. L. and Foster, C. T., 2002; Spatial and temporal characteristics of temperature 
and fluid flow during metamorphism around tabular plutons; Abstracts with 
Programs - Geological Society of America, vol.34, no.6, pp.501. 

Eberhart-Phillips, D. and Reyners, M., 1999; Plate interface properties in the Northeast 
Hikurangi subduction zone, New Zealand, from converted seismic waves; 
Geophysical Research Letters, vol.26, no. 16, pp.2565-2568. 

Eusden Jr., J. D. and Barreiro, B., 1988; The timing of peak high-grade metamorphism in 
central-eastern New England; Maritime Sediments and Atlantic Geology, vol.24, 
no.3, pp.241-255. 

Eusden Jr., J. D., Garesche, J. M., Johnson, A. H., Maconochie, J., Peters, S. P., O'Brien, 
J. B, Widmann, B. L., 1996; Stratigraphy and ductile structure of the Presidential 
Range, New Hampshire; tectonic implications for the Acadian Orogeny; 
Geological Society of America Bulletin, vol.108, no.4, pp.417-436. 

Ferry, J. M. 1976; Metamorphism of calcareous sediments in the Waterville-Vassalboro 
area, South-central Maine; mineral reactions and graphical analysis; American 
Journal of Science, vol.276, no.7, pp.841-882. 

127 



' % ' • 

Ferry, J. M. 1976; P, T, fco2 , and ffco during metamorphism of calcareous sediments in 
the Waterville-Vassalboro area, South-central Maine; Contributions to 
Mineralogy and Petrology, vol.57, no.2, pp.119-143. 

Ferry, J. M., 1980; A comparative study of geothermometers and geobarometers in pelitic 
schists from South-central Maine; American Mineralogist, vol.65, no.7-8, pp.720-
732. 

Ferry J. M., 1982; A comparative geochemical study of pelitic schists and 
metamorphosed carbonate rocks from south-central Maine, USA; Contributions to 
Mineralogy and Petrology, vol.80, no.l, pp.59-72. 

Gerbi, C. C, Johnson, S. E., Koons, P. O., 2006; Control on low-pressure anatexis; 
Journal of Metamorphic Geology, vol.24, no.2, pp.107-118. 

Gerbi, C, Johnson, S. E., Paterson, S. R., 2004; Implications of rapid, dike-fed pluton 
growth for host-rock strain rates and emplacement mechanisms; Journal of 
Structural Geology, vol.26, no.3, pp.583-594. 

Guidotti, C. V., 1970; Metamorphic petrology, mineralogy and polymetamorphism in a 
portion of N.W. Maine, in Guidebook for field trips in the Rangeley lakes-Dead 
River basin region, western Maine; N. Engl. Intercoll. Geol. Conf, Syracuse, 
New York. 

Guidotti, C. V., 1985; Metamorphic map of Maine, in Osberg, P. H., Hussey, A. M., II, 
and Boone, G. M. (eds.), Bedrock geologic map of Maine; Maine Geological 
Survey., scale 1:500,000. 

Guidotti, C. V., 1989; Metamorphism in Maine: an overview, in Studies in Maine 
geology; papers to commemorate the 150th anniversary of C. T. Jackson's reports 
on the geology of Maine ed. Tucker, R. D., Marvinney, R. G.; Studies in Maine 
geology; papers to commemorate the 150th anniversary of C. T. Jackson's reports 
on the geology of Maine, pp. 1-17. 

Gutscher, M.-A., Peacock, S. M., 2003; Thermal models of flat subduction and the 
rupture zone of great subduction earthquakes; Journal of Geophysical Research, 
B, Solid Earth and Planets, vol.108, no.l, 16 pp. 

Hess, P. C, 1969; The metamorphic paragenesis of cordierite in pelitic rocks; 
Contributions to Mineralogy and Petrology, vol.24, no.3, pp.19107. 

Hibbard, J. P., van Staal, C. R., Rankin, D. W., and Williams, H., 2006; Lithotectonic 
map of the Appalachian Orogen, Canada-United States of America; Geological 
Survey of Canada, Map 2096A, scale 1:1,500,000. 

128 



•#-.-

Hicks, D. M., Hill, J., Shankar, U., 1996; Variation of suspended sediment yields around 
New Zealand; the relative importance of rainfall and geology; IAHS-AISH 
Publication, vol.236, pp. 149-156. 

Hochstein, M. P., 1995; Crustal heat transfer in the Taupo volcanic zone (New Zealand): 
comparison with other volcanic arcs and explanatory heat source models; Journal 
of Volcanology and Geothermal Research, vol.68, no.1-3, pp.117-151. 

Holdaway, M. J., Guidotti, C. V., Novak, J. M., Henry, W. E., 1982; Polymetamorphism 
in medium- to high-grade pelitic metamorphic rocks, West-central Maine; 
Geological Society of America Bulletin, vol.93, no.7, pp.572-584. 

Itasca, 2005; FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), 
Minneapolis. 

Johnson, J. E., Koons, P. O., Guidotti, C. V., manuscript in preparation; Emplacement-
related strain rates from conductive cooling times in static and dynamic pluton 
aureoles: example from the Maine Appalachians, U.S.A. 

Joyner, W. B., 1963; Gravity in north-central New England; Geological Society of 
America Bulletin, vol.74, no.7, pp.831-857. 

Keppie, J. D. and Dostal, J., 1994; Late Silurian-Early Devonian transpressional rift 
origin of the Quebec Reentrant, Northern Appalachians; constraints from 
geochemistry of volcanic rocks; Tectonics, vol.13, no.5, pp.1183-1189. 

Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995; Strength of the lithosphere; 
constraints imposed by laboratory experiments; Journal of Geophysical 
Research,B, Solid Earth and Planets, vol.100, no.9, pp.17,587-17,602. 

Koons, P. O., 1990; Two-sided orogen; collision and erosion from the sandbox to the 
Southern Alps, New Zealand; Geology, vol.18, no.8, pp.679-682. 

Koons, P. O., Henderson, C. M., 1995; Geodetic analysis of model oblique collision and 
comparison to the Southern Alps of New Zealand; New Zealand Journal of 
Geology and Geophysics, vol.38, no.4, pp.545-552. 

Koons, P.O., Norris, R.J., Craw, D., Cooper, A.F., 2003; Influence of exhumation on the 
structural evolution of transpressional plate boundaries: An example from the 
Southern Alps, New Zealand; Geology. 31, 3-6. 

Koons, P. O., Upton, P., Terry, M. P., 2003a; Three-dimensional mechanics of UHPM 
terrains and resultant P-T-t paths; EMU Notes in Mineralogy, vol. 5, ch. 13, pp. 
415-441. 

129 



• 

Ludman, A., Hopeck, J. T., and Brock, P. C , 1993; Nature of the Acadian Orogeny in 
eastern Maine; Special Paper - Geological Society of America, vol.275, pp.67-84. 

Lux, D. R. and Guidotti, C. V., 1985; Evidence for extensive Hercynian metamorphism 
in western Maine; Geology, vol.13, no. 10, pp.696-700. 

McKerrow, W. S. and Ziegler, A. M., 1971; The lower Silurian paleogeography of New 
Brunswick and adjacent areas; Journal of Geology, vol.79, no.6, pp.635-646. 

McMahon, T. P., 2000a; Magmatism in an arc-continent collision zone: an example from 
Irian Jaya (western New Guinea), Indonesia; Buletin Geologi, vol. 32, no. 1, pp. 
1-22. 

McMahon, T. P., 2000b; Origin of syn- to post-collisional magmatism in New Guinea; 
Buletin Geologi, vol. 32, no. 2, pp. 89-104. 

Murphy, J. B., van Staal, C. R., Keppie, J. D., 1999; Middle to late Paleozoic Acadian 
Orogeny in the Northern Appalachians; a Laramide-style plume-modified 
orogeny?; Geology, vol.27, no.7, pp.653-656. 

National Image and Mapping Agency (NIMA); 2001 [modified 2005, accessed 2005]; 
GeoNet - United States Gravity Data Repository System; U.S. Geological Survey, 
University of Texas at El Paso, Arizona State University, Pan American Center 
for Earth and Environmental Studies (PACES), National Oceanographic and 
Atmospheric Agency(NOAA), National Science Foundation (NSF), National 
Aeronautic and Science Administration (NASA), and National Geospatial-
Intelligence Agency (NGA); http://paces.geo.utep.edu/gdrp/. 

Nelson, K. D., 1992; Are crustal thickness variations in old mountain belts like the 
Appalachians a consequence of lithospheric delamination?; Geology, vol.20, no.6, 
pp.498-502. 

Nielson, D. L., Clark, R. G., Lyons, J. B., Englund E. J., Borns, D. J., 1976; Gravity 
models and mode of emplacement of the New Hampshire Plutonic Series; 
Memoir - Geological Society of America, no. 146, Studies in New England 
geology; northern New England, pp.301-318. 

Northwest Geophysical Associates, Inc, 2004; GM-SYS Version 4.9, Corvallis, Oregon. 

Osberg, P. H., 1968; Stratigraphy, structural geology, and metamorphism of the 
Waterville-Vassalboro area, Maine; Bulletin - Maine Geological Survey, 64 pp. 

Pattison, D. R. M., Spear, F. S., Cheney, J. T., 1999; Polymetamorphic origin of 
muscovite + cordierite + staurolite + biotite assemblages; implications for the 
metapelitic petrogenetic grid and for P-T paths; Journal of Metamorphic Geology, 
vol.17, no.6, pp.685-703. 

130 

http://paces.geo.utep.edu/gdrp/


%>.-

Peacock S. M., 1996; Thermal and petrologic structure of subduction zones; Geophysical 
Monograph, vol.96, pp.119-133. 

Ranalli, G., 1995; Rheology of the Earth. 2nd ed. London: Chapman & Hall. 

Reyners, M, Eberhart-Phillips, D., Stuart, G., 1999; A three-dimensional image of 
shallow subduction; crust structure of the Raukumara Peninsula, New Zealand; 
Geophysical Journal International, vol.137, no.3, pp.873-890. 

Robinson, P., Tucker, R. D., Bradley, D., Berry IV, H. N., Osberg, P. H., 1998; Paleozoic 
orogens in New England, USA; GFF, vol.120, no.2, pp.119-148. 

Short H. A. and Johnson S. E., in press; Estimation of vorticity from fibrous calcite veins, 
central Maine, USA; Journal of Structural Geology. 

Solar, G. S. and Brown, M., 2001; Deformation partitioning during transpression in 
response to Early Devonian oblique convergence, Northern Appalachian Orogen, 
USA; Journal of Structural Geology, vol.23, no.6-7, pp.1043-1065. 

Spear, F. S, 1993; Metamorphic phase equilibria and pressure-temperature-time paths; 
Mineralogical Society of America, Washington, DC, United States. 

Spear, F. S. and Cheney, J. T., 1989; A petrogenetic grid for pelitic schists in the system 
Si02 -A1203 -FeO-MgO-K2 0-H20; Contributions to Mineralogy and Petrology, 
vol.101, no.2, pp.149-164. 

Stern, T. A. and Davey, F. J., 1987; A seismic investigation of the crustal and upper 
mantle structure within the central volcanic region of New Zealand; New Zealand 
Journal of Geology and Geophysics, vol.30, no.3, pp.217-231. 

Stewart, D. B., Wright, B. E., Unger, J. D., Phillips, J. D., and Hutchinson, D. R., 1993; 
Global Geoscience Transect 8; Quebec-Maine-Gulf of Maine Transect, 
southeastern Canada, northeastern United States of America; Miscellaneous 
Investigations Series - U. S. Geological Survey, Report: 1-2329, 17 pp. 

Swanson, M. T., 1999; Kinematic indicators for regional dextral shear along the 
Norumbega fault system in the Casco Bay area, coastal Maine; Special Paper -
Geological Society of America, ed. Ludman, A, West, D. P., Jr., vol.331, pp.l-
23. 

Swanson, M. T., 1992; Late Acadian-Alleghenian transpressional deformation; evidence 
from asymmetric boudinage in the Casco Bay area, coastal Maine; Journal of 
Structural Geology, vol.14, no.3, pp.323-341. 

131 



# 

Sweeney, J. F., 1976; Subsurface distribution of granitic rocks, south-central Maine; 
Geological Society of America Bulletin, vol.87, no.2, pp.241-249. 

Tucker, R. D., Osberg, P. H., Berry IV, H. N., 2001; The geology of apart of Acadia and 
the nature of the Acadian Orogeny across central and eastern Maine; American 
Journal of Science, vol.301, no.3, pp.205-260. 

Turcotte, D. L. and Schubert, G., 2002; Geodynamics; Cambridge University Press, 
Cambridge, United Kingdom, 456 pp. 

Tuttle, O. F., Bowen, N. L., 1958; Origin of granite in the light of experimental studies in 
the system NaAlSisOg-KAlSisOg-SiOs-HiO; Geological Society of America 
Memoir, 74, 54-63. 

Upton, P., Craw, D., Caldwell, T.G., Koons, P.O., James, Z., Wannamaker, P.E., Jiracek, 
G.J., Chamberlain, C.P., 2003a; Upper Crustal Fluid Flow in the Outboard Region 
of the Southern Alps, New Zealand; Geofluids 3, 1-12. 

Upton, P., and Koons, P. O., in review; Three-dimensional geodynamic framework for 
the Central Southern Alps, New Zealand: Intergrating geology, geophysics and 
mechanical observations; Geophysical Monograph. 

Upton, P., Koons, P.O. Eberhart-Phillips, D., 2003b; Extension and strain-partitioning in 
an oblique subduction zone, New Zealand: Constraints from three-dimensional 
numerical modeling; Tectonics, vol.22, no.6, 14 pp. 

Van Staal, C. R., Barr, S. M., Fyffe, L. R., McNicoll, V., Pollock, J. C, Reusch, D. n., 
Thomas, M. A., Valverde-Vacquero, P., Whalen,J., 2002; Ganderia; an important 
peri-Gondwanan terrane in the Northern Appalachians; Abstracts with Programs -
Geological Society of America, vol.34, no.l, pp.28. 

West, D, P., Jr., Lux, D. R., Hussey II, A. M., 1988; 40Ar/ 39Ar hornblende ages from 
southwestern Maine; evidence for late Paleozoic metamorphism; Maritime 
Sediments and Atlantic Geology, vol.24, no.3, pp.225-239. 

White, S. M., Crisp, J. A., Spera, F. J., 2006 (in press); Long-term volumetric eruption 
rates and magma budgets; Geochemistry Geophysics Geosystems, vol. 7. 

Xu, G, Will, T. M., Powell, R., 1994; A calculated petrogenetic grid for the system K20-
FeO-MgO-AbOs -Si02 -H20, with particular reference to contact-metamorphosed 
pelites; Journal of Metamorphic Geology, vol.12, no.l, pp.99-119. 

Zartman, R. E. Hurley, P. M. Krueger, H. W., Giletti, B. J., 1970; A Permian disturbance 
of K-Ar radiometric ages in New England; its occurrence and cause; Geological 
Society of America Bulletin, vol.81, no.l 1, pp.3359-3374. 

132 



»;• 

BIOGRAPHY OF THE AUTHOR 

Lucy E. Brown was born in Boston, Massachusetts in 1981. She was raised in 

Belmont, Massachusetts, and she graduated from Belmont High School in 1999. From 

1999 to 2003 she attended Wellesley College, where she received a Bachelor of Arts 

degree in geology. In 2003 she entered the Graduate School at the University of Maine. 

Lucy is a candidate for the Master of Science degree in Earth Sciences in 

December, 2006. 

133 


	The University of Maine
	DigitalCommons@UMaine
	2006

	Thermal and Mechanical effects of a Shallow Asthenosphere in the Acadian Orogen: An Investigation through Numerical Modeling
	Lucy E. Brown
	Recommended Citation


	tmp.1319480896.pdf.ofhb7

