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Structural vibration suppression and health-monitoring have been the focus of
intense research over the past decade, and piezoelectric actuators and sensors are
particularly well suited to serve in this application. The first part is an analytical
investigation into the cylindrical bending vibrations of piezoelectric composite plates.
The second part is a fully experimental investigation into various vibration based
structural health-monitoring techniques for bolted composites.

The analytical solution consists of Fourier basis functions that satisfy the
equations of motion and charge equation. The accuracy of the mechanical displacements,
electric potential, and stresses are dependent on the number of terms in the series
solution. The solution is validated by comparing the natural frequencies with published
results for a simply supported piezoelectric plate. Studies were conducted to establish the

convergence of the analytical solution. The analytical natural frequencies, electric



potential, displacements and stresses compared well with the finite element method for
cantilever piezoelectric composite plates.

The bolted joint is one of the most common mechanical components in
engineering structures. A common mode of failure for bolted joints is self-loosening.
The objective of the second part of the thesis is to investigate different vibration based
structural health monitoring schemes to actively interrogate a square composite plate to
detect loose bolts in composite structures. The plate was excited using a piezoelectric
actuator and piezoelectric shear accelerometers and dynamic strain sensors were used to
characterize the system dynamics. The investigation began with the sensitivity of the
fundamental frequency to changes in the bolt clamping force around the perimeter of the
plate. Attempts were also made to quantify damage from changes in the transfer
functions. The method of transmittance functions was employed extensively, and it was
successful in detecting damage but proved to be unreliable in determining the damage

location.
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1. INTRODUCTION

This chapter provides an overview of the thesis. The thesis commences with the
background information, followed by the motivations for the study and an outline of the
thesis. The thesis consists of two distinct investigations, both related to smart structures.
In the first part, an analytical solution for the vibration of laminated piezoelectric
composite plates consisting of elastic and piezoelectric layers is developed. In the second
part of the thesis different vibration based structural health monitoring schemes using a

piezoelectric actuator and sensors for bolted composite structures are investigated.

1.1 Background

Smart Structures are systems in which actuators, sensors and controls have been
integrated with structures for functionality. A special class of smart structures, obtained
by integrating piezoelectric materials with structural systems, has found widespread use
in engineering applications for self vibration suppression and health monitoring.
Piezoelectricity is a phenomenon observed in certain crystals, e.g., quartz, PZT (Lead
Zirconate Titanate) ceramic materials and PVDF (polyvinylidene fluoride) polymer. In
the direct piezoelectric effect, a piezoelectric material generates an electric field when
subjected to a mechanical strain. In the converse piezoelectric effect, the piezoelectric
material exhibits mechanical deformation when subjected to an electric field. This
coupling between electrical and mechanical energy makes piezoelectric materials very
useful as transducers in many applications, e.g., accelerometers, ultrasonic transmitters
and piezoelectric stack actuators. By bonding piezoelectric actuators to structures, desired

localized strains can be induced by applying appropriate voltages to the actuators.



Piezoelectric materials bonded to structures can also be used as dynamic strain sensors. It
should be noted that piezoelectric sensors measure only dynamic strains since
piezoelectric materials are capacitive in nature and cannot measure continuous static
stresses. While static stress will cause an initial output, this signal will slowly decay
based on the piezoelectric material and time constant of the attached electronics.

More than a decade of intensive research in the area of smart materials and structures
has demonstrated the viability and potential of this technology. Numerous applications
have been proposed and conceived experimentally for piezoelectric smart structures, such
as for active vibration suppression, noise cancellation, shape control and structural health

monitoring.

1.2 Motivations

In order to effectively integrate piezoelectric materials with structural systems, a good
understanding of the mechanical interaction between the actuators and the host structure
is needed. Laminated composite structures consisting of piezoelectric and fiber-
reinforced layers are commonly analyzed using plate theories. However, these methods
are based on several kinematical assumptions for the displacements and electric potential.
In order to validate these plate models, it is necessary to obtain three-dimensional
analytical solutions that do not rely on simplifying assumptions. Most of the three-
dimensional analytical solutions presented in the literature are applicable only when the
edges are simply supported and subjected to specific types of electric boundary
conditions. Since simply supported boundary conditions are rarely encountered in

practice, it would be useful to develop analytical solutions for the vibration of



piezoelectric composite plates that are subjected to arbitrary boundary conditions at the
edges. This is the objective of the first part of the thesis.

The bolted joint is one of the most common mechanical components in engineering
structures. The United States Navy has particular interest in detecting degradation of
bolted composite connections due to bolt loosening because of their current research in
developing composite hull forms through the MACH project (Caccese, 2001). Often
bolted joints are critical to the function of the structure and their failure could have huge
costs or endanger lives. The failure modes of bolted joints can be very complex. The
most frequent mode of failure for bolted joints is self-loosening. The objective of the
second part of the thesis is to investigate different vibration based structural health

monitoring schemes to detect loose bolts in composite structures.

1.3 Thesis Outline

As mentioned earlier, this thesis consists of two distinct parts covered by two
distinctly different chapters. Chapter 2 presents the analytical solution for cylindrical
bending vibration of piezoelectric composite plates, and is a purely analytical
investigation. In contrast, Chapter 3 is a fully experimental investigation into various
vibration based structural health-monitoring techniques for bolted composites.

A literature review of analytical solutions and a new analytical solution for the
vibration of piezoelectric composite plates are presented in Chapter 2. The mathematical
formulation of the problem is presented next along with the analytical solution. The
natural frequencies and mode shapes of three different cases are found using the new
solution technique. Confirmation of the technique is made through comparisons with

published results (Heyliger and Brooks, 1996), and Finite Element models.



A literature review of previous work in the field of structural health monitoring using
vibration techniques, and an experimental investigation of selected methods are given in
Chapter 3. These include the transfer function method and the transmittance functions
technique where the mathematical theories and experimental methods employed are
presented in detail. And the thesis is wrapped up with a discussion of the results and

performances of the investigated structural-health monitoring techniques.



2. ANALYTICAL SOLUTION FOR THE CYLINDRICAL
BENDING VIBRATION OF PIEZOELECTRIC

COMPOSITE PLATES

Smart structures, consisting of piezoelectric materials integrated with structural
systems, have found widespread use in engineering applications for self vibration
suppression and health monitoring. Piezoelectric materials are capable of altering the
structure's response through sensing, actuation and control. They exhibit two basic
electromechanical phenomena that have led to their use as sensors and actuators in the
control of structural systems. In sensor applications, an applied mechanical strain induces
an electric potential in the material due to the direct piezoelectric effect, whereas in
actuator applications, an applied electric field causes the material to deform.

Presented in this chapter is the formulation and analytical solution for the cylindrical
bending vibrations of linear piezoelectric laminated plates obtained by extending the
Stroh formalism to the generalized plane strain vibrations of piezoelectric materials. The
laminated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary
thickness. Fourier basis functions for the mechanical displacements and electric potential
that identically satisfy the equations of motion and the charge equation of electrostatics
are used to solve boundary value problems via the superposition principle. The
coefficients in the infinite series solution are determined from the boundary conditions at
the edges and continuity conditions at the interfaces between laminae, which are satisfied
in the sense of Fourier series. The formulation admits different boundary conditions at the

edges and is applicable to thick and thin laminated piezoelectric composite plates. Results



for laminated composite plates with distributed piezoelectric actuators are presented for
different types of boundary conditions at the edges. The analytical displacements, stresses
and electric potential compare very well with those obtained by the finite element

method.

2.1 Literature Review
Initially piezoelectric actuators were used to control vibrations of beams (Bailey and

Hubbard (1985), Crawley and de Luis (1987)). The piezoelectric actuators used in beams
are thin rectangular elements usually bonded to their outermost surfaces and are poled in
the thickness direction. The application of an electric field in the thickness direction
causes the actuator's lateral dimensions to change. The localized strains induced by the
piezoelectric in the host structure cause it to deform. In order to effectively integrate
piezoelectric materials with structural systems, it is necessary to understand better the
interaction between actuators and the base structure. Mechanical models have been
developed by Crawley and de Luis (1987), Crawley and Anderson (1990) and others to
analyze deformations and stresses in beams with surface-bonded piezoelectric actuators.
Lee (1990), Wang and Rogers (1991), Batra and Ghosh (1995), and Mitchell and Reddy
(1995) have developed plate theories for composite laminates with embedded and/or
surface mounted piezoelectric sensors and actuators. Numerous finite element studies
have also been conducted (Allik and Hughes (1970), Robbins and Reddy (1991), Ha et al.
(1992), Batra and Liang (1997b)).

Three-dimensional analytical solutions for the deformations and stresses in simply
supported composite plates with piezoelectric layers have been given by Heyliger (1994),

Heyliger and Brooks (1996), Heyliger and Saravanos (1995), Bisegna and Maceri (1996),



Batra et al. (1996a), Batra and Liang (1997a), Lee and Jiang (1996) and Vel and Batra
(2001). If one of the plate dimensions is very large as compared to the other two
dimensions, then its deformations are generally regarded as being independent of the
coordinate in that direction and it is known as cylindrical bending. Exact solutions for
cylindrical bending of simply supported laminated plates were developed by Heyliger
and Brooks (1996) and Vel and Batra (2001), and for the cylindrical bending vibrations
by Brooks and Heyliger (1995) and Yang et al. (1994). Brooks and Heyliger (1994) and
Batra et al. (1996b) simulated a segmented piezoelectric actuator by applying an electric
potential only over a part of a distributed piezoelectric actuator. Most of the three-
dimensional analytical solutions presented in the literature are applicable only when the
edges are simply supported and subjected to specific types of electric boundary
conditions. However, simply supported edges are rarely encountered in practice.

Vel and Batra (2000a) developed a three-dimensional quasi-static solution using the
Stroh formalism for laminated piezoelectric rectangular plates subjected to arbitrary
mechanical and electrical boundary conditions. Subsequently, they presented results for
quasi-static cylindrical bending deformations of a laminated plate with segmented
piezoelectric patches (Vel and Batra (2000b)). The solution procedure is extended to the |
analysis of the cylindrical bending vibrations of piezoelectric composite plates.

Three-dimensional equations of linear piezoelectricity for generalized plane strain
deformations are exactly satisfied by the chosen Fourier basis functions. Instead of
assuming that the mechanical displacements and the electric field in the direction of the
very large plate dimension vanish identically, the electric potential and the three

components of the mechanical displacement are assumed to depend only on the two in-



plane coordinates and time. The coefficients in the series solution are determined from
boundary conditions at edges and continuity conditions at the interfaces between
adjoining laminae. Computed natural frequencies, displacements and stresses for thick
cantilever laminates containing either distributed or segmented actuators are found to

compare very well with those obtained by the finite element method.

2.2 Problem Formulation

A rectangular Cartesian coordinate system, shown in Fig. 1, was used to describe the
infinitesimal quasi-static N-layer deformations of an piezoelectric composite laminate
occupying the region [0,L]x(—0,0)x[H® H™™M] in the unstressed reference
configuration. The laminate is of infinite extent in the x-direction. Planes
x,=H®, . H®, H™" describe the bottom bounding surface, the horizontal
interfaces between adjoining laminae, and the top bounding surface. Each lamina is
assumed to be made of a homogeneous material.

The equations of motion in the absence of body forces are

Tjmm = pit;, (jym=1,2,3), )

where o, are components of the Cauchy stress tensor and u; are components of the

mechanical displacement vector. A comma followed by index j indicates partial

differentiation with respect to the present position x, of a material particle, a

superimposed dot indicates partial derivative with respect to time #, and a repeated index
implies summation over the range of the index. The charge equation in the absence of

free charges is



Dm,m = 01

where D, are the components of the electric displacement vector.

2

The constitutive equations of a linear piezoelectric medium are (Tiersten, 1969)

Oim = Cimgrer — €rimEr, D = €mgrer + €mr By,

&)

where C,, . is the elasticity tensor, ¢, is the infinitesimal strain tensor, e, are the

Jmqr

piezoelectric coefficients that describe coupling between the mechanical deformation and

electric field, E, is the electric field and €,y is the electric permittivity tensor. The

infinitesimal strain tensor and the electric field are related to the mechanical displacement

u,, and electric potential ¢ by

1
Egr = §(uq,,. + ur.q): E . =-¢,

C)

The symmetry of the stress and the strain tensors and the existence of the stored

energy function imply the following symmetries

ijqr = ijq-r = Cq-rjmy €rjm = €rmj: €mr = €rm-

6]
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Figure 2-1 Piezoelectric Composite Plate



Material constants are assumed to yield a positive stored energy density for every non-
rigid deformation and/or nonzero electric field. That is,

ijqrsjfnsqr > O, GrmErEm > 0, (6)

for every real nonzero ¢, and E,. The displacement or traction components
prescribed on the edges x, =0 and L, and bottom and top surfaces x; =0 and H are

presumed not to depend upon x,, and are specified as follows [Ting (1996), pp.497-498]

IS,’)[;]+I,(,')[;’ ] =f® on z,=0,

W3]+ [ 5] =8 o mmr (=19,

¢ D,
N B ™
where (0,), =0, and 19,19, 1 and 1” are 4x 4 diagonal matrices that specify the

type of boundary condition, while £ and T are known vector functions that specify
the boundary values. For most applications, these diagonal matrices have entries of either

zero or one such that

10410 =10+ 10 =1, (s=1,3), ®
with I being the 4x4identity matrix. In other words, for mechanical boundary

conditions, one can specify either a component of the displacement or traction vector in
each coordinate direction. The electrical boundary condition is specified by prescribing
either the electric potential or the normal component of the electrical displacement

vector. For example, if the surface x, =0 is rigidly clamped and electrically grounded,
then I =L,LI® =0 and f¥ =0, i.e. u, =u, =u, =0 and ¢ =0. If the surface is free
of electric charge (normal component of electric displacement vanishes) and traction free,

then I = 0,1V =L,f¥ =0, i, 0, =0, =0,; =0 and D, =0. An example of mixed

10



boundary conditions would be a simply supported and electrically grounded edge for
which 19 = diag[0,0,1,1],1¥ = diag[1,1,0,0],f" =0,i.e,0,, =0, =0,u, =0  and
$=0.

The interface continuity conditions on the surface x, = H"*" between laminae n
and n+1 can be specified as follows:

(a) If the surface is an interface between two laminae, then displacements, surface

tractions, electric potential and the normal component of the electric

displacement between them are taken to be continuous. That is,

ﬂul =0, [0'3] =0, [d’] =0, lel =0 onzz= H™, ®
Here [[u]] denotes the jump in the value of u across an interface. Thus the

adjoining laminae are presumed to be perfectly bonded together.

(b) If the interface is electroded, the potential on this surface is a known function
g(x,) while the normal component of the electric displacement need not be
continuous across this interface, i.e.,

[u] =0, [o3] =0,6 = g(z1) coswt on z3 = H™. (10)
It is assumed that the electrode is of negligible thickness and ignore its

mechanical influence on the structure.

It is postulated that the displacement u and the electrical potential ¢ are functions of
x,, x; and time #; thus deformations of the laminate correspond to generalized plane state

of deformation. This assumption is reasonable since applied loads (mechanical and

electrical) and material properties are independent of x, and the body is of infinite extent

in the x, direction.

11



2.3 Analytical Solution

Using a local coordinate system x{™,x{”,x” with origin at the point where the

global x, axis intersects the bottom surface of the nth lamina; the local axes are parallel
to the global axes (see Fig. 1). The thickness of the nth lamina is denoted by
" = H"Y ™ In this section, we drop the superscripts n for convenience; it is
understood that all material constants and unknowns belong to this lamina.

An analytical solution is obtained by extending the Stroh (Eshelby et al., 1953; Stroh,
1958; Ting, 1996) formalism to the analysis of steady state vibrations of hybrid plates.
Fourier basis functions for the mechanical displaceménts and the electric potential, which
identically satisfy the equations of motion (1) and charge equation (2), are used to
compute the solution of the boundary value problem via the superposition principle. The
coefficients in the series solution are determined from the boundary conditions (7) and
continuity conditions at the interfaces (9) or (10) at the interfaces between adjoining
laminae.

2.3.1 Sinusoidal Basis Functions in the x,-direction
The following form for the displacement vector and the electric potential is assumed,

[ ; ] = a exp(Aiz) coswt,
an
where z = x, + px,,i =v~1, 4 is a real number and the vector a and the scalar p will be

determined from the equations of motion and the charge equation. The assumed
mechanical displacement and the electric potential fields in (11) vary sinusoidally in the
x)-direction and A determines its wave length in that direction. Depending on whether p
is complex or real, the assumed displacement and potential field (11) has either an

exponential and/or sinusoidal variation in the x;-direction. Substitution for u and ¢ from

12



(11) into (4) and for £ and E into (3) gives the following expressions for components
o, of the stress tensor and D, of the electric displacement vector

Oim = (Cimgraq + €rjmaa)Xi(8,1 + pb,3) exp(Xiz) coswt,

Dy, = (emgrq — €mr4)Xi(61 + Pb,3) exp(Aiz) coswt, (12
where & is the Kronecker delta. Substitution of (12) into the equation of motion (1)
gives

2
{leql + p(Cj1g3 + Carjs) + PQCquS} ag + {en; + ples; + exy;) + p2e33j}a4 = %‘“;ﬁai’

(13)
which can be written as
- - - - puw?
{Q +p [R + RT] +P2T} a+ {ey +ples +ey) + penlay = BYha a4
where
Qis = Cinqr, Rjg = Ciiga. Tjqg = Cisz: (€rm); = €rmj, 8= | a2
% )

Substitution for D,, from (12) into the charge equation (2) gives

{e11q + Plearg + e13y) + Plessg} ag — {11 + plers + €a1) + Pless}as =0,
(16)
which can be written as

{en + plen +en) + Pex} & — {en + plers + 1) + Pen} 04 =0 an

The two equations (14) and (17) can be combined to obtain (Ting, 1996)
. R+RT) +p*T}a=0,

{Q+P[ + ]+p }a ®)

where

13



Q:Q—%diag[l,l,l,O], Q=[C} o ]

€y —€
R=[ f; €31 ]’ T=[ 'E e ]
€13 —a3 €33 —€33 (19)
Equation (18) can be stated as the following algebraic eigenvalue problem (Ting,
1996)
BB
b b a0)
where

~T-'RT T~
N=[RT—‘RT—Q -RT-I]’

1.
b= (RT +pT)a=--(Q +pR)a.
P @n
The components (12) of the stress and electric displacement can be written as

[ g‘ ] = Xi[Q + pR]aexp()iz) coswt,
1

T3 | =i [RT + pT] aexp(Xiz) coswt.
Ds @2)
Since N is an 8 x 8 real matrix, there are eight eigensolutions (p,,a,),a =1,2,...,8, to
the algebraic eigenvalue problem (20). If p is a complex eigenvalue and a is the
corresponding complex eigenvector, then the complex conjugates p and a also form an
eigensolution. Let there be 2x complex and 8 — 2« real eigenvalues. They are arranged

as pl"“’px’px+l""’p2x’p2x+l "“’ps SUCh that

Im(pu) >0, Prta = Pas Axta = 8a, (Q =1,..., IC). @3)
The basis function (11) constitutes one term of a Fourier series solution that will be

used to satisfy the boundary conditions on x{” =0. Mechanical displacements, electric
potential, stresses and electric displacements vary sinusoidally in the x,-direction on the

surface x{” =0. For complex p,, the basis function decays exponentially in the x;-

14



direction due to the inequality in Eqn. (23). The basis functions corresponding to real
Pavary sinusoidally in the x3;-direction.
In a similar manner, the following basis functions are used to satisfy the boundary
conditions on the surface x, = 4 of laminae n
u .
[ o ] = a exp [Ai(ph — z)] coswt.
(24)
Substitution of (24) into the equation of motion (1) and the charge equation (2) also
results in the eigenvalue problem (20) for p and a. The corresponding components of the

stress tensor and electric displacement vector are

[ ‘31 ] = —Xi[Q + pRlaexp [Ai(ph — z)] coswit,

[ ‘53 ] = —Xi [RT + pT] aexp [Ni(ph — 2)] coswt.
3 (25)

2.3.2 Sinusoidal Basis Functions in the x;-direction
The following form for the displacement vector and electric potential is assumed,

[ u J = c exp(£iz/q) cosuwt,
¢ (26)
where £ is a real number, z = x, + gx; and the vector ¢ and the scalar g are unknowns.

Note that z/q =x,/q+ x,. The vanation of the assumed mechanical displacement and

electric field (26) in the x3-direction is sinusoidal and & determines the wave length.
Depending on whether g is complex or real, the assumed displacement and potential
fields vary either exponentially and/or sinusoidally in the x,-direction. From Eqns. (26),

(4) and (3) the following is obtained
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1 .
Oim = %‘(ijqrcq + erjmc4)(6r1 + q6,3) exp(§iz/q) cos wt,

.Dm = %(emqrcq - Emrc4)(6r1 + q6r3) exp(Ezz/q) cos wta

e9))
which is written as
[ g‘ ] = Q[Q + gR|cexp(§iz/q) coswt,
1 q
93 } _ & [RT 4 ¢T] coexp(£iz/q) coswt,
Dyj g4 (28)

where Q, R and T are defined in (19). Substitution of (27) into (1) and (2) gives

{Q+q[R+RT] +q2’i‘}c=0,

where

(29)

2
- pwe ..
T= -_ ?dlag[l,l,l,O],

Eqn. (29) constitutes the following algebraic eigenvalue problem:

N[Z}zq[ZJ’ D)

where

N _ri\—lRT ri\—l
=[RT”RT—Q —RT”]’

o 1
d=(RT 4+ ¢T)c=--(Q+q¢R)c.
q 31

Eigenvalues of (31) are arranged in the same way as those of (20). The basis function

(26) constitutes one term of a Fourier series solution used to satisfy boundary conditions

the boundary conditions on the surface x,=L of the lamina n

[ Z } = c expl€i(L — z)/q] cos wt,

(32)

on the surface x{” =0. Similarly, the following basis functions (32) are used to satisfy

The stresses and the electric displacements corresponding to the basis function (32)

are
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1 & .
[ Zl } = _'(;[Q + gR|cexp[¢i(L — z)/q] coswt,

[ Z:; ] = —-Eq—z [RT + ¢T] cexpl¢i(L — z)/q] cos wt. -

2.3.3 Superposition of Basis Functions
For distinct p,, one can superimpose solutions of the form (11), (24), (26) and (32) to

obtain the following mechanical displacement and electric potential fields:

[ ; ] = { { ®) exp(A®iz) + 5% exp[ADi(pd b ~ Zc(xk))]} as”
=0a=1

oo (m) (m) _ ~(m)
+ 3 Zsj{ ("')exp(£ 2 )+ wi™ [£ ﬁ——(q(m) 2 )]}cf,m)}coswt,

m=0a=1 0 34
where
komi memt -
A(k) _ g: if k=0 , ‘(;") _ 7;];;!: if m 0 ,
— if k>1 - if m>1
L Gah 35)
29 =x + p¥x,, 7 =x, +¢"x, and (k,m,) € (0,)). The basis functions

corresponding to A© and £ play the role of the constant term in the Fourier series

expansion. The constants r*’,s% v and w{™ are the Fourier coefficients in the series

solution. In order to obtain real valued displacements and potentials, it is assumed that the

coefficients r,,s,,v,,and w, are complex for a <2x and real for a>2x, such that

r =rys Seva =

x+a

W, =w, fora=1,..,x.

The components of the stress tensor and the electric displacement vector
corresponding to the series solution (34), obtained by superposition of equations. (22),

(25), (28), and (33), are
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oo B8 .
[ ;‘ ] =33 3 Ak {rf.") exp( AW 8 — g{F) exp[ARi(pEh — zf,"))]} Q+ p,(f)R]a.(,*)
k=Da=1

o 8 ("‘)i (m) ('") (m )I(L _ z(m)
+3 2 .i‘(_;‘){ vl exp(=- (m) ) ~ wi™ exp[2>— =y S )] [Q + ¢ R]c{™ § coswt,
m=0a=1 @q ds

(36)

E E &) {r(") exp(,\(")zz(k)) * exp [A(")z(p(k)h (k))] } [RT + p.(f)T] alt

k=0a=1

3
I—’h\

o 8 'm) . (m); =(m) _ 3(m)
R {vs.mexp(f_“‘t)— el HE 2 )1}lnf+qs.""r]cf,""}coswt-

(m o »
37N

2.4 Satisfaction of Boundary and Interface Conditions

The unknowns r*’,s%* v{™ w™ for each lamina are determined by imposing the

interface continuity conditions and boundary conditions on all surfaces of the laminate by

the classical Fourier series method. For example, let boundary conditions (7) be specified
on the surface x{” =0 of lamina 1. Multiply (7) for s = 3by exp(jmix, /L) and integrate
with respect to x; from — L to L to obtain

L
LTiT
[ 3] (5] e =

L (38)
on x{" =0 for j=0,1,2,.... InEqn. (38) the functions multiplying the coefficients r"’

and s* (k #0) have a sinusoidal variation in the x, direction and are extended over the
interval (—L,0) without modification since they form the basis functions on this surface.
The functions multiplying v and w'™ have an exponential or sinusoidal variation in
the x, direction; these are extended as even functions over the interval (-L,0). The

functions multiplying r®,s” are also extended as even functions since they play the

a
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role of the constant term in the Fourier series expansion. The known function f® (x,) is

extended in a suitable manner. The interface continuity conditions (9) or (10) can be
enforced in a similar manner. Thus, upon imposing the boundary/interface conditions on
all four bounding surfaces of every lamina of the laminated plate, an infinite system of
linear algebraic equations for infinitely many unknown coefficients is obtained. A general
theory for the solution of an infinite set of algebraic equations does not exist. However,
reasonably accurate results may be obtained by truncating the series with summation
indices k and m in (34) to K and M terms respectively for the n"” lamina. In general,
the solution tries to maintain approximately the same wave length of the largest harmonic
on all the bounding surfaces of the lamina by choosing M‘” = Ceil(K h” /L), where
Ceil(y) equals the smallest integer greater than or equal to y. Thus the total number of

unknowns will depend solely on the choice of integer K. Once the unknown coefficients
have been evaluated by solving the truncated system of linear equations, the

displacements and stresses in each lamina are obtained from (34), (36) and (37).

2.5 Finite Element Analysis
Numerical analysis of piezoelectric composite plates was performed using the Finite

Element Method (ABAQUS, 2002) for comparison with the analytical solution. The
piezoelectric plates were analyzed using plane strain elements. Each lamina was defined
to be a two-dimensional deformable solid homogenous section. The natural frequencies
of the piezoelectric plate were determined using a linear perturbation method. The
accuracy of the finite element solution would depend on the number and type of elements
used in the analysis. A finer mesh gives more accurate results at the cost of

computational time. A mesh convergence study was conducted for both the simply
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supported and cantilever cases to determine the size of elements required to obtain
accurate results for comparisons with the analytical solution. Eight noded biquadratic
plane strain piezoelectric quadrilateral elements were used for the piezoelectric and
composite laminae. The hybrid piezoelectric composite plate consisted of either graphite
epoxy or piezoelectric material. The non-zero material constants of the graphite/epoxy
and the piezoceramic materials are listed in Table 1. Constraining the nodes at the

interfaces to be tied together ensured perfect bonding of the lamine.
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Table 2-1 Material Properties

Material Property Graphite/cpoxy PZT-4 PZT-5A

W(GPa) 183443 138499 99.201

-Euwu(apa)r

C2222(GPa) 11.662 138.499  99.201
C1333(GPa) 11.662 114.745 86.856
Ci22(GPa) 4.363 77.371  54.016
Ci133(GPa) 4.363 73.643  50.778
C2233(GPa) 3.918 73.643  50.778
Casa3 (GPa) 2.870 25.6  21.100
C3131(GPa) 7.170 25.6  21.100
Ci212(GPa) 7.170 306  22.600
eann (Cm™?) 0 5.2 -7.209
e322 (Cm™2?) 0 -5.2 -7.209
eszs (Cm~2) 0 15.08  15.118
ez3 (Cm™2) 0 1272 12.322
ez (Cm=2) 0 12.72 12.322
€11(1078 F/m) 1.53 1.306 1.53

€22(1078 F/m) 1.53 1.306 1.53

€33(1078 F/m) 1.53 1.1151 1.50

p (kg/m?) 1590 7600 7750
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2.6 Results and Discussion
A piezoelectric composite structure has a series of natural frequencies that can be

arranged in ascending order as o, j=1,2,3.... These are determined by applying a
potential to the piezoelectric actuator and plotting the vertical or axial component of the
displacement for a specific point in the plate as a function of the forcing frequency. The
displacement becomes large at certain discrete values of the forcing frequency, which
signifies the resonance phenomenon.
2.6.1 Validation of the Approach

The solution procedure and the program developed for numerical computations was
validated by comparing the natural frequencies with those given by Heyliger and Brooks
(1995) for the cylindrical bending vibration of a simply supported monolithic
piezoelectric plate of length L = 0.04 m and thickness H = 0.01 m. The mechanical
boundary conditions at the edges x; = 0 and L are specified as u3 =0, ;) =52 =0. The
edges, and the bottom surfaces of the plate are electrically grounded to zero potential.
Natural frequencies corresponding to the first axial mode of vibration are tabulated by
Heyliger and Brooks (1995). A sinusoidal potential ¢(x,,H) = ¢, sin(x,/ L)coswt is
applied to the top surface to excite various thickness modes corresponding to the first
axial mode of vibration. The plate is made of PZT-4 whose nonzero material constants

are given in Table 2-1. The axial displacement %,(0,0) is plotted as a function of the
normalized forcing frequency @ in Fig. 1-2, where @ =w(l*/H ),/po 1Cy,
P, =7600kg/m> and Co=138.499 Gpa. The axial displacement becomes large at

@ =2.2603,10.087,24.088,41.663, and 49.511, which are natural frequencies of the
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plate. It should be noted that the same set of natural frequencies would be obtained if the
transverse displacement u3(L/2,0) is plotted as a function of the forcing frequency @. The
mode shapes corresponding to the natural frequencies are shown next to the peaks in the
displacement vs. frequency curve in Fig. 2-2. Natural frequencies corresponding to the
higher axial modes of vibration can be obtained by applying a sinusoidal potential
#x,, H) = ¢, sin(gmx, / L)cos wt to the top surface of the piezoelectric plate, where g is
an integer that determines the axial mode.
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Figure 2-2 First Five Normalized Natural Frequencies and Mode Shapes

Finite element (FE) analysis was also performed using ABAQUS (ABAQUS, 2002)

for comparison. The FE solution is based on the plane strain assumption in which u3 =0
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and u,, u; and ¢ are functions of x;, xz, and . The FE mesh consisted of 10,000 eight
nodded biquadratic elements. The first five thickness modes corresponding to the first
axial mode of vibration obtained from our analytical solution are compared with those
given by Heyliger and Brooks(1995) and the FE method in Table 2-2. The natural
frequencies from the three solution procedures are nearly identical. The computational
effort required to obtain the Fourier coefficients for the analytical solutions nearly the
same as the effort required for the FE analysis. However, it should be noted that the
analytical solution satisfies the equation of motion and charge equation exactly at every
point within the body. In comparison, the FE solution satisfies the governing differential
equations at the quadrature points, but not at every point within the body. Furthermore,
once a computer program has been developed to compute the Fourier coefficients, the

input is essentially trivial and discretization of the domain is not required.

Table 2-2 Normalized natural frequencies @ of a simply supported thick piezoelectric

plate (L/H = 4)

Thickness Mode Present Analysi; Wﬁeyliger and Brooks (1995) Finite Element Analysis

1 © 2.2603
2 10.087
3 24.088
4 41.663
5

49.511

2.2606
10.082
24.086
41.700

49.616

2.6.2 Monolithic Thick Cantilever Piezoelectric Plate

The second example consists of homogenous monolithic PZT-5A piezoelectric plates.
The dimensions are L = 0.1 m and H = 0.025 m. All four faces of the plate, x3 =0, x3 =

H, x; =0, x; = L are electrically grounded. The edge x; =0 is clamped (i.e., u; = w; = u3 =

0) and the edge x; = L is traction free (i.e., 011 = 012 = 013 = 0).
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The effects of the truncation of the series on the accuracy of the natural frequencies,
stresses, and electrical potential corresponding to the first mode of vibration is
investigated by computing the solution at specific points in the laminate. The first natural
frequency and the corresponding stresses, and electrical potential at specific points of the
piezoelectric plate are listed in Table 2-3 for increasing number of terms K. The natural
frequencies, stresses, and electrical  potentials are normalized  as
B, =w,(L'/H)p,/C,, &,=0,L/Cu(L,H), §=de,/Cou,(L,H) where py =
7750 kg/m®, Cp = 99.201 Gpa, ey = -7.209 C m™>. These results show that the natural
frequencies, mechanical displacements, stresses and electric potential converge rapidly.
A convergence study of stresses and electric potential at specific points in the plate
corresponding to the fundamental frequency was conducted to determine the number of
terms in the analytical model, and the number of elements required for the FEA model to
obtain accurate values. Although the stresses and electrical potential show convergence,
more than 220 terms are required for a complete convergence of the stresses and
electrical potential. The stresses and electrical potentials used for the study and their
corresponding locations are o7,(L/8,0), o013(L/8,H/2) and #L/8,H/2). The FE model
consisted of 16(n+1) divisions in the x; direction and 4(n+1) division in the x; direction.
This scheme ensured that the stress and electrical potential values were extracted from
nodes in the same geographic location for each case with different number of elements.
The normalized analytical and FE results are shown in Table 2-3 and Table 24,

respectively.
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Table 2-3 Analytical Model Convergence Results for a Monolithic Thick Cantilever
Piezoelectric Plate

K 1] T O3 4

10 9.148541x10"  3.271304x10"  3.312691x102  9.889336x10°
20 8.775033x10"  2.523880x10"  3.158096x10°  9.874735x10”
40 8.656462x10"  2.743018x10"  3.049359x10%  9.911373x10™
80  8.620169x10"  2.692546x10"  3.014953x102  9.936037x10™
100 8.616004x10"  2.661953x10"  3.010031x10%  9.939445x10™
120 8.614300x10"  2.710624x10"  3.007864x102  9.941365x10™
140 8.613103x10"  2.736648x10"  3.006372x107  9.943607x10™
180 8.611699x10"  2.662134x10"  3.011877x10%  9.939837x10™
220 8.611582x10"  2.726830x10"  3.003891x10%  9.946836x10™

Table 2-4 ABAQUS Convergence Results for a Monolithic Thick Cantilever
Piezoelectric Plate

n # elements ] T T3 2

1 256  8.62502x10"  2.710433x10"  3.05570x102  9.98858x10”
2 576 8.6194x10"  2.70842x10"  3.02506x10% 9.97179x10™
3 1024  8.61659x10"  2.70744x10"  3.01441x10°  9.96423x10™
4 1600  8.61519x10"  2.70684x10"  3.00945x102  9.96009x10™
6 3136 8.61449x10"  2.70631x10"  3.00578x107  9.95668x10™
12 10816 8.61238x10"  2.70539x10"  3.00221x107  9.95144x10™
20 28224 8.61168x10"  2.70509x10"  3.00148x107  9.94992x10™*
22 33856 8.61168x10"  2.70505x10"  3.00140x107  9.94970x10™

The through-the-thickness distributions of the normalized electric potential ¢,
longitudinal stress o;,, and transverse shear stress o013 at two sections along the span of
the monolithic plate are shown in figures 2-3, 2-3, 2-4, and 2-5 respectively with the
corresponding FE analysis data (ABAQUS, 2002) shown as squares. The results plotted
are from the most accurate results of the convergence study; K = 220 and n = 22 for the
analytical and FE models, respectively. The data in the plots have been normalized per

the normalization equations discussed earlier in this section. The electrical potential @,
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and the transverse shear stress 0,3 have a parabolic variation in their thickness direction,
and the section closest to the clamped boundary exhibited the largest values. The normal
stress o7 is almost an affine function of the thickness coordinate for both paths. All

three figures show good agreement between the FE and analytical results.

———— ‘.--..'—--.‘
. _","'.'
= Finitc Element [~
a
H
\.N
e
0.1+ e,
e

0_ [V SYPUPS UV TNV S [T S, . Y
-1 0.8 0.6 04 0.2 0
#(x . x,)e/Cou, (1, H2) x10”

Figure 2-3 Analytical and FE Electrical Potential Variation Through-The-Thickness of
the Monolithic Thick Cantilever Plate
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2.6.3 Two-layer Cantilever Composite Plate

Consider a two-ply piezoelectric composite laminate with the bottom layer made of
graphite/epoxy with fibers parallel to the x;-axis and the top layer made of PZT-5A. The
dimensions of the composite plate are L = 0.1 m, H = 0.025 m and both layers are of
equal thickness. The edge x; = 0 is clamped (i.e., u; = 42 = u3 = 0) and the edge x; = L is
traction free (i.e., o)) = 012 = 613 = 0). The edges and top surface of the PZT-5A layer
are electrically grounded to zero potential. The interface between the PZT-5A and
graphite/epoxy layers is electroded and electrically grounded to zero potential.

The effect of truncation of the series on the accuracy of the natural frequencies,
displacements and stress corresponding to the first mode of vibration is investigated by
computing the solution at specific points in the laminate. The fundamental frequency and
corresponding displacements, electric potential and stresses at specific points of the
piezoelectric composite laminate are listed in Table 2-5 for increasing number of terms K,

where py = 7750 kg/m®, Co = 99.201 GPa and ey = -7.209 C m™. The natural frequencies
are normalized as @, =, (L’ /H)\p,/C,,. These results show that the natural

frequencies, mechanical displacements, stresses and electric potential converge rapidly.

The results in this section are computed using K = 400.
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Table 2-5 Convergence Study for the Graphite/Epoxy-PZT5A Cantilever Composite
Laminate (L/H = 5)

k@l \/p:(, u(2,E) w(L H) 10°0(5. %)eg 100,,(%,00L 100,3(%, )L
H \VCo wuy(L, -’,’;) ua(L, —;—’-) Cous(L, % Coug(L, %) Cous(L, ‘;71)
50 L1164 04034 01470 8279 2747 02416
100 11149 04031  -0.1471 8.345 2.746 0.2409
150 11146 04032  —0.1471 8.362 2.743 0.2408
200 11145 04032  —0.1471 8.368 2.744 0.2408
250 11144 04032 —0.1472 8.371 2.746 0.2408
300 11144 04032 -0.1472 8.374 2.747 0.2408
350 11144 04032  —0.1472 8.375 2.746 0.2408

400 1.1144 0.4032  —0.1472 8.375 2.746 0.2408

The first 12 mode shapes and the corresponding natural frequencies are shown in
figure 2-6. The mode shapes are depicted by plotting the deformed shapes of material
lines that in the reference configuration are parallel to the x)- and x3-axes. There is
significant change in the thickness of the laminate for modes 9 and 12.

The through-the-thickness variation of the electric potential ¢, axial displacement u,,
longitudinal stress o) and transverse shear stress o3 at three sections along the span of
the laminate for the first mode of vibration are shown in figures 2-7, 2-8, 2-9, and 2-10
along with values obtained from FE analysis (ABAQUS, 2002) shown by the black
squares. Since displacements and stresses at a natural frequency are very large, they have
been normalized by the value of the tip deflection, u3(L,H/2). The analytical and FE
values are almost identical. The electric potential ¢ in the piezoelectric layer has a
parabolic variation in the thickness direction. The longitudinal stress oy, is discontinuous
at the interface x3/H = 0.5 due to the discontinuity in the material properties of the two

layers. The transverse shear stress o3 is parabolic at the mid-span x;/L = 0.5, it deviates

30



from the parabolic profile near the clamped and free edges. The axial variations of the

electric potential, transverse deflection, longitudinal stress and transverse shear stress are

depicted in figures 2-11, 2-12, 2-13, and 2-14. A steep variation of the electric potential

¢ and of the transverse shear stress gi3 is observed at the clamped edge. Here too, the
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Figure 2-6 First Twelve Mode Shapes and Normalized Natural Frequencies for the Two-

Layer Cantilever Plate
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The through-the-thickness distributions of the normalized axial displacement u,
electric potential ¢, longitudinal stress oy, and transverse shear stress o3 at four sections
along the span of the cantilever laminate for the second mode of vibration are shown in
figures 2-15, 2-16, 2-17, and 2-18. Although the axial displacement u, is an affine
function of the thickness coordinate at the mid-span x;/L = 0.5, it is nonlinear near the
clamped edge x; = 0.1L and the free edge x)/L = 0.9 (see Figure 2-15). It should be noted
that the transverse shear stress does not have a parabolic profile in the thickness direction

as is usually the case for anisotropic monolithic plate.
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Figure 2-15 Analytical Axial Displacement Variation Through-The-Thickness of the
Two-Layer Thick Cantilever Plate for Mode 2
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Two-Layer Thick Cantilever Plate for Mode 2

Figures 2-19, 2-20, 2-21, and 2-22 exhibit the through-the-thickness variation of the
axial displacement and stresses for the third mode of vibration. The axial displacements
of all points in the thickness direction have the same sign, thus indicating that this is
primarily an axial mode of vibration. The transverse shear stress o3 is very large at the
interface between the PZT-5A and the graphite/epoxy layers near the clamped and free
edges of the plate. The transverse normal stress o33 is depicted in Figure 2-22. The
longitudinal stress a; is an order of magnitude larger than the transverse shear stress o3,

which in turn is an order of magnitude larger than the transverse normal stress o33.
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Figure 2-19 Analytical Axial Displacement Variation Through-The-Thickness of the
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Figure 2-20 Analytical Longitudinal Stress Variation Through-The-Thickness of the
Two-Layer Thick Cantilever Plate for Mode 3
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2.6.4 Conclusions
The Stroh formalism has been extended to obtain an analytical solution for the steady

state vibration of a composite plate with either surface mounted or embedded
piezoclectric patches. Fourier basis functions for the mechanical displacements and
electric potential that identically satisfy the equations of motion and charge equation of
electrostatics are used to solve the boundary value problem via the superposition
principle. The boundary conditions at the edges and continuity conditions at interfaces
between adjoining laminae are satisfied in the sense of Fourier series. The mechanical
displacements, electric potential, stresses and electric displacement can be computed to a
desired degree of accuracy by retaining sufficiently large number of terms in the series
solution.

The solution procedure is validated by comparing the natural frequencies of a simply
supported thick piezoelectric plate with those given by Heyliger and Brooks (1995). The
first twelve natural frequencies and modes shapes for a two-layer graphite/epoxy-PZT
cantilever composite plate were computed. The analytical displacements, stresses and
electric potential compare very well with those obtained by the finite element method.
As illustrated by the results, the method is versatile and capable of analyzing

piezoelectric composite plates subjected to arbitrary boundary conditions.
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3. STRUCTURAL HEALTH MONITORING OF BOLTED
COMPOSITE PANELS USING PIEZOELECTRIC

ACTUATORS AND SENSORS

The purpose of this study is to determine the effectiveness of different vibration-based
techniques for the detection of loose bolts around the perimeter of a square composite
plate. If a bolt becomes loose, then a method capable of determining the serverity and
location of the loose bolt would be of great interest. The United States Navy has
particular interest in detecting degradation of bolted composite connections due to bolt
loosening because of their current research in developing composite hull forms. The U.S.
Navy currently has a technical goal to develop systems that use composite materials.
One item of concern for the U.S. Navy is composite bolted connections that loosen with
time due to vibration and creep in the composite. Naturally, the U.S. Navy would be
interested in methods that are capable of detecting degradation of bolted connections so
to avoid catastrophic failures.

This section begins with a literature review of previous work in the field of structural
health monitoring using vibration techniques, and then continues to a chosen few
methods for case specific investigation. In particular, a method using transfer functions
and transmittance functions to detect damage is focused upon. The theory of transfer
and transmittance functions used in the investigated damage detection schemes is
presented. The experimental hardware employed, and procedures followed for all of the
experiments are also presented, as well as the respective results and discussions. This

chapter ends with a discussion of conclusions drawn from the experimental results.
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3.1 Literature Review
The development of structural health monitoring and damage detection schemes has

been the focus of much research, especially for the health monitoring of composite
structures. Composite materials are used increasingly in engineering applications
because of their high specific stiffness and strength. However, they are susceptible to
many types of damage such as moisture absorption, matrix cracking, fiber breakage or
pullout and delamination. Composite joints in particular are susceptible to fatigue, bolt
loosening due to creep, temperature effects and moisture absorption. There are several
structural health monitoring techniques currently available. There has not been much
research on the structural health monitoring of bolted composite panels, although ideas
from other methods that have been reported in the literature can be applied to this
problem.

The fundamental idea behind vibration-based damage detection techniques is that
changes in the physical properties of a system will alter a system’s modal properties.
Thus changes in mass, damping, and stiffness of a system should lead to measurable
changes in the system’s dynamic properties, such as the natural frequencies, mode shapes
and damping. Comprehensive literature reviews on the subject of structural health
monitoring can be found in references (Doebling et al.,1996), (Farrar et al.,1997 ) and
(Zou et al., 2000). Three of the major structural health monitoring techniques discussed
here are techniques using impedance sensors, transfer functions and transmittance
functions.

The use of statistical analysis procedure was applied to a vibration based damage
detection scheme by (Fugate et al., 2001). Statistical pattern recognition is applied to the

problem of damage detection in this paper. This method relies on measuring a healthy
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system’s characteristics first, and then generating errors as the system’s characteristics
deviate when damage occurs. Damage was detected when a statistically significant
number of error terms occurred outside a determined control limit.

A passive control technique using piezoelectric materials was used to detect damage
(Lew and Juang, 2002). In this method, the natural frequencies of a system are identified
to detect damage in a closed loop system, and stability is ensured. A system’s damping
almost always increases when a virtual passive controller is added.

Techniques based on neural networks require a model to “train” the system to be able
to detect damage (Wang and Huang, 2000). Zubaydi et al. (2002) investigated the
damage detection of composite ship hulls using neural networks (Zubaydi, 2002). They
developed a Finite Element model for a stiffened plate to simulate dynamic response of
the structure with and without damage. They were successful in identifying crack length
and location on the faceplate.

Very small damages in composite materials, such as cracks, were successfully found
using wavelet analysis (Yan and Yam, 2002). They used a Finite Element model and
micro-mechanics theory of composite damage. A crack size as small as 0.06% of the
total plate area can be efficiently detected using the wavelet analysis technique.

An interesting method of detecting damage was presented by (Todd et al., 2001) using
a state-space method. A novel feature called the local attractor variance ratio was
presented. The paper showed how through a chaotic excitation a robust method was
developed to detect structural damage using a states space method.

Localized flexibility matrices properties were the focus of the model-based structural

damage detection investigated by (Park et al., 1998). The three flexibility methods



investigated were; a free-free substructural flexibility method, a deformation-based
flexibility method, and a strain-basis flexibility method. The structural damage detection
methods were based on the relative changes in localized flexibility.

Often damage detection is shown theoretically to work, and then investigated
experimentally. Kim presented one such paper, where he used a finite element analysis
package (ABAQUS, 2002) to evaluate a two-span continuous beam with modeled
damage. A derived algorithm was used to predict the locations and severities of damage
using changes in modal characteristics (Kim, 2002). Banks and Emeric (1998) used a
Galerkin method to approximate the dynamic response of structures with piezoelectric
patches acting as sensors and actuators. Non-symmetrical damage such as a cut that
extended part of the way into a beam was investigated. The analytical results were
compared well with experimental results in the range of investigation up to 1000 Hz.

Ganguli (2001) used a fuzzy logic system to locate damage on helicopter rotor blades.
A fuzzy logic system can be expressed as a linear combination of fuzzy basis function
and is a universal function approximator (Ganguli, 2001). The purpose of this study was
to determine the approximate location of the damage and then allow for other more
intrusive techniques to pinpoint the damage location.

3.1.1 Damage Detection through Changes in Natural Frequencies

Salawu (1997) has presented an excellent review of various investigations on the
effects of structural damage on natural frequencies. Many damage location methods use
changes in resonant frequencies because frequency measurements can be quickly
conducted and are often reliable. However changes in ambient conditions such as

temperature can cause significant frequency changes in composite materials, and findings
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suggest that detection of damage using frequency measurements might be unreliable
when the damage is located at regions of low stress (Salawu, 1997). Similar results were
presented by Kessler et al. (2002) where the frequency response method was found to be
reliable for detecting damage in simple composite structures, but information about
damage type, size, location and orientation could not be obtained. Another investigation
by Zak et al. (2000) showed good agreement between experimental and numerical
calculations of the first three bending natural frequencies of a delaminated composite
beam. Kuo and Jayasuriya (2002) used transfer functions to determine the extent of joint
loosening in automobile vehicle frames with high mileage. The method was successful
as presented in the paper, but did not give specifics for frequency ranges investigated and

what type of frequency response functions were utilized.

3.1.2 Impedance Based Methods
Impedance-based structural health monitoring techniques show much promise, but

require some rather expensive hardware. The impedance-based technique utilizes the
direct and converse electromechanical properties of piezoelectric materials, which allows
for simultaneous actuation and sensing. The fundamental principle is to track the high
frequency (typically > 30 kHz) electrical point impedance of a piezoelectric material
bonded onto a structure (Park, 2000). A change in the structural mechanical impedance
is caused by physical changes in the structure, which induces a change in the electrical
impedance of the piezoelectric material because of the electromechanical coupling
between the piezoelectric material and the structures. Thus, structural damage can be
identified by monitoring the changes in electrical impedance of the piezoelectric material.

This technique is very sensitive at high frequencies because the wavelength of the
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excitation is small enough to detect incipient-type damage like slight delaminations or
loose joints (Kabeya, 1998). Some problems associated with the electrical impedance
methods are that the material properties of both the piezoelectric material and composite
structures are temperature dependant, so temperature variation can be interpreted as
damage. A frequency range of 70kHz to 80kHz was used by Kabeya (1998). Since the
excitation frequencies are very high, the piezoelectric sensors are limited in their sensing
areas and a large number of piezoelectric sensors and actuators are required to adequately
cover the structure. Moreover, since this technique only uses point measurements of the
electrical impedance of sensors and does not use mutual information between them, the
ability to identify damage location is poor. One major benefit of the impedance method
is that it does not based on a theoretical model as were most other techniques presented
earlier, and thus can be applied to complex structures. The application of impedance
based monitoring techniques was presented by Berman et al. (1999) for the fiber

reinforcement of masonry structures.

3.1.3 Transmittance Functions
Transmittance functions (TF) are derived as the complex ratio between Fourier

transforms of a response point and a reference point on a structure. The motivation for
using the TF is that excitation does not need to be measured since changes in the structure
due to the environmental effects (temperature and moisture) are partly cancelled. Also,
the cross-spectral density used in TF is a measure of the linearity between two response
points on the structure and can detect local damage by propagation changes (phase delay
and amplitude modulation) in the structural response. Since the cross-spectral density

function is the Fourier transform of the cross-correlation function, it represents the
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frequency domain characterization of the similarity of the magnitude and phase of two
signals, e.g. of two nearby response points on the structure. Hence, if used in the correct
frequency range, it can accurately detect damage over small distances on a structure.
Furthermore, measured transmittance data inherit certain advantages over modal data.
Firstly, transmittance functions have little sources for computing error, except the
minimal error from the numerical Fast Fourier Transform. Secondly, they carry complete
information on the dynamic behavior of the test structure in terms of both the vibration
modes and the damping at many frequency points, including away from the responses of
the structure (Zhang et al., 1999).

The transmittance function does not depend on whether the receptance, mobility or
inertance spectral densities are measured since it is a ratio of the frequency response
functions. Therefore, different sensor types can be used to measure the vibration
response. When damage occurs, the peaks and valleys of the transmittance function
misalign. This misalignment caused by a change between the healthy and damaged
system can be quantified. Generally, the sensitivity of the technique to detect small
damage increases as the actuator and sensor move close to the damage, and as the
frequency of excitation increases (Schultz et al., 1999). The damage values for some
cases are nearly four times larger at high frequencies (10-20 kHz) than at low frequencies
(200-1800 Hz) (Zhang et al., 1999). However, the size of the PZT sensors plays a role in
the effective frequency range that the sensor can detect damage. Different sized sensors
are more tuned for certain vibration frequencies. A larger sensor would not be as
effective as a small sensor for detecting high frequency vibration, because the sensor

would be much larger than the vibration wavelengths. Also, at the higher frequencies

48



there are additional hardware concerns because of a higher sampling, more FFT lines,
and sensors must be spaced closer as their range decreases due to the shorter
wavelengths.

Advantages of transmittance functions as stated by Schulz et al. (1997) are:

1. No structural model is needed.

2. Excitation does not need to be measured.

3. The non-resonant and anti-resonant (zeros) parts of the transmittance functions
are very sensitive and can detect small damage (cracks) that other methods miss.

4. Simultaneous multiple damages can be detected.

5. Well developed sensor and signal processing techniques are used rather than
unproven impedance methods.

6. Transmittance functions are highly repeatable diagnostic procedures, because
environmentally induced changes in the physical properties of the structure are
mostly cancelled by the ratio of response quantities in the transmittance functions.

7. Transmittance functions have a high dynamic range and can decompose the
response signal/noise into different frequency bands to focus on abrupt spectral
changes due to damage.

8. Measurement noise tends to be canceled by the normalization in the transmittance
function.

9. The transmittance function technique is algorithmically simple and suitable for
autonomous damage detect.

Of course, more tests on other types of structures and damages need to be performed

to confirm these characteristics of this method. Successful transmittance function testing
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for wind turbine blade damage analysis was presented by Ghoshal et al. (2000) and by

Schultz et al. (1999) for beams and plates.

3.2 Theory of Transfer and Transmittance Functions

3.2.1 Transfer Functions
Transfer functions characterize the dynamic properties of a system. Transfer functions

are measured dynamically by initiating a system response with some type of forcing
function, and measuring the resulting system output. In vibration measurements the
output that can be measured are displacement, velocity, or acceleration. A transfer
function of a system is a measure of the system’s response to a given input excitation.
The equation of motion of a single degree-of-freedom system consisting of a spring, mass
and damper subjected to an excitation force is

2
md—f+c—d—x+kx=F(t) 39)
dt dt

The Laplace transform of the system’s equation of motion equation (39) for system
under forced excitation is the transfer function H. The Laplace transform converts
equation (39) from the time domain to the frequency domain. The corresponding Laplace

transform of the equation of motion is given in equation (40).

H(jw)=2XU2 _ ! (40)
F(jow) m(jo) +c(jo)+k

Transfer functions are excellent tools for determining a system’s natural frequencies.

When the driving frequency equals the undamped natural frequency, the system’s
response peaks because of the following condition kK — mw® = 0. This allows the natural
frequencies to be determined from a plot of the transfer function magnitude versus
forcing frequency. For higher-order systems with multiple natural frequencies, the

resonant frequencies correspond to the plots peaks, as can be seen by the representative
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transfer function in Figure 3-1, and the first three peaks correspond to frequencies of

1050 Hz, 1650 Hz, and 2400 Hz, respectively.

(dB)

p—

0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 3-1 Representative Transfer Function

Experimental measurement of the transfer function of continuous systems is not as
simple as taking the Laplace transform of the equation of motion as illustrated earlier.
The mass, stiffness, and damping matrices can be estimated, but not calculated exactly
for most real continuous systems. Thus, the responses measured by the transducers are
discretized in order to take advantage of computers computational power. Discretization
of the data, and noise in the systems prohibits the data to be analyzed in a deterministic
fashion as shown earlier. Presented subsequently is the method used to estimate the

transfer function of a system.
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For a discrete signal, the position, velocity, or acceleration relative to time can be
measured. A measure of how fast that signal is changing is the autocorrelation given by
Equation (41). Likewise a measure of how one signal x(?) is changing relative to another
signal f(?) is the cross-correlation of the signals given by equation (42). Here x(¥) is the

response of the system, and f{2) is the forcing function.

lim 17
= — |x(Ox(t +7)dt
- T_)wTox()X( 7) @1
lim 17
R, = — Ix() (@ +71)dr
» T_mTOIX()f( 7) “2)

The autocorrelation and cross-correlation is then converted to the frequency domain
by employing the discrete Fourier transform. The spectral density is the discrete Fourier
transform of the autocorrelation, and likewise the cross-spectral density is the discrete
Fourier transform of the cross-correlation. Equations (43) and (44) are the spectral

density and cross-spectral density respectively.

1 7% -
S (w)=— J‘R“(r)e “tdr 43)
27 3,
S (o) = L u]R (r)e ™ dr @4
xf 2”_00 xf

The spectral and cross-spectral densities can be used to compute the transfer function
of a system as shown by the spectral densities relationship equations (45) and (46) given
below. A development of equations (45) and (46) is described by Inman (2000). The
signal processing hardware used to estimate the transfer functions employs these
equations in it’s estimation of the transfer function. S.(@) is the spectral density of the

response, and S,(@) is the cross-spectral density of the response with respect to the
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forcing function f{#). Likewise Sx(w) is the cross-spectral density of the forcing function

with respect to the response x(2),and Sg(@) is the spectral density of the forcing function.
S (0) =H(jo)S (o) “5)

S s(@) = H(jo)S ;(v) (46)
The coherence function is used as a measure of the quality of data gathered using the

spectral densities. The coherence function can only range from zero to one, with one
meaning that the transfer functions obtain by equations (45) and (46) are equal. If the
coherence equals zero then the two transfer functions are uncorrelated different, and the

signal is pure noise.

2
2 - Sxf (w)|
S« (@)S 5 (@)
The transfer functions found in the following experiments were estimated using

@7

discretized signals using the methodology presented here.

3.2.2 Transmittance Functions
Transmittance functions (TF) characterize the response at two different points of a

system for a given input. Transmittance functions are a ratio of the response cross-
spectral density between two sensors, and the response auto-spectral density at a point,
and it is a non-dimensional complex quantity that defines how vibration is transmitted
between two locations as function of frequency. Displacement, velocity, or acceleration
measurements can be used to compute the transmittance function. The transmittance
functions are found similarly to the transfer functions discussed in section 3.2.1. But
instead of computing the spectral densities of the forcing function, the spectral density

and cross-spectral density are calculated for two separate sensors on a system excited by
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the same input. The transmittance function of sensor A with respect to sensor B is

defined as

S, (@

T,(@) =2a() (48)
Sy (@)

whereas the transmittance function of sensor B with respect to sensor A is defined by
Spa(@)
T (@) === 49
ba{@) 5. (@) 49)

The forcing function does not need to be measured, as long as the measurements at the
two different sensors are taken simultaneously to calculate the spectral and cross-spectral
densities. The transmittance function estimation is mathematically the same as transfer
functions estimation, with the difference being transfer functions are measures of a
response to an input, while transmittance functions are measures of response to another

response.

3.3 Experimental Setup

The platform for the various health-monitoring schemes investigated here was a bolted
composite plate. The configuration investigated is a 24.5-inch square fiberglass plate
bolted to a steel frame with 16 '4-inch diameter grade eight bolts. In this section the

experimental setup is described in detail.

3.3.1 Fiberglass Plate Configuration
The fiberglass plate used in the following experiments was cut from a larger panel

fabricated by Keith Berube and staff at the University of Maine using Vacuum Assisted
Resin Transfer Moulding (VARTM). Panel number 35 from which the smaller 24.5 inch
square plate was cut was 48 by 30 inches, and % inch thick. Four symmetric layers of
fiber glass in the 0/90 configuration made up the plate to be % inch thick with Dow

Derakane 8084 resin used as matrix. Sixteen 9/16 inch holes were drilled around the
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plate so that it could be clamped to the steel base. A 9/16 inch diamond tipped drill bit
supplied by Accurate Diamond Tool Corporation of Emerson, New Jersey, was used to
drill the holes. The bolt pattern used for the fiberglass plate matches with the bolt pattern

shown in Figure 3-2 for the steel frame.
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Figure 3-2 Steel Frame Schematic with Dimensions in Inches

Figure 3-2 above depicts the steel frame that was fabricated by Alexander’s Welding
and Machine of Greenfield, Maine. The larger 9/16 inch holes are for the ¥ inch grade
eight bolts that attached the fiber-glass plate to the frame. The smaller counter sunk holes
are for the % inch bolts to attach the frame to the worktable. The table used has a %

diameter bolt pattern spaced two inches on center. Wooden blocks were used to support
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the plate above the table to facilitate access to the bottom of the frame for tightening and
loosening the Y2 bolts.

All of the grade eight bolts used to fasten the plate were supplied by A.L. Design Inc.
of Buffalo, New York. The bolts were 'z inch diameter by 2 inches long with 1.5 inches
of thread. For the experiments discussed in this chapter, one of the bolts was internally
gauged with strain gauges. This instrumented load sensing bolt model ALD-BOLT-1/2-2
serial number 220807 was the same as the other bolts, except for the internal strain
gauges. The strain gauge was excited by 10 V DC in full bridge configuration and the
output read in mV is correlated to the bolt load.

The complete calibration sheet for ALD-BOLT-1/2-2 serial #: 22087 can be found in
Appendix A. Figure 3-3 below shows an instrumented bolt configuration. The fiber-

glass plate is on top of the steel frame with wooden blocks supporting the frame above

the table.
Y% inch Nut
Fiber Glass
Steel Y inch
Frame Washers
Wooden Blocks—P : ~===4 ALD-BOLT-

1/2-2 Serial #:

¥ .
Figure 3-3 Instrumented Bolt Configuration
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3.3.2 Dynamic Sensors and Actuators
A piezoelectric actuator (ACX QP 10W) was bonded to the center of the plate by

applying epoxy between the actuator and plate and vacuum bagging it for three or four
hours. Complete specifications of the ACX piezoelectric actuator are given in Appendix
C. ACX actuators were chosen because of their slim low profile design, and they came
with the wire leads already attached to the piezoelectric wafers. Early in the investigation
soldering wire leads to piezoelectric wafers was experimented with, but this proved to be
cumbersome. Figure 3-4 below shows the setup with the actuator bonded at the center of

the plate, and sensors for the high frequency tests located near two of the bolts.

Sensors

"~ Actuator

() BN

Figure 3-4 Sensors and Actuators Mounted on the Plate

Accelerometers and dynamic strain sensors were used to measure the response of the

plate to an excitation. The accelerometer senses the accelerations transverse to the plane

57



of the plate, while the strain sensor measures the in-plane dynamic strain induced in the
plate from the vibration. Both sensors were supplied by PCB Piezotronics of Depew,
New York. Model 352B10 ceramic shear ICP accelerometers were chosen for being able
to measure low amplitude vibration, having minimal mass, and being able to operate in a
frequency range of up to 25 kHz. ICP is a trademark of PCB, and sensors with this
designation have internal signal conditioning circuitry that minimizes noise and improves
sensor accuracy. Complete specifications for model 352B10 accelerometers are given in
Appendix D. The dynamic strain sensor model 740B02 was chosen for it’s low profile,
and because it is less expensive than accelerometers. Because of cost considerations
strain sensors are attractive for large scale health monitoring schemes. The accelerometer
and dynamic strain sensor used in these experiments are depicted below in Figure 3-5.
Complete dynamic strain sensor specifications can be found in Appendix D. For the
lower frequency dynamic measurements 352A24 model PCB accelerometer was used.
This accelerometer was used for the early experiments to determine the fundamental
frequency before the higher frequency accelerometers were purchased. The reader is

referred to Appendix D for specifications.

Figure 3-5 Dynamic Strain Sensor and Accelerometer
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3.3.3 Electronics
Various electronic components were employed to complete the experimental setup.

Voltage sources and measurement devices were used with the sensors, and a
sophisticated data acquisition system completed the setup.

The instrumented bolts were excited per specifications by a Hewlett Packard 3245A
Universal Source serial #: 2831A02484 set to 10 volts DC, and a Micronta Auto-Range
Digital Mulitmeter Serial #: 22-195S was used to read the output voltage. The ACX
actuator’s excitation signal was generated by Siglab and amplified by a PCB 790A01
signal conditioner serial number 274 with a set gain of 25. PCB accelerometers and
dynamic strain sensors signals were conditioned by a 482A20 PCB ICP sensor signal
conditioner. The signal conditioner was set to unity gain for the accelerometers.
However, the strain sensor’s lower output required a gain of ten for the lower frequency
ranges, at frequencies over one kHz the stain sensors required a unity gain. The excitation
signal was generated using a SigLab dynamic signal acquisition and processing hardware.
SigLab is a dynamic signal and system analyzer that runs on a MATLAB platform with
function generation, spectrum analyzer, oscilloscope, and network analyzer capabilities.
The SigLab hardware has 2 input and 2 output channels and has a bandwidth of 20 kHz.
SigLab is used as the function generator, data acquisition system, and data analyzer in our
experiments. Hardware specifications for the PCB signal conditioner, and SigLab is

presented in Appendix E and Appendix B respectively.
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Figure 3-6 Siglab Hardware

3.4 Experimental Procedure
The experimental procedures followed in conducting the various studies are described

in detail in this section.

3.4.1 Bolt Torque Repeatability
Bolt torque repeatability experiments were conducted to determine how reliable a

torque wrench was at applying the desired torque, thus causing consistent tensile loads in
the bolts. Although it was desirable to know the force in each of the bolts, it was
prohibitively expensive to use instrumented bolts for all 16 bolts around the perimeter of
the plate. Therefore, it would be useful to correlate the applied torque to the bolt load.

In this experiment, the torque of the instrumented bolt was varied, while the other
bolts were maintained at constant torque sufficient to prevent any plate movement. The
instrumented bolt was lubricated with Loctite antiseize and threaded through the bolt hole
with the nut on the top of the plate, as shown in Figure 3-3. The HP power source was
then connected to the appropriate leads on the instrumented bolt and set to 10 volts DC.

A Micronta multimeter was also turned on, and connected to the instrumented bolt. The
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electronics were left on for a period of time not less than 20 minutes for each trial before
starting the tests. This warm-up period is required to ensure accuracy of the bolts output
per A. L. Design Inc. information sheet in appendix A. The bolt was then tightened to 20
foot-lbs by the 10 to 100 foot pound torque wrench (serial number 4010486831). After
the voltage readout was recorded, the torque was increased by five foot-lbs to 25 foot-lIbs
and the voltage recorded again. The torque was increased by five foot-lbs increments and
the corresponding voltage recorded until the final torque of S0 foot-Ibs. Then the process
was repeated five more times for a total of six ranges from 20 to 50 foot-lbs for each trial.

Six trials were completed for a total of 336 measurements.

3.4.2 Variation of Fundamental Frequency with Uniform Torque for all
Bolts

The purpose of the variation of fundamental frequency on uniform bolt torque study is
to investigate the effects a perimeter clamping force has on the fundamental natural
frequency of a plate. The 24.5 inch square fiberglass plate is clamped to the steel frame
using sixteen 4" diameter grade eight bolts. The torques were applied to the bolts using
two different Armstrong micrometer torque wrenches. The smaller torque wrench (serial
number 960831060) had a torque range of 50 to 250 inch pounds of torque, while the
larger wrench was capable of 10 to 100 foot pounds of torque (serial number
4010486831). The response of the plate was sensed by a PCB 352A24 accelerometer

mounted 0.75 inches from the edge of the ACX actuator as shown in Figure 3-7.
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Figure 3-7 352A24 Accelerometer Placement Relative to the ACX Actuator

Fifteen regulator grade eight bolts were threaded through the plate holes with the
sixteenth bolt being the instrumented bolt. All of the bolts were lubricated with Loctite
nickel antiseize and nuts threaded down so that they did not quite touch the washers.

After the installation of the plate, the HP function generator and Micronta multimeter
were switched on and connected to the instrumented bolt, as were the ACX actuators and
PCB accelerometer connected to their respective signal conditioners. The electronics and
the Siglab hardware were also turned on and allowed to warm up for a period of at least
20 minutes.

For the first frial, the bolts were left loose enough to rattle in the holes. The Siglab’s
dynamic signal analyzer was set to average the data from three trials consisting of 4096
data points recorded. The system excitation was a two volts root mean square (VRMS)
chirp function over a frequency range of 0 to 1000 Hz. Estimation of the transfer
function was performed with the network analyzer module (VNA) of the SigLab interface

program. The fundamental frequency was estimated from the transfer function. Another
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experiment with a narrower bandwidth of 100 Hz around the fundamental frequency was
performed to accurately determine the fundamental frequency. Both transfer functions
were then saved to file, and the fundamental frequency and the instrumented bolt load
were recorded.

Next, the bolts were torqued to 50 inch pounds using the 50 to 250 in-1b torque wrench
in the order shown in Figure 3-8. The corresponding transfer function and pertinent data
were recorded. The 10 to 100 foot pound torque wrench was used for torques greater
than 300 in-lb. During the lower torque trials, the torque was incremented by 10 inch
pounds, whereas for higher torques, larger torque increments were used. The following

torques were applied to all the bolts: 0, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150,

160, 170, 200, 230,

Figure 3-8 Bolt Torque Pattern
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3.4.3 Fundamental Frequency Dependency on Single Bolt
In the previous section the dependency of the fundamental frequency on the perimeter

clamping force was investigated. The sensitivity of the fundamental frequency on a single
bolt loosening is investigated here. The bolt torque for all other bolts are unchanged in
this investigation. The experimental procedure is identical to the procedure given in
section 3.4.2, except that only one bolt has the torque varied as opposed to adjusting the
torque of all 16 bolts as done in section 3.4.2,

For the first trial the bolts were tightened to the full torque load of 720 inch pounds.
The Siglab’s dynamic signal analyzer settings were adjusted as discussed in the
experimental setup. The Siglab’s network analyzer, was used to record the transfer
function of the plate for a frequency range of 0 to 1000 Hz. The fundamental frequency
was picked off the transfer function and a second transfer function was found for a
narrower bandwidth of 100 Hz around the fundamental frequency. Both transfer
functions outputs were then saved, a;ld the fundamental frequency with the instrumented
bolt’s voltage recorded.

The instrumented bolt was loosened, and then tightened to 600 inch pounds using the
10 to 100 foot pound torque wrench. The transfer function was found again, and the
corresponding data recorded. The torque was decreased from 600 inch pounds to finger
tight (or 0 inch pounds) in reverse in the following steps: 600, 480, 360, 230, 200, 170,
160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50 and O in-lbs.

3.4.4 High Frequency Responses

In the high frequency response experiments the frequency response of two sensors for

a frequency range of 13 kHz to 17 kHz are found each change in torque. The torque of

only one bolt is changed throughout the experiment. One sensor was placed directly next
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to the bolt that has the torque varying and another sensor was placed directly on the other
side of the plate. Both accelerometers and dynamic strain sensors were employed to
determine which sensor gave better results. Figure 3-9 below shows the high frequency

experimental configuration with the accelerometers and dynamic strain sensors.
Insffumented
Bolt

: " '. :,- 5
Sensors

The procedure for this section is similar to the procedure given in section 3.4.3, except
for the frequency range investigated, the types of sensors used, and the sensor locations.
The accelerometers, and dynamic strain sensors were placed next to the instrumented
bolt, and the bolt directly opposite as shown in Figure 3-9 above. Only the instrumented
bolt was loosened to conduct the tests. Model 352B10 ceramic shear ICP accelerometers
were the accelerometers employed for these tests as opposed to the 352A24
accelerometer that was used for the lower frequency tests. Siglab hardware generated the
chirp excitation function for the ACX actuator, and measured the two separate transfer
functions for a frequency range of 13 kHz to 17 kHz. The PCB ICP signal conditioner
was set for a gain of one when using the accelerometers, and a gain of ten when using the

dynamic strain sensors. The transfer functions for both sensor locations were saved. The
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bolt torque was set and varied for the instrumented bolt in the same manner as done in

section 3.4.3.

3.4.5 Transmittance Testing
Transmittance testing procedures are similar to the procedures following for the

transfer function techniques. For the transmittance tests the response of two sensors are
compared between each other, whereas when measuring transfer functions the response
of one sensor is compared with the excitation signal. Thus, for the transmittance testing,
sensor A was connected to input 1 and sensor B was connected to input 2 of the Siglab
hardware. Input 2 was the reference channel for Siglab, thus the transmittance function A
with respect to B (Tag) was found with input channel one being A, and input channel 2
being B. Manhattan switch boxes were used switch between sensor pairs for each
transmittance function to be tested. The switch boxes had four inputs and one output.
All four sensors used were connected to each switch box and the corresponding signal of
interest was selected by turning the dial as shown in Figure 3-10. Then the switch boxes
were employed to facilitate a quick change of sensors so that multiple transmittance
functions could be recorded easily. This continued until all of the desired transmittance
functions were found for a given frequency range and level of damage present in the

system.

Figure 3-10 Manhattan Switch Boxes
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3.4.5.1 Frequency Range Investigation. The Siglab dynamic signal analyzer is
capable of investigating systems from 0 Hz to 20 kHz, thus this is the absolute limits for
the transmittance testing. A frequency bandwidth of 4 kHz was used for the testing in
order to give good frequency resolution for the transmittance results. Tests were
conducted for the following five frequency ranges in kHz: 0-4, 4-8, 8-12, 12-16, 16-20.
An A. L. Designs instrumented bolt was loosened between sensors 2 and 3 for the
damage in these series of tests as shown in Figure 3-11 below. Since the transmittance
method was being explored to detect bolt loosening on a composite plate only the
transmittance functions T23 and T32 were recorded in this investigation. Tests were
performed per the basic procedure given earlier for all sixteen bolts tightened to 720 in-
lbs by the Armstrong 10 to 100 fi-Ibs torque wrench. The bolt indicated in Figure 3-11
was then loosened to 540 in-lbs and the experiment run again. Then the bolt was
loosened to 300 and 60 in-lbs successively. For the 60 in-lb case the smaller 50 to 250
in-1b torque wrench was used. The actual tensile load in the bolt was recorded by

measuring the output voltage for each step.
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Figure 3-11 Transmittance Testing Sensor Locations

3.4.5.2 Transmittance Investigation for One Bolt Loosening. Extensive testing
was conducted using the transmittance functions for the bolt loosening done in the
frequency range survey. The two frequency ranges found to produce the best results
were used in these series of tests. The same basic transmittance function testing
procedures were followed, except tests were conducted for two different frequency
ranges simultaneously. A test was conducted for the 7 kHz to 9 kHz range, then 18 kHz
to 20 kHz range. The bolt torque for the loosened instrumented bolt was 720, 660, 600,
540, 480, 420, 360, 300, 240, 180, 120, and 60 inch pounds. The bolt torque was
adjusted using the Armstrong 10 to 100 fi-1b torque wrench, for all of the adjustments
except for the 120 and 60 settings that were done with the 50 to 250 in-1b torque wrench.
A complete set of transmittance tests were conducted for each torque setting and
frequency range. The transmittance tests were conducted between for the following

sensors pairs: 12, 21, 23, 32, 34, 43, 41, 14, 13, 31, 24, and 42. The output voltage of the
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instrumented bolt was recorded for each test. The tests were conducted using both

accelerometers and dynamic strain sensors.

3.4.5.3 Repeatability Procedures. The repeatability of the transmittance test
results were investigated for the results obtained by following the procedures of section
3.4.5.2. A baseline healthy set of data was recorded when all bolts were set to 720 in-lbs
by the torque wrench. The remaining fifteen bolts were torqued to 720 in-lbs two days
prior. The test was not immediately conducted to allow the initial composite creep to
subside in an attempt to limit the effects of creep during the experiment. The
transmittance functions were recorded between the following sensor pairs: 12, 21, 23, 32,
34, 43, 41, and 14. For all of the damage tests the bolt was set to 240 in-Ibs. The tests
were conducted approximately 5 to 10 minutes after each time the bolt was set to 240 in-
Ibs to allow any initial creep to subside. After the test was conducted the bolt was
loosened and retightened to 240 in-Ibs and the tests run again after the initial wait for the
creep to subside. The start time of each test was recorded, as was the instrumented bolt

voltage for each test. Ten damaged cases were run over about an hour period.

3.4.5.4 Different Bolt Procedure. The procedure to investigate the effects of
loosening a different bolt was identical to the extensive transmittance testing procedure,
except only the accelerometers were used in the 7 kHz to 9 kHz range, a different bolt
was loosened, and only the following torque values in inch pounds were investigated:
720, 600, 480, 360, 240, and 120. The effects of damage located elsewhere on the plate
is investigated here. The bolt loosened for this experiment is on the left side of Figure

3-12.
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Figure 3-12 Different Damage Locations

3.5 Results and Discussion

3.5.1 Bolt Torque Repeatability
The repeatability of applying a torque with the Armstrong micrometer torque is

presented in this section, and an equation for determining the bolt load from the applied
torque. The calibration plot for the ALD-BOLT-1/2-2 serial number 220807 used in this
study is presented in Figure 3-13. It shows the relationship of the bolt load to the voltage

output, and the linear relationship is given with the equation on the plot.
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Figure 3-13 Instrumented Bolt Calibration Chart

For each of the seven trials, the output voltage was averaged for each applied torque.

Table 3-1 below reports these averages for each trial.

Table 3-1 Trial Average Output (1bs)

Applied Trials

Torque (ft-lbs) 1 2 3 4 5 6 7
20 3344.442 ] 3180.778 | 3059.808 | 3216.357 | 3251.936 | 3166.546 | 3195.009
25 4112.952 ] 4013.33 | 3892.361 | 3984.867 | 4120.068 | 3977.751 | 3999.098
30 4881.462 | 4888.578 | 4717.798 | 4824.535 | 4881.462 | 4717.798 | 4803.188
35 5585.929 | 5735.362 | 5557.466 ] 5600.161 | 5678.435 | 5479.192 | 5614.393
40 6247.702 | 6510.988 | 6336.65 | 6382.903 | 6425.598 | 6276.165 | 6304.628
45 6987.748 | 7279.498 | 7144.297 | 7122.949 | 7151.413 | 6973.517 ]| 7073.138
50 7628.173 | 7927.038 | 7749.143 | 7784.722 | 7777.606 | 7706.448 | 7827.417

Table 3-2 below shows some statistics from the repeatability measurements. The low

values of the coefficient of variation shows that for a given torque the applied bolt load is
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repeatable.

approximately 2.5 percent variation.

percent.

The highest variation occurred with the torque of 20 foot-pounds with

The higher torques varied a little more than 1

Table 3-2 Repeatability Statistics

Applied Mean Standard | Coefficient of

Torque (ft- Deviation Variation
20 3202.125| 80.1462544| 0.025029084
25 4014.3465| 73.8939925| 0.018407477
30 4816.4026] 69.0354844| 0.014333412
35 5607.2767| 76.4508693| 0.013634225
40 6354.9474| 85.1020979] 0.013391472
45 7104.6513| 97.4826235] 0.013720958
50 7771.5065| 86.8538666] 0.011175937

The consistency of the applied torque to the induced bolt load, is illustrated in Figure
3-14. A final equation was developed using the averages from each of the trials that
gives the relationship between the applied torque and the resulting bolt load. The bolt

load vs. torque equation is shown with the resulting plot in Figure 3-15.
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Figure 3-15 Resulting Bolt Load Correlation to Applied Torque
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3.5.2 Fundamental Frequency Dependency on Uniform Clamping Force
The results of changing the bolt torque around the perimeter of the plate are presented

here. Table 3-3below reports the natural frequency and the corresponding bolt load for
each step in the applied bolt torque. The results show that a change in the tension of the
bolts around the perimeter of the plate does not significantly change the fundamental
frequency of the plate. The results are illustrated in Fig. 2-12. As can be seen in Fig. 2-
12 the fundamental frequency does not show a dependency on the uniform clamping

force around the perimeter.
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Table 3-3 Uniform Clamping Force Test Results

Applied Boit Bolt
Torque |1st Nat |Voitage|Tension
(in-lbs) |Freq (Hz) |(mV) |(lbs)

0 30.25] 0.00 0.00
50 135.94] 0.80| 336.26
60 137.25{ 1.00] 421.72

0] 137.31 1.10] 464.45

80 137.56 1.30] 549.92
90] 137.88 1.50] 635.38

100 138.13 1.70] 720.85

110] 138.25 1.90§ 806.31
120 138.50] 2.20}] 934.51

130 138.50] 2.50]1062.70

140 138.81 2.70|1148.17

150 138.81 3.00]1276.36

160 139.06] 3.20]1361.83

170 139.06] 3.50|1490.02

200f 139.38] 4.20]1789.15

230 139.38] 5.20]2216.47

300 139.63| 7.40{3156.57

360 139.75] 8.90]3797.55

480 139.81] 11.60]4951.31

600 139.81] 14.80/6318.74
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Figure 3-16 Fundamental Frequency Dependency on Uniform Perimeter Torque

3.5.3 Fundamental Frequency Dependency on Single Bolt
The fundamental frequency showed little dependency on the uniform perimeter torque

in section 3.4.3. Figure 3-17 shows the fundamental frequency when all sixteen of the
bolts are torque to 720 inch pounds of torque, and only one bolt is loosened in successive
steps. The results are similar as in section 3.4.3, where there is no significant effect of

the bolt torque on the fundamental frequency.
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Figure 3-17 Fundamental Frequency Dependency With Single Bolt Loosening

The effects on the fundamental natural frequency when only one bolt is loosened are
similar to the results in section 3.4.2. Figure 2-13 shows the calculated natural frequency
for each torque setting for the instrumented bolt. There is almost no change in the
fundamental frequency due to the effects of one bolt being loosened as shown in Figure
3-17 with the slope of the line close to zero after the initial torque is applied

The effect of bolt torque on the damping coefficient for the fundamental frequency
was also investigated. The damping coefficients were computed using the half-power
bandwidth method. In this method, there are two points corresponding to half power
points (3-dB smaller than the peak response). The damping coefficient is computed using

the following equation,
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¢=—2—2", (50)
20,

where ®, and oy, are the half-power frequencies and wy is the frequency corresponding

to the maximum response.

Figure 3-18 is a representative plot of the transfer function in the dB scale about the
fundamental frequency from these tests. Figure 3-19 depicts the transfer function in a
narrow region about the fundamental frequency and the half-power frequencies used in
calculating the damping coefficient. The Matlab program written to compute the
damping coefficient from the transfer function data is available in appendix F. Figure
3-20 is a plot of the damping coefficients as a function of applied bolt torque to the bolt
that was loosened. The figure shows that there is no significant change in the level of

damping when the torque on one of the sixteen bolts is altered.
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3.5.4 High Frequency Response
The high frequency tests were conducted using both the dynamic strain sensors and

the shear accelerometers. Tests 1 and 2 were conducted with the dynamic strain sensors,
while test number 3 was conducted with the shear accelerometers. Two tests were
conducted using the dynamic sensors to see the differences in the results between tests
conducted on different days. The differences were not quantified, but rather by
inspecting the differences in the plots generated from these two tests. Figures 3-21, 3-22,
and 3-23 shows the recorded transfer functions of tests 1, 2 and 3 respectively for the
sensors next to the loosened bolt. Figures 3-24, 3-25, and 3-26 show the recorded
transfer functions for tests 1, 2, and 3 respectively for the sensors away from the loosened
bolt. The plots show the response measured on the decibel scale as a function of both the
loosened bolt load and frequency range investigated. The figures show that the transfer
functions change as the bolt load is reduced. The change of the transfer functions as the

load is changed is quantified with the damage index (D):

[T ~T.lar
D=—=—7 1)
[ 1Tl

The frequency range used to calculate the damage index is denoted by f; and f;. T, is

the reference healthy transfer function when all of the bolts are torqued to the same value.
T, represents the transfer functions for the damaged system, which in this case is due to a
loose bolt. Plots of the damage index for test one, two, and three are shown in Figures 3-
27, 3-28, and 3-29 respectively. Inspection of the damage index plots show an increasing
change in the integral as the bolt is loosened.

The damage index plots do not show significant dependence on the location of the

sensors relative to the loosened bolt. The transfer function plots change as the bolt load
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varies, and thus the damage index plots change. The results do show that there is a
change in the dynamic characteristics of the system with a bolt loosening, and that the
sensitivity to the changes are different depending on what type of sensor is used. The
damage index plots for dynamic strain sensors shows that there are greater changes for
the sensor away from the bolt, than the sensor next to the loosened bolt as seen in Figures
Figure 3-27 and Figure 3-28. The damage index plot using the accelerometers (test three)
shows a larger damage index response for the sensor located closer to the loosened bolt,
and a smaller damage index response for the senor place on the opposite side of the plate

in Figure 3-29.
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Figure 3-21 Test 1's Transfer Functions for Sensor Next to the Bolt
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Figure 3-28 Loosening Indicator for Test 2
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Figure 3-29 Loosening Indicator for Test 3
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The results presented in this section shows that change in the boundary conditions of a
bolted plate can be detected using the transfer functions technique presented here.
However the dynamic strain sensors were not able to accurately predict the damage
location. A higher damage index is obtained for the sensor far away from the damage
than a sensor located closer to the damage. The accelerometer test returned a larger
damage index for the sensor next to the loosened bolt, but the difference between the
indices values were not significantly large. In the transfer function experiments, the
investigation had the benefit of knowing the damage location, and placed a sensor near
that location. However, this is not possible in practical applications. Based on these
results, the transfer function technique was abandoned for another technique that showed

more promise for a generic structural health monitoring system.

3.5.5 Transmittance Testing

3.5.5.1 Frequency Range Investigation. The frequency range from 0 Hz to 20
kHz was investigated for the best possible frequency range to excite a system and detect
damage. The frequency investigation was done by splicing together five smaller
successive 4 kHz bandwidth test results. Smaller bandwidths allowed a higher frequency
resolution than would be possible over 20 kHz. Damage indices were calculated for
different bandwidths within the entire range, and the bandwidths were chosen to
maximize the damage index where the damage occurred. Larger damage indices were
found using the accelerometers over the dynamic strain sensors. Two different frequency
ranges or bandwidths were found to produce the greatest damage indices for T23 and T32
when the instrumented bolt in Figure 3-11 was loosened. The results from the

accelerometer plots are shown in Figures 3-30 and 3-31. Figure 3-30 corresponds to the
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EERWT )

lower frequency bandwidth of 7 kHz to 9 kHz, and Figure 3-31 is for the 18 kHz to 20
kHz bandwidth. Both figures show the computed damage indices values, the
transmittance function plots for each torque setting as a function of the frequency, and the

difference (delta) between each torque setting and the “healthy” setting of 720 in-lbs .

Damage Indices Over Bandwidth

Figure 3-30 7 kHz to 9 kHz Investigation Using Accelerometers
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Damage Indices Over Bandwidth

Figure 3-31 18 kHz to 20 kHz Investigation Using Accelerometers

The calculated damage indices were larger for the 7 kHz to 9 kHz range than the
damage indices calculated in the 18 kHz to 20 kHz range. The results for the dynamic
strain sensor tests are shown in Figures 3-32 and 3-33 below. The dynamic strain sensors
were not as sensitive to the level of damage in the plate as were the accelerometers as
shown by the smaller magnitude of the damage indices. However the dynamic strain

sensors were able to show the successive levels of damage in the system.
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Figure 3-33 18 kHz to 20 kHz Investigation Using Dynamic Strain Sensors
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3.5.5.2 Investigation for Reduction of Torque on One Bolt. A sensor was
placed at each of the four corners of the bolted composite plate as described earlier in
section 3.4.5.2. Extensive transmittance testing using accelerometers over the frequency
ranges determined in section 3.5.5.1 showed that a bolt loosened between sensors 2 and 3
could be detected as depicted in Figure 3-11. The damage levels for the transmittance
function T23 was higher than all other reported transmittance functions in the 7 kHz to 9
kHz frequency range when using accelerometers as sensors. Thus, according to Figure
3-34 the transmittance testing technique indicated that there was damage between sensors

2 and 3, which was the location of the bolt that was loosened.

R i I
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Figure 3-34 Damage Indices for 7 kHz to 9 kHz Freq. Range Using Accelerometers
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Figure 3-35 below depicts the damage indices for the transmittance functions
measured using accelerometers for the frequency range of 18 kHz to 20 kHz. The results
as shown in Figure 3-35 do not show as strong a sensitivity to the damage as the
transmittance results for the 7 kHz to 9 kHz range. The T23 damage index values were
not always the largest damage index as shown for the 7 kHz to 9 kHz shown in Figure
3-34. The lower and intermediate changes in bolt torque tests in Figure 3-35 such as a
change in bolt torque of 420 in-Ibs shows larger damage index for T12 than T23. It is
expected that T12 would show considerable sensitivity to the loosened bolt in these
experiments because Sensor 2 is close to the bolt being loosened thus it is reasonable that
sensor 2’s response was affected by bolt being loosened in proximity to it. However, for
the two frequency ranges investigated using accelerometers the 7 kHz to 9 kHz range
produced better results. Tests conducted using both frequency ranges did show
increasing damage indices for all transmittance functions as the bolt was progressively

loosened.
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Figure 3-35 Damage Indices for 18 kHz to 20 kHz Using Accelerometers

The transmittance tests were repeated using the dynamic strain sensors. The higher
frequency range of 18 kHz to 20 kHz gave the T23 damage index being the maximum
index only for when there was a large change in the bolt torque such as 480 in-lbs and
higher. T43 showed the largest damage index values for the lower change in torque tests,
and had the second largest damage index for the high change in torque tests. These
results are reported in Figure 3-36 below. The transmittance test results for the dynamic
strain sensor in the 7 kHz to 9 kHz range did not shown any correlation between the

damage indices and actual damage locations.
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Figure 3-36 Damage Indices for 18 kHz to 20 kHz Using Dynamic Strain Sensors
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3.5.5.3 Repeatability. The repeatability of the most promising transmittance results
was investigated here. The damage index for T23 and T32 were calculated using
accelerometers for the 7 kHz to 9 kHz frequency range. The tests showed damage
indices calculated from the transmittance functions had some variation. The T23 damage
indices had a minimum of 0.677 and a maximum of 0.758, or +/-0.041, which is
approximately 6% of the smaller value. The largest variation was in the transmittance
pair T23 and T32 as shown in Figure 3-37. The other damage indices results exhibited

lesser variation than T23.

0.35} ot

~NF-- -

1 2 3 4 5 -
Test number

Figure 3-37 Transmittance Function Repeatability

3.5.5.4 Bolt Loosened at a Different Location. The previous work for locating
the damage on a plate used the same damage location. The frequency range investigation

was conducted to maximize the damage detection that occurred between sensors 2 and 3.
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The next the experiments were performed by loosening a bolt between sensors 1 and 4.
Figure 3-38 plots the damage indices levels found from the transmittance functions. The
results displayed here show that the method investigated thus far is not successful in
locating damage that has occurred on the other side of the plate. If the method worked as
hypothesized then T14 should have been greater than the other transmittance pairs for
each torque setting. As Figure 3-38 shows the damage index for T14 is not the largest for
each change in bolt torque, and T14 even has the smallest damage index for the largest
change in bolt torque. However, since the average damage index is large, the method is

still capable of detecting a loose bolt, although it cannot determine the location.
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Figure 3-38 Damage Indices for Bolt Loosened at a Different Location
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3.5.6 Summary and Conclusions
Various vibration-based methods of structural health monitoring have been

investigated here. The investigation began by looking into possibly detecting damage
through changes in the plate’s fundamental frequency. The results have shown that the
plate’s fundamental frequency is not appreciably affected by changes in the bolt torque
around the perimeter. The changes of transfer functions from sensors located next to, and
away from a loosened bolt were also investigated for frequencies well outside the first
several natural frequencies. It was hoped that at higher frequencies with smaller
characteristic wave lengths of vibration, that the transfer function and transmittance
function techniques would be sensitive to localized damages. The transfer function
changes were quantified through a scalar damage index. However the transfer function
technique presented here was not sufficiently sensitive to local damages to be an effective
structural health monitoring technique.

A thorough investigation of using transmittance techniques to locate damage was
presented finally. Two different frequency ranges were determined that increased the
sensitivity of transmittance function to localized damage. The initial damage scenario
investigated showed that when using accelerometers capable of measuring the normal
acceleration of the plate excited by a chirp function , localized damage could be detected.
The ideal frequency range to excite the plate with a chirp function was found to be 7 kHz
to 9 kHz. And these results were determined to be repeatable. But the transmittance
method failed when the damage location on the plate was moved. If a bolt was loosened
on the opposite side of the plate from where the damage was for the previous work, the
transmittance method was not successful in determining the damage location. The reason

for this has not been explained. Possible theories are that the system needs to be
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interrogated for a different frequency range than 7 kHz to 9 kHz, the transmittance
function technique is not suited for flat plats, or that it was just a coincidence that the
method seemed to work for the earlier tests.

Both the transfer function and the transmittance function methods presented here are
capable of detecting a change in the system when only one bolt is loosened. A change
was detected for the last transmittance function case where the damage location was
altered. The transfer and transmittance function methods were successful in detecting a

change, but were not successful in pin pointing the location of the damage.
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4. CONCLUSIONS AND FUTURE WORK

Presented here are the summary conclusions for the work presented in this thesis from

both major investigations

4.1 Conclusions
The analytical solution presented in Chapter 2 extended the Stroh formalism to

obtain an analytical solution for the steady state vibration of a composite plate with either
surface mounted or embedded piezoelectric layers. The boundary conditions at the edges
and continuity conditions at interfaces between adjoining laminae are satisfied in the
sense of Fourier series. The accuracy of the mechanical displacements, electric potential,
stresses and electric displacement are dependent on the number of terms in the series
solution. However, it should be noted that, unlike the FE solution, the analytical solution
satisfies the equation of motion and charge equation exactly at every point within the
body. In this thesis the new analytical method was applied to a case with clamped
boundary conditions. While the previous exact dynamic solutions for thick composite
plates were only for the mathematically simpler simply supported boundary conditions.
Stresses, electrical potentials, and displacements were reported for various configurations
with accuracy.

An assortment of vibration-based structural health monitoring methods was
investigated in Chapter 3. The investigation began by looking into possibly detecting
damage through changes in the plate’s fundamental frequency, and through changes of

transfer functions for frequency ranges well outside the first several natural frequencies.

98



And lastly, the ability of transmittance functions to detect damage was investigated.
Damage detection through changes in a plate’s fundamental frequency proved to be
ineffective, and the changes in transfer functions were not sensitive enough. The most
promising method out of the methods investigated was the transmittance method. Both
the transmittance function method and the transfer function method were able to detect
that damage occurred in the structure, and both methods could not detect the damage
location reliability. The transmittance function technique presented showed promise in
the literature, and seemed to work very well according to the preliminary results at
locating the damage. However, most of the success in the literature was with a one-
dimensional system such as a beam, and there was not a lot of success with a two
dimensional system such as a plate. Schultz et al. (1999) was successful in detecting and
locating damage in a cantilever beam, but was not as successful in consistently locating

delamination in a composite plate.

4.2 Future Work

The transmittance function technique may still work for a two-dimensional structural
health-monitoring scheme with further investigation. Perhaps even higher frequency
excitation would be successful. This investigation was limited to 20 kHz because of
hardware constraints, but similar Siglab units are capable of analysis up to 50 kHz. Also
the addition of more sensors to the detection scheme may produce better results, but at an
added cost of complexity and expense. A Finite Element simulation of both the transfer
function, and transmittance function methods for rectangular plates would prove useful in
deciding whether this method is advantageous. Such a mathematical simulation would

not be subject to complicating factors such as temperature, viscoeleastic creep, and
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benefit from ideal material properties and supports. Future experimental investigations
may lessen these effects by beginning with an isotropic elastic material such as

aluminum.
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A.L. DESIGN, INC. 1411 Military Road, Buffalo, NY 14217, USA (716) 875-6240

FAX (718) 875-2404

A FEW PRACTICAL SUGGESTIONS ON THE BEST WAY TO USE
LOAD CELLS, LOAD WASHERS AND FORCE TRANSDUCERS

Load Calls are generally used to measure and detect forces or changes in the magnitude of forces.

The Ideal way to s6t up load cells is to moum them on a rigid (very rigid) base. This base could be a thick
fiat steel plate which should be hardened to Rockwell 44C or higher and ground flat with a surface grinder.
The top plata should be just as strong as the bottom one.

Don't use soft steel plates or copper, aluminum or plastic plates. The soft materials will cause large errors.
{High hysteresis, nonlinearity and non-repaatabiity.)

Whenever possible use load buttons with spherical surfaces. These will concentrate the applied force on
the center of the load cell. If thate is no room for load buttons on top and bottom try to use at least one at the
1op. if there is no room for ioad buttons then R is important to maka sure that the two surfaces which come
in contact with the load cell are paraltel. If thay are not the load wil be placed off center, resuting In less
accurate results.

The practical usable range of a load cetl is generally 10% to 100% capacity. If you exceed the capacity
then obviously the unit is overloaded and permanent deformation may resuh (zero shift) or the unkt could be
crushed. Dropping calibrating weights on the cell even from a small height could crush the load cell. So be
careful and slowly placa tha load on tha load cell. Make sure the load cell is not slanted at an angle since itis
important that it is positioned perfectly vertical or In tine with the appiled force (within + /- 0.5 degree of better).
Make sure there are no side loads applied to the load celt unless it is specially designed to withstand side
loading.

If the force or weight is below 10% of the load cell capacRy then the errors will make the measurement
less accurate, for example a 10,000 lb. capachy load cell with an accuracy of 0.2% FS (full scale} will give a
100 Ib. weight +/- 20 Ib. accuracy (The 0.2% of 10,000 is 20 Ibs.) This is usually unacceptable. To get accurate
results the force to be measured should be near the full capacity of the ioad cell. Of course other requirements
may make this impractical.

When the load cell is hooked up to the readout/power supply the numbers may drift some due to the
warmup requirement of the Instrumant and load cel. Even though the load cell is usually temperature
compensated some zero drilt is to be expected as the temperature changes. Readings and tests should be
done after the whole unit Is at uniform temperaturs and the zero batance adjusted. Creep in twenty minutes
is 10 be expected in the range of 0.2 - 0.3% FS.

For accurate tests, calibration runs, etc., make several test runs. A minimum of three to five test runs
would be adequate most of the time. A minimum of thwee calibration points should be selected (20%, 60%,
100% FS.). Of course the more points you have selected the mofe Information you'l have about the
performance of the unit. MAKE SURE THE LOAD IS NEVER LESS THAN 10% CAPACITY. (DON'T REDUCE
THE LOAD TO ZERQ DURING CALIBRATION RUNS.) You can get a zero reading after the tests are finished.
Usually ten test runs are sufficlent 1o get very reliable and accurate results.

Load washers are small ioad ceits and # is important that load buttons are used on top and bottom for
best performance. If no buttons are used the accuracy of the resuits will suffer.

It you use Load Washers to measure bolt tenslon make sure you use hardened washers between the
underside of the bolt head and the Load Washer These washers should be as thick as possible. These tests
require quite elaborate set ups so consult us before making the tests.

When using the readout instruments/power supplies make sure that they are hooked up properly. The
red and black wires should be connected to 10 or 5 Vdc power, the green and white wires tothe signal indicator.
After walting for a few minutes (15 to 30) to altow the instrument and the ransducer to warm up, the zero
should be adjusted and the reading recorded. Now you can start the test runs and do your measurements.
These recommendations are very general. If you have any spacific questions call us and we will be giad to
help you, (716-8756240).

Sincerely,

Andrew Lenkel, P.E.
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A.L.DESIGN,INC.
14911 MILITARY ROAD
BUFFALO, NEW YORK, 14217
Uu.s.a.

(718> 875-4240
FAX: <C71&65>875—2404

THIS PROGRAM BY A.L.DESIGH, INC., CALCULATES THE
NON LINEAFITY, HYLTERESIS. REPEATAREILITY. ANL
SEST FIT STRAIGHT LINE THFRUUGH THE ACTUAL
CALIBRATION POINTS OF THIS TRANCDUZES

OUR CALIBPATION STANDARDS ARE TRACEABLE TO THE N.I.5.T., ‘NBS).

CUSTOMEF UNIVERSITY OF MAINE
ORONO, ME 04467

THIS CALIBRATION SHEET SHOWS THE CHARACTERISTICS OF THE TRANSDUCER

DATE t 08-12-2002
HODEL H ALD-BOLT-1/2-2
SERIAL MNO. : 220807
CaPACITY = 9220 LBS
EXCITATION = |0 VOLTS DC

RESISTANCE BETWEEN RED & BLACK WIRES =497 OHMS NOMINAL
RESISTANCE BETWEEMN WHITE & GREEN WIRES= 350 OHMS NOMINAL
SAFE OVERLOAD = 150 OF RATED CAPACITY

ULTIMATE QUERLOAD = 2507 OF RATED CAPACITY

NOMINAL TEMPERATURE EFFECT ON RATED OUTPUT (13-115 deg.F) »
= 0,087 / deg.F OF RATED OUTPUT

NOMINAL TEMPERATURE EFFECT ON ZERO BALANCE (15-115 deg.F) »
= 0.08% / deg.F OF RATED OUTPUT
» THIS DOES NOT APPLY TO GAGED BOLTS
OR TRANSOUCERS MADE OF MATERIALS OTHER THAN
17-4PH STAINLESS STEEL.

STRAIN GAGE TEMPERATURE LIMITS FOR HIGH/LOW TEMP. OPTION.
HIGH TEMP. = +430 degrees F, LOW TEMP., = -452 degrees F.
THESE TEMPERATURE EFFECTS ARE FOR FOIL STRAIN GAGES OMNLY.

_ GEMICONDUCTOR STRAIN GAGES HAVE HIGHER TEMPERATURE SENSITIUITY
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MUMBER OF CALIBRATION POINTS IS : 10
AT NO LOAD, INDICATOR OUTPUT READS 0 aV

RUM 8} BN #2
FOINT LOARL TRANSDUCER OUTPUT POINT LO&D TRANSDUCE® OUTFUT
#1 {1344 ({BS $.34 av Ho 1844 LES 132 a¥
L oS3 LBS 12.94 aV L 9532 LBE 12.8% aVv
2 2220 LBS 21.88 @Y LG e220 LBS 215 Vv
#4 5532 LBE 12.972 aV #e 5532 LBE 12,95 mV
L3 1244 LBS 4.3 av 10 i844 LBS 1.31 v

CHARACTERISTICS PARTICULAR
TO THIS TRANSDUCER ARE :

NON LINEARITY = +/- 2 % F.5.
HYSTERESIS +i= L7 W FLS.

REFPEATABILITY

+/- J14 X FUS.

RATED OUTPUT = 21.6 aV

SENSITIVITY = 2.16 aV/\

LOALDCELL 'S UNADJUSTED ZERO IFFSET = .15 aV

ADJUSTED INCICATOR ZERD OFFSET = ¢ mV

CALCULATED "VALUES USING THE BEST FIT
STRAIGHT LINE THROUGH THE EXPERIMENTAL POINTS

FOINT LDAD TRANSDUCER OUTPUT
L3 92 LEBES 22wy
#2 1844 LES 1.3 av
#3 2766 LBS 6.5 my
.2 J688 LB B.6 aV
L 4610 LBS 1.8 nv
#0 $53%  LES 13wy
LK 6454 LBS 15,1 aV
#3 7376 LBS 17.3 av
¥° 8298 LBS 19.4 av
s TTTTTT T TUTTTRIG T ES RS T T MMy T T
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SHUNT CALIBRATION DATA

L0AD CELL SERIAL NO. = 220807

SHUNT RESISTUR VA_UC = 200500 OHME

EXCITATION = 10 Ydc

SHUNT OUTeRUT = 3.08 a\

SHUNT CONMECTION = RED and WHITE
EXCITATION = {#JRED and {-JBLACI
SIGNAL OUTPUT s (HIWHITE and (~!GREEM

WHEN USING fM ALD-MINI-UTC TENSION.COMFRESSION LOAD CELL THE SMOOTH FLAT SURFACE SHOLLD
NOT TOUCH ANTTHING. THC OTHER SIDE WITH THE CIRCLE NEAR THE OUTEF EDGE IS THE BASE. IT
1S Ok TO MOUMT OTHER FARTS TO IT AND TO TOUCH THIS SURFACE OMLY.

WHEH CONNECTORS ARE SUPPLIED,
CONNECTOR PIN ASSIGNMENTS ARE:

A = BLACK (=) EXCITATION
B = WHITE (+) SIGNAL
C=RED (+) EXCITATION
D = GREEN (=) SIGMAL
GREEN
.*350 OHM". SIGNAL
‘. BRG .°
e T
RED BLACK
EXCITATION

INTERNAL WHEATSTONE BRIDGE
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APPENDIX B

Siglab Information

The SigLab acquisition and processing hardware was designed by a team of engineers
with over 60 years of combined experience in the measurement art. The 20-42 and 50-21
systems are highly optimized for the task of making fast, accurate measurements of
electrical, mechanical, or acoustical signals and systems. The SigLab systems are
complex and powerful with capabilities that should not be confused with PC add-in
boards or audio entertainment devices such as the "Sound Blaster". The goals of
measurement quality, speed, size, durability and expandability are well met with the
SigLab measurement hardware platform.

The differential inputs have ten full-scale ranges (20mV to 10V) allowing accurate
measurement of signals from far less than a millivolt to 20 volts peak to peak. These
inputs are protected up to 30 volts rms and the overload detectors guarantee that your
measurements are valid by trapping overload conditions that may not be apparent due to
subsequent filtering operations. You can specify ac/dc coupling as well as the dc offset.
Optional integrated ICP power transducer bias sources provide a constant 4mA current
with a 22 volt compliance to directly power accelerometers, microphones, and force
transducers. Additionally, your own signal conditioning circuitry can be inserted in
SigLab beneath the top cover access panel.

A fourth-order analog low-pass filter precedes the sigma-delta A/D converter
providing complete alias protection with only 0.03 dB‘ of ripple. The sigma-delta

conversion technology provide ultra linear, and low noise performance. The SigLab 50-
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21 boasts unmatched measurement quality with a guaranteed 95 dB spurious free
dynamic range over its entire 50 kHz bandwidth.

A dedicated fixed point DSP filters and decimates the A/D data stream providing
a selection of 13 alias-protected sampling rates down to 5 Hz. Either low-pass or band-
pass filtering for narrow-band “zoom” analysis may be selected. Triggering circuitry
provides slope control and 17 selectable threshold levels. The trigger source can be an
input channel, an output channel, or a rear panel digital input.

The trigger may also select unfiltered data thereby providing a reliable trigger
even with short duration “impulses” often encountered in modal impact testing.

The output subsystem looks much like the input subsystem in reverse. The
TMS320C31 floating point DSP feeds previously acquired data or data generated
mathematically (e.g. by using MATLAB) to the function generator FIFO buffer. The
fixed point DSP then interpolates and optionally translates this data before sending it to
the highly linear D/A converter. The output subsystem’s signal quality is comparable to
the input subsystem. The DSP is also used to generate predefined functions: sine, square,
sawtooth, triangle, impulse, random, and chirp. Level control and DC offset can be
applied to the analog signal before going to the output buffer amplifier. The buffer can
source and sink at least 20 mA, has a 50 ohm output resistance, and is unconditionally
stable.

The TMS320C31 floating-point DSP chip performs real-time processing tasks
such as FFTs, auto and cross-spectral averaging, and computation of transfer and other
functions. A real-time operating system kernel is also executing in the C31 to orchestrate

the flow of data within SigLab and between SigLab and the host PC via the SCSI

113



interface. The system can be equipped with a generous amount of DRAM allowing gap
free records of up to 15 million samples to be stored at the maximum sampling rate. Non-
volatile memory (not shown) stores the input/output calibration factors. Except for a
small boot program, all C31 code is downloaded from the host PC.

For expansion beyond four channels, Siglab’s architecture allows interconnecting
multiple units. The Siglab modules are linked by an external cable providing
synchronous multi-channel capability. This Multi Unit Sync. subsystem manages the
synchronization of all sampling clocks and trigger signals for the input and output
channels. For normal operation SigLab is powered by a DC input between 12 and 15
volts. It can also run on its own internal NiCAD battery for a limited time.

This information was taken from http://www.dspt.com, for more information please

refer to this website.
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APPENDIX C

ACX Actuator

(ACX, Inc. actuators are now available through the Mide Technologies Corporation.)

Mide - Quickpack Products - QP 10W Page I of 2

Contact Us

Quick Pack® Actuator

Cat. No. QP10W

Model QP10W Specifications

Application type: strain actuator only
Device size (in): 2.00 x 1.50 x 0.015
Device weight (0z): 0.16

QuickPack IDE . .
Strain Aclustor Active elements: 1 piezo wafer

v Cherme Plezp wafer size (in): 1.81 x 1.31 x0.010
Mode PDT Device capacitance: (uF): 0.10

I Full scale voltage range (V): £200

Qe223 —

Pinzo jonal Diagram

Proporiies

P —

case

Device poled with positive voliage applied 1o pin 1.
Pins 2 and 3 not connected.

Full scale strain, extension (p : £278

Figure C-1 ACX Actuator Specifications
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Page 2 of 2

Figure C-2 ACX Actuator Strain to Voltage and Stain to Force Relationships
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APPENDIX D

Dynamic Sensor Specifications

raiiConedl JCP WACCEICTOIEIE]S 3

MINIATURE (comjtte specifications are featimd an pags 14 10 15) - -
Miniature accelerometers are especially well sulled for aPpbcallms A Adhesive Mount
demanding high frequency range. small size, and ight welght HT Hoh Temesiahire 1
Q NHV studies @ thin panek 3 Ground Isciated _;
M Metrk Mounting
Q printed circuit boards Q stuawds w Attachad Watsr Resistant Cabla I
© card cages and chassis Q conduits [] Popular Produdt (see page )
Lars | Designata option as prefix o modal number, e.g.. J352C66
Q brackets Q bearngs specifics a nt with elechical ground solatad bese.

iate Descripions See Pages X 10

Accessory key located on page 11

@ Model 352A10 {accessory key: @)
@ 10 mV/g sensitvity

@ 1 Hz to 20 kHz frequency range ?a, I :‘:m
@ 0.7 gram in welght L o
@ Integral cable denk
@ Adhesive mount
Model 352410
Model 352A21 (acressory key: @3)
@ 10 mV/p sensltivity
@ 0.7 Hz to 13 kHz frequency range
Q 0.6 gram in weight « .:Z):
@ Adhesive mount
® Durable titanium housing =
@ Mating cable provided "
® Model 352C22 (accessory key: @/3) Made! 352421

@ 10 mV/g sensitivity
@ 0.7 Hz to 13 kHz frequency range
Q 0.5 pram in welght

@ Adhestve mount
@ Anodized ahiminum housing o =

@ Hectrically ground solated @; Fa ra

@ Mating cable provided i Gannectsr
Model 352A24 (acressory koy: @:3)

@ 100 mV/g sensltivity Modets 352022, 362424

Q@ 0.8 Hz to 10 kHz frequency range

Q@ 0.8 gram in welght

Q@ Anodized, ground isulited, aluminum housing
Q Matlng cable provided

PCB PIEZOTRONICS, INC. & 716-684-0001

Figure D-1 Accelerometers Specifications’
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Model 740B02 Dynamic ICP* Piezoelectric Strain Sensor Specifications

Dynamic Performance
Sensitiviyy' 50 mV/
Amplinde Range' 2100 e pk

Lnvironmental 10 FT.(3M) IMTECRAL COAXML CABLE

Oporaling Tempesalirs 6510 +250 “F (-54t0 1121 °C;
tlectrical
Low Frequancy Response G5 Hz
Excitation Voitoe 2010 0VDC
Conslanl Current Excilatiar 2 10 20 mA
Oueput Bias Gto 13VDC
Mechanical
Weight 002 oz 0.5 gram)
Se(WxLxH) 02x06x 007 (51 1152 K 1.8 mn)
Mounti Ahosive
st ) R TTTIY TYPICAL APPLIATION: An egony bonded Moded T4DAGZ Strin
hn?im-:-s nioR t;ezrkd phog Sensic provides a control signal for an actively dampad Bexitde robct
Housing Tianum manipubstor, fhstraled below. The elecirunic controller, with vibration
gmﬁg P v - feedback [rom the strain seoscr. provides a signal 1o the amplifer, such
that vibvation amplinede 1s miakiiied. The acitve control systam
" Actus value dopends upon thickivcss and stfnoss of sonsor struckeo porrhis rap] setling time for a step rotation of the miipulaior arm.
interface.
This procct is CE-marking compliant to Europaan Union EMC
Directive, based upon conformance testing to the following
Ewvopean noms:
« FN 50081-1: 1992 Fmissinns Actust
-, L usor
« EN 50082-1: 1992 Immunity Kobot Amm / Moo 740R02 ICP Sensor
o Suain Sensor Signal
/ Conditianer
-
SVS i the Stodk and Vbration Sexsces dvision of PCB Piantioriks, Inc, y
spevialiing in quarty. ceranik, charge, ICP*, and cagicitive acredoromitiss. ame
The dvisional foous of SVS, combined with the sirength and resousces of FCB,
ullers Qs sees exceyd bl customer senvice, 24-bour e luival support, and
anmindivonl prraike. 0

To obtain mare information on this armd ether shock and vibation rodus,

oonlat SVS al 1-888684-0013. For informidin anuther PCB produts, Serles 190 Power  Analeg Feedback
o Ampifier Controller {not
call 1715684 0001, ar st our web se & wwnipeh.com. applied hy PCR)

SPCB PIEZOTRONICS gy

3425 Walden Avenue. Dopow, NY 14043 « Telophone (716) 584-0001 « FAX (716) 685-3886 « e-mail: svssakes@pcb.com

Capyidt € WHT FCD v o 5, b, it mdarl of carfinuing morkiat vgro arart, specie 76 s are sdiod W dange wilhast noic 4, SVS & & welv, ) of PCB Prsciario, e, ACB P& arics ad
ICP e reghd- b duatmarks of PO Paactoi s Inc. M ofE1 Wad- it are g (ties of ther s 14 awncrs
Rivl Prinidin LS.A

Figure D-2 Dynamic Strain Sensor Specification’s
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APPENDIX E

482A20 PCB ICP Sensor Signal Conditioner

Model Number Revision. B
482A20 8 CHANNEL ICP® POWER SUPPLY ECNE 10613
ELECTRICAL
Channels 8
Transduces Excitation volts +24 1
Excitation Curront mA 2-20 Adjustable m
Voitage Gain (selectable) x1, x10. x100 3]
Gain Accuracy (all gains) % +1
Frequancy Response (-3%) Hz 0.225t0 100 k
Maxinwm Output Signal volls +10
Output Impadance ohms <50
Ovarload Detaction volts £10
Noisa (spectial): Typical gain x1 x10 x100

1Hz wViHz 085 45 105
10 Hz uVvHz 0.15 1.0 7.0
100 Hz Y/ vHz 0.1 036 3.0
1 kHz wWiHz 012 034 25
10 kHz uVvHz 0.1 0.31 24
Broadband Noise: 1 Hz-10 kHz (maximum) mY 9.1 50 4890
Channe! Isolation: minimum dB 72
DC Offset (all gains) mv 150
Power Required (50 to 400 Hz) VACmA 90-130/500
Altlemate Power VAC/mA 210-250/250 (2]
PHYSICAL
Conhectors: Input type BNC Jack
Output type BNC Jack
Size (L x W x H): n 9.7 x40x6.3
fem} [24,6 x 10,2 x 16,0}
Waight b [gm] 6.1]2767]
NOTES: SUPPLIED ACCESSORIES:
{1} Units suppliad with cument set at 4 mA 0.6 mA. Model 017 AC Line Cord

f2) Unitis fackory configured using internal jumpsrs when
ordered with prefix *F". Exampla: F482A20.

3] Units with serial number 139 or greater will power up to the
same settings it had at power down.

In the interest of constant prodixt improvement, we ressrve the right to changa specifications withoit motice.

ICP® is a reglsterad srademark of PCB Piazotronics. Inc.

CPCB PIEZOTRONICS ety 22 T a0

Sal:s
° 5 0N

Approved Sheat 1 of 1

Figure E-1 482A20 PCB ICP Sensor Signal Conditioner Specification’s
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APPENDIX F

Damping Program

function damping_driver

% This function finds the damping coefficients for a series of text files

% A plot is generated of the damping coefficients vs. applied torque

% functions fileread is used to open the respect text files,

% and function Find_Damping actually computes the damping coefficients

% DD is a matrix of applied torques
% DD(1,1) =0 is the finger tight file

% Functions Called:
% -Find_Damping

DD(1,1) =[0]};
DD(2:20,1) =[50 60 70 80 90 100 120 130 140 150 160 170 200 230 300 360 480 600
7207

% loop to compute damping coefficients

for i = 1:max(size(DD))

strl ="'t_";
str2 = num2str(DD(i));
str3 ="'_inst_narrow.txt’;

fstring = strcat(str1,str2,str3);
damping(i) = Find_Damping(fstring);
torque(i) = DD(i);

end

% Plot the results

plot(torque,damping)

axis([0 800 0 .014])

Title('Fundamental Mode Damping Sensitivity to Torque')
ylabel('Damping CoefTicient’)

xlabel('Bolt torque in (in-1bs)")

grid on;
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axis([0 720 0 .014])
function damping = Find_Damping(filename)

% Function to compute the damping coefficient for the input TRANSFER
% FUNCION text file. Utilizes the 3-dB down method to estimate the

% damping coefficient. This function works only for finding the damping
% coefficient for the maximum peak. The best results are obtained with
% the transfer function bracketed around the peak response corresponding
% to modal damping coefficient of interest.

% m-files called:
% -fileread

% load the file

q = fileread(filename);
freq =q(:,1);

mag = q(:,2);

% Find the maximum magnitude value, and it's location.
[max_mag,I] = max(mag);
omega_d = freq(I);

% Calculate the 2 dB down points
dB3 =20*log10(1/sqrt(2));
TwodBmag = max_mag+dB3;

% Find omega a

%

n=1-1;

mag(n);

while mag(n) > TwodBmag;
n=n-1;

end

if mag(n) == TwodBmag
omega_a = freq(n);
else
magLOW = mag(n);
omegalLOW = freq(n);

magHIGH = mag(n+1);
omegaHIGH = freq(n+1);
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omega_a = (omegaLOW - omegaHIGH)*((TwodBmag - magHIGH)/(magLOW -
magHIGH)) + omegaHIGH;
end
%

% Find omega b
96 afe s 2l ade e ade e afe e 2 2k 2k afe afe afe 2 3k 2 ol ke afc 3 2k 2 6 3 s e o o e e 2 3k afe 3 3k ok afe afe 3 s o e e ke ok e afe o afe ok afe o afs ok ake afe o ko ok ok
m=I+1;
mag(m);
while mag(m) > TwodBmag;
m=m+l;
end

if mag(m) == TwodBmag
omega_a = freq(m);
else
magHIGH = mag(m);
omegaHIGH = freq(m);

magLOW = mag(m-1);
omegalLOW = freq(m-1);

omega_b = (omegaLOW - omegaHIGH)*((TwodBmag - magHIGH)/(magLOW -
magHIGH)) + omegaHIGH,;

end
96 e e e afe afe afe 2k 3k 2fc 3 3ge 3e e e e e afe afe 3 afc afc afe 3 e 3 ale ok afe afe ae ae 2fe 3 o s 3 3 3l e e e o e afe e o e e 3fe 3 o e ol ok e ek sk ks ke ok ok

% Compute the damping ratio
damping = (omega_b - omega_a)/(2*omega_d);

disp(TwodBmag)
disp(omega_a)
disp(omega_b)
disp(omega_d)
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function res=fileread(filename)

% This function is used to read the TRANSFER FUNCTION output generated by
% Siglab. The Siglab text file is opened, and the text preceding the
% data is ignored.

format long g

[fid , message] = fopen(filename, 'tt');
dummy = fscanf{fid,'%c%["\n]');
dummy = fscanf{fid,'%c%["\n]');
dummy = fscanf{fid,'%s',[1,6]);
res=fscanf(fid,'%g");
res=transpose(reshape(res,3,[]));
status = fclose(fid);
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