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Resistivities (ρ) and Hall coefficients (RH) of polycrystalline Ru and RuO2 thin films 

were measured from 293 to 600 K in vacuum, O2, and CO. Differing nanostructures and 

textures were sputtered at normal, confocal, and glancing incidences to 20 - 300 nm 

thickness. For Ru in planar or nanorod morphologies, defects have negligible effect on 

RH, which is similar to RH in bulk metal. Models of effective thickness are derived for the 

nanorod morphology. For Ru and RuO2 films, decreases in ρ on first heating are caused 

by defect annealing; subsequent heating shows metallic behavior. Changes from n-type to 

p-type conduction in RuO2 are correlated to grain structures and film strains. For certain 

RuO2 films, oxygen loss in high vacuum is demonstrated and a RH phase diagram is 

constructed to reflect the switch in dominant carriers from electrons to holes. Exposure of 

some RuO2 films to pure CO is shown to cause an irreversible increase in ρ. Resistivity 

hysteresis loops after multiple heat cycles with switching from O2 to CO are posited to be 

consistent with catalysis on Ru rather than RuO2 surfaces. It is shown that switching the 

gas environment from O2 to CO can change dominant carriers. The physical instability, 

breakup, and reduction of RuO2 films to Ru metal upon CO exposure is demonstrated.  
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Chapter 1 

INTRODUCTION 

 

A curious feature of transition metal oxides is their wide range of conductivity, 

spanning roughly fifteen to twenty orders of magnitude when superconductors are not 

counted.  For example, RuO2 is a metal while rutile TiO2 is an insulator, yet both have 

nearly identical structures.  The work presented here is an experimental examination of  a 

rare transition metal  and  its technologically useful dioxide, focusing on some of their 

interesting characteristics.  For example, dominant charge carriers in Ru are holes while 

those in RuO2 are electrons.  How does the change from holes to electrons come about as 

oxygen is added to or lost from the lattice?  Can RuO2 films be manipulated by  

deposition processes to give a zero temperature-coefficient-of-resistance over a wide 

range of temperatures as claimed by some authors?  This behavior, if true, would seem to 

violate a fundamental characteristic of metals above cryogenic temperatures, which is 

that resistivity must rise with temperature.  Prior to this work, no Hall coefficient 

measurements in air or vacuum of thin films of Ru existed and only one such 

measurement set has been published for an RuO2 thin film.  No transport measurements 

have been made on either metal during the catalysis of CO, and the measurements 

reported here are unique and thus contribute to further understanding of the catalysis 

process.  It is worth remembering that high-temperature superconductivity was 

discovered because of curiosity about the transport properties of transition-metal oxides.  

In the field of transition-metal oxides, discovery by experimentation seems to lead the 

way.  Some background information is offered below as an introduction to the study. 
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1.1. Ruthenium 

Ruthenium is element number 44 in the periodic table, located directly below iron 

and above osmium in Group VIII, but its properties resemble those of osmium more 

closely than iron.
1
 There are four stable phases, and in addition to its lower temperature α 

phase, it exists in three higher temperature forms with the phase transitions: α
1030-1040°C

 → 

β
1200°C

 → γ
ca. 1500°C

→ δ.
1
   Ruthenium has a high melting temperature of 2334 °C, is 

resistant to chemical attack over a wide range of temperatures, and is used industrially as 

a catalyst and also as a hardener in metal alloys.
2
 

Ruthenium is a transition metal with valence electrons occupying more than one 

shell (4d
7
, 5s

1
).

3
  A remarkable characteristic is that ten oxidation states are known to 

exist: +1 to +8 and also a 0 and -2 state.
1
 Below 1000°C, ruthenium exhibits a hexagonal 

close packed structure (hcp), where adjacent planes of atoms follow an A-B-A stacking 

sequence.
4
 Ruthenium is magnetoresistive and is a p-type compensated metal.

5
  This 

means that the concentration of holes equals that of electrons and conduction involves 

both holes and electrons with higher mobility holes giving rise to the observed p-type 

behavior.
5,6

 Table 1.1 lists certain physical properties of ruthenium measured on 

polycrystalline and single-crystal bulk samples that are relevant to this work. 
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TABLE 1.1.  Physical properties of ruthenium. 

Property Value Reference 

Atomic number 44  

Atomic weight 101.07 g/mole ICDD-0663
13

 

Electron structure 2-8-18-15-1 or (Kr)4d
7
5s

1
  

Crystal structure hcp for α phase (≤ 1030 °C)  

Space group P63/mmc (194) ICDD-0663
13

 

Lattice constants, 20 °C 

a 

c 

c/a 

 

2.7058 Å 

4.2819 Å 

1.5824 

 

ICDD-0663
13

 

 

Mass density, 20 °C 12.4 g/cm
3
 ICDD-0663

13
 

Melting temperature 2334 °C Bever
2
 

Resistivity, 0 °C 

 

 

7.4 µΩ cm (single crystal, a-direction) 

5.4 µΩ cm (single crystal, c-direction) 

6.67 µΩ cm (polycrystalline) 

6.72 µΩ cm (polycrystalline) 

Volkenshteyn
11

 

 

Justi
14

 

Tainsh
15

 

Resistivity, 23 °C 7.4 µΩ cm (polycrystalline) Meaden
7
 

Hall coefficient 

(polycrystalline) 

+22 x 10
-5

 cm
3
/C (20 °C, 2 to 2.9 A, 4.47 T) 

+18 x 10
-5

 cm
3
/C (22 °C, 0.45 to 2.3 T) 

Justi
14

 

Volkenshteyn
11

 

 

 

Ruthenium has approximately five times the resistivity of silver at room 

temperature and is therefore a very good conductor of electric current and heat.
7
 The low 

resistivity is illustrated in Figure 1.1, which compares the resistivities of 67 metals in the 

periodic table at 295 K as a function of rank from smallest to largest, disregarding atomic 

number.  The position of ruthenium is number 18 in the exponential ranking and is shown 

sandwiched between cadmium and indium.  
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FIGURE 1.1.  Resistivity of elemental metals at 295 K as a function of rank from 

smallest to largest (not by atomic number).  Ruthenium is ranked 18
th

 of the 67 metals 

plotted. An average single-crystal resistivity of ruthenium dioxide is shown for 

comparison.  Residual resistivities have been subtracted from the elemental metals.
7
  

 

 

The Hall coefficient is a more complex transport property and, in general, is 

known to be a function of temperature (e.g., Dy, OsO2, RuAl2, Sr2RuO4),
 6, 8-10

 magnetic 

field (e.g., Ru, Al, In),
6, 11

 and phase (e.g., Cd: liquid n-type, solid p-type).
6
  An 

experimental change in the magnitude and sign of the Hall coefficient gives information 

related to the curvature of the electron and hole Fermi surfaces (e.g., CaRuO3, SrRuO3).
12

  

Table 1.2 lists Hall coefficients in bulk and thin-film forms for several readily available 

transition metals for which sufficient data exist; these are compared to ruthenium.  

Neglecting sign, the Hall coefficient of metals generally ranges from about 2 to 22 x 10
-5

 

cm
3
/C, although it can be higher as seen in Figure 1.2, which is a plot of the Hall 

coefficient versus resistivity of 49 metals in the periodic table. 
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TABLE 1.2.  Hall coefficients of 5 transition metals in bulk and thin-film form (293 K). 

Element Crystal RHbulk (10
-5

 cm
3
/C) RHfilm (10

-5
 cm

3
/C) References 

Copper fcc
a
 -5.2  -5.5 Hurd

6c
, Chopra

16d
 

Silver fcc -8.5 -8.6 Hurd
6c

, Chopra
16d

 

Gold fcc -7.1 -8.1  Hurd
6
 

Platinum fcc -2.3 -1.5 (50 Å) Hurd
6
 

Ruthenium hcp
b
 +22 

+18 

No data available Justi
14

 

Volkenshteyn
11

 

a
 Face centered cubic   

c
 Bulk material 

b
 Hexagonal close packed  

d
 Film 

 

FIGURE 1.2. Hall coefficient versus resistivity of 49 metals in the periodic table (26 n-

type and 23 p-type).
6
  RuO2 is included for comparison. 

 

 

1.2. Transition Metal Oxides 

 

The physical and chemical properties of the transition metals and their compounds are 

largely related to their d-shell electrons.
17

 With respect to transition metal oxides, there is 
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an enormous variability in electronic properties ranging from insulators (NiO) to 

semiconductors (TiO2-x) to metals (RuO2) to superconductors (YBa2Cu3O7).   That is, the 

metal-oxygen bonding may range anywhere from ionic to metallic, and transition metal 

oxides therefore may be classified according to their electronic properties.  In the case of 

metallic conduction, examples of oxides that fall into the category of simple metals are 

RuO2, ReO3, and NaxWO3.
17, 18

 In general, transition metal oxides have rather narrow 

electronic bands on the order of 1 to 2 eV.
19

 

1.3. Ruthenium Oxides 

 Six oxides of ruthenium are mentioned in the literature.
1
 The first (RuO) is rarely 

considered except to say that it may exist as a gas in some circumstances and that its 

existence in the solid state is doubtful. The second (RuO2) has the rutile structure under 

normal pressures, is the most thermodynamically stable, and has significant technological 

interest. RuO2 takes on a cubic phase with a modified-fluorite structure at pressures 

above 12 GPa, which can be metastably retained when the pressure is lowered to one 

atmosphere.
20

 The third (RuO3) is known to exist as a vapor at 1200 °C and may play a 

role in the stability of RuO2 surfaces.
21

  The fourth (RuO4) is a highly volatile yellow 

crystal that melts at 25.4 °C, boils at 40 °C, and is toxic. The fifth (Ru2O3) has the 

corundum structure, has never been isolated in the solid state, and has been observed only 

as a hydrate (Ru2O3 • xH2O).
22

  The sixth (Ru2O5) is hardly mentioned in the literature.  

1.4. Ruthenium Dioxide 

The technologically interesting oxide of ruthenium, the semi-transparent, deep 

blue ruthenium dioxide (RuO2), is a 4d oxide that exhibits “metallic” metal-oxygen 

bonding.  Recalling that electrical conductivity is directly proportional to the density of 
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states at the Fermi surface, RuO2 is classified as a metal since its Fermi level lies in the 

middle of a conduction-band density-of-states curve that is comprised primarily of Ru-4d 

orbitals as shown in Figure 1.3.
18

   

 

FIGURE 1.3. Density-of-states plot of RuO2 that shows the Fermi energy level in the 

middle of the conduction band, which is the definition of a metal according to energy-

band theory. (Reproduction of Figure 7, reference 18) 

 

 

In its single crystal state, RuO2 has a higher electrical conductivity than about 

one-third of the pure metals in the periodic table (see Figure 1.1), although 

polycrystalline specimens generally show a lower conductivity.
7, 23 

 The  resistivities of 

RuO2 in the [100] and [001] directions  at 300 K  are 36.1 and 35.7 μΩ cm respectively,  

and the average single-crystal resistivity is reported to be 35.2 ± 0.5 μΩ cm.
23

  The 

increase in resistivity with increasing temperature of single-crystal RuO2 clearly shows 

its metallic behavior as seen in Figure 1.4.
23, 24

   

EFermi

Valence band
(mostly O-2p)

Conduction band
(mostly Ru-4d)

O-2p and Ru-4d
hybridization
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FIGURE 1.4. Resistivity versus temperature of IrO2 and RuO2 single crystals.  Metallic 

behavior is indicated.  (Reproduction of Figure 2, reference 23) 

 

The energy-versus-wave vector dispersion bands at the Fermi level for RuO2 

indicate two-carrier conduction.   Hall measurements show electrons as the dominant 

carriers, thereby making RuO2 an n-type metal in contrast to Ru, which is a p-type 

metal.
18, 25, 26

 To be specific, single-crystal RuO2 has an average room-temperature Hall 

coefficient of -11 x 10
-5

 cm
3
/C.

 23
   

Ruthenium dioxide possesses a rutile structure (Structurbericht C4, space group 

P42/mnm), which consists of a tetragonal lattice with two RuO2 molecules per unit cell 

and octahedral coordination with each ruthenium atom surrounded by six oxygen nearest 

neighbors as shown in Figure 1.5.
27

  The unit cell lattice parameters are a = 4.492 Å and  

c = 3.107 Å.
28

  It is also the most thermodynamically stable oxide of ruthenium, although 

studies of single-crystal (110) and (100) surfaces suggest highly non-stoichiometric 
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surfaces.
21

  The possible non-stoichiometry of surfaces may contribute to oxygen loss 

under certain conditions, and it will be shown in Chapters 6 and 7 that the stability of 

many polycrystalline thin films is related to the choice of environmental atmosphere and 

temperature.
 
  Some physical properties of RuO2 are summarized in Table 1.3. 

In terms of technology, ruthenium dioxide finds uses as diffusion barriers, 

electrodes, thick-film resistors, thin-film resistors and catalysts.  An extensive summary 

of applications of RuO2, emphasizing catalysis but including more exotic uses such as 

extreme ultraviolet lithography, is given in a paper by Assmann et al.
30

 

 

 

TABLE 1.3.  Physical properties of ruthenium dioxide. 

Property Value Reference 

Crystal structure tetragonal (rutile) ICDD 2008
28

 

Space group P42/mnm Birkholz
27

 

Lattice constants at 20 °C 

a 

c 

c/a 

 

4.492 Å 

3.107 Å 

0.692 

 

ICDD 2008
28

 

Mass density at 20 °C 7.2 g/cm
3
 ICDD 2008

28
 

Dissociation temperature 1540 °C (1 atm oxygen) Bell
29

 

Electrical resistivity 

at 27 °C 

36.1 µΩ cm [100] (single crystal) 

35.7 µΩ cm [001] (single crystal) 

35.2 µΩ cm (avg) 

Ryden
23

 

Hall coefficient at 27 °C -11 x 10
-5

 (avg) Ryden
23
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FIGURE 1.5. Two crystallographic representations of the rutile structure, which has a 

tetragonal unit-cell lattice.  (Reproduction of Figure s5.1, reference 27) 

 

 

1.5. Chapter Organization 

 The research objective of this work has been the investigation of the electronic 

transport properties of polycrystalline thin films of ruthenium and ruthenium dioxide as a 

function of temperature and atmosphere.  In terms of chapter organization for the thesis, 

Chapter 2 outlines some theoretical aspects of transport theory as it relates to electrical 

resistivity and the Hall coefficient.  Chapter 3 defines the experimental arrangement from 

which measurements were obtained.  Chapter 4 compares the transport properties of 

planar and nanorod-structured ruthenium thin films to each other and to measurements 

from bulk samples.  Chapter 5 presents a parametric study that relates the deposition 

process, structure, and transport properties of RuO2 planar thin films and shows that 

changes in film deposition conditions can alter the nanostructure and mode of conduction 

from electron-to-hole dominance.  Chapter 6 considers the unexpected instability found 

in some of the RuO2 thin films when annealed in high vacuum at temperatures slightly 

above room temperature.  Chapter 7 investigates how transport properties are altered by 

the process of carbon monoxide reactivity and catalysis on surfaces of RuO2 and Ru.  
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Chapter 8 summarizes the results and makes recommendations for future work.  Finally, 

two appendices include additional material related to specific sample parameters and 

transport measurement calibration. 
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Chapter 2 

ELECTRONIC TRANSPORT PROPERTIES 

  

It is almost an understatement to say that charge transport in solids is a complex 

subject.  For example, when considering electric or thermal currents in a magnetic field, 

one study states that “560 effects are theoretically possible in a transverse magnetic field 

only!”
1
 In recognition of this complexity, the following discussion of the properties of 

resistivity and Hall effect will be restricted to what applies directly to the experiments 

considered here.  For anyone wishing to delve deeper into the subject, three excellent 

texts by Jan,
1
 Meaden,

2
 and Hurd

3
 are a good place to start.  

2.1. Ohm’s Law 

 Consider a homogeneous electrical conductor at a uniform constant temperature 

that is not in an external magnetic field.  It is assumed that the conductor has an electron 

chemical potential that is a function of temperature alone (e.g., a metal).  If an external 

current source imposes a current density on the conductor as was done in this study, then 

the phenomenological response is an electric field in the conductor multiplied by a 

temperature-dependent material parameter called the resistivity, which is assumed to be 

independent of both the current density and the electric field.
2
 This familiar statement of 

Ohm‟s law reads 

     (2.1) 

where the electric field E and current density J are vectors and, in general, the resistivity 

ρ is a second-rank tensor because E and J are in different directions due to material 

anisotropy.  Ohm‟s law is here written in this form, rather than as      (σ is 
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conductivity), because the experimental arrangement uses a current source rather than a 

voltage source as the forcing function, making J the independent variable.  In component 

form (2.1) is 

 

  
  
  

   

         
         
         

  

  
  
  

   (2.2) 

From energy considerations, a reciprocity relation holds where ρij = ρji.
4, 5

  But in crystals 

with planes of symmetry perpendicular to each of the crystallographic axes, such as 

tetragonal RuO2 or hexagonal-close-packed Ru, the components ρij are zero for i ≠ j (in 

the absence of an external magnetic field).
4
  Perhaps one way to see this is to write the 

expression for power density, p, which is the dot product of the vectors E and J, and then 

substitute for the components of E in terms of resistivities. 

                     (2.3) 

       
                

                         
  (2.4) 

If the direction of the y axis is arbitrarily reversed, for example, the sign of Jy would 

change, which would mean that (2.4) would take the form 

       
                

                         
  (2.5) 

which is a lower power density.  However, arbitrarily reversing the direction of the axis 

has not changed the perpendicular planes of symmetry, and without a physical change in 

the lattice the power density cannot change.  Therefore, components of resistivity that are 

off the main diagonal must be zero.  The presence of an external magnetic field can, 

however, modify the resistivity tensor so that components that are off the main diagonal 

can become non-zero (e.g., Hall effect) and, furthermore, components can become a 

function of field (magnetoresistance). 
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As shown by Jan,
1
 the presence of a non-uniform temperature and a spatially 

dependent chemical potential will significantly complicate Ohm‟s law. 

          
 

 
   (2.6) 

The second-rank tensor S is the thermoelectric power (Seebeck coefficient), T is 

temperature, e is the magnitude of the charge on the electron (+1.6 x 10
-19

 C), and ξ is the 

chemical potential of the electrons.
1
 In the experiments considered here, all resistivity 

measurements were done with no external field and with near isothermal conditions, as 

will be explained in Chapter 3. This approach simplifies ρ (no field dependence) and 

eliminates   .  The final term on the right hand side of (2.6) depends on composition, 

stoichiometry, and structure. 

When dealing with metals of a uniform composition such as Ru or RuO2, the 

electron chemical potential term in (2.6) vanishes because it has no spatial gradient. 

However, it should be noted that the assumption of a uniform composition does not apply 

to two-phase mixtures of Ru and RuO2, as were sometimes encountered in this study, and 

to be strictly correct, it might be necessary to add the         term to the right-hand side 

of (2.1) for those cases. That is, differences in electron concentrations in the two 

materials would give rise to a gradient in chemical potential at the grain boundaries.  

Strictly speaking, this gradient must be evaluated across boundaries from one material to 

the next, since the gradient is zero within a given crystallite of uniform composition. Note 

that in this study, no attempt has been made to correct measured resistivities for any 

effects of electron chemical potential due to grain boundaries between different material 

phases; these effects are assumed to be small and have been neglected.  If the distribution 
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of crystallites in a two-phase system is uniform, then presumably a sum of the gradients 

of chemical potential at grain boundaries should either be small or add to zero. 

The tensor of high-symmetry anisotropic single crystals in the absence of a 

magnetic field may be written in terms of three resistivities as stated above.
2
  Let the a- 

and b-axes of a single crystal correspond to the x and y directions and the c-axis 

correspond to the z direction.  Furthermore, let the current density vector be defined with 

respect to the c-axis as shown in Figure 2.1, which is taken as the principal crystal axis 

with a resistivity of      The other two resistivities are defined as     and    . 

 

FIGURE 2.1. Current density J as an input and electric field E as a response in an 

anisotropic crystal   (Modification of Fig. 1, reference 2) 

 

 Writing the components of J in terms of angles, Ohm‟s law follows as 

 

  
  
  

   

     
     
    

  

         
         
     

   (2.7) 

A scalar resistivity as a function of the angles υ and ψ follows from 
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    (2.8) 

Given a single crystal and a current density oriented at known angles with respect to the 

crystal, it is therefore theoretically possible to determine the three components of 

resistivity through a series of measurements.
2
   

The resistivity tensor of some anisotropic metals such as hexagonal-close-packed 

Ru may be simplified somewhat by noting that the resistivity components perpendicular 

to the c-axis of an hcp single crystal are equal.
2
 It is then possible to write Ohm‟s law in 

terms of perpendicular     and parallel,     resistivities as 

            
        

                
   (2.9) 

When this expression is integrated over the entire solid angle, an average value of 

resistivity
2
 follows as  

   
   
 

 
  
 
  

(2.10) 

This shows how the resistivity of a Ru polycrystalline sample is weighted by the 

components that are perpendicular and parallel to the principal axis (c-axis) of the 

crystal.
6, 2

   

 For a rutile tetragonal RuO2 crystal, the parallel and perpendicular resistivities are 

found by experiment to be approximately equal.  Ryden et al.
7
 show that 300 K 

resistivities of RuO2 in the [100] and [001] directions are 36.1 and 35.7 μΩ cm 

respectively, which is about a 1 percent difference.  In fact, RuO2 is nearly isotropic with 

respect to resistivity, with the biggest difference due to changes in crystal orientation 

being about 10 percent.
 7
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Now refer to the slab model of a homogeneous, isotropic conductor shown in 

Figure 2.2.  Assume an x-directed current density, which may be written as the excitation 

current divided by the cross-sectional area       , and a corresponding x-directed 

electric field, which may be written as      , where V is the potential difference along 

the slab length L.  The average resistivity is 

  
 

 
 

 
 
  

 
 
   

  
  

 
  
 

 
   (2.11) 

Since Ohm‟s law is a linear function with an odd parity, a reversal of current direction 

will correspond to a reversal of the potential gradient.  Therefore, for a homogeneous, 

isotropic slab it would be expected that                Measurements such as those 

described in ASTM F76-86 make use of this property and specify resistivity as an 

average written in the form
8
 

   
  

 
  

           

  
   (2.12) 

 

 

 

FIGURE 2.2. Slab model of a homogeneous, isotropic conductor. 

x

y

z

Jx

L

t

W

Ex



19 

 

2.2. Matthiessen’s Rule 

 The resistivity of metals may be written as a sum of two terms, which is called 

Matthiessen‟s rule: a temperature-independent contribution ρo and a temperature-

dependent contribution ρi, called the ideal resistivity.
2
 The ρo term is associated with 

lattice defects such as impurities, point defects, and strain; the ρi term is associated with 

phonon scattering of electrons by the lattice at finite temperatures.  For metals, the 

phonon scattering term increases linearly with increasing temperature and the impurity 

term is independent of temperature. 

              (2.13) 

Since the carrier concentrations in metals are independent of temperature, it is, of course, 

the decreasing carrier mobilities with increasing temperatures that make ρi a function of 

temperature. 

2.3. Hall Coefficient 

 All measurements of the Hall effect were made in the low-field condition where 

the product of the electron-cyclotron frequency ωc and the mean free time between 

collisions τ, typically about 10
-14

 seconds, is much less than one        .3 What the 

low-field condition means in a practical sense is that the applied magnetic fields are 

below about 0.5 T, temperatures are at or above room temperature, and typically the 

samples have high defect contents.  The high-field condition, where        is 

practically achieved at cryogenic temperatures in fields above about 5 T using very pure 

samples.  In the high-field condition, electrons are able to complete one or more 

cyclotron orbits before being scattered and Hall coefficients are determined by the 

topology of the Fermi surface of the metal.
3
 Note that in consideration of the Hall effect, 
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signs can be problematic.  In what is given below, the Lorentz force on charge carriers is 

taken to define a y-directed electric field. The steady-state response to this field when 

current is not allowed to flow in the y-direction is another equal and opposite electric 

field called the Hall field.
9 - 11

 

Consider a homogeneous, isotropic, and isothermal conductor (Figure 2.3) 

subjected to an x-directed current density        and a z-directed (transverse) magnetic 

field        (where    and    are unit vectors in the positive x- and z-directions).  The 

Lorentz force density on charge carriers is given by the vector cross product of J and B.  

This force density equals the charge concentration, n, multiplied by the Lorentz force on 

a single carrier f.  In equation form, 

           (2.14) 

The cross product becomes            where    is defined as a unit vector in the y-

direction. Hence, the force on a single charge carrier may be replaced by the product of 

the charge q and a pseudo-electric field     That is, the y-directed Lorentz electric field 

takes the form 

   
 

  
      

    
  

       (2.15) 
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FIGURE 2.3. Slab model of an isothermal, homogeneous conductor showing an electric 

field EL due to the Lorentz force and wires labeled a and b that allow a current flow in the 

y-direction. 

 

With reference to Figure 2.3, if wires a and b are connected to make a closed 

circuit, a y-directed current density will flow in the slab because of the Lorentz force.  If, 

on the other hand, wires a and b are left open as in Figure 2.4, then charges of different 

polarity will accumulate on opposite faces of the slab (faces perpendicular to the y-axis).  

These charges give rise to an additional electric field called the Hall field that is equal 

and opposite to the Lorentz electric field under steady-state conditions. That is, the x-

directed transport current is no longer deflected by the magnetic field under steady-state 

conditions.  The equal and opposite Hall electric field takes the form 

        
 

  
      

    
  

   
(2.16) 

If there are single carriers that are electrons, then q is replaced by -e and (2.16) 

becomes 
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                 (2.17) 

where the charge on the electron e is taken as +1.6 x 10
-19

 Coulombs.  If there are single 

carriers that are holes, then q is replaced by +e and (2.16) becomes 

        
    
  

              (2.18) 

These equations show how the Hall effect can classify a material as either n- or p-type 

(negative or positive) based on the polarity of a voltage measurement in the y-direction. 

 

FIGURE 2.4.  Slab conductor with wires a and b open, which allows charges of opposite 

polarity to accumulate on the a and b faces of the slab.  These charges give rise to a Hall 

electric field Ey that points in a direction that depends on whether conduction occurs by 

electrons or by holes. 

 

From equation (2.17), a basic Hall coefficient may be defined for electrons as 

   
  

    
 
   

  
  

 

  
                (2.19) 

Similarly, from equation (2.18), a basic Hall coefficient may be defined for holes as 

   
  

    
 
   

  
  

 

  
            (2.20) 
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The sign of RH is determined experimentally by the sign of the potential difference Vb - 

Va (see Figure 2.4). 

Note that the basic form of the Hall coefficient given in (2.19) and (2.20) is not 

applicable to ruthenium because it is a compensated metal where the number of electrons 

equals the number of holes.
3
 Furthermore, the basic form probably does not apply to 

ruthenium dioxide either, because it is likely that the electron and hole concentrations in 

ruthenium dioxide are also equal (or nearly equal).  The more complicated expression for 

the Hall coefficient of a compensated metal will be given below in the section on the two-

band model. 

In order to develop the resistivity tensor in a transverse magnetic field B, one can 

assume a homogeneous and isotropic material and allow current to flow in all three 

(x,y,z) directions in the slab in response to an electric field E.  In the relaxation-time 

approximation, the total force on a charge q equals the sum of the forces due to the 

electric field, the Lorentz force, and a damping term that is directly proportional to the 

average velocity of the charge and inversely proportional to a scattering relaxation time 

τ.
1 - 3, 9 - 11

 The force reads 

 
  

  
            

  

 
 

 

(2.23) 

where m is the effective mass of an electron.  Under steady-state conditions the average 

momentum is unchanging so that the left-hand side of (2.23) is zero.  Multiplying both 

sides by       yields 

  
    

 
               

 

(2.24) 
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This yields an equation for the electric field that can be written in terms of the current 

density J, 

           (2.25) 

where the resistivity ρ equals       , neglecting any magnetoresistance effects.  

Furthermore, the       term may be written as               yielding 

       
  

 
        

 

(2.26) 

At this point it is possible to write the tensor form of the transport equation 

depending on whether electrons or holes are the primary charge carriers.  That is, for 

electrons q is replaced by -e.  Setting the term        equal to ω, the cyclotron 

frequency in vector form, yields 

                             (2.27) 

For holes, q is replaced by +e, which yields 

                         (2.28) 

In the above equations the resistivities are assumed to be independent of magnetic 

field.  When the equations are written as tensors, there are two resulting forms.  For 

electrons, the transport relation between electric field and current density takes the form
1
 

 

  
  
  

      

     
   
   

  

  
  
  

                 

 

(2.29) 

For holes, the signs of the off-diagonal resistivities are reversed to yield 

 

  
  
  

     

      
   
   

  

  
  
  

             

 

(2.30) 

In general, when all magnetic field effects are included, the resistivities ρxx and ρyy are 

equal and represent transverse magnetoresistivities.  The resistivity ρzz represents a 
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longitudinal magnetoresistivity, since the current and magnetic field are parallel.  The 

resistivity ρyx, which equals ωτρ, represents the Hall resistivity.  In the low-field 

condition with ωτ << 1, it is seen that the Hall resistivity is much lower than the bulk 

resistivity ρ. 

In practice, the definition of the Hall coefficient is more sophisticated than that 

given above. Recalling that a well-behaved, arbitrary mathematical function can be 

summed with itself to form either an odd or even function, the y-directed electric field 

can be summed with itself to form an odd function.
12

 The Hall field EH that is reported in 

measurements is then defined as an odd function formed from Ey (when Bz is taken as a 

positive magnitude) as follows
 3

   

   
 

 
                   (2.31) 

(To clarify the nomenclature in (2.31), the electric field         should be read: “Ey as a 

function of plus Bz.”)  There is no name for the corresponding even electric field function, 

which for high-symmetry crystals should be very small or zero.  Assuming that the 

electric field Ey is directly proportional to JxBz , the Hall coefficient may be thought of as 

an off-main-diagonal resistivity per unit field        as stated above. 

   
  
    

 

 
  
       

  
 
       

  
 

  
 

 
     

               

  
 
   

  
  

(2.32) 

Note that there is a more general definition that defines the Hall coefficient in terms of 

the gradient of EH with respect to Bz, but for the purposes of this work, (2.32) is 

sufficient.
3
 

In order to improve measurement accuracy, the test standard ASTM F76-86 

extends the definition even further to make an odd function of the y-directed electric field 
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based on a reversal of input current.  That is, the definition of EH as an odd function of Bz 

alone is extended to make EH an odd function of both Bz and Jx.  The Hall coefficient then 

reads 

   
 

 
 

 
  
                        

    
 

 
  
                        

    
  (2.33) 

where Jx and Bz are taken as positive quantities. 

With reference to Figure 2.4, the y-directed electric field may be replaced by the 

negative gradient of the potential        and the current density by the x-directed 

current divided by the slab cross-sectional area        .  When these substitutions are 

made, the resulting equation for RH is in the form given in ASTM F76-86: 

   
 

     
                                                       (2.34) 

Note that sample thickness t is the only geometrical factor included in the expression. 

2.4. Two-Band Model 

 In cases where two charge carriers are involved in transport, one may resort to a 

two-band model that assumes overlapping electron and hole bands.
1, 3 

 The model 

assumes that interband transitions are not allowed and that resistivities due to each band 

are additive.  To quote Hurd, it is a “crude oversimplification of the conduction process 

in most metals.” 
3
 However, it does give insight into the conduction process, avoids 

intractable mathematics, and is often applied to transition metals (electrons from an s-

band and holes from a d-band).  Figure 2.5 shows a vector diagram, taken from Jan,
1
 

which defines the relationship between a resultant electric field, which is the sum of the 

applied and Hall fields, and the electron and hole current densities. 
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FIGURE 2.5. Two-band model showing a resultant electric field E, which is the sum of 

an applied field Ex and the Hall field Ey, and current densities in an electron band Je and 

hole band Jh that add to give a resultant current density J. Hall angles are 

counterclockwise positive. The magnetic field Bz points out of the paper toward the 

reader.  (Reproduction of Fig.7, reference 1) 

 

The model makes use of conductivities in the electron and hole bands according 

to the following definitions  

   
  

      
         

  
      

  

 

(2.35) 

It is noted that the x-components of the electron and hole current densities add together to 

equal the total current density J and that the y-components of the current densities add to 

zero.  This yields equations for the current density and tangent of the Hall angle  , which 

is defined as the ratio      : 

                          
 

(2.35) 

     
                         

                 
  

 

(2.36) 

 Two additional equations are required to relate the Hall angles           to the 

carrier concentrations ne and nh.  These are 

      
    
   

              
    
   

  

 

(2.37) 
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From above, the Hall coefficient is given by 

   
   

  
 
     

   
  

 

(2.38) 

Making the necessary substitutions and working through the considerable algebra results 

in an expression for the Hall coefficient as a function of band conductivities, carrier 

concentrations, and the transverse magnetic field: 

   
 

 

 
 
 
 
 
  
 

  
 
  
 

  
 
  
   

   
        

    
    

         
     

            

    
     

 
 
 
 

  

 

(2.39) 

For a compensated metal where nh equals ne, (2.39) simplifies to 

   
 

  
 
     
     

           (2.40) 

where n is taken as the generic carrier concentration, mobility μ is defined as     , and 

the resistivity ρ equals          .  That is, the sign of the Hall coefficient of a 

compensated metal ultimately depends on the effective masses of electrons and holes 

within the two-band model in the relaxation-time approximation.  The effective masses, 

of course, depend on the curvatures of the electron and hole Fermi surfaces.  If electron 

and hole concentrations are unequal and the field is low, as in the experiments considered 

here, then (2.39) becomes 

   
 

 
 

  
 

  
 
  
 

  
        

          
      

    (2.41) 

This shows that relative concentrations, as well as mobilities, can determine the sign of 

the Hall coefficient. 
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2.5. Ettingshausen Effect and the Isothermal Hall Coefficient 

 Classified as a galvanomagnetic temperature gradient due to the interaction of 

transport current with an external magnetic field, the Ettingshausen effect, although 

relatively small, ensures that a Hall measurement will not be isothermal.
13,14

 The 

following equation may be written for the temperature gradient that appears in a 

homogeneous, isotropic material with a x-directed current density and z-directed 

magnetic field, where P is the Ettingshausen coefficient 

                      (2.42) 

Figure 2.6 illustrates how opposite sides of the slab shown above are at different 

temperatures due to the Ettingshausen effect. 

 

FIGURE 2.6. Illustration of the Ettingshausen temperature gradient due to transport 

current in a transverse magnetic field. 

 

The Ettingshausen effect alters the Hall coefficient in the sense that an ideal Hall 

measurement would be isothermal, whereas a real Hall measurement is adiabatic.  The 

relationship between the two Hall coefficients is given by 

x

y

z

Jx

Bz

Cold

Hot



30 

 

           (2.43) 

where S is the Seebeck coefficient for the assumed homogeneous and isotropic 

material.
1,13 

 It will be shown in Chapter 3 that, at least for ruthenium, the Ettingshausen 

effect is negligible. 

2.6. Van der Pauw Method 

 Van der Pauw showed in 1958 that the resistivity and Hall coefficient of a 

homogeneous sample of arbitrary shape may be measured subject to the following 

restrictions: contacts are on the circumference; contacts are sufficiently small; the sample 

has a uniform thickness; and the sample is simply connected (no holes).
15

  For a sample 

with an arbitrary geometry such as shown in Figure 2.7, the key result is that the 

resistivity may be written as an average of two measured resistances that is modified by a 

function of the resistance ratio                  which corrects for any difference in the 

resistances.  Given a sample of thickness t, the resistivity at some temperature may be 

written in the van der Pauw notation as 

  
  

    
 
             

 
   

      
      

  (2.44) 

where RAB,CD is the resistance measured by dividing the potential difference (VD - VC) by 

current that goes into contact A and out contact B.  A similar definition holds for RBC,DA.  

The function f is defined from the transcendental equation 

             
             

         
    

   
 
 

 
   (2.45) 
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FIGURE 2.7. Illustration of a sample of arbitrary shape with electrical contacts on the 

boundary that may be used for resistivity and Hall measurements in the van der Pauw 

method. 
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Chapter 3 

EXPERIMENTAL DETAILS 

 

 All transport measurements were made using an apparatus designed for four-point 

conductivity and Hall-effect measurements of thin films.
1
 The apparatus, shown on the 

left in Figure 3.1, is one station of an ultrahigh-vacuum, deposition-and-analysis system 

in the Thin Film Synthesis, Processing and Characterization Laboratory at LASST. 

 

 

FIGURE 3.1. Ultrahigh-vacuum, thin-film-deposition, analysis and characterization 

system.   Transport measurements were made in the “gas-exposure, 4-pt conductivity and 

Hall effect” station.  (Reproduction of Fig. 1, reference 1) 

 

3.1. Charge-Transport Measurement Apparatus 

An elevation view of the conductivity-and-Hall-effect chamber is shown in Figure 

3.2.  Note that the electromagnet is a split-pair solenoid with a highly homogeneous 

magnetic field over the sample volume. 
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FIGURE 3.2. Elevation view of charge-transport measurement apparatus.  Samples are 

located in the central field of the split-pair solenoid shown at the bottom. (Reproduction 

of Fig. 2, reference 1) 

 

 A photograph of the measurement fixture is shown in Figure 3.3.  The docking 

stage has four gold-plated, spring-loaded Be-Cu pins that make electrical contact with the 

film under measurement.  There are also two spring-loaded thermocouples (S and K-

types) that make contact with the film substrate.  Film temperature is controlled by 

supplying power to a movable resistance heater that is controlled by the S-type 

thermocouple. 

 An elevation-view assembly of the measurement fixture is shown in Figure 3.4.  

This is the key component for resistivity and Hall measurements.  The four pins contact 

the test specimen on its periphery in accordance with the van der Pauw geometry 
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requirements.  Van der Pauw and Hall measurements are distinguished, in part, by the 

different pin selections for currents and voltages as explained below.   

 

FIGURE  3.3. Measurement fixture showing the docking stage and movable heater.  The 

docking stage contains four contact pins and two thermocouples that touch the sample, 

which is loaded face-down on the docking stage.  (Reproduction of Fig. 3, reference 1) 

 

 

 

FIGURE 3.4. Docking stage showing the four contact pins hidden under the carrier in the 

left view.  Contact pins lie on a circle of 14.66 mm diameter and are guided by Vespel 

SP-21 top-hat washers rated to 350 °C.  (Reproduction of DCA Instruments drawing
4
) 
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An example of a sample carrier (stainless steel or tantalum) holding a thin film 

deposited on a sapphire substrate is shown in Figure 3.5.  The film is deposited through a 

mask to define the 17 mm diameter area that is contacted by the four spring-loaded 

probes. 

 

FIGURE 3.5. Example of a sample carrier holding a thin film on a sapphire substrate.  

(Reproduction of Fig. 4, reference 1) 

 

 Figure 3.6 shows a schematic of the overall measurement system.  Electrical 

measurements were acquired under computer control in a series of programs written in 

LabView.
2
 Both van der Pauw and Hall measurements were based on averages obtained 

by selecting different pairs of pins for current and voltage measurements.  Switching 

among pins was done by mechanical reed switches contained in the switch box. 

3.2. Four-Point Resistivity Measurement 

The van der Pauw technique is a four-point measurement of dc resistivity 

(conductivity) where a fixed current flows through adjacent contacts and a potential 
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difference is measured across opposite contacts as pointed out in Chapter 2.  Figure 3.7 

illustrates the technique, where the excitation is from a controlled current source with a 

105 V compliance limit and the response is measured by a high-input-impedance 

voltmeter. 

 

FIGURE 3.6. Schematic of measurement system. (Reproduction from reference 3) 

 

FIGURE 3.7. Illustration of the measurement of resistivity in the van der Pauw geometry.  

The film is shown as the central circle and the substrate as the central square.  

Measurement of V12,34 is shown. 
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Note that contacts are labeled consecutively 1 - 4 in counter-clockwise order 

around the film periphery.  The equations for resistivity are written below in the 

nomenclature of ASTM F76 - 86, where V12,34 refers to the potential difference V3 – V4 

between contacts 3 and 4 when current enters contact 1 and exits contact 2.
5
  (This 

convention differs slightly from the original van der Pauw convention of Chapter 2.)  

Resistivity is found as an arithmetic average of two resistivities, called ρA and ρB, at a 

fixed temperature as shown in equation (3.1).  That is, 

   
     

 
  

 

(3.1) 

The individual resistivities are based on odd functions of an average resistance as stated 

in Chapter 2.   For example, in equation (3.2) an average resistance would be 

                    with the additional two negative terms included to make the 

function odd.  The two resistivities are 

   
         

 
                              

 

(3.2) 

   
         

 
                              

 

(3.3) 

where the  units of resistivity are Ω cm.  One of the difficulties of the F76 - 86 method is 

the use of hybrid “laboratory” units, which are neither SI nor cgs units.  In the above 

equations, the constant 1.1331 is an approximation of       , potentials are in volts, 

specimen thickness t is in centimeters, current I is in amperes, and the geometrical factors 

fA are fB  are functions of resistance ratios (or voltage ratios), given by either QA or QB: 

    
             
             

 
             
             

 (3.4) 



38 

 

    
             
             

 
             
             

  

 

(3.5) 

The Q‟s may be thought of as quality factors, where a Q of 1 represents an ideal 

measurement on a specimen with pin contacts on the periphery.  As shown in ASTM F76 

- 86, Figure 5, the geometrical factor f is approximately equal to 1 for Q‟s below about 

1.2 and falls below 1 for higher values of Q.  The equation relating Q and f is a non-

algebraic, transcendental equation similar to (2.45) and is written as 

   

   
 

 

     
       

 

 
    

     

 
    

(3.6) 

 

3.3. Hall Coefficient Measurement 

 The measurement of the Hall coefficient is made with the sample in the 

configuration shown in Figure 3.8. 

 

 

FIGURE 3.8. Illustration of the measurement of the Hall coefficient with the magnetic 

field B pointing out of the page. 
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As stated in Chapter 2, the Hall coefficient is defined as an off-diagonal resistivity 

per unit magnetic field given by       .  In the nomenclature of ASTM F76 - 86, the 

Hall coefficient is the average of two Hall coefficients at a fixed temperature and is 

defined as 

    
       

 
 

 
(3.7) 

     
           

  
                                              

 

(3.8) 

    
           

  
                                              

 

(3.9) 

where the units of RH are cm
3
/C and flux density B is given in units of gauss.  In SI units, 

RH could also be given in units of (Ω m/T) to reflect the character of a resistivity divided 

by field. 

3.4. Algorithm to Minimize Baseline Drift 

 Background noise can make the measurement of low-level signals difficult, as is 

the case for Hall measurements of thin films.  In particular, the baseline potential, defined 

as the voltage seen across measurement pins at zero current, should be zero in an ideal 

situation.  However, the baseline potential was often observed to drift by one or two 

microvolts per second as witnessed by plots of baseline voltage as a function of time.  

The amount of baseline drift varied from day to day and was possibly due to thermal or 

contact potentials or to interference from the operation of the many nearby electrical 

devices in the Thin Film Laboratory.   Since transport measurements of thin films often 
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involve signal levels on the same order of magnitude as the drift, the drift rate represented 

a significant noise problem. 

In order to alleviate the problem of data scatter introduced by the drift, an 

algorithm was written and incorporated into the LabView computer programs that were 

used for data acquisition.  The idea behind the algorithm is to measure the baseline before 

turning on the excitation current, to measure the signal with the current on, and to re-

measure the baseline after turning the current off.  The three measurements are done 

rapidly and the initial and final baseline voltages are compared to a specified drift-voltage 

tolerance.  If the baseline difference is within the tolerance, meaning an acceptable drift, 

then the mean baseline can be subtracted from the signal yielding a result with most of 

the drift error removed. 

The test for baseline drift was defined as the absolute value of the difference in 

average baseline potentials compared to a specified drift tolerance: 

                 

 

(3.10) 

where VBLi  and VBLf  are the initial and final average baseline voltages and Vtol  is the 

specified drift tolerance.  If this condition was satisfied, then a corrected voltage was 

given as the apparent average signal V minus the mean of the two average baseline 

voltages: 

      
         

 
  

 

(3.11) 

where Vc is the corrected, or true, signal.  A flow chart of the algorithm is shown in 

Figure 3.9 where the input quantity, n, represents the number of samples taken for each 
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signal (n for VBLi, n for V, and n for VBLf) before the average of the two baselines are 

compared.  With regard to Hall measurements, where baseline drift caused significant 

problems, it was found empirically that the most reliable results came from limiting n to a 

small value (n = 2) and then iterating the entire process in another programming loop, not 

shown here, 50 times for a total of 100 data points per measurement.  Note that the 

sampling period was 25 ms. 

 

 

 

 

 

FIGURE 3.9. Flow chart for algorithm to minimize baseline drift.  The signals VBLi, V, 

and VBLf are each measured n times and averaged over the number of measurements.  

The average baseline voltages are then compared to the specified voltage tolerance. 
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3.5. Sample Geometry 

 Most of the films were grown on GE Type 124 fused quartz substrates measuring 

25 x 25 x 1.6 mm (1 x 1 x 0.0625 inches), although some Ru films were grown on glass 

microscope slides (see Chapter 4).  The substrates were plasma cleaned prior to 

deposition.  Circular films were deposited through 17 mm diameter masks to match the 

required van der Pauw geometry, which is shown in Figure 3.10. 

 

                          

FIGURE 3.10. Geometry of thin-film samples used in transport measurements. 

 

3.6. Thin-Film Deposition Techniques 

 The Ru and RuO2 films were grown using several different deposition techniques 

and geometries. The vast majority of the films were grown by reactive rf magnetron 

sputtering, but a few were grown by plasma-assisted electron-beam evaporation.  The 

first sputtering technique was normal-incidence dc and rf magnetron sputtering where the 

center of the target and center of the substrate shared the same vertical centerline.  The 

second technique was confocal rf magnetron sputtering where the target was offset from 

the substrate and tilted toward the substrate but with the centerline of the target not 

passing through the center of the substrate.
6
 The third technique was glancing-angle dc 

magnetron sputtering, where the substrate was above the target as in normal-incidence 

sputtering, but was tilted so that the particle beam arrived at the substrate at a relatively 

17 mm

Film area

Insulating
substrate
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small angle forming the so-called glancing-angle deposition (GLAD) geometry, which 

gives rise to nanorod-structured films.
7
  The three different sputtering configurations are 

illustrated in Figure 3.11.  The e-beam deposition system is shown in Figure 3.12.  Pure 

Ru films were deposited by rf sputtering in an argon plasma or by e-beam evaporation in 

a high vacuum. RuO2 films were grown either by reactive rf magnetron sputtering using 

an argon-oxygen mixture or by electron-beam evaporation of Ru in the presence of an 

electron-cyclotron-resonance (ECR) oxygen plasma.
7-9

 Deposition parameters for the 

RuO2 film parametric study of Chapter 5 are given in Appendix A and the parameters for 

the other films are given in Chapters 4 and 7. 

 

 

 

 

FIGURE 3.11. Illustration of the three magnetron sputtering geometries used to grow 

films.  In addition to the angle-of-incidence variations shown here, factors that influenced 

film growth were substrate temperature, substrate rotation rate, substrate roughness, 

adatom mobility, and deposition-chamber pressure. 
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FIGURE 3.12. Film deposition chamber with a four-pocket e-gun and ECR plasma 

source at the 12 and 2 o‟clock positions.
10

 

 

 

 

3.7. Sources of Error and System Calibration 

 Sources of error in the transport measurements are outlined in reference 11.  

Uncertainty in film thickness was a leading source of error, but other sources such as 

baseline drift,  instrument calibration, contact-pin placement on the sample boundary, and 

temperature measurement and control were contributing factors.  However, the overall 

performance of the resistivity and Hall-effect apparatus was checked against reference 

materials and found to be good. That is, system calibration was often checked before and 

after measurements using an unannealed gold thin film and occasionally n- and p-type 

silicon wafers as reference materials.  An additional one-time check made use of a 

certified commercial silicon standard from MMR Technologies (provided by Dr. J. Gu of 

Carnegie Mellon University).  Without correcting for temperature, the system returned a 

room-temperature resistivity within about 3 percent and a room-temperature Hall 
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coefficient within about 1 percent of the values specified in the MMR standard.  See 

Appendix B for more information on calibration. 

3.8. Procedure and Schematic for Gas Tests 

 Transport tests in gas atmospheres were carried out at zero flow in the following 

manner.  First, the film sample was loaded into the test fixture and the chamber evacuated 

to approximately 10
-5 

to 10
-6

 torr and held at this level for a few hours.  Next, the valves 

on the vacuum lines were closed and the chamber filled to typically 4 torr with either O2 

or CO.  To switch gases, the chamber was evacuated again to around 10
-5

 torr and then 

filled immediately with the other gas.  Gas switching took about 20 to 30 minutes, 

depending on the inlet flow rate, which was difficult to control precisely. The Eurotherm 

heater controller was unable to maintain a constant temperature during gas switching and 

the sample temperature often rose above and fell below the set point by about ± 30 °C.  A 

schematic of the gas-control system is shown in Figure 3.13. 

 

 

FIGURE 3.13. Schematic of gas-control system. 
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3.9. X-Ray Diffraction Measurements 

 X-ray diffraction measurements were made using a PANalytical X‟Pert PRO 

material research diffractometer with copper K-alpha radiation.  Most of the 

measurements presented in this document are grazing incidence scans, but θ/2θ and in-

plane scans (grazing-incidence, grazing-exit) are also featured.  In addition, thicknesses 

of many planar films were determined by x-ray reflectivity in conjunction with 

profilometer measurements. A photograph of the diffractometer defining the 

measurement angles and optics is presented in Figure 3.14.  A typical grazing scan 

employed an x-ray mirror and divergence slits on the incident side, and a parallel-plate 

collimator, Soller slits, and proportional-counter detector on the receiving side. 

 

 

 

 

FIGURE 3.14. Photograph of the PANalytical materials research diffractometer defining 

the measurement angles 2theta, omega, psi, and phi. The x-ray tube and incident optics 

are shown on the right-hand side, the goniometer with the sample in the center, and the 

receiving optics and detectors on the left. 

 

Tube

Detectors



47 

 

3.10. XPS Film Composition Measurement 

 The composition of the surface of one RuO2 film (see Figure 6.8) was estimated 

by x-ray photoelectron spectroscopy (XPS) using a Specs MCD hemispherical analyzer 

with a 10 eV pass energy, a magnesium x-ray source anode, and CasaXPS analysis 

software.  Signal intensities are proportional to element concentrations, and the estimate 

of composition was based on the areas of the O-1s and Ru-3d peaks and utilized 

sensitivity factors of O/Ru equal to 0.711/3.696. 
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Chapter 4  

RUTHENIUM THIN FILMS 

 

4.1. Chapter Abstract 

Resistivities and Hall coefficients of unannealed flat and nanorod-structured Ru 

thin films were investigated from 295 to 600 K.  Resistivities typically decreased upon 

first heating due to defect annealing, but Hall coefficients were found to be independent 

of temperature and defect content.  The temperature independence of the Hall coefficient 

above cryogenic temperatures was consistent with most metals.  The error in the Hall 

coefficient due to the Ettingshausen effect was shown to be negligible.  Although 

resistivities and Hall coefficients of planar films are determined by a nominal film 

thickness, it was found that resistivities of nanorod-structured films were dominated by 

an ultra-thin polycrystalline layer at the film-substrate interface and Hall coefficients 

appeared to depend on an effective thickness determined by nanorod size and spacing. 

4.2. Purpose 

As stated in Chapter 1, ruthenium is a p-type transition metal with ten possible 

oxidation states,
1
 a hexagonal-close-packed structure (hcp), a resistivity

2
 of 7.4 µΩ cm 

and a Hall coefficient
3, 4

 of +22 x 10
-5

 cm
3
/C at 295 K for bulk polycrystalline samples. 

Resistivity versus temperature has been reported for Ru thin films grown by metal-

organic chemical vapor deposition.
5, 6

 However, to the best of our knowledge, no studies 

prior to this one have been done to determine the influence of defects and structure on the 

resistivities of Ru films,
7, 8 

and no data exist for the Hall coefficients of Ru thin films 

grown by any technique.
 
In this study, charge transport measurements of flat and 
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nanorod-structured polycrystalline Ru thin films grown by physical vapor deposition are 

reported and the effect of non-slab geometry on the resistivities and Hall coefficients of 

nanorod-structured thin films is considered.   

4.3. Ru Film Deposition 

 A 252 nm thick flat film was deposited at 0.5 Å/s through a 17 mm circular mask 

onto a glass substrate (Fisher Scientific microscope slide) by conventional normal-

incidence, RF magnetron sputtering of a 76 mm diameter, 99.95 % Ru target at 270 W in 

an argon-plasma deposition system.  Base and deposition pressures were 0.7 µtorr and 19 

mtorr and the substrate temperature was 18 °C. The target-to-substrate distance was 20 

cm with no substrate rotation. RMS roughness was 18 Å over 100 µm
2
 as determined by 

atomic force microscopy.  For contrast, a 79 nm nominal thickness (SEM measurement) 

nanorod-structured film was grown by glancing angle deposition (GLAD) at 18 °C 

through the same mask at 0.5 Å/s onto a fused-silica substrate (GE type 124) with 5 rpm 

rotation using the same Ru target in the same chamber, but with 80 W DC magnetron 

sputtering at an angle of 80° from the substrate normal. Base and deposition pressures 

were 0.2 µtorr and 3 mtorr and the target-to-substrate distance was 11 cm. Neither film 

received post-deposition heat treatment prior to transport-property measurements.  

Scanning electron microscope (SEM) elevation-view images of the two films are shown 

in Figure 4.1.  (See Figure 4.3 for plan-view images.) 

 With reference to Chapter 3, transport properties were measured in high 

vacuum using the four-point van der Pauw and Hall-effect apparatus.
9
 System 

calibration was checked before and after measurements, which followed the 

methods in ASTM F76 - 86.
10
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FIGURE 4.1. SEM elevation-views of Ru (a) nanorod-structured and (b) flat films. 

 

4.4. Resistivity of Unannealed Ru Thin Films 

 Figure 4.2 plots resistivity based on nominal film thicknesses as a function of 

temperature comparing several heating cycles of the as-deposited flat and nanorod films. 

The fall in resistivity on first heating in both films is due to the removal of defects such as 

vacancies and interstitials by annealing.
11,12

 Upon subsequent heating and cooling, the 

films exhibit reversible positive slopes characteristic of metals described by 

Matthiessen‟s rule, which states that the total resistivity ρ is the sum of a temperature-

independent term ρ0 due to impurities, other defects, and strain, and a temperature-

dependent intrinsic term ρi due primarily to scattering of electrons by phonons.
2
 

 On subsequent heating from 295 K, neither film showed the slope predicted by 

the Gruneisen-Bloch equation, a universal curve fit for metals, where θR = 364 K (see 

below) was taken as the „resistivity characteristic temperature‟ for polycrystalline Ru, 

which is similar in order to the Debye temperature.
2
 The shallowness of the observed 

slopes suggests that the removal of defects by annealing is incomplete in both films. It is 

inferred that the defect content of the nanorod film is higher than that of the flat film 

because the difference from the ideal slope is greater in the nanorod case (68 % versus a 

(a) (b)
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46 % difference).  Note that although Ru is magnetoresistive, the test fields were too low 

to see any effect.
14

 

 

FIGURE 4.2. Resistivity as a function of temperature comparing flat and nanorod-

structured Ru thin films.  The legend defines the heating sequence.  Dashed lines are for 

ideal bulk polycrystals using the Gruneisen-Bloch equation with a resistivity 

characteristic temperature of 364 K.  Arrows indicate the test direction. 

 

The characteristic temperature θR was estimated by the Nichols equation,
13,2

  

which states that the average resistivity of a randomly oriented, polycrystalline hcp metal 

is equal to ρr = 2ρa/3 + ρc/3, where ρa is the resistivity perpendicular to and ρc the 

resistivity parallel to the c-axis of a single crystal. The Gruneisen-Bloch equation
2
 is 

  
    

  
   

  
 
  (4.1) 

where     is taken as a constant related to electron-phonon interaction, T is temperature, 

and G(θR/T) is the Gruneisen function. Substituting this expression for each resistivity in 

the Nichols equation (ρiTn, n = r, a, c) and noting that single-crystal θR‟s in the a- and c-
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directions are θRa ≈ 350 and θRc ≈ 400 K near room temperature
15

 allows  an overall 

polycrystalline θR ≈ 364 K to be estimated, since the Gruneisen function is tabulated.
2
 

 To clarify the steps in the procedure for finding the resistivity characteristic 

temperature, (2.10) is written using the Gruneisen-Bloch equation as 

   
  
  

  
  

    
   
  

    
  

   
   
  

    
    

 

(4.2) 

From Volkenshteyn, Figure 3, the values of θRa and θRc may be estimated as     

      at 273 K and           at 293 K.
15

 For convenience, the value of T was chosen  

to be 400 K.  Then from Meaden, Table VII, it is seen that G(0.875) = 0.9579 and G(1) = 

0.9465, using the tabulated values of the Gruneisen function.
2
 From (4.2), it follows that 

   
  
   

              
    

 

(4.3) 

The intersection of the curves represented by the left and right hand sides of (4.3) yields a 

resistivity characteristic temperature of          .  

  Figure 4.3 shows SEM plan-view images of both films. The resistivity of the 

nanorod film, based on a 79 nm thickness, is an order of magnitude greater than that of 

the flat film, which in turn is an order of magnitude greater than that of an ideal 

polycrystalline bulk sample (not shown - see Table 1.1). It is assumed that the resistivities 

of both films, which were grown by similar processes, should be roughly equal. The 

higher nanorod-film resistivity is likely to be due to using a nominal rather than an 

effective film thickness in the slab model for resistivity calculation. The structures of 

GLAD films often consist of an ultra-thin polycrystalline base layer near the film-

substrate interface upon which nanorods grow.
16

 Two possible models of effective 

thickness include one with this base layer plus nanorods and another with the base layer 
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only. When the nanorods are included, the film can be modeled as an inhomogeneous 

conductor
17

 made of square columns of equal height periodically arranged
18

 on an ultra-

thin, flat, simply-connected base as shown in Figure 4.3. The resistance of the film may 

be estimated by assuming that conducting cross-sectional areas perpendicular to the 

transport current include the full rod heights and that rod and base defect densities are 

similar. 

The goal is to estimate an effective thickness t1n of a nanorod film relative to that 

of a flat film of the same nominal thickness t1.  To do so, it is assumed that the nanorod 

film is square and that       and      .  Then the total resistance may be written as 

the sum of two resistances: the first due to a small slab that does not contain a nanorod 

and has dimensions of                   and the second due to two joined slabs, one 

small and one large, of dimensions             and             .  Since the rod and base 

defect densities are assumed to be similar, the resistivity is taken as a constant. 

 

FIGURE 4.3. SEM plan-view images of Ru (a) nanorod-structured and (b) flat films. (c) 

Geometric model of a nanorod-structured film showing parameters to estimate effective 

film thickness. 

 

 The total resistance, written in terms of an equivalent thickness, is set equal to the 

sum of the two slab resistances: 
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(4.4) 

Subject to the stated assumptions, equation (4.4) shows that the effective 

thickness t1n of a nanorod film relative to that of a flat film of the same nominal thickness 

t1 is decreased by a factor based on the product of two ratios 

          
  
  
  
  
  
  

  

   

 

(4.5) 

From SEM images, the nanorod film dimensions are: t1 ≈ 79, t2 ≈ 12, l1 ≈ 24 and 

l2 ≈ 10 nm. These dimensions yield t1n  ≈  0.27 t1, which reduces the apparent nanorod-

film resistivity by a factor of three. Considering that tunneling and thermionic emission
2
 

between nanorods spaced at l2 ≈ 10 nm are likely to be negligible, charge transport 

through the base layer alone with an effective thickness t2 may be expected to dominate. 

When the 12 nm base layer is taken as the effective thickness, the flat and nanorod film 

resistivities are nearly equal. Any remaining difference in resistivities may be due to 

relative defect concentrations, discontinuity of the nanorod base layer, or perhaps to its 

thickness, although boundary scattering in ultra-thin films becomes important only at 

cryogenic temperatures.
11, 19

   

4.5. Ettingshausen Effect 

 From Chapter 2, the measured adiabatic Hall coefficient RHa can be written in 

terms of the desired isothermal Hall coefficient RHi and the product of the Seebeck S and 

Ettingshausen P coefficients as
20

 

           (4.6) 

The Ettingshausen coefficient at temperature T may be written alternatively as
21
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 (4.7) 

where N is the Nernst coefficient and   the thermal conductivity. The Nernst coefficient 

of polycrystalline Ru
22

 falls monotonically from 6 to 2.5 x 10
-9

 m
2
/K s from 150 to 650 K 

while the thermal conductivity
23

 is essentially constant at 104 W/m K. An estimate at 300 

K from (4.7) yields P ≈ 10
-8

 K m
3
/J. Taking the Seebeck coefficient

22
 as S ≈ -1 µV/K 

makes the product SP ≈ -10
-8

 cm
3
/C. Since Hall coefficients for Ru are on the order of  

10
-4

 cm
3
/C, approximating RHi by RHa yields an error of about one part in ten thousand. 

4.6. Hall Coefficient 

The Nichols equation
2, 13

 is assumed to hold for the Hall coefficient, because RH is 

defined as an off-diagonal tensor-resistivity component per unit field (ρyx/Bz).
4
 This 

yields an estimate of RH for T ≥ 295 K of 13.1 x 10
-5

 cm
3
/C, based on the low-field, 

single-crystal values
15

 of RHa = 10.8 and RHc = 17.7 x 10
-5

 cm
3
/C (a, c-directions). That is, 

the low-field Hall coefficient of ideal polycrystalline Ru should lie between the lower and 

upper bounds of RHa and RHc. 

Figure 4.4 plots the Hall coefficient as a function of temperature for the flat and 

nanorod films using nominal thicknesses. Data were taken in the low-field limit, where 

the product of electron-cyclotron frequency and scattering relaxation time is much less 

than one (ωcτ << 1).
4
 While resistivity depends on temperature, the Hall coefficient 

appears to be independent of temperature in the range from 295 to 600 K. This is 

consistent with the Volkenshteyn data
15

 that show less than 30 % variation in RHa,c from 

100 to 300 K.
15

 The positive sign of RH indicates that ruthenium, a compensated metal
4, 14

  

with equal electron and hole concentrations, has higher-mobility holes as the dominant 

charge carriers. With the excitation of all acoustic modes near or above Debye 
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temperature, there is a single relaxation time and the ratio of mobilities and effective 

masses from the two-band model is µe/µh ≈ mh/me ≈ 0.3.
15

 The carrier concentration for 

the flat film follows as ≈ 4 x 10
22

 cm
-3

 and hole mobility at 300 K as ≈ 1 cm
2
/Vs. 

 

FIGURE 4.4. Hall coefficient as a function of temperature comparing flat and nanorod-

structured Ru thin films to bulk data from Justi
3
, Volkenshteyn

15
 and Myasnikova.

21, 24
 

The legend lists test conditions with current as a parameter in flat-film measurements. 

Data were taken in the low-field condition with each point being an average of 16 

measurements for the flat and 100 measurements for the nanorod films. A nominal film 

thickness of 79 nm was used to calculate RH for the nanorod film. 

 

The statistical means of the flat-film data at each temperature are shown by solid 

circles in Figure 4.4, which are connected by a dashed line. These are seen to lie within 

30 % of data from Myasnikova for a polycrystalline Ru plate (99.8 % purity) measuring 

10 x 5 x 1 mm and tested in fields up to 1.5 T.
21,24

 The mean at 295 K is approximately a 

factor of three below the Justi
3
 result of 22 x 10

-5
 cm

3
/C, which is an average of 25 

measurements at 2 to 2.9 A in a 4.47 T field at room temperature on a sintered powder 

sample (99.99 % purity, 6 % porosity) measuring  2.21 x 2.19 x 49.75 mm. The point 
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labeled Volkenshteyn
15

 represents an estimate of the Hall coefficient for an ideal random 

polycrystalline sample applying the Nichols equation.
2, 13

 Based on the single-crystal Hall 

coefficients,
15

 the average flat-film data of this study and the Myasnikova data
22

 appear to 

be low, possibly due to impurity content, while the Justi
3
 data appear to be high. Note 

that the current densities for the continuous film were 470 to 2340 A/cm
2
 compared to 40 

to 60 A/cm
2
 for Justi (100 is typical for RH measurements of bulk samples).

4
  

The Hall coefficients of the nanorod-structured film in Figure 4.4 were calculated 

using a 79 nm nominal thickness, but effective film thickness also plays a key role in the 

determination of RH in non-slab geometries.
10

 Three possible models of effective 

thickness include using either the nominal thickness as in Fig. 4.4, the ultra-thin 

polycrystalline base-layer thickness, or the nominal thickness modified by geometry
17

 

(Fig. 4.3c). To account for geometry, one can assume a uniform transport-current density, 

a linear Hall potential across the sample, and the applicability of the rule of mixtures for 

the geometric model of Hall coefficients. On this basis, the effective thickness of a 

nanorod film t1n relative to a flat film of the same nominal thickness t1 is reduced by a 

factor that depends only on the rod size and spacing:                    (The 

derivation of this relationship, equation (4.21), will be given below.)  If the flat-film and 

Myasnikova bulk data are taken to define an expected range for the nanorod-film data, 

then the best fit for the average nanorod-film Hall coefficients as a function of 

temperature is obtained from an effective thickness calculated by equation (4.21), which 

yields t1n ≈ t1/2 ≈ 39 nm.  In contrast, applying the base-layer thickness to the RH 

calculation yields roughly 2 x 10
-5

 cm
3
/C from 295 to 600 K, which is too low for Ru 

based on the Volkenshteyn
15

 and Justi
3
 data. 
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The average nanorod-film, flat-film, and Myasnikova-bulk Hall coefficient data 

are nearly equivalent if allowance is made for the nanorod-film geometry. It is concluded 

that while non-impurity defects have no significant effect on the Hall coefficients of Ru 

thin films at 300 K and above, uncertainties in thickness lead to decreased accuracy of 

measurements on films with non-slab geometries. In addition, defects and non-slab film 

geometries have a major influence on film resistivities. Provided that the nanorod spacing 

l2 is large enough, the height of the ultra-thin polycrystalline layer at the film-substrate 

interface is found to be the dominant factor in the determination of the resistivity from 

the measured resistance of nanorod-structured metallic thin films. 

4.7. Effective Thickness of Nanorod Film for Hall Coefficient Estimation 

An estimate of the effective thickness of a nanorod film starts by showing that the 

Hall coefficients of two adjacent slabs of the same thickness and material, carrying the 

same current density in a uniform external transverse magnetic field, not only equal each 

other but also equal the Hall coefficient of the combined slab.  Refer to Figure 4.5 for a 

picture that shows a Hall slab split into parts A and B such that         and IA ≠ IB. 
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FIGURE 4.5. Homogeneous and isotropic slab divided into parts A and B and carrying a 

total current Ix (holes as dominant carriers) in an external magnetic field Bz.  The 

electrostatic Hall potential is assumed to rise uniformly from zero on the left to Vy on the 

right. 

 

The slab sections act as a current divider so that             and that    

        .  The Hall coefficient of section A follows as 

    
  

    
 
   

  
   

    
 

   

    
      

 

(4.8) 

Similarly, for section B, the Hall coefficient follows as 

    

       
  
    

    
 

   

    
      

 

(4.9) 

That is, for parallel Hall-slab resistors with the same thickness, each section has the same 

Hall coefficient as the entire slab and, in general, every slab section defined by slicing 

parallel to the x-z plane has the same Hall coefficient.  It is possible to write the Hall 

coefficient of the entire slab using a rule of mixtures as 
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(4.10) 

While (4.10) is seemingly trivial, a rule of mixtures allows an estimate of the Hall 

coefficient for cases where connected slabs of different thicknesses are combined in 

series as will be shown below. 

 Next consider connected slabs with different thicknesses as shown in Figure 4.6.  

The source current Ix divides by face areas such that                         and 

                       .   The Hall coefficient of the thick slab A equals that of 

the thin slab B and reads 

         
  

    
  
         
     

    

 

(4.11) 

 

 

FIGURE 4.6. Homogeneous and isotropic slabs of different thicknesses labeled A and B 

and carrying a total current Ix in an external magnetic field Bz.  The electrostatic Hall 

potential is assumed to rise uniformly from zero on the left to Vy on the right. 
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Similar to the results for the sections of the uniform thickness slab in Figure 4.5, 

the overall Hall coefficient of the connected slabs in Figure 4.6 is equal to the Hall 

coefficient of either slab since the electric fields and transport currents in both slabs are 

the same and the external magnetic field is constant.  This is consistent with the rule of 

mixtures equation (4.10): 

    
  
 
      

  
 
      

     
 

               

 

 

(4.12) 

 When slabs of different thicknesses are connected in series, however, so that the 

current densities are not the same, it would be expected that the Hall coefficients of the 

slabs are different.  The geometry is illustrated in Figure 4.7. 

 

FIGURE 4.7. Connected homogeneous and isotropic slabs of different thicknesses 

labeled A and B each carrying a current Ix in an external magnetic field Bz.  The 

electrostatic Hall potential is assumed to rise uniformly from zero on the left to Vy on the 

right. 
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 Since the current densities in the two slabs differ, the Hall coefficients must differ 

because Ey and Bz are constant.  The slabs are in contact yet have different Hall 

coefficients due to different thicknesses.  The Hall coefficient of slab A is 

    
    

    
 

 

(4.13) 

and that of slab B  is 

    
    

    
   

 

(4.14) 

What is the overall Hall coefficient of the composite?  That is, when a measurement of 

Hall potential for a given excitation current and external magnetic field is recorded, what 

effective thickness is assigned to a film that does not have a uniform thickness, such as a 

nanorod film, in order to determine the overall Hall coefficient?  To answer this question, 

an effective thickness may be estimated from a Hall coefficient determined by a rule of 

mixtures.  It is recognized that the approach is not rigorous.  With reference to Figure 4.7, 

an overall Hall coefficient may be estimated using the widths wA and wB as 

    
  

     
      

  

     
       

 

(4.15) 

 Now consider the nanorod model of Figure 4.3, a modification of which is shown 

in Figure 4.8.  For convenience, the array is taken as a lumped n x n nanorod square.  

(Figure 4.3 shows a 2 x 2 nanorod square where the rods and bases are not lumped 

together.)  The picture, which is not to scale, shows lumped nanorods and lumped gaps in 

the rear and a lumped continuous gap in the front that extends the entire length of the 

film.   
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FIGURE 4.8. Lumped nanorod array as three connected homogeneous and isotropic slabs 

labeled by Hall coefficients as RHA, RHB and RHC.  The dimensions t1 and t2 represent the 

rod height and the base height. The nanorod film carries a current Ix in an external 

magnetic field Bz.  The electrostatic Hall potential is assumed to rise uniformly from zero 

on the left to Vy on the right (y-direction). 

 

 From above, the Hall coefficients RHA and RHB are equal to each other and to the 

Hall coefficient of the composite slab made of components A and B.  Using a rule of 

mixtures as in (4.15), an overall Hall coefficient may be estimated as 

    
  

     
      

  
     

       

 

(4.16) 

From (4.11), RHA (or RHB) is given by 

     
  

    
  
         
     

    

 

(4.17) 

The expression for RHC is more straightforward and is given by 

     
    

    
    

 

(4.18) 
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When (4.17) and (4.18) are substituted into (4.16), the Hall coefficient of the overall slab 

becomes 

    
    

    
 

 
 
 
    

  
  
  
  
  
   

  
  
  
  
  
    

  
  
 

   
  
  
 
 

 
 
 
 
   

 

 

(4.19) 

Under the assumptions that       and that       , (4.19) simplifies to 

    
    

    
    

  
  
 
  

   

 

(4.20) 

An effective thickness for a nanorod film t1n may now be estimated by writing the film 

Hall coefficient as                    Substituting this expression into (4.20), the 

effective thickness of a nanorod film relative to its nominal thickness, for purposes of 

Hall coefficient measurements, may be estimated as the nominal thickness decreased by a 

factor that depends on the rod size and spacing: 

         
  
  
 
  

   

 

(4.21) 

4.8. Closing Note 

This chapter is an elaboration of a paper published in Applied Physics Letters in 

April 2010.
25

 Steps in the derivations of the characteristic resistivity temperature θR and 

the effective thicknesses have been added for clarity and completeness. 
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Chapter 5 

RUTHENIUM DIOXIDE THIN FILMS 

 

5.1. Chapter Abstract 

 Polycrystalline thin films of RuO2 were grown on fused quartz substrates and a 

parametric study was carried out to probe the influence of film nanostructure on the four-

point van der Pauw resistivity and Hall coefficient. The films were grown via reactive RF 

magnetron sputtering of a Ru target in an Ar/O2 plasma using deposition rates from 0.27 

to 3.5 Å/s and substrate temperatures from 16 to 500 °C.  Room temperature resistivities 

of the RuO2 films ranged from 58 to 360 µΩ cm.  Upon first heating following 

deposition, some films showed decreasing resistivity with increasing temperature, but the 

resistivities also decreased upon subsequent cooling suggesting that the annealing 

treatment reduced the film defect density.  The temperature coefficient of resistance was 

found to be small (<0.001 K
-1

) in agreement with previous investigations.  Hall 

coefficient measurements of the polycrystalline thin films demonstrated that either n-type 

or p-type carriers can be present depending on the deposition conditions and resulting 

nanostructure, in contrast to single-crystal RuO2, which is an n-type metal.  Grain size 

and homogeneous strain within the films were measured by x-ray diffraction and are 

correlated to the dominant carrier type. 

5.2. Background Information 

 As pointed out in Chapter 1, stoichiometric single-crystal ruthenium dioxide
1-6 

 

crystallizes in the same rutile structure as the more widely studied titanium dioxide
7,8

 but 
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is an n-type metal instead of a wide band-gap semiconductor.  Variations of the oxygen 

vacancy concentration in TiO2-x make it a defect-doped, n-type semiconductor with a 

wide range of possible resistivities.  However, oxygen vacancies do not appear to 

significantly change the metallic character of RuO2.
9
 Based on TiO2, it might be expected 

that oxygen vacancies would enhance the population of n-type carriers (electrons).  

However, for polycrystalline thin films of RuO2, a report of p-type conduction
10

 at 30 K 

and reports of zero or even negative temperature coefficients of resistance
10-15

 have 

appeared in the literature.  Negative temperature coefficients are typically associated with 

intrinsic semiconductors, not with metals, and it is inferred that a decrease in RuO2 

resistivity with increasing temperature must be due to the defect structures within the 

films.
16,17

  The purpose of this work was to further investigate the dominant-carrier type, 

resistivity, and temperature coefficient of resistance of polycrystalline RuO2 thin films 

grown by reactive RF magnetron sputtering and to correlate these transport properties to 

the deposition process and resulting defect structure. 

5.3. Properties of RuO2 

 With reference to Chapter 1, ruthenium dioxide is a stable, semi-transparent, 

transition-metal oxide with higher electrical conductivity than about one-third of the pure 

metals in the periodic table.
18

  In single-crystal form, its average room-temperature 

resistivity
1
 of 35.2 µΩ-cm is approximately five times that of ruthenium.

18
  RuO2 is 

classified as a metal since its Fermi level lies in the middle of a conduction-band density-

of-states curve that is comprised primarily of Ru-4d orbitals.
2
  Furthermore, the energy-

versus-wave vector dispersion bands at the Fermi level indicate that conduction in RuO2 

is both by electrons (dominant carriers) and holes.
2,5,6

  Single-crystal ruthenium dioxide is 
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an n-type metal with an average room-temperature Hall coefficient
1
 of -11 x 10

-5
 cm

3
/C, 

contrasted to ruthenium, which is a p-type compensated metal
19

 with an average room-

temperature Hall coefficient
20

 of +22 x 10
-5

 cm
3
/C.  RuO2 possesses the rutile structure 

(Structurbericht C4, space group P42/mnm) with a tetragonal unit cell (a = 4.492 Å, c = 

3.107 Å) with ruthenium atoms in a body-centered configuration, each surrounded by six 

oxygen atoms in an octahedral coordination with two RuO2 molecules per unit cell.  In 

terms of oxide temperature stability, RuO2 dissociates at 1540 °C at a pressure of one 

atmosphere.
21

 The (110) surface is reported to be thermally stable in ultrahigh vacuum at 

600 K.
22

 However, as pointed out in Chapters 6 and 7, polycrystalline RuO2 may be 

unstable in high vacuum above room temperature and also in reducing atmospheres, such 

as carbon monoxide, above room temperature.   

5.4. Experimental Details 

 All polycrystalline RuO2 thin films were deposited on amorphous GE Type-124 

fused-quartz substrates by confocal reactive RF magnetron sputtering of a 76 mm 

diameter, 99.95 % pure ruthenium target in an Ar/O2 plasma deposition system (AJA 

International).  The Ar/O2 ratio in the sputter gas was 45/55 at a total pressure of 

approximately 3.5 x 10
-3 

Torr (0.5 Pa) during depositions.
10

  The target-to-substrate 

distance was 17 ± 1 cm with the target tilted 17° from the vertical in the direction of the 

rotating substrate (14 rpm).  Circular films for the van der Pauw geometry experiments 

were deposited through a 17 mm mask to a typical thickness of 140 nm.  Substrate 

temperatures during deposition were adjusted between 16 and 500 °C and deposition 

rates were varied from 0.27 to 3.5 Å/s, corresponding to RF powers of 200 to 500 W.   
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Transport measurements were made using a four-point van der Pauw resistivity 

and Hall-effect apparatus, which is described in Chapter 3.
23

 Measurements were made in 

both high vacuum (≈ 10
-5

 Torr) and in air at one atmosphere with temperatures ranging 

from ambient to approximately 300 °C.  The transport system was calibrated using 

single-crystal n-type and p-type silicon wafers, unannealed gold thin films, and a 

commercial silicon standard (MMR Technologies).  As an example of the calibration, at 

293 K the transport system yielded an average Hall coefficient for a 300 nm unannealed 

gold film of -6 x 10
-5

 cm
3
/C compared to published values for gold films evaporated on 

glass of -8 ±1 x 10
-5 

cm
3
/C.

20
  Measurements conformed to the standard test methods 

outlined in ASTM F76 - 86.
24

 

5.5. Comparison of RuO2 and Ru Thin Film Resistivities 

Figure 5.1 compares the resistivity as a function of temperature of two films: an 

unannealed RuO2 film deposited confocally at 3.5 Å/s onto a 16 °C fused-quartz substrate 

and an unannealed Ru film deposited normally by RF magnetron sputtering at 0.5 Å/s 

onto an 18 °C microscope-glass slide using a different deposition system (Lesker - 

Chapter 3).  According to Matthiessen‟s rule, the resistivity of a metal should consist of 

two components: (i) a small residual resistivity that is independent of temperature caused 

by impurities, other defects, and strain, and (ii) an ideal resistivity that rises with 

temperature due to lattice vibrations (phonons).  This behavior is clearly not the case for 

the two metal films, which exhibit falling resistivity upon a first heating.  Since resistivity 

is due to deviations from a perfect, static lattice, it is evident that defects such as 

vacancies, interstitials, grain boundaries, and dislocations play a significant role in 

determining the initial resistivity.  The drop in resistivity due to annealing with 
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temperature and time for certain unannealed metal films might be attributed to the 

removal of vacancies and interstitials by annealing,
16,17

 although reduction of other 

defects such as grain boundary surface areas should also lower the resistivity.  When the 

two metal films were cooled to room temperature, the resistivities traced lines with 

positive slopes in accordance with the phonon component of Matthiessen‟s rule. 

 

FIGURE 5.1.  Comparison of RuO2 and Ru metal films showing decreasing resistivity as 

a function of temperature upon first heating.  Neither film received thermal treatment 

prior to these resistivity measurements. 

 

 The resistivities of seven RuO2 films versus temperature are shown in Figures 5.2 

and 5.3 (Figure 5.2: first heating; Figure 5.3: first cooling).  The plots also show how 

these values compare to measured resistivity data for single-crystal RuO2.
1
  The legend in 

Figure 5.2 gives the film designation, while that in Figure 5.3 gives the deposition 

parameters and post-deposition thermal treatments, if any, of the same films.  Three 
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unannealed films deposited at relatively high rates showed falling resistivities upon first 

heating in the van der Pauw apparatus.  Three pre-annealed and one unannealed film  

 

FIGURE 5.2.  Resistivity during first heating for seven polycrystalline RuO2 thin films 

fabricated under different conditions.  The films are compared to single-crystal RuO2.
1
 

 

 

FIGURE 5.3.  Resistivity during first cooling of the seven different polycrystalline RuO2 

thin films fabricated under the different conditions and shown in Fig. 5.2. 
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showed rising resistivities upon first heating.  Upon first cooling, all seven films showed 

positive slopes which are characteristic of metallic behavior.  Subsequent thermal cycling 

(data not shown) exhibited positive slopes with final room-temperature resistivities lower 

than those in Figure 5.3 by a few percent. 

5.6. Temperature Coefficient of Resistance 

 The temperature coefficient of resistance, defined as α = (1/ρ)(∂ρ/∂T), at 293 K 

for the seven RuO2 films shown in Figures 5.2 and 5.3 is plotted against room-

temperature resistivity in Figure 5.4. In temperature coefficient of resistance calculations, 

the slopes were those of the cooling curves and the resistivities were those of the points 

labeled “Stop” in Figure 5.3.  Included in Figure 5.4 are values for a number of metals 

and alloys
25

 for comparison to the RuO2 films.  Single-crystal RuO2 has a value similar to 

bulk metals like indium, tin, or zirconium.  The seven polycrystalline RuO2 films tested 

in this study have extremely small temperature coefficients of resistance, comparable to 

bulk nickel alloys like nichrome, invar, or constantan.  It should be noted, however, that 

the RuO2 film resistivities are significantly higher than those of the nickel-based alloys. 
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FIGURE 5.4.  Temperature coefficient of resistance versus resistivity at 293 K comparing 

RuO2 in single-crystal form (star) and polycrystalline thin-film form (squares) to various 

metals and alloys.
25

  Uncertainty in RuO2 data is about half the plotted values. 

 

5.7. Resistivity as a Function of Process 

 The resistivities of twenty four different films measured at 295 K are plotted as a 

function of substrate deposition temperature with deposition rate as a parameter in Figure 

5.5.  The room-temperature resistivity drops with increases in deposition substrate 

temperature from 16 to 500 °C, but the decrease is not monotonic with a small peak at 

midrange temperatures for all rates from 0.27 to 3.5 Å/s.  The lowest resistivity film 

observed (58 µΩ-cm) resulted from a deposition rate of 1.2 Å/s on a 500 °C substrate; 

this resistivity was 65% higher than the single-crystal average.  The two highest 

resistivities were observed at the fastest deposition rate of 3.5 Å/s but at substrate 

temperatures of 16 and 300 °C. 
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FIGURE 5.5.  Resistivity at 295 K as a function of substrate deposition temperature with 

deposition rate as a parameter.  Data for 24 different RuO2 films are shown.  Uncertainty 

in resistivity is about ± 5 % of measured values.  Films that were grown by the same 

process showed about a 50 μΩ cm spread in resistivity (see 3.5 Å/s data at 100 °C). 

 

5.8. Hall Coefficient as a Function of Process 

 The Hall coefficients for fourteen different films measured at 295 K with a 0.3 T 

magnetic field are plotted in Figure 5.6 as a function of substrate deposition temperature 

with deposition rate as a parameter.  These data indicate that conduction occurs by both 

p-type and n-type majority carriers in contrast to bulk single-crystal RuO2, in which 

conduction is exclusively n-type.
1
 The results are difficult to generalize, but the slowest 

deposition rate (0.27Å/s) appeared to yield electrons as dominant carriers, while higher 

rates yielded either electrons or holes as dominant carriers as substrate temperature was 
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increased.  The appearance of both types of carriers is consistent with the energy-band 

dispersion curves
2-6

 (energy versus wave vector) for RuO2 at the Fermi energy. 

 

FIGURE 5.6.  Hall coefficient at 295 K as a function of substrate deposition temperature 

with deposition rate as a parameter.  Data for 14 different RuO2 films are shown.  Error 

bars are included for the 3.5 Å/s samples as an example of measurement uncertainty. 
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testing shown in Figure 5.7, Joule heating annealed both films thereby lowering 

resistivity and film defect density.  However, the results in Figure 5.7 show that defect 

annihilation which presumably occurs by Joule heating has minimal, if any, effect on the 

Hall coefficients, at least for these two samples. 

 

FIGURE 5.7.  Hall coefficient at 295 K as a function of test current for two contrasting 

samples: high-rate, low-substrate temperature versus low-rate, high-substrate 

temperature.  Background noise significantly scattered measurements for currents below 

one milliampere. 
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the film surface.  Figure 5.8 shows grain size as a function of tilt angle from the surface 

plane of the film based on diffraction from different Miller index (hkl) planes of RuO2. 

 

FIGURE 5.8.  Grain size as a function of tilt angle of crystallite planes from the film 

surface as measured by x-ray diffraction.  Points represent different Miller-index planes.  

Data at 0° are from θ/2θ scans (size transverse to surface), at 13° to 34° from grazing 

incidence scans (size angled from surface), and at 90° from in-plane scans (size parallel 

to surface). The (110) planes for the n-type sample are shown as an example.  See Table 

5.1 for a detailed listing of the data. 

 

Note that the intent of Figure 5.8 is simply to demonstrate by measurement that 

the n-type sample consisted of  larger crystallites than the p-type sample; the sizes plotted 

should be taken as indicative of relative sizes and not as accurate sizes.  That is, grain 

sizes were estimated by the Scherrer equation and are likely to be overestimates since, in 

general, the statistical size distribution is expected to be log-normal.
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TABLE 5.1. Tilt angle, grain size, and Miller index plane for data of Figure 5.8. 

0.27 Å/s, 500 °C substrate, n-type  3.5 Å/s, 100 °C substrate, p-type 

Tilt Size hkl  Tilt Size hkl 

(deg) (nm)   (deg) (nm)  

0 25 110  0 29.3 110 

0 110.8 101  0 26.3 200 

0 101.9 200  0 13.1 211 

0 88.1 111  0 21.6 220 

0 47.3 211  0 6.9 310 

0 100.6 002  13.2 43.8 110 

0 83.5 112  16.8 30 101 

0 23 301  19.2 23.8 200 

0 63.7 202  21.7 25.2 210 

13.4 47 110  26.3 22.2 211 

16.9 156 101  28.1 31.6 220 

19.4 33 200  31.9 17.7 310 

19.6 158 111  33.9 16.8 301 

26.5 162 211  90 20.5 110 

28.3 107 220  90 15.9 101 

29.1 171 002  90 23.8 111 

32.9 178 112  90 15.2 211 

34.1 68 301  90 14.8 220 

90 120.4 110  90 16.2 002 

90 166.6 101  90 14.6 310 

90 126.2 200  90 11.2 112 

90 88.7 210  90 10.4 301 

90 93 211  90 20.5 202 

90 109.5 220     

90 51.4 310     

90 37.5 301     

 

 

With regard to measurement technique, instrumental peak broadening was 

negligible compared to sample broadening and peak positions were calibrated using LaB6 

powder as a standard reference material.
27

 The average grain sizes are listed in Table 5.2 

along with average homogeneous strains parallel and perpendicular to the film surface, 

calculated from x-ray diffraction peak shifts.  It is seen that the average grains are 
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approximately cubical and that the low-rate film contains average crystallite volumes that 

are roughly 100 times larger than the high-rate film.  As indicated in Table 5.2, strains in 

the fast-deposition-rate film were about an order of magnitude higher than those in the 

slow-rate film, which was nearly strain free.  Based on Poisson‟s ratio considerations for 

macroscopic strains, it might be expected that the strain parallel to the film surface for the 

fast-rate sample would be compressive (negative sign) and not +0.39 % as shown, 

because strain perpendicular to the surface was tensile.  The fact that positive strains were 

observed in both directions suggests that there may be two different types of grains, each 

with tensile components either parallel or perpendicular to the film. 

 

TABLE 5.2. Comparison of two unannealed films with different dominant carriers. 

Deposition rate, substrate temp 0.27 Å/s, 500°C 3.5 Å/s, 100°C 

Resistivity (295 K) 92 µΩ cm 218 µΩ cm 

Film thickness 180 nm 150 nm 

Strain parallel to surface 0.09 % 0.39 % 

Strain perpendicular to surface -0.05 % 0.91 % 

Avg grain size parallel to surface 99 nm 16 nm 

Avg grain size perpendicular to surface 72 nm 19 nm 

Dominant carrier Electrons Holes 

 

 

Figure 5.9 presents the θ/2θ and in-plane (grazing entrance – grazing exit) scans 

of the two films listed in Tables 5.1 and 5.2.  The two films are clearly textured and do 

not show a random distribution of crystallites.  In general, thin films show fiber texture in 

a direction perpendicular to the substrate. 
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FIGURE 5.9.   X-ray diffraction scans examining crystallite planes that are parallel (θ-2θ) 

and perpendicular (in-plane) to the surfaces of two highly contrasting RuO2 films.  Both 

films were unannealed and are characterized as 1) 0.27 Å/s, 500 °C substrate, n-type, 

large grains and 2) 3.5 Å/s, 100 °C substrate, p-type, small grains. 

 

5.11. Discussion 

 When thin metal films show decreasing resistivity upon heating, the decreases 

must be due to less carrier scattering caused by a reduction in the film defect density, 

with kinetics governed by a specific time-temperature annealing process.   Once a large 

number of film defects are eliminated, the resistivity will increase with increasing 

temperature in accordance with Matthiessen‟s rule.  This behavior applies to RuO2 as 

well as to pure metals such as ruthenium and also applies to non-stoichiometric RuO2-x 

(oxygen vacancies as defects).  There is no defect-doped semiconducting phase of RuO2 

as there is for TiO2, where conduction by activation energy would improve upon heating, 

thereby lowering resistivity.  The polycrystalline RuO2 films synthesized in this study do 
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display smaller resistivity-versus-temperature slopes and lower temperature coefficients 

of resistance than single-crystal RuO2, in agreement with observations by other 

investigators. 

 The changes in the sign of the Hall coefficient with different deposition 

conditions indicate that two-carrier conduction takes place in RuO2 films.  It is believed 

that the occurrence of positive Hall coefficients in RuO2 is not due to a combination of 

contact misplacement and non-uniform resistivity as is possible, for example, in the case 

of the n-type semiconductor ZnO.
28

 It appears likely that the hole concentration in single-

crystal RuO2 is either just slightly smaller than the electron concentration or equal to the 

electron concentration with holes having lower mobilities. Two-carrier conduction with 

equal carrier concentrations is a situation found in compensated metals
19

 and RuO2 

follows this trend.  The results indicate that annealing via Joule heating during the Hall 

coefficient measurement does not appear to influence the sign of the Hall coefficient. 

 When comparing a slow-deposition-rate, high-substrate-temperature film to a 

fast-deposition-rate, low-substrate temperature film (Figures 5.7-5.9), a change in the 

sign of the Hall coefficient from n-type to p-type was brought about by changing from 

high surface adatom mobility during deposition to a condition where adatom mobility 

becomes much more limited during the growth process.  Dominant conduction by 

electrons correlates with larger grains and nearly zero homogeneous strain, as measured 

by x-ray diffraction, which is produced during a high adatom mobility growth condition.  

Dominant conduction by holes correlates with smaller grains and order-of-magnitude 

higher film strain, suggesting that the defect grain boundaries may be the major source of 

the p-type carriers. 
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5.12. Conclusions 

 The resistivity and temperature-coefficient-of-resistance of RuO2 thin films are 

strongly dependent on the film defect density, but the Hall coefficient appears to be less 

sensitive to the defect structure.  Highly defective films show decreasing resistivity upon 

a first heating, which is reminiscent of the behavior of an intrinsic semiconductor, but this 

behavior is due to annealing of film defects.  Subsequent cooling and heating treatments 

lead to the characteristic resistivity versus temperature dependence that is expected for 

metal films.  The RuO2 films do have very low temperature coefficients of resistance 

(<0.001 K
-1

), a characteristic that can be exploited in several technical applications, 

provided that the film structure displays long-term time stability.  The RuO2 thin films in 

this study exhibited mixed electron-hole conduction, with the hole concentration being 

nearly equal to the electron concentration.  It was found that different RF magnetron 

sputtering parameters, and hence different film grain structures and strains, can lead to 

changes from n-type to p-type conduction. 

5.13. Closing Note 

 This chapter is a slight modification of a paper published in the Journal of 

Vacuum Science and Technology A in July-August 2010.
29
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Chapter 6 

OXYGEN LOSS IN DEFECTIVE RUO2 THIN FILMS 

 

6.1. Chapter Abstract 

 During the course of this study it was noticed that certain RuO2 films lost oxygen 

upon heating to a few hundred degrees Celsius in high vacuum (≈ 10
-5 

torr) and became 

two-phase mixtures of Ru and RuO2 as evidenced by x-ray diffraction.  The existence of 

two phases might explain, in some cases, how a polycrystalline RuO2 film, which is an n-

type conductor when stoichiometric, or nearly so, might show p-type conduction in Hall 

measurements. The films that lost oxygen were typically those with higher defect 

contents, i.e., films that were grown at high confocal deposition rates on cold substrates.  

As pointed out in Chapter 1, studies have suggested that even single-crystal RuO2 

surfaces are non-stoichiometric,
1
 and this lack of surface stoichiometry along with high 

sub-surface defect contents may be enough to destabilize films in some situations. Note 

that loss of oxygen from RuO2 films was also observed in films exposed to reducing 

carbon monoxide atmospheres as will be shown in Chapter 7. The discussion in this 

chapter is restricted to films exposed to and annealed in high vacuum. 

6.2. Oxygen Loss in High Vacuum 

 According to a high temperature study of the ruthenium-oxygen system by Bell 

and Tagami,
2
 the dissociation pressure of RuO2 in one atmosphere of pure oxygen is 

1540 °C.  A pressure-temperature phase diagram for RuO2 was presented by Brunetti et 
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al.
3
 that covers the range of temperatures from 986 to 1221 K (713 to 948 °C).  They 

propose a dissociation pressure (kPa) according to the following equation: 

                     
         

 
   

 

(6.1) 

This equation indicates that at 986 K (713 °C) oxygen will be lost from the surface of 

RuO2 at a pressure of 14.5 mPa (1.1x10
-4

 torr), which corresponds to high vacuum.  

Extrapolation to temperatures of the order of 300 °C predicts dissociation pressures 

below the ultrahigh vacuum range (≈ 10
-15

 torr), far below the high vacuum levels in the 

experiments of this study (≈ 10
-5

 torr). 

A plot of the Gibbs free energy of formation of RuO2 is compared to rutile TiO2 

in Figure 6.1 (Ellingham diagram), where it is clearly seen that TiO2 is a far more stable 

oxide.  When tie lines from the origin in the upper left hand corner are extended to the 

right hand vertical axis at a given pressure, the intersection of the lines with the 

formation-energy lines gives the temperature corresponding to that pressure.  Pressures 

have been calculated from the equilibrium expression for the reaction between ruthenium 

metal and oxygen gas                     where s stands for solid and g for gas.  

The standard Gibbs free energy with the chemical activities of the two solids taken as 

unity follows as 

   
           (6.2) 

Figure 6.1 shows that from the point of view of equilibrium thermodynamics, 

stoichiometric RuO2 should be stable in high vacuum at temperatures ranging from 100 

to 300 °C. That is, ruthenium dioxide should not undergo a significant loss of oxygen 

resulting in a two phase system of Ru and RuO2. 
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FIGURE 6.1. Free energy of formation as a function of temperature comparing RuO2 and 

rutile TiO2.  Temperatures corresponding to given oxygen pressures may be read from 

intersections of the solid lines with the dashed lines, which are shown as examples.  Data 

for RuO2 are from references 2 and 4; data for TiO2 are from reference 5. 

 

 

6.3. Experimental Evidence of Oxygen Loss in Defective RuO2 Films 

As argued above, from the point of view of equilibrium thermodynamics, RuO2 

thin films should not lose oxygen in high vacuum at temperatures in the 100 - 300 °C 

range.  Yet some films grown under deposition conditions favoring a high defect content 

did indeed lose oxygen during post-deposition annealing and became two-phase systems.  

As an example of oxygen loss from a RuO2 sample, consider Figure 6.2.  Exposure to 

moderate temperatures in high vacuum significantly altered the nanostructure of the film 

and gave rise to a pure ruthenium phase. 
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FIGURE 6.2. X-ray diffraction grazing-incidence scans of a sample (081027-RuO2) 

grown by reactive magnetron sputtering at a high rate on a cold substrate (3.5 Å/s, 16 °C) 

in a confocal deposition system.  The lower trace shows the as-deposited sample.  After 

one day at 100 - 200 °C in a vacuum of roughly 10
-6

 torr, the upper trace shows both 

RuO2 and Ru peaks. 

 

 

 Another example is shown in Figure 6.3, where a sputtered film grown at a high 

deposition rate on a warmer substrate (3.5 Å/s, 100 °C) was followed by a low 

temperature anneal in air (206 °C for 2 hours).  There are no evident Ru peaks seen from 

the air-annealed film, but when the film was placed in high vacuum and heated in the 

range of 200 - 300 °C for about one day, Ru peaks became evident.  That is, oxygen loss 

allowed for nucleation and growth of pure ruthenium crystallites. 

 A final example is shown in Figure 6.4.  Here a film was grown on a 200 °C 

sapphire substrate by electron-beam evaporation of Ru in the presence of an electron-

cyclotron-resonance (ECR) oxygen plasma and was then annealed at 600 °C in an ECR 

oxygen plasma for 30 minutes.  The film was tested in high vacuum for about a half day 

at temperatures in the range of 100 - 300 °C.  The film lost oxygen and the xrd spectra 
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therefore show that loss may also occur in RuO2 films with lower defect contents.  It 

needs to be emphasized, however, that only some of the RuO2 films heated in vacuum 

lost oxygen.  Other films did not, as evidenced by x-ray diffraction.  Why some films lost 

oxygen and others did not is unclear.  It is speculated that oxygen loss is associated with 

film defects, and in this context, free surfaces, grain-boundary surfaces, and film strain 

count as defects.  It is also possible that film texture, and hence the shape of grains and 

grain boundaries, may be a factor in oxygen loss. 

 

 

FIGURE 6.3.  X-ray diffraction grazing-incidence scans on sample (080826-RuO2-1) 

grown by reactive magnetron sputtering at a high rate on a warm-substrate (3.5 Å/s, 100 

°C) in a confocal deposition system.  The upper trace made from the as-deposited film 

was unaltered by an air anneal at 206 °C for 2 hours.  The lower trace shows the effects 

of heating in high vacuum for roughly one day. 
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FIGURE 6.4.  X-ray diffraction grazing-incidence scans made on a sample (080227-

RuO2) grown on a 200 °C substrate by e-beam evaporation of Ru in the presence of an 

ECR oxygen plasma.  The film was post-deposition annealed in the presence of an ECR 

oxygen plasma for 30 minutes at 600 °C.   

 

6.4. Why a Phase Transformation Might Occur 

 Christian‟s book on the theory of phase transformations states that the first 

question to be considered is why a particular transformation might occur.
6
  The answer 

lies in which equilibrium configuration of atoms in a solid has the lowest (most negative) 

binding energy or the highest (most positive) cohesive energy.  Determining the correct 

configuration often involves a comparison of structures with energies that might differ by 

no more than a few percent.
7
  The present paradigm for calculating the binding energy of 

ground-state structures is density functional theory (DFT), a method that employs the 

Khon-Sham equation to find the electron distribution that gives the lowest energy for a 

specified structure.
8
  As of early 2011, it appears that no DFT calculations have been 

made on the RuO2 system with regard to a progressive atom-by-atom oxygen loss. 
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As experimentally shown above, oxygen loss ultimately results in a phase 

transformation of individual crystallites from a tetragonal phase of RuO2 to a hexagonal 

phase of pure Ru.  Although the use of pair potentials is an empirical method and a 

Lennard-Jones style of equation for materials other than noble gases is, to quote Finnis,
 8

 

“a very poor model indeed,” this method allows a very rough comparison of the structural 

stability of non-stoichiometric versus stoichiometric RuO2.  The goal is to follow the 

methodology of Pettifor
7
 to gain insight into structural stability, while recognizing that a 

transition-metal oxide like RuO2 cannot, strictly speaking, be properly described by pair 

potentials.  The following assumptions are made for a single crystallite of RuO2: 

1. A pair-potential model works on a 4d transition-metal oxide. 

2. Bonds between ruthenium atoms are weak and may be neglected.
9
 

3. All non-strain defects except oxygen vacancies may be neglected. 

4. The structure is strain free. 

5. The rutile tetragonal structure remains stable as oxygen atoms are removed (no 

sub-oxide formation). 

6. First-order bond energy is a measure of structural stability.
7
 

The pair-potential model is of the Lennard-Jones form with binding energy given 

by two terms. The first represents a repulsive energy and the second a bonding energy 

between a single pair of atoms 

 

 
  

  
 
 
  

  
  
 
 
 

 

 

(6.3) 

where V/E is the normalized potential energy, Rh is the position of zero potential, R is the 

distance between atoms, λ is the hardness of the potential, and n is the bonding 
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exponent.
6
  Figure 6.5 illustrates the form for the case of n = 2 with λ as a parameter.  

The comparison of structures is based on Pettifor‟s structural energy difference theorem,
7
 

which states that the energy difference ΔU between two competing structures is given to 

first order by the difference in bonding energies with repulsive energies made equal:   

                    (6.4) 

When many atoms are involved, the bonding and repulsive terms in the pair-potential 

equation are modified by effective coordination numbers based on the arrangement of 

nearest neighbors: 

       
  
 
 
  

       
  
 
 
 

 

 

(6.5) 

where Zrep and Zbond are effective coordination numbers. 

 

FIGURE 6.5.  Normalized pair potential energy as a function of normalized distance 

between centers with a bonding exponent of 2 and hardness λ as a parameter (after 

Pettifor
7
). 

 

0 2 4 6 8 10

-0.6

-0.4

-0.2

0.0

0.2

 

 

N
o

rm
a

liz
e

d
 p

a
ir

 p
o

te
n

ti
a

l

Normalized distance between centers, R/R
h

n = 2

 = 6

4

2

1.1

Soft potential

Hard potential



92 

 

 The goal is to compare the stability of non-stoichiometric RuO2 populated with 

oxygen vacancies to that of fully stoichiometric RuO2.  This may be done by taking the 

ratio of bond energies (non-stoichiometric to stoichiometric) determined by satisfying the 

structural energy difference theorem.  If the ratio is less than one, then the non-

stoichiometric structure is less stable and therefore more likely to undergo a phase 

transition.  The method may be illustrated by comparing two four-atom planar structures: 

a line versus a square as shown in Figure 6.6. Which is the more stable structure? 

 

FIGURE 6.6  Illustration of the method: two simple four-atom structures used for a 

stability comparison.
7
 

 

The binding energies of the two structures depend on the number of atom pairs 

and their spacing 

                         
 

(6.6) 

                       

 

(6.7) 

These algebraic forms allow for factorization of the radial terms to give effective 

coordination numbers.s 
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(6.9) 

The superscripts l and s on the effective coordination numbers refer to line and square 

respectively. 

At this point the structural energy difference theorem is applied by setting the 

repulsive energies equal while using the square as the reference structure.  That is, the 

line-bond-distance ratio is written in terms of the square-bond-distance ratio using the 

effective coordination numbers as the adjustment factor. 

     
   

    
  

 
  

      
   

    
  

 
  

 

 

(6.10) 

 
    
  

   
    
  

  
    
 

    
  

 
  

 (6.11) 

The next step is to compare bond energies by making a ratio of the bond energy of the 

line to the bond energy of the square. 

       
       

  
      

 

      
  

 
    
  

 
 

 
    
  

 
  

 

(6.12) 

       
       

  
      

 

      
  

 
    
  

 
    
 

    
  

 
  

 

 

 
    
  

 
   

     
 

     
   

    
 

    
  

 
 

 

 

(6.13) 

This shows that the stability of the line relative to the square depends on the ratios of the 

bonding and repulsive coordination numbers and the hardness of the potential but not on 

the bonding exponent n.  Using the Lennard-Jones potential reveals that the bond energy 
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of the line is 83 % of that of the square and is therefore a less stable structure, as might be 

guessed intuitively. 

 Now applying the same procedure to model oxygen loss in RuO2, the bonding 

energy can be written as a function of the number of atoms in a unit cell, m; the bonding 

exponent, n; and the hardness, λ.  The bond energy ratio in terms of effective 

coordination numbers follows as 

            

            
 
            

            
 
           

           
 

 
 

 

 

(6.14) 

where six oxygen atoms have been assigned to the central unit cell reflecting the 

octahedral coordination of each ruthenium atom by six oxygen atoms, and m is an integer 

less than 6.  Note that two of the six oxygen atoms are internal to the unit cell and four 

are on opposite cell faces.  The distribution of ruthenium nearest neighbors to the six 

oxygen atoms in terms of the lattice constant a (4.499 Å) is given in Table 6.1.   

  

TABLE 6.1.  Distribution of Ru nearest neighbors to 6 unit-cell oxygen atoms. 

Nearest neighbor 

position 

Number of Ru 

neighbors 

Distance in terms of 

unit cell 

1st 6 0.433a 

2
nd

 12 0.444a 

3
rd

 12 0.759a 

4
th

 12 0.822a 

5
th

 24 0.900a 

6
th

 6 0.982a 

7
th

 24 1.031a 

8
th

 8 1.083a 

 

An interesting property of the rutile structure is that the numbers of the first seven 

nearest neighbors are integer multiples of the six oxygen atoms in the unit cell.  To show 

what this means practically, consider the bond energy ratio for the loss of one oxygen 
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atom in terms of the first two nearest neighbors.  The bonding and repulsive effective 

coordination number ratios reduce to the simple forms 

            

            
  

 
      

 
  

      

 
      

 
  

      

  
 

 
 (6.15) 

           

           
  

 
       

  
      

 
       

  
      

 

 
 

  
 

 
 

 
 
 

 

(6.16) 

because of the factorization allowed in both the numerators and denominators of these 

expressions.  Then up to the seventh nearest neighbor, equation (6.14) reduces to an 

expression that depends only on the hardness of the potential 

              

            
 
 

 
 
 

 
 

 
 
  

 

(6.17) 

The bond energy ratio as a function of the number of oxygen atoms with hardness as a 

parameter is presented in Figure 6.7.  The general trend is a weakening of stability as the 

unit cell becomes less stoichiometric due to oxygen loss.  The pair potential model of this 

study implies that as the hardness of the potential increases (deeper wells), oxygen loss 

becomes more destabilizing to the overall structure.  Of course this may not be true due 

to the assumptions of the model, but the key point is that as RuO2 films lose oxygen, their 

binding energy becomes less negative and they become more prone to transforming back 

to the parent metal, an experimental result that was observed in this study. 
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FIGURE 6.7. Bond energy ratio as a function of the number of oxygen atoms in a unit 

cell of RuO2 with hardness of the potential as a parameter.  Oxygen loss is more 

destabilizing as the hardness increases. 

 

6.5. How a Phase Transformation Might Occur 

 Christian‟s book on the theory of phase transformations states that the second 

question to be considered is how a particular transformation might occur.
6
  

Heterogeneous phase transformations from one chemical composition (RuO2) to another 

(Ru) depend on the presence of defects, strain energy, and surface energy, as well as free 

energy differences between the initial and final structures.  The transformation requires 

the presence of nucleation sites and is governed by solid-state diffusion (chemical 

kinetics).  In defective films with small grain sizes, for example, the grain boundary 

diffusion of oxygen atoms out of a film will be more rapid than that of ruthenium atoms 

due to different atomic sizes, possibly causing an aggregation of ruthenium atoms on 

boundaries and a subsequent phase change driven by binding energy differences from the 

tetragonal structure of RuO2 to the hexagonal-close-packed structure of Ru.  It is difficult 
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to pinpoint the mechanism of transformation, but it is hypothesized that the mechanism is 

related to the presence of defects, including surfaces and film strain as defects. 

 An interesting approach to calculating the formation energies of rutile metal 

oxides is given by Martinez et al.,
10

 where formation energies are broken into two parts.  

The first part is the deformation energy due to stretching of the bulk metal lattice to allow 

entrance of oxygen atoms, and the second part is the bonding energy associated with 

oxygen atoms that have entered.  The deformation energy per atom of the lattice is 

defined as 

             
        

      
    

 

 
(6.18) 

where      
        

 is the energy per metal atom of the rutile structure without oxygen 

atoms and      
    

 energy per metal atom in the pure metal bulk crystal (hcp structure for 

Ru).  The deformation energy per atom of ruthenium is found to be about 3.8 eV;
10

 that 

is, each Ru atom in a tetragonal lattice without oxygen has associated with it an 

additional 3.8 eV above the binding energy of the lattice.  The system is unstable, and 

given an external perturbation, strain energy may be sufficient to drive a phase 

transformation from the tetragonal to the hexagonal-close-packed structure.  

6.6. Hall Coefficient Phase Diagram 

 It is possible to formulate a phase diagram that relates the Hall coefficient at room 

temperature in the low-field condition (ωτ << 1) to the composition of sub-stoichiometric 

RuO2.  Such a diagram is presented in Figure 6.8 where it is shown that the dominant 

charge carrier type must change from electrons in n-type ruthenium dioxide to holes in p-

type ruthenium as oxygen is lost from ruthenium dioxide crystallites. The crossover from 
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n- to p-type behavior is likely to take place in the range from 33.3 to approximately 37 

atomic percent Ru based on x-ray photoelectron spectroscopy measurements of sample 

080827-RuO2 (e-beam evaporation of Ru with ECR oxygen plasma and annealed at 600 

°C for 30 minutes in an ECR oxygen plasma). Ruthenium is a compensated metal where 

the concentration of electrons equals that of holes and is p-type because hole mobility 

exceeds electron mobility.  Ruthenium dioxide is an n-type metal.  If it is also a 

compensated metal like ruthenium, then it is one with electron mobility greater than hole 

mobility.  Note that the Hall coefficient for Ru is unchanged
13

 and that for RuO2 is 

increased
14

 from -11 to -8x10
-5

 cm
3
/C as temperature is lowered from 300  to 77 K. 

 

 

FIGURE 6.8. Hall coefficient phase diagram for the ruthenium-oxygen system at room 

temperature and in the low-field condition. Loss of oxygen results in a change in 

dominant charge carrier type from electrons in stoichiometric RuO2 to holes in pure Ru.  

The lines labeled Justi
12

 and Volkenshteyn
13

 indicate the probable range of the Hall 

coefficient of Ru.  The stoichiometric RuO2 point was taken from Ryden.
14
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A question to ask is what causes the change of dominant charge carrier type from 

electrons to holes as oxygen is lost from RuO2.  A speculative answer to this question is 

that the nucleation and growth of a ruthenium phase forms a two-phase system consisting 

of individual Ru and RuO2 crystallites.  A progressive loss of oxygen would then result in 

a continual growth of the Ru phase at the expense of the RuO2 phase. At some point the 

transport properties of the Ru phase overwhelm the RuO2 phase in the composite film 

with holes becoming the dominant carriers.  According to the phase diagram, the 

changeover to p-type behavior takes place at approximately 35 atomic percent ruthenium.   

One might think that as oxygen is lost in a single-phase RuO2 film, the film would 

gain conduction electrons via the type of defect doping seen in metal-oxide 

semiconductors such as TiO2.  The unbound electrons freed by chemical reduction of the 

oxide should increase the conduction electron concentration in the film, which would 

therefore become more strongly n-type.  However, observations indicate a trend from n-

type to p-type behavior with oxygen loss, as would be shown by a line with a positive 

slope starting at the stoichiometric RuO2 point. There was no evidence of changes from 

n-type behavior to a more negative n-type behavior in any of the films investigated 

except for a single case, which was a RuO2 film grown by normal-incidence sputtering 

and heated for 46 hours in CO (see section 7.10). 

In summary, evidence indicates that progressive oxygen loss from RuO2 films 

deposited by the techniques of this study ultimately results in a two-phase mixture of Ru 

and RuO2 with a subsequent change from n-type to p-type conduction.  It is conjectured 

that the mechanism of oxygen loss is related to point and extended defects, non-

stoichiometric surfaces, and film strains.  It is likely that oxygen loss can be lessened or 
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possibly eliminated by air or oxygen anneals prior to vacuum tests, but this is 

experimentally unproven. 
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Chapter 7 

TRANSPORT EFFECTS CAUSED BY SURFACE REDOX REACTIONS 

 

7.1. Chapter Abstract 

Transport properties of planar and nanorod-structured ruthenium dioxide and 

ruthenium thin films were measured in reducing and oxidizing atmospheres by exposing 

films to CO and O2 at various pressures.  The experiments were performed because, 

although Ru and RuO2 are well studied catalysts supported by a large literature,
1-7

 little if 

any attention has been paid to the effects of reduction-oxidation (redox) reactions on the 

transport properties of these metals.  The key reaction is the oxidation of carbon 

monoxide to carbon dioxide (CO + ½ O2 → CO2) over Ru and RuO2 surfaces.  To the 

best of our knowledge, no one else has measured charge transport properties during these 

reactions and the work that follows is believed to be unique.  Note that the chapter is 

organized as a series of experimental observations followed at the end by interpretation 

of those observations. 

7.2. Background Information 

The main purpose of the work was to investigate the resistivity and Hall 

coefficients of RuO2 polycrystalline films during exposure to CO and O2 gases.    

Another purpose was to determine how the sign of the dominant charge carriers would be 

affected by surface redox reactions. A third purpose, recognized after the experiment 

began, was to investigate the stability of RuO2 films under reducing atmospheres in light 

of observed oxygen loss from the films. 
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Given the large body of work devoted to catalysis on Ru and RuO2 surfaces, it 

might appear that research in this area is largely complete.  Surprisingly, that is not the 

case and there are still open questions that affect the interpretation of results. The 

following quote from Seitsonen and Over
8
 nicely summarizes the state of knowledge in 

2009.
 
“A sustaining but unaccomplished dream of theorists is to be predictive.  To be 

honest, even for the simple CO oxidation reaction this ultimate goal of theory is still out 

of reach.”  The main issue from the viewpoint of catalysis seems to be the so-called 

“pressure gap” with regard to ruthenium.
6-7, 9

  Of the platinum group metals, Ru is the 

least reactive toward CO oxidation under UHV conditions but the most reactive at higher 

pressures (≈ 1 torr) and lower temperatures (≤ 450 K).
9
  Strong arguments have been 

made that the formation of catalytic RuO2 from Ru at high pressures explains the gap,
2
 

but counterarguments state that catalysis in certain pressure-temperature ranges may be 

due to a chemisorbed oxygen phase on ruthenium surface steps.
9-10

 For the temperatures 

(20 - 250°C) and pressures (1 - 5 torr) considered in this study, the chemisorbed-oxygen-

phase hypothesis appears to be more consistent with the results, because after exposure to 

pure CO causing reduction of RuO2 to Ru, followed by exposure to pure O2, the RuO2 

phase was not generally re-established.  That is, it has been found that the oxidation of Ru 

back to RuO2 requires temperatures above 500 K, which was near the upper limit of 

temperatures available in the experimental apparatus.
5
 

As stated above, the primary goal of the experiments performed in this study was 

to see if changes in surface chemistry (including grain boundary surfaces) by catalysis 

would affect transport properties.  As shown by data presented in the remainder of the 

chapter, several significant findings were made: (i) the occurrence of a large resistivity 
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increase in RuO2 films upon first exposure to pure CO at temperatures in the range of 100 

to 200 °C, (ii) the observation of gas-switched resistivity changes in all films subjected to 

long exposures to CO and the subsequent development of resistivity hysteresis loops, and 

(iii) the phase change, erosion, and breakup of films caused by oxygen loss and film 

stress.  The occurrence of gas-switched resistivity hysteresis loops appears to be related 

to pure ruthenium and possibly to a physical breakup of the films and the formation of 

increased surface areas.  Perhaps the most surprising finding is that flat- and nanorod-

structured RuO2 films were unstable in CO over the range of temperatures and pressures 

considered in the experiment.   

7.3. Rationale for Choice of P-T Parameter Space 

The pressures and temperatures used in the experiment were chosen in part to 

match other studies and in part by limitations of the measurement apparatus.  As pointed 

out in Chapter 6, some of the RuO2 films were observed to lose oxygen under high 

vacuum conditions (≈ 10
-5

 torr).  Thus, higher pressures were chosen to maintain RuO2 

phase stability.  The available mass flow controllers were configured for relatively high 

flows, which would quickly drain the small CO gas bottle that was required to fit inside 

the safety enclosure.  Thus, measurements were made in static CO to prevent bottle 

drainage in experiments over several days.  The available platinum heater could not raise 

sample temperatures safely above 250 °C (523 K).  Thus, temperatures were kept below 

250 °C to preserve the heater.  In addition to the stability and equipment constraints, it 

was noted that practical catalysis usually involves higher rather than lower pressures (i.e., 

about 1 atmosphere versus UHV).  The choice of pressures from 1 to 5 torr and 
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temperatures from 20 to 250 °C was well suited to address the pressure gap of ruthenium 

and the parameter spaces examined by other investigators. 

7.4. Sample Matrix 

Three types of films were investigated.  These may be classified by the angle of 

incidence as illustrated in Chapter 3: glancing-angle, confocal, and normal-incidence 

deposition.  GLAD films were emphasized because of the large surface areas available 

with their nanorod-structured morphologies.  Table 7.1 lists the parameters of the films, 

all of which were grown on amorphous fused-quartz substrates. Note that GLAD film 

thicknesses are from the substrate to top of nanorods, since the effective thickness of 

films in the nanorod geometry is difficult to ascertain.
11

 Thicknesses were measured by 

quartz-crystal microbalances, x-ray reflectivity, profilometry, and SEM elevation views. 

TABLE 7.1.  Deposition parameters for samples used in reduction-oxidation gas tests. 

Sample Metal Method Base P Dep P Sub T Power Rtn Time Thk Rate 

   (μtorr) (mtorr) (°C) (W) (rpm) (s) (Å) (Å/s) 

017-10 RuO2 GLAD 0.38 3 RT 100 dc 5 2369 2800 1.2 

019-10 RuO2 GLAD 0.32 3 190 100 dc 5 2036 2300 0.74 

023-10 RuO2 GLAD 0.29 3 460 100 dc 5 2373 2500 1.1 

042-09 Ru GLAD 0.19 3 RT 80 dc 5 1518 790 0.5 

061-10 RuO2 GLAD 0.11 3 RT 100 dc 5 2370 2800 1.2 

064-10 RuO2 Normal 0.18 3 RT 100 dc 0 1420 1500 1.1 

090910-RuO2-1 RuO2 Confocal 1 2.6 16 500 rf 14 420 1360 3.2 

090910-RuO2-2 RuO2 Confocal 1 2.6 16 500 rf 14 420 1360 3.2 

 

Key: 

Base P = base pressure Dep P = deposition pressure 

Sub  T = substrate temperature Rtn = substrate rotation 

dc = direct current rf = radio frequency 

Thk = film thickness RT = room temperature (unheated) 
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7.5. Assumption of a Slab Model 

Before discussing the results, a note of caution is in order due to the physical 

degradation of the films in the reducing CO atmosphere.  Implicit in all resistivity and 

Hall measurements is the assumption of a slab model where the slab is simply connected 

and has a uniform thickness.
12-13

 Holes and thickness variations caused by CO reduction 

developed in the films and, as a result, the underlying assumption of a slab configuration 

is not strictly valid.  This is an issue for the films subjected to longer-term CO exposures 

that were measured in days.  It is perhaps best to regard the resistivity results after 

multiple heat cycles as more indicative of physical changes in the films rather than as 

absolute resistivity measurements.  The physical degradation of the films complicates the 

uncertainty in thickness already inherent in nanorod films due to the lack of a non-slab 

geometry.
11

 

7.6. Stability of RuO2 Films in an Oxidizing Environment 

After deposition, all of the RuO2 films were stored in air at one atmosphere for 

several months to years.  No measureable changes in the room-temperature transport 

properties of the films were observed, and no visible changes to the film compositions or 

morphologies were apparent over this time.  The observed stability of RuO2 in an 

oxidizing environment of room-temperature air is consistent with reports from other 

investigators.
14-15

 However, as will be shown below, even an exposure to a small amount 

of carbon monoxide brings about irreversible changes in the resistivity under certain 

conditions of temperature and pressure.  The irreversibility may have been caused by the 

high defect content in some films due to deposition conditions.  For example, many films 
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were grown at high deposition rates on cold substrates, an approach which guarantees a 

high defect content by limiting the activation energy available for surface diffusion. 

7.7. Film Annealing Prior to Transport Tests 

When certain films grown either by glancing-angle or confocal deposition were 

heated above room temperature the first time in a static CO atmosphere, the resistivity 

underwent a significant increase that was not reproduced in subsequent heat cycles.  A 

confounding factor for the measurement in CO was the frequent initial fall in resistivity 

due to defect annealing, irrespective of the annealing environment.
16-17

  To counter this 

effect, some films were heated in air or oxygen prior to transport tests to allow defect 

annihilation and to separate the annihilation effect from the gas effect.  Furthermore, it 

was noted that the characteristic time scales of the two effects were different.  

Measurements from 20 to 250 °C indicated that the characteristic times of defect 

annealing were hundreds of minutes, whereas those of the CO-induced response at 1-to-5 

torr were tens of minutes. However, a dilute mixture of 96 ppm CO in 28 torr air did 

cause a slower response in resistivity upon heating that occurred on time scales 

comparable to defect annealing as will be shown in the next section. 

7.8. Resistivity Response on First Heating in a Carbon Monoxide Atmosphere 

Figure 7.1 plots resistivity changes in nanorod sample 019-10 during defect 

annealing under exposure to 96 ppm CO in 28 torr air.  (In the following discussion, the 

word “point” refers to laboratory notebook entries.)  Point 17, which shows the effects of 

defect annealing, was reached after approximately 24 hours and point 28 after 

approximately 44 hours.  When the system was held at 247 °C (520 K) in the air-CO 

mixture for 24 hours, resistivity rose by 15 percent from point 28 to point 40.  These data 
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show that prolonged exposure to 3 millitorr CO in 28 torr air increased film resistivity, 

but on a significantly longer time scale than exposure to pure 4 torr CO, as will be 

demonstrated below.  When the film was cooled and reheated in air, resistivity showed a 

linear response with temperature that is characteristic of a metal (points 42 to 46). 

 

FIGURE 7.1. Resistivity as a function of temperature with atmosphere as a parameter for 

RuO2 nanorod sample 019-10.  Heating in a mixture of 28 torr dry air and 3 millitorr CO 

took place over  44 hours (points 4 to 28).  Points 28 to 40 show the rise in resistivity due 

to CO exposure at 520 K over 24 hours.  The sample was then cooled to 293 K and 

heated a second time in 1.5 torr dry air (points 42 to 46). 

 

 For the record, it is noteworthy that sample 019-10 was a 2.54 cm square film. For 

measurements of resistivity, voltage and current pins were not on the outside edge of the 

sample and a correction factor was required.  The factor was determined when the 

transport test series was completed by scribing a circle of the correct van der Pauw 

geometry in the center of the square and then re-measuring the room temperature 

resistivity with the proper geometry.  These resistivity data were then multiplied by the 

resulting correction factor of 1.432. 
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The sample was then cooled again to room temperature and reheated in 1.6 torr 

CO to 101 °C (374 K), which is shown as point 60 in Figure 7.2. At point 60, the pressure 

was raised to 5 torr CO and then the temperature was raised to 153 °C (426 K).  While 

heating, an increase in resistivity was observed as the sample temperature approached 

153 °C (point 61). The resistivity continued to rise and then fell in an exponential 

behavior as can be seen in Figure 7.2 by looking at points 61 to 82; peak resistivity at 

point 65 was about 30 percent higher than that of point 60.  The resistivity increase was 

probably a continuation of the gas-induced process shown by points 28 to 40 in Figure 

7.1, which was incomplete. One possible explanation for the resistivity response is the 

formation and escape of CO2 from film base-layer grain boundaries, which could lead to 

an exponential growth and fall of resistivity by changing grain-boundary electron 

reflection coefficients.  

 

 

FIGURE 7.2.  Resistivity as a function of time for RuO2 nanorod sample 019-10 in pure 

CO.  The pressure was increased from 1.6 to 5 torr at point 60 before the temperature was 

ramped up to 153 °C (426 K). 
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Another  more dramatic example of CO-induced resistivity changes is shown in 

Figure 7.3 where a RuO2 sample with nanorod geometry (017-10) and no initial anneal in 

air or oxygen was heated in 5 torr of pure CO from 50 to 102 °C (323 to 375 K), with the 

result that the resistivity increased by more than a factor of three.  The time between 

measurement of points 2 and 3 was approximately 16 hours.  With continued heating, the 

resistivity fell by roughly a factor of eight over a 24 hour period (points 3 to 7).  Further 

heating led to a minimal change in resistivity (points 7 - 13). 

 

FIGURE 7.3.  Resistivity as a function of temperature for RuO2 nanorod sample 017-10 

heated the first time in carbon monoxide at a pressure of 5 torr.  The film was not pre-

annealed in either air or oxygen. 

 

An additional example of a CO-induced resistivity increase is shown in Figure 7.4 

for a nanorod film grown under identical deposition conditions to sample 017-10, but 

heated first in pure oxygen to 250 °C and held overnight at that temperature.  By 

switching from O2 to CO exposure, the resistivity increased by a factor of two. 
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FIGURE 7.4.  Resistivity as a function of time for RuO2 nanorod sample 061-10 first 

heated in oxygen to 526 K (253 °C) at 3 torr for 18 hours: points 10 and 11 show the end 

of that interval.  When the atmosphere was switched to CO at point 11, resistivity was 

increased by a factor of two over 30 minutes (points 11 - 12).  The sample was identical 

to 017-10. 

 

The responses in Figures 7.2 - 7.4 were irreversible in the sense that additional 

exposures to O2 and CO did not reproduce the exponential rise and fall of resistivity 

regardless of the duration of CO exposure. The irreversibility implies permanent 

structural changes, which is consistent with the results of Gao et al.,
9
 who also observed 

structural changes and found that “under stoichiometric and reducing reaction conditions 

RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase 

between 400 and 600 K.”   

Lest it be thought that the CO-induced response was confined to RuO2 film 

morphologies with large surface areas (i.e., nanorods), Figures 7.5 and 7.6 show that it 

was also possible to get large changes in the resistivity of planar RuO2 films.  Figure 7.5 

shows the resistivity versus temperature during the first heating of a planar RuO2 film in 
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air for 50 hours.  The familiar fall in resistivity due to defect annealing is seen (points 1 

to 10) and is followed by the linear cooling curve that is a characteristic of a metal (points 

12 to 18).  Figure 7.6 shows that the same film undergoes an order-of-magnitude change 

in resistivity when first heated in 4 torr CO, which was the largest change in resistivity 

observed in this study.  It is speculated that the lack of a significant exponential decay in 

resistivity over the 5 hour period after the peak was reached (point 51) is due to CO2 

trapped along grain boundaries of the planar film.  That is, the escape path of CO2 from 

interior grain boundaries to the film surface is longer in planar-structured films than in 

nanorod-structured films. 

 

 

 

FIGURE 7.5.  Resistivity as a function of temperature in air at one atmosphere during the 

first heating of planar RuO2 sample 090910-RuO2-1.  The top curve shows the fall in 

resistivity due to defect annealing and the bottom curve shows the linear behavior 

expected for a metal. 
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FIGURE 7.6.  Resistivity of planar sample 090910-RuO2-1 as a function of time in 4 torr 

CO as temperature is raised from 292 K (19 °C) to 422 K (150 °C) and held constant.  

The temperature reached 422 K after approximately 80 minutes (1.6 °C/min ramp rate). 

 

The resistivity of a pure ruthenium nanorod-structured  film was also changed on 

the first exposure to carbon monoxide as shown in Figure 7.7. The film was heated in O2 

from room temperature to 522 K .  At point 11, the atmosphere was switched from O2 to 

CO with a rise in resistivity over 25 minutes to point 12.  The CO-induced gas response, 

therefore, was not restricted to RuO2 samples, and it may be inferred that the presence of 

ruthenium metal is the common factor.  The steep fall in resistivity between points 19 and 

20 may represent the full release of CO2 from the ultra-thin base-layer grain boundaries 

over a period of about 4 hours.  The fall in resistivity from points 25 to 29 is due to a 

lowering of heater power and a subsequent drop in temperature. 
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FIGURE 7.7.  Resistivity as a function of time for Ru nanorod sample 042-09 in O2 and 

CO environments.  The film was heated in 4 torr O2 from 293 K to 522 K.  The 

atmosphere was then switched to 4 torr CO at point 11. 

 

 A planar RuO2 film grown by conventional normal-incidence dc magnetron 

sputtering with no prior annealing (sample 064-10) did not show a resistivity gas 

response when first heated in carbon monoxide.  This is in contrast to the films 

mentioned above that were grown either by dc glancing-angle or radio-frequency 

confocal magnetron sputtering.  Resistivity versus temperature over a two day period is 

shown in Figure 7.8.  The normal incidence film, however, was severely degraded by 

exposure to carbon monoxide and the resistivity became infinite (point number 28).  

Upon removal from the test fixture, visual inspection of the film showed it to be almost 

completely transparent.  It is interesting to note that despite the optical change, the 

resistivity did not change by more than about 20 percent over the course of the test. 
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FIGURE 7.8. Resistivity as a function of temperature during the first heating in 4 torr CO 

of planar RuO2 film 064-10 grown by normal-incidence magnetron sputtering.  The 

sample was held at room temperature for 21 hours in CO before heating.  Total exposure 

time to CO was 49 hours. 

 

7.9. Switching of Resistivity Caused by Gas Exposure 

 After the RuO2 samples of Table 7.1 had been thermally cycled a number of 

times, it became clear that the magnitude of the resistivity could be switched up or down 

by switching the atmosphere between oxygen and carbon monoxide. Thermal cycles gave 

rise to resistivity hysteresis loops when the atmosphere on a temperature up-ramp 

differed from the atmosphere on a temperature down-ramp.  Examples of the resulting 

hysteresis loops are shown in Figure 7.9, where it is seen that resistivities on the 7
th

 

through 9
th

 heat cycles of nanorod sample 019-10 change as much as 30 percent as a 

function of the atmosphere. 
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FIGURE 7.9.  Resistivity as a function of temperature during up and down heat ramps of 

RuO2 nanorod sample 019-10 in different gas environments.  Exposures were to dry air, 

O2, and CO at 4 torr.  Ramp times varied from about 3 to 20 hours.  Arrows indicate the 

direction of heating or cooling. 

 

Figure 7.10 compares gas-switched hysteresis loops on the fourth thermal cycle 

for two RuO2 nanorod-structured films grown with contrasting substrate temperatures of 

16 and 460 °C.  The lower deposition substrate temperature raised the overall resistivity 

of sample 017-10 relative to sample 023-10 by roughly a factor of four (subject to the 

caveat that the slab model of resistivity may not apply after multiple heat cycles).  Both 

films developed loops, from which it may be inferred that the development of loops is 

independent of substrate temperature.  It appears that films with higher defect contents, in 

this case the film with the 16 °C substrate, yield the largest hysteresis loops. 
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FIGURE 7.10.  Resistivity as a function of temperature during the 4
th

 heating and cooling 

cycles of RuO2 nanorod samples 017-10 and 023-10, which were grown at respective 

substrate temperatures of 16 and 460 °C.  Exposures were to 4 torr O2 and CO.  The time 

between measurement points varied but was roughly one hour. 

 

Figure 7.11 shows two grazing-incidence x-ray diffraction scans of RuO2 sample 

017-10, one immediately after deposition and another after the fourth heat cycle in O2 

and CO atmospheres.  Prior to the fourth cycle, the cumulative exposure to both gases 

was over a period of several days.  It is evident that the film underwent a phase change 

from rutile tetragonal RuO2 to hexagonal-close-packed Ru.  That is, RuO2 was 

completely reduced to Ru upon long exposures to CO at the temperatures and pressures 

applied in this experiment. Based on Figure 7.11, it seems likely that catalysis on the 

surfaces of ruthenium metal is the source of the gas-switched resistivity hysteresis loops. 

This reduction of RuO2 upon CO exposure is an observation that is consistent with the 

findings of Gao.
9
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FIGURE 7.11.  Grazing incidence x-ray diffraction scans of RuO2 nanorod sample 017-

10 before (lower) and after (upper) multiple exposures to 4 torr O2 and 4 torr CO at 

temperatures from 20 to 250 °C over a period of several days.  A phase change from 

RuO2 to Ru is evident. 

 

 

Figure 7.12 shows scanning-electron-microscope (SEM) images of the 

morphological changes in RuO2 sample 017-10 due to the multiple heat cycles with CO 

or O2 exposures.  The nanorod geometry was significantly altered as the film underwent a 

phase change to ruthenium with rods aggregating in clumps with large spaces in between.  

The surface-to-volume ratios of individual crystallites were altered as were the 

morphologies of both free and grain boundary surfaces. 
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FIGURE 7.12. Plan-view SEM micrographs of RuO2 sample 017-10: a) as-deposited and 

b) after multiple exposures to 4 torr O2 and 4 torr CO at temperatures from 20 to 250 °C 

over a period of several days. 

 

A question to ask at this point is whether RuO2 is a necessary starting material for 

gas switching of resistivity.  In answer, Figure 7.13 shows that gas switching is also 

possible when the starting material is pure Ru.  The role that surface oxygen plays in the 

resistivity hysteresis loops is unclear, but the presence of Ru appears to be necessary. 

 

FIGURE 7.13.  Resistivity versus temperature for the 3
rd

 heat cycle of Ru nanorod 

sample 042-09 in 3 torr O2 and CO.  This shows that the resistivity of a Ru film can be 

switched. 
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 A further question concerning the observed resistivity switching is whether the 

increased surface area of a nanorod-structured film is necessary or whether the effect can 

occur on planar films.  In answer to this question, the planar RuO2 film shown in Figure 

7.6 was thermally cycled while switching atmospheres between O2 and CO.  It was found 

that the planar film also yielded a resistivity loop as seen in Figure 7.14.   

 

FIGURE 7.14.  Resistivity as a function of temperature showing that gas changes can 

switch the resistivity of a RuO2 planar film (090910-RuO2-1).  The film morphology was 

severely altered by exposure to CO.  Parts of the 4
th

 and 5
th

 heat cycles are shown, 

starting at point 100. 

 

Immediately after the data were taken, it appeared that the presence of nanorods 

was unnecessary for switching.  Later, however, when the film was inspected, it was 

found to have been severely eroded as shown in Figure 7.15.  This erosion can be seen in 

Figure 7.16 as a breakup of the film, probably into separate Ru and RuO2 regions.  The 

transformation of the film may have increased the overall surface area, so the question of 

whether a large free-surface area is necessary for gas switching is difficult to answer. 

360 380 400 420 440 460 480 500 520

3400

3600

3800

4000

4200

4400

4600

4800

 

 

R
e

s
is

ti
v
it
y
 (



 c
m

)

Temperature (K)

 4 torr CO

 4 torr O
2

100

102

105

107

111

109

104



120 

 

 

FIGURE 7.15. Optical microscope images of RuO2 planar film 090910-RuO2-1 after six 

thermal cycles in 4 torr O2 and CO atmospheres.  Severe erosion of the film by reaction 

to CO is evident.  Magnification was not noted when the images were taken. 

 

 

 

 

 

FIGURE 7.16.  SEM images of the RuO2 planar film shown in Figure 7.15. 

 

9 o’clock 3 o’clock

Half moon 6 o’clock

12 o’clock

Center

12

3

6

9

Start After gas tests

Center is transparent,
yet conducts

17 mm



121 

 

7.10. Film Breakup Due to Thermal Cycling and Gas Switching 

 Gas tests eroded the film shown in Figure 7.15 to the point where it was nearly 

transparent in certain spots.  This again raises the issue of the validity of the slab model 

and of the overall van der Pauw measurements, since they are predicated on the use of a 

structure with a uniform thickness and without holes.  The measured resistivities are 

therefore likely to be in error, possibly by an order of magnitude or more.  However, in 

spite of the physical breakdown of the film shown, it was still an electrical conductor 

with a finite resistivity that could be changed in magnitude by roughly 5 to 10 percent by 

changing from an oxidizing to a reducing gas. 

 The oxygen loss from RuO2 films during reducing gas tests differed from that 

during vacuum tests in one important way.  During vacuum tests there was no CO in the 

chamber and  the RuO2 films changed from dark blue into shiny, nearly silver-gray Ru 

metal films that showed no physical breakup or erosion.  In contrast, the oxygen losses 

during O2/CO reductions were linked to physical breakup of the films.  It is inferred that 

exposure to reducing CO at pressures on the order of one torr is the cause of the breakup. 

7.11. Effect of Gas Switching on Hall Coefficient 

 Planar sample 090910-RuO2-2 was grown under the same deposition conditions 

as planar sample 090910-RuO2-1.  It was then annealed in high vacuum (10
-6

 torr) for 

one hour at 500 °C.  A subsequent XRD scan (Figure 7.17) revealed loss of oxygen 

during the vacuum anneal as discussed in Chapter 6. 
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FIGURE 7.17. Grazing-incidence x-ray diffraction scans from planar sample 090910-

RuO2-2 in three conditions: as deposited, after a vacuum anneal at 500 °C for 1 hour, and 

after O2/CO gas switching thermal cycles. 

 

Gas tests on sample 090910-RuO2-2 started in a 4 torr oxygen atmosphere as 

shown in Figure 7.18. When the film was heated to 530 K during the first transport test, 

the resistivity showed the linear increase with temperature that is characteristic of a 

metal.  This was expected from the long anneal at 500 °C.  When the atmosphere was 

switched to 4 torr CO at 250 °C (523 K), there was a pronounced gas response whereby 

the resistivity increased by about 40 percent over the course of approximately 20 minutes 

(point 8 to point 9).  The total time of exposure to carbon monoxide (points 8 to 13) was 

approximately one hour. When the gas was switched back to oxygen (point 13) and the 

temperature lowered back to room temperature (point 25), the resistivity again showed a 

linear behavior, albeit one at a higher overall magnitude (≈ 10 % increase at 300 K). 
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FIGURE 7.18. Resistivity as a function of temperature with atmosphere as a parameter 

for the first transport test of RuO2 planar sample 090910-RuO2-2, which was annealed at 

500 °C for 1 hour in high vacuum prior to heating in O2.  The film shows the linear 

behavior characteristic of a metal and a large increase in resistivity upon a first exposure 

to CO. 

 

 High quality Hall coefficient measurements were obtained on sample 090910-

RuO2-2 during the first transport-test heat cycle.  It is conjectured that minimal film 

degradation occurred during the relatively short exposure to CO (1 hour) thus enabling 

the low-noise measurements.  Note that most other Hall measurements of films during 

thermally-cycled gas tests showed high scatter and were unreliable, probably due to film 

degradation from long exposures to CO.  A plot of the Hall coefficient as a function of 

temperature is shown in Figure 7.19.  The magnitude and uncertainty of the key 

measurement point, which is designated H2 and shows a sign change from H1, is given 

as -1.2 ± 0.5 cm
3
/C.  The uncertainties of two other points, H1 and H3, are shown for 

comparison. 
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FIGURE 7.19. Hall coefficient as a function of temperature with atmosphere as a 

parameter for sample 090910-RuO2-2. In going from H1 to H2, the dominant carriers 

changed from holes to electrons.  Uncertainties in points H1 - H3 are shown below their 

labels. 

 

 Following the vacuum anneal at 500 °C, the film was expected to be p-type at 

room temperature due to the presence of a ruthenium phase and this is borne out in Figure 

7.19 (point H1).  When the film was heated in 4 torr O2 to 250 °C (523 K), the Hall 

coefficient changed to n-type with electrons as dominant carriers (point H2).  Switching 

to 4 torr CO changed the dominant carriers back to p-type and significantly increased the 

magnitude of the Hall coefficient (point H3).  Switching back to 4 torr O2 at the same 

temperature then caused an even higher Hall coefficient (point H6), which could be due 

to data scatter.  Cooling back to room temperature in O2, followed by evacuation to 10
-5

 

torr vacuum, resulted in the final value (point H7) of approximately +11 x 10
-5

 cm
3
/C, 

which is not far from the Hall coefficient of bulk ruthenium metal (nominally +22 x 10
-5

 

cm
3
/C, see Chapter 4). 
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With regard to the experimental procedure, it needs to be pointed out that 

changing gases created problems for the temperature controller due to changes in the 

gas/vacuum heat transfer coefficients. The film temperature therefore varied around the 

250 °C set point by roughly ± 35 °C before equilibrium was re-established.  This 

temperature deviation is believed to have had little impact on the outcome of the Hall 

measurements, since the total temperature excursion lasted no longer than about 15 

minutes. 

 In Figure 7.20, the Hall coefficients at points H1, H2 and H7 in Figure 7.19 are 

plotted on the RuO2 phase diagram discussed in Chapter 6 (Figure 6.8) under the 

assumption that a room-temperature phase diagram will be roughly similar to one at 523 

K.  The validity of the assumption may be questionable.  It is true that the Hall coefficient 

of ruthenium is not strongly dependent on temperature as shown in Chapter 4, so the Ru-

rich side of the phase diagram may apply at higher temperatures.  However, according to 

Ryden et al.,
18

 the Hall coefficient of RuO2 at 77 K is about 75 % of that at 300 K, so the 

Hall coefficient of RuO2 does show a small temperature dependence.  Thus, the RuO2 

side of the phase diagram may not apply at 523 K (also compare points H6 and H7 in 

Figure 7.18).  

The transition from p-type to n-type behavior due to heating in O2 is shown by 

points H1 and H2 in Figure 7.20.  When the atmosphere was switched to CO at 250 °C, 

the dominant charge carriers changed from electrons back to holes.  Changing from CO 

back to O2 did not reverse the sign of the Hall coefficient.  Finally, cooling to room 

temperature in O2 lowered the Hall coefficient by about 30 percent, and the final 

measurement in vacuum is shown by point H7, which is placed at two possible extremes 



126 

 

in Figure 7.20. That is, uncertainty in the Hall coefficient of pure ruthenium, as explained 

in Chapter 4, implies that point H7 could lie on or between the lines labeled Justi or 

Volkenshteyn.  Although the uncertainty is rather large, the key point is that the Hall 

coefficient can be changed from p-type to n-type by heating in O2 and then returned from 

n-type to p-type by heating in CO. 

 

FIGURE 7.20. Room-temperature Hall coefficient phase diagram showing measurement 

points from sample 090910-RuO2-2.  Uncertainty in the Hall coefficient of pure 

ruthenium leads to uncertainty in the position of point H7, which could lie on or between 

the two positions shown. 

 

 Hall measurements as a function of temperature were also obtained on sample 

064-10 and are plotted in Figure 7.21. This film was a planar RuO2 sample grown by 

normal-incidence sputter deposition without substrate rotation.  The resistivity as a 

function of temperature for this sample was shown in Figure 7.8 where no gas response 
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was evident.  As stated above, after approximately 2 days of heating in CO at 4 torr, the 

film appearance was nearly transparent and the morphology resembled that shown in 

Figure 7.15.  Interestingly, exposure to CO for 46 hours lowered the Hall coefficient of 

the film, which seems to contradict the results for planar sample 090910-RuO2-2. 

Referring back to Table 7.1, it is seen that both of these films were grown on 

room temperature substrates and hence had high defect contents.  However, two major 

differences were that: (i) sample 064-10 was grown at normal incidence with no substrate 

rotation, while 090910-RuO2-2 was grown at off-normal incidence with substrate 

rotation, and (ii) sample 064-10 had no post-deposition anneal, while sample 90910-

RuO2-2 underwent a 500 °C vacuum anneal for 1 hour.  To summarize, sample 064-10 

was a single-phase RuO2 film that did not show a resistivity gas response and did not 

show a change in the sign of the Hall coefficient, which started out as n-type and 

apparently stayed n-type when exposed to CO for 46 hours.  On the other hand, sample 

090910-RuO2-2 was a two-phase mixture of RuO2 and Ru that did show a resistivity gas 

response and did show a change in the sign of the Hall coefficient, going from p-type to 

n-type when heated in O2 and then reverting back to p-type when heated in CO.  It is 

speculated that the presence of a Ru phase in sample 090910-RuO2-2 and the lack of a 

Ru phase in sample 064-10 prior to CO exposure may explain the contradiction in 

behavior, but the nature of the physical mechanism for the observed results is unclear.  

With the sole exception of sample 064-10, the Hall coefficients of all samples became 

progressively more p-type as oxygen was lost from the films as reflected in the Hall 

coefficient phase diagram of Figure 6.8.  Note also that both of these films were badly 

eroded by CO exposure.   
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FIGURE 7.21.  Hall coefficient as a function of temperature for RuO2 planar sample 064-

10 when exposed to 4 torr CO for 46 hours.  No change in the sign of the Hall coefficient 

was observed.  Measurement uncertainties were: H-1 (±0.15x10
-5

 cm
3
/C), H-4 (±0.3x10

-5
 

cm
3
/C), and H-7 (±0.03 x10

-5
 cm

3
/C). 

 

7.12. Oxygen Loss in a Reducing Environment 

 Perhaps the most significant result of the transport tests in O2 and CO was the 

instability and subsequent phase change from RuO2 to Ru due to exposure to a reducing 

CO atmosphere.  The stripping of oxygen from RuO2 surfaces by catalysis of CO into 

CO2 was expected since previous work had demonstrated experimentally that CO will 

remove oxygen from a RuO2 surface.
2
  Furthermore, Gao et al.

9
 have demonstrated that a 

RuO2 surface exposed to a mixture of O2 and CO can be reduced to a Ru surface covered 

by a chemisorbed oxygen phase.  The exposure to a reducing gas may create a roughened 

Ru surface with a high density of reactive sites for CO2 catalysis.  According to 

Sljivancanin and Hammer,
10

 these reactive sites are likely at ruthenium step edges. 
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To the best of our knowledge, what has not been demonstrated is the loss of 

interior oxygen and the full reduction of a RuO2 film to a Ru film due to exposure to CO. 

Hiratani et al.
19

 observed the reduction and loss of volume of a RuO2 electrode to Ru 

metal at 200 °C in 0.3 % H2 and at 300 °C in 0.03 % H2, but no similar studies pertinent 

to CO are believed to exist. The loss of interior oxygen most likely starts with the loss of 

oxygen on free and grain boundary surfaces. Oxygen removal then results in ruthenium-

rich areas that can act as nucleation points for further growth of pure Ru grains under 

favorable conditions.  That is, continuous oxygen diffusion to the surface depletes oxygen 

throughout the film leading to pure Ru.  For example, it has been shown that after  a 10 

Langmuir CO exposure, a carbon-monoxide-covered RuO2 (110) surface is formed, 

which when heated briefly to 600 K (327 °C) will desorb both CO and CO2.
2
  Some of 

the oxygen is believed to come from the subsurface lattice, leaving ruthenium-rich areas 

behind.  A reproduction of a figure from Over et al.
2
 is shown in Figure 7.22 where the 

bright protrusions are thought to be clusters of Ru atoms. These clusters are consistent 

with the nucleation points needed to produce a phase change from RuO2 to pure Ru. 
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FIGURE 7.22. Scanning-tunneling microscope image of a CO-covered RuO2 (110) 

surface after annealing to 600 K.  The removal of CO molecules creates both dark holes 

1.5 Å to 3.0 Å deep and bright spots thought to be clusters of Ru atoms.  The Ru clusters 

are potential nucleation sites for a phase change from RuO2 to Ru.  (Reproduction of Fig. 

4B, reference 2) 

 

7.13. Interpretation of Transport Measurement Results 

In thin films, imperfections comprise point and extended defects such as 

vacancies, interstitials, dislocations, strain, free surfaces, and grain-boundary surfaces.  

These structural imperfections raise resistivity above what can be accounted for by lattice 

vibration alone (phonons).  On short time scales, redox reactions in RuO2 and Ru thin 

films change the defect densities and associated morphology (topography) of free and 

grain boundary surfaces.  On longer time scales, surface, boundary, or lattice diffusion 

can introduce imperfections and nanostructural changes in the bulk lattice, roughen 

surfaces, and change the ratio of free-to-grain-boundary surface areas.  In a reducing 

atmosphere such as CO, diffusion can ultimately lead to film breakup and erosion as has 

been demonstrated. 
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A phenomenon that makes interpretation of resistivity changes during CO/O2 

reactions difficult is the inversion of resistivities seen on first exposure to CO relative to 

those seen after multiple exposures and thermal cycles.  For example, when films were 

first heated in O2 and then switched to CO at a fixed temperature, the resistivity 

increased.  After multiple heat cycles, however, the opposite was true - the resistivity in 

O2 was higher than that in CO.  This behavior was observed in both RuO2 and Ru films: 

see, for example, Figures 7.7 and 7.13 for Ru nanorod sample 042-09.  It is believed that 

the change of resistivities from CO-high/O2-low to CO-low/O2-high is related to long-

term heating and exposure to CO, which can alter: (i) grain size and therefore the ratio of 

free to grain-boundary surface areas and (ii) surface roughness. 

7.13.1. Surface versus Bulk Diffusion 

 The diffusion rate of atoms along metal surfaces is many orders of magnitude 

greater than bulk diffusion as seen in Figure 7.23.  Ruthenium melts at roughly 2600 K. 

At 1300 K, where Tm/T = 2, Figure 7.23 indicates that the free-surface diffusivity, Ds, is 

nearly 10
9
 times the bulk diffusivity D; the grain-boundary diffusivity, Dgb, is nearly 10

8
 

times D.  Since temperatures in the experiment were roughly 500 K (Tm/T ≈ 5), it is 

concluded that on time scales measured in tens of minutes, diffusion along surfaces was 

vastly faster than through the bulk and was responsible for changes in transport properties 

such as the CO-induced resistivity peak.  On longer time scales, measured in tens of 

hours, oxygen loss and the subsequent phase change from RuO2 to Ru are evidence that 

all diffusion mechanisms played a role. 
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FIGURE 7.23. Schematic illustration of the trend in diffusion rates in generic metals in a 

reduced temperature scale; Tm denotes the melting temperature. Diffusion coefficients 

(diffusivity) are D for bulk, Dd for dislocation pipeline, Dgb for grain boundary, and Ds 

for free surface. (Reproduction of Fig. 31.2, reference 20) 

 

 According to measurements by Deckert et al.,
21

 the surface diffusivity of CO on 

Ru(001) at 290 K is 1 x 10
-8

 cm
2
/s for a surface coverage of 0.33 ML and increases up to 

1 x 10
-6

 cm
2
/s for a surface coverage of 0.58 ML.  Using Figure 7.23 to estimate grain-

boundary diffusivity by extrapolation, with Tm/T equal to 5, yields an approximate value 

of  Dgb ≈ 10
-12

 cm
2
/s for the 0.33 ML coverage, which might very roughly approximate 

grain boundary coverage.  It seems likely that the grain-boundary diffusivity of CO2 

would be less than or equal to this value because it is a larger linear molecule than CO 

and should therefore diffuse more slowly along boundaries. 

The hypothesized diffusion of CO2 out of the base-layer grain boundaries of RuO2 

nanorod sample 019-10 in Figure 7.2 allows an estimate of the diffusivity based on the 

exponential decay of resistivity versus time.  That is, the diffusion coefficient may be 
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written in terms of an estimated grain-boundary length and a characteristic decay time 

        . Taking the base-layer grain-boundary length as roughly twice the base-layer 

height, or about 20 nm, and the characteristic decay time as roughly 70 minutes to fall to 

37 % of the peak value of resistivity in Figure 7.2, yields an estimated grain-boundary 

diffusivity of      10
-15

 cm
2
/s.  This result may be compared to measurements of 

diffusion of inert gases in polycrystalline copper by Rickers and Sorensen.
22

 They 

measured the diffusivity of Kr in copper at 450 °C to be 2 x 10
-15

 cm
2
/s.  Based on the Kr 

diffusivity and the extrapolation for CO at 500 K given above, 10
-15

 cm
2
/s is a plausible 

order-of-magnitude estimate for grain-boundary diffusivity of CO2 in RuO2 and Ru films. 

7.13.2. Resistivity Based on Surface Scattering Effects 

It is hypothesized that the changes in resistivity, whether due to a first exposure to 

CO or to repeated CO/O2 redox reactions, were caused by changes in surface morphology 

that altered the scattering mechanism of conduction electrons similar to the findings of 

Watanabe and Hiratuka,
23

 although changes in the overall charge concentration may have 

played some role if surface-to-volume ratios were high.  To quantify the morphology 

effect, Sun et al.
24

 show how the intrinsic resistivity, which is given by Matthiessen‟s rule 

as a sum of phonon and bulk defect contributions, can be altered by a multiplicative 

factor that incorporates the following surface parameters: (i) grain-boundary reflection 

coefficients,
25

 (ii) specular scattering coefficients,
26-27

 and (iii) roughness.
28

 

Generally, at temperatures well above the cryogenic range, electron scattering at 

the grain boundaries of a thin polycrystalline film is the primary cause of increased 

resistivity above that of a thin single-crystal film.  However, free surface scattering may 

have played a role in the films investigated in this study due to morphology changes 
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induced by long-term CO exposure. An expression for resistivity that incorporates the 

surface parameters is given by 

                 (7.1) 

where the film resistivity ρ equals the intrinsic bulk resistivity of a single crystal, ρo, 

modified by three coefficients related to surfaces.   A key assumption in this expression is 

that free-surface and grain-boundary scattering are non-interacting.
24

  

The grain boundary factor fgb, posed by Mayadas and Shatzkes,
25

 is 

       
 

 
              

 

 
  

  

 (7.2) 

with the scattering parameter α given by 

   
  
 
  

 

   
  (7.3) 

where lo is the electron mean free path, d is the average distance between grain 

boundaries, and R is the surface reflection coefficient, i.e., the fraction of electrons that 

bounce back from the boundary (0 < R < 1).  For a single crystal with no grain 

boundaries, the value of d becomes infinite making α zero and fgb equal to one.  It is 

noteworthy that for the long heat cycles in the RuO2 experiments, grain growth would 

cause increases in d and possibly also change lo due to point defect annealing. 

The free surface factor ffs, determined by Fuchs and Sondheimer,
26-27

 is 

    
 

  
      (7.4) 

under the assumption that κ >> 1, where        is the ratio of the grain height, h, to the 

electron mean free path, lo, and p is the specular scattering coefficient.  The assumption 

made here of a large κ is open to question, but for highly defective films the electron 
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mean free path might be on the order of one tenth of a grain diameter.  Note that in the 

Fuchs-Sondheimer model, h is the thickness of a single-crystal film.  

Finally, the surface roughness factor fr, determined by Rossnagel and Kuan,
28

 is 

         
 

   
  (7.5) 

where r is the root-mean-square (rms) roughness of the surface and nRK is a factor that 

incorporates film thickness and Fermi wavelength and is determined by Monte Carlo 

calculations of electron trajectories.
24

 As stated above, it is hypothesized that changes in 

the parameters R, p, and r are primarily responsible for the changes in resistivity brought 

about by surface redox reactions. 

7.13.3. Surface Morphology and Electron Scattering 

 Consider a Ru nanorod-structured thin film such as sample 042-09.  Surface 

morphology of this film was changed by gas exposure in two ways on different time 

scales.  The CO/O2 redox reactions changed the nature of the chemisorbed layers on free 

and grain-boundary surfaces over short time scales (tens of minutes).  On longer time 

scales (tens of hours) including thermal cycles, it is believed that the CO/O2 redox 

reactions roughened the Ru film surfaces as well as increased grain size.  Figure 7.24 

shows a ball-and-stick model of an O atom and also CO and CO2 molecules adsorbed to 

ruthenium at a surface.  The topological configurations represent different potential 

energy barriers and hence different boundary conditions for electron reflection.  In terms 

of surface parameters for a given roughness, the grain-boundary reflectivities of the three 

configurations would be unequal (   ≠     ≠     ) and the free-surface specular 

scattering coefficients would also be unequal (   ≠     ≠      ). 
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FIGURE 7.24. Ball-and-stick model showing O, CO, and CO2 bonded to Ru surface 

atoms forming different boundary conditions for electron reflection.
8
  Note that the O2 

molecule is separated into individual oxygen atoms on the surface. 

 

Electron scattering will change according to which gases are present on the 

surfaces.  Carbon dioxide, as a product of catalysis, has a small residence time and 

quickly desorbs from a ruthenium surface while chemisorbed oxygen and carbon 

monoxide are stable. It is interesting to note that the ranking of the gases in terms of 

molecular size is CO2 > O2 > CO, from which it may be inferred that CO would diffuse 

fastest along grain boundaries and free surfaces and CO2 would diffuse slowest. 

Atomic-scale roughness on a Ru(0001) surface is illustrated in Figure 7.25 

reproduced from Sljivancanin and Hammer.
10

  The two types of monatomic steps of 

ruthenium atoms labeled I and II are sites of CO oxidation to CO2 and represent different 

boundary conditions for electron scattering as captured by the specularity coefficient p 

and roughness parameter r.  
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FIGURE 7.25. Ru(0001) surface shown in elevation (top) and plan (bottom) views.  Two 

types of monatomic steps, marked I and II, are sites of catalysis.  (Reproduction of Figure 

1, reference 10) 

 

 It is also possible that exposure of RuO2 surfaces to pure O2 may have formed a 

surface carbonate.  For example, Rossler et al.
29

 found evidence that exposure of a 

RuO2(110) surface to 152 torr O2 at room temperature gave rise to a strongly bound 

carbonate.  When the O2 gas was removed, the carbonate was found to be stable at room 

temperature in a pure CO atmosphere of 16 torr.  If stable at higher temperatures, a 

carbonate would obviously yield a surface morphology different than the model 

presented here for O2, CO, and CO2.  It is worth noting that Over et al.
5
 claim to have 

never observed a carbonate in CO oxidation over RuO2(110) in pressures up to 76 mtorr 

and temperatures up to 600 K.   

7.13.4. Resistivity Increase on First Exposure to Carbon Monoxide 

 Typically, first exposures to CO took place after relatively short periods of 

heating, thereby limiting any grain growth due to annealing.  To interpret the rise in 

resistivity observed for a Ru film, consider the 10 percent resistivity increase seen for the 
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nanorod-structured film of Figure 7.7 due to switching of gases from 4 torr O2 to 4 torr 

CO at 522 K.  Catalysis of CO to CO2 at Ru step edges, like those shown in Figure 7.25, 

may have removed oxygen from free and grain-boundary surfaces, which subsequently 

became covered by chemisorbed CO2 and CO.  Due to the speed of the resistivity rise, 

which is on the order of tens of minutes, it is hypothesized that changes in the reflection 

coefficient at grain-boundary surfaces and the scattering parameter at free surfaces are the 

major sources of the resistivity increase.  Although this particular film had a nanorod 

geometry with a large free surface area, it is further assumed that grain-boundary 

reflections were dominant because: (i) the temperature was 522 K (not cryogenic), (ii) 

smaller grain sizes mean larger ratios of grain-boundary to free surface areas, and (iii) the 

distance between grain boundaries, d, was relatively smaller due to the smaller grain 

sizes.  In terms of the electron reflection coefficient, the argument is that CO2 and CO on 

grain boundaries scatter electrons more effectively than O on grain boundaries for fixed 

surface roughness (           ).  After the exponential rise in resistivity, it is 

speculated that the slower exponential fall in resistivity may have been due to the 

desorption and slow diffusion of CO2 from grain boundaries.  Alternatively, the slow fall 

in resistivity may have been due to desorption of CO2 from free surfaces. 

7.13.5. Resistivity Hysteresis Loops during CO/O2 Redox Reactions 

 Still focusing on a Ru film, resistivity hysteresis loops occurred after thermal 

cycling in CO and O2. Multiple cycles resulted in lower resistivities in CO than in O2 

(e.g., see Figure 7.13).  Heat cycles on the order of days allowed for grain growth, 

thereby increasing the grain-size parameter d.  It is conjectured that surface roughness 

was also increased by long exposures to CO.
9
 An increase in roughness would mean that 
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the specularity coefficient would get smaller and that the rms roughness parameter would 

increase.  Assuming that the reflection coefficients at grain boundaries maintain the same 

relationship as above (i.e.,     >   ), one interpretation for gas-switched resistivity 

changes is that electron scattering from the free surfaces is greater than that from grain 

boundary surfaces with the specularity coefficients having the form    >     and the 

roughness parameters having the form    >    .  This is saying that the parameters ffs and 

fr become the governing factors in equation 7.1. A second possible interpretation is that 

the grain-boundary surfaces are still dominant in terms of electron scattering, but surface 

roughening somehow leads to a switch in the strength of the grain-boundary reflection 

coefficients causing    >    . Whichever model, if either, applies to the observations 

could not be answered by the experiments. A third model of the resistivity hysteresis 

loops is based on redox as will be explained below. 

7.13.6. Carrier Concentration Changes from Redox Reactions 

 The arguments given above have focused on changes in surface parameters that 

alter electron scattering and hence resistivity.  No mention has yet been made of 

alterations in carrier concentrations due to exposure to reducing or oxidizing gases.  

Specifically, the oxidization of CO to CO2 will liberate two electrons and thereby reduce 

the surface (CO + O
2-

 → CO2 + 2e
-
).

30
 It would be expected, therefore, that as 

chemisorbed oxygen is removed from ruthenium surfaces by CO,  resistivity would drop 

according to the model for two-carrier conduction, 

                
   (7.6) 

because the electron concentration, ne, in individual crystallites would increase.  (Here e 

is the charge on the electron, ne and nh the electron and hole concentrations, and μe and μh 
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the electron and hole mobilities).  Given enough surface area, modulations in charge 

carrier concentrations accompanying the redox chemistry can, in principle, explain the 

resistivity hysteresis loops (lower resistivity in CO; higher in O2). 

The weakness of the argument is that surfaces have about 10
15

 atoms per square 

centimeter.
31

 A 1 cm
2
 planar film with a 100 nm thickness would therefore release 

roughly 10
15 

extra electrons.  This must be compared to a bulk concentration of roughly 

10
17

 electrons based on a film volume of 10
-5

 cm
3
 and a metal bulk carrier concentration 

of 10
22

 carriers/cm
3
.  That is, the resistivity change in a planar film should be of the order 

of 1 percent.  Given that a nanorod-structured film has roughly ten times the surface area 

of a planar film, the resistivity change would be in the 10 percent range.  Thus, it seems 

to be theoretically possible that the hysteresis loops of the nanorod films can be explained 

by charge carrier generation due to redox alone. However, it seems likely that surfaces 

played a role by increasing electron scattering and hence resistivity, because hysteresis 

loops were also observed in planar films with lower surface areas. 

In contrast to the hysteresis loops, the initial irreversible resistivity response seen 

in some films (see Figures 7.4 and 7.7), cannot be explained by redox charge generation 

because the resistivity in CO was higher than that in O2.  That is, liberating additional 

conduction electrons by surface oxygen removal cannot raise resistivity.  As mentioned 

above, the irreversible resistivity response may be explained by the release of CO2 from 

grain boundaries and possibly surfaces, which is a dynamic process that would change 

the electron scattering coefficients as a function of time. 
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7.13.7. Hall Coefficient Sign Changes 

 Sample 090910-RuO2-2 was subjected to a vacuum anneal for one hour at 500 °C 

prior to transport tests.  As evidenced by the x-ray diffraction data in Figure 7.17, 

annealing caused a structural change resulting in a two-phase system of RuO2 and Ru.  

The Ru phase likely consisted of islands, primarily on surfaces, as shown in Figure 7.22.  

It is conjectured that these islands, when exposed to O2 at 523 K for roughly 12 hours,  

reverted either fully or partly back to RuO2 and changed the mix of the two-phase system 

back to one where RuO2 was the controlling phase as shown by point H2 in Figure 7.20.  

(Note that temperatures above 500 K allow RuO2 formation.
5
)  Subsequent exposure to 

CO reduced the islands back to Ru, and furthermore, continued the reduction of the 

remaining RuO2 film. 

 The tie line between points labeled RuO1.72 and RuO2 in Figure 7.20 allows for a 

very rough estimate of the oxygen gained by the film during its 12 hour anneal in O2.  

The tie line has been magnified in Figure 7.26, where it is seen that the atomic oxygen 

level increased from approximately 64 to 65 %, about a one percent increase. 
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FIGURE 7.26. Hall coefficient phase diagram used to estimate the increase in atomic 

oxygen in sample 090910-RuO2-2 due to O2 exposure at 523 K. 

 

 The increase in atomic oxygen was sufficient to change the dominant charge 

carrier type from holes to electrons (points H1 to H2).  A possible explanation for the 

dominant carrier change is simply the alteration in the makeup of the two-phase mixture 

of RuO2 and Ru, so that more of the electron-dominant RuO2 was present.  The dominant 

carrier in a two-phase system like the one considered here may be governed by a rule of 

mixtures of some type.  Another possibility is that oxygen changes in sub-stoichiometric 

RuO2 influence the curvature of the Fermi surfaces in such a way that the effective mass 

of electrons becomes less than that of holes. 

7.14. Chapter Summary 

 For either RuO2 or Ru thin films grown under the conditions outlined in Table 

7.1, charge transport experiments have demonstrated that a first exposure to CO can yield 
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a significant increase in thin-film resistivity that appears to follow an exponential 

behavior in time.  Follow-on heat cycles with gas switching between CO and O2 were 

shown to give rise to resistivity hysteresis loops that are driven by catalytic reactions on 

Ru surfaces.  Changes in resistivity may be explained by changes in surface reflection 

and scattering coefficients, although changes in charge concentration may also play a 

role.  It was shown that chemisorbed O2 and CO can change the sign of the Hall 

coefficient and hence switch the dominant carriers from electrons to holes and vice-versa.  

In the range of temperatures and pressures considered, it was found that polycrystalline 

RuO2 films are unstable under long term exposure to CO and can undergo a phase change 

to Ru. 
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Chapter 8 

CONCLUSIONS 

 

 The resistivities and Hall coefficients of ruthenium and ruthenium dioxide thin 

films having a variety of structures and morphologies have been measured in specific 

ranges of temperature, pressure, and gas atmosphere. Findings are summarized below 

along with recommendations for future work. 

8.1. Summary 

 In Chapter 4, the Hall coefficient data for Ru obtained from flat and nanorod-

structured films were found to match literature values for bulk samples when an effective 

thickness correction was made for films with nanorod geometry. The Hall coefficient was 

shown to be nearly independent of temperature over the range tested in accordance with 

most metals.  Non-impurity defects were inferred to have no significant effect on the Hall 

coefficients at temperatures from 300 to 600 K.  It should be noted that the work 

presented here constitutes the first published Hall measurements of Ru thin films.  A 

decrease in resistivity upon first heating was found to be caused by defect annealing. In 

addition to defect content, uncertainty in thickness with non-slab geometries was shown 

to have a major influence on the calculation of resistivity from measured film resistance.  

If the spacing between adjacent nanorods is large enough, the height of an ultra-thin 

polycrystalline layer at the film-substrate interface was inferred to be the dominant factor 

in the determination of resistivity using a slab model of resistance for nanorod-structured 

metallic thin films. 
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 In Chapter 5, the resistivity and temperature-coefficient-of-resistance (TCR) of 

RuO2 thin films were shown to be strongly dependent on film defect density, whereas the 

Hall coefficient was found to be less sensitive to defect structure. A decrease in resistivity 

upon first heating was concluded to be due to defect annealing as was the case with Ru 

thin films.  The TCR of polycrystalline films of RuO2 was measured to be extremely 

small, having a value similar to other low-TCR materials such as nichrome.  Mixed 

electron-hole conduction was found to take place in RuO2, and it was conjectured that 

electron and hole concentrations are nearly equal, and that RuO2 is likely to be a 

compensated metal.  It was concluded that changes in film structure and strain can lead to 

changes from n-type to p-type conduction. 

 In Chapter 6, certain RuO2 films were observed to lose oxygen and to be unstable 

in high vacuum at temperatures slightly above room temperature.  The observations of 

oxygen loss in high vacuum are believed to be novel findings. An energy-related 

mechanism, such as lattice strain, was hypothesized to drive the subsequent phase 

change.  It was stated that a Hall coefficient phase diagram with respect to composition 

must exist for RuO2, and that it should be possible to map the Hall coefficient as a 

function of composition when moving from pure Ru to stoichiometric RuO2. 

 In Chapter 7, measurements of transport properties of RuO2 and Ru films during 

surface redox reactions constitute completely new findings. The exposure of certain 

polycrystalline RuO2 thin films to pure CO was shown to irreversibly increase the 

(apparent) resistivity.  After heat cycles with gas switching from O2 to CO, resistivity 

hysteresis loops were observed and it was conjectured that changes in resistivities were 

controlled by redox reactions on Ru rather than RuO2 surfaces.  Chemisorbed oxygen and 
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adsorbed CO were both shown to be capable of changing the sign of the Hall coefficient 

and therefore the dominant carrier type.  It was demonstrated that under the conditions of 

temperature and pressure investigated (e.g., 400 K and 4 torr), polycrystalline RuO2 films 

can be unstable and can break up into mixed Ru/RuO2 phases under CO exposure for tens 

of hours.  The results provide evidence that the angle of incidence during film deposition 

played a significant role in the formation of nanostructures that were capable of effects 

such as the resistivity response on first exposure to CO, the hysteresis loops due to gas 

switching, or the changing of dominant carriers. 

8.2. Recommendations for Future Work 

Ru and RuO2 are important industrial catalysts and further studies of charge 

transport parameters during catalytic reactions may provide fundamental insights into the 

underlying mechanisms. The following are recommendations that should prove helpful to 

future studies: 

1) More work is needed on the models of resistivity and Hall coefficient in non-slab 

geometries including nanorod-structured films. A key question is what is the exact 

expression for the Hall coefficient of a thin film of non-uniform thickness? 

2) Further studies are needed to probe the relationship between the Hall coefficient in 

RuO2 and the accompanying thin-film structure and stoichiometry.  The full mapping of a 

Hall coefficient phase diagram for a metal oxide that changes dominant carrier type as a 

function of stoichiometry and structure has yet to be done. 
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3) Theoretical work on the phase stability of binary oxides that gradually lose oxygen 

should be carried out using tools such as density functional theory.  Predictions of 

instabilities could be tested experimentally. 

4) Further work at higher magnetic fields and lower temperatures is desirable and may 

determine, for example, whether RuO2 is truly a compensated metal. 

5) Transport measurements taken in real time during surface catalytic reactions of CO 

and other gases are needed over a wider range of pressures, temperatures, and gas 

mixtures. 

6) Transport measurements in thin-film samples with well defined grain boundaries, such 

as in RuO2 bi-crystal samples with specific twist or tilt boundaries, would clarify the 

importance of grain boundary scattering relative to surface scattering of electrons. 

7) Since the angle of incidence played a significant role in the formation of 

nanostructures capable of the effects described here, additional transport studies of RuO2 

and Ru thin films grown with different angles of incidence would prove useful. 

8) Mass spectrometer measurements during redox transport tests would allow a 

correlation of CO2 desorption to transport properties. 

9) X-ray diffraction of RuO2 in vacuum or CO atmospheres using a diffractometer “hot 

stage” would allow direct real-time observations of structural changes associated with 

oxygen loss. 
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Appendix A 

DEPOSITION PARAMETERS FOR RUO2 FILMS OF CHAPTER 5 

 Films for Chapter 5 were grown by confocal reactive magnetron sputtering on GE 

Type 124 fused quartz substrates at a rotation rate of 14 rpm unless otherwise stated.  The 

center-to-center distance from the target to the substrate was 17 cm.  Substrates for films 

1 - 9 were given additional cleaning by acetone, methanol, isopropanol, and deionized 

water followed by N2 blow drying.  All others were used as received.  All substrates were 

argon plasma cleaned at 100° C and 3 mtorr for 1 minute prior to deposition.  System 

base pressures were approximately 1 microtorr.  During sputtering, flow rates were 13 

and 10 sccm of oxygen and argon respectively.  Film thicknesses were measured by x-ray 

reflectivity and profilometry.  Table A.1 lists parameters that were varied in the study. 

TABLE A.1. Parameters of planar RuO2 thin films considered in Chapter 5. 

No Sample Film Growth Anneal   Comment 

 

 
Pressure 

Sub 

T 
Time Power T/Time/Atm Thks 

 

 
 

(torr) (°C) (min) (W) (C/min/gas) (Å) 
 

1 080821-RuO2-1 3.5 x 10
-3

 100 7 500 500/30/vac 1405 anl dep chbr 

2 080821-RuO2-2 3.5 x 10
-3

 100 7 500 None 1413   

3 080825-RuO2 3.5 x 10
-3

 100 7 500 None 1428   

4 080826-RuO2-1 3.5 x 10
-3

 100 7 500 206/120/air 1356 air anl 

5 080826-RuO2-2 3.5 x 10
-3

 100 7 500 166/60/air 1414 anl after tsp tsts 

6 080826-RuO2-3 3.5 x 10
-3

 100 7 500 None 1492   

7 080826-RuO2-4 3.5 x 10
-3

 100 7 500 350/30/air 1412 air anl 

8 080923-RuO2 3.5 x 10
-3

 100 56 186 None 779   

9 080930-RuO2 3.5 x 10
-3

 100 56 186 350/30/vac 779 vac anl 

10 081009-RuO2 3.5 x 10
-3

 100 7 500 350/30/vac 1406 vac anl 

11 081016-RuO2 3.5 x 10
-3

 100 100 186 None 1390 profilometer 

12 081022-RuO2-1 3.5 x 10
-3

 300 7 500 None 1503 300-350°C sub 

13 081022-RuO2-2 3.5 x 10
-3

 300 7 500 None 1452 300-350°C sub 

14 081027-RuO2 3.5 x 10
-3

 16 7 500 None 1360   
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TABLE A.1. (Continued) 

No Sample Film Growth Anneal   Comment 

 

 
Pressure 

Sub 

T 
Time Power T/Time/Atm Thks 

 

 
 

(torr) (°C) (min) (W) (C/min/gas) (Å) 
 

15 081106-RuO2-1 3.5 x 10
-3

 100 7 500 None 1260 24W RF bias 

16 081106-RuO2-2 3.5 x 10
-3

 100 7 500 None 1850 38.8° tilt 

17 081111-RuO2-1 3.5 x 10
-3

 100 7 500 None 1412 no rotation 

18 081111-RuO2-2 3.5 x 10
-3

 100 7 500 None 1519 no rot, bias 

19 081118-RuO2-1 3.5 x 10
-3

 100 7 500 None 1430 7 rpm 

20 081118-RuO2-2 3.5 x 10
-3

 100 7 500 None 1340 10 rpm 

21 081125-RuO2-1 3.5 x 10
-3

 100 7 500 None 1405 17 rpm 

22 081125-RuO2-2 3.5 x 10
-3

 100 7 500 None 1304 lower t-to-s d 

23 081210-RuO2-1 4.1 x 10
-3

 100 30 100 None 290 100W/100°C 

24 081210-RuO2-2 3.5 x 10
-3

 100 20 300 None 1350 300W/100°C 

25 081217-RuO2-1 3.0 x 10
-3

 100 15 400 None 2050 pwr PS; scratch 

26 081217-RuO2-2 3.0 x 10
-3

 100 15 400 None 2034 400W/100°C 

27 081217-RuO2-3 2.8 x 10
-3

 500 7 500 None 1285 500W/500°C 

28 081218-RuO2-1 2.7 x 10
-3

 400 7 500 None 1314 500W/400°C 

29 081218-RuO2-2 2.7 x 10
-3

 200 7 500 None 1320 500W/200°C 

30 081229-RuO2-1 2.7 x 10
-3

 300 7 500 None 1336 500W/300C/28°

? 31 081229-RuO2-2 2.7 x 10
-3

 200 7 400 None 874 400W/200°C 

32 081229-RuO2-3 3.0 x 10
-3

 300 15 400 None 2068 400W/300°C 

33 081230-RuO2-1 3.1 x 10
-3

 400 15 400 None 1900 400W/400°C 

34 081230-RuO2-2 3.5 x 10
-3

 500 15 400 None 2068 400W/500°C 

35 081230-RuO2-3 2.6 x 10
-3

 100 4 532 None 750 max power 

36 090102-RuO2-1 3.6 x 10
-3

 200 20 300 None 1350 300W/200°C 

37 090102-RuO2-2 3.6 x 10
-3

 300 20 300 None 1350 300W/300°C 

38 090102-RuO2-3 3.5 x 10
-3

 400 20 300 None 1350 300W/400°C 

39 090114-RuO2-1 3.6 x 10
-3

 500 20 300 None 1350 300W/500°C 

40 090114-RuO2-2 3.5 x 10
-3

 200 30 200 None 446 200W/200C/P=? 

41 090120-RuO2-1 4.0 x 10
-3

 300 30 200 None 605 200W/300°C 

42 090120-RuO2-2 4.0 x 10
-3

 400 30 200 None 446 200W/400°C 

43 090120-RuO2-3 4.0 x 10
-3

 500 30 200 None 446 200W/500°C 

44 090122-RuO2-1 4.1 x 10
-3

 200 30 100 None 265 100W/200°C 

45 090122-RuO2-2 4.1 x 10
-3

 300 30 100 None 197 100W/300°C 

46 090604-RuO2 4.0 x 10
-3

 500 120 200 None 1784 200W/500°C 

47 090910-RuO2-1 2.6 x 10
-3

 16 7 500 None 1360 500W/16°C 

48 090910-RuO2-2 2.6 x 10
-3

 16 7 500 None 1360 500W/16°C 
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Appendix B 

CALIBRATION OF RESISTIVITY AND HALL COEFFICIENT 

 System calibration, with an emphasis on the Hall coefficient as the more 

problematic measurement, was checked at room temperature using primarily an 

unannealed gold thin film designated 070126-Au1100, which was approximately 1100 Å 

thick.  At 23 °C, the film consistently returned a resistivity near 4.5 μΩ cm and a Hall 

coefficient near -7.5 x 10
-5

 cm
3
/C.  These values can be compared to an average bulk 

resistivity of gold equal to 2.20 μΩ cm (residual resistivity subtracted) and a Hall 

coefficient of -7.15 x 10
-5

 cm
3
/C averaged from bulk samples and thin films.

1, 2
 A one-

time check of the system was made using a certified commercial silicon standard from 

MMR Technologies.  At 32 °C, the specified resistivity of the standard was 5.892 Ω cm 

and the Hall coefficient was +1803 cm
3
/C.  At 21 °C, the system returned a resistivity of 

5.73 Ω cm and a Hall coefficient of +1782 cm
3
/C.  Calibration in vacuum at temperatures 

above room temperature was attempted using samples made from commercial silicon 

wafers.  Based on a p-type wafer, resistivity measurements were accurate to within about 

± 12 % at room temperature and within ± 6 % at temperatures up to 400 K.  The Hall 

coefficient was within a factor of 2 of the value estimated for the p-type wafer in the 

range from room temperature to 400 K.  An n-type wafer displayed a parabolic 

dependence of Hall coefficient with temperature, but in the range from room temperature 

to 450 K was within roughly 30 % of the estimate. 

1
G. T. Meaden, Electrical Resistance of Metals (Plenum, New York, 1965). 

2
C. M. Hurd, The Hall Effect in Metals and Alloys (Plenum, New York, 1972). 
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