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We have developed GALAXY, a two dimensional, self-consistent N-body plus hydro-

dynamic computer program to model and study the behavior of disk galaxies like our

Milky Way. Our goal is to better understand how such galaxies maintain their spiral

structure for billions of years.

The program utilizes two independent gravitating N-body components. One simu-

lates the collisionless star particles in the galaxy, and the other simulates colliding

clouds. A gravitating hydrodynamic code simulates the interstellar medium. Addi-

tionally, a static spherical halo and a central black hole interact gravitationally with

the other components of the model galaxy. All components interact with each other

through various evolution processes and gravity, and they exchange mass, energy, and

momentum.



For this dissertation I have primarily studied these interactions between the galaxy’s

individual components. These interactions include cloud formation from gas by Jeans

instability, star formation through cloud collisions, star formation due to the snow-

plow effect, gas infall from the halo, and supernovae. Each process is controlled by

one or several parameters. These parameters are specified at the start of a simulation,

along with other parameters which define the initial setup of the model galaxy. The

influences of these evolutionary processes, and of different initial conditions of the

model galaxy, were probed through series of simulations, during which all parameters

were systematically varied. The simulations showed that the stellar evolution pro-

cesses of the program have the ability to trigger the formation of spiral features in

galaxies.

Through simulations involving galaxies with counter-rotating components we con-

firmed analytically derived predictions about such galaxies, like the formation of a

leading one-armed spiral, the weakening of this spiral as Toomre’s Q of the system

exceeds 1.8, and the strengthening of this spiral as the fraction of counter-rotating

components increases.

In another series of simulations we explored the properties and the origin of lopsided

galaxies as a result of the high speed passage of a companion galaxy. We found that

the disk’s center of mass spiraled inward, creating observed or observable phenomena,

including one-armed spirals, clumps of particles, and the possible suppression of a

central bar.
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1 INTRODUCTION

Simulations of disk galaxies to study their spiral structures have been done for more

than half a century. Michael Schroeder (1989) and Peter Shorey (1996) have given

an overview of the simulations performed from the 1940s through 1995, and they

established with their contributions to galaxy simulations the foundations on which

this thesis is based.

Schroeder (1989) developed a two dimensional combined N-body and hydrodynamic

computer code to model disk galaxies. An N-body portion of the code simulates the

collisionless star particles and the hydrodynamics part of the code is used to model the

dynamics and evolution of the Interstellar Medium (henceforth “ISM”). Additionally,

a static halo is included in the code as a stabilizing element. Observational evidence

confirms the existence of such halos (Faber and Gallagher, 1979; Bosma, 1999; Bosma,

1981; Persic and Salucci, 1990; Rubin et al., 1985), and their contribution to the

total mass of a galaxy may be 84% (Persic and Salucci, 1990) or higher. Based

on rotation curves of spiral galaxies, halo mass fractions as high as 95% are not

unlikely (Batuski, 2000). The exact nature of halos is still subject to observational

investigation. Suggestions include brown dwarfs (McCarthy et al., 1985)) white dwarfs

(Gates and Gyuk, 1999), MACHOs (Koopmans and de Bruyn, 2000; Green, 2000),

and WIMPS (Jungman et al., 1996). MACHOs are “MAssive Compact Halo Objects”,

for example primordial black holes. WIMPS (“Weakly Interacting Massive Particles”)
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are conjectured to be fundamental particles (like the electron) but with no electric

charge and no interaction with light or other electromagnetic radiation.

The hypothesis that two-body collisional relaxation in two-dimensional simulations

is not negligible (White, 1988) was tested and confirmed by Schroeder. He found

that collisions are a major cause of heating in axisymmetric, stable disk simulations

(Schroeder, 1989). His experiments revealed that perturbations of such stable disks

by weak logarithmic spiral potentials or by collisions with other (point mass) galaxies

produces two-armed spirals which are kinematic waves rather than density waves.

Furthermore, Schroeder found that the effect of the addition of an ISM is minimal

and reduces the required stabilizing halo by only a few percent. Finally, he determined

that the stellar birth rate and its cooling effects on the disk are quickly reduced, unless

mass is constantly taken from the halo and added to the ISM.

Shorey continued and extended Schroeder’s work (Shorey, 1996). Most noteworthy, he

included colliding cloud particles in the code. For the calculation of the gravitational

potential, these cloud particles are treated as point masses, just like the star particles.

But they have also a “virtual radius” assigned to them, which depends on their mass.

A spherical shape for the clouds is assumed. If two clouds get closer to each other

than the sum of their radii, they collide. Earlier simulations demonstrated that

strong spiral structure in a cloudy medium can exist many times longer than in the

stellar component, due to energy dissipation during inelastic collisions (Carlberg and
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Freedman, 1985; Shorey, 1990). Since stars often form from clouds (Elmegreen et al.,

1995), the integration of these colliding cloud-particles into the code was a major step

towards a more realistic model of dynamic, evolving, spiral galaxies.

Shorey also studied the effects of numerical artifacts in the hydrodynamics code and

minimized them. He created response curves for each stellar evolution process and,

based on those, he determined a set of input parameters which resulted in a near-

steady-state system. Shorey explored the sensitivity of this near-steady-state system

to variations in the input parameter space and the grid resolution, and he confirmed

Schroeder’s result that relaxation effects are present. His simulations demonstrated

that strong spiral structures in a cloudy ISM can exist many times longer than in

the stellar component, and provide a favorable environment for the birth of new stars

through cloud collisions.

Several groups and individuals have contributed ground breaking work in computa-

tional research of spiral galaxies in the recent years since Shorey’s overview (1996).

Englmaier and Shlosman (2000) performed 2D numerical simulations of gas response

to the background gravitational potential of a barred stellar disk to study the mecha-

nism for the formation, maintenance, and the detailed shape of nuclear spirals. Kor-

chagin and Theis (1999) used 2D nonlinear simulations to study the generation and

nonlinear evolution of spiral structure in a star-forming multi-component gravitating

disk. They show that the spiral structure growing on a non-stationary multi-phase
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background reaches its saturation in a manner similar to the one-component disks.

Athanassoula and Bureau (1999) found a reliable indicator for the presence of a bar in

an edge-on spiral galaxy if a nuclear spiral is formed, using edge-on 2D hydrodynami-

cal simulations of the gas flow in a barred galaxy potential. Fux (1999a; 1999b) mod-

eled the gas dynamics in galactic disks with an initially axisymmetric SPH (“Smooth

Particle Hydrodynamics”) component in a completely self-consistent and symmetry-

free 3D N-body simulation. The density center of the stellar bar wanders around the

center of mass and the resulting gas flow is asymmetric and non-stationary.

Computer simulations of disk galaxies continue to be a valuable complement to ob-

servational and theoretical research in this field. Due to the continuing development

of more powerful computers and the utilization of sophisticated and effective com-

puter algorithms, simulations of disk galaxies become ever more realistic as the star

particle numbers of the simulated galaxies approach those of their real counterparts

(M 2 x 10”). Shalit (1995) for example showed that the lifetime of spiral structures

in disk galaxies increases when more star particles are utilized. However, past results

have also demonstrated that pure N-body simulations alone may not be sufficient to

explain the long-lived spiral structures that are observed in spiral galaxies like our

Milky Way, and that stellar evolution processes may play an important role. The

improved modeling of the already implemented stellar evolution processes along with

more realistic simulations of the interactions of the stars and the halo with the ISM

in disk galaxies have therefore been the major purpose of this thesis.
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Another goal has been to use the code to model specific galactic systems to explain

some of their observed features, and to test existing theories about galactic dynamics.

In particular, galaxies with counter-rotating components, and the origin and nature

of lopsided galaxies have been the target of these studies. The simulations with

counter-rotating components have been motivated by observations of such galactic

systems, like NGC 3593 (Bertola et al., 1998), NGC 4138 (Jore et al., 1996; Thakar

et al., 1997), NGC 4550 (Rubin et al., 1992; Rix et al., 1992), NGC 7217 (Merrifield

and Kuijken, 1994), and NGC 7331 (Prada et al., 1996). The fraction of counter-

rotating stars in these systems has been observed to be as high as 50%. This series of

simulations served also the purpose of testing a theory of the two-stream instability

found in flat counter-rotating galaxies (Lovelace et al., 1997).

Motivation to study lopsided galaxies also comes from observational evidence. Stellar

distributions (Lauer et al., 1993; Lauer et al., 1996; Rix and Zaritsky, 1995; Davidge

et al., 1997; Zaritsky and Rix, 1997; Conselice, 1997) as well as hydrogen distribu-

tions (Baldwin et al., 1980; Richter and Sancisi, 1994) of a significant fraction of spiral

galaxies (30% to 50%) have been reported to be lopsided. Among possible scenarios

that could cause such lopsidedness is the gravitational interaction between two galax-

ies. To verify the possible creation of lopsidedness through such interactions we sent

a companion galaxy in a high-speed (positive energy) orbit around the model galaxy

and observed the center-of-mass motion of the stellar disk (which is an indicator for

lopsidedness).
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The simulations for this thesis have been run on a variety of hardware/software com-

binations: Sun 3/60 and Sun SPARCstation 2 computers running SunOS 4.1.1, Sun

SPARCstation 10 and Sun SPARCstation 20 machines under Solaris 2.5.1 and Linux,

a Hewlett Packard Series 735 computer with the HP-UX 9.07 and the HP-UX 10.20

operating system, PCs running Linux, and finally on an SGI computer with the IRIX

operating system. Great effort has been undertaken to write the code in standard

ANSI Fortran, to ensure that it a) runs on virtually any computer with a Fortran com-

piler and b) produces the same qualitative result for the same set of input parameters,

no matter which machine the code is run on.

In the next chapter I describe the GALAXY code in general, and the modifications

and extensions that have been made as part of this thesis in particular. Additionally,

a number of tools and helper programs that were developed to assist in analyzing

and visualizing the vast amounts of data produced by the GALAXY simulations

are also described in Chapter 2. Chapter 3 presents the results of simulations with

stellar evolution switched off. These include simulations with counter-rotating star

particles in a disk galaxy, and simulations which investigate the origin and nature

of lopsided galaxies. In Chapter 4 I show the results of GALAXY simulations with

stellar evolution switched on, and how variations in the parameter space that governs

the stellar evolution process in the code affect the outcome of those simulations. And

in Chapter 5 I present and discuss my conclusions.
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2 THEGALAXYCODE

GALAXY is a two dimensional, self-consistent N-body plus hydrodynamic computer

program to model and study the behavior of disk galaxies like our Milky Way. The

program utilizes two independent gravitating N-body components. One simulates the

collisionless star particles in the galaxy, and the other simulates colliding clouds. “N-

body” means that the particles are modeled as point masses with no other properties

than gravitational attraction and mass. A gravitating hydrodynamic portion of the

code simulates the interstellar medium. Additionally, the gravitational potentials

due to a static spherical halo and a central black hole are included. All components

interact with each other through various evolution processes and gravity, and they

exchange mass, energy, and momentum. These evolutionary processes include cloud

formation from gas by Jeans instability, star formation through cloud collisions, star

formation due to the snowplow effect, gas infall from the halo, and supernovae.

The simulations are done using a Cartesian grid, which is typically 256 x 256 cells in

size. The star particles are modeled as point masses, and each star particle represents

actually a whole cluster of stars. For a simulation with lo5 star particles, the number

of stars in each cluster is about 2 x 106. This is based on the assumption that a

typical spiral galaxy contains about 2 x 10” stars (Binney and Tremaine, 1987). The

cloud particles are modeled as point masses, too, but each cloud also has a “virtual”

radius associated with it, which depends on the cloud’s mass (the clouds are assumed
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to have spherical shape). If two clouds approach each other to a distance less or equal

to the sum of their radii, they collide. As a result, the colliding clouds may merge

into one big cloud, bounce off each other (mass transfer from the smaller cloud to the

bigger cloud is possible), or break into several fragments (mass breaks off from both

colliding clouds and forms a third cloud). In every case, mass and momentum are

conserved, and new stars may form at the collision interface.

The initial state of the model galaxy is determined by a set of input parameters,

which are set at the start of a simulation. In this parameter input file, one can select

the initial radial distribution of the mass, and the mass fractions assigned to the

various components (stars, clouds, gas, and halo). The gas can be chosen to be either

isothermal (initial uniform temperature), or isoergic (initial uniform energy density).

Additionally, the softening factor sf and the grid utilization gu can be specified in this

parameter input file. “Softening” is a commonly used method in N-body simulations

to avoid that the gravitational force F between two close star particles gets too large.

F is inversely proportional to the square of the distance d between two particles:

F o( dw2. With a softening factor sf, F is modified as follows: F o( (sf” - d2)-‘.

That way, particles are always kept at an artificial distance greater or equal than sf2,

preventing the gravitational force F between them from becoming too large. The

“grid utilization” gu specifies what fraction of the simulation grid is initially occupied

by the model galaxy. For a 256 x 256 grid, 911 = 1.0 corresponds to an initial galaxy

8



radius of 128 grid cells, and the usually used value of gzl = 0.75 sets this radius to

only 96 grid cells. That way, the model galaxy has some room to expand or deform

without instantly reaching the edge of the simulation grid.

Other input parameters control the initial position of the stellar disk on the simulation

grid, the fractions of counter-rotating components (for stars, clouds, and gas), and the

numbers of star and cloud particles. The initial value of Toomre’s Q (to be defined

in Section 2.8.1) for both types of particles is also set in the parameter input file.

Furthermore, the mass, the initial position, and the initial velocity of an optional

intruder galaxy can be specified.

Finally, a group of input parameters controls all evolutionary processes. These evolu-

tion parameters are discussed in Chapter 4. For a more comprehensive description of

the GALAXY code please refer to the PhD theses of Michael Schroeder (1989) and

Peter Shorey (1996), and to the “GALAXY User Manual” (Zeltwanger, 2000). The

following sections describe the modifications that have been made to the code and

the extensions that have been added:

l In addition to the already existing mass distributions that can be selected for

the model galaxy, two more have been implemented: an exponential mass dis-

tribution and an isothermal sphere model (for the halo only). Additionally, the

gravitational potential due to a massive black hole at the galaxy center can be

included.
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l The initial state of the gas component can now be selected as isothermal.

l The cloud formation routine was modified to remedy the heavy cloud formation

activity typically seen in the galaxy center under the old model.

l Fractions of the galaxy mass can be sent into counter-rotating motion at the

beginning of the simulations.

l The galactic disk can be shifted as a whole to create an artificial offset between

the centers of mass of the halo and of the stars.

l The hydro part of the code uses a new smoothing algorithm.

l The code now runs under Linux.

Any individual run of the GALAXY program creates a large amount of data output.

Depending on which variables one is interested in for a particular run, and how

frequently a data output is required, the amount of data created by a single run

can easily exceed one gigabyte. The necessity to analyze and visualize this vast

amount of data in a time efficient manner made the development of automated tools

a topic for this thesis. New tools for data analysis had to be developed in addition

to the already existing ones, and some of those already existing have been modified

to accommodate additional requirements. The last section of this chapter describes

those new and improved tools, and shows examples of their use.
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2.1 Initial Mass Distributions

Unless otherwise noted, all simulations performed for this thesis have used an ini-

tial mass distribution that models an SC disk as described by Sellwood and Carlberg

(Sellwood and Carlberg, 1984) and by Shorey (Shorey, 1996). This initial mass distri-

bution is axisymmetric, and the resulting initial mass density, Csc, therefore depends

only on the distance T from the galactic center:

CO,,Q is the disk mass scale, a is the disk length scale, and for an SC disk rtr = 7a,

where rtr is the truncation radius.

To study the response of some simulations to variations of the initial mass distribution,

several new initial mass loads have been implemented into the code. These will be

described in the following sections.

2.1.1 A Black Hole in the Galaxy Center

A growing body of evidence suggests that most galaxies - including disk galaxies

- contain a super-massive black hole at their center (Elmegreen, 1998; Hozumi and

Hernquist, 1999; Merritt, 2000; Fukuda et al., 1999; Richstone et al., 1998; Richstone,
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1998; Ferrarese et al., 1998; Binney and Tremaine, 1987; Sridhar and Touma, 1999).

These super-massive black holes may have already formed in the galaxy center, or

they have been carried there through dynamical friction. Even if a black hole of

m = lo7 M. or more forms far out in the galaxy, dynamical friction will carry it

into the galaxy’s center in less than a Hubble time (Richstone, 1998). To be able to

simulate such galaxies, the possible addition of a black hole was implemented into

the GALAXY code. To have a black hole as part of the model galaxy, one of the

regular star particles is given a mass consistent with current knowledge (Binney and

Tremaine, 1987; Salucci et al., 2000) about black hole masses (lo3 M. to 2 x 10” M,),

and is placed at rest at the center of the galaxy. Other than gravitationally, the

black hole does not interact with its environment. Specifically, the black hole does

not consume any nearby matter, its mass remains constant. Due to its high mass

(equivalent to 4.2 x lo8 M,) and placement at rest at the bottom of the well of the

galactic potential, its position throughout a simulation remains virtually unchanged:

during none of the simulations performed with a central black hole did it leave the

central grid cell.

Figure 2.1 on page 15 compares several galactic potentials, including one with a

central black hole. Galaxies with a potential due to an isothermal sphere combined

with a central black hole show a higher stability against bar formation than an SC

disk (Zeltwanger et al., 2000).
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2.1.2 Isothermal Sphere

Rotation curves of many spiral galaxies are flat or slowly increasing out to the radius

of the optical disk (Faber and Gallagher, 1979; Rubin et al., 1980; Rubin et al., 1982;

Rubin et al., 1985), suggesting that spiral galaxies like our Milky Way possess massive

dark halos that extend to larger radii than the optical disks (Freeman, 1970). If the

dark halo is approximated as spherical, then a rotation curve with constant velocity

V, implies the following dark halo mass density p(r):

(2.2)

This is the density distribution for an isothermal sphere at large radii (Binney and

Tremaine, 1987). In an isothermal sphere of stars, every part of the sphere has stars

moving at the same average velocity as every other part (Elmegreen, 1998). For small

radii, the halo density must fall below the value given by equation (2.2), because the

rotation curves remain flat even when the disk mass contributes a substantial fraction

of the rotation speed. A more appropriate form of the halo density - and the form

used in the GALAXY code - is therefore
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T, is the core radius at which the projected density of the isothermal sphere falls to

roughly one half of its central value. The value of r, can be specified in the parameter

input file. po is determined as follows: the total mass of the halo, i’PIhalo, is equal to

the halo mass fraction, fhalo, times the total mass of the galaxy, Mgalozy:

M fhalo = halo * Mgalazy (2.4)

where fh& is specified in the parameter input file as a number between 0 and 1. With

the constraint that the integration of equation (2.3) from T = 0 to the cutoff radius

r = rt,. must result in the total halo mass Mhalo, the GALAXY program can compute

the correct value of po.

The isothermal sphere halo mass distribution was implemented in the code to test

the disk’s response to an initial offset from the halo’s center of mass under the influ-

ence of various halo potentials (Zeltwanger et al., 2000). Most noticeably, a galaxy

with an isothermal sphere halo is more bar-unstable than one with an SC halo mass

distribution.

Figure 2.1 compares several galactic potentials, including isothermal sphere potentials

with and without a central black hole.
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Figure 2.1: Galaxy potentials for several mass distributions. Most simulations in this
thesis utilize the SC disk. The other mass distributions have been used to assess the
influence of the halo shape in the runs with lopsided galaxies.

2.1.3 Exponential Disk and Halo

Observations of galaxies of a form similar to the Milky Way suggest that the radial

mass density profile of the disk is an exponential function of the radius r:

L, (~1 = CO,ezp exp -k
( )
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(Binney and Tremaine, 1987). The disk scale length rd has been determined to be

3.5 f 0.5 kpc for the Milky Way (de Vaucouleurs and Pence, 1978). For most simu-

lations in this thesis an SC disk as described by equation (2.1) has been used as the

initial mass distribution. Therefore, the constants CO,eq and rd have been chosen

so that the mass density distribution of the exponential model at the galaxy center

(at r = 0) and at the truncation radius (at r = rtr) are equal to the mass density

distribution of an SC disk at those two radii:

Lp(O) = &c(O)

L&h-) = &k(rtA
(2.6)

With the constraints dictated by equations (2.6), CO,ezp and rd can be determined

from equations (2.5) and (2.1):

The potential due to this exponential mass distribution is also shown in Figure 2.1.
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2.2 Starting with an Isothermal Gas

Previous simulations with the GALAXY code assigned the gas component a uniform

internal energy across the disk (Schroeder, 1989; Shorey, 1996). The value of this

internal energy can be set in the input parameter file. An alternate approach for

setting the initial conditions of the gas was implemented into the code by specifying

an initial temperature of the gas (an isothermal gas) rather than the initial internal

energy (an isoergic gas). One can now choose in the parameter input file whether

the gas should initially be isoergic or isothermal. If isothermal is selected, then the

temperature of this isothermal gas (in Kelvin) can also be set in the parameter input

file. In general, the energy density of the gas per unit volume, e(r), is given by

P(r)e(r) = ~P(r)(v(r)~’ + y-l (2.8)

(Schroeder, 1989) where p is the mass density per unit volume of the gas, v is its

velocity, P is its pressure, and y is the ratio of the heat capacities, y = cp/~. The

initial setup is axisymmetric, therefore there is only an r dependence of e, p, V, and

P.

The first part of the right side in equation (2.8) is the kinetic energy density of the

gas, the second part defines its internal energy density, U/V. From the latter, the
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temperature of the gas can be determined, assuming that the gas obeys the ideal gas

equation, which is the case in the GALAXY program.

T=3X P-9)

U is the internal energy and M is the gas mass in the cell for which the temperature

is computed, respectively. The 3 symbolizes a factor of physical quantities which has

conveniently been set to unity in the code, to save computational time. Specifically:

3’= (Y-lh-1=
kB

(2.10)

y is the ratio of heat capacities, y = cP/c,. mP is the mass of one gas particle, and

kb is the Boltzmann constant. With equations (2.8) and (2.9) the stage is set for

an initially isothermal gas by specifying a start temperature To, reversing equations

(2.8) and (2.9) and then calculating the resulting energy density from there. This

is necessary because the GALAXY program uses the energy density of the gas for

evaluation of the hydrodynamic equations.
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2.3 Modified Cloud Formation

As part of the evolution processes in the GALAXY code, localized portions of the

ISM may undergo Jeans collapse to form cloud particles. Cloud particles may then

collide with each other and trigger the formation of new stars at the collision interface.

In regions of higher cloud density, there is, therefore, a higher probability of clouds

colliding with each other, and these regions should thus be hosts to massive star

formation. This is observed to occur in the simulations. In fact, previous versions of

the cloud formation by a Jeans collapse routine produced a high cloud population in

the galaxy core, which in turn increased the possibility of cloud collisions and churned

out massive numbers of new stars in the disk center. The star formation in the outer

regions of the galaxy, by contrast, was almost negligible, producing mostly featureless

(little or no spiral arm formation) and thus unrealistic galaxy models.

To avoid the heavy cloud formation in the galaxy center, and to sustain a substan-

tial cloud population in the outer galactic regions, we need to understand how the

GALAXY code decides where and when to form a new cloud. For a given gas density

p and temperature T, a volume of gas will collapse if its total mass exceeds the critical

Jeans Mass, MJ, which is defined as (Binney and Tremaine, 1987):

(2.11)

19



G is the gravitational constant, and w, is the speed of sound. For an ideal gas, v, is

given by (Kuchling, 1988):

(2.12)

where R is the specific gas constant of the collapsing gas (with units of J kg-’ K-l),

and y has previously been defined as the ratio of heat capacities, y = G/C,.

The probability P for formation of a cloud through Jeans collapse is then (Shorey,

1996)

P = P, 6 (2.13)

P+ is a user defined input parameter which controls the cloud formation rate. A

random number s is then compared to P, and a new cloud is created if P > s.

Clouds have been observed to have masses ranging from 102.7 M. to 105.7 M. (Chieze

and Lazareff, 1980; Cowie, 1980; Casoli and Combes, 1982), and the mass of the

newly formed cloud is randomly selected from within this range. The new cloud’s

velocity is set to the velocity of the gas in the grid cell in which the cloud formation

happens. This process may happen several times during one time step for any given

grid cell, provided that the cell sustains favorable conditions for a Jeans collapse.
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These conditions are re-evaluated after a new cloud has formed, to determine whether

to form yet another cloud, or to discontinue the process in that grid cell for the present

time step. The gas mass that is not converted into a cloud, remains in the ISM. The

total mass of the system is conserved that way.

The modification to equation (2.13) introduced for this thesis adds another factor,

which modifies the original cloud formation probability depending on location. Specif-

ically, the modified cloud formation probability, P’, is calculated from

(2.14)

where r is the distance from the galaxy center, measured in units of grid cell length

(see Appendix A for unit conversion). Equation (2.14) is only applied for locations

with T 5 39. Thus, for T > 39, P’ = P, and for T 5 39 the probability for cloud

formation drops with a square law. The cutoff radius T = 39 has been chosen because

this was approximately the radius of the immensely dense cloud core before modifying

equation (2.13). Figure 2.2 compares the cloud density at t = 14.229 revolutions of

two otherwise identical simulations for the old and the new cloud formation routine.

It should be noted that this modified model for the cloud formation by Jeans collapse

is purely empirical and only used because it favors the formation of “more realistic”

galaxies, as we shall see in Chapter 4. Other than that there is no obvious justification

for preferring the new routine over the old one.
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Figure 2.2: Cloud formation ~ old and new. The old cloud formation routine typically
produced a very dense cloud population at the galaxy center (left panel). The new
routine drives cloud formation away from the galactic center, leaving it less densely
populated than originally (right panel). The two simulations are otherwise identical.

2.4 Simulating Counter-rotating Components

To be able to run simulations involving counter-rotating components, three new input

parameters were introduced to the code. Those determine the fractions of counter-

rotating star particles, clouds, and hydro cells, respectively. The value of these pa-

rameters can range from zero (everything rotates counterclockwise) to one (everything

rotates clockwise), and they can be set independently from each other.

The fraction of counter-rotating stars, fcounter, and the total number of stars in the

simulation, ntotal, can be specified in the parameter input file. From these, the number

of counter-rotating star particles, nncounte,.,  is determined:

22



%0unter  = f counter * ntotd (2.15)

The velocity vector of nwunter randomly selected stars is then reversed following the

initial load of the star mass distribution.

For clouds, the counter-rotating particles are initialized in the same way as star

particles.

The counter-rotating gas portion is determined in a similar way, except that for the

gas there are no particles for which the velocity vector could be reversed. Instead,

for every cell on the simulation grid, the momentum of the gas in that cell is loaded

according to the selected initial disk type. To get the desired counter-rotating gas

portion, the momentum vector of a number of randomly selected grid cells, that

corresponds to the fraction of counter-rotating gas, is reversed.

2.5 Displacing the Galactic Disk

To be able to do a series of simulations involving lopsided galaxies it was necessary

to add a feature to the code that would displace the initial stellar disk’s center of

mass from the halo center of mass by a specified amount. Four new parameters in the

input file accomplished this: scoofx, scoofy, scnofx, and scnofy. These set the initial

offsets of the star particles in the x and y directions for the co-rotating (scoofx and

scoofy) and the counter-rotating components (scnofx and scnofy).
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The simulations with lopsided galaxies performed for this thesis are described in

Chapter 3. Being able to specify a different initial offset for the co-rotating and the

counter-rotating components, for example, makes it possible to simulate the inter-

action (close encounter, collision, or merger) of stellar disks with opposite angular

momentum.

To determine which stars are initially co-rotating and which are initially counter-

rotating, each star particle’s angular momentum is determined prior to setting its

offset. Stars with a positive angular momentum are called co-rotating, and a negative

angular momentum identifies counter-rotating stars.

2.6 Smoothing the Hydro Component

Occasionally, the code would overestimate changes in the conserved variables, result-

ing in negative pressure, energy, or mass density in a cell. Previous attempts to

“fix” this unphysical behavior included multiplying negative values by -1, replacing

the negative values with a small, positive constant, and replacing them with a small

fraction of their last nonzero value (Schroeder, 1989; Shorey, 1996).

While these schemes helped to remedy the problem somewhat, the central pressure

in the hydro part would still rise quickly beyond reasonable bounds (> 10’) and

consequently increase the temperature accordingly. Reasonable central gas pressures

are of the order lo6 to lo7 (in computer units. See Appendix A for unit conversions).
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The implementation of a more successful smoothing algorithm was desirable. It was

found in “Numerical Recipes in Fortran” (Press et al., 1994), from which a modified

version of the “Bilinear Interpolation” method was adapted. Essentially, this method

smoothes out discontinuities in a cell by averaging the values of the eight surrounding

cells and assigning the result to the cell in question. Careful consideration needs to

be given to those surrounding cells, to assure that they themselves do not also have

negative values.

If one is willing to trade faster execution for higher accuracy, then the next best

smoothing schemes would be “Bicubic Interpolation” and the “Bicubic Spline” method.

These make use not only of the function value at the grid points, but also of its par-

tial derivatives. For now, the implemented bilinear method seems to be sufficient,

though, to smooth out the hydro component of the code, reducing the central pres-

sure by some three orders of magnitude and keeping the central temperature within

reasonable limits. In fact, in all runs with an initial isothermal gas of 10 K, the central

temperature would never rise above 15 K. These runs are discussed in Chapter 4.

2.7 Porting the Code to Linux

At an early point during this thesis project, the fastest computer at my disposal

was a Pentium class PC running the Linux operating system. To run the GALAXY

code on this machine it was necessary to modify the subroutine which generates
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random numbers for the Monte Carlo procedure that loads the initial star positions

and velocities. The original implementation of the random number generator was

machine specific in the sense that it produced sufficiently random numbers for the

computers on which the code was first developed (SUN 3/60 workstations). But

on the Linux machine it exhibited a periodicity in the series of produced random

numbers that caused different stars to be placed at the exact same location with the

exact same velocity vector.

To get rid of this problem a new random generating procedure replaced the original

one. The new one is taken out of “Numerical Recipes in Fortran” (Press et al., 1994)

and has a periodicity of M .2 3 x 1018. With a typical spiral galaxy containing “only”

of the order 2 x 10” stars, and with our largest simulations currently utilizing not

more than lo6 star particles, this new random number generator should be adequate

for all future projects with the GALAXY code.

2.8 Tools and Data Analysis

This section is dedicated to the description of how the vast amount of data produced

by the GALAXY code has been processed and visualized following the completion of

a simulation.

Most tools for plotting and analyzing the data output produced by the GALAXY pro-

gram have been developed earlier (Shorey, 1996) and were used “as is”, or ported to
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IDL (“Interactive Data Language”, a commercial computing environment by Research

Systems, Inc. for the interactive analysis and visualization of data) with little or no

modifications. Other plotting routines were originally written for a specific hard-

ware/software combination (Shorey, 1996)) which has not been available any more.

Therefore, and to ensure a consistent “look and feel” for all included graphics, some

plotting routines needed either more fundamental modifications, had to be rewritten

entirely, or had to be coded from scratch (in IDL). Examples of these are discussed

in the following sections.

2.8.1 Toomre’s Q

Toomre’s Q, a parameter introduced by Alar Toomre (Toomre, 1964), describes a

local stability criterion for disk galaxies, and is defined as follows:

46 49
‘(‘) = 3.36 G C(r)

where K(T) is the radial epicyclic frequency, a(r) is the radial velocity dispersion, G

is the gravitational constant, and C(r) is the mass density of the stars. It can be

shown (Binney and Tremaine, 1987) that any small circular area of a thin stellar

disk is stable against radial perturbations if Q > 1. From equation (2.16) it can

also be seen that Q is proportional to the radial velocity dispersion a(r). Q serves,
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therefore, as a thermometer for galactic disks. A stellar disk with Q > 1 is stable

against axisymmetric perturbations and such a disk is often called “warm”. For Q < 1

(“cool” disk), small circular areas of a thin stellar disk are unstable against radial

perturbations. Such local instabilities in a disk can be the seeds for global instabilities,

like central bars or spiral structures. Thus, to maintain prolonged spiral structures,

we want to keep the disk cool. Q is, however, not an absolute measure for a disk’s

tendency to grow instabilities. Once a localized portion of the disk becomes unstable,

the instability can self-propagate and affect other parts of the disk, or the entire disk,

even if the local Q value in those regions would suggest stability against perturbations.

The evolution of Q can nonetheless provide valuable insight into a disk’s dynamics

and it is widely used in disk analysis.

Equation (2.16) can be used to define a Q for stars or to define a Q for clouds. For

clouds, K(T), a(r), and C(T) refer to the clouds’ radial epicyclic frequency, radial

velocity dispersion, and mass density, respectively. Throughout this dissertation, “Q”

will generally refer to the stars’ Q. If the clouds’ Q is meant, then it will be noted so

explicitly. For gaseous disks, a relationship similar to equation (2.16) exists, where

o(r) is replaced with the sound speed vs, and 3.36 is replaced with TIT:

Q@) = +-) Us

T G C(T) (2.17)
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In previous calculations of Q, the Q(r were averaged over all radii to obtain a mean)

Q for the entire disk (Schroeder, 1989; Shorey, 1996). This method proved to do

injustice to the true characteristics of the disk, because the outer annuli of the disk,

generally populated by only a small number of stars with often high radial velocities,

boosted the average Q artificially and led to the false impression of a very hot disk.

To obtain a more realistic picture of this dynamic property of the disk, Q was hence-

forth calculated by averaging only over a number of annuli, centered around the half

mass radius rh, and thus omitting the outer (hot) annuli of the disk. This new cal-

culation of Q is done after the completion of a GALAXY simulation with the help of

an IDL routine which operates on the files containing the Q values of the individual

annuli. The number of annuli to be taken into account can be specified in this IDL

routine. To calculate the half mass radius, rh, first the total stellar mass Mi in each

annulus ri is determined:

M = Cm(j)
i

(2.18)

The summation is done over all j stars whose distance r is between ri and r;+i,

Ti 5 r < Ti+l. The m(j) are the masses of those stars. The total mass of the stellar

disk, Woto17 is obtained through summation over all Mi:
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Ttr

Mtold = EMi (2.19)
i=l

rtr is the truncation radius of the disk. Because the star distribution at t = 0 was

used for this determination of the half mass radius, no stars are located beyond a

radius of r > rtT. Finally, the half mass radius rh is found by summing over the

annuli, starting from the inner most, until the sum exceeds roughly one half of the

total disk mass, Mtotal:

2 M 6 $tota, (2.20)
i=l

Figure 2.3 compares the old and new treatment of Q for the same set of data. Con-

sequently, the inner-most annuli are also ignored for this calculation, if the number

of annuli taken into account is less than 2. r,,. Tests showed though that this is not a

problem: For a typical SC galaxy with a truncation radius of rtr = 96, the initial half

mass radius is computed to be located at rh = 39. Calculating the average Q from

annuli 1 through 78 (78 = 2 . rh) compared to using, say, annuli 34 through 44 only,

makes little, if any, difference. Figure 2.4 compares two such calculations for Q. One

uses only 10 annuli for the calculation, the other one takes into account all annuli

from the inner-most one at r = 1 to T = 2 . rh. Except for minor fluctuations the

result is the same. This indicates that usually the “troublesome” annuli are indeed
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only the outer-most ones. Because this part of the data analysis is not very time

consuming, it is generally recommended to include all annuli from T = 1 to T = 2 . rh,

to make sure to catch any possible surprises that the inner annuli might hold.

Figure 2.3: Toomre’s Q - old and new. Q is shown here for the same set of data.
The old method (left) produces higher values and also a more “erratic” behavior for
the average Q than the new method (right).

Figure 2.4: New Toomre’s Q - few vs. many annuli. Q is shown here for the same
set of data, calculated with the new method. The left plot uses only the annuli 34
through 44 for the calculation (rh = 39). The right plot uses the annuli 1 through 78
(78 = 2 - rh).

31



2.8.2 Center of Mass Motion

We studied lopsided galaxies and their possible cause through the rapid passage of

a companion galaxy (Zeltwanger et al., 2000). For this project we ran a series of

simulations with an intruder galaxy, and another series of simulations in which the

centers of mass of the halo and of the stars do not coincide initially. These series are

described in more detail in Sections 3.3 and 3.4, respectively.

The intruder runs were done to study whether such a close encounter scenario was

capable of separating the center of mass of the stars from the halo’s center of mass. In

some of these runs the halo was kept fixed (“static”). In other runs a “dynamic” halo

was simulated, either through a hydrodynamic component (the gas), or through an-

other N-body component (the clouds), which were given a mass fraction appropriate

for a typical disk galaxy’s halo (75%). To determine how much the centers of mass

of the halo and of the stellar disk would be separated in these simulations, it was

necessary to independently observe the motions of the centers of mass of the stars, of

the clouds, and of the gas. Furthermore, the relative motions of these centers of mass

with respect to each other needed to be determined. The motions of the centers of

mass of the various components could then be compared. Figures 3.14 and 3.15 on

page 64, and Figures 3.22 and 3.23 on page 76, show examples of these motions. For

a more thorough description of the results of these particular simulations please refer

to Sections 3.3 and 3.4.
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2.8.3 Gas Temperature

Prior to implementing the new smoothing algorithm for the hydro component, as

described in Section 2.6, the increase in central gas pressure came hand in hand

with an unrealistic increase of the gas temperature in the affected disk regions. To

monitor this behavior more thoroughly, and to also test the new smoothing algorithm,

the gas temperature was color coded or gray-scaled, and plotted explicitly in Kelvin.

Figure 2.5 shows an example of the temperature distribution of a simulation at three

different time steps. For comparison, and to demonstrate that regions of high gas

density generally correspond to regions of high temperature, Figure 2.6 shows the

gas density of the same simulation at the same three time steps. Note that there are

regions in Figure 2.5 which have a temperature of 2 K and below. This is because

the GALAXY program does not take the 2.7 K microwave background radiation into

account, which keeps the gas in real galaxies at or above 2.7 K. Future versions of

GALAXY will take this into consideration.

2.8.4 Making Movies

The creation of movies as a form of visualizing some of the vast amounts of data

created by the GALAXY program provided the opportunity to observe the dynamical

evolution of an entire simulation in a time-compressed manner without compromising

spatial resolution or time resolution. To investigate the dynamical evolution of most of
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Figure 2.5: Gas temperature. Shown is the temperature distribution of a simulation
at three different time steps. Lighter regions indicate higher temperature, and darker
regions have low temperature. The temperature scale on the top of the figure is
labeled in Kelvin.

Figure 2.6: Gas density. Shown is the gas mass density distribution of the same
simulation as in Figure 2.5. Darker regions indicate higher gas density, and lighter
regions have low density.
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the parameters of interest (like Toomre’s Q, or Fourier amplitudes) it is not necessary

to plot these parameters after each and every integration cycle. Instead, for most

purposes it is sufficient to create a data dump for plotting after only every one quarter

of a revolution of the model galaxy, i. e. after approximately every 70 integration cycles

for a typical simulation run (this number varies, though, depending on the kind of

galaxy being simulated).

To create a smooth and flicker-free movie a much higher resolution in time is necessary.

Most movies created for this thesis use frames that are only two to four integration

cycles apart, and they can have up to 1000 frames. This high resolution revealed

some features and fine details which occur during a simulation that otherwise might

have gone unnoticed. Several movies showing star density and the location of newly

formed stars demonstrated that new stars form predominantly in the regions of higher

cloud density, i. e. in the spiral arms, where it should occur.

The format chosen for the movies is MPEG. This format can be played across all

computer platforms, and allows for easy inclusion in a web page, to share the outcome

of the simulations with the scientific and non-scientific community. In fact, due

to the visual beauty of some of those movies they provide the unique opportunity

to make parts of my thesis results accessible and comprehensible to non-scientists.

Figure 2.7 shows an example of what a snapshot of an MPEG movie might look

like. The grayscale colors represent star densities. The higher the star density in
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a certain volume of space, the darker the corresponding gray shade. The scale for

this is logarithmic rather than linear, to enhance variations in the underlying star

distribution. This is to take into account the fact that spiral arms are generally the

nurseries of galaxies, in which young and bright stars make the spiral arms appear

brighter than the pure star number densities would suggest. Such logarithmic scaling

has been used for all plots in this dissertation involving the distribution of stars,

clouds, or gas, as well as for the temperature maps.

The creation of a movie can be separated into four individual steps:

1. Run and complete a simulation of the GALAXY program to create the data to

be featured in the movie.

2. Create the individual frames that make up the movie. For this step, a script

was developed to be used in conjunction with IDL. This IDL script uses each

data dump, analyzes it and produces a gray-scale representation of it. Each

data dump is converted from a pure text format to a *.GIF file (“Graphics

Interchange Format”, a compressed file format to store images). These first two

steps are by far the two most time-consuming ones.

3. The *.GIF files need to be converted to *.YUV files (YUV is another image

file format, suitable for making an MPEG movie). A UNIX shell script was

developed for this purpose.
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Figure 2.7: A snapshot of an MPEG movie. The grayscale colors in this snapshot
indicate star particle density. Darker regions are regions with a high star density,
The time index in the lower left corner refers to numbers of revolutions performed
since the start of the simulation.
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4. The individual *.YUV files are concatenated together back to back and encoded

in the MPEG format.

Besides a number of shorter clips, a couple of large movies with up to one thousand

individual frames have been created. These include a movie of a “base run” as de-

scribed in Section 3.1, a movie of a simulation with 50% counter-rotating components

as described in Section 3.2.4, a movie of a simulation with an intruder galaxy as de-

scribed in Section 3.3, and a movie of a simulation with stellar evolution switched on,

as described in Section 4.9, and listed as run # 51 in Appendix B. The latter movie

also shows the locations of new star formation, in addition to the star density.

Examples of some of the movies created for this thesis can be downloaded from

<http://butch.umephy.maine.edu/kickers/Research/Movies>.

The creation of movies with even more than one thousand frames is desirable to

obtain a higher time resolution, but this is unfeasible at present due to disk space

limitations (several gigabytes of temporary disk space are required to make a movie).

2.8.5 Data Output after every Integration Cycle

For testing new or modified portions of the GALAXY program, or to test the behavior

of the program for a certain set of initial input parameters, it was desirable to have

a monitoring feature that would allow observation of the evolution of the simulated
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galaxy in real-time, i. e. while the simulation is running. For this purpose a new switch

was introduced in Datinp.DAT that switches live output on or off. Live output here

simply means that certain variables (e. g. star positions, gas pressure, or gas density)

would be stored in temporary files after each and every integration cycle. While this

could in principle have been accomplished by creating a data dump after each time

step, the use of temporary files which are constantly rewritten has the advantage of

saving disk space, and it makes the analysis of the files more efficient because the

same files are read over and over again in an open loop. Using this method for the

live analysis of the simulations requires the least amount of system resources. Live

output slows down the overall performance of the simulation considerably. But in

case the program starts to behave erroneously, the time to react is shorter than to

wait till the end of the simulation and then to analyze it afterwards. As the total

execution time of a single simulation can easily exceed several days, the reduction in

time lost is invaluable. Live output is, therefore, particularly useful for testing new

or modified portions of the code and should only be used for this purpose.

2.8.6 Fourier Analysis

The mass distribution of the galactic disk can be studied through a Fourier analysis.

This results in a series of numbers a, (with m E (0, 1,2,3,. . .}) that quantitatively

describe the azimuthal mass distribution. A large amplitude in the m = 1 mode

indicates the presence of a one-armed feature in the galaxy. A strong m = 2 amplitude
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hints at the presences of a bar shaped mass perturbation. A large m = 3 amplitude is

due to the presence of a three-armed structure, and so forth. The Fourier amplitudes

are normalized so that a0 (t = 0) = 1.0.

Plots of Fourier modes (for m E { 1,2,3,4}) for stars and clouds of the simulations

done for this dissertation are included in Chapter 3 and in Appendix C. The m = 1

and m = 2 modes are the most interesting ones for the simulations done for this dis-

sertation, because they indicate the presence of a one-armed spiral, and of a central

bar, respectively. These two perturbation types occur frequently in N-body simula-

tions of disk galaxies (see for example Chapter 3). The m = 3 and m = 4 modes

have also been included to monitor multi-arm development, which often occurs at the

beginning of a simulation. Modes with m > 4 have generally smaller amplitudes, and

the mass perturbations responsible for these modes are also short-lived, because they

tend to merge and form perturbations with m < 4.

2.8.7 Resonances

In spiral galaxies, stars travel in nearly circular orbits. Due to gravitational pertur-

bations, and due to radial velocity components they attained at the time of their

formation, they also tend to “wobble” in their orbits. These wobbles are periodic,

and the frequency of this oscillation around the circular orbit is called the epicyclic

frequency K. If 52, denotes the angular velocity of a density perturbation (“pattern”)
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in a disk galaxy, then a star particle experiences “Lindblad resonance”, if its

gular velocity, at, and its epicyclic frequency K satisfy the following condition

and Tremaine, 1987; Elmegreen, 1998):

Ml,=*;

own an-

(Binney

(2.21)

In the “+” case the star experiences the inner Lindblad resonance and its orbit is at

the inner Lindblad radius. In the “-” case we talk of the ozlter Lindblad resonance

and the outer Lindblad radius, respectively. In these cases the star completes one

epicycle, while the pattern - for example a bar - completes one half revolution. Thus,

the star is at the same phase of its epicycle every time it has the same angular position

relative to the bar. Gravity near a density perturbation is increased, and the star

experiences this increased gravity always at he same position in its epicycle: resonance

occurs (similar to pushing a swing).

Resonances other than the Lindblad resonance can occur, too. If s2 = C&, we talk of

the “corotation resonance”, because the star rotates in sync with the density perturba-

tion. If a galaxy’s rotation curve and any one resonance are known, then the pattern

speed and all other resonances can be determined (Elmegreen, 1998). The observation

of density perturbations allows to find the locations of these resonances. For exam-

ple, two bright outer arms generally end at the outer Lindblad resonance. A bar’s

ends are usually located between the inner Lindblad resonance and the corotation

resonance.

41



3 SIMULATIONS WITHOUT STELLAR EVOLUTION

This chapter discusses the results of simulations that include only stars and the halo,

but no clouds or ISM, and consequently no stellar evolution. The first section of

this chapter introduces the base run, against which all other runs in this chapter are

compared. Section 3.2 presents the results of simulations in which a certain fraction

of the stellar components has been sent into a counter-rotating orbit. These simula-

tions have been done to study the influence of counter-rotating components on the

formation of a one-armed spiral, and to study their ability to suppress the formation

of a central bar in the galaxy. Section 3.3 shows that a high-speed interaction be-

tween two galaxies can produce lopsided galaxies. In Section 3.4, this lopsidedness is

studied further, through simulations in which the center of mass of the stellar disk

has been offset “artificially” by a certain amount from the halo center of mass, and

with a varying (low or high) angular momentum.

All runs presented in this chapter used lo5 star particles, a star mass fraction of 25%,

a halo mass fraction of 75%~~ a softening factor of 0.25, a grid utilization of 0.75, and

a simulation grid of 256 x 256 cells. They are also described in Comins et al. (1997)

and in Zeltwanger et al. (2000).
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3.1 The Base Run

This kind of run is the simplest simulation one can perform with the GALAXY

program. It utilizes only stars and the halo. There are no clouds or gas present, and

stellar evolution is entirely switched off. All stars are in co-rotating motion, except

for a few which are sent into counter-rotating orbits, due to the random Monte Carlo

loading procedure. These make up a fraction of at most 5 x 10m3 of the total number

of stars and thus don’t affect the overall dynamics of the stellar disk in any significant

way. The centers of mass of the stars and of the halo are both located at the center

of the simulation grid.

Despite the simplicity of this kind of simulation, one can learn a lot from its dynamics,

and comparing any more complex simulation to this one can provide a great deal of

insight into the effects triggered by the various parameters of the GALAXY program.

The base run quickly forms a set of trailing spiral arms (see Figure 3.1), and simulta-

neously a bar starts to form at the core of the stellar disk. While the multi-arm spirals

have mostly faded away by revolution number five, the central bar grows stronger and

stronger. In fact, Figure 3.2 reveals that during the first three revolutions of this sim-

ulation, the m = 3 and m = 4 modes are dominating the dynamics of the disk. But

after about 3.5 revolutions, the m = 2 mode (which is responsible for the bar forma-

tion) begins to get larger than the m = 3 and m = 4 modes, and continues to grow
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Figure 3.1: Base run - star mass distribution.
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Figure 3.2: Base run - Fourier amplitudes. Fourier modes of the star mass distribu-
tion.

until t = 11.5 revolutions, when it flattens. At this point the ends of the central bar

have reached the location of the corotation resonance, which limits further growth of

the bar (Binney and Tremaine, 1987; Elmegreen, 1998). It is interesting to notice

that the m = 4 mode prevails relatively strongly throughout the simulation, and that

the m = 1 mode (which is responsible for the formation of a one-armed spiral) starts

to grow at about the time when the m = 2 mode flattens. The last two frames in

Figure 3.1 reveal that a corresponding one-armed feature starts indeed to develop.

Table 3.1 on page 58 lists the base run discussed in this section as run # 1.
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3.2 Simulations with Counter-rotating Components

3.2.1 12.5% Counter-rotating Stars

A 12.5% fraction of counter-rotating components is still a rather small fraction, and,

not surprisingly, this run shows little difference from the base run. Just like that

reference simulation, the 12.5% case goes through an initial series of multi-armed

spirals, which fade away after some five revolutions (see Figure 3.3).

Again during this part of the simulation, the dynamics of the disk are dominated by

the higher modes, particularly by the m = 4 mode (the m = 3 mode is somewhat

smaller in the 12.5% case, compared to the base run), see Figure 3.4.

The central bar develops later here than it did in the base run. In fact, up to 3.6

revolutions there is no indication that a bar is going to form at all. But by the fifth

revolution the m = 2 (bar) mode takes off and grows similar to the previous run up

to about t = 13 revolutions. The final bar is visibly weaker, though, in the 12.5%

case compared to the base run, and this impression is supported by the fact that at

its peak the m = 2 mode in the 12.5% case is below the peak level of the m = 2 mode

for the base run. Again, the m = 4 mode prevails fairly strongly throughout the

simulation, though well below the level of the m = 2 mode. And after 11 revolutions,

the m = 1 mode starts to grow slowly, hinting at the birth of a weak one-armed

feature, the presence of which is visible in the last two frames of Figure 3.3.
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Figure 3.4: 12.5% counter-rotating stars - Fourier amplitudes. Fourier modes of the
star mass distribution.

Overall, the presence of a small (12.5%) fraction of counter-rotating components has

only little effect on the dynamics of the stellar disk, especially with respect to the

formation of a one-armed spiral. But even this small amount of counter-rotating stars

exhibits some resistance against the formation of a central bar: it starts to form later

than in the base run, and it doesn’t grow to the same strength as in the reference

simulation.

Table 3.1 on page 58 lists the 12.5% case discussed in this section as run # 2.
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3.2.2 25% Counter-rotating Stars

In the 25% case (run # 3 in Table 3.1), things are decisively different from the base

run and the 12.5% case. In the initial phase of this simulation, the multi-arm modes

m = 3 and m = 4 are significantly lower than in the previous two runs and the

multi-armed spiral at the beginning of this run is less prominent (see Figures 3.5 and

3.6). In fact, during this initial multi-armed phase, one of the arms stands out as

the visibly strongest arm, giving rise to the fact that up to t = 8 revolutions the

m = 1 (one-armed) mode is the strongest one. A central bar does not appear until

t = 7 revolutions, but from that point on the m = 2 mode dominates the remainder

of the simulation and continues to rise at a nearly constant rate. At the end of the

simulation the bar has reached almost the same strength as the bar in the 12.5% case

and continues to climb. The m = 1 mode, however, after it reaches its peak level

for this run at 3.5 revolutions, decreases slowly, and the corresponding one-armed

spiral ceases to exist after 8 revolutions. Note that the m = 4 mode, unlike in the

previous two runs, remains low up to t = 8 revolutions, but increases thereafter. In

all runs so far, the m = 4 mode grows as soon as the bar reaches its maximum length

(the corotation resonance prevents further growth). From this point on, the bar’s

ends grow small leading arcs, and typically two more arclets form at about the same

radius. These may eventually combine to form a complete circle at the location of the

Inner Lindblad Resonance, if the simulations were to run long enough. These four

symmetric arc segments give rise to the increased m = 4 mode.
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Figure 3.6: 25% counter-rotating stars - Fourier amplitudes. Fourier modes of the
star mass distribution.

3.2.3 37.5% Counter-rotating Stars

The trend observed in the 25% case continues in the 37.5% case: a stationary, trailing,

one-armed spiral forms very quickly in this simulation (Figure 3.7) and remains very

strong through t = 8 revolutions. Although it then starts to fade away, the one-armed

spiral remains visible until the very end of the simulation. Accordingly, the m = 1

(one-armed spiral) mode increases sharply at the very beginning of the simulation

(Figure 3.8), reaches its highest level of this run between t = 3 and t = 6 revolutions,

when the one-armed spiral is visibly most prominent. Though the m = 1 mode
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decreases during the third quarter of the run (going hand in hand with the fading

of the one-armed spiral), it remains the strongest mode for the entire simulation.

Interestingly, the one-armed spiral changes directions at least once. While it is clearly

trailing (the galaxy as a whole rotates counterclockwise) in the second frame of Figure

3.7 at t = 1.972 revolutions, the spiral arm goes through a transition in the following

frame (t = 3.663 revolutions) during which its direction is not clearly determined. In

all following frames and most clearly visible at t = 7.045 revolutions, the spiral arm

is leading.

The multi-arm phase seen in the previous four simulations is barely visible in the

first frame of Figure 3.7. The m = 2, m = 3, and m = 4 modes remain on a

nearly constant (low) level throughout this simulation. The formation of a central

bar doesn’t start until about t = 10 revolutions, and the bar remains very weak (there

is a slight increase in the m = 2 mode during this end phase of the simulation).

Clearly, a 37.5% fraction of counter-rotating stars is a strong trigger for the formation

of a one-armed spiral, and also a strong inhibitor against the formation of a central

bar.

Table 3.1 on page 58 lists the 37.5% case discussed in this section as run # 4.
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Figure 3.8: 37.5% counter-rotating stars - Fourier amplitudes. Fourier modes of the
star mass distribution.

3.2.4 50% Counter-rotating Stars

Stepping up one more notch and increasing the fraction of counter-rotating compo-

nents to 50% does not provide many new results. Most noticeably though is the total

absence of a central bar throughout the entire simulation. The previous 37.5% case

had at least a hint of a small bar forming towards the end of the run. The multi-arm

phase seen at the beginning of the previous simulations is also skipped altogether.

Instead, the disk leaps straight into the development of a strong, one-armed spiral

(the distinction “leading” or “trailing” is meaningless in a case where half of the star
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particles rotate one way, and the other half rotates the other way. The net angular

momentum of this galaxy is zero). It is noted that similar to the previous 37.5% case,

the spiral arm in this 50% case changes directions, and it does so at about the same

time as the 37.5Y0 case. This transition occurs roughly at the time of the third frame

(at t = 3.663 revolutions) in Figure 3.9. The spiral arms before and after this frame

have clearly different directions.

The dominance of the one-armed spiral is again indicated by the strength of the m = 1

mode (Figure 3.10). The m = 1 mode is by far the strongest mode throughout the

simulation, and reaches its highest level when the one-armed spiral has its greatest

dominance between t = 3 and t = 5 revolutions. The m = 2, m = 3, and m = 4

modes, in contrast, remain as one would expect on about the same low level as seen

in the 37.5% case.

Again, a 50% fraction of counter-rotating stars is a strong trigger for the formation

of a one-armed spiral, and also a strong inhibitor against the formation of a central

bar.

Table 3.1 on page 58 lists the 50% case discussed in this section as run # 5.
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Figure 3.10: 50% counter-rotating stars - Fourier amplitudes. Fourier modes of the
star mass distribution.

3.2.5 Summary of Runs with Counter-rotating Components

Table 3.1 gives a quick overview of the results involving counter-rotating components.

They support many features of the two-stream instability theory in galactic disks with

counter-rotating stars (Lovelace et al., 1997). The theory predicts that the m = 1

mode, responsible for the formation of a one-armed spiral, decreases in amplitude as

Toomre’s Q of the disk exceeds 1.8. A look at the Q values of all simulations (Figure

3.11) and the m = 1 modes (see Figures 3.2, 3.4, 3.6, 3.8, and 3.10) confirms this,

particularly for the cases with a strong m = 1 mode development (cases with 25%,
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37.5%, and

- decrease at

50% counter-rotating stars, respectively).

about the time when Q increases beyond

Table 3.1: Summary of runs with
components

The m = 1 amplitude starts to

1.8.

counter-rotating

Fraction of counter- Final Final
Run # rotating components Spiral? Bar?

1 0% no yes (strong)
2 12.5%
3 25%
4 37.5%
5 50%

no yes (strong)
no yes (strong)

yes (weak) yes (weak)
yes no

Further, the theory predicts that the strength of the one-armed spiral increases with

higher fractions of counter-rotating components. The simulations found this also to

be true: the m = 1 Fourier amplitudes are consistently higher in cases with a high

fraction of counter-rotating components, compared to the cases with a lower fraction

of counter-rotating components.

Also, it is expected from the two-stream instability theory, that the developing one-

armed spiral is a leading spiral arm. While the direction of the one-armed spiral in the

various simulations was found to flip over every once in a while, the “last” one-armed

spiral formed (before this instability faded away) was a leading arm. The 50% case is

inconclusive in this respect because a galaxy with 50% counter-rotating components

has no preferred direction of rotation, and an angular momentum of zero (see also

Figure 3.12).
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Figure 3.11: Toomre’s Q for the runs with counter-rotating components.

It was found in this series of simulations that counter-rotating components in disk

galaxies are a successful suppressor against the formation of a central bar, and that

they are capable of triggering the formation of one-armed spiral features. Real galaxies

with observed one-armed features may therefore have counter-rotating components

in them (Comins et al., 1997). And, vice versa, galaxies with observed counter-

rotating components are likely to show one-armed spirals (Comins et al., 1997). The

simulations presented in the last few sections suggest that the fraction of counter-

rotating components needs to be at least 25% to establish long-lived one-armed spirals,

‘and to be able to significantly inhibit the formation of a central bar. There are,
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Figure 3.12: Specific angular momentum. The specific angular momentum decreases
with an increase in the fraction of counter-rotating components.

however, other possible mechanisms that prevent bar formation, as we’ll see in the

next section.

3.3 High Speed Interactions between two Galaxies

To motivate the simulations with the “artificial” lopsidedness described in the next

section, it was first desirable to find a mechanism which can produce this lopsidedness

in a natural way. The scenario investigated for this purpose is the rapid passage of

a massive companion galaxy. Lopsided structures in disk galaxies interacting with
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neighboring galaxies can be seen for example in Karachentsev 64 (Figure 3.13) and

in MlOl.

The intruder galaxy passes the target galaxy in a high speed coplanar orbit. In reality

a coplanar orbit is unlikely to happen, however. The two interacting galaxies would

instead have random orientations with respect to each other, and their gravitational

pull would result in effects (for example warping of one or both galaxies) which can

not be simulated with a two dimensional code. While the intruder is on the simulation

grid, its distance varies between 64 grid cells initially, and about 25 grid cells at the

time of the closest encounter. The intruder has 20% the mass of the target galaxy,

and the interaction lasts for just under one revolution period. After that time, the

intruder galaxy leaves the simulation and subsequently, its gravitational effect on the

model galaxy is ignored.

The purpose of this series of simulations was to determine if such a scenario is capable

of separating the centers of mass of the stellar disk and of the halo. The halo was

modeled in several different ways to examine if the specific structure of the halo would

influence the outcome of these simulations. It was modeled as either another N-body

component, or as a hydro component. For both cases, it was distinguished between a

hot halo and a cold halo (“hot” and “cold”, in the case of the N-body halo, refers to

an initially high and low value for Toomre’s Q, respectively). These simulations are

summarized in Table 3.2. The maximum offset listed in that table is in units of grid
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Figure 3.13: Photo of Karachentsev 64. This pair of interacting spiral galaxies is
number 64 in Igor Karachentsev’s catalog of binary galaxies (Karachentsev, 1987),
and it is also known as “Arp 273” in Halton Arp’s “Atlas of Peculiar Galaxies” (Arp,
1966). The larger galaxy is strongly tidally distorted (lopsided), while the smaller
edge-on companion galaxy (lower right) is relatively undisturbed. Photo credit:
WIYN’/NOA02/NSF3.

‘Consortium consisting of the University of Wisconsin, Indiana University, Yale Uni-
versity, and NOAO.

2National Optical Astronomy Observatories.
3National Science Foundation.
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cell length. In the case of a hot hydrodynamic halo the separation between the halo

and the stars still continued to increase at the end of the simulation.

Table 3.2: Summary of runs with an intruder

Halo Maximum
Run # Type Qo,M~ TO Offset

6 N-body, cold 0.3 n/a 0.75
7 N-body, hot 5.0 n/a 2.0
8 Hydro, cold n/a 0.5 K 3.0
9 Hydro, hot n/a 5 x 106K >18.0

In all cases a separation between the disk’s center of mass and the halo’s center of

mass is observed (Figures 3.14 and 3.15). The amount of separation is greater in

the cases of a hot halo. This is probably because the particles that make up the hot

halo move more randomly (they have more kinetic energy) than in the cold halo case.

Thus, a hot halo will be displaced less than a cold halo and the separation between the

centers of mass of disk and halo will be greater for the hot halo case (Zeltwanger et al.,

2000). That is what is observed in these runs. The motion of the hot halo’s center of

mass might have been underestimated, because due to the high-speed random motion

of its constituents a hot halo loses mass that escapes beyond the simulation grid. For

a cold halo this mass loss is less. The exact differences in the dynamics between hot

and cold halos are subject to more detailed studies.

The case resulting in the largest separation between the centers of mass of halo and

disk (hot gas halo) produces also the most asymmetric galaxy (Figures 3.16 and 3.17),

a visible indication for its lopsidedness.
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Figure 3.14: Relative center of mass motion for a cold halo. Shown is the motion of
the stars’ center of mass with respect to the center of mass of the halo. In the left
case the halo is simulated by cold n-body particles. The right panel shows the results
for a halo, simulated by a cold hydro component. The numbers along the trail are
time indicators in revolutions.
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Figure 3.15: Relative center of mass motion for a hot halo. Shown is the motion of
the stars’ center of mass with respect to the center of mass of the halo. In the left
case the halo is simulated by hot N-body particles. The right panel shows the results
for a halo, simulated by a hot hydro component The numbers along the trail are time
indicators in revolutions.
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Figure 3.16: Star mass distribution for the hot gas halo. Clearly visible in the second
and third frames is the elongation of the initially axisymmetric distributions, caused
by the passage of the intruder along the right side of the galaxy. The intruder exits
the simulation at just under t = 1.0 revolutions.
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Figure 3.17: Gas mass distribution for the hot gas halo. Clearly visible in the second
and third frames is the elongation of the initially axisymmetric distributions, caused
by the passage of the intruder along the right side of the galaxy. The intruder exits
the simulation at just under t = 1.0 revolutions.
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We have found a mechanism that can produce lopsided galaxies. In Section 3.4, the

properties of such galaxies will be studied and discussed in more detail.

3.4 Simulations of Lopsided Galaxies

Some lopsided galaxies may be explained as the result of interactions with close

companions. A systematic study of the properties of such lopsided galaxies is now in

order. The intruder runs presented in the previous section showed qualitatively the

same behavior, regardless of their respective halo type. They showed only quantitative

differences, in the amount of their center of mass separation between stars and halo.

But regardless of the halo type, such a separation was observed to some degree, and

the interaction between close neighbors provides, therefore, a possible scenario to

produce such a separation.

In simulations with lopsided galaxies and a dynamic halo, the stars’ center of mass

moved generally at least three times as much as the halo’s center of mass (Zeltwanger

et al., 2000). This is conceptually understandable, given the fact that the halo mass

fraction and the star mass fraction in those simulations were in a 3:l ratio. In those

simulations, the dynamic halo itself developed a spiral structure, for which there is no

observational evidence yet. To avoid any potential non-axisymmetric influences from

the halo, the offset runs described in this section used a static halo. Because of the

above mentioned relatively small motion of the halo’s center of mass, any limitations
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that might arise from using a static halo are also relatively small. In fact, since halo

mass fractions are believed to be even higher than the 75% used in our simulations,

the effect of the halo motion will be even less than described above. For this reason,

and to keep things simple, the runs in this section therefore employ exclusively a static

halo model. This halo model is also the one that is generally used in most simulations

with the GALAXY program. All runs with counter-rotating components and all runs

described in Chapter 4 used the static SC halo. Additional simulations with lopsided

galaxies, with other halo mass distributions, are described in Zeltwanger et al. (2000).

Two main characteristics of lopsidedness will be investigated: the amount of the offset

of the stellar disk’s center of mass from the halo’s center of mass and the angular

momentum of the stellar disk around the halo’s center of mass. For the amount of

the offset, two different values were chosen: 2fi cells (“small offset”, representing

about 300 pc) and lo& cells (“large offset”, corresponding to about 1500~~ in real

units). The angular momentum could be either “low” or “high”. “High” in this respect

refers to the fact that in this case the stellar disk, in addition to being displaced, was

given a slight “push” to force the disk’s center of mass into a damped orbit around

the halo’s center of mass. The halo in these runs is a static SC distribution with a

75% mass fraction.
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3.4.1 Small Offset, Low Angular Momentum

This simulation is a small offset, low angular momentum run. In this run (and

in all other offset runs) the initial angular momentum of the disk’s center of mass

has the same direction as the individual star particles’ initial angular momentum

(no retrograde motion). The run starts with the development of an initial transient

containing more spiral structure than our base run (run # 1 in Table 3.1). Following

the transient is a phase of spiral structure with approximately eight arms that combine

with each other and thus decrease in number as the simulation evolves. A noteworthy

difference is the initial relatively strong one-armed spiral that is not seen in the base

run. It is visible in the first frame of the left panel in Figure 3.19, and also evident

through the m = 1 mode in Figure 3.18 (left), which is the strongest mode for the

first 1.5 revolutions of the run. This one-armed spiral is due to the fact that the

initially offset stellar disk sloshes towards the center of the gravitational well of the

halo, leaving a string of stars in its trace which then becomes a one-armed spiral,

as the disk turns counterclockwise. This one-armed spiral fades away then, and the

disk is dominated by the above mentioned multi-armed spiral, until at about t = 3

revolutions a central bar forms, which remains the dominant feature of the simulation

for the remainder of the run. The end stage of this run is very similar to the base

run, both in visual appearance as well as in its Fourier amplitudes. The m = 2

(bar) mode of the base run is some 10% higher than in this small offset run though.

This agrees with earlier findings that interactions of galaxies may inhibit or at least
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weaken the formation of a central bar in an otherwise bar unstable disk (Athanassoula,

1996a; Athanassoula, 1996b). Runs with a higher initial offset (representing a stronger

interaction with a neighboring galaxy), discussed in the following sections, will show

that a higher offset is able to suppress the bar formation even more.

As a result of the offset, the stars’ center of mass spirals unevenly inward (“sloshes”)

around the halo’s center of mass (Figure 3.22, left). This kind of motion has also been

observed by Levine and Sparke (1998). Once the stars’ center of mass has reached the

central grid cell at (129,129), it essentially stays in that cell, displaying only small,

apparently random, fluctuations. (129,129) is also the grid coordinate at which the

halo’s center of mass is located. The apparently random motion of the stars’ center of

mass during the second half of the simulation is at least in part due to star particles

which escape from the simulation grid. These star particles are subsequently not

taken into account any more for the calculation of the disk’s center of mass (or for

anything else in the simulation, for that matter). Generally, for a simple simulation

like the base run, the mass loss, due to this escape, is 0.5% or less over the course of

an entire simulation. For offset runs, this mass loss may be as high as several percent,

depending on the amount of the offset, and whether it is a low angular momentum

run or a high angular momentum run.

Table 3.3 on page 77 lists the run discussed in this section as run # 10.
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Figure 3.18: Small offset - Fourier amplitudes. Low angular momentum run is on the
left, high angular momentum run is on the right.
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Figure 3.19: Small offset - star mass distribution. Low angular momentum run is on
the left, high angular momentum run is on the right.
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3.4.2 Small Offset, High Angular Momentum

Unlike the previous run, this simulation’s stellar disk has been given an initial “push”,

forcing the disk’s center of mass into a damped, counterclockwise orbit around the

halo’s center of mass. As a result of this push, this simulation develops no initial

one-armed spiral, like the low angular momentum run did. The m = 1 mode of

this simulation (see Figure 3.18, right panel) is consistently lower than the respective

mode of the low angular momentum run (Figure 3.18, left panel). The stellar density

distribution of this run does not show a comparably single-arm feature as the previous

run (Figure 3.19, right panel). The multi-armed spiral seen in the previous simulation,

however, develops in this run as well, and it goes through a very similar transient

phase after which the eight or so individual spiral arms start to merge together and

eventually fade away at around t = 5.3 revolutions. Consistent with the note at

the end of the previous section is the fact that the development of the central bar is

inhibited again. The overall development of the bar is comparable to the previous

run. The disk’s center of mass in this run displays similar behavior as its low angular

momentum sibling (Figure 3.22, right). Due to the initial “push”, responsible for

the high angular momentum, the stars’ center of mass requires more time before it

reaches the central grid cell at (129,129), where the halo’s center of mass is located.

The stars’ center of mass then bounces around that central grid cell, just as observed

in the low angular momentum case. Because the inward sloshing phase takes longer in

this case, the motion following the inward spiral appears less random, but essentially
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the random motion just sets in a little bit later than in the previous case. Table 3.3

on page 77 lists the run discussed in this section as run # 11.

3.4.3 Large Offset, Low Angular Momentum

The run described in this section has an initial offset five times larger than run # 10

(small offset, low angular momentum), but is otherwise the same. The larger offset

causes the initial one-armed feature, already noticed in run # 10, to become much

stronger. This is because the trail of stars, originating from the initial location of

the disk’s center of mass ( = high star density), now sloshes through less densely

populated areas of the disk and is thus less disturbed and can persist longer. In fact,

the m = 1 mode of this run is consistently the highest mode, although it is decreasing

in strength over time (see Figure 3.20). This mode, at its peak, is more than three

times as strong as in the small offset run.

This run does not develop as many transient multi-armed spirals as its small offset

sibling, but a set of four or five spiral arms can be seen in the star distribution through

t = 5.3 revolutions (Figure 3.19, left panel). The one-armed feature is visible even

longer, up to t = 8.7 revolutions. No bar develops in this simulation at all, supporting

previous findings that galaxy interactions may prevent stellar disks from developing

a bar. The center of mass motion of the disk behaves in the same manner as in the

small offset runs: it spirals inward around the central grid cell. Due to the larger
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Figure 3.20: Large offset - Fourier amplitudes. Low angular momentum run is on
the left, high angular momentum run is on the right.
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Figure 3.21: Large offset - star mass distribution. Low angular momentum run is on
the left, high angular momentum run is on the right.
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offset, this phase takes longer than in the small offset runs. In fact, at the end of the

simulation, the stars’ center of mass is still sloshing around the halo’s center of mass

(Figure 3.23, left). The random motion, observed in the small offset runs, has not yet

set in. Had the simulation been run longer than 14 revolutions, then the stars’ center

of mass would eventually start to bounce around the central grid cell, as the distance

of the two centers of mass decreases. Table 3.3 on page 77 lists the run discussed in

this section as run # 12.

3.4.4 Large Offset, High Angular Momentum

The last run in this series of simulations confirms previous results and does not offer

any surprises. As in the cases of the small offset runs, the initial one-armed feature is

weaker in the high angular momentum case compared to the low angular momentum

case. This is evident in the m = 1 Fourier amplitude (Figure 3.20), which is lower for

the high angular momentum case and in the plot of the star density (Figure 3.21).

The multi-armed spirals persist until about t = 3.6 revolutions and a one-armed spiral

is visible through about t = 8.7 revolutions. As in the previous large offset run, no

bar develops. The stars’ center of mass spirals very nicely inward in this case, as can

be seen in the right panel of Figure 3.23. The combination of a large offset with a

high angular momentum produces the initially large spiral motion, which continues,

though gradually damping, until the end of the simulation. Table 3.3 lists the run

discussed in this section as run # 13.
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Figure 3.22: Center of mass motion of the stars, small offset. The halo is static, its
center of mass is located at (129,129). Left: low angular momentum case. Right: high
angular momentum case. The motion starts near (131,131), the simulations lasted
for 14 revolutions.
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Figure 3.23: Center of mass motion of the stars, large offset. The halo is static, its
center of mass is located at (129,129). Left: low angular momentum case. Right: high
angular momentum case. The motion starts near (139,139), the simulations lasted
for 14 revolutions.
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3.4.5 Summary of Runs with Lopsided Galaxies

Table 3.3 summarizes the runs with lopsided galaxies. The prediction that interac-

tions between galaxies can produce lopsidedness and subsequently prevent the forma-

tion of a central bar in an otherwise bar unstable disk was confirmed. The stronger

the lopsidedness (simulated by a larger initial offset), the greater the suppression of

bar formation.

Table 3.3: Summary of runs with lopsided galaxies

Angular Final
Run # Offset  Momentum Bar?

10 2J2 low Yes
11 2Jz high Yes
12 loa low no
13 1oJz high no

Now that we explored the GALAXY code’s ability to perform simulations without

stellar evolution, it is time to test the code’s performance in simulations with stellar

evolution switched on.
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4 SIMULATIONS WITH STELLAR EVOLUTION

Galaxies, whether they are spiral, elliptical, or irregular galaxies, are hosts to numer-

ous dynamic processes. The GALAXY code is an attempt to realistically simulate

some of these processes. I will start off this chapter by describing briefly each of these

individual processes, and how they are implemented in the GALAXY code. More de-

tailed descriptions have been given in previous publications (Schroeder, 1989; Shorey,

1996), and the reader may kindly refer to these for more in-depth elaborations of the

evolutionary processes in the GALAXY program.

What complicates matters is that the evolutionary processes are not independent of

each other. Instead, they influence and affect each other. In some regions of the

parameter space governing these processes, the program behavior appears chaotic.

Small changes in one or several of the parameters change the outcome of the simu-

lation considerably. Other regions of the parameter space are more robust against

minor parameter changes and produce stable spiral galaxies over several dozens of

revolutions. And then there are regions in the parameter space, which, while not

being chaotic, do not sustain long lasting spiral structures. It has been one of the

main tasks for this thesis to map out this parameter space and find a set or sets of

parameters which result in simulations of galaxies with long lived spiral structures

that agree with observations of spiral galaxies. The presentation and description of

the simulations performed to map out the parameter space of the GALAXY program

make up the major part of this chapter.
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All simulations discussed in this chapter are referred to by their “run #“. Appendix

B lists the input parameters of all simulations together with this run #. Shown in

Appendix C are plots of Fourier Amplitudes of stars and clouds, Toomre’s Q (also

for stars and clouds), and the development of angular momentum and mass for the

various components of the simulations (stars, clouds, gas, halo, and total). In most

cases, pairs or groups of simulations are compared with each other, in which the sets of

input parameters were identical except for one parameter. That way the influence of

this particular parameter could be assessed. Some runs are mentioned and discussed

on more than one occasion if their set of input parameters paired them more than

once with other, similar simulations. This is particularly true for run # 14, which

served as a reference run for runs # 15 through # 29. Due to this grouping by similar

parameter sets, the simulation runs are not necessarily discussed in the order in which

they have been performed.

4.1 Input Parameters of the GALAXY Code

There are two kinds of parameters used in the GALAXY program: parameters that

directly influence an evolution process, and parameters that don’t. Emphasis is on

the evolution parameters, but some of the “other” parameters, at least those that

have been studied as part of the parameter space mapping, shall also be listed in this

section for completeness.
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4.1.1 Evolution Parameters

4.1.1.1 Gas Infall

Infall from the halo onto the disk has been included in N-body simulations of disk

galaxies to cool the disk (Sellwood and Carlberg, 1984; Schroeder, 1989; Shorey,

1996). Preventing the disk from getting too hot maintains favorable conditions for

prolonged spiral structure in the disk. There is also observational evidence for such

infall in our own galaxy, the Milky Way (Toth and Ostriker, 1992; van Woerden et al.,

1985; Giovagnoli and Tosi, 1995; Wakker et al., 1999).

In practice, the infall is implemented by adding a fixed amount of halo mass, AMhalo (i, j),

to cell (i, j) of the gas. The A Mhalo (i, j) remain constant throughout the simulations

and their value is proportional to the initial total mass in cell (i, j). This transfor-

mation of halo mass to gas mass is done at every time step. Thus, after t rotation

periods into the simulation, the total amount of halo mass AM(i, j) that was added

to cell (i, j) since the start of the simulation, can be computed from:

AM&j) = 0.01 Pin t C(i, j, t = 0) w

C(i, j, t = 0) is the total mass density of cell (i, j) at time t = 0. Pi,, is the user defined

rate of infall (specified in the parameter input file). The factor 0.01 is used so that
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Pin can be specified as a percentage value, rather than a fraction. Thus, for example,

Pi,, = 1.0 means “During every rotation period, 1.0% of the initial total galaxy mass

in cell (i, j) is taken away from halo cell (i, j) and added to gas cell (i, j)“.

The infall material is assumed to have the same thermal and dynamic properties as

the initial gas component. Thus, gas falling into cell (i, j) has the same velocity that

the gas in this cell initially had at t = 0 revolutions. After some infall has accreted

into a gas cell, the new speed of that cell is then calculated using the conservation of

linear momentum.

To test the code’s response to variation of the infall rate, simulations have been

performed with Pin E {0,0.25,0.375,0.5,1.0,1.5}.

4.1.1.2 Star Formation through Cloud Collisions

There is observational evidence for the existence of gravitationally bound gas clouds

in the Milky Way (Chieze and Lazareff, 1980; Cowie, 1980; Casoli and Combes,

1982). To simulate such clouds, a cloud-particle N-body component is included in

the GALAXY code. Unlike the star particles in the code, these cloud particles may

collide with each other. Shorey (1996) has put in great effort to simulate these cloud-

cloud interactions very realistically. While previous simulations modeled the clouds

as inelastic billiard bails (Carlberg and Freedman, 1985; Shorey, 1990; Elmegreen

et al., 1993), Shorey (1996) implemented a model based on the cloud fragmentation
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model developed by Casoli and Combes (1982). The billiard ball model would cause

significant changes in the cloud particles’ trajectories when they collided, thus heating

up the disk unnecessarily. In Shorey’s (1996) approach, the cloud particles are treated

as weakly bound spheres of gas that may exchange mass during a collision. They do

not simply bounce off each other as they did in earlier billiard ball models. As a result,

the trajectories of the cloud particles are not altered significantly by a collision.

Moreover, this fragmentation model has the potential to simulate star formation at

the collision interface, as has been proposed in earlier works (Scoville et al., 1986;

Shu et al., 1987; Elmegreen et al., 1993). The probability P,, for star formation

through cloud collision is specified in the parameter input file. When clouds collide,

a new star particle forms at the collision interface if a random number between 0 and

1 is less than P+, .

As a result of the collision, the clouds involved may coalesce together to form one

single cloud, or they continue as two clouds (mass exchange between the colliding

clouds is possible though), or the collision interface may break off from both colliding

clouds to form a new, third, cloud. For details on how the code decides which scenario

applies, please see Shorey’s thesis (1996).

To test the code’s response to variation of the star formation rate through cloud

collision, simulations have been performed with P+, E {0,0.03,0.1,0.2}.
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4.1.1.3 Cloud Formation by Jeans Collapse

The cloud formation by Jeans collapse has already been discussed in Section 2.3 and

is here only quickly summarized for completeness: A localized portion of the ISM may

undergo Jeans collapse, if this ISM portion’s mass exceeds the critical Jeans mass,

MJ, as defined by equation(2.11). The probability P’ to form a new cloud is then

given by equations (2.13) and (2.14) on page 20. The user has control over this cloud

formation process through PCh in equation (2.13). The value of PC* is specified in

the parameter input file.

To test the code’s response to variation of the cloud formation rate, simulations have

been performed with PC@ E {O,O.l, 0.5,l.O).

4.1.1.4 Star Formation through Snowplow

When stars go supernova they produce shock waves that travel through the neigh-

boring galaxy before they dissipate. These shockwaves increase the gas pressure of

the ISM, and as a result of this increased gas pressure, nearby clouds may get dense

enough to become Jeans unstable and collapse to form new star particles (Elmegreen,

1992; Shorey, 1996). This process, referred to as “snowplow”, is included in the

GALAXY code through the “Stochastic Self Propagating Star Formation” model,

SSPSF (Gerola and Seiden, 1978; Seiden and Gerola, 1979; Shore, 1981; Statler

et al., 1983).
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In this model, a cloud may collapse and form new stars, if its mass, Mcloud, exceeds

the critical Jeans mass, MJ (similar to the case of cloud formation from gas through

Jeans collapse, see above). The star formation rate through this snowplow effect,

PsfsP, determines the probability that a cloud satisfying the Jeans condition actually

produces a new star particle. If Mcloud > MJ is satisfied, then a random number, s, is

compared to Psfsp. A new star forms, if Psfsp > s. Psfsp is set in the parameter input

file.

To test the code’s response to variation of the star formation rate through the snow-

plow effect, simulations have been performed with P+, E (0,O.l).

4.1.1.5 Supernovae

Supernovae are an empirically understood phenomenon. At the end of their life

cycle, stars of sufficient mass will go out in a blaze of glory with a gigantic explosion.

Much of their mass is ejected into the ISM in this process. Since each star particle

actually represents a whole cluster of stars containing stars of different masses, which

therefore evolve at different rates, the supernova activity in a given cluster will vary

over time. The program keeps track of the age of each star and decides, based on

each star’s mass, when its time has come to blow up. The mass and energy released

by a supernova is added to the hydro cell in which the supernova took place. Other

than switching supernovae “on” or “off’, there is no further control parameter for the

supernovae defined in the,parameter input file.
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4.1.2 Non-Evolution Parameters

l Cloud mass fraction. The fraction of the total galaxy mass that is assigned to

the clouds. Values tested: O.O%, 0.5%, 2%, and 4%.

l Gas mass fraction. The fraction of the total galaxy mass that is assigned to the

gas. Values tested: O.O%, 0.5%, and 2%.

l Halo mass fraction. The fraction of the total galaxy mass that is assigned to

the halo. Value has been kept fixed at 80%.

l Star mass fraction. The fraction of the total galaxy mass that is assigned to

the stars. Values tested: 14%, IS%, 17.5%, and 20%.

l Initial gas temperature. Only used for isothermal start. Values tested: 0.5 K,

2 K, 5 K, 10 K, and 100 K.

l Initial energy density of gas. Only used for non-isothermal start. Values tested:

10, 150, and 1500.

l Initial number of star particles. Values tested: 1.0 x lo5 and 2.5 x 105.

l Initial Toomre’s Q of stars. Values tested: 1.1 and 2.0.

l Initial number of cloud particles. Values tested: 1.0 x lo4 and 5.0 x 104.

l Initial Toomre’s Q of clouds. Values tested: 1.1 and 2.0.
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4.2 Number of Star Particles

Earlier simulations of spiral galaxies have already shown that the lifetime of a spiral

structure increases with the particle number N (Shalit, 1995). Needless to say, to

simulate a galaxy containing 2 x 10” stars as realistically as possible, one would want

to run a computer model containing as many N-body particles. Current computer

technology is not (yet) capable of mastering such a feat, although Moore’s Law, pre-

dicting that computer performance doubles every 18 months, provides us modelers

with constantly improving equipment and thus new opportunities for more accurate

simulations. But considering that the execution time of the GALAXY code is pro-

portional to N log N, one frequently has to trade in accuracy of the simulation for

faster execution to produce results sufficiently fast. On the fastest computer currently

at my disposal, a typical GALAXY run with 2.5 x lo5 star particles and full stellar

evolution switched on requires a minimum of three days to execute and analyze.

This section will compare runs with different initial numbers of star particles. The

runs discussed in this section will otherwise be identical to rule out any other influ-

ences for differences in the simulations’ outcome.

The runs to be compared here are listed in Table B.2 on page 156 as run # 14 and

run # 20, respectively. Run # 14 will generally serve as a reference run for about the

first half of the runs listed in Appendix B. It uses lo5 star particles, while run # 20

simulates 2.5 x lo5 star particles.
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Figure 4.1: Star mass distribution of run # 14.

Figure 4.2: Star mass distribution of run # 20.
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Figures 4.1 (run # 14) and 4.2 (run # 20) show the star density distributions for

the two runs at three different time steps. Note that the time indices for the two

runs differ slightly, although the GALAXY program performed the same number of

iterations in each case. This slight difference is due to the dynamic calculation of the

time step At between iterations. And because At depends in part on N, the slight

difference in the time indices results.

Early into the simulation, the two runs show little difference. But already by time

t M 11.5 revolutions run # 14 shows less structure and is more diffuse around the

truncation radius than run # 20. This trend continues throughout the remainder of

the simulations. These subjective indications are supported by a look at the Toomre’s

Q for the two runs (Figures C.l and C.7). At the end of the simulations, run # 14

is about 150/o “hotter” than run # 20. Also note ,how the stellar disk in run # 14

“shrinks” with time. At t x 20 revolutions the disk in run # 14 is noticeably smaller

than the disk in run # 20.

up to t z 15 revolutions, the rotation curves of the two simulations are very similar

(see Figures 4.3 and 4.4). But after t M 15 revolutions, run # 14’s rotation curve

drops significantly at higher radii, which is generally not observed in real galaxies.

Instead, a mostly flat rotation curve is measured. Run # 20 maintains such a flat

rotation curve at M 215 km s-l until the end of the simulation. The reduced circular

speed at higher radii causes the stellar disk in run # 14 to shrink, as mentioned above.
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For comparison, the flat part of the Milky Way’s rotation curve has been observed to

be at x 230 kms-’ (Tayler, 1993).

Not surprisingly, the obvious “winner” of this comparison is the run that employs a

greater number of star particles. Thus, from run # 31 on, all simulations have been

performed with N = 2.5 x 105.

4.3 Mass Fractions

The mass fractions of halo, stars, gas, and clouds of spiral galaxies have been deter-

mined by several groups, see for example Elmegreen (1998), Binney and Tremaine

(1987), and references therein. In these reports, the halo’s mass is estimated to con-

tain from 75% to 95% of the total galaxy mass. The stars make up about 10% to

20%, and the clouds and gas “several percent”. In this section, the effects of variations

in the mass fractions of the galaxy components will be investigated.

Table 4.1: Runs differing by their mass
fractions (with stellar evolution)

R u n  #  H a l o  S t a r s  C l o u d s  G a s
”14 0.8 0.16 0.02 0.02

26 0.8 0.14 0.04 0.02
27 0.8 0.175 0.02 0.005
28 0.8 0.175 0.005 0.02
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Runs 14, 26, 27, and 28 differ by their mass fractions only, but are otherwise identical.

Table 4.1 lists the sets of mass fraction values for these runs. The complete sets

of parameters of all runs are listed in Appendix B. The halo has been kept at a

mass fraction of 0.8, consistent with current belief that a substantial mass fraction

in galaxies consists of “dark matter” surrounding the galaxy. This dark halo mass

fraction may be as high as 0.95, and the chosen value of 0.8 represents a value well in

the range of the reported halo mass fractions. The remaining 0.2 have been divided

between stars, gas, and clouds, so that the stars have a roughly 5 to 10 times higher

mass fraction than the gas and the clouds.

Runs # 14, 26, and 27 develop in virtually the same way. A noteworthy difference

occurs in run # 28, which develops a central bar in the stellar disk, see Figures 4.5

and 4.6.

The red dots in the star density plots mark the locations where new stars formed at

the respective time steps. There is no obvious difference in the star formation process

of the two runs, neither in the rate of star formation, nor in the locations where they

form. It should be noted that the runs reported here were done before the changes in

the cloud formation routine (see Section 2.3) were incorporated into the code. The

“starburst rings” of star formation that are visible in Figures 4.5 and 4.6 are a direct

consequence of the high cloud formation activity in the galaxy center: The large

cloud population due to the high cloud formation probability increases the frequency
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Figure 4.5: Star mass distribution of run # 27. No bar develops. Red dots mark the
locations of newly formed stars. Runs # 14 and # 26 look very similar to this one.

Figure 4.6: Star mass distribution of run # 28. A central bar develops. The red dots
mark the locations of newly formed stars.
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of cloud collisions. This, in turn, brings up the star formation rate through cloud

collisions. The modified cloud formation routine does not confine star formation to

such a starburst ring as observed in the runs described in this section. Star formation

does still happen, for the most part, at or near the galaxy center, but is generally

more spread out.

The development of the bar is also evident from a comparison of the Fourier modes of

these two runs (Figures C.14 and C.15). Run # 28 quickly develops a strong m = 2

mode, consistent with the evolving central bar in this simulation. In run # 27 the

m = 2 mode does not grow nearly as high - no bar develops here.

A preliminary series of simulations done for this thesis, involving runs with only halo

and star components, showed that a sufficiently massive halo is capable of suppressing

the formation of a central bar in the galaxy. This finding is well-known from the

work of Ostriker and Peebles (1973) and it has also been reported by other authors

(Binney and Tremaine, 1987; Sellwood, 1983). Since both the halo mass fraction and

the star mass fraction remain unchanged from run # 27 to # 28, there must be other

mechanisms affecting the bar formation here.

A look at Toomre’s Q for these runs (Figures C.14 and C.15) shows that run # 27’s

Q is consistently about 20% to 25% higher compared to run # 28. Run # 27 is thus

hotter and therefore more bar stable than run # 28. The disk in run # 28 may have

been kept cooler due to the initially smaller cloud mass fraction in this run. The
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cloud-cloud collision rate is therefore low, and it is well known that collisions are a

major contributor to heating in disk simulations (Whitworth et al., 1998; Schroeder,

1989).

It should also be noted that these runs were done with “only” lo5 star particles, and we

observe the earlier reported “shrinking” of the stellar disk (see Section 4.2, page 88).

While other factors may contribute to this shrinking, a low number of star particles is

certainly a major influence for this observation. The shrinking is generally observed

to a lesser degree for runs # 31 and later, when the number of star particles has been

increased to 2.5 x 105.

In the category of runs which differ only in their initial mass fractions belong also runs

# 39 and # 42. Those were originally not intended to be direct comparisons, but they

fit into this section and are therefore included here. They are both runs with stellar

evolution switched off, and were designed to be compared to corresponding runs with

stellar evolution switched on. These runs were needed to assess the influence of the

stellar evolution processes to the simulations. In fact, run # 39 is merely a modified

version of the base run described in Section 3.1. Table 4.2 lists the mass fractions of

these three simulations.

The first thing noticed, when comparing the base run from Section 3.1 with run # 39

is, that the bar develops to a lesser degree in run # 39. This can be seen in Figures

3.1 and 4.7, and it is even more obvious in the comparison of the m = 2 Fourier modes
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Table 4.2: Runs differing by their mass fractions (no
stellar evolution)

Run #  Halo  S ta rs Clouds Gas # of stars
1 0.75 0.25 0.0 0.0 lo5

39 0.8 0.2 0.0 0.0 2.5 x lo5
42 0.8 0.16 0.02 0.02 2.5 x lo5

of the two runs (Figures 3.2 and C.26): the base run’s m = 2 mode grows some 50%

higher than run # 39’s m = 2 mode. This is consistent with the previous remark

that a high halo mass fraction may suppress the formation of a central bar in disk

galaxies. Note that the halo mass fraction in run # 39 is 0.8 compared to 0.75 for

the base run, a rather small difference. The apparent difference in size of the stellar

disks in Figures 3.1 and 4.7 is merely due to a different scaling of the images. The

simulated galaxies have the same “physical” size, and they occupy the same space on

the simulation grid. This is true for all simulations described in this dissertation.

Taking away some mass from the stars and assigning it in equal parts to the clouds

and the gas (run # 42) changes things considerably. There is no bar development

in this run. The comparison of the Fourier modes of runs # 39 and # 42 (Figures

C.26 and C.29) shows that there is no particularly strong mode dominating run # 42.

Especially, no m = 2 development is observed here. In fact, the stellar distribution

shown in Figure 4.8 reveals hardly any structure after t z 10 revolutions.
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One contributing factor to this fact may be that, although the halo mass fractions of

runs # 39 and # 42 are the same, the ratios of halo mass to star mass are different.

In run # 39 it is 4: 1, and in run # 42 it is 5:l. As we saw in the comparison of the

base run with run # 39, a relatively small increase in the halo mass to star mass ratio

can already have significant impact on the bar development.

This variation in halo mass to star mass ratio is however only part of the explanation.

The presence of the gas and clouds in run # 42 will undoubtedly affect the shape of

the stellar disk. Particularly, as outlined above, the cloud-cloud collisions will heat

up the disk. It is not surprisingly therefore, that the disk in run # 39 is cooler than

the disk in run # 42 (see the stars’ Q in Figures C.26 and C.29), and is therefore

more bar unstable.

Within reasonable values for the mass fractions the simulations discussed in this sec-

tion behaved similarly. The development of a bar in runs # 1, # 28, and # 39 is

no distinguishing criteria between more realistic simulations and less realistic simula-

tions, because barred spiral galaxies as well as unbarred spiral galaxies are observed

in the universe. Other than the bar development there was little, if any, difference in

the qualitative outcome of the simulations that would justify favoring one set of mass

fractions over another.
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Figure 4.7: Star mass distribution of run # 39. A central bar develops.
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Figure 4.8: Star mass distribution of run # 42. No bar develops.
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4.4 Toomre’s Q for Stars

For all but one simulation described in this chapter, the initial value for the stars’

Toomre’s Q, &a, was set to a marginally stable value of 1 .l. One simulation, run

# 15, was done with &a = 2.0 and compared with run # 14. Aside from the value

for &a, the two runs are identical.

Figures 4.1 and 4.3 show results from run # 14. Corresponding figures for run # 15

are not shown here, because they are virtually identical in almost every respect. The

one noteworthy exception is the evolution of the one parameter in which the two runs

differed initially: Toomre’s Q.

Figures C.l and C.2 show the surprising result, that Q in run # 14 (Qe = 1.1) not

only quickly catches up with run # 15’s Q value (Qa = ‘2.(l), it even ends up higher.

All simulations performed for this thesis show a rise in Q. This has also been reported

by other authors (Shorey, 1996). Why the originally cooler disk would heat up faster

than the originally warmer disk is unclear at this time and requires further testing.

4.5 Number of Clouds

Interstellar gas clouds have been observed in the Milky Way in a wide range of sizes

and masses. They can be anywhere from 8 pc to 80 pc in size (Casoli and Combes,
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1982) and from 102.7 M, to 105.7 M. in mass (Chieze and Lazareff, 1980; Cowie, 1980;

Casoli and Combes, 1982). The GALAXY code models clouds as colliding N-bodies.

The implementation of the collision process and the subsequent star formation as a

result from such collisions have been mentioned earlier in this thesis, and they are

described in more detail elsewhere (Schroeder, 1989; Shorey, 1996). The number of

clouds is not as critical to the accuracy of the simulations as is the number of stars,

and their number in galaxies is also considerably smaller. lo4 cloud particles have

been used for the simulations here. One simulation (run # 54) has been started with

5 x lo4 cloud particles, and is compared to the otherwise identical run # 53.

With the exception that run # 54 (5 x lo4 cloud particles) naturally shows a higher

cloud number density across the galaxy, the two compared runs are remarkably simi-

lar. So similar, almost to the last detail in fact, that it can quickly be concluded that

the number of employed cloud particles of lo4 is sufficient to run simulations with

the GALAXY code within the studied parameter range. Nothing further noteworthy

has been observed in these runs.

4.6 Toomre’s Q for Clouds

Having concluded that the number of clouds has little effect on the results of the

simulations, let’s now see how the initial value of Toomre’s Q for the clouds affects

the simulations. Most runs were done with an initial value of QO,clo,,d = 1.1. One
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simulation, run # 23, has been started with QO,cloud = 2.0 and this run is compared

to run # 14.

One observation from this comparison is that the run with the higher Qe~~,,d sees

an increase in angular momentum for the clouds after t = 3 revolutions (see Figure

C.10). This increase is also seen in run # 14 (Figure C.l), but the clouds’ angular

momentum decreases again after t = 12 revolutions in that run, while in run # 23 it

continues to climb.

The initial drop in the clouds’ angular momentum is observed across all simulations

to a varying extent, and is due to an initially high cloud-cloud collision rate. In

many cases - like in run # 14 - the clouds’ angular momentum starts to decrease

again about half way through the simulation. This increased angular momentum of

the clouds may trigger an overall increased star formation rate. Figures 4.9 and 4.10

show the star density of the two compared runs, together with the locations of newly

formed stars.

It is noted that run # 23 indeed seems to have a slightly higher star formation

rate, particularly noticeable at t = 22.677 revolutions, but also visible at t = 11.622

revolutions. Plus, run # 23 produces more stars in the outer regions of the galaxy,

which is more obvious at t = 11.662 revolutions than at t = 22.677. The increased

angular momentum of the clouds results in a higher cloud-cloud collision activity in

those outer regions, which produces the higher star formation there.
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Figure 4.9: Star mass distribution of run # 14. The red dots mark the locations of
newly formed stars.
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Figure 4.10: Star mass distribution of run # 23. The red dots mark the locations of
newly formed stars.
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Also visible in those plots is the aforementioned very high cloud-cloud collision rate

at the very beginning of the simulations. The strong star formation activity at t = 0

manifests this. This high collision rate (and the corresponding star formation rate)

decreases quickly after just a few time steps, going hand in hand with the observed

initial drop of the clouds’ angular momentum.

Toomre’s Q for stars behaves nearly identically in the two compared runs, reaching

a maximum value of 6 at the end of the simulations. For run # 14, this is shown in

Figure C.1. For run # 23 this plot (Figure C.10) looks very similar. The clouds’ Q,

however, does not develop identically. Generally, Qcloud reaches considerably higher

values than the stars’ Q. This is due to the collision processes that the clouds undergo.

These collisions throw the clouds into much more random orbits than the stars’ orbits,

which causes an increase in the clouds’ velocity dispersion, and thus in their Q. In

run # 14, Qcloud rises to about 175, while in run # 23 it reaches “only” about 110

(Figures C.l and C.10). It is interesting to notice that just as in the case of the stars’

Q, the initially cooler model ends up hotter than the initially warmer model (at least

in the cloud component). To determine whether this is a systematic behavior, or

merely a coincidence, requires further testing.

4.7 Initial Internal Energy of the Gas

When a GALAXY simulation is initialized, one has the option to either set the initial

temperature of the gas (for an isothermal gas), or to set the initial energy density of
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the gas (for an isoergic gas). In this section, three runs will be compared which start

with an isoergic gas with different initial energy densities (“initial energy density” is

henceforth called “ceg”). The compared runs are # 14 with ceg = 150, run # 16 with

ceg = 10, and run # 22 with ceg = 1500. Most simulations with an isoergic gas used

ceg = 150, following a recommendation by Shorey (1996).

Giving the gas an initial uniform energy density (specified by the ceg value) is equiv-

alent to giving the gas a temperature profile. Figure 4.11 shows such a temperature

profile of the gas at t = 0 revolutions for ceg = 150, ceg = 800, and ceg = 1500. The

plot with ceg = 800 is only included to further illustrate how initial energy density

ceg and temperature T are related. No simulation with ceg = 800 has actually been

done. ceg = 10 from run # 16 has been excluded from this plot, because for such

a low energy density the temperature does not exceed 0.53 K anywhere on the grid.

With the temperature scale given on top of Figure 4.11 the resulting plot is essen-

tially black everywhere. Note that isoergic simulations assign higher temperatures to

regions with smaller gas density. Equation (2.9) confirms that for an ideal gas with

constant internal energy U, the mass M within a grid cell and its temperature 7’ are

inversely proportional. Each isoergic run eventually reversed the temperature map

to a distribution in which the gas in the galaxy’s center is hotter than the gas in the

outer regions. Generally, this reversion occurred during the first half revolution of

a simulation. Figure 4.11 also illustrates that the initial setup of the simulations is

axisymmetric.
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Gas with a higher ceg value is warmer than gas with a smaller ceg value. The gas

with a high ceg value is thus less susceptible for Jeans collapse than gas with a low

ceg value. This will affect the cloud formation rate and ultimately the star formation

rate through cloud collisions. Therefore, it is expected that run # 16, which employs

the lowest ceg value of the three compared runs, exhibits the highest star formation

rate. This is what we observe in Figures 4.9, 4.12, and 4.13.

The higher susceptibility for Jeans collapse of the cold gas can also be seen in the

individual components’ mass development of these runs. In run # 16 (cold gas), the

total cloud mass increases immediately after the start of the simulation, being at

almost 3.5 times its starting value by the end of the run (see Figure C.3). The gas

mass instead remains at a constant level for the first five revolutions. Only then does

the gas mass start to increase slowly, and reaches about 1.5 times its starting value by

the end of the simulation. At t = 5 revolutions, when the gas mass starts to increase,

the growth rate of the cloud mass decreases visibly.

In the case of the hot gas (run # 22), the gas mass increases right away (it is constantly

fed from the halo infall), and by the end of the simulation it reaches more than 3.1

times its starting level (Figure C.9). The cloud mass stays at a nearly constant level

until t = 5 revolutions, before it starts to increase and reaches 2.5 times its starting

value. By time t = 5 revolutions, portions of the gas have sufficiently cooled down

(through cooling mechanisms like the halo infall) to invoke cloud formation through

Jeans collapse.
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Figure 4.11: Temperature map for three different ceg values. ceg = 150 (left panel),
ceg = 800 (middle panel), and ceg = 1500 (right panel).

Figure 4.12: Star mass distribution of run # 16. The red dots mark the locations of
newly formed stars.
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Figure 4.13: Star mass distribution of run # 22. The red dots mark the locations of
newly formed stars.
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In run # 14 with the medium value of ceg = 150, both the gas component and the

cloud component increase their respective total mass from the start of the simulation

at moderate rates (Figure C.1). The chosen value of ceg = 150 therefore seems to be

a good choice for an isoergic gas, because the gas is neither too hot to prevent Jeans

collapse altogether, nor is it so cold that collapse occurs too fast.

4.8 Isoergic Gas vs. Isothermal Gas

A simulation with an isoergic gas (run # 33) is compared to three runs using an

isothermal setup where the gas has a different initial temperature To in every case.

These are run # 37 with Ta = 5K, run# 35 with Ta = lOK, and run # 36 with

To = 100K.

The isoergic run (with ceg = 150) develops rather uneventfully, but it does provide an

excellent opportunity to demonstrate how the cloud formation and the star formation

from cloud collisions are interrelated. At time t = 3.069 in Figure 4.14, the regions

of new star formation are along a two-armed spiral. The underlying cloud density

(left panel in Figure 4.15) shows high cloud concentrations along the very same spiral

arms. The cloud density in those regions is sufficiently large to provide a high cloud-

cloud collision rate, and subsequently a high star formation rate from these collisions.

The gas density at the same time step (middle panel in Figure 4.15) shows a lower gas

concentration along those arms, indicating that a substantial amount of gas in these
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regions has collapsed to clouds. Since each cloud formation releases some energy to

the gas, the gas temperature increases accordingly. This can be seen in the right panel

of Figure 4.15, which shows higher temperatures along those spiral arms. Note that

the temperature difference between the spiral arms and the surrounding regions is less

than the image might suggest. The hottest (brightest) regions in this temperature

map are not more than 12 K, and the coldest (darkest) regions are of the order of 1 K.

The spiral structure in run # 33 is not maintained very long though. By time t = 11

revolutions it starts to fade away, and by time t = 22 revolutions the galaxy exhibits

no more spiral features.

Runs # 35, # 36, and # 37 were the first runs which employed an isothermal gas

rather than an isoergic gas. It was not a small surprise to see the difference. Runs

# 35 and # 37 (To = 10K and T, = 5 K, respectively) both still show strong spiral

structures by the end of the simulation at t = 22 revolutions. In fact, run # 37

was reinitialized to go twice the simulation time (44.6 revolutions), and it still shows

strong spiral features at that time. Thus, encouraged from run # 37’s prolonged

spiral arms, most simulations from that point on have been run for that long.

Run # 36 used To = 100 K, which was obviously too hot to allow a sufficiently large

cloud formation rate. As a result, the star formation comes also almost to a stop,

see Figure 4.18. Plus, this run got terminated prematurely due to a power outage,

unfortunately.
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Figure 4.14: Star mass distribution of run # 33. The red dots mark the locations of
newly formed stars.

Figure 4.15: Clouds, gas, and temperature of run # 33. The clouds (left panel) show
high density in the regions of star formation (compare with Figure 4.14, left panel).
The gas density (middle) is thinner in those regions, because the cloud formation
used up some of the gas, and because the higher temperature in those regions (right
panel) drives the gas away.

108



-‘i -,
i. “. 1

T;,-‘,c. -j-lf-,,p; T I r-17 P :
- .j -Ii-‘, :’ :--; ~ .J : _, F 3-F f,+:m

Figure 4.16: Star mass distribution of run # 37. The red dots mark the locations of
newly formed stars.

Figure 4.17: Star mass distribution of run # 35. The red dots mark the locations of
newly formed stars.

Figure 4.18: Star mass distribution of run # 36. The red dots mark the locations of
newly formed stars.
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Three more pairs of simulations are listed in Appendix B, in which runs differ only

by the initial state of the gas (isoergic vs. isothermal), or by their initial temperature

for an isothermal setup. The first of these pairs consists of run # 47 and # 48. Run

# 47 uses an isothermal gas with To = 2 K, and run # 48 starts with an isoergic gas

and ceg = 1500. Just as before, the isothermal setup delivers the more promising

result. That run starts off much cooler than the isoergic run, as a look at Figure

4.11 illustrates. The inherent differences in the development of these two runs can

therefore in large part be attributed to the difference in initial temperature, rather

than to the fact that one run starts isothermal, and the other isoergic. An initially

cool gas will in most cases produce better results than a warm gas.

The isothermal run # 47 maintains a strong spiral structure through t = 28 revolu-

tions (shown in Figure 4.19 is t = 22.878 revolutions). Run # 48’s spiral structure

is at t = 22.878 already mostly faded away (Figure 4.20). By the end of the run,

both simulations evolved into a mostly featureless disk, although run # 47 has still

a hint of a weak spiral arm. The fact that the locations of newly formed stars are

suddenly represented by blue dots instead of red dots as before merely acknowledges

that young stars are frequently very massive, very hot, and thus bluish stars. Hot

and massive stars burn their fuel at a much faster rate than cooler and less massive

stars, and they therefore have a much shorter life cycle. Thus, if one detects a young

star, odds are good that it is also a hot (blue) and massive star. Other than that

there is no reason for using blue dots instead of red dots to represent new stars.
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Figure 4.19: Star mass distribution of run # 47. The blue dots mark the locations of
newly formed stars.

Figure 4.20: Star mass distribution of run # 48. The blue dots mark the locations of
newly formed stars.
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Another pair of simulations appropriate for comparison in this section are runs # 40

and # 41. Run # 40 is an isothermal run with To = 10 K, and run # 41 is an isoergic

run with ceg = 150. Both runs are otherwise identical, and they are listed here

although they have most evolution processes switched off. The only evolution process

switched on in these runs is the halo infall. What makes these two runs so exciting is

that they both display among the strongest and longest lasting spiral structures seen

in any simulation with the GALAXY program. At the end of the simulations at time

t = 44.64 revolutions, both runs maintain very strong spiral arms (see Figures 4.21

and 4.22. The apparent different size of the stellar disk in Figure 4.22 is merely due

to a different scaling factor for the images). What’s more, the strength of those spiral

arms continues to increase until the very end of the runs. The Fourier amplitudes for

both runs show strong and increasing m = 1 and m = 2 modes (Figures C.27 and

C.28). In the development of Toomre’s Q, both runs rise to just over Q = 5 before

flattening out. Because halo infall is the only evolutionary process, the gas mass

fraction increases continuously throughout the runs, rising to 20 times its starting

value of 0.02. The halo mass fraction is reduced accordingly, it falls to 0.42 by the

end of the runs.

The two runs develop remarkably similarly. There is no particular difference de-

tectable that could be attributed to the fact that one of the two runs starts isother-

mally (run # 40), and the other one isoergically (run # 41). The major contributor

to the prolonged spiral structures observed in these runs is the rather high value of
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Figure 4.21: Star mass distribution of run # 40.
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Figure 4.22: Star mass distribution of run # 41.
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the infall rate (Pi, = 1.0). In a section later in this chapter the influence of the infall

rate will be investigated further.

As a last comparison in this section we’ll look at two isothermal runs that differ only

in their initial temperature. Run # 38 has To = 10 K, and run # 49 has To = 2 K.

Run # 38, the warmer of the two runs, develops spiral arms and maintains them

until the end of the simulation (Figure 4.23). Both the m = 1 and the m = 2 Fourier

modes confirm with their strength the presence of these spiral arms (Figure C.25).

The cooler run # 49 also develops spiral features, but they are much weaker than in

run # 38 (Figure 4.24). The spiral arm in this run is strongest about half way through

the simulation (the m = 1 Fourier mode peaks at around that time, see Figure C.36).

At the end of the run the spiral arms are still visible, but they have clearly faded.

This pair of simulations deviates from the general observation that initially cooler

gas results in longer lasting spirals than initially warmer gas. It is the combination

of warm gas with a large cloud formation probability P+ = 1.0 that works well for

run # 38. The decreased susceptibility for cloud formation through Jeans collapse of

the warm gas is compensated by the high cloud formation probability.

Run # 38 displays interesting behavior in its clouds’ Toomre’s Q. It increases during

the first quarter of the simulation, and decreases continuously thereafter. Being the

warmer run of the two, its gas component is more resistant to Jeans collapse than

run # 49, and run # 38’s cloud mass therefore increases at a slower rate during the
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Figure 4.23: Star mass distribution of run # 38. The red dots mark the locations of
newly formed stars.

Figure 4.24: Star mass distribution of run # 49.
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first half of the simulation. The gas mass, however, increases rather quickly to 14

times of its starting value. Runs # 40 and # 41, discussed above, showed a similar

strong increase in the gas mass fraction, and produced exceptionally strong spiral

features (Figures 4.21 and 4.22). Such high gas mass fractions do not hold up against

observational evidence though (Ostriker and Peebles, 1973; Elmegreen, 1998).

The results with an initially isothermal gas were truly encouraging. So much so, that

from that point on most simulations were done using an isothermal setup. The initial

temperature of the gas, To, should probably be not more than 10 K.

4.9 Modified Cloud Formation

Section 2.3 discussed the modifications to the cloud formation through Jeans collapse

routine that have been implemented into the GALAXY code. In this section I will

present the results of tests performed with various versions of the cloud formation

routine.

Run # 31 uses the original cloud formation routine as described by Shorey (1996).

Run # 32 tried the following modification for the cloud formation probability:

p+ = (30P 42 (4.2)
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Compare this with equation (2.14) in Section 2.3. Equation (4.2) is only applied for

locations with T 5 29. Thus, with this model the original cloud formation probability,

P, and the new cloud formation probability, ?t, are identical for T > 29. For T 5 29,

‘Pt is decreased through a square law.

For run # 33 the cutoff radius was pushed out to T = 39, and we arrive at the cloud

formation probability P’ as given by equation (2.14), discussed in Section 2.3.

Figure 4.25 shows the cloud densities of the three runs at the end of the simulations.

Runs # 31 and # 32 show a very dense cloud core, while run # 33’s center region

is not quite that populated. Run # 33 also reveals some weak spiral structure in its

cloud distribution.

The effects of the modifications to the cloud formation can be seen in the star dis-

tribution, and in the formation of new stars (Figure 4.26). Most noticeable is that

the “starburst ring” that develops in runs # 31 and # 32 is less sharply localized in

run # 33. The central region of the disk is also not as densely populated by stars

in that run. The total rate of star formation is about the same in each of the three

runs compared here. All three runs ended up as a mostly featureless disk, but run

# 33 developed a more detailed and slightly longer lasting spiral than runs # 31 and

# 42. The m = 1 Fourier mode of run # 33 is consistently a little bit higher than

the corresponding mode of the other two runs.

117



Figure 4.25: Cloud mass distribution of runs # 31, # 32, and # 33.

Figure 4.26: Star mass distribution of runs # 31, # 32, and # 33. The red dots mark
the locations of newly formed stars.

118



After these tests, the cloud formation model given by equation (2.14) was adopted

for most of the remaining runs. Unless otherwise noted, the runs up to # 31 utilize

the original cloud formation routine, while from run # 33 on, the modified model was

used. It should be stressed again that its usage is based merely on empirical findings.

The original cloud formation routine produced a very dense cloud population in the

galaxy center. The high cloud density in the center in turn resulted in very active

star formation, leaving the overall shape of the resulting disks mostly featureless. The

star formation with the old model was mostly concentrated around a thin circular

region around the galaxy core, which gradually expanded outwards, as the dense

region slowly increased in size.

4.10 Star and Cloud Formation Rates

The rates at which the GALAXY code produces new stars and clouds can be tweaked

through the following parameters:

l P, for the probability of cloud formation by Jeans collapse

l P+, for the probability of star formation by cloud collision

l P+, for the probability of star formation by the snowplow effect

These parameters have been explained in Section 4.1 and they have been discussed

more thoroughly by Schroeder (1989) and Shorey (1996).
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4.10.1 Cloud Formation Rate

P+ has been given more attention than the other two parameters because the cloud

formation rate also directly influences the star formation rate through cloud collisions.

It is therefore expected that a higher cloud formation rate results in an increase in

star formation, even with P,, kept constant.

Variations in the cloud formation probability have been tested with runs # 14 (P, =

0.5), # 18 (P+ = l.O), # 19 (Pcb = O.l), and # 25 (P, = 0.0). None of these

runs uses the cloud formation model given by equation (2.14). These simulations

had been done before this modification was introduced into the code. They display

therefore the now familiar dense core in both the stellar and cloud distributions, as

seen for example in Figure 4.1 for run # 14, and also in Figure 2.2. An exception

to this observation is run # 25, which has cloud formation suppressed altogether

(P+ = 0.0). This run is therefore instructive to study how the cloud population

behaves when its supply has been cut off.

Figure 4.27 illustrates how the cloud population migrates towards the center of the

galaxy during this simulation. The clouds’ angular momentum decreases during this

process (Figure C.12). Generally, when new clouds are formed, they are placed in

nearly circular orbits, which keeps the angular momentum of the clouds up and also

helps in the cooling of the cloud population. The lack of cloud formation in run # 25
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causes the observed decrease in angular momentum, and also the extreme increase in

the clouds’ Toomre’s Q.

The other three runs studied here develop remarkably similarly, despite the fact that

the cloud formation probability P, differs by a factor of 10 between run # 18 and

run # 19. Particularly surprising in this context is the almost synchronous increase in

the cloud mass in these simulations (Figures C.5, C.6, and C.12). The only conclusion

- if any - that can be drawn from this is that at least for this set of input parameters a

cloud formation probability P, < 0.1 should be chosen. Between two time steps, the

properties of the gas in a cell will not change significantly. If a gas portion satisfies

the conditions for Jeans collapse at time step t,, and the cloud formation doesn’t

occur at that time step because of failure of the probability test, then chances are

good that the same gas portion will still satisfy the Jeans condition at time step tn+i.

Another probability test will then determine if the gas portion is ripe for collapse

this time around. For P+ = 0.1, there is a more than 50% chance that cloud

Figure 4.27: Cloud mass distribution of run # 25.
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formation occurs within the first seven time steps after the Jeans condition has been

met: 1 - (1 - Pcf,c)7 M 0.52. Therefore, with Pcb 2 0.1, a gas portion that satisfies

the Jeans criteria will most likely eventually collapse.

It should be stressed again that the runs discussed here use the old cloud formation

model, and they use an initially isoergic gas. Tests described in previous sections have

indicated that both properties have more satisfying alternatives: the modified cloud

formation given by equation (2.14), and an isothermal gas rather than an isoergic

g=*

There is one more pair of simulations that differs only by their cloud formation rate.

The two simulations in question are run # 35 (with P+ = 0.5) and run # 38 (with

Pcfrc = 1.0). They make use of the new cloud formation model, and they start with

an isothermal gas. Both runs have already been discussed in a different context in

Section 4.8, where they have been compared to an isoergic simulation (run # 35), or

to a simulation with another initial temperature of the isothermal gas (run # 38),

respectively. Figures 4.17 and 4.23 show their stellar density distributions. Figures

C.22 and C.25 display some of their other properties. The two runs resemble each

other in many ways:

l They develop strong spiral structures and maintain them until the end of the

simulations (note that # 35 runs only half as long as run # 38).
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l The spiral structure corresponds to a strong m = 2 Fourier mode. Additionally,

run # 38 maintains also a strong m = 1 mode, which is not the case for run

# 35.

l Their clouds’ Q increases for the first 10 or 12 revolutions, and decreases there-

after. At about the same time the cloud mass starts to increase, supporting the

earlier made point that cloud formation cools the cloud population.

The fact that it takes both runs about 12 to 15 revolutions before cloud formation

kicks in can be attributed to the fact that the isothermal gas is relatively warm at 10 K

in both runs. Compare this with the runs presented earlier in this section, which used

a cooler isoergic gas at ceg = 150 (see Figure 4.11 for the corresponding temperature

map). For this warmer gas, the Jeans condition for collapse is not as easily met as

for the cooler isoergic runs mentioned above. Obviously, it requires those 12 to 15

revolutions until portions of the gas have sufficiently cooled down to succumb to the

Jeans collapse. For that reason, and in combination with a relatively high infall rate

of Pin = 1.0, the gas mass increases continuously in runs # 35 and # 38. For the set

of input parameters employed in these runs, a cloud formation probability of up to

P+ 5 0.5 seems justified, because the cloud mass of run # 35 has increased by only

about 25% at the end of the simulation.
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4.10.2 Star Formation Rate (i): From Cloud Collisions

The influence of the star formation from cloud-cloud collisions is studied in two dif-

ferent pairs of simulations. Each pair uses a different set of input parameters, but the

two runs in each pair are identical except for their star formation by cloud collision

probability, P+, . The first pair we’ll look at are runs # 14 with PSjcr, = 0.1, and

# 21 with P,, = 0.2.

Due to the higher value for P+,, run # 21 has an overall higher star formation rate

than run # 14 (see Figures C.1 and C.8). By the end of the run, its star mass has

increased by some 12% since the start of the simulation, compared to a roughly 4%

increase in run # 14’s stellar mass. Consequently, the stars’ Q climbs at a smaller

rate than in run # 14. It arrives at just over Q = 5 in run # 21, and at just over

Q = 6 in run # 14. This is because newly formed stars are placed in nearly circular

orbits, and they have therefore a small velocity dispersion and help cool the disk.

The higher star formation of run # 21 can be seen in Figure 4.28 (compare with

Figure 4.9 for run # 14). No qualitative difference in the development of spiral

arms is detectable. Either visually from the star density plots, or from the Fourier

amplitudes.

Another pair of simulations differing only by their star formation through cloud col-

lision probability, are run # 50 with P,, = 0.1, and run # 51 with P+, = 0.03.
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The rather low values for P,, in these runs have been chosen because for the low

temperature gas (isothermal at 2 K) combined with the high cloud formation proba-

bility (P+ = 1.0) we expect to observe a high cloud formation rate through Jeans

collapse, and subsequently a high cloud-cloud collision rate. Figures C.37 and C.38

confirm the high cloud formation rate through the increase in cloud mass (7-fold, and

8-fold, respectively). This high cloud formation rate helps keep the cloud population

cool, by placing newly formed clouds in nearly circular orbits with a low velocity

dispersion. Qcloud, therefore, increases only to a rather moderate extent in both runs.

The clouds’ Fourier amplitudes show an increase in the m = 2 mode towards the ends

of both runs. The m = 2 mode is an indicator for bar formation, and a look at the

cloud distribution in both cases (Figures 4.29 and 4.30) confirms the presence of a

small elongated bar-like feature in the galaxy center.

The small values for the star formation by cloud collision probability chosen for these

runs takes its toll on the star population. In run # 50 the star mass increases by not

more than about 5% at the end of the simulation. For run # 51, with the small value

of Efwc = 0.03, the star mass even drops by about 12%. Star mass is lost in two

ways during a GALAXY run: through a supernova (mass is given off to the ISM),

and when a star particle with a large radial velocity component manages to reach the

edge of the simulation grid and escapes. In the latter case the total galaxy mass is

reduced accordingly.
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Figure 4.28: Star mass distribution of run # 21. The red dots mark the locations of
newly formed stars.

Figure 4.29: Cloud mass distribution of run # 50.
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In contrast to the clouds, which are kept relatively cool by a high formation rate, the

low star formation rate cannot aid in cooling the star population. For these two runs,

we witness among the largest increases in the stars’ Q seen in any run done for this

dissertation. This is particularly true for run # 51 with its very low star formation

through cloud collision probability of 7fsfcK = 0.03, where Q climbs to above 15. The

stellar distribution in both runs goes through an intermediate phase with pronounced

spiral structures and accompanying strong m = 1 and m = 2 Fourier modes. This

spiral structure fades slowly away after t = 35 revolutions, and is mostly gone by the

end of the simulations. The stellar distribution for run # 51 is shown in Figure 4.31.

For run # 50 it looks very similar.

4.10.3 Star Formation Rate (ii): From Snowplow

The star formation through the snowplow effect was probed with two different values

of its formation probability P+. Run # 14 used P,, = 0.1, and run # 30 disabled

the star formation through snowplow altogether: Psfsp = 0.0. Using PsrsP = 0.0

and P,, = 0.1 seemed appropriate for initial tests with the star formation through

snowplow, because in earlier tests with this parameter its useful range was determined

to be between 0.005 and 0.04 (Shorey, 1996). With Psisp = 0.0 and Psfsp = 0.1 the

upper and lower limits of this range got pushed a little bit further.

Cutting off the star formation through the snowplow effect in run # 30 foremost

results in a slightly higher cloud mass. This is understandable, because when the
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Figure 4.30: Cloud mass distribution of run # 51.

Figure 4.31: Star mass distribution of run # 51. The blue dots mark the locations of
newly formed stars.
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snowplow effect is enabled, then cloud mass is converted to star mass every time a

star is created through this effect. The difference in cloud mass at the end of run

# 14 compared to run # 30 is rather low, however (see Figures C.l and C.17). This

indicates that the snowplow effect produced only a small number of stars in run # 14.

Each star formation through snowplow also blows some mass into the ISM. The gas

mass in run # 30, therefore, increases only slightly. Mass gain from the infall and

mass loss from the cloud formation are nearly balanced in the second half of the

run. In run # 14 the gas mass increases by 60% at the end of the simulation, due

to the additional mass the ISM receives from the snowplow. Apart from this there

are no noteworthy differences. Within the probed range, a variation of P+, has no

significant impact on the simulations. Schroeder used the Kuz’min disk for most of

his simulations, rather than the SC disk (Schroeder, 1989), and he reported a stronger

influence of the star formation through snowplow probability than what was observed

here. Compared to the star formation through cloud collisions, the star formation

through the snowplow effect was found to have a relatively minor effect.

4.11 Energy Deposit to the ISM

Some of the evolutionary processes in the GALAXY code - namely cloud formation

from gas through Jeans collapse, star formation through cloud collision or through

snowplow, and supernovae - have the potential to deposit energy into the ISM and

increase the energy density in the grid cell in which the respective process takes
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place. The momentum of the gas is updated separately. Therefore, the added energy

increases the internal energy of the gas. Energy, mass, and momentum are carefully

conserved during cloud formation, star formation, and supernovae. Because each

of these processes generally also changes the mass density in that cell (a supernova

always adds mass to the ISM, cloud formation always takes away mass from it, and

cloud collision may add mass to ISM), its temperature may also be affected. The

parameters which specify these energy outputs are:

l ecform for the energy added to the ISM by cloud formation.

l esform for the energy added to the ISM by star formation.

l enova for the energy given off by a supernova, and added to the ISM.

The tests with the energy deposits served two purposes. First, the sensitivity of the

simulations to these energy outputs was investigated. Second, the robustness of the

hydro code itself was put to the test. In the past, the hydro code would occasionally

cause problems when gradients in the hydro variables became too steep (see Section

2.6). Specifically to address the latter issue, runs were performed where ecform,

esform, and enova were first set to zero, and then deliberately to an unrealistically

high value. Shorey (1996) performed similar tests for the Kuz’min disk, depositing

not more than 100 energy units to the ISM.

Run # 14 has ecform, esform, and enouu set to zero. For each of the energy deposit

parameters, one simulation was performed in which one of them was set to a non-zero
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value. Run # 24 uses esform = 150, run # 29 uses enova = 15, and run # 56 uses

ecfomn = 100. The first two (runs # 24 and # 29) differ only by their energy deposit

parameter from run # 14 and are therefore compared to this run. The latter (run

# 56) uses a completely different set of input parameters from run # 14 and can

therefore not readily be compared with it. Instead, run # 56 is compared to run

# 46, which has ecform = 0 and is otherwise identical to run # 56.

The first two simulations to be studied in this section, run # 14 with esform =

0 and run # 24 with esform = 150, develop very similarly to each other. The

stellar distribution and the star formation, shown in Figure 4.9 for run # 14, looks

qualitatively the same for run # 24. A noteworthy difference is the mass development

of the gas (Figures C.l and C.11). Due to the energy deposit to the ISM in run # 24,

the pressure of the gas increases, pushing portions of the gas off the simulation grid.

Therefore the gas mass of run # 24 stays nearly constant for most of the simulation.

The fact that the gas mass increases in the first place is due to the continuous halo

infall to the ISM. The higher energy content of the gas in run # 24 causes the produced

clouds to be hotter (see Toomre’s Q for clouds) and to carry more angular momentum

than in run # 14.

The next comparison showcases once again run # 14 (enova = 0) and teams it up

with run # 29 (enova = 15). The conclusions drawn from this comparison are mostly

the same as from the previous one. The resulting stellar disk develops qualitatively
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the same for the two runs. They differ essentially in the gas mass development, with

the subsequent consequences for the clouds’ Q, and the clouds’ angular momentum,

as explained above (Figures C.1 and C.16).

The test of ecform with run # 46 (ecfomn = 0) and run # 56 (ecfomn = 100) paints

a slightly different picture, though. The gas mass in the run with energy deposit is a

few percent higher than in the run without energy deposit (Figures C.33 and C.43).

These two runs use a rather high value for the star formation through cloud collision

probability, P+, = 1.0. Since every star formation through cloud collision also

releases some mass to the ISM, the gas mass increase in these two runs is higher than

in the runs previously discussed in this section. Run # 56 may be more effective in the

cloud-cloud collision process, because the clouds are produced from gas with higher

energy, due to the energy deposit from star formation. Therefore the produced clouds

attain higher velocities, making collisions between clouds happen more frequently.

Fortunately, the GALAXY code proved to be stable even when the gradients in the

hydro variables got artificially increased through the ISM energy deposits discussed in

this section. Furthermore, the outcome of the simulations indicated little sensitivity

to variations in these energy deposit parameters. A value of zero compared to a value

of 150 energy units made little difference. Note that the value of 150 energy units

was chosen because in most isoergic runs discussed in this chapter, the initial energy

density of the gas, ceg, was also set to 150. With that observation, most simulations
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were done with all three energy deposit parameters set to zero. Doing so saves a little

bit of execution time because the respective routines of the GALAXY program are

bypassed.

4.12 Infall Rate

The infall from the halo onto the gas helps cooling the disk, and may therefore play a

significant role in maintaining prolonged spiral structures in galaxies. How significant

its importance is shall be studied in this section.

Run # 47 uses an infall rate of Pin = 0.5, run # 49 uses Pin = 1.0, run # 50 uses

Pin = 1.5, and run # 53 uses P;,, = 0.375.

Obviously, the higher the infall rate, the more mass is eventually accumulated onto

the gas. Figures C.34, C.36, C.37, and C.40 confirm this. We can also see from the

“Normalized Mass” plot, that the higher the infall rate, the earlier the cloud mass

starts to increase. This is no surprise, because the higher the mass of a gas portion,

the more likely is it for this gas portion to undergo Jeans collapse and form a cloud.

Plus, due to the infall’s ability to cool the disk, a high infall rate will keep the gas

cooler than a low infall rate. This also helps to kick off cloud formation earlier.

In fact, the two runs with the highest infall rates (# 49 with Pi, = 1.0 and # 50

with Pin = 1.5) cool down the gas to such an extent that the gas mass loss due to

cloud formation surpasses the gas mass gain from the infall. The gas mass therefore
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decreases again after t = 15, respectively t = 20, revolutions. In the two runs with

the lower infall rates, the gas mass increases at a slower rate up to about t = 30

revolutions. Thereafter, the gas mass remains roughly constant for the remainder of

the simulations. The gas mass loss from cloud formation and the gas mass gain from

the infall are in balance here.

The more active cloud formation for higher infall rates is directly influencing Qcloud. It

has been pointed out earlier that newly formed clouds have a small velocity dispersion

and that they therefore prevent the clouds’ Q from increasing very fast.

Stellar distributions for runs # 47 and # 49 have already been shown in Figures 4.19

and 4.24. Figures 4.32 and 4.33 show it for run # 50 and for run # 53, respectively.

Ail four runs discussed here develop spiral structures, but they are stronger and

longer-lasting for higher infall rates. A look at their Fourier amplitudes supports this

observation.

4.13 The Effects of Stellar Evolution

The ultimate test of the stellar evolution model, as implemented in the GALAXY

code, is to assess how the whole system of stellar evolution processes affects the

formation of spiral structures in a model galaxy. For this test we first looked at

simulations which do not use any stellar evolution. The only evolutionary process

enabled in these runs is the halo infall, but this process is not directly related to the
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Figure 4.32: Star mass distribution of run # 50. The blue dots mark the locations of
newly formed stars.
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Figure 4.33: Star mass distribution of run # 53. The blue dots mark the locations of
newly formed stars.
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formation or destruction of either clouds or stars. These runs are then compared to

simulations, which start with the same initial conditions, but use the full body of

evolutionary processes.

Two evolution vs. non-evolution pairs will be studied. In one of these pairs the

halo infall is set to the rather low value of Pi,, = 0.25, and in the other pair this

infall is considerably higher: Pin = 1.0. This was done because it was determined

in previous runs that a rather high infall rate favors the maintenance of prolonged

spiral structures, while runs with low infall rates generally develop less distinct spiral

structures, if any. The objective was to determine whether the stellar evolution

strengthens, or maybe obstructs, the formation of spiral features.

The non-evolution simulations studied here are run # 40 (with Pin = 1.0) and run

# 44 (Pi, = 0.25). Run # 40 is compared to run # 38 which uses the same infall

rate, but has stellar evolution enabled. Similarly, run # 44 is compared to its stellar

evolution enabled version, run # 45.

Run # 38 and run # 40 have both been already discussed in different contexts: run

# 38 in Sections 4.8 and 4.9, and run # 40 also in Section 4.8. Run # 40 produced

extraordinary strong spiral features, which continued to grow until the very end of

the simulation (see Figure 4.21). Run # 38, which has stellar evolution enabled, does

also maintain spiral structures, but they are not as strong as in the non-evolution run

# 40 (Figure 4.23). Particularly the m = 2 Fourier mode of run # 40 is considerably
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stronger than in run # 38, especially in the second half of the simulation. In the

m = 1 mode the difference is less pronounced, yet still visible, although run # 38’s

m = 1 mode picks up in the final quarter of the simulation and ends up higher than

in run # 40.

Run # 40’s Q for stars climbs to just over 5 at t = 32 revolutions, and oscillates then

around that value, without further increasing. In run # 38 the stars’ Q increases

continuously, reaching M 6.4 at the end of the simulation (see Figures C.25 and

C.27). Both runs increase their gas mass considerably, due to the fairly high infall

rate. Naturally, in the run with evolution enabled the gas mass does not increase

as much as in the non-evolution run, because gas is converted to clouds through

Jeans collapse. As previously pointed out, this cloud formation helps keep the cloud

population cool, and QcLoud decreases as soon as the cloud mass fraction increases at

around t = 10 revolutions.

As a result of this comparison it is noted that in the case of a simulation which

produces strong spiral features without stellar evolution switched on, enabling stel-

lar evolution may apparently inhibit, or at least weaken, the formation of a spiral

structure.

For the final comparison of this dissertation, we’ll look at runs # 44 and # 45.

Both runs have the low infall rate of Pin = 0.25, and run # 44 is the non-evolution

version of run # 45. Run # 44 develops very little structure during the simulation,
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a consequence of the low infall rate (see Figure 4.34). The m = 1 and m = 2 Fourier

modes increase during the final third of the simulation (Figure C.31), suggesting

the development of weak one-armed and two-armed structures. These features, if

present, are too weak to show in Figure 4.34. Switching stellar evolution on in run

# 45 results in the development of a spiral structure (see Figure 4.35). Though weak

in nature, with everything else being equal, its development is exclusively due to the

evolutionary processes. From about t = 20 revolutions on the m = 1 and m = 2

Fourier modes in run # 45 are slightly higher than in run # 44, except for the phase

from about t = 35 to t = 40 revolutions (Figure C.32). The new stars form generally

in the weak spiral arms, thus enforcing them. Also noticeable is the fact that the

evolution run’s disk edge is more diffuse than in the non-evolution run.

While the spiral arm developed through stellar evolution in run # 45 may be appar-

ently weak compared to other spiral structures observed throughout this dissertation,

one has to keep in mind that the newly formed stars are frequently hot and massive

stars with a very high luminosity. Therefore, they have the potential to boost the

brightness of their immediate neighborhood considerably, although they increase the

number density of the star population in that region by only a small amount. The

star mass distribution figures show surface mass density and not luminosity. They

do, therefore, not take into account the brightness boost that the young and bright

stars impose on their neighborhood. Figure 4.35 therefore under-represents the real

surface brightness, particularly in the regions of new star formation.
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Figure 4.34: Star mass distribution of run # 44.
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Figure 4.35: Star mass distribution of run # 45. The blue dots mark the locations of
newly formed stars.
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Runs # 44 and # 45 showed that the stellar evolution model of the GALAXY code

may be able to trigger the formation of spiral structures in disk systems which oth-

erwise would not develop them. This fact stands out as one of the key results of this

dissertation.
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5 CONCLUSIONS AND OUTLOOK

In the final chapter of this thesis, I will sum up the presented results and I will discuss

the conclusions that can be drawn from them. Further, I will take a look at what’s

lying ahead for the GALAXY code, in terms of potential research projects, and also

in terms of further code improvements.

5.1 Summary and Conclusions

The GALAXY code has proved its versatility for simulations of spiral galaxies. It

is capable of producing spiral structures for well over 40 rotation periods, We used

it successfully to confirm analytically derived predictions with the runs involving

counter-rotating components. With stellar evolution switched on, new stars are found

to be produced primarily in regions of high cloud concentration, where the formation

of new stars is triggered by cloud-cloud collisions. The cloud distribution is therefore

critical for realistic modeling of stellar evolution. Spiral galaxies owe their shape in

part to the presence of bright massive stars in the spiral arms. The variation in the

underlying star number density is generally less than the brightness of the spiral arms

would suggest. Such massive stars burn their fuel at an accelerated rate compared to

less massive stars. They therefore also have a shorter life cycle, and young stars are

thus primarily to be found in the spiral arms, giving rise to their brightness.
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The stellar evolution model of the GALAXY code can trigger the formation of spi-

ral structures. Some simulations, which had the stellar evolution modules disabled,

evolved into a mostly featureless, axisymmetric disk (these were typically runs with

a small halo infall rate of ‘Pi,, < 0.5). When the simulations were re-initialized un-

der the same initial conditions, and with the evolution modules enabled, then spiral

features would eventually be observed. New stars form preferentially in those spiral

arms, thus strengthening them further. This process is to some extent self-sustaining,

because clouds are more likely to collide in the potential troughs of the spiral arms,

thus providing more new stars through cloud collisions. The fact that the stellar

evolution models in the GALAXY code can trigger spiral arm formation is strong

evidence for the program’s realistic behavior.

In non-evolution simulations which produce strong spiral features, however, the effect

of the stellar evolution model can lead to a weakening of the spiral structure. The

observed spiral structure in these cases is mostly the result of a quasi-stationary

density wave, initiated by random density fluctuations in the disk or other external

forces (Lin and Shu, 1964). In these runs, generally, there is also a lesser degree of

correlation between the locations of new star formation, and the underlying spiral

structure. The locations of new star formation are more uniformly distributed across

the disk in these cases, and they may therefore contribute to the observed weakening

of spiral structures (run # 38 vs. run # 40 in Section 4.13). In runs where the

spiral arm formation is triggered by the evolution processes, this correlation is much
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stronger. The halo infall rate, pin, played a critical role for the spiral arm formation

in these simulations. Without stellar evolution, a high value of the halo infall rate

(Pi, 2 1.0) is more likely to produce spiral structures. Enabling stellar evolution in

these runs weakened the spiral structure. The fact that in simulations with a low

infall rate (Pi, < 0.5) the stellar evolution triggers the formation of spiral structures,

and that new stars primarily form in those spiral arms, suggests that the halo infall

in spiral galaxies is rather low. This can be tested against observations, and studies

of Wakker et al. (1999), and Giovagnoli and Tosi (1995), confirm a low infall rate for

our Milky Way.

Without any doubt, N-body simulations like the GALAXY code should be run with

as many individual star particles as one can afford, in terms of time per simulation

one is willing to invest. As the execution time T,,,, increases with the number N of

simulated particles (T,,,, o( N log N), one has to compromise between higher accuracy

and quick result output. This issue has been particularly critical when the parameter

space of the GALAXY code was scoured in Chapter 4 of this thesis. With no less

than 17 parameters to consider, and some 72 hours per single simulation (execution

plus analysis), some of the parameters may not have received the attention that they

deserved. Parameters which quickly proved to have critical impact for the simulations’

outcome (like the halo infall rate pin, or the initial state of the gas), have been studied

more extensively with more simulations. Other parameters, with presumably less

critical influence, have been tried with only two different values.
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To arrive at a quasi steady state model, the mass fractions of the individual galaxy

components - stars, gas, clouds, and halo - should remain nearly constant over at

least a couple of revolutions. Note that a true steady state model will not be achieved

with the current version of the GALAXY program, because halo mass is continuously

converted to gas through the infall process. There is no process that would return

mass back to the halo. Plus, the stars, clouds, and the gas components spill some of

their mass over the edge of the simulation grid. The resulting total mass loss of a

simulation through spilling is typically of the order of one to a few percent. Only for

an infall rate Pin = 0 could the mass fractions of all four components in theory be kept

at a nearly constant level for a very long time. In practice, however, realistic infall

rates in compliance with observations will limit the duration for which a substantial

halo mass can be sustained, to a few tens of revolutions. The infall from the halo to

the gas proved also to be an effective coolant to the model and supports the formation

of prolonged spiral structures.

5.2 Suggested future Work

While the GALAXY code itself has certainly plenty of room for improvement, the

present version is certainly good enough for serious research. As with any model,

a major aspect of any use of the GALAXY code must always be the connection to

observations. With that in mind, the code can be used to make predictions about

real galaxies’ behavior under certain conditions, as well as to aid in understanding of
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some observational findings. Chapter 3 of this thesis gives some examples of where

the code has been successfully used to model some real galaxies’ behavior, and two

scientific publications (Comins et al., 1997; Zeltwanger et al., 2000) are evidence for

the code’s potential. In this last section of my dissertation I will outline some possible

future research projects with the GALAXY code, and I will suggest some further code

improvements.

Two independent research groups have already expressed their interest for future col-

laborations involving the GALAXY code: Gregory D. Bothun (University of Oregon)

would like to use the code to find the range of mass ratios between luminous and non-

luminous material inside a certain radius which is consistent with some Fabry-Perot

data on the velocity field of late type spiral galaxies. Dr. Bothun presents evidence

that the best fitting rotation curves, for some cases, are obtained by allowing the

center of the fit to vary (Beauvais and Bothun, 1999). He found a kinematic sloshing

motion of the velocity field, similar to the center of mass sloshing motion presented in

Sections 3.3 and 3.4 of this thesis, and in our second publication (Zeltwanger et al.,

2000).

Another group (Steve Gottesman, University of Florida) is studying one-armed spirals

in galaxies, and has expressed interest in using the GALAXY code to model some of

the intriguing peculiarities found in NGC 772, NGC 5291, and NGC 7479 (Malphrus

et al., 1997; Laine and Gottesman, 1998).
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Other future projects might take the simulations discussed in Chapter 3 of this thesis,

and try them with stellar evolution switched on. It will be particularly exciting to

see if the one-armed spiral waves in the stellar distribution, which we observed in the

simulations with counter-rotating components, will also occur in the gas and cloud

distributions. If so, then new stars are expected to form primarily along the very

same one-armed spiral.

As far as code improvements are concerned, it is my belief that the addition of a third

dimension is essential for some kinds of simulations, especially for a more realistic

modeling of galaxy interactions. For the latter, it would also be desirable to be able

to model an intruder galaxy as an extended object rather than a point mass. At

present, a “low-tech” version of interactions between two extended galaxy models can

be realized by using a certain fraction of counter-rotating components, and offsetting

the co-rotating components separately from the counter-rotating components. That

way, two interacting galaxies with opposite angular momentum would be simulated.

The gas in real galaxies has a minimum temperature of 2.7 K, due to the microwave

background radiation. The GALAXY program currently does not take this into

account, and the gas temperature is allowed to drop below 2.7 K. A future version of

GALAXY should include such a minimum gas temperature.

A more realistic representation of the appearance of a galactic disk can be achieved

by taking into account the ages and masses of the individual star particles. That
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way, the young, hot, and massive stars in the spiral arms will visibly enhance spiral

structures. The necessary information is already available for every GALAXY run,

but it is presently not taken into account.

The halo infall is currently modeled in a way that maximizes its effect on the formation

and maintenance of density perturbations (i. e. spiral structures). This is achieved

by transferring cold gas from the halo to the disk. More specifically, the infalling

gas is set to the same thermal properties that the gas had at the beginning of the

simulations. A more realistic modelling of the infalling gas should be implemented.

The hydrodynamic portion of the code behaves satisfactory with the new smoothing

algorithm. Unsatisfactory remains the fact that such an artificial smoothing scheme

is necessary to control the gas. In future versions of GALAXY - particularly when

it is extended to three dimensions - one might want to consider replacing the hydro-

dynamics portion of the code with a more modern algorithm, like “Smooth Particle

Hydrodynamics” (SPH) .

To better understand how the various evolution processes of the GALAXY program

interact with each other, a more thorough probing of its parameter space than is

presented in this dissertation may be necessary. Due to the amount of time that

this would require this may not be practical, however, because it would delay the

production of research results. If there will ever be several equally powerful computers

available, then it would be advisable to set one or two of those aside to continue the
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mapping of GALAXY’s parameter space in greater detail. The IDL scripts developed

for this dissertation analyze most of the data automatically, and do not require any

further supervision from the GALAXY user.

It has been pointed out on several occasions that the number of stars N is an essential

parameter for realistic behavior of the simulations. Thus, to run simulations with a

large N in a reasonable amount of time, the code should run on very fast computers

with a lot of memory, preferably on a parallel computer. Porting the code to a parallel

machine will, however, require a considerable amount of coding effort.

A large number of stars N would not only require a longer execution time of the

code, it would also take its toll on the analysis of the produced data, particularly

for the star particle plots, or for the grayscale images of the star mass density. This

part of the analysis could be sped up significantly by including only a fraction of

the stars in the analysis. Qualitatively there will be little, if any, difference in the

appearance of the resulting images. The necessary changes in the IDL routines should

be straightforward.
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Appendix A

UNIT CONVERSION

To minimize floating point operations during execution of the GALAXY code some

physical constants, like the gravitational constant G, are set to unity. Similarly,

the length unit C is chosen to be the length of one grid cell, and the time unit

7 corresponds to one revolution of the galaxy (7 x 250 Myr). The length and

time units, together with the constraint 6 = 1, determine the mass unit M: the

total mass of the simulation galaxy equals the total mass of a typical disk galaxy,

M,,l = 2 x 1011 MO. Unless otherwise noted, the simulations for this thesis were run

on a 256 x 256 grid with a grid utilization of 0.75 and either lo5 or 2.5 x lo5 star

particles. With these parameters, the simulation units can be converted to SI units

or other commonly used units as listed in table A.l.

Table A. 1: Unit conversions

unit name in SI units other units
grid cell length C 3.2 x 1018m 104.2 pc
time per revolution 7 7.9 X 1015 s 2.5 x 108yr
mass M 5.9 x 1O34 kg 3.0 x lo4 M.
ang. mom. M C2 7-l 7.8 x 1O55 kg m2 s-l none
spec. ang. mom. fZ2 7-i 1.3 X 1021 m2 s-l 4.2 x 10m2 kpc km s-l
velocity L 7-l 406.9 m s-l none
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Appendix B

OVERVIEW OF THE SIMULATIONS

For a quick reference, all runs with stellar evolution are listed in this appendix,

together with a brief description of each parameter. For a more thorough discussion

of each parameter refer to Chapter 4.

Table B.l: Explanation of parameters

Parameter Description
cmf Cloud mass fraction
Pf Gas mass fraction
hmf Halo mass fraction
smf Star mass fraction
tempo Initial temperature of the gas, if isothermal setup is used
C% Initial internal energy of the gas, if isothermal setup is not used
nstr Initial number of stars
omgs Initial Toomre’s Q of stars
ncloud Initial number of clouds
omgc Initial Toomre’s Q of clouds
cfrc Probability of cloud formation by Jeans collapse
ecform Energy deposited to gas through cloud formation
sfcrc Probability of star formation by cloud collision
sfsrc Probability of star formation by snowplow effect
esform Energy deposited in gas through star formation
enova Energy deposited in gas by each supernova
pinfal Rate of mass infall from the halo onto the disk
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Table B.2: Runs 14 through 20

Parameter Run 14 Run 15 Run 16 Run 17 Run 18 Run 19 Run 20
cmf 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Pf 0.02 0.02 0.02 0.02 0.02 0.02 0.02
hmf 0.8 0.8 0.8 0.8 0.8 0.8 0.8
smf 0.16 0.16 0.16 0.16 0.16 0.16 0.16
tempo n/a n/a n/a n/a n/a n/a n/a
C% 150 150 10 150 150 150 150
nstr 105 lo5 lo5 lo5 lo5 lo5 2.5 x lo5
omgs 1.1 2.0 1.1 1.1 1.1 1.1 1.1
ncloud lo4 lo4 lo4 lo4 lo4 lo4 lo4
omgc 1.1 1.1 1.1 1.1 1.1 1.1 1.1
cfrc 0.5 0.5 0.5 0.5 1.0 0.1 0.5
ecform 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sfcrc 0.1 0.1 0.1 0.1 0.1 0.1 0.1
sfsrc 0.1 0.1 0.1 0.1 0.1 0.1 0.1
esform 0.0 0.0 0.0 0.0 0.0 0.0 0.0
enova 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pinfal 0.5 0.5 0.5 1.5 0.5 0.5 0.5
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Table B.3: Runs 21 through 27

Parameter Run 21 Run 22 Run 23 Run 24 Run 25 Run 26 Run 27
cmf 0.02 0.02 0.02 0.02 0.02 0.04 0.02
.@ 0.02 0.02 0.02 0.02 0.02 0.02 0.005
hmf 0.8 0.8 0.8 0.8 0.8 0.8 0.8
smf 0.16 0.16 0.16 0.16 0.16 0.14 0.175
tempo n/a n/a n/a n/a n/a n/a n/a
ceg 150 1500 150 150 150 150 150
nstr lo5 lo5 lo5 lo5 lo5 lo5 105
omgs 1.1 1.1 1.1 1.1 1.1 1.1 1.1
ncloud lo4 104 lo4 lo4 lo4 lo4 lo4
omgc 1.1 1.1 2.0 1.1 1.1 1.1 1.1
cfrc 0.5 0.5 0.5 0.5 0.0 0.5 0.5
ecform 0.0 0.0 0.0 0.0 n/a 0.0 0.0
sfcrc 0.2 0.1 0.1 0.1 0.1 0.1 0.1
sfsrc 0.1 0.1 0.1 0.1 0.1 0.1 0.1
esform 0.0 0.0 0.0 150 0.0 0.0 0.0
enova 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ninfal 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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Table B.4: Runs 28 through 33

Parameter Run 28 Run 29 Run 30 Run 31 Run 32 Run 33
cmf 0.005 0.02 0.02 0.02 0.02 0.02
f3mf 0.02 0.02 0.02 0.02 0.02 0.02
hmf 0.8 0.8 0.8 0.8 0.8 0.8
smf 0.175 0.16 0.16 0.16 0.16 0.16
tempo n/a n/a n/a n/a n/a n/a
ceg 150 150 150 150 150 150
nstr lo5 lo5 lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5
omgs 1.1 1.1 1.1 1.1 1.1 1.1
ncloud lo4 lo4 lo4 lo4 lo4 lo4
omgc 1.1 1.1 1.1 1.1 1.1 1.1
cfrc 0.5 0.5 0.5 0.5 0.5 0.5
ecform 0.0 0.0 0.0 0.0 0.0 0.0
sfcrc 0.1 0.1 0.1 0.1 0.1 0.1
sfsrc 0.1 0.1 0.0 0.1 0.1 0.1
esform 0.0 0.0 0.0 0.0 0.0 0.0
enova 0.0 15.0 0.0 0.0 0.0 0.0
ninfal 0.5 0.5 0.5 1.0 1.0 1.0
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Table B.5: Runs 34 through 39

Parameter Run 34 Run 35 Run 36 Run 37 Run 38 Run 39
cmf 0.02 0.02 0.02 0.02 0.02 0.0
gmf 0.02 0.02 0.02 0.02 0.02 0.0
hmf 0.8 0.8 0.8 0.8 0.8 0.8
smf 0.16 0.16 0.16 0.16 0.16 0.2
tempo n/a 10 K 100 K 5K 10 K n/a
C% 150 n/a n/a n/a n/a n/a
nstr 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5
omgs 1.1 1.1 1.1 1.1 1.1 1.1
ncloud lo4 lo4 lo4 lo4 lo4 lo4
omgc 1.1 1.1 1.1 1.1 1.1 1.1
cfrc 0.5 0.5 0.5 0.5 1.0 0.0
ecform 0.0 0.0 0.0 0.0 0.0 n/a
sfcrc 0.1 0.1 0.1 0.1 0.1 0.0
sfsrc 0.1 0.1 0.1 0.1 0.1 0.0
esform 0.0 0.0 0.0 0.0 0.0 n/a
enova 0.0 0.0 0.0 0.0 0.0 n/a
pinfal 0.0 1.0 1.0 1.0 1.0 0.0
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Table B.6: Runs 40 through 45

Parameter Run 40 Run 41 Run 42  Run  43 Run 44 Run 45
cmf 0.02 0.02 0.02 0.02 0.02 0.02
eimf 0.02 0.02 0.02 0.02 0.02 0.02
hmf 0.8 0.8 0.8 0.8 0.8 0.8
smf 0.16 0.16 0.16 0.16 0.16 0.16
tempo 10 K n/a 10 K 10 K 10 K 10 K
w3 n/a 150 n/a n/a n/a n/a
nstr 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5
omgs 1.1 1.1 1.1 1.1 1.1 1.1
ncloud 104 lo4 lo4 lo4 lo4 lo4
omgc 1.1 1.1 1.1 1.1 1.1 1.1
cfrc 0.0 0.0 0.0 0.0 0.0 1.0
ecform n/a n/a n/a n/a n/a 0.0
sfcrc 0.0 0.0 0.0 0.0 0.0 1.0
sfsrc 0.0 0.0 0.0 0.0 0.0 0.1
esform n/a n/a n/a n/a n/a 0.0
enova n/a n/a n/a n/a n/a 0.0
pinfal 1.0 1.0 0.0 0.5 0.25 0.25
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Table B.7: Runs 46 through 51

Parameter Run 46 Run 47 Run 48 Run 49 Run 50 Run 51
cmf 0.02 0.02 0.02 0.02 0.02 0.02
.Pf
hmf
smf
tempo
C%
nstr
omgs
ncloud
omgc
cfrc
ecform
sfcrc
sfsrc
esform
enova
ninfal

0.02 0.02 0.02 0.02 0.02 0.02
0.8 0.8 0.8 0.8 0.8 0.8

0.16 0.16 0.16 0.16 0.16 0.16
0.5 K 2 K n/a 2 K 2 K 2 K
n/a n/a 1500 n/a n/a n/a

2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5
1.1 1.1 1.1 1.1 1.1 1.1
lo4 lo4 lo4 lo4 lo4 lo4
1.1 1.1 1.1 1.1 1.1 1.1
1.0 1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.1 0.1 0.1 0.1 0.03
0.1 0.1 0.1 0.1 0.1 0.1
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.5 0.5 1.0 1.5 1.5
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Table B.8: Runs 52 through 56

Parameter Run 52 Run 53 Run 54 Run 55 Run 56
cmf 0.02 0.02 0.02 0.02 0.02
gmf 0.02 0.02 0.02 0.02 0.02
hmf 0.8 0.8 0.8 0.8 0.8
smf 0.16 0.16 0.16 0.16 0.16
tempo 10 K 2 K 2 K n/a 0.5 K
C% n/a n/a n/a 150 n/a
nstr 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5 2.5 x lo5
omgs 1.1 1.1 1.1 1.1 1.1
ncloud lo4 lo4 5 x 104 lo4 104
omgc 1.1 1.1 1.1 1.1 1.1
cfrc 1.0 1.0 1.0 0.5 1.0
ecform 0.0 0.0 0.0 0.0 100
sfcrc 1.0 0.1 0.1 0.1 1.0
sfsrc 0.1 0.1 0.1 0.1 0.1
esform 0.0 0.0 0.0 0.0 0.0
enova 0.0 0.0 0.0 0.0 0.0
pinfal 0.375 0.375 0.375 0.5 0.5
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Appendix C

DATA ANALYSIS

For quick reference, plots of the quantities most commonly used in the data analysis

are presented in this appendix. These are the Fourier Amplitudes of the stars and the

clouds, Toomre’s Q for stars and clouds, and the development of angular momentum

and mass of the individual galaxy components.
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Figure C.l: Data Analysis of run # 14.
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Figure C.2: Data Analysis of run # 15.
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Figure C.6: Data Analysis of run # 19.
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Figure C.7: Data Analysis of run # 20.
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Figure C.12: Data Analysis of run # 25.
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Figure C.14: Data Analysis of run # 27.
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Figure C.15: Data Analysis of run # 28.
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Figure C.16: Data Analysis of run # 29.
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Figure C.19: Data Analysis of run # 32.
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Figure C.30: Data Analysis of run # 43.

193



Fourier Amplitudes of Stars
O.lO~'"""'~""'""l""""'~""""~'~"

m=l
0.06 * m=2

m=3 -~

0 10 20 30 40 50
time (revolutions)

7

6

5

0
.*
y4
E
co

3

2

1

Toomre’s 0 for Stars
I ” “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ ‘ ,

0 10 20 30 40 50
time (rsvolutions)

Normalized Angular  Momentum
3 '~""'~~I'~"""'I~"".'~.I'."'~"~I"~~~"~'_

Gas
_ C l o u d s - -

5 Stars
:

_

E
2 _ Total

I -
h -
ii
E _
H -
$
E

1 -
,

P :\,
4 \

\
\

- - - -0 .,.......I....,,,,rlr.......IT1.~.~..~..-l.r....
0 10 20 30 40 50

time (revolutions)

Fourier Amplitudes of Clouds

o.35 

m=l
m=2
m=3 - -
m=4

0.30

8 0.25

3

$ 0.20

.B
5

P

0.15 ,,.

0.10

I

time (revolutions)

Toomre’s 0 for Clouds

o 600-
.-
t
E

co 400-

200-
c

O~......,.........l.........l...,....,l...,,...J
0 10 20 30 40 50

time (revolutions)

Normalized Moss
5.'."'...'I.'..""'I""""'I""""'I""""'I

Normalized Moss

Halo 
4; Gas

: Clouds - -
II StarsStars 14
P3P3 TotalTotal
PPgg
EE ::
pp 2.2.

o........or,..,.....~,~,,.,..,~..~'.~'..'.........'....'.~~'
00 10 2010 20 3030 4040 5050

time (revolutions)time (revolutions)

Figure C.31: Data Analysis of run # 44.
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Figure C.32: Data Analysis of run # 45.
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Figure C.34: Data Analysis of run # 47.
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Figure C.38: Data Analysis of run # 51.
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Figure C.39: Data Analysis of run # 52.
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Figure C.40: Data Analysis of run # 53.
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Figure C.41: Data Analysis of run # 54.
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Figure C.42: Data Analysis of run # 55.
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Figure C.43: Data Analysis of run # 56.
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