
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2003

Active Vibration Suppression of Smart Structures
Using Piezoelectric Shear Actuators
Brian P. Baillargeon

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Mechanical Engineering Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Baillargeon, Brian P., "Active Vibration Suppression of Smart Structures Using Piezoelectric Shear Actuators" (2003). Electronic Theses
and Dissertations. 284.
http://digitalcommons.library.umaine.edu/etd/284

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/284?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages


ACTIVE VIBRATION SUPPRESSION OF SMART 

STRUCTURES USING PIEZOELECTRIC SHEAR 

ACTUATORS 

by 

Brian P. Baillargeon 

B. S. University of Maine, 2002 

A THESIS 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

(in Mechanical Engineering) 

The Graduate School 

The University of Maine 

December, 2003 

Advisory Committee: 

Senthil S. Vel, Assistant Professor of Mechanical Engineering, Advisor 

Donald A. Grant, R.C. Hill Professor and Chairman of Mechanical Engineering 

Vincent Caccese, Associate Professor of Mechanical Engineering 

Michael T. Boyle, Associate Professor of Mechanical Engineering 



ACTIVE VIBRATION SUPPRESSION OF SMART 

STRUCTURES USING PIEZOELECTRIC SHEAR 

ACTUATORS 

By Brian P. Baillargeon 

Thesis Advisor: Dr. Senthil S. Vel 

An Abstract of the Thesis Presented 
in Partial Fulfillment of the Requirements for the 

Degree of Master of Science 
(in Mechanical Engineering) 

December, 2003 

Active vibration damping using piezoelectric materials integrated with structural 

systems has found widespread use in engineering applications. Current vibration 

suppression systems usually consist of piezoelectric extension actuators bonded to the 

surface or embedded within the structure. The use of piezoelectric shear 

actuators/sensors has been proposed as an alternative, where the electric field is applied 

perpendicular to the direction of polarization to cause shear deformation of the material. 

We present an exact analysis and active vibration suppression of laminated 

composite plates and cylindrical shells with embedded piezoelectric shear actuators and 

sensors. Suitable displacement and electric potential fknctions are utilized to identically 

satisfy the boundary conditions at the simply supported edges. A solution to the resulting 

set of coupled ordinary differential equations is obtained by using either a power series or 



Frobenius series. The natural frequencies, mode shapes and through-thickness profiles of 

displacements, potential and stresses are presented for several lamination schemes. 

Active vibration suppression is implemented with positive position feedback (PPF) and 

velocity feedback. Frequency response curves with various controller frequencies, 

controller damping ratios and scalar gains demonstrate that an embedded shear actuator 

can be utilized to actively damp the hndamental mode of vibration. In addition, it is 

shown that suppression of the thickness modes is feasible using a piezoelectric shear 

actuator. 

An experimental and finite element investigation of the active vibration 

suppression of a sandwich cantilever beam using piezoelectric shear actuators is also 

performed. The beam is constructed with aluminum facings, foam core and two 

piezoelectric shear actuators. The finite element analyses are performed using the 

commercial finite element package ABAQUSIStandard 6.3- 1. It is shown experimentally 

for the first time that piezoelectric shear actuators can be utilized for active vibration 

suppression. There are significant reductions in beam tip acceleration amplitudes and 

settling time as a result of the positive position feedback and strain-rate feedback. The 

finite element shows good comparison with the experimental results. 
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Chapter 1 

INTRODUCTION 

This chapter presents an introduction to active vibration suppression of structural 

systems using piezoelectric sensors and actuators. The motivation of the research is 

given in the first section, followed by a detailed literature review of piezoelectric shear 

actuators and active vibration damping through feedback control. The last section 

contains an overview of this thesis, including its research approach and contributions. 

1.1. Motivation 

Piezoelectricity (literally "pressure electricity"), in the simplest of terms, is a 

coupling between a material's mechanical and electrical fields. In the direct piezoelectric 

effect, an electric charge collects on the surface of a piezoelectric material when it is 

strained. In the converse piezoelectric effect, the material deforms mechanically when it 

is subjected to an electric field. The direct and converse effects enable a piezoelectric 

material to work as both a sensor for detecting strains and as an actuator to induce 

mechanical strains. The Curie brothers first discovered this phenomenon in 1880. The 

first serious application of the piezoelectric effect was the development of an ultrasonic 

submarine detector by Langevin and French co-workers after World War I. Since then, 

piezoelectric materials have been developed into many different technologies. This 

includes sonar, small tone audio devices, sensitive microphones, and many other devices. 

The use of piezoelectric materials in smartladaptive structures has been studied 

intensely for more than a decade. Engineering applications using this technology have 
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been proposed and conceived experimentally, such as for active vibration suppression 

(Fuller et al., 1996; Bailey and Hubbard, 1985; Garcia et al., 1992), noise cancellation 

(Clark and Fuller, 1992; Hsu et al., 1998), and shape control (Agrawal and Treanor, 

1999; Koconis et al., 1994). 

Adaptive structures using piezoelectric materials usually employ lead zirconium 

titanate (PZT) ceramic sensors and actuators to detect and mechanically deform a 

structure. Piezopolymer films (e.g. polyvinylidene fluoride (PVDF)) are not usually 

preferred because they lack the stiffness requirements to achieve high actuation authority. 

The addition of the PZT material allows the structure to sense and react to its 

environment. Conventional adaptive structures require a network of these actuators and 

sensors to be bonded to the surfaces or embedded within the structure (Crawley and de 

Luis, 1987). The actuators and sensors are coupled together to form a closed-loop 

network. This enables the sensors to detect a change in structural deformation, and then 

feed the actuators with a signal to produce the desired response to the external stimulus. 

Most raw piezoceramic materials do not exhibit the piezoelectric effect because 

all the dipoles of the crystal structure are not oriented in the same direction. There are 

regions of the material that are groups of aligned dipoles called domains (Clephas, 1999). 

Raw artificially created piezoelectric materials have randomly oriented domains 

throughout the material. To align these domains, a very strong DC electric field is passed 

through the material at a slightly elevated temperature (-100°C for PZT-5A). This 

process is referred to as poling of a material. After it has been poled, the material will 

have a net polarization and exhibit the piezoelectric phenomenon provided that the 



applied electric field is not large enough to cause the material to de-pole (degradation of 

the polarization). 

Traditionally, an adaptive structure employs a thin rectangular piezoelectric wafer 

that is poled in the thickness direction, with electrodes applied to the faces that are 

perpendicular to the poling direction. These piezoceramic elements are referred to as 

extension actuators (see Figure l.l(a)). Application of the electric field in the thickness 

direction causes the piezoelectric extension actuator's lateral dimensions to increase or 

decrease. An electric field E3 applied in the thickness direction will cause a longitudinal 

strain €1 = d13 E3, where d13 is the piezoelectric strain constant that relates the axial strain 

to the transverse electric field (Nye, 1957). In addition, the electric field will induce a 

transverse normal strain €3 = d33 E3, where d33 is the piezoelectric strain constant that 

relates the transverse normal strain to the transverse electric field. Typically, extension 

actuators are bonded to the surface of a host structure to cause deformation. As an 

alternative to the conventional poling technique, one can pole the piezoelectric element in 

a different direction in order to utilize other modes of actuation. For example, Bent 

(1997) utilized the d33 piezoelectric coefficient to produce extension actuators by poling 

piezoelectric fibers in the axial direction and applying an electric field parallel to the fiber 

axis using interdigitated electrodes. 

A distinctly different piezoelectric transduction mode is achieved when the 

electric field is perpendicular to the poling direction. In this case, a piezoelectric 

rectangular element that is poled in the longitudinal direction and subjected to an electric 

field E3 in the thickness direction will undergo shear deformation of magnitude 



y,, = d,, E, as shown in Figure l.l(b). This is referred to as the piezoelectric shear 

actuation mechanism. 

Extetision Actuutor Slieur Actuaror 

Figure 1.1. The piezoelectric extension vs. shear mechanisms 

The reason for the overzealous use of the piezoelectric extensional mechanism 

may be due to initial experiments on the converse piezoelectric phenomena using a 

piezopolymer, polyvinylidene fluoride (PVDF), as stated by Benjeddou and Deii (2001a). 

In this instance, the material is well suited for use as an extension actuator because the 

extensional coefficient is greater than its shear counterpart. This way of thinking has 

transferred to other piezoelectric materials, mainly PZT, but that reasoning is no longer 

logical. 

For most of the materials that exhibit piezoelectric behavior, the piezoelectric 

shear coefficients dj5, has the largest value of all the coefficients (Glazounov and Zhang, 

1998). For example, typical values of the PZT-5A coefficients, d35, dl3 and d33 are 

584x 1 0-l2 mN, -1 7 1 x 1 0-l2 m N  and 374x 1 0-l2 mN,  respectively (Berlincourt and 

Krueger, n.d.). As can be seen, the piezoelectric shear coefficient d35 is far superior to 

those of the extensional coefficients dl3 and d33. This data suggests that a shear-mode 

piezoelectric element might be better suited than an extensional actuator in terms of 

sensing and actuating. 



In most smart structural applications, thickness-poled piezoelectric elements are 

usually placed at the extreme thickness positions of the structure to achieve the most 

effective actuation authority, as depicted in Figure 1.2(a). This subjects the actuator to 

high longitudinal stress that is unfavorable to the brittle piezoceramic. Also, if the 

actuator is placed on the surface of the structure, then the active element is likely to be 

damaged by contact with foreign objects. To alleviate these problems Zhang and Sun 

(1995) proposed the use of an axial-poled piezoelectric core sandwiched between two 

elastic face sheets as shown in Figure 1.2(b). 

Extension Actuator 
a) 

\ Shear Actuator 
b) 

Figure 1.2. The transverse tip deflection of a cantilever beam using extension and shear 

actuators 

More than a decade of intense research into the use of piezoelectric materials in 

smart structures has primarily focused on the use of thickness-poled active elements. 

Only a relatively limited number of studies have dealt with the use of piezoelectric shear 



actuators. It should be noted that analytical and numerical solutions for thickness-poled 

piezoelectric materials are not applicable to axial-poled piezoelectric materials since the 

assumed form of the piezoelectric matrix that couples the electric field to the mechanical 

deformation is different. To the author's knowledge, there have been no published 

experimental investigations on the use of a piezoelectric shear actuator for smart 

structural applications to date. In this thesis, analytical, numerical and experimental 

research is performed to quantify the effectiveness of shear actuators for active vibration 

suppression of smart structures. 

1.2. Literature Review 

1.2.1. Piezoelectric Extension Actuators 

In order to successfidly incorporate piezoelectric materials into adaptive 

structures, the mechanical interaction between active element and the host structure must 

be hlly understood. Numerous mechanical models have been developed for the analysis 

of hybrid beams and shells with thickness-poled piezoelectric elements (Crawley and 

Anderson, 1990; Lee, 1990; Huang and Wu, 1996; Mitchell and Reddy, 1995; Batra and 

Liang, 1997). Exact three-dimensional solutions for the static generalized plane strain 

deformation of simply supported piezoelectric plates have been given by Ray et al. 

(1993) and Heyliger and Brooks (1996). Heyliger (1994; 1997), Bisegna and Maceri 

(1996) and Lee and Jiang (1996) have obtained exact solutions for simply supported 

rectangular piezoelectric laminates. Analysis of the vibrations of a simply supported 

plate with piezoceramic actuators either bonded to its upper and lower surfaces or 

embedded within the laminate was done by Yang et al. (1994) and Batra et al. (1996). 



Three-dimensional analytical solutions for thick piezoelectric plates subjected to arbitrary 

boundary conditions have been developed by Vel and Batra (2000a; 2000b; 2001a). 

Exact solutions for the free vibration of hybrid plates with thickness-poled piezoelectric 

layers have been obtained by Heyliger and Brooks (1995) and Heyliger and Saravanos 

(1995). 

1.2.2. Piezoelectric Shear Actuators 

Utilization of the piezoelectric shear coefficient d35 is not a new concept. In fact, 

it has been used in accelerometers since the 1960's (Bradley and Bergman, 1963). It also 

has been used in piezoelectric torsional elements as a means of generating angular 

displacement (Glazounov and Zhang, 1998). It has only been recently suggested, 

however, that the thickness-shear mode of piezoelectric actuation be used in smart 

structures (Sun and Zhang, 1995). Since then, there have been numerous finite element 

and analytical studies concerning the use of shear piezoelectric elements in smart 

structure applications. There has also been little experimental research into the actual 

shear actuation mechanism. The following section contains an overview of the current 

state of knowledge of the piezoelectric shear sensor/actuator mechanism. 

Sun and Zhang (1995) were the first to study the effects of using a shear-mode 

type actuator in a cantilever beam configuration using a commercial finite element 

package. They concluded that a beam using an embedded thickness-shear mode type of 

actuator is much better at providing tip deflection, so long as there is a large actuator 

thickness ratio (thickness-to-length ratio). If the thickness ratio is small, then the surface 

mounted extensional actuators are superior to the embedded shear actuators. They also 

found other advantages of the shear actuator such as reduced stress levels in the actuator, 
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and lower stresses at the interface between the actuator and the host structure. It is 

advantageous to have smaller stresses since PZT is a brittle material with an ultimate 

tensile strength of 76 MPa. 

Zhang and Sun (1995) derived governing equations for an adaptive sandwich 

beam using the variational principle. These equations allow for the analysis of stress 

distributions for a cantilever beam with either an extensional- or shear-mode piezoelectric 

actuators. It was found that the shear-mode configuration provides much lower stresses 

in the actuator because it is located closer to the neutral axis of the beam. This analytical 

solution, however, is valid only for a cantilever beam with a piezoelectric shear actuator 

extending over the entire length of the beam. As the authors point out, this is not 

practical in real engineering situations due to the high mass density of the piezoceramic. 

Benjeddou et al. (1999) firthered the state of knowledge by deriving a shear 

actuated beam finite element with the facings modeled as Euler-Bernoulli beams and the 

core modeled as a shear deformable Timoshenko beam. These elements are capable of 

dealing with both extensional and shear piezoelectric material. It was found that the 

extensional actuators, located on the surface, produce moments and forces concentrated 

at the extremities of the actuator. The shear actuators, however, produce distributed 

moments throughout the length of the device. Thus, the piezoelectric shear mechanism 

alleviates de-bonding associated with high stresses at the extremities of actuator. It was 

also found that the shear-mode of actuation performs better on stiffer structures than its 

extensional counterpart. In agreement with Zhang and Sun (1995) and Sun and Zhang 

(1995), it was also found that thicker shear actuators perform best, whereas thin 

extensional actuators performed well. 



Zhang and Sun (1999) derived an analytical solution for dealing with a plate with 

a piezoelectric core using the Raleigh-Ritz method based on the principal of stationary 

potential energy. In this model, the piezoelectric core is poled in the axial direction to 

induce the needed shear motion. This solution is compared to a finite element model of 

the same situation, and it is found that the analytical solution is in good agreement with 

the FE solution. 

Trindade et al. (2000) performed a parametric study on the active control of a 

sandwich beam with both shear and extension actuators. The finite element analysis 

modeled the facings as Euler-Bernoulli layers and the core as a Timoshenko layer. The 

control law utilized was a linear quadratic regulator based on optimal control with state 

feedback. The results of the study indicate that using a shear actuator is better suited for 

the control of bending vibrations in a sandwich beam than an extension actuator. 

Benjeddou et al. (2001a) developed an analytical solution of an adaptive 

sandwich composite with shear-actuated shells of revolution. Subsequently, they 

presented a finite element implementation of the analytical formulation (Benjeddou et al., 

2001b). The finite element solution was validated using an analytical solution to the 

vibration of a PZT-4 spherical shell. This analysis gives a viable method for the 

vibrational analysis of axisymmetric shells with embedded piezoelectric shear actuators. 

Benjeddou and Deii (2001a; 2001b) derived an exact three-dimensional solution 

of transverse shear actuation and sensing of simply supported piezoelectric plates. In 

their derivation they use a three-dimensional mixed state-space formulation. In the 

second portion of the study, the solution is applied to an adaptive sandwich composite 

plate. Parametric studies are reported for different plate thickness ratio, piezoelectric 



2. The actuator/sensor is best suited for placement on the mid-surface of the host 

specimen. 

3 .  The actuator is suitable for small amplitude displacements. 

4. The shear-mode produces distributed moments throughout the actuator, rather 

than point forces and moments at the element extremities, as with an extension 

actuator. 

5. Shear-mode of movement performs better on stiffer structures, as compared to 

its extensional counterpart. 

There are, however, disadvantages related to using the shear-mode of the 

piezoelectric device. A thicker shear actuator is needed to actively control the structure. 

This is a disadvantage because of the high mass density of the piezoceramic. Utilization 

of these actuators could increase the mass of the structure considerably. 

A limitation of the current state of knowledge is that none of the analytical or 

numerical studies have been compared with experiments. The efficacy of piezoelectric 

shear-mode for actively controlling smart structures has not been experimentally verified. 

A goal of this thesis is to experimentally prove the viability of using shear-mode 

piezoelectric material in smartladaptive structure applications. 

1.2.3. Vibration Suppression Using Adaptive Structures 

Vibration damping in structures can be achieved by a passive, active or hybrid 

active-passive control system. Passive damping systems can employ a constrained 

viscoelastic layer that dissipates energy by deformation of the material (Kerwin, Jr., 

1959, Benjeddou, 2000). The advantages of passive damping systems are that they are 

inherently stable and have a low-cost relative to active damping systems. However, the 



effectiveness of passive vibration control depends on the frequency, temperature and 

geometry. Another type of passive damping system utilizes shunted piezoelectric 

materials (Hagood and von Flotow, 1991). The mechanical energy is dissipated as heat 

in the resistor. This type of passive damping is dependent on frequency, but is less 

dependent on temperature than that of a viscoelastic material. Since active control 

systems usually employ smart materials, depending on the control algorithm, an 

extremely focused region on the frequency spectrum can be targeted for suppression. In 

addition, active damping systems possess the adaptability of altering control parameters 

in real-time that passive systems do not (Benjeddou, 2000). A disadvantage of many 

control algorithms is the phenomena of spillover, where the stability of the structure can 

be compromised by inadvertently exciting an uncontrolled mode of vibration (Goh and 

Caughey, 1985). Researchers have also combined passive and active systems by using a 

smart material as the constraining layer creating the so-called active constrained layer 

damping (Benjeddou, 2000; Trindade et al., 200 1 a; 200 1 b). 

Vibration suppression is a concept that is very well suited for an intelligent 

structure because of its ability to sense and respond to external stimulus. The active 

vibration suppression uses sensors and actuators to control the response of the system. 

This requires a control scheme as seen in Figure 1.3 (Culshaw, 1996). 

The system shown in Figure 1.3 is a closed-loop feedback control system since 

the signal sent to the actuator is a direct result of the incoming sensor signal. The process 

of active vibration control happens as follows: a sensory signal from the excited structure 

is detected by the control system, the signal is processed by a control algorithm and an 

appropriate signal is sent to the actuator. An important part of the control scheme is the 



control algorithm because this determines how the structure responds to external 

excitation sources. 

0 Piezoelectric Shear Actuator - Sensor signal 

Rigid Foam - Control signal 

I 
Hybrid Ream 

7 I Power Amplifier 

Signal Conditioner PC with Data Acquisition & Real-time 
Control System 

Figure 1.3. Feedback vibration suppression control scheme using piezoelectric elements 

A control algorithm that actively dampens vibrations very well is a method called 

positive position feedback (PPF), which was first introduced by Goh and Caughey 

(1985). This control method has been successfully used in numerous experiments since 

that time (Ruggiero, 2002; Song et al., 2001; Hegewald, 2000; DeGuilio, 2000, Meyer et 

al., 1998). The PPF control uses second order differential equations to model the 

interaction between the system and compensator(s). The advantage of this system is that 

individual modes can be targeted for active vibration suppression. 

The structure/compensator interaction is as follows (Friswell and Inman, 1999): 

The Structure: c+ 2gm,, ti+ on2{ = goc2s 

2 2 The Compensator: ij+ 2<,oC 7j+ o, 7 = o, { (1 .a 



where < is the modal coordinate, q is the compensator coordinate, Cis the damping ratio 

of the structure, 13, is the natural frequency of the structure, Cc is the compensator 

damping ratio, 13, is the compensator frequency and g is a scalar gain. 

As can be seen from (1.1) and (1.2), there are really three quantities that must be 

appropriately chosen to implement this feedback control. These quantities are the scalar 

gain g, the compensator natural frequency 13, and the compensator damping ratio 6,. The 

rest of the quantities are a direct result of the physical system. The scalar gain must lie 

within the range of O<@l for stability (Fanson and Caughey, 1990). Hegewald (2000) 

states that the compensator damping ratio is usually selected between the range of 0.05 to 

0.5 and kept constant throughout the experiment. A suggestion of 1.4513, for the value of 

the compensator frequency 13, is given by Fagan (1993), while a value of 1.313, is 

suggested by Dosch et al. (1 992). 

The second feedback control law used in this thesis is strain-rate feedback (SRF) 

(Song et al., 2001; Newman, 1992). In this thesis, this feedback control law will also be 

referred to as velocity feedback due to the fact that the structural velocity at a point will 

be applied to the compensator in Chapter 2. This feedback control algorithm is different 

than what is usually referred to as a simple negative or constant velocity feedback control 

algorithm that is usually seen in the literature (Lee et al., 2001; Lim et al., 1999; Lim et 

al., 1997; Han and Lee, 1997; Lam et al., 1997). In a simple negative or constant 

velocity feedback control law, the structural velocity is fed back directly to the actuator 

element. The proposed velocity feedback control law in this thesis models the structure 

and compensator in the following manner: 



2 2 ' The Compensator: ij+ 2Ccwc rj+ w , 9 = w, { (1.4) 

where < is the modal coordinate, 7 is the compensator coordinate, 5- is the damping ratio 

of the structure, w, is the natural frequency of the structure, C, is the compensator 

damping ratio, w, is the compensator frequency and G is a scalar gain. 

1.3. Overview of Thesis 

1.3.1. Contributions 

The contributions of this thesis include the development of analytical exact 

solutions for the vibration and active damping of composite plates and cylindrical shells 

with embedded piezoelectric shear actuators, and the experimental verification of the 

vibration suppression of a cantilever beam using shear actuators. The specific 

contributions of this thesis are as follows: 

1. Several beam theories have been developed for the analysis of composite beams with 

embedded shear actuators (Zhang and Sun, 1996; Benjeddou et al. 1999; Raja et al., 

2002). However, since the beam theories are based on kinematic assumptions, they 

need to be validated using accurate three-dimensional analyses. In this thesis, we have 

developed three-dimensional benchmark solutions for the free vibration of simply 

supported laminated composite plates with embedded piezoelectric shear actuators. 

Natural frequencies, mode shapes, displacements, electric potential and stresses are 

presented for three-layer hybrid laminates consisting of a piezoelectric shear actuator 

sandwiched between fiber-reinforced composite layers. Results are also obtained 



using the finite element method. It is found that the analytical and finite element 

results are in excellent agreement. 

2. Analysis of the static deformation and free vibration of composite shells with 

radially-poled piezoelectric actuators have been presented by Chen et al. (1996), 

Dumir et al. (1997) and Chen and Shen (1998). In this thesis, three-dimensional exact 

solutions have been obtained for the first time for the static deformation, free 

vibration and forced vibration of composite cylindrical shells with embedded 

circumferentially-poled shear actuators. 

3. Several researchers have presented exact solutions for the static deformation, free and 

forced vibration of piezoelectric plates and shells (Heyliger, 1994; Heyliger, 1997; 

Bisegna and Maceri, 1996; Chen and Shen, 1998; Vel and Batra, 2001b). However, 

none of these exact solutions included the effect of feedback control for structural 

damping. In this thesis, we have derived exact solutions for the active damping of 

composite plates and cylindrical shells with piezoelectric actuators, and the effect of 

controller parameters on system damping is studied. In addition, due to the fact that 

an exact solution is used in the analysis, this thesis also demonstrates that it is feasible 

to suppress thickness mode vibrations. It should be noted that traditional plate- or 

shell-type theories cannot be used to analyze thickness modes of vibration due to the 

kinematic assumption of inextensibility in the thickness direction. 

4. In this thesis, a sandwich cantilever beam consisting of aluminum facings with a foam 

core and embedded shear actuators was fabricated and experimentally tested. The 

effectiveness of the shear actuators for active damping of vibration was 

experimentally verified. In addition, a feedback control algorithm was implemented 



using a commercial finite element program. The finite element model of the system 

compared well with the experimental response. 

1.3.2. Approach 

The investigation of an exact solution to the vibration and active damping of 

composite plates with piezoelectric shear actuators is based upon the assumptions that the 

composite plate is simply supported and it is of infinite extent in one direction. This 

causes the plate to be in a state of generalized plane strain. Suitable displacement and 

electric potential finctions that identically satisfy the boundary conditions at the simply 

supported edges are used to reduce the equations governing the steady-state vibrations of 

the hybrid laminate to a set of coupled ordinary differential equations, which are solved 

by employing the power series method. The solution satisfies the governing equations of 

motion, the charge equation of electrostatics, the interface conditions between laminae 

and the boundary conditions at the top and bottom surfaces. Using the derived solution, 

natural frequencies, mode shapes, displacements, stresses and potential are found for 

composite plates with embedded shear actuators. In addition, results from a steady-state 

forced vibration solution with integrated PPF and velocity feedback controllers are 

presented. 

The next investigation involves the static deformation, vibration and active 

damping of cylindrical composite shells with embedded circumferentially-poled 

piezoelectric actuators. For this configuration, the assumed form of the electric potential 

and displacements yields a coupled set of ordinary differential equations of the radial 

coordinate with non-constant coefficients. A Frobenius series solution is used to solve 

the system of ordinary differential equations. The static deflection, natural frequencies, 
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mode shapes, displacements and stresses for a four layer composite shell that includes a 

shear sensor and actuator are presented. It is shown that active damping of a shell is 

feasible using circumferentially-poled piezoelectric actuators. 

The last study of this thesis involves the experimental and numerical investigation 

of the active damping of a cantilever beam with embedded piezoelectric actuators. The 

cantilever beam consists of aluminum facings and a foam core. Two piezoelectric shear 

actuators are embedded within the foam core for feedback control of the structure. The 

experimental model is analyzed numerically using a commercial finite element program. 

The PPF feedback control is implemented in the numerical model by including a second 

order system to model the compensator. The experimental and numerical models are 

then compared to show that the observed experimental behavior of the piezoelectric shear 

actuator can be reproduced numerically. 

1.3.3. Outline 

The exact analysis of the vibration and active damping of composite plates with 

embedded piezoelectric shear actuators is presented in Chapter 2. Chapter 3 is an 

analysis of static deformation, vibration and active damping of cylindrical composite 

shells with piezoelectric shear actuators. An experimental and numerical investigation of 

a cantilever beam with embedded piezoelectric shear actuators is in Chapter 4. Chapter 5 

presents the conclusions and recommendations for fhture research. 



Chapter 2 

EXACT ANALYSIS AND VIBRATION SUPPRESSION OF 

LAMINATED COMPOSITE PLATES USING 

EMBEDDED PIEZOELECTRIC SHEAR 

ACTUATORS 

2.1. Introduction 

This chapter provides an exact analysis and vibration suppression of laminated 

composite plates with embedded piezoelectric shear actuators. First, the solution 

provides system identification, which includes the natural frequencies, mode shapes and 

through-the-thickness plots of displacements, potential and stresses. Next, a forced 

vibration analysis is undertaken for the purpose of utilizing a vibration suppression 

algorithm. The two control laws used are positive position feedback (PPF) and velocity 

feedback. A thorough investigation into the influence of parameters for both control 

schemes is performed. 

2.2. Problem Formulation 

A rectangular Cartesian coordinate system is used, which can be found in Figure 

2.1, to describe the infinitesimal deformations of the N-layer piezoelectric/composite 

plate. The plate is of extent L in the XI-direction, H in the x3-direction and infinity in the 

xz-direction. The bottom and top surfaces, as well as the interfaces between lamina, are 



given by I#') = -H/2, d2),.. .ji(n) ,..., = H/2. Also, each lamina is assumed to 

be homogenous. 

Figure 2.1. The geometrical configuration of an N-layer hybrid laminated plate 

We first begin with the equations of motion and the charge equation of 

electrostatics in the absence of body forces and free charges: 

( n )  ( n )  .. ( n )  a.. Y T J  . = p  u; , D,,~'"' = 0 (i, j = 1,2,3). (2.1) 

Where aii are components of the Cauchy stress tensor, ui are the displacements, 

Di are the electric displacements and p is the density. A comma followed by an index j 

indicates partial differentiation with respect to the position x j  and a superimposed dot 

indicates partial derivative with respect to time t. A repeated index represents a 

summation over the range of the index. The superscript (n) refers to quantities of the nth- 

layer of the piezoelectric/composite plate. 

The edges of the plate are assumed to be simply supported and free of electric 

charge resulting in the following boundary conditions at xl = 0, L: 

= a,,'n) = 0 ,  U )  ( n )  = O ,  D,'"' = O . (2.2) 



It should be noted that these boundary conditions are identical to those used by 

Vel and Batra (2001b). The mechanical boundary conditions are those for a simply 

supported plate. This is seen from the vanishing transverse displacement and moment at 

xl = 0, L. The assumption that the electric charge, and hence the electric displacement, 

Dl vanish at the edges, allows an exact solution to be found. This boundary condition is 

different from that used by Heyliger and Brooks (1995) and Heyliger and Saravanos 

(1995) to obtain an exact solution for composite plates with embedded extension 

actuators. They assumed that the edges were electrically grounded and set the electric 

potential to zero at the edges. It should be noted that setting the charge equal to zero is a 

more realistic boundary condition because this is the condition most likely seen in 

practice. 

The mechanical interface conditions between laminae are specified as follows: 

( n )  - ( n + l )  ( n )  ui - ui , a = ( n + l )  atx3=Ij(nf1)forn= 1 ,  ..., N-1. (2.3 ) 

The displacements are continuous between laminae since the layers are assumed 

to be perfectly bonded together. The stresses a,, , a,, and a,, are continuous since the 

equilibrium of an infinitesimally small element that extends into both materials at the 

interface between adjoining laminae dictates that that the traction vector be continuous. 

The interfaces between layers can be either electroded or not electroded. If the 

interface is not electroded, then the following conditions are used: 

+(.) = ,in+" and D,'"' = D, ( n + l )  at X3 = Ifn+l) (2.4) 

If the interface is electroded, then the electrical interface condition becomes: 

4 ' " )  = q j ( n " )  = f (xl , t )  at x3 = pl), (2.5) 



Here, 4 denotes the electric potential. If the interface is not electroded, then the 

potential and the normal component of the electric displacement are continuous at the 

interface between laminae. If the interface is electroded, then the potential is prescribed 

by some known function f (x,, t )  . Again, the potential in this case must be continuous 

across the interface, although the normal component of the electric displacement need not 

be continuous. 

The boundary conditions for the top and bottom surfaces of the plate are given as 

follows: 

0 3 3  = @I, t) , a13 = aZ3 = 0 at x3 = -H/2, H/2. (2.6) 

and 

4 = &I, t) or D3 = s(xl, t) at x3 = -H/2, H/2. (2.7) 

The shear stresses a,, and a,, are set equal to zero at x3 = H/2, -HI2 because it is 

assumed that there are no applied shear stresses on either the top or bottom faces of the 

plate. The transverse normal stress is not set equal to zero because in the later part this 

chapter a sinusoidal load is applied to the top surface of the plate to find the steady-state 

response of the plate at a particular forcing frequency. The applied q(x,, t) is set equal 

to zero when the natural frequencies and mode shapes are found. The boundary 

condition (2.7) implies that the plate could have either a prescribed potential or charge on 

the top and bottom surfaces of the laminate. 

The material model for each layer is considered linear elastic and orthotropic. 

Also, it is assumed that the poling direction of the piezoelectric material is in the XI-xz 

plane. The constitutive relations for each of the n-layers are as follows in contracted 

form: 



where E~ 

CII C I 2  C , 3  0 0 C I 6  

'12 '22 '23 O O '26 

'13 '23 '33 O O '36 

0 0 0 C,, C,, 0 
0 0 0 C,, C,, 0 

C16 '26 C36 O O '66 

I E l l  

are components of the infinitesimal strain tensor, E, are the electric field 

components, C ,  are the elastic constants in contracted notation, e ,  are the piezoelectric 

stress coeficients and E~ are the electrical permittivity. The infinitesimal strain tensor 

and the electric field components are related to the displacements and electric potential in 

the following manner: 

2.3. Exact Solution 

The goal of this study is to derive a general exact solution to the cylindrical 

bending vibration of a layered piezoelectric plate. We first begin by constructing a local 

coordinate system for each layer, originating at the center of the layer as shown in Figure 

2.1. In this local coordinate system, the nth-layer occupies the region of 0 to L in the XI- 

direction, infinity in the x2-direction and h(") in the x3-direction, where h(") = @")- @). 

The displacements, stresses, electric potential and electric displacements are 

assumed to be hnctions of only xl and xg. This is a valid assumption because the 

24 



material properties and loads (mechanical and electrical) do not depend on x2, and the 

plate is assumed to be infinite in the x2-direction. 

We seek a semi-inverse solution by assuming the following forms of the 

displacements and electric potential: 

kn 
where p = - and k is an integer that defines the axial mode shape. 

L 

As can be seen from (2. lo), the assumed transverse displacement u3 is zero at xl 

= 0, L, which satisfies the displacement boundary conditions in (2.2). Substitution of 

(2.10) into (2.9) yields the following expressions for the infinitesimal strain tensor and 

electric field components: 

= u , , ~  = --U1peiot sin(p x,) , E,, = u,,, = 0 , E~~ = u ~ . ~  = U; elof sin(px, ), 

and 

El =Q>peiofs in(pxl) ,  E, =-b,, =O, E, =-4 .3 =-Q>'eimcos(px,). (2.12) 

The prime denotes derivatives with respect to x3. 

The stresses and electric displacements are inferred in terms of the displacements 

using the constitutive relations in (2.8) along with (2.11) and (2.12). This results in the 

following Cauchy stress and electric displacement components: 



a,, =(-C,,U,p+C,,U,' - C , 6 U 2 p - e , , @ p ) e ' m s i n ( p x , ) ,  

a,, = (-C,, U, p + C,, Ul - C,, U, p - eI2@p)e1"' sin(p x,) , 

a,, = ( X I ,  U, p + C,, U,' - C,, U, p - el,@ p)ei"' sin(p x, ) , 

a,, = (C, Ui p + C,, U,' + C,, U, p + e3,@')ed cos(p x, ) , 

= (C,, Ui p + C,, U,' + C,, U, p + e3,@')e1"' cos(p x, ) , 

a,, = (-C,, U, p+C,,U; -C,U, p-e,6@p)e'msin(px,). 

and 

Dl = (-el, U, p+e, ,  U,' -el, U, p+  E,, @p)eim sin(px,), 

D2 = (-el, U, p + e,, U,' - e,, U2 p+ E , ~  @ p)eim sin(p x, ) , (2.14) 

D, = (e, Ui + e,, U,' + e,, U, p- E,, Q') elmt COS(P X, ) . 

As can be seen from the expressions for a,, and a,, in (2.13) and Dl in (2.14), 

the relevant boundary conditions of (2.2) are identically satisfied. Therefore, all the 

boundary conditions at the simply supported edges are identically satisfied by the 

assumed form of the displacements and electric potential in Equation (2.10). 

The stress components and electric displacements from (2.13) and (2.14), 

respectively, are substituted into the equations of motion and charge equation of (2.1) 

yielding the following equations: 



Note that the non-zero common factor e'" cancels out in equations (2.15)-(2.18). 

Furthermore, since the governing equations have to hold at every location XI, the 

common factors of either cos@ x,) or sin(p x, ) in equations (2.15)-(2.18) are cancelled. 

Equations (2.15)-(2.18) form a set of four coupled second order ordinary differential 

equations that need to be solved. One method for solving this system of differential 

equations is by a power series solution for U(x3) and (D(x3) in the following manner: 

where 9'" and 6") are coefficients in the series solution. 

The equations in (2.19) are substituted first into (2.15) yielding the following 

equation: 

Upon shifting the summation index B to range over 0 to infinity in (2.20) and equating 

like powers of ~3~ we obtain: 



Similarly, by substituting (2.19) into (2.16)-(2.18), shifting the summation index /I to 

range over 0 to infinity and equating like powers of x3 we obtain 

The next step in the solution process is to cast (2.21), (2.22), 

into matrix form. This results in the following recurrence relation: 

where 

(2.23) and (2.24) 

7 (2.25) 



Equation (2.25) is the recurrence relationship for the series coefficients. This 

relationship allows for any number of terms to be retained and have only eight unknown 

coefficients that need to be determined. For example, when p = 0 in (2.25), 

6 , '2)762 '2 ' ,63 '2)  and 6 ' )  can be expressed in terms of 

0 , 0 , 0 , 0 6 '1) 0 '1) 6 '1) and "1' 
7 1 7  2 3 Similarly, if p = 1, using 

- , , 6 and 6')' also in terms of 6,"', 6,"', 63'2' and 6 '2 ' ,  we can express U, 

6 , ' 0 ) ' ,  0 , ' O ) '  6,'" '(0) 6 '1) 6 - '1) 
, , , ' ,  U and ~ ' " .  Finding the coefficients when /? = 2, 

3,. . . proceeds in the same manner. 

The recurrence relation results in eight unknowns for each lamina, namely 

0 ,  0 , 0 0 6 '" 6 
, 7 1 7 2  (I), 6,") and 6"). This implies that for an N-layer 

laminate, there are 8N unknowns to be found. There are four boundary conditions at 

x3 = -H 12 and x, = H / 2 to be satisfied, namely those specified in equations (2.6) and 

(2.7). There are also eight conditions at the N-1 interfaces that need to be satisfied (refer 

to (2.3), (2.4) and (2.5)). This means that there are 8N equations that can be used to solve 

for the 8N unknown coefficients. 

2.3.1. Determination of Natural Frequencies and Mode Shapes 

The natural frequencies and mode shapes of the system are the solution to the free 

vibration of the simply supported laminated plate with embedded shear actuators. As 

implied with the term free vibration, there are no loads (mechanical or electrical) applied 

to the plate. In this case the frequency u, in (2.21), (2.22), (2.23) and (2.24) is unknown. 



As is stated in the previous section, there are 8N unknowns for an N-layer 

laminate. Application of all the interface and boundary conditions from (2.3), (2.4), 

(2.5), (2.6) and (2.7) result in 8N algebraic equations. Casting these equations into matrix 

form results in the following: 

[ ~ ( w ) l U  = (0) 7 

(2.27) 

where[M(w)] is an 8N x 8N matrix whose elements are polynomials in w and   is a 

column vector of the 8N unknowns. As can be seen from (2.27), the determinant of 

[M(w)] must be equal to zero for a non-trivial solution. This results in a polynomial 

equation in w whose roots are the eigenvalues of the system that are arranged in 

ascending order b,"', o,'~', o,"', . . .}, which are the natural frequencies corresponding 

to the longitudinal mode shape defined by the integer k. Corresponding to each 

eigenvalue, an eigenvector can be found that can be used to compute displacements, 

stresses, electric potentials and electric displacements that represent the mode shape. 

2.3.2. Forced Vibration Analysis 

The forced vibration analysis will focus on the steady-state response of the 

laminated plate due to a harmonic load applied transversely on the top surface. The 

harmonic load is of the following form: 

o,, (x, , H 1 2, t )= q, e sin(p x, ) , (2.28) 

where q, is a constant that determines the magnitude of the applied load, e'" is the 

harmonic component and sin(p x,) is the variation of the applied load in the xl-direction. 

Any loading profile can be written as a Fourier series; therefore, it can be assumed that 

(2.28) represents a single term in the Fourier series. 
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The loading profile in (2.28) is a boundary condition for a,, in (2.6). Note that 

by this form of the loading profile, the terms e'" and sin(p x,) are common to the terms 

in a,, of (2.13). This means that these terms can be dropped from both sides without 

losing generality. When this boundary condition is used for the forced vibration case, the 

right-hand side will not be equal to zero 

Since the forcing frequency w is known, the 8N unknowns {V) are determined by solving 

the matrix equation (2.29). 

2.3.3. Implementation of Positive Position and Velocity Feedback 

The second portion of this study will utilize a feedback control algorithm for the 

purpose of vibration suppression. The exact solution derived in the previous sections 

does not contain material damping. It is proposed that active vibration damping be 

introduced into the model using either PPF or velocity feedback. 

Implementation of the PPF control is made possible by the assumption that the 

excitation is harmonic, as well as the fact the only the steady-state solution is of interest. 

This can be seen if we examine the equations that govern the PPF control law (refer to 

( 1 . 1  and (1.2)) If we assume that the system coordinate is the displacement 

u, (L 12, H / 2) the dynamic equation for the compensator becomes: 

where 77 the compensator is coordinate, w, is the frequency of the compensator and LC 

is the damping parameter of the compensator 



0 For steady-state vibration 77 =vO ei* and u, = u,  ei* . Therefore, (2.30) 

becomes: 

Solving for 77, : 

The applied feedback potential to the piezoelectric shear actuator is as follows: 

60 = g oC277o, (2.33) 

where g is the feedback gain. The following potential distribution is applied to the 

actuator to suppress the vibration: 

&(x,, t) =&o ei* cos(p x, ) . (2.34) 

The implementation of the PPF control is very similar to that of the forcing 

excitation. The feedback potential in (2.34) is applied as a boundary condition in (2.5). 

Upon applying this condition, the form of the resulting system of equations for the 8N 

unknown coefficients {V) is the same as equation (2.29). Since the potential applied to 

the actuator is a hnction of the transverse displacement u, (L / 2, H / 2, t) , the feedback 

law appears in the left-hand side matrix [M(o)] of (2.29). The right-hand side vector 

{R) depends only on the amplitude of the applied harmonic load go .  The unknown 

coefficients are determined by solving the linear system of equations (2.29). Once the 

coefficients are determined, the displacements, electric potential, stresses and electric 

displacement can be determined. 



The velocity feedback algorithm is implemented in a manner very similar to that 

of PPF. The only difference is that the transverse velocity is used instead of the 

transverse displacement as in the PPF control law. The dynamic equation for the 

compensator becomes: 

i j + 2 r C  w c ~ + w C 2 q = w c 2 u 3 ( ~ / 2 , ~ / 2 , t ) .  (2.35) 

Upon assuming q =qo ei"* and u, = u30 el"* for the steady-state response, we obtain 

the following expression for qo : 

In order to effectively utilize velocity feedback control, the gain must be negative. This 

results in the following expression: 

2 $4 =-G% V O .  (2.37) 

The rest of the feedback control implementation is exactly the same as that for PPF 

control. 

2.4. Finite Element Solution 

The natural frequencies of the hybrid plates are also computed by the finite 

element method using the commercial finite element package ABAQUS/Standard 6.3-1 

(Hibbitt, Karlsson & Sorensen, Inc., 2002) to ensure that no algebraic errors were made 

during the implementation of the exact solution. A plane strain analysis is performed, 

assuming that ua = 0 and ul, u3 and 4 are functions of XI, x3 and t .  ABAQUS does have 

an elastic generalized plane strain element, but lacks a generalized plane strain 



piezoelectric element. Therefore, the out-of-plane mode shapes with non-zero 

displacement component u2 cannot be computed using ABAQUS. 

The natural frequencies of the plates with various length-to-thickness ratios are 

extracted using the Lanczos method. The other method offered by ABAQUS is a 

subspace iteration eigenvalue extraction. The Lanczos method is preferred in this 

instance because it is typically faster when the system contains a large number of 

degrees-of-freedom. 

The elements used in the analysis are CPE8R and CPE8RE for the linear elastic 

and piezoelectric materials, respectively. The CPE8R is a general 2D 8-node biquadratic 

plane strain element with reduced integration. The CPE8RE is a 2D piezoelectric 8-node 

biquadratic plane strain element with reduced integration. A convergence study using a 

single mesh refinement showed that the hndamental frequency did not change in any of 

the significant figures. A detailed convergence study was not performed since the finite 

element results are used only as an algebraic check. The number of elements and nodes 

for all the finite element studies were kept constant at 15,700 elements and 47,877 nodes. 

2.5. Results and Discussion 

In the first portion of this study we analyze the free vibration of several 

piezoelectric and composite plates. The natural frequencies and mode shapes are the 

result of a free vibration analysis. System identification is very important to any 

vibration suppression control scheme. Once the natural frequencies and mode shapes are 

known, vibration suppression using both PPF and velocity feedback is undertaken to 

determine the influence of the control parameters on the system damping. (Note that the 

analytical implementation of the exact solution can be found in Appendix A.) 
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Table 2.1. Non-vanishing material properties of the Gr-Ep and PZT-5A 

Property 0° Gr-Ep * 4S0 Gr-Ep O0 PZT-SA 45' PZT-5A 
CI I @Pa) 183.443 58.128 86.856 93.003 



The laminae of the plates are assumed to be either graphite-epoxy (Gr-Ep) or 

PZT-5A. The properties for these materials can be found in Table 2.1. This data is the 

same as that used by Vel and Batra (2001a). The principal axes for both materials are 

assumed to vary within the XI-xz plane. The principal axis is denoted by 0" preceding the 

material designation. The material properties listed are that for 0" Gr-Ep, 45" Gr-Ep, 

0" PZT-5A and 45" PZT-5A. 

2.5.1. Results for a [0° Gr-Ep/OO PZT-5A/0° Gr-Ep] Plate 

A three-layer laminated composite comprised of 0" PZT-5A sandwiched in 

between two layers of 0" Gr-Ep is considered. The exact configuration of the system is 

shown in Figure 2.2. 

, 3 .  , . +xi 

0.4 H Graphite-Epoxy 

PZT-SA Shear Achetor I 

Figure 2.2. The geometrical configuration of the three-layer hybrid laminate 

As can be seen from Figure 2.2, 80% of the laminate in the thickness direction is 

comprised of Gr-Ep, and the remaining material is the piezoelectric shear actuator. 

Figure 2.2 displays a forcing function applied to the top surface of the plate, but this will 

not be used to ascertain the natural frequencies and mode shapes. It will be used later for 

vibration suppression using feedback control. 
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The natural fi-equencies and mode shapes for a [0° Gr-Ep/OO PZT-5A/0° Gr-Ep] 

plate that is 0.25 m in length are computed for three different length-to-thickness ratios of 

4, 10 and 100. There are also two different electrical boundary conditions considered at 

x3 = 0.1 H, -0.1 H. The boundary is either considered electrically closed ( 6  =0)  or open 

(D3=0). Finite element results obtained for this case are listed in parenthesis below the 

exact values. Again, a plane strain analysis is performed and any modes that have 

movement in the x2-direction cannot be computed using ABAQUS. The first twelve 

natural fi-equencies for a [0° Gr-Ep/OO PZT-5A/Oo Gr-Ep] plate are listed in Table 2.2 for 

three different length-to-thickness ratios. 

Table 2.2. The first twelve natural frequencies of a [0° Gr-Ep/OO PZT-5A/0° Gr-Ep] plate 

m= 4 UH= 10 m= 100 

Mode l d ,  Mode 0p2 Mode Closed, Open, 
Hz Mode Opm' Hz Mode "g4 Mode 

2449.9 2483.73 ol(l) 1328.91 1334.23 145.057 145.064 
o'(l) (2449.9) '(" (2483.7) (1328.9) w"') (1334.2) o'(') (145.06) oL(') (145.06) 

From Table 2.2, it is evident that the finite element solution agrees very well with 

the exact solution. This also verifies that no algebraic mistakes were made while 



computing the exact solution. There are six modes that have displacement in the x2- 

direction for LIH = 4, which cannot be found using a plane strain finite element analysis. 

The electrical boundary condition for the piezoelectric material plays an important 

role, as can be seen in Table 2.2. In fact, the order of the modes changes as a result of the 

boundary condition when the length-to-thickness ratio is 4. The modes u5(l) and u1(5) 

change from modes 11 and 12, when the electric boundaries are closed, to modes number 

12 and 11, respectively, when the electric boundaries are open. This stresses the 

importance of prescribing the correct electrical boundary conditions for the piezoelectric 

layers. 

2.5.2. Results for a [4S0 Gr-Ep/OO PZT-5A/-45' Gr-Ep] Plate 

We now consider an unsymmetric [45" Gr-Ep/OO PZT-5N-45" Gr-Ep] composite 

that is 0.25 m in length. The off-axis orientations of the top and bottom fiber-reinforced 

Gr-Ep layers will introduce strong coupling of the deformation in the XI-x3 plane to that 

in the x2-direction. The first twelve natural frequencies of the [45" Gr-Ep/OO PZT-5N-45" 

Gr-Ep] plate are given in Table 2.3 for a thick plate with length-to-thickness ratio of 4. 

As for the previous case, two different electrical boundary conditions are considered for 

the piezoelectric material. The interfaces at 0.1 Hand -0.1 H are either electrically closed 

(4  = 0 )  or open (D3=0). An ABAQUS finite element solution is not given due to the 

anisotropic nature of the problem. 



Table 2.3. The first twelve natural frequencies of a [45" Gr-Ep/OO PZT-5Al-45" Gr-Ep] 

plate 

LIH = 4 
Mode Closed, Hz Mode Open, Hz 
(3 l(') 1210.29 01'" 1212.93 
o i l )  3786.37 o J 1 )  3805.64 
o 3 ( l )  672 1.76 o 3 ( ' )  6770.05 

6936.61 0 1 ( ~ )  6971.56 
0 1 ( ~ )  8186.22 0 1 ( ~ )  8559.04 
o J 1 )  9733.10 o J 1 )  9818.43 
o J 2 )  11881.4 o J 2 )  12003.6 
05") 12758.8 05") 12886.8 
m i 3 )  13631.9 o J 3 )  14171.2 
0 1 ( ~ )  15583.7 0 1 ( ~ )  15661.4 
o J 1 )  15788.9 o J 1 )  15963.9 

15893.9 15955.2 

As can be seen from Table 2.3, the electrical boundary condition has a profound 

effect on the natural frequency corresponding to certain modes. For example, 

changes from 8186.22 Hz to 8559.04 Hz by altering the electrical boundary condition 

from closed to open. 

The mode shapes corresponding to the first twelve closed natural frequencies in 

Table 2.3 are depicted in Figure 2.3. Again, the plate extends to infinity in the x2- 

direction, but the plate has been truncated in the illustrations. 

The effect of the unsymmetric laminate is very evident in Figure 2.3. For 

example, Figure 2.3(i) is a thickness mode in which the thickness vibration induces a 

shearing motion in the x2-x3 plane due to the elastic coupling introduced by the off-axis 

Gr-Ep layers. The rest of the mode shapes in Figure 2.3 also exhibit coupling, although it 

may be hard to discern from the plots. 



The nonlinearity of the ul-displacement in the mode of Figure 2.3(k) is very 

apparent from the plot. This M h e r  shows that a classical plate theory is not adequate 

enough to predict behavior such as this. Therefore, a higher-order theory is needed for 

any of the higher modes. 

The results presented in Figure 2.4 are the displacements and electric potential 

profiles through the thickness of the first nine closed natural frequencies found in Table 

2.3. The displacements and electric potential are normalized by their maximum value for 

the plots. The displacements and stresses were computed using 35 terms in the series 

solution to obtain accurate values for the plots. 

Figure 2.3. The first twelve natural frequencies of an electrically closed [45" Gr-Ep/OO 

PZT-5A/-45" Gr-Ep] plate 



As can be seen in Figure 2.4(h) for o,"), the ul-displacement is highly nonlinear 

for the three-layer laminated composite with an embedded piezoelectric shear actuator. 

A linear approximation would result in gross errors in the solution. In fact, the solution 

starts to deviate from a fairly linear profile in Figure 2.4(b). In addition, the transverse 

displacement us has a non-constant profile through the thickness for the higher modes, 

such as that in Figure 2.4(h). The uz-displacement also exhibit nonlinearities for the 

higher modes. 

The through-the-thickness plots for the stresses a,, , a,, , a,, and a,, are given in 

Figure 2.5 for the first nine electrically closed modes listed to Table 2.3. The 

longitudinal normal stress a,, is highly nonlinear in the Gr-Ep face sheets in Figures 

2.5(d), 2.5(e), 2.5(f), 2.5(g), 2.5(h) and 2.5(i). This implies that a classical plate type 

theory would not give accurate results for most of the modes listed in Figure 2.5. The 

longitudinal stress is fairly linear through the piezoelectric layer, however. 

The plate exhibits the expected profile for the transverse shear stress a,, that one 

would expect in Figures 2.5(a), 2.5(b), 2.5(c), 2.5(f) and 2.5(h), which is nearly a 

parabolic shape within each layer. The plate exhibits a zigzag pattern for the transverse 

shear stress in Figures 2.5(e) and 2.5(i). The stress component a,, appears to be constant 

though the piezoelectric material in Figures 2.5(d) and 2.5(g), and the stress component 

has a linear trend through the Gr-Ep face sheets. 

It is also interesting to note that the transverse normal stress a,, is nearly linear in 

the piezoelectric layer in Figures 2.5(a)-2.5(d) and 2.5(f)-2.5(h). This trend is different 

from the case of a monolithic PZT-5A plate, where the through-the-thickness variation of 

the transverse normal stress is cubic. 
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Figure 2.4. Displacements and potential profiles of the first nine modes of an electrically 

closed [45O Gr-Ep/OO PZT-5N-45" Gr-Ep] hybrid laminate: ~ I b 3 )  ; - - - 
M+I (09 s 1 



Figure 2.5. Stress profiles of the first nine modes of an electrically closed [45" Gr-Ep/OO 

PZT-541-45" Gr-Ep] hybrid laminate: 0 1 1  (~ /29x3)  ; - - -  033(~129~3)  . 
MU.+,, ( W x 3 ) (  ~ a l 0 ~ ~  (L 1 2, x3 1 ' 



2.5.3. Results of the Vibration Suppression of a [0° Gr-Ep/OO PZT- 

5A/0° Gr-Ep] Plate Using PPF Control 

In this section, we present exact results for vibration damping of composite plates 

using the embedded piezoelectric actuators and PPF control. The first step in the 

procedure is to determine the steady-state response of the system due to a harmonic 

distributed load on the top surface of the plate. Section 2.3.3 contains details of 

implementation, and Figure 2.2 depicts the geometry of the system. Once this is 

accomplished, the vibration control algorithm is implemented by imposing a potential 

electrical boundary condition to the piezoelectric actuator in the form of (2.34). 

We consider the vibration suppression of the [0° Gr-Ep/OO PZT-5A10° Gr-Ep] 

plate analyzed earlier. The length-to-thickness ratio is chosen to be 10. The control 

voltage is applied to the top surface of the piezoelectric layer at x3 = 0. lH, and the bottom 

surface at x3 = -0.1H is assumed to be electrically grounded. The goal of the analysis is 

to (a) investigate whether shear actuation mechanism is effective for vibration 

suppression and (b) determine the effect of the PPF control parameters on the applied 

system damping of a continuous system. The analysis will consist of determining the 

amplitude of the transverse displacement of the plate as a hnction of the forcing 

frequency. The result is presented in the form of a frequency response curve near the 

hndamental frequency. 

The PPF control parameter comparison is accomplished by choosing a 

compensator baseline from which each parameter is individually changed. The baseline 

system consists of choosing a compensator frequency w, equal to the system frequency, 

the compensator damping paramter C, to be 0.05 and the scalar gain g to be equal to 



0.1 V s2 / m. From Table 2.2, the fundamental frequency of the [0° Gr-Ep/OO PZT-5A10° 

Gr-Ep] plate with an electrically closed boundary condition is 1328.91 Hz. Next, the 

compensator frequency is altered to be equal to l.lo,,  1.350, and 1.40,, while 

maintaining the same values for the other compensator variables. Note that 0, is referring 

to the mode being targeted for vibration suppression. Next, the compensator damping 

ratio is changed from 0.05 to 0.15, then to 0.35 and finally to 0.5. This encompasses the 

entire range usually recommended (refer to Section 1.2.3). Lastly, the compensator gain 

is changed from 0.1 V s2/ m to 0.45 V s2/ m, 0.65 V s2 / m and 0.9 V s2 / m. 

The influence of the PPF compensator parameters on the frequency response 

function can be found in Figure 2.6. Shown on the left are the comparison plots of the 

magnitude of the us-displacement at x, = L/2 and x3 = H/2. The magnitude is normalized 

by go, L and Co, which have values of 1 Pa, 0.25 m and 21.1 GPa, respectively. 

Immediately to the right of these plots are phase curves of u3 relative to the applied load. 

As can be seen from Figure 2.6(a), maximum system damping is achieved when 

the compensator frequency is set equal to the fundamental frequency of the system. This 

value is not recommended by other experimenters, however, who choose either 1 .30, or 

1.450, (refer to Section 1.2.3). This could be attributed to the fact that in the present 

analysis the system does not contain any damping of its own. This causes the system to 

be in perfect phase with the forcing frequency when the compensator is not active. 

Therefore, to counter all of the motion of the forcing function, the voltage applied to the 

piezoelectric actuator must respond exactly as the system. 



Figure 2.6. PPF compensator variable comparison plots of  magnitude and phase for the 

first flexural mode 



The compensator damping ratio has some interesting effects to the response of the 

system, as can be seen in Figure 2.6(b). The larger the compensator damping parameter, 

the less damping the system achieves. This fact is also discussed by Song et al. (2002). 

This phenomenon is explained by the fact that as the compensator damping is reduced, 

the damping of the system will increase, but as a tradeoff the bandwidth of the PPF 

control is reduced. Therefore, the system response needs to be fully understood. In most 

cases, however, the response will change with time, due to such things as damage, 

temperature, etc. The most effective system must be found by allowing for an adequate 

control range while maximizing damping. 

The response of the system due to changes in the gain g is fairly evident from 

Figure 2.6(c). As the gain is increased, more potential is applied to the actuator, which 

increases the system damping. An interesting phenomenon occurs once the gain reaches 

0.45 V s2 / m. The transverse displacement at the hybrid plate's fundamental frequency 

(1328.91 Hz) is less than the response of the system at frequencies equal to 1000 Hz or 

1500 Hz. This is a result of extremely targeted vibration suppression. This parameter is 

more a function of the highest amount of potential that can be applied to the PZT 

actuator. This can be caused by limitations of the power amplifier, dielectric breakdown 

concerns, etc. 

Next, vibration suppression of the first thickness mode is analytically performed. 

The vibration control of this mode with the piezoelectric shear actuator utilizes a non- 

zero electric field component El and the piezoelectric coefficient el3 to influence the 

transverse strain s3,. The study is performed in exactly the same manner as described 



above. A base PPF compensator is identified, and then each control parameter is changed 

individually to see the effect each has on the feedback performance. 

As before, the base compensator consists of a filter damping ratio of 0.05, filter 

frequency equal to the target natural frequency (first thickness mode, 14674.1 Hz), and a 

scalar gain of 0.1 V s2 / m. The filter damping ratio is altered from being equal to 0.05 to 

0.15, 0.35 and finally 0.5. The target frequency is altered from being equal to the first 

thickness mode frequency to 1 lo%, 135% and 140% of that value. Finally, the gain g is 

changed from 0.1 V s2 / m to 0.45 V s2 / m, 0.65 V s2 / m and 0.9 V s2 / m. Using the 

exact same comparison values for the suppression of the thickness mode as that of the 

first flexural mode will allow a separate comparison between the performances in both 

cases. However, they can be compared only in a relative sense due to the amplitude 

difference between each mode. 

Comparison plots of the compensator performance for the first thickness mode 

can be found in Figure 2.7. As can be seen in Figure 2.7, the forcing frequency is from 

14200 Hz to 15000 Hz. The magnitude of the u3-displacement at xl = L/2 and x3 = HI2 is 

normalized by the values Co, qo and L, which have values of 21.1 GPa, 1 Pa and 0.25 m, 

respectively. Plots of the non-dimensional displacement lu3(L/2,W2) Co / L qol versus 

forcing frequency can be found in Figures 2.7(a), 2.7(c) and 2.7(e). The phase difference 

between the system response and forcing frequency can be found immediately to the right 

of the frequency response curves. Note that g in Figures 2.7(e) and 2.7(f) has units of 

v s2/m. 



Figure 2.7. PPF compensator variable comparison plots of magnitude and phase for the 

suppression of the first thickness mode 



As can be seen from Figure 2.7, vibration suppression of a thickness mode using a 

PPF control algorithm is feasible. The trends, as far as the compensator variables are 

concerned, are very similar to that of the control of the first bending mode. For example, 

as the compensator damping is increased, the damping of the system decreases. This, 

however, is a result of the compensator itselc therefore, it would make sense for this 

factor to be independent of the mode being controlled. Also, as the compensator 

frequency a, is increased the system response gets larger. 

The effect of the increased gain on the PPF controller performance for 

suppressing the first thickness mode is as expected. As the gain is increased, larger 

amounts of potential are applied to the PZT-5A actuator, which results in superior 

vibration suppression. It is interesting to note that the system peak response at the natural 

frequency seems to disappear as g attains a value of 0.45 V s2 / m. 

The hybrid plate exhibits an interesting response when the forcing frequency is 

14613.7 Hz as shown in Figure 2.7. The transverse deflection lu3(L/2,W2) Co / L qol 

attains a value of 5.944 x at this point with no active feedback control. Also, there is 

a discrete phase shift at this frequency. This phenomenon where there is a local 

minimum of system response is known as anti-resonance. 

2.5.4. Results of the Vibration Suppression of a [0° Gr-Ep/OO PZT- 

5A/0° Gr-Ep] Plate Using Velocity Feedback Control 

We now consider the vibration suppression of the [0° Gr-Ep/OO PZT-5A/0° Gr- 

Ep] plate using a velocity feedback control algorithm. The steady-state solution is the 

only dynamic component studied. The implementation of this routine follows the 



derivation outlined in Section 2.3.3. Similar to the PPF implementation, the feedback 

control utilizes the velocity at x,=L/2 and h=H/2, and impose an electric potential 

interface condition at h = 0.1 H in the form of (2.37). 

The variables of the velocity feedback control are very similar to that of the PPF 

compensator. The base variables used are 0.05 for the control damping ratio Cc, filter 

frequency w, equal to the findamental frequency of the system, and a gain parameter G 

of 1 x V s3 / m. All the variables, except the parameter G, are altered in exactly the 

same way as that for the PPF variable comparison (refer to Section 2.5.3). In this 

comparison, the gain parameter G is changed from the base value to 0.8 x I O - ~ V  s3 / m, 

1 . 5 ~ 1 0 - ~ V s ~ / m a n d  2 ~ 1 0 - ~ V s ~ / m .  

The variable comparison for the velocity feedback control algorithm can be found 

in Figure 2.8. Normalized plots of the u3-displacement are shown in Figures 2.8(a), 

2.8(c) and 2.8(e), with corresponding plots of the phase differences immediately to the 

right. The magnitude is normalized by qo, L and Co, which all have values of 1 Pa, 0.25 m 

and 21.1 GPa, respectively. Note that G in Figures 2.8(e) and 2.8(f) has units of V s3/ m. 

As can be seen from Figure 2.8, the velocity feedback control behaves similar to 

that of the PPF control algorithm. For example, in Figure 2.8(a) the system response gets 

larger with increasing compensator frequency 0,. There is one noticeable difference, 

however. As the compensator frequency is increased, the peak system response does not 

increase as dramatically as is seen with PPF control. This means that the velocity 

feedback controller has a larger bandwidth than the PPF compensator. 



Figure 2.8. Velocity feedback variable comparison plots of magnitude and phase 



The velocity feedback controller damping parameter has a large influence on the 

system dynamics. As the damping parameter <, increases, the system response also 

increases. This phenomenon was also seen in the PPF control analysis, but not to the 

extent seen in Figure 2.8(b). 

As can be seen in Figure 2.8(c), the velocity feedback control algorithm behaves 

similarly to that of the PPF control when the gain is increased. As the gain becomes 

larger, the amplitude at the target frequency gets smaller. There is one notable 

difference, however. The frequency response curves in Figure 2.8(c) are not symmetric, 

with respect to the resonance point, like those found in Figure 2.6(c). 



Chapter 3 

ANALYSIS OF STATIC DEFLECTION, VIBRATION AND 

ACTIVE DAMPING OF CYLINDRICAL COMPOSITE 

SHELLS WITH EMBEDDED PIEZOELECTRIC 

SHEAR ACTUATORS 

3.1. Introduction 

This chapter provides an exact analysis and active vibration suppression of 

laminated composite cylindrical shells with embedded circumferentially-poled 

piezoelectric shear actuators. Results for the static deflection of a four-layer composite 

are presented first. The solution provides a method of system identification, which 

includes determination of natural frequencies, mode shapes and through-the-thickness 

plots of displacements, potential and stresses. Next, a forced vibration analysis is 

undertaken for the purpose of utilizing a vibration suppression algorithm. The control 

law utilized is positive position feedback (PPF). A thorough investigation into the 

influence of the parameters for the control scheme is performed. 

3.2. Problem Formulation 

An orthogonal cylindrical coordinate system is used to describe the infinitesimal 

deformations of an N-layer piezoelectric/composite shell as pictured in Figure 3.1. The 

shell is of extent O in the 6 -direction, H in the r-direction and infinity in the x-direction. 

As can be seen in Figure 3.1, the variable R quantifies the location of the mid-surface of 



the shell. The top and bottom surfaces, as well as the interfaces between lamina are given 

by r"' = R - H/2, r'2',. . ., r'"',. . .,,'M, r(N+l) = R + H/2. Also, it is assumed that each lamina 

is homogeneous. It should be noted that for each n-layer of the composite, there is a local 

cylindrical coordinate system that originates at the mid-surface of the lamina. 

Figure 3.1. The geometrical configuration of the composite piezoelectric shell 

We first begin with the equations of motion and the charge equation in the 

absence of body forces and free charges: 

1 
Dr .r '"' + - (De,e("' +Dr'"') + D,,,'~' = 0 ,  r 

where the variables a are the components of the Cauchy stress tensor in cylindrical 

coordinates, r is the radial location away from the origin of the shell, p is the mass 

density, u are the cylindrical components of the displacements and the variables D are 

the components of the electric displacement. A comma followed by the index r indicates 



partial differentiation with respect to the position in the r-direction, and a superimposed 

dot indicates differentiation with respect to time t .  The superscript (n) refers to quantities 

for the nth-layer of the piezoelectric/composite shell. 

The fiber-reinforced elastic layers are orthotropic with principal material direction 

oriented at an angle to the 8-axis in the 8 - x  surface. It is assumed that the poling 

direction of the piezoelectric material also lies in the 8 - x  plane. The constitutive 

equations, in contracted notation, for lamina n are 

'13 '23 '33 O 

0 0 0 C,, C,, 0 

'16 '26 '36 O O '66 
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where the variable E denotes the infinitesimal strain tensor, E is the electric field vector, 

Cv are the elasticity constants, ev are the piezoelectric coefficients and E, are the electric 

permittivities. 

The infinitesimal strain tensor and electric field components in cylindrical 

coordinates are related to displacements u and electric potential 4 in the follow manner: 





The interface between the lamina can either be electroded or not electroded. If 

the interface is not electroded, then the electric interface condition becomes the 

following: 

4 ( n )  = 4 ( n + l )  and D,(") = D,("+') at r  = ("'I) . (3.7) 

If the interface is electroded, then the electrical interface condition must be as follows: 

qj  (") = qj  ( " + I )  = f (0, t )  at r  = r ( " + l )  , (3.8) 

Where the function f (6,t) describes the potential distribution as a function of both 

position 6 and time t. 

The boundary conditions on the top and bottom surfaces are specified in the 

following manner: 

a,, = a, = 0 , a, = p(6, t) at r  = r  (" and dN+') , 

and (3.9) 

D, = q(6, t) or 4 = @,, (6, t) at r  =r"' and r (N+') .  

The stress components a,, anda, in (3.9) are set equal to zero because it is assumed 

that the there are no applied shear stresses to the shell. The transverse normal stress a, 

is assumed to have a functional variation on the top and bottom surfaces to accommodate 

a forced vibration analysis. The electrical boundary conditions in (3.9) are also assumed 

. to have functional variations, and in this case either the radial electric displacement or 

potential is specified. 



3.3. Exact Solution 

We seek an exact solution to the cylindrical bending vibration of a composite 

piezoelectric shell. The displacements, stresses, electric displacements and electric 

potentials are assumed to be functions of 6 and r only. This assumption is valid because 

the loads (mechanical and electrical), as well as the material properties are not a function 

of the x-coordinate. Also, the geometry of the shell is of infinite extent in the x-direction. 

We assume the following semi-inverse solution for the displacements and electric 

potential: 

kn 
where p = - and k is an integer that defines the circumferential mode shape 

0 

As can be seen from (3. lo), the assumed form of the radial displacement u, is 

equal to 0 at 6 = 0 , 0 ,  which is required by the boundary conditions in (3.5). The 

assumed forms of displacement and electric potential in (3.10) are substituted into (3.3) 

and (3.4) to obtain the components of the infinitesimal strain tensor and electric field 

vector: 



where the prime denotes differentiation with respect to r.  



Upon examination of tree(") and crth(n) in (3.13) and D@(") in (3.14), it is seen that 

these expressions satisfy exactly the relevant boundary conditions from (3.5). This 

implies that all of the boundary conditions at the simply supported edges are identically 

satisfied by the assumed form of displacements and potential in (3.10). 

The equations of motion and charge equation of electrostatics can be expressed in 

terms of the assumed displacements and electric potential using (3.13) and (3.14): 

Note that the non-zero common factor of eimt present in (3.15)-(3.18) cancels from each 

equation. 

Equations (3.15)-(3.18) are a system of coupled ordinary second order differential 

equations with non-constant coefficients. A method for solving a system such as this is 



to use a Frobenius method for u@("), u,("), ur(") ,  and @(")in the following manner 

(Kreyszig, 1999): 

where A r ("A and are coefficients in the series solutions, and 

A(") are constants that need to be determined. The values of A(") can be either real or 

complex and it is chosen such that either As("'), A,(",'), A,(",') or is non- 

zero. Note that the preceding condition is no restriction on generality since it simply 

means that we factor out the highest possible power of r 

The equations in (3.19) are first substituted into (3.5) yielding the following 

equation: 



Next, (3.19) is substituted into (3.16) yielding the following equation: 

Substitution of (3.19) into (3.17) yields the following equation: 

Finally, (3.19) is substituted into (3.18) yielding the following equation: 

Equating the I - "  terms on both sides of Equations (3.20), (3.21), (3.22) and 

(3.23) results in the following system of equations: 



where the coefficient matrix [M(")@)] has the following form: 

A non-trivial solution for (A,'""), As(""), A,("~'), A#(">)]  in (3 .24 )  is obtained 

by setting the determinant of the coefficient matrix equal to zero 

Equation (3 .26 )  is the indicia1 equation for the differential equations in (3.15)-  

( 3 . 1 8 )  The determinant of (3 .26 )  is an eighth order polynomial in 2"). The eight roots 

of this polynomial correspond to eight separate solutions. The linear nature of the 

problem allows for the sum of these solutions to form a single solution. Corresponding to 

each A,'"' (m = 1 , .  . . ,8 )  an eigenvector can be found to determine the relative magnitudes 

of A,(">'), AO(">'), A,(",') and This means that for each A,'"', there is a single 

unknown that must be determined. Since there are eight values of A,'"', there are eight 

unknowns per layer that must be determined. It is assumed that the values A,'"' are 

distinct and do not differ by an integer value. In the event of a mathematically 



degenerate case of repeated values of A,'"', or values of A,'"' that differ by an integer, 

the solution in (3.19) must be modified appropriately (Kreyszig, 1999). 

Next, the r2')+' terms from (3.20), (3.21), (3.22) and (3.23) are equated resulting 

in the following matrix equation for the series coefficients A,(""), &(""), A,(",') and 

Note that [M(")(l)] in (3.27) is invertible when A,'"' attains values that are distinct and 

do not differ by an integer value. 

Finally, the r A'"' +I ( p  2 2) terms from (3.20), (3.21), (3.22) and (3.23) are 

equated resulting in the following recurrence matrix equation for the series coefficients 

A r (n&, Ao(n.P) , A,(~.P) and A,(~.B)  : 

The recurrence relation (3.28) is evaluated successively for P = 2,3, ..., to obtain the 

series coefficients A,'""', A0(""', Ax'""' and A,'"'~'. The complete solution, obtained 

by a superposition of the solutions corresponding to the eight exponents A,'"', is 



where B,'") are unknown constants. 

3.3.1. Static Deformation and Forced Vibration Analysis 

If the hybrid laminate is subjected to a static or time harmonic load, the angular 

frequency o and k are known. The unknown coefficients B,'") are obtained by applying 

four boundary conditions on the outer surface (3.9), four conditions on the inner surface 

and eight interface conditions (3.6) and (3.7) or (3.8) at each of the (N-1) interfaces 

between the N laminae, which leads to the following matrix equation: 

where [~(o)] is a known 8N x 8N matrix, {w) is a known vector of length 8N and {B)  

is a vector consisting of the 8N unknown coefficients B,'"). The linear systems of 

equations (3.30) are solved to obtain the 8N constants B,'"' and subsequently the 

solution for every layer. In the case of static deformation, the angular frequency o = 0 . 

3.3.2. Determination of Natural Frequencies and Mode Shapes 

The hybrid composite shell is in a state of free vibration if it is not subjected to 

any applied mechanical or electric loads. For fixed k (i.e. fixed p), the series coefficients 

A ~ ( " > ~ ) ,  and A~'"'" are obtained in terms of o using the recurrence 

relations (3.28). Applying boundary conditions on the outer surfaces, interfaces between 



the laminae and the inner surfaces of the laminate results in the following homogeneous 

matrix equation: 

[~(d {B) = (")p (3.31) 

where [ ~ ( w ) ]  is a 8N x 8N matrix whose elements are polynomials of o and {B) is a 

vector consisting of the 8N unknown constants B,'"'. A non-trivial solution for the 

constants B,'"' is obtained by setting the determinant IG(w)( equal to zero. The resulting 

polynomial equation is solved to obtain a set of eigenvalues that are arranged in 

ascending order as b,"', w,"', wkO', . . .], which are the natural frequencies of the shell 

corresponding to the circumferential mode shape defined by the integer k. The 

eigenvector {B) associated with the eigenvalue o,"' is determined from the nullspace of 

[~(o)] .  The displacements, electric potential, stresses and electric displacement at any 

point within the laminate are determined using the 8N constants B,'"' from eigenvector 

{B). 

3.3.3. Implementation of Positive Position Feedback 

Active damping is implemented through feedback control. The outer surface of 

the hybrid composite shell is subjected to a harmonic distributed load of the following 

form: 

0,'~'(8, R + H 12, t )  = q,, elW sin(x8 1 a), (3.32) 

where the circular frequency w is prescribed. We use the PPF controller to achieve the 

active damping. The PPF controller introduces a second order compensator which is 

forced by the electric potential of the sensor, 



i i+2ccoc~+oc2r l=oc2~~ , r s . f ) ,  

where r, is the radial location where the sensor potential is measured, q is the 

compensator coordinate, oc is the frequency of the compensator and cC is the damping 

ratio of the compensator 

For steady-state vibration q=qo eim and & = &o ei"'; therefore, (3.33) becomes: 

2 
-02  q +2iocoq, + oc q,, =oc2 @'""(r,), 

where the sensor is lamina n,. Solving for qo : 

2 
f"'c ] mlnJ) (, ) ,  

-02)+2iccoco 

The controller coordinate q ,  magnified by a positive gain, is then fed back as a 

voltage input & to a piezoelectric shear actuator 

(3.36) 
e'" COS(Z~ I@), 

where g is the PPF feedback gain parameter which has units of 2. 

The feedback potential of the PPF controller (3.36) is applied as a boundary 

condition to the piezoelectric shear actuator. The implementation of the other boundary 

conditions on the top and bottom surfaces of the laminate and the interface conditions is 

similar to that of the forced vibration analysis discussed earlier. Since &(e,t) and 

@'ns'(rs) are functions of the unknown constants B,'"' , the controller parameters o,,  cC 
and g appear in the left-hand side matrix [ ~ ( o ) ]  in (3.30). The displacements and 

stresses are complex since the feedback potential (3.36) is complex. The magnitude and 



phase of the displacements, electric potential, stresses and electric displacements with 

respect to the applied harmonic load can be inferred from their respective real and 

imaginary parts. 

3.4. Finite Element Solution 

The analytical solution is compared with a plane strain finite element solution for 

both the static deformation and natural frequencies to ensure that no algebraic errors are 

made during the implementation of the exact solution. The commercial finite element 

package ABAQUSIStandard 6.3-1 (Hibbitt, Karlsson & Sorensen, Inc., 2002) is used. A 

2-D plane strain analysis is performed to obtain the natural frequencies and results of a 

static deformation. This implies that there is no motion in the x-direction and ur ,  ue 

and 4 are fbnctions of r, 0 and t. A generalized plane strain analysis is not performed 

due to the fact that ABAQUS does not possess a piezoelectric element that is capable of 

that type of analysis. This means that the natural mode shapes with motion in the x- 

direction will be missed. 

The natural frequencies are extracted by finite element analysis using a Lanczos 

method. The alternative analysis offered by ABAQUS is a subspace iteration eigenvalue 

extraction. The Lanczos method is recommended in problem such as this because it is 

typically faster when the problem consists of a large number of degrees-of-freedom. 

The element type for both analyses is the CPESRE for the linear elastic and 

piezoelectric materials, respectively. The piezoelectric moduli for the linear elastic 

material are equal to zero. The CPESRE element is needed for the elastic material due to 

the fact the potential degree-of-freedom is active for this element. The CPESRE is a 2-D 

piezoelectric 8-node biquadratic plane strain element with reduced integration. The 
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quadratic element types are needed due to the fact that the geometry is inherently curved. 

A large number of linear elements would be needed to correctly represent the geometry. 

The solution for the monolithic PZT-5A and the 4 layer composite shell both 

consisted of mesh containing 5600 elements and 17,257 nodes. The number of elements 

and nodes are not refined any further because a single refinement resulted in no change in 

the reported significant figures of the natural frequencies. 

3.5. Results and Discussion 

Results are presented for the hybrid laminates with the lamina comprised of either 

graphite-epoxy (Gr-Ep) or PZT-5A. The properties of these materials are listed in Table 

2.1. In this study, both the Gr-Ep and PZT-5A of the hybrid and monolithic shells have 

their principal material axis in the circumferential direction (refer to Figure 3.1). 

The study produced static deflection results, the natural frequencies and mode 

shapes and a steady-state forced vibration analysis of a [Gr-Ep /PZT-5A/ PZT-5A/Gr-Ep] 

hybrid shell with an embedded piezoelectric shear actuator and sensor. The natural 

frequencies and mode shapes are extracted for a monolithic PZT-5A cylindrical shell. 

Also, the stresses and displacements are examined for the first nine natural frequencies of 

the configurations studied. The four-layer laminated shell is further studied in a steady- 

state forced vibration analysis with a PPF control law implemented. The effect of the 

control law parameters is thoroughly investigated. (Note that the analytical 

implementation of the exact solution, incorporating active feedback control, can be found 

in Appendix B.) 



3.5.1. Results for a 0' Monolithic Shear PZT-5A Cylindrical Shell 

Consider a cylindrical shell of radius 0.25 m and extent angle 0 = 90" in 

cylindrical bending vibration. The material of the shell is PZT-SA, with its principal 

material axis in the @-direction. The radius-to-thickness ratios considered are 5, 10 and 

100. This allows for analysis of both thick and thin shells. Also, the shell is considered 

with two different electrical boundary conditions at r = R - H/2 and R + H/2. The first of 

these boundary conditions is where the top and bottom surfaces are electrically closed 

(4 =O). The alternative boundary condition is where the top and bottom surfaces are 

considered electrically open (D, = 0). 

The first nine natural frequencies of the PZT-5A cylindrical shell with radius-to- 

thickness ratio of 5, 10, and 100 can be found in Table 3.1. Analysis using both of the 

electrical boundary conditions described above is performed and the results are listed in 

different columns. It should be noted that the mode is listed by the variable o,'"' , where 

k defines the axial mode shape and m defines the thickness mode shape. Also, the finite 

element solution is listed in parenthesis below the exact solution. Some of the finite 

element solutions have (--) listed. This is due to the fact that ABAQUS is not capable of 

performing a generalized plane strain analysis with piezoelectric materials and these 

modes have motion in the x-direction only. The number of terms used in the exact 

solution is determined by a convergence study using normalized values of the stress 

components of mode number 8 as the criterion. The number of terms in the series 

solution for all the results of this section was 40. 



Table 3.1. The first nine natural frequencies of a monolithic 0" PZT-5A cylindrical shell 

RIH = 5 RIH= 10 RIH = LOO 
Open, McKle Closed, Mc,& Open. Modr Closed. Mode Open. 

Hz Hz Hz Hz Hz 
27 1.325 271.758 137.541 137.599 13.8187 13.8187 

o'l ' '  (271.32) o"'' (271.76) 0 ' 1 ' 1  (137.54) w'l"  (137.60) (01(1'  (13.819) 01"' (13.819) 
1370.7 I t ,  1376.68 731.284 1 1 ,  732.294 74.9266 74.9278 

0'11 (1370.7) w? (1376.7) w'll (731.28) w' (732.29) Q") (74.927) o'l' (74.929) 

0 1 ~ ~ ~  
2104.18 (01(21 2104.18 1681.33 ( 1 )  1685.72 177.695 177.701 

(--) (--) (1681 3) O? ( 1685.7) '"3"' (177.70) ("Ii ( 1  77.70) 
295 1.74 2970.63 o , l? l  2101.71 o l l ? ,  2101.74 321.602 32 1.62 

o'll' (2951.7) '0"' (2970.6) (--) (--) (321.60) O''i (321.62) 
3949.77 (021?) 4207.02 2924.94 2936.3 1 ( 1 )  506.460 506.504 

" (3949.8) (--) "" (2924.9) ( I  (2936.3) O' (506.47) O'(') (506.51) 
4207.02 . I  4621.X6 (ol~ih (3979,8) 3979.78 , 0 2 ~ 2 ~  4203.4 732.100 732.19 

(--) (4621 3) (--) wbl" (732.1 1 )  Oh('' (732.20) 
4807.85 4843.19 4203.34 O;~) 4423.56 998.328 998.494 

O-t:l 
I '  (4807.8) w"' (4843.2) (--I (4123.6) 0711' (998.34) 0711' (998.51) 

~ 3 ' ~ ~  6161.66 O j , ?~  6161.66 440 1.5 0 1 ~ ~  4663.46 1304.92 1305.2 
(--) (--) wS(" (4401.5) (4663.4) ' (1304.9) ""I (1305.2) 

68 12.02 6864.06 6057.26 6092.94 165 1.63 1 I 1 1652.08 
0'( '1 (6812.9) O"' (6864.1) Oh('' (6057.3) O"(l' (6092.9) '*"' (1651.6) Oq (1652.1) 

As can be seen from Table 3.1, both the exact and finite element solutions are in 

excellent agreement. In fact, there are differences only in the fifth significant figure. It is 

important to note however, that the finite element solution only satisfies the governing 

equations in a weak sense, whereas the exact solution satisfies the governing equations 

point-wise throughout the domain. The agreement between the two solutions shows the 

validity of the approximations undertaken in the finite element solution. 

It is also interesting to note that the modes that have motion predominately in the 

r-direction are influenced much more by the electrical boundary condition on the top and 

bottom surfaces than the other mode types. This fact can be seen from the mode w 1(3) 

when the radius-to-thickness ratio is 5. When the top and bottom surfaces are electrically 

closed, the first thickness mode occurs at 3949.77 Hz. The first thickness mode shifts to 

4621.86 Hz when the boundary condition on the top and bottom changes to electrically 

open. This is a difference of about 700 Hz, which is a significant difference from a 



design standpoint. This point shows the importance of knowing the electrical boundary 

conditions accurately. 

Another important observation from Table 3.1 is that ABAQUS missed three of 

the first nine natural frequencies when the radius-to-thickness ratio is 5 due to lack of 

ability of to perform a generalized plain strain analysis. The first nine natural mode 

shapes corresponding to the natural frequencies listed in Table 3.1, with a radius-to- 

thickness radius of 5, are depicted in Figure 3.2. Electrically closed boundary conditions 

were used to generate these mode shapes. It should be noted that the plate extends 

infinitely in the x-direction in reality. The plate is truncated, however, to make the figure 

easier to read. 

Figure 3.2. The first nine mode shapes of a monolithic PZT-5A cylindrical shell 

The bending modes found in Figures 3.2(a), 3.2(b), 3.2(d), 3.2(g) and 3.3(i) are as 

expected from any classical shell theory. The out-of-plane modes of Figures 3.2(c), 

3.2(f) and 3.2(h) can be captured using a generalized plane strain analysis utilizing 
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classical shell theory techniques. An interesting mode, that cannot be obtained using 

classical techniques, is also determined. This is the first thickness mode of Figure 3.2(e). 

The motion of this natural frequency is contraction in the circumferential direction, as 

well as a contraction and elongation in the thickness direction. 

3.5.2. Static Deflection and Free Vibration Results for a [Gr- 

EpIPZT-5NPZT-5NGr-Ep J Shell 

Consider a four-layer laminated hybrid shell with the following lamination 

scheme: [Gr-Ep/PZT-5A/PZT-5NGr-Ep]. This particular lamination scheme is studied 

because it will be used later in the active vibration suppression analysis. The exact 

configuration of the cylindrical shell can be found in Figure 3.3. 

Figure 3.3. The geometrical configuration of a [Gr-Ep/PZT-5A/PZT-5NGr-Ep] hybrid 

shell 

As can be seen from Figure 3.3, the Gr-Ep lamina comprises 80% of the total 

shell thickness. The remaining thickness is 15% for the PZT-5A actuator and 5% for the 

PZT-5A sensor. The addition of the sensor layer allows for a more realistic approach to 

the idea of active control since it is possible to accurately measure the electric potential 
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from a piezoelectric sensor. In the analysis of the laminated flat plate found in Chapter 2, 

the transverse displacement was used directly for the feedback control. However, direct 

measurement of the transverse displacement is difficult in practical applications. 

Specifically, the cylindrical shell has a radius of 0.25 m, a radius-to-thickness 

ratio of 5 and an extent angle O of 90" (refer to Figure 3.1). The electrical interface and 

boundary conditions of each lamina are important to predicting the structures response. 

The inner and outer surfaces of the composite shell are assumed to be charge free. The 

interface between the actuator and sensor is considered to be at zero potential. The 

interface between the actuator and Gr-Ep layer is assumed to be electroded, and for the 

free vibration analysis this potential is assumed to be equal to zero. It is assumed that the 

potential 4 and radial electric displacement D, are continuous at the interface between 

sensor and Gr-Ep layer 

Consider the static deformation of the four-layer hybrid shell depicted in Figure 

3.3. The cylindrical shell is subjected to a static electrical potential of the form 

4 = @o cos(p0) on the actuator surface at r = R + H 110. The results in Figure 3.4 are in 

the form of through-thickness plots of 4(O, r )  , ue (0, r )  , gee(@ / 2, r )  and (0, r )  . The 

exact solution consisted of 60 terms in the Frobenius series solution. The normalization 

constants Co, bo and eo have values of 21.1 GPa, 1 V and 12.322 C m-2, respectively. As 

can be seen from Figure 3.4, the finite element solution agrees very well with the exact 

solution. 

The applied potential causes the hybrid shell to deform radially inward and 

elongate in the circumferential direction. The circumferential displacement ue has a 

zigzag variation in the radial direction as shown in Figure 3.4(b). The average 



circumferential displacement through the thickness of the composite shell is non-zero, 

unlike that of a statically deformed laminated composite plate with an embedded 

piezoelectric shear actuator (Vel and Batra, 2001 b). This is due to the elastic coupling of 

the radial and circumferential deflections exhibited by shells. The maximum 

circumferential normal stress and transverse shear stress a,@ occur at the interface 

between actuator and the top layer of Gr-Ep. The first nine natural frequencies of the 

hybrid shell in Figure 3.3 are presented in Table 3.2. The finite element solution is listed 

in brackets next to the exact solution. The natural frequencies are much higher than that 

for the monolithic PZT-5A shell, even though the geometrical dimensions are exactly the 

same due to the stiff Gr-Ep layers. 

Figure 3.4. Through-thickness plots of potential, displacement and stresses of a statically 

deformed [Gr-EpIPZT-5 APZT-5 AlGr-Ep] shell 



Table 3.2. The first nine natural frequencies of a [Gr-EpPZT-5AIPZT-5A/Gr-Ep] 

cylindrical shell 

Mode Natural Frequency, Hz 
w 683.229 (683.23) 

The mode shapes corresponding to the first nine natural frequencies listed in 

Table 3.2 are depicted in Figure 3.5. The interfaces between each layer are highlighted 

with a thicker line. 

Figure 3.5. The first nine mode shapes of a [Gr-EpPZT-5AIPZT-5A/Gr-Ep] shell 



As can be seen in Figure 3.5, there are five bending modes (Figures 3.5(a), 3.5(c), 

3.5(e), 3.5(g) and 3.5(h)), three out-of-plane modes (Figures 3.5(b), 3.5(d) and 3.5(f)) and 

one thickness mode (Figure 3.5(i)). The most notable feature of Figure 3.5(i) is the 

nonlinearity of the circumferential displacement ue as a function of the radial coordinate. 

This displacement in the 8 -direction is of the order of the displacement in the transverse 

direction although Gr-Ep is very stiff in the hoop direction. 

The displacement and potential profiles through-the-thickness of the shell 

corresponding to the mode shapes described in Figure 3.5 can be found in Figure 3.6. 

The displacement and potential terms are normalized by dividing them by the absolute 

maximum value found through the thickness. The position along the circumferential 

direction where the variable has a maximum value is where the data is acquired for the 

plot. 

As can be seen from Figure 3.6, a classical shell theory would do a poor job at 

predicting the displacements and potential for these modes. A reasonable estimate may 

be possible for the fundamental mode depicted in Figure 3.6(a) because the u,- 

displacement has an approximately linear profile, and the displacements ur and u, have 

a constant value throughout the thickness. The kinematic assumptions made by most 

classical theories would not accurately represent the higher modes of vibration. This fact 

is especially seen in Figure 3.6(h), where the displacement in the 8 - and r-direction are 

highly nonlinear. Although the displacement u, is constant through the thickness for the 

lower out-of-plane mode in Figure 3.6(b), it has a nonlinear profile for the higher out-of- 

plane mode in Figure 3.6(f). The electric potential distribution is approximately linear in 



the sensor layer and the maximum potential occurs at the interface between the PZT-5A 

sensor and Gr-Ep layers except for the thickness mode in Figure 3.6 (i). 

Figure 3.6. Through-thickness plots of displacements and potential for the first nine 

modes of a [Gr-EpPZT-5A/PZT-5AIGr-Ep] shell 

Through-the-thickness profiles of the Cauchy stress components a,, a,, a, 

and a,, are shown in Figure 3.7. The circumferential normal stress a, for the bending 

modes found in Figures 3.7(a), 3.7(c), 3.7(e), 3.7(g) and 3.7(h) has a nonlinear profile for 

the higher modes of vibration. The transverse shear stress a,, deviates from the 

parabolic profile for the higher modes of vibration. 



Figure 3.7. Through-thickness plots of stress for the first nine modes of a [Gr-EpRZT- 

SA/PZT-SNGr-Ep] shell 

Numerical results for the displacements u, , u, , u, , stresses a, , a,, a,,, a, 

and electric potential 4 are listed in Tables 3.3 and 3.4 for the free vibration of the [Gr- 

EpRZT-SMZT-5NGr-Ep] cylindrical shell. Due to the lack of coupling between the 

in- and out-of-plane modes, the results are given in two separate tables. 



Table 3.3. Numerical results of the bending and thickness modes of a [Gr-EpPZT- 

SARZT-5NGr-Ep] cylindrical shell with a radius-to-thickness ratio of 5 

md(0,R + H  I4)R a, (O / (2k) ,R  + H  1 4 ) ~  
Mode 

b(o,R)e, 
cOu, (@1(2k) ,~+f f12)  C 0 u , ( @ / ( 2 k ) , R + H / 2 )  C , U , ( @ / ( ~ ~ ) , R + H / ~ )  

Table 3.4. The non-zero numerical results of the out-of-plane modes of a [Gr-EpPZT- 

SARZT-5NGr-Ep] cylindrical shell with a radius-to-thickness ratio of 5 

3.5.3. Results of the First Flexural Mode Active Vibration 

Suppression Analysis of a [Gr-Ep/PZT-5AfPZT-5AIGr-Ep] Shell 

Consider the [Gr-EpPZT-5ARZT-5A/Gr-Ep] hybrid cylindrical shell discussed 

in the previous section of R = 0.25 m and RIH = 5. The shell is subjected to a harmonic 

forcing function of the form found in Figure 3 .3 .  A PPF controller is employed for active 

vibration suppression. The second order PPF controller is forced by the electric potential 



of the sensor at 8 = 0 and r = R - H/10. The feedback voltage (3.36) is applied to the 

PZT-5A actuator layer at r = R + H/10. 

It is assumed that the Gr-Ep and piezoelectric laminae do not exhibit material 

damping. Therefore, any damping of the hybrid laminated shell is a result of the PPF 

controller. We seek to quantify the effectiveness of the piezoelectric shear actuator and 

the PPF controller for vibration suppression. For a given choice of control parameters 

o,, c, and g ,  the steady-state response of the system is computed for a given forcing 

frequency w . The magnitude and phase of the radial deflection is plotted as function of 

the forcing frequency w for different controller parameters to obtain frequency response 

curves. 

The effect of the controller parameters is investigated by changing each variable 

while keeping the others constant. The base PPF controller consists of the following 

parameters: w, =on,  cc =0.05 and g = 5 x d ,  where w, is the frequency of the 

mode targeted for active vibration suppression. The performance of the controller is 

evaluated for frequency parameters w, = 1.1 w, , w, =1.34 w, , w, = 1.4 w, , damping 

2 parameters c, = 0.15 , c, = 0.35 , c, = 0.5 and gain parameters g = 5 x s , 

g =2.5 x s2, g =7.5 x s2 and g =9  x s2. 

The frequency response functions for different PPF controller parameters to 

achieve active damping of the first flexural mode (683.229 Hz, Table 3.2) of a [Gr- 

EpPZT-5APZT-5AIGr-Ep] hybrid shell are shown in Figure 3.8. The magnitude of u,at 

8 = 0 1 2  and r = R + H/2 is plotted versus the forcing frequency for Figures 3.8(a), 

3.8(c) and 3.8(e). The radial displacement is normalized by the quantities Co, R and go, 



which have values of 2 1.1 GPa, 0.25 m, and 1 Pa, respectively. Figures 3.8(b), 3.8(d) and 

3.8(f) show the phase lag of the radial displacement with respect to the applied load. 

The decrease in radial deflection in Figure 3.8 demonstrates that active vibration 

suppression of the first flexural mode is feasible using a PPF control law. As seen in 

Figure 3.8(a), maximum damping is achieved when w, is equal to the first flexural mode 

of the system contrary to experimental results, where a controller frequency that is either 

1.3 or 1.45 times the target frequency resulted in higher system damping (Fagan, 1993; 

Dosch et al., 1993). The discrepancy between this study and other experimenter's 

conclusions may be due the lack of material damping in the analytical model. 

Upon examination of Figure 3.8(c), it is clear that maximum damping is achieved 

when the compensator damping ratio is small, which was also observed by Song et al. 

(2002). The response stems from the fact that as the compensator damping parameter is 

reduced, the active vibration suppression of the shell is extremely focused and it has a 

limited bandwidth. Therefore, the choice of controller damping ratio in practical 

applications would depend on how accurately the system dynamics are known. It is found 

that as the PPF gain parameter g is increased, the system damping ratio also increases 



Figure 3.8. PPF compensator variable comparison plots of magnitude and phase for the 

first flexural mode of a [Gr-EpPZT-5AlPZT-5AJGr-Ep] shell 



3.5.4. Results of the First Thickness Mode Active Vibration 

Suppression Analysis of a [Gr-Ep/PZT-SA/PZT-SAIGr-Ep J 

Cylindrical Shell 

The efficacy of the PPF controller for the active vibration suppression of the first 

thickness mode of a [Gr-EpPZT-5A/PZT-SA/Gr-Ep] shell is considered next. The 

geometrical configuration of this study is exactly the same as that for the vibration 

suppression of the first flexural mode. The first thickness mode for this configuration has 

a natural frequency of 10223.9 Hz (Table 3.2). Again, as in the previous study of the first 

flexural mode, the present goal is to determine the effect of the controller parameters on 

the damping of the first thickness mode. The controller configuration is exactly the same 

as that for the suppression of the first flexural mode in Section 3.5.3. 

Vibration damping of the thickness mode is achieved by the non-zero 

circumferential electric field component E, influencing the radial normal strain E,  and 

radial normal stress a, through the piezoelectric coefficient e , ~ .  Even though the 

piezoelectric shear actuator does not directly influence thickness motion through the 

radial electric field and piezoelectric coefficient e35, damping through the secondary 

mechanism of circumferential electric field and piezoelectric coefficient e13 is an 

important aspect of achieving active vibration suppression. 

Parametric studies of active vibration suppression of the first thickness mode of a 

[Gr-EpPZT-SA/PZT-5A/ Gr-Ep] cylindrical shell for different controller parameters are 

given in Figure 3.9. The normalized radial displacement u, of the outer surface of the 

shell at 0 = 0 1 2  is plotted as a function of the forcing frequency from 10000 Hz to 



10400 Hz. The radial displacement is normalized by Co, go and R, which have values of 

21.1 GPa, 1 Pa and 0.25 m, respectively. 

Figure 3.9 demonstrates that active control of the first thickness mode is feasible 

using piezoelectric shear actuators. Even though the controller uses a secondary 

piezoelectric effect for suppression, the amplitude at the resonance frequency is reduced. 

The suppression trend in Figure 3.9(a) is the same as that for the suppression of the first 

flexural mode in Figure 3.8(a). As the controller frequency is increased, the system 

damping becomes smaller. Unlike the frequency response hnction of the flexural mode, 

as the controller parameter w, is increased from w, to 1.10, , the peak appears to have 

shifted to the right. As the controller w, is hrther increased to 1.3 50, and 1 .4w, , the 

response curve shifts back to the left. 

As far as the system response in Figure 3.9(c), the same conclusion as that for the 

suppression of the first flexural mode applies in terms of compensator damping 

parameter. As the damping parameter is increased, less system damping occurs, but the 

effective range of the control law increases. The system damping is observed to increase 

as the gain parameter is increased. In practice, this parameter is merely limited by the 

amount of voltage that can be safely applied to the piezoelectric actuator without de- 

poling it. The peak response shifting to the right as the gain parameter is increased in 

Figure 3.9(e) is different from that of the first flexural mode in Figure 3.8 (e). This may 

be due to the fact that a secondary piezoelectric effect is used or related to the dynamics 

of the thickness mode. 



Figure 3.9. PPF compensator variable comparison plots of magnitude and phase for the 

first thickness mode of a [Gr-Ep PZT-SAIPZT-SAI Gr-Ep] shell 



Chapter 4 

EXPERIMENTAL AND FINITE ELEMENT 

INVESTIGATION OF ACTIVE VIBRATION SUPPRESSION 

OF A CANTILEVER SANDWICH BEAM USING 

PIEZOELECTRIC SHEAR ACTUATORS 

This chapter details an experimental and finite element investigation of the active 

vibration suppression of a cantilever beam using piezoelectric shear actuators. Results are 

presented for an aluminum sandwich beam containing a foam core and embedded shear 

actuators. Active vibration suppression is implemented using positive position feedback 

(PPF) control and strain-rate feedback (SRF) control. Experimentally obtained frequency 

response curves compare well with those obtained by finite element analysis. The results 

clearly demonstrated that piezoelectric shear actuators are effective as active elements in 

a vibration suppression system. 

The first section discusses the motivation for the research. The second section 

describes the experimental setup and the implementation of the feedback control system 

in real-time. The next section details the finite element model, followed by the results 

and discussion. 



4.1. Rationale 

For the past decade, several researchers (Trindade el al., 2000; Raja et al., 2002) 

have demonstrated the effectiveness of piezoelectric shear actuators for active vibration 

suppression in smart structures. However, to date all investigations of active damping 

using piezoelectric shear actuators are limited to analytical or computational research. To 

the author's knowledge, there has not yet been any experimental work to demonstrate that 

the piezoelectric shear coefficient can be utilized for the vibration suppression of real 

structures. Therefore, it is a goal of this work to examine the efficacy of the piezoelectric 

shear coefficient for active feedback control. PPF and SRF feedback control laws, 

described in Chapter 1, are utilized for the active control of vibrations. In practical 

applications, it is prudent to design and develop active vibration suppression systems 

using theoretical and/or numerical models in order to reduce development time and costs. 

However, before doing so, we need to validate the theoretical/numerical models by 

comparing it with experimental results for a simple configuration, such as a sandwich 

cantilever beam. An accurate analysis of a cantilever beam using the analytical procedure 

presented in Chapters 2 and 3 is difficult due to edge effects at the clamped and free 

edges and the three-dimensional stress state near the embedded shear actuators. 

Therefore, we analyze the vibration suppression of a sandwich cantilever beam using a 

finite element model and compared the numerical results with experiments. 

The first four natural frequencies of the system are determined using experimental 

and numerical means and then compared. In addition to the finite element natural 

frequencies, the corresponding mode shapes are also determined. The uncontrolled 

frequency response fimctions are found numerically and experimentally and compared. 



An experimental parametric study of the PPF controller parameters on the damping of the 

fimdamental mode is then performed. A finite element solution for two cases in the 

parametric study is found to ensure that the controller is numerically implemented 

correctly. Next, a smaller parametric study on the active vibration suppression of the 

second mode of vibration using PPF control is undertaken to determine if the parameters 

have a different effect on damping of this mode. The feasibility of the active damping of 

two modes using a single actuator, and the active vibration suppression of the cantilever 

beam utilizing a SRF control law is also investigated. Finally, the active vibration 

suppression of the hybrid beam subjected to a harmonic tip force excitation is studied 

experimentally and numerically. 

4.2. Experimental Setup 

A sandwich cantilever beam consisting of aluminum facings and a foam core with 

two embedded piezoelectric shear actuators was fabricated. The components of the 

sandwich beam were firmly bonded together using an adhesive film which cured at low 

temperature in an autoclave. The exact configuration of the sandwich beam used in this 

study is depicted in Figure 4.1. The facings of the beam are composed of 6061-T6 

aluminum. The core is composed of foam (Baltek Airex R82.80) and two PZT-5A shear 

actuators of equal thicknesses. The axially-poled piezoelectric actuators were purchased 

from Morgan Electro Ceramics. 



Aluminum Facing 

. . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  

0.1875 in. 

Figure 4.1. The geometrical configuration of the cantilever beam 

As can be seen from Figure 4.1, the beam is 0.305 m (12 in.) in length and 0.0142 

m (0.558 in.) in total thickness. The Young's modulus, Poisson's ratio and density of the 

aluminum facings are 69 GPa, 0.33 and 2730 kg / m3, respectively. The Young's 

modulus, shear modulus and density of the Baltek Airex R82.80 foam core are 62 MPa, 

23 MPa and 80 kg / m3, respectively (Baltek Corporation, n.d.). The PZT-5A is 

transversely isotropic with its principal material direction oriented along the longitudinal 

axis of the beam. The electric field is applied through the thickness of the beam via 

electrodes at the interface between the actuator and aluminum facings. The manufacturer 

did not provide the necessary material properties for the piezoelectric material when it is 

poled in xl-direction as depicted in Figure 1.1 (Berlincourt and Krueger, n.d.). The 

relevant material properties were inferred through fourth order and third order tensor 

transformations of the elasticity and piezoelectric tensors, respectively, of PZT-5A poled 

in the x3-direction. Although the material properties thus obtained may not be accurate, it 



should provide reasonable values in the absence of published data or the necessary 

equipment to measure the piezoelectric properties. 

The result of these tensor transformations can be found in Table 4.1. It should be 

noted that the material properties of the axially-poled PZT-5A are different from those 

used in the analytical studies in the previous chapters. This difference can be attributed to 

the value of Poisson's ratios V23 and vl3 of PZT-5A. In our earlier analyses it was 

assumed that ~ 2 3  = ~ 1 3  = 0.38, whereas the material properties in Table 4.1 are based on 

the manufacturer's published values V23 = V13 = 0.4404. All other material properties are 

identical. 

Table 4.1. The material properties of PZT-5A poled in the XI-direction (refer Figure 1.1) 

Material Property Value Material Property Value 
Cllll (Gpa) 11 1 
C2222 (GP4 121 
C3333 (GPa) 121 
C1122 (GPa) 75.2 
C1133 ( G P ~ )  75.2 
c2233  (Gpa) 75.4 
c2323 ( G P ~ )  22.6 
C1313 @Pa) 21.1 
C1212 (GPa) 21.1 

E,, (lo-'' Flm) 150.45 
E,, (1 0-lo Flm) 153.1 

E,, (lo-'' F/m) 153.1 
Density p (kg/m3) 7750 

ell1 (C m-2) 15.8 
el22 (C m-2) -5.4 
el33 (C m-2) -5.4 
el23 (C mlL) 0 
ell3 (C m-2) o 
ell2 (C m-2) 0 
e2 11 (C m-2) o 
e222 (C m-2) o 
e233 (C m-2) 0 
e223 (C m-2) 0 

ez13 (C m-2) 0 

e212 (C mm2) 12.3 
e3 1 1 (C m-2) 0 
e322 ( c  m-2) 0 
e333 (C m-2) 0 
e323 (C m-2) o 
e313 (C m-2) 12.3 



The experimental setup of the cantilever beam is shown in Figure 4.2. The beam 

is clamped using a thick steel plate bolted to a heavy block of steel. This required that the 

beam be constructed 6" longer than the cantilever section with a polycarbonate core to 

withstand the large clamping force of the bolts. 

Figure 4.2. Experimental setup of the cantilever beam 

The two PZT-5A shear actuators are labeled as PI and P2. In the first part of the study, 

the excitation actuator that is closest to the clamped end, denoted by PI,  is used as  a 

disturbance actuator to excite the beam. Actuator P2 is the control actuator that is used for 

vibration suppression. PZT-5A actuators require an electric field intensity of 100 Vlmm 

to 500 Vlmm to obtain significant actuation. Since the piezoelectric shear actuators 

utilized in this study are 4.648 mm thick, it is necessary to use a voltage amplifier to 

produce large voltages. In this study, a Trek Piezo Driver (model PZD700) voltage 

amplifier with dual channels is used. A gain of 68 V / V is used for each channel of the 

device since the voltage input to the amplifier from the control system is in the range of 

+lo v. 

In the second part of the study, a low-voltage piezoelectric stack and a steel block 

are bonded to the tip of the cantilever beam, as depicted in Figure 4.3, to form a proof- 
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mass actuator that is used as a disturbance source to provide a repeatable vibration input 

to the beam at any desired frequency and amplitude. The embedded piezoelectric shear 

actuators PI and P2 are used to suppress the vibration caused by the proof-mass actuator. 

One end of the low-voltage piezoelectric stack (Piezo Systems, Inc. model TS18- 

H5-202, 0.4 in. x 0.4 in. x 0.72 in. in size) is bonded to the end of the cantilever beam 

depicted in Figure 4.2, and the other end is fixed to a steel block of cross sectional 

dimensions 0.996 in. x 0.996 in. and 1.006 in. thickness. The steel block and stack 

actuator have masses of 0.126 kg and 0.015 kg, respectively. When a voltage is applied 

to the piezoelectric stack actuator, it will extend or contract in the direction perpendicular 

to the longitudinal axis of the beam. As a harmonic excitation is applied to the stack, the 

inertia of the stack and steel block causes a force to be generated at the tip of the beam. 

This simulates a phenomenon akin to an unbalanced motor at the end of the beam. An 

AVC Instrumentation 790 Series power amplifier with a gain of 10 V N  is used to drive 

the piezostack. 

Steel Block 

Beam 

Piezostack 

Accelerometer 

Figure 4.3. The proof-mass actuator used for force excitation at the tip of the beam 



Two sensors are integrated with the cantilever beam experimental setup of Figure 

4.2. A dynamic strain sensor (PCB model 740802) is used as the feedback control 

variable, and an accelerometer (PCB model 352A24) is used to measure the tip vibration 

and to quantify the effectiveness of the vibration suppression system. The outputs from 

both sensors are passed through a PCB signal conditioner (model 482A20) before 

acquisition of the respective signals. 

The frequency response finction and time history plots of the system are 

determined using the data acquisition hardware SigLab (model 20-22, two analog inputs 

and two analog outputs), which is a signal-processing unit that acts as a function 

generator, oscilloscope and network analyzer that can be accessed through a Matlab 

interface. The unit is capable of capturing frequencies up to 20,000 Hz. The frequency 

response fbnction and time history plots are determined using the VNA and VOS 

modules in the SigLab software. 

The PPF and SRF control laws are implemented using a dSPACE digital signal 

processing module (model DS1104). dSPACE is a rapid hardware prototyping system 

that uses Matlab and Simulink. The PPF and SRF controllers are implemented using a 

Simulink block diagram. The Simulink block diagrams for the PPF control of a single 

mode, as well as the control of two modes simultaneously are shown in Figure 4.4. 



Figure 4.4. Simulink PPF block diagrams for control of one and two modes 

The primary difference in the implementation of SRF control is that the derivative 

of the strain signal is applied to the compensator, and the feedback gain has the opposite 

sign of that of a PPF controller shown in Figure 4.4 (refer to Appendix C for the block 

diagram). 

4.3. Finite Element Model 

The numerical model used in this study utilizes the finite element method to 

analyze the active feedback control of a cantilever beam. The commercial finite element 

analysis package ABAQUSIS tandard 6.3- 1 (Hibbitt, Karlsson & Sorensen, Inc., 2002) is 

used. A two-dimensional plane stress analysis of the adaptive beam is performed. The 

CPS8R and CPS8RE 8-node biquadratic plane stress elements with reduced integration 
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are utilized for the elastic and piezoelectric materials, respectively. A three-dimensional 

finite element analysis is not performed due to the increased computer resources required 

for such an analysis. 

Three separate analyses were performed using ABAQUS. The natural 

frequencies and mode shapes are computed using the FREQUENCY subroutine. The 

frequency response function of the system is computed using the DIRECT, STEADY 

STATE subroutine. This includes both the uncontrolled and actively controlled response 

of the cantilever beam. Finally, the transient response of the system without and with 

PPF control is determined with the IMPLICIT, DYNAMIC subroutine. 

4.3.1. Computation of Natural Frequencies and Mode Shapes 

The natural frequencies and mode shapes of the uncontrolled system shown in 

Figure 4.1 are extracted using the Lanczos method. ABAQUS offers both the Lanczos 

and subspace method for eigenvalue (natural frequency) extraction. The Lanczos method 

is usually preferred when large numbers of degrees-of-freedom are used; therefore, this 

method is chosen to extract the natural frequencies in this study. 

4.3.2. Computation of Frequency Response Function 

The frequency response function of the uncontrolled system is determined by 

computing the steady-state response of the beam to a harmonically applied potential to 

the disturbance actuator PI at discrete frequencies using the DIRECT, STEADY STATE 

analysis subroutine of ABAQUS. The complex magnitude of acceleration at the tip of the 

beam is used to produce the frequency response function. 



Computing the frequency response curve of the cantilever beam with feedback 

control required the development of a custom FORTRAN program that is executed in 

tandem with the steady-state analysis subroutine in ABAQUS (refer to Appendix D for 

the FORTRAN program). The frequency of the applied potential to the disturbance 

actuator PI is chosen and the program arbitrarily assigns a complex voltage V to the 

control actuator Pz. A steady-state finite element solution is obtained using this assumed 

electric potential. The strain near the root of the beam (refer Figure 4.2) is determined 

from the finite element solution and the corresponding steady-state feedback control 

voltage V, is computed based on either a PPF or SRF control law. The computed value of 

control potential V, to Pz is compared with the assumed potential V to Pz. The analysis 

procedure is iterated until the difference between the prescribed potential and calculated 

control potential is zero. This is accomplished by defining a complex functionflv) = V,- 

V, which calculates the difference between the computed and assumed control voltages. 

The complex zero of the analytic functionflv) is obtained using Muller's method (Press 

et al., 1992) which is a generalization of the secant method of root finding using 

quadratic 3-point interpolation. The root V to the equationflv) = 0 obtained using the 

Muller's method is the voltage to the control actuator Pz which satisfies the feedback 

control law. The process is repeated for several discrete frequency values to create a 

frequency response curve. 

4.3.3. Transient Analysis with Active Vibration Suppression 

A transient analysis is also performed using the finite element method by utilizing 

the IMPLICIT, DYNAMIC subroutine in ABAQUS. This analysis is useful for 

determining the efficacy of the PPF controller in the time domain. The proof-mass 
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actuator is used to induce an excitation at the tip of the cantilever beam and the 

piezoelectric shear actuators PI  and P2 are used for active vibration suppression. 

ABAQUS uses a Newmark-/? numerical integration scheme to find the transient solution. 

In this analysis, the beam is excited by the proof-mass actuator for 0.1 s. After that, the 

vibration amplitude decreases either due to natural damping or to active vibration 

suppression due to PPF control. The time increment is chosen so as to attain fifty data 

points for each cycle of structural response during the excitation, and twenty data points 

during the free vibration for 1 s after the excitation is stopped. The forcing function is 

chosen to equal the fundamental frequency of the system (74.443 Hz); therefore, the time 

increment is chosen to be 2.6866 x lo4 s and 6.7165 x lo4 s during the excitation and 

free vibration, respectively. 

A PPF control law is incorporated into the transient analysis (refer to Appendix E 

for custom FORTRAN subroutines linked to ABAQUS). The second order controller is 

modeled directly as second order system (refer Equation 1.2) in the ABAQUS model as a 

spring-mass-damper system. After each time step, the strain near the root (1" from base) 

of the beam is found and multiplied by the square of the compensator frequency o, and 

applied as a force to the spring-mass-damper compensator. In addition, after every time 

increment the displacement of the mass, which is the compensator coordinate, is 

multiplied by the square of the compensator frequency and a PPF scalar gain and applied 

as the feedback voltage to the control actuator P2. Since the value of the control voltage 

at the next time increment is determined from the present state of deformation, the 

algorithm is inherently explicit. Basing the future values not only upon values at the 

present time step, but also the slope (determined from the present and previous values) at 



this point minimizes the controller voltage error generated. A small time step also limits 

the error. 

The spring stiffness, mass and damping ratio are determined from chosen values 

of PPF controller frequency O, and damping parameter c, . The value of the scalar gain 

parameter g is set equal to that used in the experimental investigation. The spring-mass- 

damper system that simulates a PPF compensator system is analyzed simultaneously with 

the transient finite element model of the cantilever beam in ABAQUS. A CONN2D2 

connector element is utilized to model the spring and damper of the PPF compensator. 

A Rayleigh structural damping model is implemented in the transient finite 

element analyses to obtain a realist response for the uncontrolled free vibration of the 

cantilever beam. One of the disadvantages of the Rayleigh damping model is that the 

damping coefficient depends on the frequency through only two constants that are usually 

chosen by matching the damping coefficient to the experimental values at two of the 

system's natural frequencies. Damping can also be analyzed using a viscoelastic material 

model of the foam core. However, the viscoelastic material properties of the core in the 

time or frequency domain are not known. Determination of these properties is not easily 

accomplished and beyond the scope of this thesis. 

The experimentally measured value of the damping ratio using the logarithmic 

decrement (Rao, 1995) is c = 0.007773 . For a Rayleigh damping model, the damping 

ratio is related to structural frequency in the following manner: 



where Ci and mi are the damping ratio and frequency of the ith mode, respectfully, a is 

the mass proportional damping constant and P is the stiffness proportional damping 

constant. Since we are primarily interested in the first mode of vibration, we have 

assumed a stiffness proportional damping (a =0)  whereby the damping ratio is 

proportional to the ith natural frequency. The damping parameter /3 is determined from 

the experimentally measured damping ratio and frequency of the fundamental mode of 

vibration. There is assumed to be no damping in the natural frequency extraction and 

dynamic steady-state analyses. 

A mesh convergence study is performed to ensure that the finite element model 

produces solutions that have converged to an acceptable limit. The fourth natural 

frequency of the system without the proof-mass actuator is used as the convergence 

criterion. The results of this study can be found in Figure 4.5 as a plot of the number 

elements in the mesh versus the fourth natural frequency. 

Figure 4.5. A convergence study of the fourth natural frequency of the beam 

As can be seen from Figure 4.5, the solution has indeed converged by the time the 

number of elements in the mesh reaches 2754 elements. Therefore, 2754 elements and 



8893 nodes are used to model the hybrid cantilever beam. The resulting mesh for the 

beam used in all of the finite element analyses can be found in Figure 4.6. 

-- - 

Figure 4.6. The finite element mesh of the hybrid beam 

The proof-mass actuator (refer Figure 4.3) is also incorporated into the finite 

element model. The piezostack is modeled as a monolithic piezoelectric material. Due to 

the lack of reliable properties of the piezostack from the manufacturer, the equivalent 

piezoelectric strain coefficient of the stack was obtained by comparing experimental 

results with numerical simulations. This resulted in a piezoelectric strain coefficient of 

7.955 x m / V for the stack. It is noted that this value was not independently 

confirmed due lack of facilities to make a direct measurement. The finite element mesh 

for the proof-mass actuator is shown in Figure 4.7. 

Figure 4.7. Finite element model of the proof-mass actuator 



4.4. Results and Discussion 

In this section, the first four natural frequencies of the beam are determined using 

the experimental setup and the finite element model. The corresponding numerically 

obtained mode shapes are also presented. Experimental and finite element frequency 

response hnctions for the system are compared next, followed by an experimental 

parametric study to determine the effect of PPF controller parameters on system 

damping. The active vibration suppression of the cantilever beam using SRF control is 

also examined through experiments and numerical simulations. Finally, the transient 

response of the PPF controlled cantilever beam is analyzed. 

4.4.1. Comparison of Natural Frequencies and Frequency 

Response Functions 

The first four experimental and finite element (FE) natural frequencies of the 

system are presented in Table 4.2. The percent difference between the two values, with 

respect to the FE result, is listed in the third column. It is clear that the finite element 

model accurately predicts the first four natural frequencies of the cantilever beam. The 

largest error of 2.9858% occurs in the first mode. In this mode, the numerical model 

seems to be either slightly stiffer or possess a different mass distribution. This error is 

still within acceptable engineering limits, however. 



Table 4.2. Comparison of the first four natural frequencies of the experimental setup and 

finite element model 

Mode 
Experimental Natural Finite Element Natural 

Frequency (Hit) Frequency (Hz) % Diff. 

It is interesting to note that for the second mode the finite element model is in 

excellent agreement with the experimental result. The difference is only 0.11967%. The 

agreement for the last two modes is still good, but the differences, in terms of the number 

of Hz, start to increase as mode number increases. This is expected due to the fact as the 

mode number increases the experimental natural frequencies are more dependent on any 

small differences in material properties, construction defects, etc. The finite element 

model is an idealization; therefore, as mode number increases subtle differences between 

the two become more apparent. 

The mode shapes corresponding to the first four FE natural frequencies listed in 

Table 4.2 are shown in Figure 4.8. As can be seen in Figure 4.8(a), the deformed shape of 

the beam is as one would expect for the hndamental mode of a cantilever beam. The 

second mode, depicted in Figure 4.8(b), deviates slightly from what would be expected 

for a cantilever beam. This discrepancy stems from the fact that the PZT shear actuators 

have much higher stiffness than the foam core material. Figures 4.8(c) and 4.8(d) show 

that the effect of the stiffness discontinuities is more pronounced for modes 3 and 4. 



Figure 4.8. The first four natural mode shapes of the cantilever beam using the finite 

element method 

The frequency response function of the uncontrolled cantilever beam is compared 

with experimental results. A harmonic potential of constant magnitude is applied to the 

piezoelectric actuator PI, and the ratio of the steady-state tip acceleration to the excitation 

voltage is plotted as a function of the forcing frequency. The experimental and finite 

element frequency response functions are shown in Figure 4.9 on the decibel scale. 

As can be seen from Figure 4.9, there is good agreement between the 

experimental and finite element results. The finite element result is very good at 

predicting the resonance frequencies of the system. In most engineering applications, 

these are the locations of most interest. The amplitude of the peaks on the frequency 

response curves of the finite element solution at resonance are larger than the 

experimental results since the finite element analysis did not include any structural 

damping. The finite element model yields peaks that tend toward infinity at resonance. 



At other frequencies, the two results seem to have discrepancy that increases as the 

forcing frequency increases. This could be attributed to a number of factors. First, there 

is no way to confirm that the PZT actuators have the piezoelectric coeficients that are 

reported from Morgan Electro Ceramics. The experimental characterization of these 

coeficients is very diEcult and beyond the scope of this thesis. If the piezoelectric 

coefficient e35 is less than the reported 12.3 C 1 m2, then the structural response will be 

less for a given excitation voltage. In addition, at higher frequencies the dynamic 

response of the system is very sensitive to fabrication defects, boundary conditions etc. 

- Experimental - - - F i t e  Element 

Figure 4.9. The experimental and finite element model comparison of the frequency 

response function of the cantilever beam (a - tip acceleration; 4 - potential) 

4.4.2. Active Damping of the Cantilever Beam in the Frequency 

Domain Using PPF Control 

The effect of using PPF control to actively suppress vibration of a cantilever beam 

is first examined in the frequency domain. The frequency response function gives an 



indication of the damping present in the system; therefore, it is logical to examine the 

effectiveness of the PPF controller using the frequency response of the system. A 

parametric study is performed to quantify the effect of PPF controller parameters on 

system damping. 

In the first part of the study, the fundamental frequency of the cantilever beam is 

targeted for suppression. The PZT-5A shear actuator PI acts as the disturbance source, 

and shear actuator P2 is used for active vibration suppression. As before, the ratio of the 

tip acceleration and the disturbance potential is plotted as a function of the disturbance 

frequency. The strain sensor near the root of the beam acts as the forcing function to the 

PPF compensator. The base compensator utilized in the parametric study consisted of a 

controller frequency w, that is 1.3 times the fundamental frequency ( w = 123.0625 Hz), 

a compensator damping parameter 6, equal to 0.05 and a scalar gain g of 17.0 x lod s2 

V. First, the effect of the controller frequency o, parameter on system damping is 

investigated while keeping the compensator damping and scalar gain constant. Four 

different controller frequencies of w , 1 . l a ,  1 . 3 ~  and 1 . 4 5 ~  are studied. Next, the 

compensator frequency o, and scalar gain g are kept constant, and four different 

controller damping parameter 6, of 0.05, 0.1 5, 0.35 and 0.5 are tried. These value span 

the range of the recommended values by other researchers (refer to Section 1.2.3). Last, 

the frequency response curves are computed for different scalar gains g equal to 

3 . 4 ~  s2 V, 8 . 5 ~  lod s2 V, 1 7 . 0 ~ 1 0 - ~  s2 V and 34.0x10-~ s2 V. The frequency 

response curves are shown in Figure 4.10. 



Figure 4.10. An experimental parametric study using a PPF controller to actively 

suppress the fundamental frequency of the beam (a - tip acceleration; 4 - potential) 

As can be seen from Figure 4.10(a), the compensator frequencies w, equal to 

1. lw and 1.30 produce peak responses of -25.89 dB and -25.39 dB, respectively. This 

is a significant reduction in peak response of -13.23 dB in the absence of active feedback 

controls. It is interesting to note, however, that the peak response occur at 128.5 Hz and 

1 15.94 Hz when w, is set equal to 1. l o  and 1.3w, respectively. This is a significant 

shift in system resonance frequency as a result of the compensator. The PPF 

compensator when the controller frequency w, is equal to the fundamental frequency is 

not as effective since the peak response is -18.26 dB. 



Figure 4.10(b) reveals that the optimum compensator damping parameter is 0.15, 

resulting in a peak response of -29.14 dB. The peak shifts to the right as the controller 

damping parameter is increased. The peak response occur at 118.0 Hz and 122.81 Hz for 

controller damping parameters of 4, = 0.05 and 0.5, respectively. The influence of the 

compensator scalar gain g shown in Figure 4.10(c) is as expected. System damping 

increases as the gain is increased. The peak response reduces from -13.23 dB without 

feedback control to -27.59 dB for g = 34.0 x 1 0-6 s2 V. 

Next, the experimental results from the parametric study in Figure 4.10 are 

compared to that of the finite element solution using the same PPF controller parameters. 

The finite element and experimental frequency response curves are shown in Figure 

4.1 1(a) for PPF compensator frequency w, = 1. lw , damping ratio 6, = 0.05 and gain 

g = 17.0 x 1 0-6 s2 V. Figure 4.1 1(b) contains results for w, = 1.3w, 4, = 0.35 and 

g = 1 7 . 0 ~  s2 V. An excitation potential of 120 V is applied to the shear actuator PI  

in the finite element model. 

Figure 4.11. The experimental and finite element comparison of the active feedback 

control of the cantilever beam using PPF control (a - tip acceleration; 4 - potential) 



As can be seen from Figure 4.1 1, the experimental and finite element results 

compare reasonably well. Although the peaks occur at slightly different frequencies, it 

should be remembered that the uncontrolled natural frequencies were off by 

approximately 4 Hz. It should be noted that the uncontrolled beam does not posses any 

damping in the finite element model; therefore, the finite amplitude at resonance is a 

results of the PPF compensator. A careful examination of Figure 4.10 reveals a sharp 

decrease in tip acceleration when the forcing frequency nears the target frequency. This 

phenomenon was not observed in the experimentally obtained frequency response curves. 

This may be attributed to the lack of structural damping in our finite element model. 

Next, the effectiveness of the PPF compensator in suppressing the second mode 

of vibration is examined experimentally. A parametric study of the effect of PPF 

compensator frequency and damping ratio is performed. The base compensator has a 

compensator frequency w, = 1.30 , damping parameter <, = 0.3 and scalar gain 

g = 15.3 x 1 0 - 5 '  V, where w = 495.71 Hz. The results of the parametric study for 

different compensator frequencies are given in Figure 4.12(a). The response reduces from 

-3.69 dB to -1 1.96 dB when the compensator frequency is 1.3 times the second natural 

frequency. The compensator frequency that produces the least amount of suppression is 

when it is equal to the second natural frequency. This produces a reduction in peak 

response of only -8.72 dB. The compensator damping parameter <, that produces the 

greatest reduction in peak response is the chosen base compensator value of <, = 0.30, as 

shown in Figure 4.12(b). 
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Figure 4.12. An experimental parametric study using a PPF controller to actively 

suppress the second mode of vibration of the beam (a - tip acceleration; 4 - potential) 

In the next investigation, we attempt to use a single actuator to suppress the first 

two modes of vibration simultaneously. This is accomplished by placing two 

compensators in parallel in the Simulink PPF block diagram as shown in Figure 4.3. The 

sum of the outputs of two 'PPF compensators, with parameters equal to the values that 

exhibited the most reduction in peak response for each individual mode in the previous 

two parametric studies, is amplified and applied to the shear actuator P2. The PPF 

compensator used to target the fundamental mode has a compensator frequency 

o, = 1. lo , compensator damping 6, = 0.15 and a scalar gain g = 17.0 x 1 0-6 s2 V. The 

other PPF compensator targets the second natural frequency and it has a compensator 

frequency o, = 1.30, compensator damping cc = 0.30 and a scalar gain g = 15.3 x lo-' 

s2 V. The experimental and finite element frequency response functions from 70 Hz to 

600 Hz are shown in Figure 4.13. There is very good agreement between the finite 

element and experimental values near the first natural frequency. The peak responses are 

almost indiscernible. The experimental response at the fundamental frequency is -28.19 



dB at a forcing frequency of 1 13.13 Hz, which is only slightly more than that when a 

single controller is used to target the fundamental mode. 

- Experimental I 

Figure 4.13. Experimental and finite element active control of two distinct modes using a 

single actuator (a - tip acceleration; @ - potential) 

The frequency response functions near the second natural frequency do not 

compare as well as that at the fundamental frequency. The finite element solution, for the 

most part, produces larger amplitude for a given frequency. At the target frequency, 

however, the response reduces very rapidly. This behavior is seen in the finite element 

active feedback control of the first mode as well. Perhaps the numerical model may not 

exhibit this behavior if damping were included. 

The experimental peak response in Figure 4.13 is -16.41 dB at 498.75 Hz. It is 

interesting that this response is less than that when the second mode is targeted by a 

single PPF compensator. As can be seen from Figure 4.12, the peak response h m  the 

suppression of the beam using a single compensator is - 1 1.96 dB at 493.94 Hz. The peak 

response not only decreases, but the peak has shifted to the right as a result of the 



addition of a second compensator that targets the first natural frequency. This fact makes 

sense once Equation (2.35) is examined. As the forcing frequency deviates from the 

target frequency, the real portion of the denominator of Equation (2.35) becomes larger. 

This results in less potential applied to control the system. Since the hndamental 

frequency lies to the left on the frequency spectrum, relative to the second mode, the 

compensator targeting mode 1 applies more potential to the frequencies to the left of the 

second resonance peak. Augmenting this phenomenon with the response from the 

compensator targeting mode 2 produces a response that has shifted to the right with 

smaller amplitude. 

4.4.3. Active Damping of the Cantilever Beam in the Frequency 

Domain Using SRF Control 

This portion of the study focuses on the active feedback control using SRF control 

and to analyze the efficacy of an SRF controller for active vibration suppression. First, a 

parametric study, similar to that depicted in Figure 4.12, is performed to understand how 

the SRF control parameters influence the structural response. The base compensator 

utilized in the study consists of a compensator frequency w c  = 1 . 3 ~  , compensator 

damping ratio & = 0.05 and scalar gain G = 17.0 x lo-' s3 V. The Simulink block 

diagram for SRF control is given in Appendix C. The results of the SRF parametric 

study can be found in Figure 4.14. A harmonic disturbance is applied using shear 

actuator PI, and active vibration suppression is achieved using actuator Pz. 



Figure 4.14. An experimental parametric study on the influence of SRF control 

parameters on the response of the cantilever beam (a - tip acceleration; 4 - potential) 

It is found that the compensator produces the largest structural damping when the 

controller frequency is 1.1 times the findmental frequency. The corresponding 

maximum response is -24.14 dB. It is noted that unlike a PPF compensator, the 

frequency location of the peak structural response does not change much when an SRF 

compensator is employed. As the filter damping parameter is decreased, the peak system 

response also decreases. This response is different from that of the PPF controller where 

the best choice of controller damping parameter was about 0.15. 

A finite element solution with SRF control is obtained for two sets of controller 

parameters and compared with experimental results. The results of the comparison of the 

experimental and finite element values are given in Figure 4.15. The first analysis, shown 

in Figure 4.1 5(a), has SRF compensator frequency we = 1. lw and controller damping 

parameter r e =  0.05. The second analysis, shown in Figure 4.15(b), has SRF 

compensator frequency w, = 1.301 and controller damping parameter r, = 0.15. The 

scalar gain G= 17.0 x 1 o - ~  s3 V for both analyses. 



Figure 4.15. An experimental and finite element comparison of using SFW control to 

suppress the first natural mode of the beam (a - tip acceleration; 41 - potential) 

As can be seen from Figure 4.15(a), there are qualitative and quantitative 

differences between the experimental and finite element results. However, the peak 

responses compare reasonably well. The comparison is much better for Figure 4.15(b). 

The frequencies where the peaks occur are different. Interestingly, the sharp decrease in 

structural response at the target frequency of the finite element model is also seen when 

SFW control is utilized. Therefore, this phenomenon is not unique to the finite element 

implementation of PPF control. 

4.4.4. Experimental and Finite Element Active Damping of the 

Cantilever Beam in the Time Domain Using PPF Control 

The active feedback control of the cantilever beam in the time domain is the 

subject of the rest of the study. So far, the effect of the PPF controller was examined in 

the frequency domain. It is important to analyze the response of the system in the time 

domain as well. The beam is harmonically excited at the fundamental frequency using 

the proof-mass actuator (piezostack and steel block) depicted in Section 4.3. The 

addition of the proof-mass actuator causes the experimental fundamental frequency to 
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drop to 75.66 Hz. The beam is first allowed to reach steady-state vibration due to the 

harmonic excitation by the proof-mass actuator. Starting at time t = 1 s, shear actuator PI  

is used to suppress the vibration using a PPF controller. At time t = 2 s, shear actuator P2 

is also switched on provide additional vibration suppression. The corresponding Simulink 

block diagram is given in Appendix C. The PPF compensator utilized for this portion of 

the study has of a compensator frequency w, equal to 1.3 times the fundamental 

frequency of 75.66 Hz and filter damping parameter 6, of 0.3. The scalar gain for both 

shear actuators PI  and P2 is 17.0x10-~ s2 V. A sampling rate of 390.6plsample and 

record length of 8192 were used for data acquisition system. The result of the steady- 

state active feedback control study can be found in Figure 4.16. 

'2 
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Figure 4.16. The steady-state response of the cantilever beam subjected to PPF control 

using both shear actuators 

Figure 4.16 shows the shear actuators are very effective in reducing the amplitude 

of vibration of the cantilever beam. When only actuator PI is employed, the tip 

acceleration reduces from approximately 1.21g to 0.29g. This is a significant reduction 
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in tip acceleration. The tip acceleration reduces even hrther to 0.04g when both PI and 

Pz are utilized for vibration suppression. This represents a reduction in amplitude of 96.9 

%. 

In the next portion of the study, the settling time of the cantilever beam is 

experimentally determined. The beam is harmonically excited using the proof-mass 

actuator until it reaches steady-state. The excitation is then stopped and the vibration is 

allowed to decay without feedback control. The experiment is repeated again except this 

time the PPF controller is switched on using both shear actuators as soon as the excitation 

is stopped. 

The excitation is precisely controlled in both experiments using Simulink and 

dSPACE. The same PPF controller utilized previously for the transient experiment is 

also used in this portion of the study. The results between the uncontrolled and PPF 

controlled transient responses of the cantilever beam are shown in Figure 4.17. 

Figure 4.17. Settling time comparison between the uncontrolled and actively controlled 

cantilever beam 



As can be seen from Figure 4.17, the settling time for the actively controlled 

cantilever beam is dramatically less than that of the uncontrolled structural response. We 

define the settling time as the time after which the amplitude if vibration is always less 

than 2% of the steady-state response. It is found that the settling time of the uncontrolled 

structural response is nearly 1.08 s. When the shear actuators are used for vibration 

suppression, the settling time is only 0.23 s. This represents a reduction in settling time of 

78.7 %. 

Lastly, the PPF control is examined using the finite element method and 

compared to experimental values. The cantilever beam is excited by the proof-mass 

actuator for 0.1 s and then allowed to decay naturally. The process is repeated again 

except this time the PPF controller is activated after excitation. The proof-mass actuator 

is excited with 15.0 V of potential. The PPF controller utilizes both shear actuators and 

contains the same parameters as for the previous two studies in this section. Again, the 

excitation to the proof-mass actuator is precisely controlled using Simulink and dSPACE. 

The experimental and finite element vibration damping comparisons can be found in 

Figures 4.18(a) and 4.18(b), respectively. 

Figure 4.18. Experimental and finite element comparison of the settling time of the 

cantilever beam 
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As can be seen from Figure 4.18(b), the finite element model does a good job at 

predicting the settling time of the system with and without controls. The settling time is 

defined as the time after which the amplitude if vibration is always less than 2% of the 

peak response of the beam. The experimental settling time shifts from approximately 0.90 

s to 0.272 s with the activation of the PPF controller. This is a reduction of 69.8 % in 

settling time. The finite element model predicts that the settling time changes from 

approximately 1.0 s to 0.267 s after the PPF controller is activated. The predicted settling 

time is reduced by 73.3 %. 



Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

This chapter summarizes the results of this thesis and the direction of future work. 

In the first section, the exact analysis and vibration suppression of laminated plates and 

shells with embedded piezoelectric shear actuators is discussed. Next, the experimental 

and finite element investigation of the active vibration suppression of a sandwich 

cantilever beam is summarized. The second section of this chapter details the 

unanswered question from this thesis and recommendations for future research. 

5.1. Summary 

Utilization of the piezoelectric shear coefficient for the purpose of active vibration 

suppression of smart structures was the topic of this thesis. A through investigation of 

the literature showed that, although the shear-mode of piezoelectric materials, in terms of 

sensing, has been used in accelerometers since the 1960's, it has been only recently 

suggested that they be used in smart structures. Prior analytical and numerical research 

suggests that piezoelectric shear actuators and sensors may be better suited for smart 

structures applications than the traditional thickness-poled extension actuators/sensors. It 

is important that the interaction between the shear actuator and host structure be well 

understood using theoretical and experimental means in order to use them effectively in 

practical applications. 



In the second chapter of this thesis an exact analytical solution to the vibration 

and active damping of a laminated composite plate with embedded piezoelectric shear 

actuators is developed. Suitable displacement and electric potential functions are 

assumed that identically satisfjr the simply supported boundary conditions, which reduce 

the equation of motion and charge equation of electrostatics to a set of coupled ordinary 

differential equations of the thickness coordinate x3. A power series method is used to 

solve the system of differential equations. PPF and velocity control laws are 

implemented into a steady-state forced vibration analysis. The natural frequencies, mode 

shapes and through-thickness profile plots of displacement, potential and stress are given 

for various laminate configurations. Also, numerical values of displacements, stresses 

and potential are presented. System identification is important to any control scheme, 

and these results are utilized in a parametric study of PPF and velocity control parameters 

on the active damping of the fundamental frequency. Results indicate that piezoelectric 

shear actuators are effective for the active damping of laminated composite plates. The 

active control of the first thickness mode is also accomplished. 

The third chapter details static deformation, vibration and active damping 

analyses of a laminated cylindrical shell with embedded piezoelectric shear actuators. 

Suitable functions for the displacements and electric potential are assumed that exactly 

satisfy the boundary conditions at the simply supported edges. The assumed form of 

displacements and electric potential reduce the equations of motion and charge equation 

of electrostatics to a set coupled of ordinary differential equations of the radial coordinate 

r, which can be solved using the Frobenius method. As with Chapter 2, a PPF control 

law is implemented into a steady-state forced vibration analysis. Static deformation 



thickness plots of potential, circumferential displacement and stresses are presented. The 

natural frequencies, mode shapes and through-thickness plots of displacements, potential 

and stresses are also given. A parametric study on the effect of PPF controller parameters 

is presented, and it is found that the piezoelectric shear coefficient is effective in 

suppressing the fundamental mode of vibration. Also, the first thickness mode is actively 

suppressed using a PPF control law. These results suggest that piezoelectric shear 

actuators are a viable option when developing active vibration suppression systems for 

cylindrical composite shells. 

The experimental active control of a sandwich cantilever beam is the focus of 

Chapter 4. The beam consisted of two aluminum face sheets, a foam core and two 

piezoelectric shear actuators. PPF and SRF control laws are utilized for the vibration 

suppression. Replication of the experimental results using theoretical means is a goal of 

this portion of the study. The exact analyses developed in the previous chapters are not 

applicable to this problem; therefore, a finite element model is developed to model the 

experimental behavior of the hybrid beam. Parametric studies in the frequency domain of 

the PPF and SRF control law parameters are performed using experimental and numerical 

means. The active control in the frequency domain of two distinct modes using a single 

actuator is performed numerically and experimentally. The experimental behavior of the 

sandwich cantilever beam shows significant reduction in tip acceleration as a result of 

both PPF and SRF control. The finite element model is able to predict the experimental 

behavior of sandwich cantilever beam in the frequency domain reasonably well. Several 

tests were conducted in the time domain to examine how the PPF controller affected the 

sandwich beam response. It was found that there is significant reduction in amplitude of 



the tip acceleration as a result of the active feedback control. A finite element model of 

the PPF control in the time domain compares well with the observed experimental 

response. 

5.2. Recommendations for Future Work 

The research contained in this thesis has shown great potential for the use of 

piezoelectric shear actuators and sensors for active vibration suppression applications. 

The exact solutions to the analysis and active vibration suppression of laminated plates 

and shells with embedded piezoelectric shear actuators provide a strong foundation from 

which approximate plate and shell theories can be developed for design engineers. 

Other researchers have indicated that piezoelectric shear actuators perform better 

than the tradition extensional actuators in certain configurations (if the structure is stiff, if 

the actuator is fairly thick compared to the length, etc.). A detailed experimental 

comparison between the two movement mechanisms is needed. This will allow for an 

informed decision when designing an optimum active feedback control system using 

piezoelectric materials. 

PPF and velocity feedback control laws are the only algorithms utilized in this 

analysis. The use of other control laws could lead to active vibration suppression of the 

structure using less control effort (less power). An active vibration suppression system 

that utilizes less control effort is advantageous because it will use less energy and require 

smaller voltage amplifiers. 

Experimental studies on the optimal actuator placement are needed. Previous 

researchers have concluded that active element placement for a piezoelectric shear 

actuator is not as critical as that for extension actuators. An experimental investigation 
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into this claim is warranted because flexibility in actuator placement is advantageous if 

certain inertial requirements are needed of the structure. 

Another very important aspect is the development of techniques to manufacture 

piezoelectric shear actuators. Polarization of a shear actuator is not as straightforward as 

that for the traditional extensional piezoelectric element. A fast, low-cost manufacturing 

method must be developed before widespread use of the piezoelectric shear actuator is 

adopted. 
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APPENDICIES 



Appendix A 

Mathematica Program for the Exact Solution of a Piezoelectric 

Plate 

Exact solution for the cylindrical bending 
vibration of laminated cylindrical shells 

with shear actuators 

Date: July 16, 2003 
Authors: Senthil Vel nnd Brim Balllargeon 

Department 01Meeh~nicnl Endnedng 

Untvdsty 01 Malne 

Orono. ME 04469 

Load Packages 

O f f  [Qonoral: : #pall, Qonoral : : mpdll] 

<< "F:\\Doaumonta m d  Bottings\\Baillarqmoa\\wy D o c u u n t a \ \ P u b l i c a t i o n . \ \ V ~ z a t i o n  of 
Piozodoctric Shoar Shollm in Cylindrical Bonding\\4 L y o r  Co.po#ito\\FortranVrito" 

<< Qraphios' Qraphica' ; 
<< Graphic.' Logmd' ; 

<<Qraphios'MultiploLi.tPlot'; 

<< Qraphic. 'Arrow' ; 
<< BuruicalM8th'Spli~mFit' ; 
<< L i n r a r A l g r b r a ' ~ t r i ~ P i p u 1 a t i o n ~ ;  

(*Urnago: Fortranmito["inp-fild .txtn , uray] ;*I 

Program Input 

rn Number of terms In the serles solutlon 

rn Number of layers 

rn Axial mode shape 



The thickness mode 

The width and the total thickness of laminate 

Constants for the normallzatlon of equations 

Location of the bottom surface, interfaces and top surface for each segment 

Elastlc properties of the NL laminae 

C11 = { 183.443 x109,  86  -856 x109,  183.443 x109) / S i q u O ;  
C22 = 111.662 x109,  99 -201 x109 ,  11.662 x109} / Sig-0; 
C33 = 111 .662xlOg,  99.201x1O9, 11 -662 x lo9}  / SigmaO; 

C12 = 14.363 x l o g ,  5 0 . 7 7 8 ~ 1 0 ~ ~  4 .363x109} / S i q u O ;  
C13 = (4 -363 x109,  50  -778 x l o 9 ,  4.363 x lo9}  / ~ i g r a 0 ;  
C23 = {3.918x109, 5 4 . 0 1 6 ~ 1 0 ~ ,  3.918x109} /SigmaO; 

C44 = {2.870 x l o 9 ,  22 -593 x l o 9 ,  2.870 x l o 9 )  / SigmaO; 
C55 {7.17Ox1Og, 21.1x109,  7.170x109} /SignaO; 
C66 = { 7 . 1 7 0 x 1 0 ~ ,  21.1 x109,  7.170 x109) /sigma0; C16 = {0,  0 ,  0) / S i g u O ;  
C26 = {0, 0 ,  0) /SigmaO; 
C36 = {0 , 0 ,  0) / SigmaO; 
C45 = {0, 0 ,  0) /SigmaO; 

rn Density of the NL laminae 



Piezoelectric and electric properties of the NL laminae 

011 = {O, 15.118, O}/oO; 
012 r {0,  -7.209, 0) /oO; 

013 - {0 , -7.209, 0) / 00; 

016 = ( 0 ,  0 ,  O)/oO; 
021 = (0,  0 ,  O)/rO; 

022 1 (0,  0 ,  0)  /eO; 
023 = (0 ,  0 ,  0) /oO; 
026 = {0,  12.322, O ) / r O ;  
e34 = {0,  0 ,  O)/eO; 

635 {0,  12.322, 0)  / e O ;  
a11  = {l53 x 10-lo,  150 x 10-lo , 153 x 10-lo) / E p ~ 0  ; 

a12 = {0 , 0 ,  0) /EpaO; 

a22 = {I53 x 10-10, 153 x 153 x 10-lo) / EpmO; 
a33 = {l53 x 153 x 10-lo, 153 x 10-lo) / EpaO ; 

Exact sol ution 

Given normalized x3, find the lamina that the point belongs to. 

LayorNum Funat ion  1x3, 

Do[ I f  [(fi k Z k [ [ n ] ] )  && (x3 A Z k [ [ n + l ] ] ) ,  R o t u r n [ n ] ] ,  {n, HL)]]; 

Parameter p 

ET = Tab lo  [0 ,  {NL)] ; 

Layer thicknesses and midsurface location of each layer 



rn Series solutlon for the displacements and electric potentlal 

u l  =m; u2 =m; u3 =m;  + = m ;  
e l l =  m; c22 = m; a 3 3  = m; c23 = m; e l 3  =El'; e l 2  = ET; 

E l  =ET; E2 -El'; E3 =m;  
a l l  =ET; a22 =ET;  c r U = E T ; a 2 3 = E T ;  013 =ET; a12 -ET; 
D l  -El'; D2 =ET; D3 =ET; 

~ o r [ n = l ,  n s B L ,  n++,  { 
Ulamrimr S u r [ U l t [ n ,  81 x3#, {p, 0 ,  Umx)]  + O [ r J ]  A ( B m x + l )  ; 

U2amriea S u r [ U 2 t [ n ,  81  & ,  {p, 0 ,  Umx)]  +O[x3] " ( B m x + l ) ;  
U3amrimr=Sur[U3t [n ,  81  f i n ,  {p, 0 ,  Umx)] +O[x3] " ( B m x + l ) ;  

~ a u i m a  = Sum[at [n,  81  d ,  U, 0 ,  Umx)]  +O [x3] A ( Ipux  + 1 )  ; 

u l  [ [n] ] - Ulmmrima Coa [p  x l ]  ; 
u2 [ [a] ]  = U2aerimm Con [p  x l ]  ; 

u3[[n]  ]  . U3aerimr S i n [ p x l ] ;  

+ [ [n]  ]  - m 8 m r i m m  Corn lp X I ]  ; 



Apply boundary mndltlons on the top and bottom surfaces and Interfaces 

u l d  - eT; u2d - ET; a d  - ET; +d - ET; 
o l l d  - ET; a22d ET; a33d - ET; a23d - ET; 0l3d - ET; 012d - R; 

D3d rn ET; 

F o r [ n - 1 ,  n s n ,  a + + ,  { 

u l d [  [n] ]  - B i l p l i f y [ l o r u l  [ u l  [ [n] ]  /Corn [p  x l ]  ]  ] ; 

u2d[ [n]] - S i l p l i f y  [ U o r u l  [u2 [ [n]]  /Corn [p  x l ]  ]  ]  ; 

3 d [  [n] ]  - S i m p l i f y [ l o r u l  [u3 [ [n] ]  / S i n [ p  x l ]  ]  ]  ; 

W [ [n l  I - B i . p l i f ~  [ U o r u l [ +  [ In1 I /Corn [ p  x l l  I I ; 
o13d [ [n] ]  - S i m p l i f y  [ l o r r u l  [a13 [ [n] ]  /Corn [p x l ]  ]  ]  ; 

a23d [ [n] ]  - S i m p l i f y  [ B o r m l  [a23 [ [n] ]  /Corn [p  x l ]  ]  ]  ; 

o33d [ [n] ]  - S i m p l i f y  [ l o r u l  [a33 [ [n] ]  / S i n  [p  XI] ] ]  ; 

D3d[ [n] 1  - S i l p l i f y  [ E o r u l  [D3 [ [n]]  /Corn [p  x l ]  ]  ]  ; 
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M -  0 ;  
F o r [ n - 1 ,  n s 2 4 ,  n++ ,  { 

M - Append FI t f 
C o e f f i c i e n t  [EK[ [n] ]  , U l t  [ 1 ,  0] ] , C o e f f i c i e n t  [BC [ [n] ]  , U2t [ I ,  01 ]  , 
Coeff  i c i e n t  [EK [ [n] ]  , U 3 t  [ I ,  01 ]  , Coef f i c i e n t  [BC [ [n] ]  , O t  [ I ,  O] ]  , 
C o e f f i a i e n t  [BC[ [n] ]  , U l t  [ I ,  11 ]  , Corf  f i c i e n t  [BC [ [n] ]  , U2t [ I ,  1 1  ]  , 
Coeff  i a i e n t  [BC [ [n] ] , U 3 t  [ 1  , 11 ] , Coef f i c i e n t  [BC [ [n] ]  , O t  [ I ,  11 ]  , 

C o e f f i c i e n t  [BC[ [n] ] , U l t  [2 ,  0] ]  , Coef f i c i e n t  [BC [ [n] ]  , U2t [2,  01 ]  , 
Coef f i a i en t [BC[  [n] ]  , U 3 t  [ 2 ,  0] ] , Cor f f i c i en t [BC [ [n] ]  , O t  [ 2 ,  0] ]  , 
C o e f f i c i e n t  [BC[ [n] ] , U l t  [ 2 ,  11 ]  , C o r f f i c i e n t  [BC [ [n] ]  , U2t [2 ,  11 ]  , 
C o e f f i c i e n t  [BC[ [n] ] , U 3 t  [ 2 ,  11 ] , C o r f f i c i e n t  [BC [ [n] ]  , O t  [2 ,  11 ]  , 

Coef f i c i en t [BC[ [n ] ]  , U l t [ 3 ,  011, C o r f f i c i e n t [ B C [ [ n ] ] ,  U2t [3 ,  011 ,  
C o e f f i a i e n t [ B C [ [ n ] ] ,  U3t [3 ,  011,  C o e f f i c i e n t [ B C [ [ n ] ] ,  O t [ 3 ,  011, 

C o e f f i c i e n t  [BC[ [n] ]  , U l t  [ 3 ,  11 ]  , C o e f f i c i e n t  [BC [ [n] ] , U2t 13, 11 ]  , 
C o e f f i c i e n t  [BC [ [n] ]  , U 3 t  13, 11 ]  , C o e f f i c i e n t  [BC [ [n] ]  , St [3, 11 ]  

11 
I 1  

Natural Frequencies 

l o - 2 5 ;  M i n u - 0 ;  bull ;  
Fun I {); 

F o r [ r - 0 ,  r ~ ~ l o ,  F u n -  Jo in IFun ,  { {  

(Minu+r (Maxo-Mino) / N o ) ,  f [ M i n u + r  ( b x o - M i n o )  / l o ] )  ) I  ; r + + ]  
L imtP lo t  [Fun, P l o t J o i n d  +True]  

- Graphics - 



Bisection [aO-, bO-, i ]  : I Modulo[{} , 
a-I?[aO];  b - U [ W ] ;  c -  ( a + b )  / 2 ;  

k - 0 ;  

P r i n t  [" f [a]  I", I ?u rbuFor r [ f  [ a ]  , 161 ]  ; 

P r i n t  [" f [b]  I", N u r b o b o r r  [ f  [b]  , 161 1 ; 
U h i l o  [k < r ,  

I f [ S i g n [ f [ b ] ]  = S i g n [ f [ c ] ] ,  b - c ,  a - a ; ] ;  

c -  ( a + b )  / 2 ;  

k - k + l ] ;  
P r i n t  [" F i n a l  b-a- f", ( b  - a )  ]  ; 

P r i n t [ "  f [c]  ", b lu rbuFor r [ f  [c]  , 161 ]  ; P r i n t [ "  c I", NurborForr [c ,  161 ]  ; ]  

f [b] =1.17110821972079~ lo-" 

Final b-a= +8. 88170~ lo-'= 

f [c] 5 4.535583968406345~ 

Determine the unknowns for the specified natural frequency 



U l t [ 2 ,  01 +Co.ffm[[9]], u 2 t [ 2 ,  01 +Co.ffm[[lO]], 

U3t[2 ,  01 +CoOff8[[11]] ,  # t [ 2 ,  01 +CoOffm[[12]],  U l t [ 2 ,  11 + C ~ f f * [ [ u ] ] ,  

U2t [2,  11 + Cooff [ [14] ]  , U3t [2 ,  11 + Cooff n [ [IS] ]  , .t [2 ,  11 + C-f f  n [ [16] ]  , 

{Ult[l, 01 + -0.0156191, U2t[l, 01 + -3.57411~ 10-16, U3t [1, 01 + -0.20014, 
Bt [1, 0] +8.04693~10-17, Ult [1, 11 + 0.52328, U2t [1, l] + 1 . 8 6 9 4 9 ~ 1 0 - ~ ~ ,  
1 ~ x 1 1 ,  11 + -0.ole2025, at [I, 11 + 3.30397~10-~~, uit[2, 0 1  + -1.02147~10-~~, 
U2t[2, 01 + -4.33848~ 10-16, U3t [2, 01 + -0.200459, Bt[2, 01 + -4.83124~ lo-'?, 
Ult[2, l] + 0.575248, U2t[2, 1] + 8.00012~ 10-17, U3t[2, 11 + -6.94682 x10-17, 

Bt 12, 11 + -0.0000229496, Ult [3, 01 + 0.0156191, U2t[3, 01 + -3.6847~ 10-16, 
U3t[3, 01 + -0.20014, Bt[3, 01 + -2.34847~ Ult[3, 1) + 0.52328, 
U2t[3, 11 + 1.69804~ 10-16, U3t [3, 11 + 0.0182025, Bt(3, 11 + 1.08744~ 

rn The displacements, potential, stresses and electric displacement corresponding to the spedfied natural 
frequency 

F o r [ n = l ,  n s l L ,  a + + ,  { 

u l  [ [a] ] = S i m p l i f y  [ U o r u l  [ u l  [ [a] ]  ]  / . URulo / . o61ul.l ; 

u2 [ [a]  I = Simpl i fy  [ l o r u l  [u2 [ [ a ] ]  ]  / . URulo / . o61ul.l; 

u3 [ [a] I - S i m p l i f y  [ B o r u l  [u3 [ [ a ]  ]  ]  / . M u l o  / . o61ul.l; 

# [ [ a ]  ]  - S i r p l i f y  [ l o r u l [ #  [ [a] ]  ]  / . M u l o  / . ~ R u l o ]  ; 

a l l  [ [ a ]  ]  - S i m p l i f y  [ l o r m l  [ a l l  [ [n] ]  ]  /. Mu10 / . uBulo] 

a22 [ [a]  ]  = Simpl i fy  [ l o r u l  [a22 [ [a] ]  ]  / . M u l o  / . uBulo] 

033 [ [a] ]  - Simpl i fy  [ l o r u l  [a33 [ [a]  ]  ]  /. M u l o  / . &ulo] 

023 [ [a]  ]  - S i m p l i f y  [ l o r u l  [a23 [ [a]  ]  ]  /. Mu10 / . ~ R u l o ]  ; 

a13 [ [a]  I - Simpl i fy  [Uorra l  [ O D  [ [a]  ]  ]  / . M u l e  / . &ulo]  ; 

a12 [ [a] ]  - S i r p l i f y  [b lo ru l [o12  [ [a]  ]  ]  /. Mu10 / . &ulo] ;  

Dl [ [n] ]  = S i - l i f y  [ l o r u l  [Dl [ [a]  ]  ]  / . URulo / . o61ulo] ; 

D2 [ [a] I - S i r p l i f y  [ l o r u l  [D2 [ [a]]  ]  / . URulo / . & u h ]  ; 

D3 [ [a] ]  m S i r p l i f y  [ l o r u l  [D3 [ [a]  ]  ]  / . URulo / . &ulo]  ; 
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Solution as a function of x3 

allo[x-, 2-1 :- ((all[[L.ymrblur[z]]]) / .  {xl+x, x3+ z-Mk[[L.ymrWur[z]]])); 
022m[x-, 2-1 := ((a22[[L.yodur[z]]]) /. {xl+x, x3-z -Mk[[L.ymrBur[z]]])); 
~33m[x-, 2-1 :- ((u33[FayorNur[z]]]) / .  {xl+x, x3+z-Mk[[L.yorblur[z]]]));  
a23m[x-, 2-1 := ((a23[Faymdur[z]]]) / .  {xl+x, d + z - M k [ [ L . y m r b l u r [ z ] ] ] ) ) ;  

013m[i, 2-1 := ((a13[Faymdur[z]]]) /. {xl + x, x3 + z -Mk[[L.ymrblum[z]]])); 
a12m[x-, 2-1 := ( (a12 [ [Layodur[r]]] ) /. { x l  + x, x3 + z -Mk[[L.ymrblur[z] I] ) )  ; 

Dl.[<, 2-1 :I ((Dl [[LaymrNur[z]]] ) /. {xl + x, x3 + z -Mk[[LayuWur[z]] I)) ; 
D2m [x-, 2-1 : ( (D2 [ [LayorBur[z] ] ] ) /. {xl + x, r3 + z - Mk [ [LayuWur [z] ] ] )) ; 
D3m[x-, 2-1 := ((03[[Laprblur[z]]]) /. {xl+x, x3+z-Mk[[Layublur[z]]])); 

Store results to file 

1SP = 1000; (*blP is tho nurkr of plot points*) 

FortranWrito["F:\\Doauwnts\~msmrrch\\Papmrm\\ShmaNib\Rmultm.trt", Rmm]; 



Appendix B 

Mathernatica Program for the Exact Solution of a Piezoelectric 

Shell 

Exact solution for the cylindrical bending 
vibration of laminated cylindrical shells 

with shear actuators 

Date: Jdy 16, 2003 
Authorr: SethU Vd and Bdnn Balllargean 

Dq-mt of Mechdcnl Eng lndng  
Unlvdsty of Maine 
%no, ME 04469 

Load Packages 

Off [Qmnmral : : mprll,  Qonmral : : mprl l l l  

<<"F:\\Docurmntm and S m t t i n g m \ \ 8 a i l l a r g m o n \ ~  Docuwntm\\Publiaation.\\Vibr.tion of 
P i o z o d m a t r i a  6hmar 6hmll8 i n  C y l i n d r i c a l  Bmnding\\4 Laymr Corpomitm\vortranWrlt." 

<< Qraphiam' Qraphiam ' ; 

<< Qraphiam'L~gond' ; 
<< Oraphiom'MultiplrLi.+Plot' ; 
<< Qraphiam' Arrow' ; 
<<UuuriaaIW.th'SpliPrPit'; 

<< ~ i n m a r ~ l g r b r a ' ~ . t r i * n i p u l a t i o n ' ;  
(+Urnago: FortranWritm [" inp- f i l r l  . t x t w  , array] ; +) 

Program Input 

Number of terms In the sales solutlon 

Number ollayers 

n Ax141 mode shape 



The thickness mode shape 

The geometry of the laminate 

Constants for the normalization scheme 

Applied load 

qO = l . O / S i ~ O ;  

Location of the bottom, Interfaces and top surfaces 

Zk = { R - H / 2 ,  R - H / 1 0 ,  R - H / 2 0 ,  R + H / 1 0 ,  R + H / 2 ) ;  



w Elastic properties of the NL laminae 

C11 = { 183.443 x109 ,  86.856 XIO', 8 6 . 8 5 6 ~  l o 9 ,  183.443 x109)  / 6 iguO;  
C22 ( 1 1 . 6 6 2 ~  l o 9 ,  99 -201 x109 ,  99.201 x109,  1 1 . 6 6 2 ~  l o 9 )  / ~ i - 0 ;  
C33 { I1  -662 x109,  99.201x109, 99.201x109,  1 1  .662x109) / Si-0; 
C12 = {4.363x109,  5 0 . 7 7 8 ~ 1 0 ~ ,  5 0 . 7 7 8 ~ 1 0 ~ ,  4 . 3 6 3 ~ 1 0 ~ )  /siqmaO; 
C13 = {4 -363 x109 ,  50.778x109,  SO .778x109,  4 .363x109)  / S i q u O ;  
C23 - (3 .918 x l o 9 ,  5 4 . 0 1 6 ~ 1 0 ~ ,  5 4 . 0 1 6 ~ 1 0 ' ,  3 .918  x l o g )  / sigm.0: 
C44 {2 -870 x l o 9 ,  22.593 x109 ,  22.593 x109 ,  2 .87Ox lo9)  / Si-0; 
c55 . { 7 . 1 7 0 ~ 1 0 ~ ,  2 1 . 1 ~ 1 0 ~ ,  2 1 . i x 1 0 9 ,  7 . 1 7 o x 1 o 9 ) / ~ i ~ o ;  
C66 - { 7 . 1 7 0 ~ 1 0 ~ ,  2 l . l x l 0 ~ ,  2 l . l x l 0 ~ ,  7 . 1 7 0 ~ 1 0 ~ ) / ~ i ~ 0 ;  C16 - {O, 0 ,  0 ,  O)/SigmaO; 
C26 - {O, 0 ,  0 ,  O) /S iguO;  
C36 ( 0 ,  0 ,  0 ,  0 )  / S i g u O ;  
C45 . {O , 0 ,  0 ,  0 )  / siguo; 

w Density of the NL laminae 

w Piezoelectric and electric properties of the NL laminae 

Frequency 

8 PPF controller 

of. on 



Exact solution 

rn Given normallzed r, flnd the lamlna that the polnt belongs to. 

Layodurn = Funct ion  [ r ,  
D o [ I f  [(r t Z k [ [ n ] ] )  fib (r s Z k [ [ n + l ] ] ) ,  Return[n]] ,  {n ,  BL}]]; 

rn Empty table of length NL 

El' = T a b l a  [O, {HL}] ; 

rn Layer thicknesses and midsurface locatlon of each layer 

Parameter p 

p = km/@; 

rn The series equations (LHS) 



a The matrlx M requlred to find A and for the recursive relations 

Determine A from the indldal equation obtained by setting the determinant of M[O] to zero 

P o r [ k t - 1 ,  k t s X L ,  

R u l c \ [ k t ]  = S o l v e  [Dot [M [0,  k t ] ]  P 0 ,  A] ; 

; k t  ++] ; 

Am [n-I : = {A /. RuleAIn] [ [ I ]  ] , A /. R u l c l [ n ]  [ [2]]  , A /. R u l c l  [n] [ 131 ] , A /. Rulc \ [n]  [ [4] ] , 
A /. R u l c \ [ n l  [ [S] ]  , A / .  RulrA[nl [ [6]1 ,  A /. R u l c l [ n ]  [ [ 7 ] ] ,  A /. RulrA[nl  [[8]1}; 

rn The coemdent A8[0], Ar[O], Ax[O] and A+[O] are obtained from the nullspace of M[O] for each 
elgenvalue A 

MAr [k-, n-] : = Pla t ten[nul lBp.ae[M[O,  n l  / . (Rulc l [n]  [ [k] ] ) , T o l e r a n c e  -D ] [ [ I ]  ] ; 
[k-, n-J : = P l a t t e n  [IlullSp.ce(H [O , nl  / . ( R u l c l  [n] [ [k] ] ) , T o l e r a n c r  -D ] [ [2] ] ; 

HAx [k-, n-I : = P l a t t e n  [nu l lBp.cr  [M [O , n] / . ( a u l d  [n] [ [k] ] ) , T o l e r a n c e  -D 10-'O] ] [ 131 ] ; 
HA+ [k-, n-] : = Flatten[lPull8p.co(M(O, n] /. (Rulc\[n]  [ [k] ] ) , T o l r r a n c e  -D 10- '~]]  [ [4] ] ; 

a Asslgn unknown multlpUcatlve constants for each elgenvalue A, based on whether A is  real or complex 



Series solution for the displacements and electrlc potentlal 

Urmoriom = El'; Uemuiom . ET; Uxmoriom I ET; amoriom = ET; 

F o r [ k t - 1 ,  k t s H L ,  

~ o r [ k - 1 ,  k s 8 ,  k++ ,  { 

( t  The zoro th  o r d r r  toram t )  

T k [ O ,  k t ]  -MAr[k, k t ] ;  

TAe[O, k t ]  =MAB[k, k t ] ;  

TAX[O, k t ]  -MAX[k, k t ] ;  

TA+ [O , k t ]  - MA+ [k , k t ]  ; 

( t  The f i r s t  ozdor toram t )  

TAe [ 1  , k t ]  
I (Invormo [M [ I ,  k t ]  / . RuloA[kt] [ [k] ]  ]  ) . 

( t  Rwurmiro zolationm f o r  h igher  o r d u  toram t )  

F O Z [ ~  - 2 ,  B s b l m x ,  #++,  { 

I - p [ [ k t ] ]  ~ T A x [ B - 2 ,  k t ]  
0  

Urmoriom [ [k t ]  ]  Uzmuiom [ [k t ]  ]  + Unknownm [ k t ]  [ [k] ]  TAr[B, k t ]  zb"s~ktl~lkll ; 1 

Uxmoriom [ [k t ]  ]  = Uxmuiom [ [ k t ]  ]  + Unknownm [k t ]  [ [k] ]  TAX [B , k t ]  r P f h P t l I m l l  ; 

Lu 

Omoriom [ [ k t ] ]  = amoriom [ [k t ]  ]  + Unknounm [k t ]  [ [k] ]  z TA+ [B, k t ]  rP+h'kt lI1kll  

1 
I,. 



The displacement and eledric potential 

P o r [ k t - 1 ,  M s H L ,  

Urmoriom [ [ k t ]  ] = Urmozimm [ [ k t ]  ]  +O [ r ]  * ( I u x  + 1 )  ; 

UBmoriom [ [ k t ]  ]  Uemoriom [ [k t ]  ]  + 0 [ r ]  * (Wux + 1 )  ; 

Uxmmriom [ [ k t ] ]  = Uxmoriom [ [ k t ]  ]  + 0 [ r ]  * ( I u x  + 1 )  ; 

Bmuiom [ [ k t ]  ]  = emoriom [ [k t ] ]  + 0 [ r ]  * (Bru + 1 )  ; k t + + ]  ; 

u e  I ET; ux - ET; u r  ET; # ET; 
P o r [ k t = l ,  k t s H L ,  

ue[  [ k t ]  1 I uemuiom [ [ k t ]  ]  C O ~  [p e l  ; 
ux [ [ k t ]  ]  I Uxmuiom [ [ k t ]  ]  Com [p 8 )  ; 

u r [  [ k t ]  ]  = Urmuiom [ [ k t ]  ]  S i n [ p  81 ; 
# [ [ k t ]  ]  Bmoriom [ [ k t ]  ]  Com Ip 81 ; k t  ++I ; 

The strains and the eledric fleld 

gee . ET; c r r  I ET; cxx  I ET; c r e  . ET; c e x  ET; c x r  = ET; E e  I ET; E r  ET; Ex = ET; 

P o r [ k t = l ,  k t s H L ,  

1 
c e e  [ [ k t ]  ]  - (8eue  [ [ k t ]  ]  + u r  [ [ k t ]  ]  ) ; 

r 
c r r  [ [ k t ]  ]  = 8,ur  [ [ k t ]  ]  ; 
c x x [ [ k t ] ]  1 8 ~ u x [ [ k t ] ] ;  

8 e u r [ [ k t ] ]  + & u e [  [ k t ] ]  - 
r 



rn The stresses and electric displacements 

088- m; a r x  ET; orr - ET; oxr  = gT; are ET; aex = ET; De = ET; Dx = ET; Dr = ET; 

\ 

0  
0  ] - 1:;; ] ; k t + + ]  ; 

2  a r e  [ [ k t ]  ]  
0  ~ 3 3  [ [kt1 I E r [  [kt1  I 

4-1 [ k t ]  I 
.xx [ [kt1 1 
rrr [ [kt1 I 

2  r x r  [ [ k t ]  ]  

2  a r e  [ [kt1 I  

011 [ [ k t ]  ]  021 [ [ k t ]  ]  0  1 

rn Check If the equatlons or motlon and charge equatlon are satisfled 

012 [ [ k t ]  ]  022 [ [ k t ]  ]  0  
013 [ [ k t ]  ]  023 [ [k t ]  ]  0  

0  0  
0  0  035 [ [ k t ]  1 

(rChop [ S i ~ p l i f y  [ U o n a l  [ b r a r r  [ [ I ]  ] +$ beare  [ [1] ]  + 
$ (arr[~lll-aee[[ll1)+~[[111 s2 u r [ [ l ] ] I / . { r + 1 . 2 5 ) 1 ,  loA-91 

C h o p [ S i r p l i f y  [ H o r r r l  [&ore [  [ l ]  ]  ++ beaee[ [ I ]  ]  +f m e [  [ I ]  ]  +p[ [ I ]  ]  u2 ue [ [ I ]  ]  ]  / . 
{r+1.25)] , loA-91 

Chop[S impl i fy [Uoru l  [broxr[  [ l ]  ]  +$ beaex [ [I] ]  +$ a x r  [ [ I ]  ]  +p[ [1] ]  u2 ur [ [1] ]  ]  / . 
{r+ l .25) ]  , loA-91 

C h o p [ S i r p l i f y  [ H o r u l  [brDr[ [ I ]  I ++ ( M e  [ [ I ]  ]  +Dr [ [1] ]  ) ]  / . { r + l .  2511 ]  +) 

I 

Ee [ [kt1 I 
. Ex [ [kt11 ; 

[Er [ ]  ] 

a PPF control 

, 2 r e x 1 [ k t 1 1  

016 [ [ k t ]  ]  026 [ [ k t ]  ]  0  I 



Apply boundary conditions to determine the unknown coemcients 

ued EX; urd  = ET; uxd EX; I EX; oxrd = ET; o r e d  = EX; o r r d  = ET; Drd I ET; 

F o r [ k t = l ,  k t3HL,  

~ e d [ [ k t ] ]  = S i r p l i f y  [Normal[~e[  [k t ]  ]  /. {e ->  O)]] ; 

uxd[ [k t ]  ]  S i r p l i f y  [Normal [ux [ [k t ]  ] /. {e -* O)]] ; 

urd[  [k t ]  ] m S i r p l i f y [ B o r ~ l  [UZ [ [k t ]  ]  /. {e + r r /  (2 p) )I ]  ; 

+d [ [k t ]  I Simplify [Norrul[+ [ [ k t ] ]  1 .  {e -* 011 1 ; 
oxrd[  [k t ]  ]  w S i r p l i f y  [Normal [oxz [ [k t ]  ]  / . ( 8  -*  O)] ]  ; 

[ [k t ]  ]  = Simplify [Norad  [ore [ [k t ]  ]  / . {e -> 0) ] ]  ; 

a r r d  [ [k t ]  ]  = S i p l i f y  [Normal [ a r r  [ [k t ]  ]  /. {e + rr / (2 p) ) ]  ]  ; 

Drd[ [k t ]  I = S i r p l i f y  [Normal [Dr [ [k t ]  ]  / . {e + 0) ]  ]  ; kt ++I ; 



BC = Join [BCBOTTOM, I W A C E 1 ,  IHTEBFACE2, ImEBFACE3, BCIOP] ; 



Ma= I ( ) ;  

F o r [ n - 1 ,  n s 3 2 ,  n + + ,  { 

Ma ZLppondW, { 
Coof f i c ion t [BC[[n ]  1 ,  81 [ I ] ] ,  C o o f f i c i o n t [ B C [  [n]]  , 8 2  [ I ] ] ,  

C o o f f i a i o n t  [BC[ [n] ]  , B3 [ l ]  ]  , Cooff ia imnt[BC [ [n]  ]  , B4 [ I ]  ]  , 
C o o f f i c i o n t  [BC[ [n] ]  , 85 [ l ]  1 ,  C o o f f i c i o n t  [BC[ [n] ] , 8 6  [ l ]  ]  , 
C o o f f i a i o n t  [BC [ [n] ]  , B7 [ I ]  ]  , Cooff i a i o n t  [BC [ [n]  ]  , 8 8  [ I ]  ]  , 

C o o f f i c i o n t [ B C [ [ n ] ]  , B1[2]] ,  C o o f f i c i r n t [ B C [ [ n ] ]  , 8 2 [ 2 ] ] ,  

Cooff  i c i o n t  [BC [ [n] ]  , B3 [2] ]  , C o o f f i a i o n t  [BC [ [n]  ]  , 8 4  [2] ]  , 
C o o f f i a i o n t  [BC [ [n] ]  , 85 [2] ]  , C o o f f i c i o n t  [BC [ [n]] , B6 [2] ]  , 
C o o f f i c i o n t  [BC [ [n] ]  , 8 7  [2] ]  , Cooff i c i o n t  [BC [ [n] ]  , B8 [2] ]  , 

Coof f i a ion t [BC[  [n] ]  , B1[3] 1 ,  C o o f f i a i o n t  [BC[ [n]]  , B2 131 ]  , 
Cooff  i a i o n t  [BC [ [n] ] , B3 [3]  ]  , C o o f f i a i o n t  [BC [ [n] ]  , 8 4  [3] ]  , 
C o o f f i c i o n t [ B C [ [ n ] ]  , 8 5 [ 3 ] ] ,  C o o f f i a i r n t [ B C [ [ n ] ] ,  B6[3]],  

C o o f f i a i o n t [ B C [  [n] 1 ,  8 7  [3] 1 ,  Coof f i a ion t [BC[  [n ] ]  , 8 8  [3] 1 ,  

Coof f i c ion t [BC[  [n] ]  , Bl[4] ]  , C o o f f i c i o n t  [BC[ [n] ]  , B2 (41 1 ,  

C o o f f i a i o n t  [BC [ [n] ]  , B3 [4] ]  , C o o f f i c i r n t  [BC [ [n] ] , 8 4  [4]  ]  , 
C o o f f i a i o n t  [BC [ [n] ]  , 85[4]  ]  , C o o f f i c i o n t  [BC[ [n] ]  , B6 [4] ]  , 
Coof f i a ion t [BC [ [n] ] , 8 7  [4]] , C o o f f i a i o n t  [BC[ [n] 1 ,  8 8  [4]  ]  

11 

11 

Forcing terms on RHS 

Solve for unknown constants 

Cooff l [or-] : - Invormo W / . {o -> o r ) ]  . (RHS /. {cp -, cpr)) ; 

URulo[or-] : = -1 [ I ]  -r Cooffm [ a ]  [ [1 ] ]  , B2 [ l ]  -r Cooff  m [cpr] [ [2] ]  , 
B3 [ I ]  -r Cooff  m [ o r ]  [ [3] ]  , B4 [ l ]  -r Cooff  m [o r ]  [ [4] ]  , 85 [ I ]  -r Cooff  l [cpr] [ [5] ]  , 
B6 [ I ]  -r Cooff  8 [o r ]  [ [6] ]  , 8 7  [ l ]  -r Cooff  8 [o r ]  [ [7] ]  , 8 8  [ I ]  -r Coof f  8 [o r ]  [ [8] ]  , 

Bl[2]  -r Coof f 8 [or]  [ [9] ]  , 8 2  (21 -r Cooff  m [cpr] [ [ l o ]  ]  , 
83 [2] -r Cooff  l [o r ]  [ [ l l ]  ]  , B4 [2] -r Cooff  l [a r ]  [ [12] ]  , B5 [2] -r Coof f  l [o r ]  [ [13] ] , 
B6 [2] -r Cooffm [o r ]  [ [14] ]  , 8 7  (21 -r Cooffm [ o r ]  [ [15]] , B8 [2] -r Cooffm [o r ]  [ [16] ]  , 

B l  [a] -r Coof f l [ o r ]  [ [17] ]  , B2 [a] -r Coof f l [ a ]  [ [18] ]  , 
B3 [3] -r Cooff  m [o r ]  [ [19] ]  , 8 4  [3] -r Cooff  l [ a ]  [ [20] ]  , BS [3] -r Coof f m [o r ]  [ [21] ]  , 
B6 [a]  + C o o i f #  [o r ]  [ [22] ] ,  B7 [3] -r Cooffm[or] [ [23]] , 8 8  [3] -rCooffm [o r ]  [ [24]]  , 

81 (41 -r Cooff  l [o r ]  [ [25] ]  , B2 [4] -r Coof f l [ a ]  [ [26] ]  , 
83 [4] -rCooffm [o r ]  [ [27] ] ,  B4 [4] -r Cooffm[or] [ [28]]  , BS [4] -r Cooffm [o r ]  [ [29]]  , 
El6 [4] -r Cooff  l [or]  [ [30] ] , B7 [4] -r Cooff  l [o r ]  ((3111 , B8 [4 1  -r Cooffm [or]  [ [32] ]  ) ; 



iisplacements, potential, streses and electric displacement as function of r 

oeem[x-, 2-, d - 1  := 
( ( U o r u l  [wee [[Lay.rUur[z] ]  ]  / .  {m -B mi)] /. Mulm[mf] ) / . {e -I x ,  + a) )  ; 

mxm[x-, a_, d - ]  :. 
( ( U o r r d  [ a x  [[Lay.rUur[z] ]  ]  / .  {m -D r f ) ]  /. Mulm[r f ]  ) / . {e + x ,  r + z ) )  ; 

arm[x-,  c, d - ]  :I 

( ( u o r u l  [ ~ r [ [ L a y . r U ~ ~ [ x l  I I I .  {m -% mf)] /. Mulm[mf]) / .  {e + x ,  + z ) )  ; 
azm[x-, a_, d - ]  :I 

I ( U o r u l  [mr[[LaymrUur[z] ]  ]  /. { r  -B mf)] /. Mulm[r f ]  ) / .  {e + x ,  r + z ) )  ; 
a'. [x-, z-, d - ]  : 9 

( ( H o r d  [ a e [ [ L a y . r U u r [ z ] ] ]  /. {m -% mi)] /. Mule[mf] ) / .  {e + x,  + z ) )  ; 

aOxm[x-, z-, d - ]  :- 

( ( U o r u l  [aex[[Lay.rUur[a] I ]  / .  { r  -% mf)] /. Mulm[mf]) / .  { e  + x ,  + a ) )  ; 

Store results to Ne 

BP rn 100; (+UP i s  t h e  nurbmr o f  p l o t  po in t s*)  
STF = 0.1; 
EUDF = 1; 

Ram = { I ;  
F o r  [kp = 0, kp <= UP, Ram = J o i n  [~mm, {{ 

FortranWritm["F:\\Doournts and Settingm\\8aillarq.on\\My Doaurmnts\\ 

Publ ica t ionm\ \Vibra t ion  of Pimaomlmutria S h m u  S h e l l s  i n  C y l i n d r i c a l  
Bmnding\\d L a y u  Co~ositm\Rmsults~Co~sitm-PPF-Ibod.l.t.tW, Ram]; 



Appendix C 

Simulink Block Diagrams for Active Feedback Control 

Figure C.1. Sirnulink block diagram for the SRF control algorithm 

Figure C.2. Sirnulink block diagram for PPF control using two actuators 



Appendix D 

FORTRAN Program for Computing the Frequency Response 

Function Using ABAQUS 

PROGRAM PPF-CONTROL 
....................................................................... 
* 
* THIS PROGRAM ANALYZES THE ACTIVE FEEDBACK CONTROL OF A CANTILEVER 
* BEAM 
* USING A POSITIVE POSITION FEEDBACK (PPF) CONTROL LAW. THE STEADY 
* STATE 
* VIBRATION RESPONSE IS FOUND VERSUS FORCING FREQUENCY. 
* 
* AN ITERATIVE PROCESS IS USED TO DETERMINE THE ACTUATOR CONTROL 
* VOLTAGE 
* VERSUS FORCING FREQUENCY. A MULLER'S METHOD IS USED TO FIND THE 
* SOLUTION. 
* 
* WRITIEN BY BRIAN P. BAILLARGEON 
* OCT. 21,2003 
* 
* INPUT 
* FREQI : THE INITIAL FORCING FREQUENCY 
* FREQF : THE FINAL FORCING FREQUENCY 
* NUM-POINTS : THE NUMBER OF FREQUENCY POINTS IN THE RANGE FROM 
* FREQI TO FREQF 
* GUESS-V(N) : THE FIRST 3 GUESS ACTUATOR VOLTAGES 
* MAX-ITER : THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR EACH 
* FORCING FREQUENCY 
* TOL : THE TOLERANCE USED TO DETERMINE IF THE SOLUTION HAS 
* CONVERGED 
* 
* OUTPUT 
* FREQ : THE CURRENT FORCING FREQUENCY 
* ACT-MAG : THE MAGNITUDE OF VOLTAGE APPLIED TO THE ACTUATOR FOR A 
* GIVEN FREQUENCY 
* ACT-PHASE : THE PHASE OF THE VOLTAGE APPLIED TO THE ACTUATOR FOR A 
* GIVEN FREQUENCY 
* STRAIN-MAG : THE MAGNITUDE OF STRAIN AT THE SENSOR LOCATION FOR A 
* GIVEN FREQUENCY 
* STRAIN-PHASE : THE PHASE OF THE STRAIN AT THE SENSOR LOCATION FOR A 
* GIVEN FREQUENCY 

* ACCEL-MAG : THE MAGNITUDE OF ACCELERATION AT THE TIP OF THE BEAM 
* FOR A GIVEN FREQUENCY 
* 
....................................................................... 

DIMENSION GUESS-V(3),RESID-V(3) 
REAL FREQ,POT-REAL,POT-IMAG,TOL,ACCEL-MAG, 
1 ACT-MAG,ACT,PHASE,STRAIN-MAG,STRAIN-PHASE,FREQI, 



2 FREQF 
COMPLEX GUESS-V,RESID,RESlD-V,Q,A,B,C,DENOM-1, 
1 DENOM-2,DENOM,NEXT-V 
INTEGER MAX-ITERITERNUM-POINTS,INC 
LOGICAL G,J,Y,NUM 
COMMON RESID 

C 
C READ THE INPUT PARAMETERS STORED IN InputPamneters.txt 

OPEN(LTNIT=102, FILE='Input-Parameters.txt', STATUS='OLD') 
READ(102,*) 
READ(102,*)FREQI,FREQF,NUMNUMPOINTS 
READ(102,*) 
READ(102,*)POT-REAL,POT-IMAG 
GUESS-V(1 ) = (POT-REAL,POTIMAG) 
READ(102,*)POT REAL,POT-IMAG 
GUESS-V(2) = (POT-REAL,PoT-MAG) 
READ(102, *)POTREAL,POT-IMAG 
GUESS-V(3) = (POT-REAL,POT-IMAG) 
READ(102,*) 
READ(102,*)MAX_ITER 
READ(102,*) 
READ(102,*)TOL 
CLOSE( 102) 

C 
C INITIALIZE THE INCREMENT TO BE ZERO (NUM IS USED FOR STALL LOOP) 

INC=O 
m = o  

C 
C OPEN THE RESULTS FILES (Accel.txt, Strain.txt, ActPot.txt) 

OPEN(LTNIT= lOS,FILE='Accel.txt', STATUS='OLD1) 
OPEN(LTNIT= 106,FILE='Strain.txt', STATUS='OLDt) 
OPEN-= 107,FILE='Act_Pot. txt', STATUS='OLD1) 

C 
80 CONTINUE 
C 
C DETERMINE THE CURRENT FORCING FREQUENCY 

FREQ = FREQI + ((FREQF-FREQI)/NUM~PoMTS)*INc 
PRINT *, FREQ 

C 
C INlTIALIZE THE INTERATION TO BE ZERO 

ITER = 0 
C 
C 
C FIND THE RESIDUAL BASED ON INlTIAL GUESS #1 

CALL RESID-EST(GUESS-V(l),FREQ) 
RESID-V(1) = RESID 

C WAIT FOR THE SCRATCH FILES TO BE WRITTEN THEN DELETE THEM 
G = FALSE 
J = FALSE 
Y = FALSE 

140 CONTINUE 
INQUIRE (FILE='Act-Scratch.txt',EXIST=G) 
INQUIRE (FILE='Strain-Scratch.txt',EXIST=J) 
INQUIRE (FILE='Accel-Scratch.txt',EXIST=Y) 

IF (G.EQ.FALSE.OR. J.EQ.FALSE.OR.Y.EQ.FALSE) THEN 
GOT0 140 



ENDIF 
OPEN(UNIT= 1 12,FILE='Act_Scratch. txt', STATUS='OLD1) 
OPEN(UNIT=l 1 l,FILE='Strain-Scratch.txt1,STATUS='OLD') 
OPEN(UNIT= 1 lO,FILE='Accel~Scratch.txt',STATUS='OLD') 
CLOSE(UNIT= 1 12, STATUS='DELETE1) 
CLOSE(UNIT= 1 1 1, STATUS='DELETEt) 
CLOSE(UNIT=l 10, STATUS='DELETEt) 

C FIND THE RESIDUAL BASED ON INITIAL GUESS #2 
CALL RESID-EST(GUESS-V(2),FREQ) 
RESID-V(2) = RESID 

C WAIT FOR THE SCRATCH FILES TO BE WRITTEN THEN DELETE THEM 
G = FALSE 
J = FALSE 
Y = FALSE 

150 CONTINUE 
INQUIRE (FILE='Act-Scratch.txt',EXIST=G) 
INQUIRE (FILE='S&-Scratch.txtt,EXIST=J) 
INQUIRE (FILE='Accel-Scratch.txt',EXIST=Y) 

IF (G.EQ.FALSE.OR. J.EQ.FALSE.OR.Y.EQ.FALSE) THEN 
GOT0 150 

ENDIF 
OPEN(UNIT= 1 1 2,FILE='Act-Scratch.txtl, STATUS='OLD') 
OPEN(UNIT= 1 1 1 ,FILE='Strain-Scratch.txt1,STATUS='OLD') 
OPEN(UNIT= 1 lO,FILE='Accel~Scratch. txt', STATUS='OLD1) 
CLOSE(UNIT= 1 12, STATUS='DELETEt) 
CLOSE(UNIT= 1 1 1, STATUS='DELETEt) 
CLOSE(UNIT= 1 10, STATUS='DELETE1) 

C FIND THE RESIDUAL BASED ON INITIAL GUESS #3 
CALL RESID-EST(GUESS-V(3),FREQ) 
RESID-V(3) = RESID 

C 
C ITERATE TO MAKE RESIDUAL ZERO - MULLER'S METHOD 
60 CONTINUE 

p m  *, '**I 
PRINT *, GUESS-V(3),RESID-V(3) 

C WAIT FOR THE SCRATCH FILES TO BE WRITTEN THEN DELETE THEM 
G = FALSE 
J = FALSE 
Y = FALSE 

170 CONTINUE 
INQUIRE (FILE='Act-Scratch.txt',EXIST=G) 
INQUIRE (FILE='Strain-Scratch.txt',EXIST=J) 
INQUIRE (FILE='Accel-Scratch.txt',EXIST=Y) 

IF (G.EQ.FALSE.OR. J.EQ.FALSE.OR.Y.EQ.FALSE) THEN 
GOT0 170 

ENDIF 

OPEN(UNIT= 1 12,FILE='Act-Scratch.txt', STATUS='OLD1) 
OPEN(UNIT=l 1 l,FILE='Strain-Scratch.txtt,STATUS='OLD') 
OPEN(UNIT= 1 lO,FILE='Accel~Scratch.txt',STATUS='OLD') 
CLOSE(UNIT= 1 12, STATUS='DELETE') 
CLOSE(UNIT=l 1 1, STATUS='DELETE') 
CLOSE(UNIT= 1 10, STATUS='DELETE1) 

C MULLER'S METHOD TO FORCE RESIDUAL TO BE E R O  



Q = (GUESS_V(3)-GUESS-V(2))/(GUESS-V(2)-GUESS-V(1)) 
A = Q*RESID-V(3)-(Q*(l+Q)*RESID-V(2))+(Q**2)*RESID-V(1) 
B = (2*Q+l)*RESID-V(3)-((1+Q)**2)*RESID-V(2)+ 

1 (Q**2)*RESID_V(l) 
C = (l+Q)*RESID-V(3) 
DENOM-1 = B+SQRT((B**2)-(4*A*C)) 
DENOM-2 = B-SQRT((B**2)-(4*A*C)) 
IF (ABSPENOM-1).GT.ABS(DENOMM2)) THEN 
DENOM = DENOM-1 

ELSE 
DENOM = DENOM-2 

ENDIF 
NEXT-V = GUES S-V(3)-(GUESS-V(3)-GUES SSV(2))*((2*C)/DENOM) 
RESID-V(l) = RESID_V(2) 
GUESS-V(1) = GUESS-V(2) 
RESID-V(2) = RESID-V(3) 
GUESS-V(2) = GUESS-V(3) 
GUESS-V(3) = NEXT-V 
CALL RESID-EST(GUESS-V(3),FREQ) 
RESID-V(3) = RESID 
ITER = ITER + 1 

C CHECK TO MAKE SURE THERE HAVE NOT BEEN TOO MANY ITERATIONS 
IF (ITER. GT.MAX-ITER) THEN 
PRINT *, TOO MANY ITERATIONS' 
GOT0 70 

ENDIF 
C DETERMDE IF THE RESIDUAL IS SMALL ENOUGH TO ASSUME CONVERGENCE 

IF (ABS(RESID-V(3)). GT,TOL) THEN 
GOT0 60 

END IF 
C 
70 PRINT *, GUESS-V(3),RESID-V(3) 
C 
C WRITE THE FINAL ITERATION RESULTS TO THE RESULT FILES AND DELETE THE 
C SCRATCH FILES WHEN DONE 

G = FALSE 
J = FALSE 
Y = FALSE 

130 CONTINUE 
INQUIRE (FILE='Act-Scratch.txt',EXIST=G) 
INQUIRE (FILE='Stnin-Scratch.txtl,EXIST=J) 
INQUIRE (FILE='Accel-Scratch.txtq,EXIST=Y) 

IF (G.EQ.FALSE.OR. J.EQ.FALSE.0R.Y.EQ.FALSE) THEN 
GOT0 130 

ENDIF 
180 CONTINUE 

N u M = N u M + l  
IF (NUM.LE. 100000) THEN 
GOT0 180 

ENDIF 
N u M = o  

110 FORMAT(F20.15, lX, F20.15) 
OPEN(UNIT= 1 12,FILE='Act_Scratchtxt',STATUS='OLD') 
READ(112,llO)ACT-MAG, ACT-PHASE 
CLOSE(UNIT= 112, STATUS='DELETE1) 
WRITE(107, *)FREQ,ACT-MAG,ACT-PHASE 



OPEN(UNIT= 11 l,FILE='S--Scratch.txt',STATUS='OLD') 
READ(UNIT=111,1 lo)STRAIN~MAG,sTRAIN-PHASE 
CLOSE(UNIT= 1 1 1, STATUS='DELETE') 
WRITE(106, *)FREQ,STRAIN-MAG,STRAIN-PHASE 

120 FORMAT(F20.15) 
OPEN(UNIT= 1 lO,FILE='Accel-Scratch.txt',STATUS='OLD') 
READ(UNIT= 110,120)ACCEL-MAG 
CLOSE(UNIT= 1 10,STATUS='DELETE1) 
WRITE(lO5, *)FREQ,ACCEL-MAG 
PRINT *, FREQ, ACCEL-MAG 

C 
C FIND THE NEXT INCREMENT NLJMT3ER AND DETERMINE IF PROGRAM SHOULD CONTINE 

INC=INC+l  
IF (INC.LE.NUM-POINTS) THEN 

GOT0 80 
ENDIF 

C 
C CLOSE THE RESULT FILES AND END PROGRAM 

CLOSE(UNIT= 105) 
CLOSE(UNIT= 106) 
CLOSE(UNIT= 107) 
END 

....................................................................... 
SUBROUTINE RESID-EST(GUESS-V,FREQ) 

....................................................................... 
* 
* THIS IS A FUNCTION TO DETERMINE THE RESIDUAL VOLTAGE FOR THE MLJLLER'S 
* METHOD ITERATION TO D E T E R .  THE FEEDBACK CONTROL VOLTAGE VERSUS 
* FREQUENCY * 
* WRITTEN BY BRIAN P. BAILLARGEON 
* OCT. 21,2003 
* 
* INPUT 
* GUESS-V : THIS IS THE PPF ACTUATOR CONTROL VOLTAGE ESTIMATE 
* FREQ : THE CURRENT FORCING FREQUENCY 
* 
* OUTPUT 
* RESID : THE RESIDUAL VOLTAGE BETWEEN THE GUESS AND RESULTING 
* PPF ACTUATOR CONTROL VOLTAGE 
* 
....................................................................... 

REAL F-POT-REAL,F-POT-IMAG,FREQ,S-POT-MAG, S-POT-ANGLE, PI 
COMPLEX RESID,S-POT,RES-VOLT,GUESS-V 
rNTEGER ID,BI 
LOGICAL K 
DATA N-FREQ,PI /12295,3.14 15926535897931 
COMMON RESID 

C 
C THE COMPONENTS OF THE ACTUATOR POTENTIAL GUESS 

F-POT-REAL = REAL(GUESS-V) 
F-POT-IMAG = IMAG(GUESS-V) 

C 
C ALTER THE ABAQUS INPUT FILE 



C SPAWN ABAQUS TO SOLVE THE FE PROBLEM 
CALL system('rm FRF-Test.com FRF-Test.& K T e s t . f i 1  
1 FRF-Test.log FRF-Test.mdl FRF-Testmsg FRF_Test.odb 
2 FRF_Test.prt FRF_Test.res FRF_Test.sta FRF-Test.sttt) 
CALL system('abaqus job=FRF_Test user=FRF-PPF.f &') 

C 
C WAIT FOR ABAQUS TO FINISH THE ANALYSIS TO FIND THE VALUE OF STRAIN 
C AT THE SENSOR LOCATION 

K = FALSE 
50 CONTINUE 

INQUIRE (FILE='SENSOR-OUTPUT. W1,EXIST=K) 
IF6.EQ.F) THEN 
GOT0 50 

END IF 
C 
C READ THE STRAIN AND DELETE THE SCRATCH FILE - THE LOOP IS TO 
C MAKE SURE ABAQUS IS DONE WRITING THE RESULTS TO THE FILE 

BI = 0 
200 CONTINUE 

BI =BI + 1 
IF (BI.LT. 100000) THEN 

GOT0 200 
ENDIF 
OPEN(UNIT= 104,FILE='SENSOR-OUTPUT. txtt,STATUS='OLD') 
READ(104,*)S-POT-MAG, S-POT-ANGLE 
CLOSE(UNIT=104 STATUS='DELETE1) 
S-POT = ((S-POT-MAGI1 .E-6)*COS(PI*S~POT~ANGLE1180.0), 
1 (S-POT-MAGI1 .E-6)*SIN(PI*S-POT-ANGLE1180.0)) 

C 
C DETERMINE THE NEEDED PPF CONTROL VOLTAGE FOR THE DETECTED STRAIN 

RES-VOLT = (ACT-VOLT(S_POT,2*PI*FREQ,O), 
1 ACT-VOLT(S-POT,2*PI*FREQ, 1)) 

C 
C DETERMINE THE RESIDUAL VOLTAGE 

RESID = GUESS-V-RES-VOLT 
END 

....................................................................... 
SUBROUTINE ALT-INPUT-FILEO;REQ,N-FREQ,F-POT-REAL,F-POT-IMAG) 

....................................................................... 
* 
* THIS SUBROUTINE ALTERS THE ABAQUS INPUT FILE TO ANALYZE THE STEADY STATE 
* ANALYSIS OF THE CANTILEVER BEAM FOR DIFFERENT FORCING FREQUENCIES AND 
* PPF CONTROL VOLTAGES. 
* 
* WRITTEN BY BRIAN P. BAILLARGEON 
* OCT. 21,2003 
* 
* INPUT 
* FREQ : THE CURRENT FORCING FREQUENCY 
* F POT-REAL : THE REAL COMPONENT OF THE ACTUATOR POTENTIAL 
* F~OT-IMAG : THE IMAGINARY PARY OF THE ACTUATOR POTENTIAL 
* N-FREQ : AN INTEGER SPECIFING WHERE THE STEP PARAMETERS ARE IN THE * INPUT FILE - 1 
* 
* OUTPUT 
* NO OUTPUT. THE INPUT FILE FRF-Test.inp IS ALTERED. 



* 
....................................................................... 
C 

REAL FREQ,FPOT-REAL,F-POT_IMAG 
INTEGER N-FREQ, N 

C FIND THE POSITION OF THE STEP PARAMETER LINE 
OPEN(UNIT=103, FILE='FRF_Test.inp', STATUS='OLD') 
DO 10 N = 1, N-FREQ 

READ(103,*) 
10 CONTINUE 
C 
C WRITE THE REST OF THE INPUT FILE 
20 FORMAT(F8.3,', ',F8.3,', 1, l., 1') 

WRITE(103,20) FREQ, FREQ 
WRITE(103,*)'**' 
WRITE(103,*)'** BOUNDARY CONDITIONS' 
WRITE(103,*)'**' 
WRITE(103,*)'** Name: Clamped Type: Symmetry/Antisyrnmetry/ 
1Encastre' 
WRITE(103,*)'*Boundary' 
WRITE(103,*)'-PickedSet579, ENCASTRE' 
WRITE(103,*)'** Name: Control-Load Type: Electric potential' 
WRITE(103,*)'*Boundary, load case=lf 

30 FORMAT('-PickedSet587, 9, 9, ',F10.3) 
WRITE(103,30) F-POT-REAL 
WRITE(lO3, *)'*Boundary, load case=2' 

40 FORMAT('-PickedSet587, 9, 9, ',F10.3) 
WRITE(103,40) F-POT-MAG 
WRITE(103,*)'** Name: Potential-Load Type: Electric potential' 
WRITE(103,*)'*Boundary, load case=ll 
WRITE(103,*)'-PickedSet581, 9, 9, 120.' 
WRITE(103,*)'*Boundary, load case=2' 
WRITE(103, *)I-PickedSet58 1, 9, 9' 
WRITE(103,*)'** Name: Zero-Potential Type: Electric potential' 
WRITE(103,*)'*Boundary, load case=ll 
WRITE(103,*)'-PickedSet588, 9, 9' 
WRITE(103,*)'*Boundary, load case=2' 
WRITE(103,*)'-PickedSet588, 9, 9' 
WRITE(103,*)'**' 
WRITE(103,*)'** OUTPUT REQUESTS' 
WRITE(103,*)'**' 
WRITE(103,*)'*Restart, write, frequency=l8 
WRITE(103,*)'**' 
WRITE(103,*)'** FIELD OUTPUT: F-Output-1' 
WRITE(103,*)'**' 
WRITE(103,*)'*0utput, field' 
WRITE(lO3, *)'*Node Output' 
WRITE(103,*)'U, V, A, EPOT' 
WRITE(103,*)'*Node File' 
WRITE(103,*)'PHPOT, A' 
WRITE(103,*)'*Element Output' 
WRITE(103,*)'S, E' 
WRTTE(103,*)'*EL FILE' 
WRITE(l03,*)'PHE' 
WRITE(103,*)'**' 
WRITE(103,*)'** HISTORY OUTPUT: H-Output-1' 



WRITE(103,*)'**' 
WRITE(103,*)'*0utput, history, variable=PRESELECT' 
WRITE(103,*)'*El Print, freq=999999' 
WRITE(103,*)'*Node Print, freq=999999' 
WRITE(103,*)'*End Step' 
CLOSE(lO3) 

C 
END 

....................................................................... 
FUNCTION ACT-VOLT(SPoT,FREQ,IU) ....................................................................... 

* 
* THIS FUNCTION RETURNS THE REQUIRED PPF ACTUATOR VOLTAGE DUE TO THE 
* STRAIN POTENTIAL. 
* 
* WRITTEN BY BRIAN P. BAILLARGEON 
* OCT. 2 1,2003 * 
* INPUT VARIABLES 
*FREQ : THE CURRENT VALUE OF THE FORCING FREQUENCY 
* S P O T  : THE COMPLEX VALUE OF STRAIN AT THE SENSOR LOCATION 
* IU : A FLAG TO INDICATE WHETHER THE REAL OR IMAGINARY PART IS 
* NEEDED 
* 
* OUTPUT 
*ACT-VOLT :THECALCULATEDACTUATORVOLTAGE * 
....................................................................... 

REAL F-PI ,WN,WF,ZETA,G,ACT-GAIN,FREQ,FILEEWN,F~,  
1 FILE-G 
COMPLEX S-POT 
INTEGER IU 

C 
DATA F-P1,ACT-GAIN /3.141592653589793,68.0/ 

C 
C LOAD THE PPF CONTROLLER PARAMETERS FROM FILE PPF-Controller.txt 

OPEN(LJNIT= 120, FILE='PPF-Controller.txt',STATUS='OLD') 
READ(120,*) 
READ(120,*)FILE_WN 
READ(120,*) 
READ(120, *)FILE-N 
READ(120,*) 
READ(120,*)FILE-Z 
READ(120,*) 
READ(120,*)FILE-G 
CLOSE(UNIT= 120) 

C 
C DEFINE THE PPF CONTROLLER 

WF = 2.0*FPI*FILE-WN*FILE-N 
ZETA = FILE-Z 
G = FILE-G 

C 
C DETERMINE THE VOLTAGE TO THE CONTROL ACTUATOR 

IF (IU.EQ.0) THEN 
ACTVOLT = REAL(((G,O)*(WF* *4,0)*(ACT_GAIN,O)*S_POT)/ 

1 ((WF**2,0)-(FREQ**2,0)+(0,2*ZETA*WF*FREQ))) 



ELSE IF (IU.EQ. 1) THEN 
ACT-VOLT = AIMAG(((G,O)*(WF**4,0)* (ACT-GAIN,O)* S-POT)/ 

1 ((WF**2,0)-(FREQ**2,0)+(0,2*ZETA*WF*FREQ))) 
END IF 
END 

*SUBROUTINE URDFlL 
*WRITTEN BY BRlAN P. BAILLARGEON 01/08/2003 
*THIS SUBROUTINE READS THE RESTULTS FILE OF AN ABAQUS ANALYSIS 
................................................................ 
* LSTOP - FLAG TO INDICATE WHETHER THE ANALYSIS SHOULD CONTINUE (NOT 
* USED) 
* LOVRWRT - INDICATES WHETHER OR NOT THE RESULT FILE CAN BE OVERWRITTEN 
* KSTEP - INDICATES THE CURRENT STEP 
* KINC - INDICATES THE CURRENT INCREMENT 
* DTIME - THE TIME INCREMENT 
* TIME(1) - INDICATES THE STEP TIME AT THE END OF THE INCREMENT 
* TIME(2) - INDICATES THE TOTAL TIME AT THE END OF THE INCREMENT 
................................................................. 

SUBROUTINE URDFIL(LSTOP,LOVRWRT,KSTEP,KINC,DTIME,TIME) 
C 

INCLUDE 'ABA-PARAM. INC' 
C 

DIMENSION ARRAY(5 13),JRRAY(NF'RECD,5 13),TIME(2) 
EQUIVALENCE (ARRAY(l),JRRAY(l, 1)) 
REAL D-El,D-G2l,D-Tl,F-STRAIN,F-ACCEL 
INTEGER F-NODE, KI 
DATA D-E1,D-G21,D-TI /61.0E9,17.130924E-3,0.00001/ 

C 
C FIND THE CURRENT INCREMENT 
C 

CALL POSFIL(KSTEP,KINC,ARRAY,JRCD) 
K I = o  
DO K1= 1,999999 

CALL DBFILE(0, ARRAY,JRCD) 
IF (JRCD.NE.0) GO TO 110 
KEY = JRRAY(1,2) 

C 
C RECORD 117 CONTAINS INFORMATION ABOUT THE ELECI'RIC POTENTIAL 
C THE NODES OF INTERESTS ARE 224 (ACTUATOR) AND 3757 (SENSOR) 

F-NODE = JRRAY(1,3) 
IF (KEY.EQ.65) THEN 

IF (KI.EQ.4703) THEN 
10 FORMAT(F20.15,lX,F20.15) 

OPEN(UNIT= 101, FILE='/usr l/people/brian/abaqus/ 
+Chapter-4ISENSOR-OUTPUT.txt', STATUS='NEWO) 

WRITE(lOl,lO)ARRAY(3),ARRAY(6) 
CLOSE(UNIT= 10 1) 
OPEN(UNIT= 1 13, FILE='/usr l/people/brian/abaqus/ 

+Chapter-4IStrain-Scmtch.txtO, STATUS='NEW') 
WRITE(113,1O)ARRAY(3),ARRAY(6) 
CLOSE(UNIT=113) 

ENDIF 
K I = K I + l  

ENDIF 
IF (KEY.EQ. 117) THEN 

IF (F-NODE.EQ.4252) THEN 



OPEN(UNIT= 108, FILE='/usr 1 /people/brian/abaqus/ 
+Chapter-4/Act-Scratch.txt', STATUS='NEW') 

WTE(108,1O)ARRAY(4),ARRAY(5) 
CLOSE(UNIT= 108) 

ENDIF 
ENDIF 

C 
C RECORD 103 CONTAINS INFORMATION ABOUT THE TOTAL ACCELERATION 
C THE NODE OF INTEREST IS 12 (BEAM TIP) 

IF (KEY.EQ. 103) THEN 
IF (F-NODE.EQ. 12) THEN 

OPEN(UNIT= 1 14, FILE='/usr l/people/brian/abaqus/ 
+Chapter-4IAccel-Scratch.txt', STATUS='NEW1) 

F-ACCEL = ((ARRAY(4)**2)+(ARRAY(S)* *2))* *(OS) 
20 FORMAT(F20.15) 

WRITE(114,20)F-ACCEL 
CLOSE(UNIT= 1 14) 

ENDIF 
ENDIF 

C 
END DO 

110 CONTINUE 
C 

RETURN 
END 



Appendix E 

ABAQUS FORTRAN Subroutines for Implementation of PPF 

Control 

*SUBROUTINE URDFIL 
*WRITTEN BY BRIAN P. BAILLARGEON 01/08/2003 
*THIS SUBROUTINE READS THE RESTULTS FILE OF AN ABAQUS ANALYSIS 
................................................................ 
* LSTOP - FLAG TO INDICATE WHETHER THE ANALYSIS SHOULD CONTINUE (NOT USED) 
* LOVRWRT - INDICATES WHETHER OR NOT THE RESULT FILE CAN BE OVERWRITTEN 
* KSTEP - INDICATES THE CURRENT STEP 
* KMC - INDICATES THE CURRENT INCREMENT 
* DTIME - THE TIME INCREMENT 
* TIME(1) - INDICATES THE STEP TIME AT THE END OF THE INCREMENT 
* TIME(2) - INDICATES THE TOTAL TIME AT THE END OF THE INCREMENT ................................................................. 

SUBROUTINE URDFIL(LSTOP,LOVRWRT,KSTEP,KMC,DTIME,TIME) 

INCLUDE 'ABA-PARAM.INC1 

DIMENSION ARRAY(5 13),JRRAY(NPRECD,5 13),TIME(2) 
EQUIVALENCE (ARRAY(l),JRRAY(l, I)) 
REAL F-STRAIN,F-STRAIN-NEW,FWSTRAINTRAINOLD,F-DISP,F-DISP-NEW, 
+F DISP-OLD 
C-ON F-STRAIN-NEW,F-DISPNEW 
INTEGER F-NODE, KI 

C 
C FIND THE CURRENT INCREMENT 
C 

CALL POSFIL(KSTEP,KINC,ARRAY,JRCD) 
KI = 0 
DO Kl=1,999999 

CALL DBFILE(O,ARRAY,JRCD) 
IF (JRCD.NE.0) GO TO 110 
KEY = JRRAY(1,2) 

C 
C RECORD 2 1 CONTAINS INFORMATION ABOUT THE STRAIN 

F-NODE = JRRAY(1,3) 
IF (KEY.EQ.21) THEN 

IF (KI.EQ.4695) THEN 
F-STRAIN = ARRAY(3) 
OPEN(UNIT=200, FILE='/usrl/people/brian/abaqus/ 

+Chapter-4/F-STRAIN-0LD.txt1, STATUS='OLD') 
READ(200,*)F-STRAIN-OLD 
CLOSE(UNIT=200) 
F-STRAIN-NEW = 2*F-STRAIN-F-STRAIb-OLD 
WRITE(7,*) 'Strain URDFIL' 
WRITE(7,*) F-STRAIN-NEW 
F-STRAIN-OLD = F-STRAIN 



OPEN(UNIT=20 1, FILE='/usrl/people/brian/abaqus/ 
+Chapter-4/F-STRAIN-OLD.txt', STATUS='OLD') 

WRITE(20 1, *)F-STRAIN-OLD 
CLOSE(UNIT=20 1) 

ENDIF 
K I = K I + l  

ENDIF 
C RECORD 101 CONTAINS INFORMATION ABOUT THE NODAL DISPLACEMENTS 

IF (KEY.EQ. 101) THEN 
IF (F-NODE.EQ.8902) THEN 

F-DISP = ARRAY(4) 
OPEN(UNIT=202, FILE='/usr 1 /peoplehrian/abaqus/ 

+Chapter-4/F-DISP-OLD.txt', STATUS='OLD') 
READ(202,*)F-DISP-OLD 
CLOSE(UNIT=202) 
F-DISP-NEW = 2*F-DISP-FDISP-OLD 

WRITE(7,*) 'Displacement URDFIL' 
WRITE(7,*) F-DISP 
F-DISP-OLD = F-DISP 
OPEN(UNIT=203, FILE='/usr 1 /people/brian/abaqus/ 

+Chapter-4RDISP-OLD.txt', STATUS='OLD') 
WRITE(203 ,*)F-DISP-OLD 
CLOSE(UNIT=203) 

ENDIF 
ENDIF 

C 
END DO 

1 10 CONTINUE 
C 

R E m  
END 

*SUBROUTINE DISP 
*WRITTEN BY BRIAN P. BAILLARGEON 0 1/08/2003 
*THIS SUBROUTINE IS USED TO ALTER THE POTENTIAL ACROSS THE PZT 
................................................................. 
* U - IS THE TOTAL VALUE OF THE PRESCRIBED VARIABLE AT THIS POINT 
* KSTEP - IS THE STEP NUMBER 
* KINC - IS THE INCREMENT NUMBER 
* TIME(1) - IS THE CURRENT VALUE OF THE TIME STEP 
* TIME(2) - IS THE CURRENT VALUE OF THE TOTAL TIME 
* NODE - IS THE NODE NUMBER 
* NOEL - IS THE ELEMENT NUMBER (NOT USED IN THIS ANALYSIS 
* JDOF - IS THE DEGREE-OF-FREEDOM 
* COORDS - AN ARRAY CONTAINING THE CURRENT COORDINATES OF THIS POINT 
................................................................. 

SUBROUTINE DISP(U,KSTEP,KINC,TIME,NODE,NOEL,JDOF,COORDS) 
C 

INCLUDE 'AB A-PARAM. INC' 
C 

DIMENSION U(3),TIME(2),COORDS(3) 
REAL F-STRAIN~NEW,FDISP-NEW,N~FREQ,C-FREQ,C-G 
COMMON F-STRAIN-NEW,F-DISP-NEW 
DATA F-P1,ACT-GAIN 13.14 1592653589793,68.0/ 

C 
* THE COMPENSATOR PARAMETERS 

N-FREQ = 2*FPI*74.443 



C-FREQ = 1.3 *N-FREQ 
C-G = 0.0000025 

C 
* APPLY THE VOLTAGE TO THE ACTUATORS BASED ON THE COMPENSATOR 
* DISPLACEMENT 

U(3)=0 
WRITE(7,*)'ACTUATOR1 
WRITE(7,*)U(l), F-DISP-NEW 

C 
RETURN 
END 

C 
C 
*SUBROUTINE DLOAD 
*WRITTEN BY BRIAN P. BAILLARGEON 0 1/09/2003 
*THIS SUBROUTINE IS USED TO APPLY A LOAD TO THE COMPENSATOR 
................................................................. 
* F - MAGNITUDE OF THE DISTRIBUTED LOAD 
* KSTEP - THE CURRENT STEP 
* KrNC -THE CURRENT INCREMENT 
* TIME(1) - CURRENT VALUE OF THE STEP TIME 
* TIME(2) - CURRENT VALUE OF THE TOTAL TIME 
* NOEL - THE ELEMENT NUMBER 
* NPT - THE LOAD INTEGRATION POINT WITHIN THE ELEMENT OR ON THE 
* ELEMENTS SURFACE 
* LAYER - THE LAYER NUMBER 
* KSPT - THE SECTION POINT NUMBER IN THE CURRENT LAYER 
* COORDS - AN ARRAY CONTAINING THE COORDINATES OF THE LOAD INTEGRATION 
* POINTS 
* JLTYP - IDENTIFIES THE LOAD TYPE FOR WHICH THIS CALL TO DLOAD IS MADE 
................................................................. 

SUBROUTINE DLOAD(F,KSTEP,KrNC,TIME,NOEL,NPT,LAYmKSPT 
1 COORDS,JLTYP,SNAME) 

C 
INCLUDE 'ABA-PARAM.INC' 
DIMENSION TIME(2),COORDS(3) 
CHARACTER*80 SNAME 
REAL F-STRAM-NEW,FDISP-NEW,N-FREQ,C-FREQ 
COMMON F-STRAIN-NEW,F-DISP-NEW 
DATA F-PI 13.1415926535897931 

C 
* THE COMPENSATOR PARAMETERS 

N FREQ = 2*F-PI*74.443 
cIFREQ = 1.3 *N-FREQ 

C 
C 

F = -(C FREQ**2)*F-STRAIN-NEW*(l.E6)*100 
WRITE(~,*)ICOMPENSATOR' 
WRITE(7,*)F, F-STRAIN-NEW 

C 
RETURN 
END 
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