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Solid circular cylinders as wavaguides for the propagation of longitudinal elastic waves are used 

pximarily as buffer rods in high temperature nondestructive evaluation (NDE), and are also found in the 

split Hopkinson pressure bar (SHPB). Experiments are typically designed so that only the nondispersive 

range of the first mode propagates. Design constraints sometimes require larger wavcguides and higher 

ficquencies that propagate multiple dispersive modes, which can add considerable con1plexity to the signal. 

This thesis presents an analytical modcl for multiple mode wave propagation in a finite solid 

cylindrical waveguide as a means of interpreting the complex signals and possibly removing the 

complexity. The model uses the phase velocities and normal stresses of the axially symmetric modes 

calculated by the Pochhammer-Chree equations to calculate atransfer hnction for each of the propagating 

modes. The sum of the tranxfcr functions of the propag:,ting modes is the transfer function of the 

waveguide, which can be used to predict the change of a signal in the waveguide. 

The ability of the model to accurately capture the general physics of multiple mode wave 

propagation is demonstrated in the time, frequency and joint time-frequency domain. In the time-reverral 

domain the calculated dispersed signal for a dispersive multi-mode waveguide is shown to producc a s i p a l  

with compact support in the time domain. A range of diameter to wavelength ratios is considered for these 

comparisons, which show the limitations of the model for wavelengths less than th.e raditls. 

The transfer functions generated by the model indicate which modes are dominant over a 

particular range of frequencies and which modes have a much smaller magnitude. The transfer hnctions 

hrther indicate that broadband signals are composed of multiple modes. It is found that observed trailing 



pulses contain energy from multiple propagating modes, and it is the superposition of the modes that 

creates the trailing pulses. The information from the transfer functions is also used to show the conditions 

for a sufficiently narrow band signal to excite a single higher order mode with little dispersion. 
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CHAPTER 1 : INTRODUCTION 

1.1. Motivation 

The use of solid circular cylindrical rods as waveguides gcnerallj- falls into two major areas: 

ultrasonic nondestructive analysis and the split-Hopkinson pressure bar. In both areas, acoustic signals 

propagated through the waveguides are occasionally of sufficicmtly high fequcncy to excite multiplc 

dispersive modes. These signals are highly complex and information carried by the signals is difficult to 

extract. This research is primarily motivated by the need for an analytical model to interpret these signals 

and to provide a more complete basic understanding of multiple mode axially symmetric wave propagation 

in finite cylindrical waveguidcs. For this research only linearly elastic, isotropic, homogeneous cylindrical 

bars arc considered. 

1.1.1. Split Hopkinson Pressure Bar 

In 1914 B. Hopkinson developed a techniquc for determining the pressure pulse forn bullets an.d 

hlgh explosives by measuring the momentum trapped in a cylindrical bar. A modified version of the 

technique, known as the split-Hopkinson pressure bar (SHPB), Davies bar (Davies 1948), or Kolsky bar 

(Kolsky 1949), is used extensively today to determine the strain rate dependency of elastic properties of 

materials. For a general review of SHPB see the manuscript by Gray (2000). The theory used to determine 

the elastic propertics from the SHPB is often bnsed on one-dimensional wave theory j.n the transmission 

bars. At higher strain rates the assumption of one-dimensional theory introduces greater error.   he fast 

rise in the pulse necessary for high strain rates requires energy at higher frequencies. These higher 

frequencies excitc not only the fust mode in the dispersive range but can also excite the second mode (Tyas 

2000). I f  only the first mode is excited a dispersion correction is often used to improve results (Gong, 

Malvern, and Jenkins 1990). Determination of the elastic properties with confidence under dispersive 

conditions is more difficult. An analytical model of axially symmetric waves in the solid cylindrical 

transmission bars for high frequency ranges can provide additional insight into the interpretation of the one- 

dimensional theory and the effects of typical simplifications. 



1.1.2. Nondestructive Evaluation 

In nondestructive evaluation (NDE) solid cylindrical waveguides are typically used as buffel- I 4 s  

to isolate ultrasonic transducers from hostile environments (Sen et al. 1991, Jen et al. 1997, Peterson 1994). 

As with the SHPB the excitation and propagation of only the fust mode in the nondispa-sivc frequency 

range is desired. However, due to design constraints it is often not possible to use a wavegui.de that is 

sufficiently thin to propagate only the fust axially symmetric mode. In sensor applications a number of 

approaches have been taken to eliminate the propagation of multiple modes, including the bundling of thin 

waveguides, cladding of buffer rods and introduction of surfacc roughness to eliminate spurious signals 

(e.g., Thurston 1978, Sen et al. 1990). However, in some cases dcsign constraints make the use of a multi- 

mode waveguide necessary (Peterson 1994). The propagation of multiple modes causes a signal that is 

compact in the time domain to have a large time signature after propagating through the waveguide, Fig 

I .  1 .  As a result, if the acoustic signal is propagated through a specimen, as well as a buffer rod, phase 

velocity and attenuation information about the specimen are difficult to extract. While a number of 

approaches have been considered to solve this problem, the proccssing is highly complex (Peterson 1999). 

There are two specific applications of direct interest that utilize the multiple mode waveguide. 

The first is the determination of elastic constants of materials or o t b a  properties at high temperatures, ovcr 

200 "C and up to 2000 "C. Multiple mode solid cylindrical waveguides are used as buffer rods in a through 

transmission configuration or a pulse echo configuration to couple a hlgh temperature material to a room 

temperature transducer. At high temperatures, ultrasound is currently the only method to measure shear 

modulus accurately. This is also the most accurate method available for measuring the Young's ~nodulus 

(Hcarmon 1984). A new motivation is a novel sensor for measuring the glass transition temperature of 

polymers and specifically composites to determine the extent of curing. For this application the 

temperature is swept from -40 "C to over 200 "C, and the wave speed is measured. A thick cylindrical 

waveguide is used as a buffer rod to isolate the transducer 6om the at temperature sample, in a pulse echo 

configuration. While this technique has only seen limited application, it has the potential to eliminate 

problems with boundary conditions in conventional dynamic mechanical thermal analysis (DMTA). 

The disadvantage of the complexity of the signal fiom a multiple mode waveguide can be 

removed by the use of time reversal, which has been developed during the last ten years (Fink 1997). Time 



reversal allows a signal with compact support in the time domain to be crcated in a multiple mode 

waveguide by modifying the excitation signal. The appropriate signal IS easily found in a pulse-echo 

configuration where the same transducer excites and receives the ultrasonic signal. It is moIe diMicult to 

determine the required excitation in a through transmission configuration. The analytical model, presented 

in this work is one method of finding the required excitation. 

-1 I 
' 

I I --A I 

0 0.05 0.1 0.15 0.2 0.25 
Time (ms) 

-1 1 1 1 I 

0 0.05 0.1 0.15 0.2 0.25 
Time (ms) 

Fig. 1.1 .  Illustration of dispersion in a cylindrical waveguide. The top graph is the original signal with 

compact time domain. The bottom graph is the original signal after propagating through the cylindrical 

waveguide used in this research. 

1.1.3. Basic Science 

Research on wave propagation in circular cylindrical waveguides was at  first a purely academic 

exercise in elasticity with no driving application. Mathematical equations were developed that described 

the propagation of waves with little, if any, physical understanding. Since then circular cylindrical 

waveguides have been explored extensively analytically and experimentally. The analytical models 

typically agree with the experiments; however, except for a couple of cases the comparisons are not 



explored extmsively. As such, the relation betwetn the Pochhammer-Chree theory and what physically 

happens in a-waveguide is not fully understood. The successive development and evaluation of an 

analytical model with experiments will improve the basic understanding of axially symmetric wave 

propagation in cylindrical waveguides, specifically regarding trailing pulses and the role ofhighcr order 

modes. 

1.2. Scope of Dissertation 

Research on wave propagation in cylindrical bars spans more than a century with hundreds of 

contributions. The most pertinnt contributions to this research are presented and discussed, so that a 

general understanding of axially symmetric wave propagation in infinite cylindrical rods is accessible. The 

contributions on the development of an analytical modcl for transient wave propagation in semi-infinite ind  

finite cylindrical bars are also presented. 

For the case of axially symmetric wave propagation in a finite cylindrical bar, an analytical model 

is developed to improve the understanding of the physics of cylindrical waveguides. The two primary 

expcrimental ultrasonic configurations involving cylindrical waveguides are the through transmission and 

pulse echo configurations. The configurations and experimental considerations are discussed along with 

the theory of time reversal in solid cylindrical waveguides. 

The primary focus of this dissertation is the development arid validation of an analytical model for 

wave propagation in finite solid cylindrical waveguides. The analytical model uses the phase velocities and 

stress functions from the Pochhammer-Chree theory to determine the shape of a dispersed signal. The 

model considers the interactions in a common expcrimental configuration that uses cylindrical ~,aveguiJcs.  

The excitation of the waveguide 6om the ultrasonic transducer, the propagation of the waves, and the 

reception of the waves of the receiving transducer are each considered. 

'The ability of the model to accurately capture the physics of multiple. mode wave propagation is 

validated by considering several different domains. In the time domain and the f iequa~cy domain the 

dispersed signals calculated by the analytical modcl are compared to the experimentzlly measured 

dispersed signals for the same waveguide. In the time-reversal domain the calculated dispersed signal is 

shown to produce a signal with compact time domain in a dispersive waveguide using a time-reversal 

mirror. In the time-frequency domain the spectrograms of the analytical and experimental signals 



demonstrate the presence of the same modes in each signal. In all three domains it is shown that the model 

captures the physics of multiple mode wave propagation in cylindrical waveguides. The comparisons 

between the analytical signals and the experimental signals are extended to a range of diameta-to- 

wavelength ratios, &A,, horn 0.5 to 20, where A, is calculated using the longitudinal wave speed, c,. For 

both ends of the range the model demonstrated results comparable to the experiments. 

The nature of the model allows each individual mode to be considered, so that the signal generated 

by a single mode can be determined. Thus, an observed experimental signal can be u~lderstood in terms of 

the individual propagating modes. The experimentally observed trailing pulses are interpreted in terms of 

the propagating modes of the Pochhammer-Chree theory. Information provided by the analytical model is 

used to demonstrate the conditions for the propagation of a single higher order mode in a cylindrical bar. 

1.3. Thesis Statement 

An analytical model of axially symmetric wave propagation in a multiple mode cylindrical 

waveguide is developed and validated to extcnd the use of multiple mode waveguides as a useful diagnostic 

tool. 



CHAPTER 2: BACKGROUND 

The propagation of waves has been a topic of interest in mathematics and mechanics for over 200 

years. The general behavior of the propagation of elastic waves in solids was extensively developed during 

the 19Ih century. Only in the last part of the 2oLh century has wave propagation in cylindrical rods been 

extensively investigated. The rich area of reseasch that has developed in this area is considered in this 

section. The main focus of this section is the research concerning the propagation of axially symmetric 

waves in circular cylindrical rods. 

The first derivations of the equations for thsce-dimensional longitudinal wave propagation in a 

solid cylinder were developed independently by Pochhammer in 1876 and Chree in 1889. The full 

Pochhammer-Chree theory describes the axially symmetric, torsional, and flexural wave propagation in an 

infinite solid circular cylinder with traction free surfaces. Torsional modes are characterized by a 

circumferential displacement that is independent of the circumferential angle. Axially symmetric modes 

are also independent of the circumferential angle but are characterized by axial and radial displacements. 

The displacements of flexural modes, however, are dependent on the circumferential angle. For anisotropic 

materials, an axially symmetric excitation of a cylindrical bar will excite flexural modes in addition to the 

axially symmetric modes. Howevtr, this research is focused on linearly elastic isotropic solid cylinders and 

the propagation of axially symmetric waves. 

After the development of the Pochhammer-Chree theory continuing research on axially symmetric 

\4!avc propagation in cylinders was concerned u4.h three areas. One area of research was furthering the 

understanding of the Pochhammer-Chree frequency equation and exploring the equation numerically. 

Despite the completeness of the wave equation few analytical rcsults were developed in the beginning 

because of the complexity of the relationships in the Pochhammer-Chree theory. A second area of research 

was the exploration of one-dimensional approximations to the Pochhammer-Chree fiequency equation. As 

the understanding of thc Pochhammer-Chree theory increased, a third area of research emerged that 

focused on developing exact and approximate transient solutions for axially symmetric wave propagation in 

semi-infinite bars. Additional efforts were focused on the use of solid cylinders as delay lines and 

waveguides. 



This thesis is concerned with the first and last areas of research; exploration and understanding of 

the Pochhammer-Chree solution and the development of three-dimensional analytical models for axially 

symmetric wave propagation in finite and semi-infinite cylinders. Previous research in thcsc two areas IS 

discussed in the following sections. For a more complete history of wave propagation in cylindrical 

waveguides, several review papers provide perspective on practical as well theoretical work. The review 

paper by Julius Miklowitz (1966) covers the research up until 1964. Al-Mousawi (1986) reviews mainly 

the experimental side, and Thurston (1978) reviews elastic waves in rods and clad rods though August 

1977. The monograph on elastic waveguides was also published by Rcdwood (1960). The texts by 

Achenbach (1999) and Graff (1975) cover more generally wave propagation in elastic solids. 

2.1. Axially Symmetric Wave Propagation in Infinite Linearly Elastic Isotropic Cylinders 

2.1.1. Pochhammer-Chree Theory 

The Pochhammer-Chree theory is considered valid for the cases of compressional, flexural and 

torsional waves in an infinite rod. This thesis is focused on compressional (also known as longitudinal and 

dilatational) wave propagation referred to as axially syrnmet~ic wave propagation in this dissertation. For 

reference to the background research and other solution techniques, a brief derivation of the Pochhamnier-- 

Chree solution for axially symmetric wave propagation in an infinite cylinder with traction free boundaries 

is presented in conjunction with the background'. 

The derivation of the Pochhammer-Chree frequency equation starts with the displacement 

equation of motion, 

pv2u+(il+jl)vv.u= - -- p i j ,  

where g is the displacement vector, p is the density, and 3, and I( are Lamt constants. The method of 

potentials is most suited to solving this differential equation. When the displacement vector is of the form, 

!!=Ycp+Vxw, - (2.2) 

' This derivation follows Achenbach (1999). A more complete derivation of the Pochhammer-Chree 

frequency equation is developed in Zernanek (1962). 



where y, and y are the scalar and vector potentials respectively, two differential equations are produced, 

where CL is the velocity of longitudinal waves in an unbounded medium and c7.is the velocity of transverse 

waves in an unbounded medium. For axially symmetric wave propagation in cylindrical coordinates the 

two solutions are: 

q = AJO (p r )  exp[i(kz - a)] 

Ye = CJl (qr) exp[i(kz - O X ) ]  

where JI, and J, are Bessel functions of the first kind of order zero and one respectively. r and z define the 

radial and axial coordinates respectively. The wavenumber, k, is equal to o/c where u is the circular 

frequency, and c is  the phase velocity. a is the radius of the cylinder. In terms of the potentials, thc radial 

and axial displacen~ents, respectively, are expressed as, 

arp awe U = - - -  and w=-+-+- - - .  a~ Ve aye 
at- az az ar 

The cucumfmential displacement, v,  is zero because of the symmetry. The displacements define the 

stresses through the relations, 

The substitution of the solutions, Eqs. (2.5) and (2.6) into the displacements, Eq. (2.7)) and the 

displacements into the stress equations, Eq. (2.6) and the application of the traction free boundary 

conditions at the swface (I, = a )  produces the frequency cquation, 

The fiequency equation describes the modes of both longitudinal vibration and transient wave propagation 

and provides the relation between the wavenumber, k, and the frequency, o (Miklowitz 1966). In 



particular, the dispersive nature of the waves for all propagating modes in the three-dimensional cylinder is 

described. The fiequency equation is often the point at which the analysis ends. However. the frequency 

equation of the Pochhammer-Ctuee theory IS a purely mathematical concept without a link to the physical 

understanding of axially symmetric wave propagation in a solid cylinder. When the original work was 

performed this physical interpretation did not exist. Due to the complexity of the equation, numerical 

exploration of the solution was limitcd until the advent of the digital computer. 

Early research exploring the Pochhammer-Chree theory does not provide significant insight for 

this work. However, the work of these early authors (i.e. Field 193 1, Bancroft 194 1) did pave the way for 

future research. The f i s t  significant contribution to the understanding of axially symmetric wave 

propagation in cylindrical waveguides and the Pochhammer-Chree theory was an extensive manuscript by 

Davies (1  948). Davies performed extensive analytical calculations of the Poc.hhamma-Chree theory as 

well as numerous experiments. F ~ o m  numerical calculations of the frequency equation (Eq. 2.9) he plotted 

the phase velocity of the first three modes as well as the group velocity of the first two modes. An example 

of the dispersion curves and the group velocity curves appex in Fig. 2.1. Davies also demonsh-ated that for 

each mode the magnitude of the stress and displacement vary across the radius of the bar and vary with 

fiequency, see Fig. 2.2. 

0 0.5 1 1.5 
Frequency (MHz) 

0 0.5 1 1.5 
Frequency (MHz) 

Fig. 2.1. Example of phase velocity and group velocity curves for a 10 mm solid cylindrical quartz 

waveguide. 
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Fig. 2.2. Example of frequency dcpendence of normal stress for the Is' mode of a 10 mm solid cylindrical 

quartz waveguide. The normalized normal stress is plotted at different frequencies. The vertical dashed 

lines represent zero stress. 

Some of the significance of Davies work is also a result of improved experimental techniques. 

Davies introduced a way to measure the axial and radial displacements separately on a circular bar. He 

produced experimental results using a Hopkinson bar, which were in good agreement fifith the 

Pochhammer-Chree theory afid confu-n~ed the phenomenon of dispersion experimmtally (Al-Mousawi 

1986). Davies research was a major contribution to the field and markcd thc beginning of a surge of 

research on wave propagation in solid cylinders that lasted about two decades. 

The next major step was the recognition of the need for and the prediction of complex roots to the 

frequency equation. At low frequencies there is only a single propagating mode whose stress is a function 

of radius and frequmcy. At higher frequencies there is still only a finite number of propagating modes. 

However, for an arbitrary pressure distribution on the cnd of the bar it 1s necessary to be expand over an 

infinite number of stress functions that result from an infinite numbtr of modes. Curtis (1953) is generally 

credited with recognizing and predicting the complex roots of the frequency equation, and an exploration of 

the frequency equation by Adem ( 1  954) found the required infinite number of modes (Zemank 1972). 

Onoe, McNiven, and Mindlin (1962) presented an extensive mapping of the relation between the kequency 

and propagation, constant (i.e. nondimensional phase velocity) horn the Pochhammer-Chree frequncy 

equation. Real, imaginary and complex propagation constants were calculated for a large frequency 

spectrum. 'The influence of Poisson's ratio was also explored. The work by Onoe, McNiven, and Mindlin 

produced a better understanding of the roots of the frequency equation but little physical interpretation. 



Using the recent research of Onoe, McNiven and Mindlin, Zernanek's Ph.D. dissertation ( I  962) 

extended the work by Davies. Zemanek extensively explored the higher order modes numerically, and 

made some key observations of the properties of the Pochhammer-CIu-ee theory. First, the maxima of the 

group velocity curvcs of higher order modes approacl~ tile wave speed of longitudinal waves in an infinitc 

medium. Secondly, the axial displacement of the higher order modes is in phase near the maximum group 

velocity. At frequencies not associated with the maximurn group velocity the axial displacement along the 

radius is out of phase and the average displacement approaches zero. An additional contribution of 

Zemanek was the experimental verification of the theoretical dispersion curves. 

A number of experimental observations were also made during the same period. Tu, Brennan, and 

Sauer (1955) and Oliver (1957) also reproduced experimentally the theoretical dcvelopments of the 

Pochhammer-Chree theory, although primarily the first mode. McSkimm (1956) and Redwood (1959) 

observed trailing pulses in experiments with sine burst excitations. Meitzler (1960 and 1965) performed 

experjmental work on the propagation of elastic pulses in cylinders. 

2.1.2. General Understanding 

Between the experimental research and the research of Davies, Onoe et al., and Zemanek a 

foundation is provided for thc understanding of the Pochhamma--Chree theory and the behavior of elastic 

wave propagation in cylindncal waveguides. A brief review of the general understanding of the 

Pochliammer-Chree theory is advantageous for future discussions. 

The Pochhammer-Chree theory is a time-harmonic solution that describes wave propagation in an 

infinite isotropic homogeneous solid circular cylinder. The solutrons assume a loss free material and do not 

consider viscous effects. Despite the loss 6ee  assumption, the behavior of the solution is quite complex. 

Evaluation of the frequency equation is one of the key elements of the problem since the frequency 

equation provides the multiple solutions that arc available. 

Frequency Eqiiution 

The frequency equation is a transcendental equation that relates the frequency to a propagation 

constant such as the wavenumber, k, or phase velocity, c. At any frequency there are an infinite number of 

roots that satisfy the Eiequency equation. Each root is associated with a single mode. At the lowest 

frequencies there is only one root that is real, the others being imaginary and complex. This one real root 
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corresponds to the fust propagating mode, and it is the only modc that propagates at the low frcquencies. 

As the frequency is increased complex roots of the fiequency equation becomc. :a], so at higher 

frequencies thcre is more than one propagating mode. The frequency where a root fust becomes real is the 

cutoff fiequency. The second and thud modes are an exception and becomc real before the second and 

third cutoff frequencies respectively (for example Meiztler 1965). The cutoff kequency is the frequency at 

which the wave number is equal to zero, and thus the phase velocity is infu~ite. The cutoff frequencies can 

be found by simplifying the frequency equation for k 4 O .  At liequencies greater than a mode's cutoff 

frequency the mode the propagation constant is real and the mode propagates. Below the cutoff frequency 

a mode is either evanescent, with a complex wavenumber, or nonpropagating with an imaginary 

wavenumber. Since the time harmonic solution is of the form exp[ila], when the wavenurnber becomes 

imaginary, k-tik, the solution becomes e x p [ - h ] ,  which attenuates and does not propagate. At each 

fi-equency all of the modes have associated stresses and displacements. 

Stress and Displacement Functions 

The radial displacement, ulJI, and the axial displacement, &, in cylindrical coordinates, associated 

with mode j ,  referred to later as displacement functions, are defined as: 

u(J) = -[pJo (pr)  + i C  ( J )~ ( ' ) J ,  (qr)] , 

- 2 i k ( ' ) p ~ ~  (pa)  
where C(J) = 

( q 2  - ( k ( j ) I 2 ) ~ J  (gal 

and k@ is the wavenumber (Fraser 1975). The axial (normal) stress, &,, and shear stress, #,,, associated 

with mode j, referred to later as stress functions, are defined as: 

and 0;;) = -p[2ik(J)p~l (pr) + c ( J ) ( ~ ~  - ( ~ ( J ) ) ~ ) J ,  (qr)] . (2.14) 

The radial normal stress is not of interest for this problem. The factor tixp(ikoJz-iol) that appears in the 

potential solutions, Eqs. 2.5 and 2.6, has been suppressed. The stresses and displacements are a function of 

both radius and frequency as shown in Fig. 2.2. 



The fact that the stress and displacement functions change with Frequency makes it necessary to 

obtain the hnctions at each fiequency in the analytical model. The stress and displacement functions are 

complex valued. Thus, the axial stress, d',, of a ,node at each point across the radius has a complex value. 

If the stress is represented as a magnitude (positive valued) and phase angle it will be seen that for the 

propagating modcs the stress along the radius is in phase or pi radians out of phase. At the fiequency nears 

the maximum group velocity of a mode the stress of all of the points become in phase acting more like a 

"piston". This was observed by Zemanek (1962). Redwood and Lamb ( I  957) also observed this 

phenomenon when the phase velocity of a mode is nearest to the longitudinal wave spced the stress 

function of that mode is in phase. A comparison of the phase velocity curves and the group velocity curves 

in Fig. 2.1 shows that plateaus of the individual modes near the longitudinal wave speed in the phase 

velocity curves correspond to the maximum group velocity, which is also near the longitudinal wave speed. 

Evanescent Modes 

The evanescent modes with complex propagation constants behave differently than the 

propagating modes. The real component indicates the mode propagates, and the imaginary component 

indicates the mode attenuates spatially. However, this represents a loss of energy. Pilant (1 960) explained 

that a pair of the complex modes, one traveling in the +z direction, one traveling in the -z direction, arc 

always generated simultai~eously with propagation constants that are negative complex conjugates 

(Zemanek 1972). These two traveling waves form a standing wave, which decreases in amplitude spatially. 

Standing waves do not represent a transport of energy, so the evanescent modes do not represent a transport 

of energy. 

The evanescent modes are important for problems involving finite and semi-infinite waveguides 

because the evanescent modes are required to satisfy the boundary conditions on the end of the bar. For 

low frequencies with only a single propagating mode, the mode shape of the fust mode is not sufficient to 

satisfy an arbitrary stress function on the end of the bar. The shapes of the infinite number of evanescent 

modes allow an arbitrary stress function to be represented by an expansion over the modes. 

Phase Velocify 

Each mode has a phase velocity and a grollp velocity at each frequency. The phase velocity of a 

mode approaches infinity at the cutoff frequency. This is equivalent to a wavcnumber that is equal to zero. 



Even at frequencies above the cutoff frequency the phase velocity is greater than the wave speed of either a 

longitudinal wave 01. a shear wave in an infinite medium. This is not unreasonable because the phase 

velocity represents the propagation of constant phase. To visualize a phase velocity greater than a 

material's wave-speed, the propagation of plane waves oblique to a plane is used, Fig. 2.3. Lines of 

constant phase travel a distance d/cos@ along the waveguide during the same time the wave front travels a 

distance d. As B approaches pii2 the distance and therefore the phase velocity approaches infinity. 

Fig. 2.3. Plane wave illusb-ation of phase velocity 

Group Velocify 

It can also be seen that the energy of the wave fiont has only moved a distance dcose along the 

length of the waveguide, Fig. 2.4. This is the group velocity, which represents :he propagation of the 

energy. For O equal to zero the energy propagates at the wave speed, as does the phase velocity. As 8 

approaches m2 the group velocity approaches zcro. The g:-oup velocity can also be calculated from the 

roots of the Pochhammer-Chree frequency equation by finding the derivative dw/dk. The consideration of 

plane waves illustrates why the phase velocity is never slower than the transverse wave speed and why the 

group velocity is never greater than the longitudinal wave speed in Fig. 2.1. For O equal to zero, the lines 

of constant phasc and the energy travel the same distance in the same time, and therefore have the same 

wave speed. As B increases the distance the lines of constant phase travcl increases and the distance the 

energy travels decreases corresponding to an increase in the phase velocity and a decrease in the group 



velocity. Therefore the fastest group velocity is associated with Longitudinal plane waves at 6' equal to zero, 

and the slowest phase velocity is associated with transverse plane waves at B equal to zero. 

Fig. 2.4. Plane wave illustration of group vclocity 

Plane Wave Representation 

Besides the phase and group velocity, the consideration of plane wave propagation in cylinders 

can also be used to understand the cylinder's dispersive nature. There are two phenomena of plane waves 

that explain the various anival times of wavcs consistent with a signal exhibiting gcomctrical dispersion. 

First, there are multiple paths fiom one end of thc waveguide to the other duc to reflections, Fig 2.5 (top). 

Two sets of plane waves traveling at different angles will travel different length paths fiom one end of the 

cylinder to the other. Two sets of plane waves with the same wave speed will anive at different moments 

in time. Additionally, at the kee boundary a longitudinal wave will excite a longitudinal wave and a 

transverse wave to satisfy the traction kee boundary conditions, Fig. 2.5 (bottom) (i.e. Graff 1975). A 

transverse wave will reflect a transverse wave and may also excite a longitudinal wave. The s lo~ler  wavc 

speed of the transverse wave also contributes to the varied arrival times of the waves. 
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Fig. 2.5. Plane wave description of dispersion illustrating multiple paths (top) and wave excitation. 

The plane wave solutions can be related to the solutions of the differential equations by 

considering an infinite number of plane waves. The cylindrical geometry of the system produces Bessel 

hnctions in the solutions to the differential equations. A cylindrical wave with the shape of a Bessel 

function can be synthesized &om an infinite number of plane longitudinal waves by using Sommerfeld's 

integral to integrate a plane wave solution over 360" (Redwood, 1960; Peterson 1994). A Bessel function is 

also synthesized from an infinite number of plane transverse waves. The functions that describe the stress 

and displacement across the radius for a mode contain two terms. One term is a Bessel hnction that 

represents the superposition ofplane longitudinal waves, and the other term is a Bessel hnction that 

represents the superposition of plane transverse waves. 

2.2. Wave Propagation in Semi-infinite and Finite Cylinders 

The Pochhammer-Chree theory describes the solutions for wave propagation in an infinite 

cylindrical waveguide. However, from an experimental point of view, a solution that predicts the shape of 

a sibma1 after propagating through a finite cylinder is more advantageous and usehl. But the addition o i a  

face to the cylinder and the associated boundary condition complicates the problem. 

A separation-of-variables technique can be used to solve the differential equations, Eq. 2.3 and Eq. 

2.4. The solutions to the ordinary differential equations in time, /, and the axial coordinate, z, are 

exponential in form, Eq. 2.5 and 2.6. The ordinary differential equation in thc radial coordinate, r, is a 

form of Bessel's equation. Bessel's equation has the form of a Sturm-Liouville problcm. However, the 



stress kee boundary conditions at the surface are functions of the second derivative of the potential, which 

do not satisfy the boundary conditions specified by the Sturm-Liouville (for example, Greenberg 1978). 

The application of the boundary conditions still produces a characteristic equation (the Pochhammer-Chee 

hequency equation), which defines the eigenvalues (propagati .n constant such as the wavenumber). 

However, the eigenvalues are complex, which indicates the difrerenlial operator is non-self-adjoi.nt. The 

properties of the Stur~n-Liouville theory, including the orthogonality conditions, are only applicable to self- 

adjoint opcrators. Thus, axially symmetric wave propagation in finite and semi-infinite cylindrical 

waveguides is considerably more complicated than Sturm-Liouville problems. 

Two approaches have bem taken to develop three-dimensional analytical solutions to the problem 

of axially symmetric wave propagation in a semi-infinite isotropic elastic cylinder. The first approach uses 

the phase velocities (eigenvalucs) and stress functions (eigenfunctions) of the Pochhammcr-Chree theory to 

predict the propagation of a signal. The second method solves the boundary value problem for a scmi- 

infinite cylindrical rod subjected to an initial condition. An integral transform technique is used to solve 

these equations. In both cases there are dificulties and approximations are required. 

2.2.1. Integral Transform Technique 

The integral transform technique has been used by a number of authors for different initial 

conditions. Skalak (1957) considered an infinite cylinder, solving the differential equations for a set of 

boundary conditions that modeled the collision of two semi-infinite cylinders. Skalak considered the 

cylinders just after impact, and assumed the two cylinders behaved as a single, solid, infinite cylinder. The 

solution consisted of the superposition of two parts. The first part of the solution modeled the impact with 

the additional constraint that the lateral displacement be equal to zero everywhere. The wave fiom the 

impact is nondispersive and will travel at the longitudinal wave speed. For the second part the lateral 

restraint required for zero lateral displacement is calculated from part one and applied as an outward radial 

traction that travels with the wave. The superposition of these two parts produces a traction free bar, The 

solution for part two used a double integral transform technique with a Laplace transform in time and a 

Fourier integral transform in the axial coordinate, z .  The differential equations were transformed and a 

solution in the transformed space was found. To  find the actual displacement the inverse transforms are 

applied to the transformed solution. The integrals are evaluated by Cauchy's residue theorem. Two poles 
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are determined from the loading conditions, and the remaining poles are determined from the roots of the 

Pochhammer-Chree frequency equation, which appears in the denominator of the integral. Due to the 

difficulty of the transform inversions, an approximate solution was found for large time using the first two 

terms of the expansion of the phase velocity about k=O for the first mode. The calculated shape of the 

wave 6ont at large time agreed well with Davies (1 948) approximate solution. 

Vales el al. (1 996) completcd the exact solution started by Skalak. With 40 years of progress in 

computer technology, Vales el a/.  were able to extend Skalak's decomposition to the near field with 

extensive numerical calculations. Evidence of von Schmidt waves from a glancing incidence plane wave 

was observed in the numerical calculations. This solution however is only valid for the specific case of the 

impact of two bars. 

Not long after Skalak, Folk el al. (1957) developed a solution for a semi-infinite bar loaded with a 

step pressure hnction at the end. A uniform pressure was applied to the end of the bar, and the end of the 

bar was constrained from displacing laterally. The mixed end conditions were used to uncouple the 

equations of motion. The proper combination of transforms was chosen to provide solutions of the 

differential equations as well as "ask" for the appropriate initial and boundary conditions. Again the 

inverse transforms are evaluated using the Cauchy residue thcorem, with all of the poles defined by the 

Pochhammcr-Chree frequency equation. Asymptotic solutions were obtained to solutions valid at large 

time. 

Fox and Curtis (1957) showed experimentally that the mixed end condition solution introduced by 

Folk el a/ .  predicted accurately the main features of a step function excitation in a semi-infinite bar with 

pure end conditions for distances larger than 20 diameters. Jones and Norwood(l967) used the tncthod of 

Folk el al. to investigate the axially symmetric longitudinal response of a semi-infinite elastic bar to a 

pressure step end loading and to a velocity impact end loading. They found at distances greater than 20 

diameters the approximate solutions were within one percent of each other. Although, no experimental 

comparisons were made. They discussed this small difference in terms of a dynamic Saint-Venaut's 

principle. Kennedy and Jones (1969) further explored the effects of differeut radial distributions on the 

response of a waveguide to a pressure step end loading. Again it was found the difference in peak values 



was insignificant at distances over 20 diameters, and the difference in average values was insign~ficant at 

distances of 5 diameters. Again, only analytical results were considered. 

Goldberg and Folk ( 1  993) extended the method of Folk ef al. to solve the pure-end-condition 

problem. Goldberg and Folk obtained the solution to two mixed-end-condition problems, and used these 

solutions to solve the pure-end-condition problem. These results also agree wcll with the experimental 

work of Curtis and Fox. For large distances the approximate solutions for wave propagation in cylindrical 

waveguides developed by the integral transform method are represcntative of the step function experiment 

of Fox and Curtis (1957). 

2.2.2. Pochhammer-Chree Solutions 

A number of analytical models have been developed from the Pochhammer-Cluce solutions to 

predict aspects of axially symmetric wave propagation in finite and semi-infinite cylindrical bars. Davies 

( 1  948) used the phase vel.ocities from the frequency equation and a Fourier decomposition to predict the 

change in shape of a trapezoidal (fust mode only) excitation in a finite cylind~ical bar; however, no 

experimental comparison was made. In a similar method Follansbee and Frantz (1 983) calculated a 

dispersion correction for signals measured in the split Hopkinson pressure bar (SHPB). 

Zemanek (1962) considered the stresses of the modes to dctcrmine tile refl.~ction of the fust mode 

incident on the tiee end of a cylindrical bar. In addition to the fundamental mode, modes with complex 

wave numbers were considered in an expansion to satisfy the shess fiee boundary conditions. Reflection 

coefficients were calculated ti-om a system of equations equal to the number of modes constdered, and an 

end resonance was observed. Gregory and Gladwell (1989) also considered thc reflection of the f i s t  mode 

but calculated the coefficients in the expansion using an integral fosrnulation of least squares. Thc resonant 

frequency observed by both Zemanek and Gregory and Gladwell was very close to the experimental 

fi-ecluency measured by Oliver (1957). Howcver, this was the only experimental comparison in either case. 

The orthogonality conditions are typically used to determine the coefficients in an expansion; 

however, the orthogonality conditions for a cylinder with stress fiee lateral boundary conditions are quite 

complicated. The orthogonality conditions have been developed for the elastostatic case by Power and 

Childs (1971) and more completely by Fama (1972). Fraser (1975) extended Fama's solutions to the 



elastodynamic case. The complexity of the orthogonality conditions makes alternate methods desirable fol- 

determining the coefficients. 

Peterson (1999) combined the techniques of Davies and Zemanek. A system of equations was 

used to determine the coefficients of the propagating modes in a finite cylindrical waveguide with a 

broadband excitation, and a Fourier decomposition was used to determine the phase shift of each mode. 

Peterson's model predicted the shape generally fairly well. Puckett and Peterson (2002) refined the model 

by calculating the relative mode amplitudes at each frequency; however, the receiving end conditions were 

still not modeled. Calculated signals were similar to experimental signals though. 

2.3. Background Discussion 

Investigations of axially symmetric wave propagation in cylindrical bars have focused mainly on 

the numerical exploration of the Pochhammer-Cluee theory, and the comparison of experiments to the 

theory. A general understanding has emerged, and the theory generally agreed with experiments. 

Transient solutions were developed to extend the comparison ofthe theory to experiments. Two models 

were developed to predict the transient solutions. The models bascd on integral transform techniques and 

the models based the Pochhammer-Chree solutions each have benef ts and drawbacks. 

Integral transform models predict well the response of a waveguide to a step function excitation. 

A step hnction excitation was chosen because of the simplicity of the transforms and of the interest 

experimentally in modeling the Split Hopkinson Pressure Bar (SHPB). However, an analytical model is 

needed for acoustic signals used in ultrasonic nondestructive evaluation. These signals are arbitrary 

broadband signals that are not easily described by analytical hnctions. 

The techniques based on the Pochhammer-Chree theory lend themselves more easily to end 

conditions with arbitrary strcss hnctions in both time and space and are the basis for the semi-analytical 

modcl developed in this research. The techniques can be implemented to represent standard ultrasonic 

testing configurations using cylindrical waveguides, and will allow more extensive experimental 

comparisons, which have not previously been made. 



CHAPTER 3: EXPERTMENTAL SYSTEM 

'There arc a number of ways to generate and measure ultrasonic waves in solid materials. The 

piezo-electric transducer is the most common method. A piezo-electric material subjected to a stress will 

gcncrate an electric potential difference between the faces of the material. Similarly, an electric potential 

difference applied to faces of the piezo-electric material will cause a strain in the piezo-electric material. 

Contact transducers typically use a polarized ceramic cut specifically to generate longitudinal or shear 

waves. Coupling fluids are used to help transmit the elastic waves generated by the strain of the piezo- 

electric material into specimen being evaluated. Piezo-electric transducers are used for this research. 

Another means of contact ultrasound is the electromagnetic acoustic transducer (EMAT). ElMATs 

are used with metals and generate a surface stress via the Lorentz magnetic force (Papadakis et al. 1999). 

EMATs are not as eficient as piezo-electric transducers for converting an electrical signal into elastic 

wavcs and are primarily used in special circumstances to generate elastic modes that are difficult to 

generate with other means. EMATs are especially good in situations were a couplant is prohibitive. 

A non-contact alternative to piezo-electric transducers and ElMATs is laser generation and 

measurement of ultrasonic waves, known as interferometry (for example, Scruby and Drain 1990). Laser 

interferometry has the added benefits of high spatial and temporal resolution; howcver, there car1 be 

problems with rough and poor reflecting surfaces. Also, the equipment for laser ultrasonics is expensive in 

comparison to other ultrasonic techniques. 

3.1. Experimental Configuration 

In contact ultrasonics there are primarily two experimental configurations, through transmission 

and pulse-ccho. Thc nature of an experiment often requires one configuration of the ultrasonic system, but 

other times either configuration can be used. For solid circular waveguides both configurations are usehl, 

and both are considered here. 

3.1.1. Through-Transmission 

The through-transmission configuration uses two transducers, one to excite the ultrasonic signal at 

one end of the waveguide and a second to receive the ultrasonic signal at the opposite end. High 



temperature through-transmission experiments with solid cylindrical waveguides use two waveguides to 

isolate a sample that is at an elevated temperature. One waveguide is used to couple each transducer to the 

sample, one on either side of the sample. This research is focused on the wave propagation in the 

waveguide, so for the experiments only a single waveguide is considered. 

The basic experimental setup is illustrated in Fig. 3.1. A pulsa  sends an electrical pulse to one of 

the transducers. The transducer converts the electrical pulse into an acoustical pulse, which propagates 

down the waveguide. The other transducer measures the signal and converts the received acoustical pulse 

into an electrical signal. This signal is amplified by a preamplifier and displayed on an oscilloscope. 

ldeally the received signal still has the shape of a pulse, so that if a sample is placed between two 

waveguides then information about the sample can be extracted f?om the signal easily. 

Pulse Generator , 

Panamctrics, 5072PR 
Oscilloscope 
Tektronix TDS 520A 

\ Transducers; 28.6 mm dia. 1 
Panametrics, model V194 

Pre-amplifier 
Panametrics, model 5660 

Fig. 3.1. Diagram of the through transnlission experimental setup. 

3.1 -2. Pulse-Echo 

The pulse-echo configuration uscs the same equipment as the through-transmission configuration, 

but a single transducer is used for both the excitation and the reception of the ultrasonic signal. In this 

configuration a single waveguide is always used, so the signal travels M c c  the length of the waveguide, 

down and back. 



The basic pulse-echo experimental setup, Fig. 3.2, is similar to the through transmission. A pulscs 

sends an electrical pulse to the transducer. The transducer converts the electrical pulse into an acoustical 

pulse, which propagates down the waveguide. Part of the signal reflects off the end of the waveguide and 

part of the signal kansmits into the specimen at the end of the waveguide. Reflections 6om within the 

specimen are transmitted back into the waveguide. The transducer measures all of the reflected signals and 

converts the received acoustical pulse into an electrical signal. This signal is amplified by a preamplifier 

and displayed on an oscilloscope. Ideally the signal maintains its shape as it propagates through the 

waveguide, so that information can be extracted t?om the signal easily. 

Pulse Generator 
Panametrics, 5072PR 

Oscilloscope 
Tektron~x TDS 520A 

Waveguide \ 

Transducer ' 
Fig. 3.2. Diagram of the pulse-echo experimental setup. 

3.1.3. General Considerations 

In both experimental configurations adequate understanding of the experimental system is 

essential for interpreting the experimental signals and gathering meaningful data. There are two primary 

systems in the experimental configuration, the electrical system and the acoustical system (Schmcrr 1998). 

The electrical system consists of all of the components that propagate the electrical signal including the 

pulser, amplifier and the transducers. The acoustical system consists of all of the components that 

propagate the acoustical slgnal including the waveguides, the specim~m, and any other acoustical paths in 

the experimental configuration. Both the electrical and acoustical system5 influence the received signals to 



varying degrees, and the total experimental system can be represented as a scries of linear time-shift 

invariant systems each of which has an impulse response function (Schmerr 1998). 

Each component in the electrical system has an impulse response function that is a function of 

frequency (Schma-r 1998). The response functions of the h-ansducers typically have the narrowest 

bandwidth of the experimental system, so the transducers will dictate the frequency spectrum of the 

excitation signal. However, ifthe amplitude of the electrical signal to the transducers is too high the 

transducers will have a nonlinear response. In this range the transducer is converting some of the electrical 

signal to heat, which can eventually damage the wansducer. 

Amplifiers also have a limited linear response. A preamplifier is typically used to amplifj, the 

signal gmerated by the receiving transducer. The preamplifiers have a maximum output voltage. In the 

linear range there is an input voltage associated with the maximum output voltage. Any increase in the 

input voltage will also produce the maximum output voltage. This is known as clipping. Reducing the 

amplification will remove this effect. Power amplifiers are also sometimes used in ultrasonic systems to 

drive the transmitting transducer. Understanding the response functions of the electrical system ensures 

better accuracy in the measurements. 

Each part in the acoustical system also has a response fimction, which may need to be considered 

either with deconvolution or modeling. Howevm, in the system considered t l ~ e  main coilceIn with the 

acoustical system is the propagation of the elastic waves along multiple paths and the ~nultiple arrival times 

of these signals. At interfdces between two materials, such as the interface bctvlreen a waveguide and a 

sample (see section 3.2.3) part of the acoustical signal is transmitted and part is reflected generating some 

of the multiple arrival times of these signals. Typically thcre is only one path that is of interest, so the 

arrival time of this path must be determined to extract information 6om the signal. For both the through 

transmission and pulse-echo configurations an unda-standing of the acoustical system is necessary to 

determine the signal with the correct arrival time. 

3.2. Time Reversal 

In both the through transmission and pulse-echo configurations, design conshaints may requue 

thick cyl~ndrical waveguides, which propagate multiple dispcrsive modes. The propagation of multiple 

modes causes a signal that is compact in the time domain to have a large time signature after propagating 



through the waveguide, Fig 1.1. As a result, if the signal is propagated through a specimen, as well as a 

waveguide, phase velocity and attenuation information about the specimen are difficult to extract. A time- 

reversal mirror is capable of reducing the complexity of the received signal. 

3.2.1. Background 

Time-revcrsal mirrors (TRM) have been developed based on the property of time-revel-sal 

invariance (Fink 1997). A time-reversal mirror experiment consists of three steps. In the case of a 

cylindrical rod, fusf an acoustic signal is excited by a source at one end of the rod. The acoustic signal 

propagates through the rod, and the altered signal is recorded at the opposite end. Second, the recorded 

signal is reversed in time. Finally, the receiver is excited with the reversed signal. Thc reversed signal 

propagates through the rod, and a new signal is recorded at the source. If time invariance is satisfied, this 

new signal is the same as the original acoustic signal. Thls ability of the LIW can be used to produce a 

compact time signal from a dispersive system. This technique has been shown to be effective in 

eliminating the dispersion of Lamb waves for plate inspection (Ing and Fink 1998). 

Time reversal in a solid circular wavcguide has been den~onstrated recently in an application to 

corlcentrate acoustic energy at a point in a fluid (Montaldo er al. 2001). Multiple transducers on the tmd of 

a solid circular waveguide were excited by a 1 -bit digitized time-reversed signal to create a high ampl.~tude 

pulse in a fluid near the opposite end of the waveguide instead of the dispersed multi-mode signal. In this 

application and the applications mentioned previously, only the axially symmetric longitudinal modes arc 

excited. Thus, at most, an annular array of transducers would be required to reconstruct the general 

displacement field on the end of a cylinder. However, a single element, cylindrical transducer is most 

commonly used in sensor applications with cylindrical waveguides (Jen el a/.  1991, Peterson 1994). The 

time reversal technique has been shown to be effective when only the first two axially symmetric modes are 

excited in a solid circular waveguide using a single transducer (Puckett and Peterson 2003). However, the 

ability to extcnd time reversal to a cylindrical waveguide for which a large number of axially symmetric 

modes propagate using only the information from a single transducer is of primary interest. 

The stress and displacement of an axially symmetric mode may be regarded as having two 

components. One component is the contribution &om the superposition of plane longitudinal waves. The 

second component is the contribution from the superposition of plane transverse waves (Redwood 1960). 
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As the frequency increases, there are ficquencies wherc both the longitudinal and transverse con~ponents 

are strong. There are also frequencies where one component dominates, including frequencies where the 

mode is predominately the result of the superposition of plane transverse waves. These changes are 

exhibited in all of the axially symmetric modes. 

A single transducer is capable of exciting multiple axially symmetric modes in a circular 

waveguide. For a transducer that is much larger than the waveguide (in this case about 4 times greater in 

diameter than the waveguide), the pressure distribution across the face of the waveguide is approximately 

constant with radius. Although the pressure is nearly constant with radius, all of the modes with cutoff 

fiequencies within the spectrum of the signal will propagate. These real modes, along with some imaginary 

modes and an infinite number of attenuating complex modes are excited to satisfy the boundary conditions 

on the end of the waveguide (Zemanek 1972). The multiple propagating modes are evident in the large 

time signature in the bottom signal of Fig. 1 . 1 ,  which is from a 10 mrn diameter hsed quartz rod excited by 

a 28.6 mm diameter transducer. The fiequency spectrum of the top signal in Fig. 1. I and the dispersion 

curves of the waveguide appear in Fig. 3.3. From Fig. 1 .1  and Fig. 3.3, it is evident that multiple dispersive 

modes are excited and propagated through the waveguide by a single transducer. 
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Fig. 3.3. Dispersion curves for the cylindrical waveguide used in the TRM experiments and the normalized 

frequency spectrum (dashed) of the signal used to excite the waveguide. The label L(0,N) represents the 

N"' axially symmetric mode. 

The signal from a single transducer should include suff~cient information t?om a multi-mode 

signal to perform an accurate time reversa[. As the signal propapatcs along the waveguide, thc m d e s  



separate in time, and the complex modes attenuate to negligible amplitude. Thus, the pressure distnbution 

on the receiving end of the wavcguide is not constant with radius. The actual pressure distribution on the 

end of the waveguide at a particular time is the superposition of the normal stress of all of the modes and 

fi-equencies present. Additionally, the tra~lsducer has only the ability to measure the averagc pressure 

across the facc. The transducer does not record the shear stress of any of the modes present. It is 

reasonable though, to assume that the most important information are the phase components of the 

frequencies that are present in the received signal and the relative amplitudes of those frequencies. This is 

the information that is time-reversed and used to excite the transducer. 

Thus, the ability of a TRM with a single transducer that is only capable of sensing the average 

normal stress even though the transducer can excite the modes that are associated with the superposition of 

plane transverse wavcs is explored. A TRM experiment was conducted using single element, longitudinal 

contact transducers on either end of a solid hsed quartz rod. The original excitation signal was compared 

to the final signal fiom the TRM experiment to determine the ability of the TRM to reconstruct the original 

input signal. 

3.2.2. Through-Transmission 

The configuration used for the through transmission experiments had a slightly different setup and 

is shown in Fig. 3.4. The waveguide consisted of a 10 mm diameter, fused quartz cylindrical rod, 465 mm 

in length. An amorphous material was chosen for the waveguide because linear elastic and homogeneous 

assumptions are well satisfied. Fused quartz has a Young's modulus, E, of 72 GPa, a density, p, of 2200 

kg/m3, and a Poisson's ratio, v, of 0.162 (General Electric Advanced Materials 2004). 

Two transducers were used for the experiments. Both transducers were 28.6 mm diameter, 1 MHz 

broadband, longitudinal contact transducers [Panametrics, model V194, Waltham, MA]. The transducms 

had a bandwidth corresponding to a 6 dB drop in amplitude between 0.5 MHz to 1.5 MHz. A coupling 

fluid was used between the transducers and the waveguide [Sonotech, Inc. UT-30, State College, PA]. 

An arbitrary waveform generator [Agilent 33250A, Palo Alto, CAI produced the signal to drive 

the transducer. A radio frequency power amplifier [EN1 A-300, Rochester, NY] with a gain of 55 dB was 

used to amplify the signal to the transducer. The received signal was recorded by a d~gital storage 



oscilloscope [Tektronix TDS 520A, Wilsonville, OR] after amplification of the signal by an ultrasonic pre- 

amplifier [Panametrics model 5660C, Waltham, MA] with a gain of 40 dB. 

Arbitrary Function Generator 
Agilent 33250A 

Oscilloscope 
Tektronix TDS 520A 

Fused Quartz rod, 10 mm d ~ a .  

485 mm length 
I 

RF Amplifier I Pre-amplifier 
EN1 A-300 

Transducers, 28.6 mm Panametrics, model 5660 

dia. 

Fig. 3.4. Diagram of the experimental setup. 

The acoustic signal used in the TRM experiments was a broadband signal. The signal bad a 

fiequency spectrum with a 6 dB drop in amplitude at 0.5 and 1.5 MHz and a central fiequency of 1 MHz 

(Fig. 3.3). For the geometry of the waveguide and the frequency spectrum, six propagating axially 

symmetric modes were excited in the waveguide, with a component of each Inode being the superposition 

of plane transverse waves. Fig. 3.3 shows the dispersion curves calculated for the waveguide used in the 

experiments. 

To ensure the correct signals were recorded, the time window was chosen to include only the 

initial propagated signal and no end reflections. The excitation signals were rcpeated at a fiequency of 10 

Hz to ensure that reflections from previous signals were sufficiently.attenuated and were not included in the 

recorded signal. The recorded signals were averaged over 20 signals to remove noise. Finally, since the 

waveguide is symmetric about its length, the received signal that is reversed can be excited fiom the source 

transducer instead of the receiving transducer to produce the same results. So, for the experiments, all 

signals were sent from the same end of the waveguide using the same experimental set up. 

It was necessary to include the experimental frequency response of the apparatus in the 

comparison of the original excitation signal to the final signal of the ThV, so the ability of the single 



element TRM in the waveguide could be determined more accurately. The 6equency response includes an 

amplitude factor and a phase shiH for each frequency. However, since the original excitation signal is 

compared to the fmal signal of the TRM the phase shift does not need to be known, due to the reversal of 

the signal in the second step of the TRM experiment. For example, if a signal that propagates through the 

system is altered by a phase shift of cp(o), thcn the reversed signal will have a negative phase stuft, -cp(o). 

When the system is excited by the reversed signal, the phase shifts will cancel. Since the signal was always 

propagated from the same source for the TRM experiments, the phase shift was always the same. 

Therefore, only the amplitude of the frequency response was required to account for the equipment 

response. 

The kequency response of each piece of equipment (RF amplifier, transducers, and ultrasonic pre- 

amplifier) was measured. The system response function is the convolution of the amplitude factors of each 

piece of equipment. The ability of the TRM in the waveguide is determined by the comparison of the final 

signal in the TRM experiment with the original excitation signal convolved with the system response 

function. For this convolution, the system responsc was squared because the original excitation signal was 

propagated through the experimental system twice before becoming the final signal. 

The signals from the T R i i  experiments are compared in Fig. 3.5. All of the signal amplitudes 

have been normalized, and the signals are plotted with the same time scale. The original excitation signal 

convolved with the system response function is shown as the top signal of Fig. 3.5. The bottom four 

signals in Fig. 3.5 are the signals from the TRM experiments in the waveguide. The second sigoal froin the 

top in Fig. 3.5 is the dispersed signal recorded at the receiving transducer after the excitation signal has 

propagated through the waveguide. The dispersed signal was reversed in time, as shown in the third signal 

in Fig. 3.5,  and was used to excite the ultrasonic transducer. The signal second to the bottom in Fig. 3.5 is 

the signal recorded at the receiving transducer after the reversed signal is propagated through the 

waveguide. The bottom signal in Fig. 3.5 is the previous signal reversed in time for comparison with the 

first signal. A closer comparison of these two signals appears in Fig. 3.6. 



Fig. 3.5. TRM experiment in a solid multi-mode waveguide. .The signals are normalized and plotted on the 

same time scale. The signals are, from top to bottom, the original signal convolved with the system 

response, the dispersed signal, the reversed dispersed signal, the final signal created fiom the propagation 

of the reversed dispersed,signal, and the final signal reversed in time. 

The two signals in Fig. 3.6 are very similar, with additional noise evident in the experimental 

signal. The ability of a TRM to reconstruct the original excitation signal using the limited information of a 

single, longitudinal contact wansducer appears to be very good. It was shown earlier that a single, 

longitudinal contact transducer excited multiple modes in a cylindrical waveguide, including the axially 

symmetric modes that result fiom the superposition of plane transverse waves. The experimental signal in 

Fig. 3.6 implies that a single longitudinal contact transducer appears to be capable of reconstsucting a 

compact time signal from a solid circular waveguide. Thus, the effects of the pressure distribution on the 

end of the waveguide and the lack of information about the shear stress appear to be minimal. 
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Fig. 3.6. Comparison of the original signal (top) lo the final signal from the TRM experimnt (bottom). 

The original signal has been convolved with system response function. 

The most important characteristic of the resulting experimental signal in Fig. 3.6 is the compact 

time signature. By using the time-reversed signal as the excitation signal, the dispersive propertics of the 

waveguide can be negated. This capability allows the use of a dispersive solid circular waveguide as a low 

cost sensor. The compact time domain signal greatly simplifies signal analysis that was previously used 

(Peterson 1994). 

For a practical application with a single waveguide, the signal that will cancel the dispersive 

effects of the waveguidc is easily determined from the TRM experiment. For more complex configurations 

where significant changes with time are expected [Jen et al., 20011, either modeling or more extensive 

experiments are required. Future work remains to be done to show that measurements can be made in-situ 

and to develop appropriate models. 



3.2.3. Pulse-Echo 

Time-reversal has also been effectively demonstrated in the pulse echo configuration. For thcse 

experiments the pulse-echo configuration also required a slightly different setup, Fig. :i 7. The wa\ieguide 

consisted of a 25.4 mm diameter fused quartz cylindrical rod, 228 mm in length. An amorphous material 

was chosen for the waveguide because linear elastic and homogeneous assumptions are well satisfied. 

Fused quartz has a Young's modnlus, E, of 72 GPa, a density, p, of 2200 kg/m3, and a Poisson's ratio, v, of 

0.162 (Gn~eral  Electric Advanced Materials 2004). 

Arbitrary Function Generator Oscilloscope 
Agilent 33250A Tektronix TDS 520A 

1 1 Panametrics 5660 

Fused quartz wavegui 
25 rnm dia. \ "Ll / 

Sample - ~anametrics, model V 194 ' 

Fig. 3.7. Diagram of the experimental setup. 

The pulse-echo configuration uses a single transducer that acts as the source and the receiver. The 

transducer used in the experiment was a 28.6 mm diameter, I MHz broadband longitudinal contact 

transducer [Panametrics, model V 194, Waltham, MA]. A coupling fluid was used between the transducer 

and the waveguide and between the waveguide and the sample [Sonotech, Inc. UT-30, State College, PA]. 

A pulser (Panamehics, 5072PR, Waltham, MA] was used to generate a pulse to the transducer. 

The dispersed signal was recorded and reversed in time. An arbitrary waveform generator [Agilent 

33250A, Palo Alto, CAI produced the time-reversed signal to drive the transducer. A radio frequency 



power amplifier [EN1 A-300, Rochester, NY] with a gain of 55  dB was used to amplify the signal to the 

transducer. The received signal was recorded by a digital storage oscilloscope [Tektronix TDS 520A, 

Wilsonville, OR] after amplification of the signal by an ultrasonic pre-amplifier (Panamchics, model 5660, 

Waltham, MA] with a gain of 40 dB. In order to use the transducer in pulse-echo mode with the arbitrary 

waveform generator a transformer diplexer [Ritec Inc., model RDX2, Warwick, RI] was placed between 

the transducer, the ultrasonic pre-amp, and the power amplifier. 

The TRM proved to be effective in the pulse echo configuration. The time-reversed signal was 

used to excite the transducer, and the echoed signal received by the transducer was a pulse, top graph in 

Fig. 3.5. The most important characteristic of this experimental signal is the compact time signature. By 

using the time-reversed signal as the excitation signal, the dispersive properties of the waveguide can be 

negated. This capability allows the use of a dispersive solid circular waveguide as a low cost sensor. The 

compact time domain s i p a l  greatly simplifies signal analysis that was previously used (Peterson 1994). 

To  explore the ability of this technique as a sensor, a 25.4 mm aluminum cube was placed at the 

free end of the waveguide. The same time-reversed signal was used to excite the transducer. The received 

signal includes both fiont and back wall reflections fiom the aluminum cube, bottom graph Fig. 3.8. The 

first pcak corresponding to the reflection at the end of the waveguidc was attenuated compared to the peak 

from the reflection fiom the free end of the waveguide. The attenuation results from transmission into the 

finite impedance material. Also a second peak was generated fiom the reflection of the back wall of the 

sample. The time delay between the two peaks correlates to the bulk wavc speed in aluminum and the 

thickness of the cube. 

From these experiments the technique is promising as a means to detect changes in impedance or 

wave spced in an actual application. For a practical application with a single waveguide, the signal that 

will cancel the dispersive cffects of the waveguide is easily determined tiom the TRV cxpcriment. For 

more complex configurations where significant changcs with time arc cxpected either modeling or more 

extensive experiments is required (Schmerr 1998). Future work remair~s to be done to show that 

measurements can be made in-situ. 
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Fig. 3.8. Comparison of received signals. 

3.3. Transducer Characteristics 

Contact ultrasonic transducers that generate longitudinal waves in a solid are used in Inany 

experimental applications besides time reversal mirrors. Typical applications range from determining the 

clastic propcrtics of materials to locating cracks or inclusions in materials (Krautkramer 1983). To  

accurately interpret the results for these applications, analytical models are often required (Schrna-r 1998). 

In a number of cases analytical models need to include the effects of the transducer on the measurement 

system. The main attributes of the transducer are the 6equmcy response, which is easily determined 

exper~mentally, and the pressure distribution across the face of the transduccr. It is possible to assume a 

uniform pressure across the face of the transducer, but often this is not adequate (Lerch 1998). For 

example, the beam profile of the transducer must be well understood for sizing of cracks, a key 

nondestructive evaluation task. If the pressure decreases towards the edge of the transducer, the near field 

becomes more uniform than a transducer with a uniform pressure distribution. Therefore, measurement of 

the pressure distribution across the face of the transducer may be required (Bacon 1993). 



3.3.1. Methods 

A circular cylindrical waveguide sensor is another application whcre the pressure distribution on 

the transducer is required (Peterson 1999). Waveguides are used primarily to isolate contact transducers 

from a specimen that is at an extreme temperature andlor pressure. However, the relationship between the 

ficquencies required for the experiments and the diameter of the waveguide results in dispersion and the 

propagation of multiple modes. An analytical model to determine the dispersion of the signal through thc 

waveguide can bc developed based on propagating modes. The relative an~plitudes of the modes arc 

detcrmined by the boundary conditions on the end of the waveguide (Zernailck 1.972). hl o ~ d e r  to evaluate 

the boundary conditions, the pressure distribution across the face of the longitudinal contact transducer that 

is in contact with the waveguide must be known. 

The technique described makes it possiblc to determine the pressure distribution across the facc of 

a tmnsducer using a standard commercial immersion scanning system or off-the-shelf optical components. 

This apparatus provides a low cost alternative to laser based methods for verification and testing. The 

experimental setup and procedure are described. Potential difficulties are discussed as well as the 

necessary remedies. 

The schematic of the system used for the measurement technique is illustrated in Fig 3.9. The 

arrangement consists of two parts; the scnsor and the transducer to be characterized (the unkno~m 

transducer). The sensor consists of a longitudinal contact transducer (receiving transducer), a stepped 

waveguide, and a housing fixture to hold the waveguide in contact with thereceiving trarlsducer. The 

stepped waveguide allows a measurement to be pe~formed over a small area of the unknown transducer 

while still providing sufficient energy to the receiving transducer. The unknown transducer is mountcd 

facing the end of the waveguide. In order to take measurements at multiple locations, the sensor is able to 

move independent of the unknown transducer in two axcs of the plane normal to the waveguide. 

The ultrasonic signal received by the sensor is indicative of the pressure on the transducer. The 

unknown transducer is excited by a pulse, a squarc wave, or an arbitrary hnction such as a sine burst or 

chup. The ultrasonic signal propagates through the air and the sensor receives the signal. The sensor is 

moved across the face of the u n k n o ~ a  transducer, and at each point the signal is recorded. The change in 



amplitude of the signal received by the tip of the waveguide across the unknown transducer is 

representative of the pressure distribution across the unknown transducer. 
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Fig. 3.9. Schematic diagram of the setup for the experimental technique. 

This technique takes advantage of the difference in wavc speed between the waveguide and the air 

to isolate the ultrasonic signal received by the tip of the waveguide. Since the velocity of the wave is much 

higher in the waveguide (aluminum in this case) than in air, the path tlvough the waveguide will represent 

the first arrival in the signal. The fastest path in this configuration is through the tip of the aluminum 

waveguide, which is closest to the transducer. The fust signal arrival is thus recorded and corresponds to 

the signal received by the tip of the waveguide. This signal is used to determine the pressure distribution 

across the b-ansducer. A second signal is received later corresponding to the larger face on the stepped 

portion of the waveguide. Fig 3.10 illustrates this phenomenon. 

Air is used as the coupling fluid to ensure that the coupling between the waveguide and the 

unknown transducer is the same at all points across the u n h o w n  Wansducer. Liquid coupling such as water 

is not possible for contact transducers. For normal contact ultrasonic methods, such as the use of coupling 

gel, if the coupling is not the same at all points the amplitude of the sikmal may be affected by the coupling. 
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Fig. 3.10. Experimental signal showing portion rece~ved by tip and stepped portion of waveguide. 

However, air is difficult to use as a couplant since the ultrasonic signal is highly attenuated by the 

air. The attenuation of the ultrasonic signal in air is highly frequency dependent (Pierce 1981). The high 

attenuation at normal ultrasonic frequencies of 1 MHz to 10 MHz requires that the sensor and face of the 

transducer be aligned as closely as possible to the plane defined by the two axes of motion. A changc in 

the air gap across the unknown transducer will changc the amplitude of the received signal as the sensor 

moves across the unknown transducer. However, the distance between the unknown transducer and the 

waveguide will also change the time delay of the receivcd signal. Therefore, the alignment of the face of 

the unknown transducer and the consistency of the air gap can be verified by the measured time delay. The 

accul-acy of the time delay is a function of the sampling rate of the signal (Peterson 1994). 

3.3.2. Results 

An example of the pressure distribution measuremcnt is shown for a 28.6 mm (1.125 in.) diameter, 

I MHz, longitudinal contact transducer (Panametrics, model V194, Waltham, MA). The sensor used a 1.0 

MHz nominal center frequency, 12.7 mm (0.5 in.) element diameter immersion transducer (Panametrics, 

model V303, Waltham, MA). A higher or lower frequency transducer can be used for the sensor if a 

matched transducer is not present. Transducers with matched center fiequncies will produce a higher 

signal to noise ratio, but a reasonable amplitude response is possible even with unmatched transducers. 

Tlie waveguide was made of aluminum with a narrow section 16 mm long and 3 mm in diameter and a 

wide section 52 mm long and 9 mm in diameter. An air gap of approximately 1 mm was used betwecn the 

tip of the waveguide and the 1 MHz contact transducer. An ultrasonic square wave generator (Ritec Inc.,  



model SP-801, Warwick, FU) was used to generate a square wave pulse excitation signal to the 1 MHz 

contact transducer. Signals were recorded at multiple points along the face of the transducer. The 

apparatus is shown in a picture in Fig. 3.11. 
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Fig. 3.1 1. Picture of the sensor and the transducer to be characterized with waveguide, transducers and 

alignment fixture. 

An example of a recorded signal and the same signal after filtering appear in Fig 3.12. Filtering 

was used to remove all of the fi-equencies above the 40 dB upper bandwidth limit of the 1 MHz transducer. 

These frequencies in the signal represent little transmitted signal and mostly noise. For the measurements, 

the variation of the shape of the received signal at all points was minimal. Therefore, the cross-correlation 

technique was used to determine the relative amplitude and time delay at each location across the 

transducer (Peterson 1997). A signal recorded at the center of the transducer was used as the reference 

signal for the cross-correlation. The relative amplitude across the transducer is of interest, so any of the 

signals recorded near the center of the transducer can be used as the reference signal. The relative 

amplitude and the difference in time delay for the 1 MHz contact transducer appears in Fig 3.13. Three 



signals were acquired at each location. Error bars represent the range of the three samples, and a line 

connects the mean at each I.ocation. 

The difference in time delay can also indicate the misalignment, if any, of the transducer by 

multiplying the difference in time delay by the velocity of sound in air, 330 mls. The right side of the 

graph displaying the time delay shows the relative distance. It is apparent from the results in Fig. 3.13 that 

one side of the transducer was about 50 pm closer to the waveguide lhan the other. The misalignmcnl is 

seen as a slight decrease in amplitude across the transducer, indicative of the attenuation of the ultxasonic 

signal in air. For the purpose of this experiment, the "smoothness" of the transducer is of interest, so a 

slight misalignment is not an issue. 
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Fig. 3.12. Portion of the experimental ultrasonic signal (I MHz) received at the tip of the waveguide, before 

(upper graph) and after filtering (lower graph) to remove frequencies above 40 dB upper limit bandwidth of 

transducer (2 MHz). 



Distance (mm) 

Distance (mm) 

Fig. 3.13. Experimental results for a 1 MHz longitudinal contact transducer. Upper graph shows mcan 

amplitude versus radius for three measuremmts (errorbars indicate limits). Lower graph shows 

corresponding time delays and a 50 p n  misalignment of the transducer hat  corresponds to a small slope in 

the amplitude results. 

3.3.3. Discussion and Conclusion 

Most of tlie difflcultics with the technique are associated with the signal acquucd during testing. 

High fi-equency noise is apparent in the signal in Fig. 3.10 and Fig. 3.12 (upper gxph). Appropriate 

filtering can be used to remove the noise; however, the cross-correlation will not be greatly affected by the 

noise. The signal to noise ratio also can be maximizcd by using narrow band excitation. 

In addition to the noise, the signal also contains ~nrlltiple arrivals, each arrival corresponding to a 

different cross section of the waveguide. Therefore, care must be taken in analyzing the correct arrival. 

The second arrival corresponds to the signal received by the larger diameter stepped portion of the 

waveguide, which has a longer ultrasonic path in air. This arrival has a larger amplitude because the larger 

area receives more energy. 



Since the energy is directly related to the received cross sectional arca of the waveguide, the 

geometry of the waveguide is critical. The waveguide must have a suficiently small tip so that the 

measurement can be made over a small area of the transducer. For a more accurate determination of the 

pressure distribution, a smaller waveguide tip would be used. However, the smaller tip will result in a 

reduction of the amplitude in the received signal. Alternatives, such as narrow band excitation can help 

overcome these difficulties. 

These difficulties are commonly found in other ultrasonic applications, so the difficulties should 

not be new to most users. This technique is a simple cost-effective way of determining the pressure 

distribution of a contact ultrasonic transducer, which may be usehl  for accurately modeling a transducer. 

3.4. Experimental Discussion 

For both the through-transmission configuration and the pulse echo-configuration, the propagation 

of axially syrnmctric waves in cylindrical bars produces complex signals. The complexity of the signals 

can be removed by employing time revcrsal even with only a single acoustic element. The use of time 

reversal allows a simple signal with compact support in the time domain to be generated in a dispersive 

waveguide. However, it may not be possible to experimentally acquire the necessary time-reversed signal, 

such as in a though transmission configuration with a sample between two waveguides. For these cases an 

analytical model could calculate the necessary signal to generate a signal with cornpact support in the time 

domain. 

For an accurate model that is representative of experiments, the experimental configuration must 

be well understood. For the through-transmission configuration thc primary piece of experimental 

equipment that will affect the results is the piezo-electric transducer. The transducers interact directly with 

the waveguide, so the spectral and spatial attributes of the Wansduccrs must be understood. The teclmique 

presented for mapping the transducer face provides the necessary spatial information about the transducer, 

and the spectral information is easily found using standard ultrasonic techniques. The other parts of the 

experimental system must also be considered but are not as influential as the transducer:; in an analytical 

modcl. 



CHAPTER 4: ANALYTICAL MODEL FOR AXIALLY SY MIMETRIC WAVE PROPAGATIOB 

The semi-analytical model presented is designed as a tool for predicting and interpreting 

experimental signals, so the model is based on a general experimental configuration. The experimental 

setup associated with the waveguide consists of an ultrasonic contact transducer for exciting the ultrasonic 

signal in the waveguide, the waveguide, and a second ultrasonic contact transducer for receiving the signal. 

The excitation, propagation, and reception of the ultrasonic signal are each described by a part of the model 

using the Pochhammer-Chree solutions for an infinite cylindrical bar. For a glven input signal, thc model 

predicts the measured dispersed output signal at the opposite end of a specific length waveguide. 

4.1. Parts of the Model 

The frequency dependence of the Pochhammer-Cluee solutions compels that the operations of the 

analytical model be performed in the frequency domain. All operations are conducted in the frequency 

domain unless noted otherwise. The time representation of the dispersed signal, xd(t), that has propagated 

through the waveguide can be represented as the inverse Fourier transform of the frequency spectrum of the 

dispersed signal, XD(w), Eq. (4.1) (Peterson 1999). 

The dispersed signal can be represented by the input reference signal, XR(W), multiplied by a dispersion 

function, FD(o), Eq. (4.2). 

XD (0) = X R  (@)FD ( a )  (4.2) 

The dispersion hnction is a transfer hnction that represents the dispersion in the waveguide. The 

dispersion function contains the effects of all of the modes and is equal to the sum of the transfer hnctions 

of the modes. 

The transfer function of cach mode is determined from the three parts of the experimental setup: 

the transmission &om the exciting transducer to the waveguide, the propagation through the waveguide, 

and the transmission from the waveguide to the receiving transducer. The phase information of the transfer 

hnction is dictated by the propagation of the mode through the waveguide, and the amplitude is provided 

by the boundary conditions on both ends of the cylindrical rod 



4.1.1. Excitation 

The excitation on the end of the waveguide determines the relative amplitudes of the modes. An 

ultrasonic contact transducer excites the ultrasonic signal into the waveguide, so the characteristics of the 

transducer determine the boundary conditions on the end of the cylindrical bar. The transducer exhibits a 

pressure, P(r), on the end of the cylinder, which specifies the normal stress boundary condition. This 

boundxry condition is a Function of radius and can be represented by an expansion over the normal stress 

function, @,,. 

P(r)  = A ( J ) O ~ ) ( ~ )  , (4.3) 

J 

where A@ and d'), are associated with the wave number p) of mode j. Previous authors have made 

compelling arguments that the slress functions of the modes form a complete set (Gregory and Gladwell 

1989, Fama 1972). The coefficients in the expansion, A @ ,  are equal to the amplitudes of the modes. 

Either the shear stress or the radial displacement specifies the second boundary condition on the 

end of the bar. The shear stress, d",, is assumed to be zero because a viscous fluid coupling is used 

between the transducer and the bar. Therefore, the amplitudes of the modes must also satisfy an expansion 

over the radial shear stress functions, 

These two expansions are usually written as a single expansion (for example Zemanek 1972 and Gregory 

and Gladwell 1989). 

There are a number of approaches to calculating the coeffic~cnts, A O ) ,  In the expansion. The fwst 

choice is to use the orthogonality relations of the hnct~ons ,  if available. These relations have bccn 

developed by Fama (1 972) for the elastostatic case: and Fraser ( 1  975) demonskated that the relations also 

applied to the elastodynamic case. The orthogonality relation for a cylinder with a stress free lateral 

surface is expressed as: 

a I(w(;)oc a~ 'u " ' ) r d r  = 0 j f f  (Fraser 1975, Eq. 17). (4.5) 



For the case of pure stress end conditions this relation does not provide a direct solutio~l for the coefficients 

(Fama 1972, Eq. 10). However, Fama shows there is a unique solution for the coefficients in the pure end 

condition problem. 

Zemanek (1972) used a simple method to solve for the coefficients, a system of equations. The 

number of equations was dictated by the number of modes of interest and the desircd accuracy. The same 

number of points were considered along the radius, and for each point an equation was generated from 

either, Eq. (4.3) or Eq. (4.4). This technique works well when a luge  number of modcs are being 

considered. However, at the lowest frequencies there is only one propagating mode; so evanescent  nodes 

must be considered for better accuracy. 

Gregory and Gladwell (1989) used an integal formulation of least squares to zvaluatc the 

coefficients. In the present model the expansion is evaluated at discrete points usii~g a least squares 

technique to solve the coefficients. This technique is more accurate than thc system-of-equations and 

allows more points to be evaluated since the system of cquations is overdetermined. Additionally, the least 

squares relation can be derived directly from the expansion, Eq. (4.3), by rewriting the equation to include a 

residual error: e: 

When the sum of the squares of the residuals is minimized the coefficients can be expressed in matrix 

notation as: 

In the limit as the residual error approaches zero the coefficients are the exact solution. This equation 

provides the amplitudes of the modes. 

The main issue with the least squares method and any collocation method is the number of modes 

to consider in the expansion. For any number of modes in the expansion the accuracy of the coefficients 

can be found by summing the series, Eq. (4.3) and Eq. (4.4), and comparing the value to the applied 

pressure excitation, P(I;I, at points along the radius. An increase in the number of modes considered in the 

expansion will increase the accuracy even if only slightly. At the lowest fi-equencies where only a small 

number of modes propagate, evanescent modes must be considered for an accurate value of the amplitudes 
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to be calculated. At higher frequencies only the propagating modes may be sufficient to accurately 

calculate tlle coefficients in the expansion. The number of modes considered in the expansion is discussed 

in the experimental comparisons. 

4.1.2. Propagation 

Each of the propagating modes has a different phase velocity. which varies with frequency. The 

phase velocity provides a phase shift in the transfer function of the rnodc. The length of the waveguide 

divided by the phase velocity is the time for a point of constant phase in a continuous harmonic wave to 

travel the length of the waveguide. This time delay is a phase shift in thc £i-ecjuency domain. The phase 

shift is represented as: 

o ( J ) ( ~ )  = exp(id:  c ( J ) ] ,  (4.8) 

where c!') is the phase velocity of mode j at frequency o. This technique has also been used by Kohl, Datta 

and Shah (1992) in semi-infinite hollow cylinders and by Peterson (1999) whose model is refined here. 

The evanescent modes are not considered in the propagation because the modes have at least 40 d B  of 

attenuation at a distance of 20 diameters, and at 5 diameters the effects are negligible. 

4.1.3. Reception 

The transmission fiom the waveguide to the receiving transducer adds another amplitude factor to 

the transfer h n c t ~ o n  of each mode. Ideally this interface is modeled as a reflection problem, with the 

stresses and displacements continuous at the interface, to determine the reflected and transmitted energy. 

Experimentally, a viscous fluid coupling is used between the waveguide and the transducer, so it is 

assumed that no shear stress is transmitted. However, the normal stress excites the normal modes of the 

piezo-electric transducer. A more rigorous interpretation of the interface would consider the slight 

viscosity of the coupling fluid, which transmits some shear energy. However, the shear energy transmitted 

into the coupling fluid attenuates considerably, and any shear energy transmitted to the transducer does not 

excite any of thc normal modes of the piezo element (Schmel~ 1998). The experimental signals shown in 

this research represent the excitation of the normal modes of the piezo element of the transducer. 

The contact transducer is modeled as an immersion transducer, which has a response that is 

proportional to the average normal pressure over the face of the transducer (Schmerr 1998). The average 



pressure exhibited on the transducer by a single mode is calculated by integrating the normal stress of the 

mode, di,, over the area of the bar and dividing by the area. The average pressure is an additional 

amplitude factor in the transfer function of a mode, and it is only calculated for the propagating modes. 

4.2. Final Model 

The combination of the three parts of the model gives the final form of the dispersion function, 

which is the sum of the transfer functions of the propagating modes, Eq. (4.9). 

The transfer function of each propagating mode contains a relative amplitude term fiom the cxcitation, 

~"'(w), a phase shift term from the propagation, Qjfi)(co), and an additional amplitude term representing the 

average normal mess. It should be noted that if the phase velocity was the same for all of the modes and 

did not change with frequency, then the phase shift, d ' ( w ) ,  would be the same for all of the modes at each 

frequency. This would allow the phase shift to move outside the summation, and therefore the dispersion 

function would reduce to a term consisting of the phase shift times the average pressure of the excitation. 

This is the case for a thin bar where only the first mode propagates and the phase velocity is equal to the 

bar velocity, c,, = JEIp 

4.2.1. Discretization 

The complex~ty of the Pochhammer-Chree theory and the arbitrary nature of the ultrasonic signals 

that are considered dictate that the calculations be best made numerically and thus at discrete fiequcncy 

~ntervals. A discrete Fourier h-ansform (DFT) pair, Eqs. (4.10) and (4. I I ) ,  is used to transform between the 

time domain and the frequency domain. A lowercase letter is used to denotc the time domain and an upper 

case letter is used to denote the kequency domain. 



where the index n corresponds to time, the index rn corresponds to tiequency, and N is the number of points 

in the DFT. 

The substitution of the dispersion function into Eq. (4.2) and Eq. (4.2) into the discrete version of 

Eq. (4.1) yelds the final form of the model, 

The phase shift is represented discretely as: 

d J ) ( r n )  = exp(- i&i c (~)(rn)  l ~ t ) r 2 i i  i N)), (4.13) 

where co)(rn) is the phase vclocity of mode j at frequency rn, and At is the time step. The operations within 

the square brackets of Eq. (4.12) are calculated at each 6equency. 

4.2.2. Discussion 

This model calculates the change of a signal after propagating through a finite length cylindrical 

bar. The lengths of interest, greater than 5 diameters, are sufficiently in the far field; so only the 

propagating modes need to be considered for the propagation and reception portions of the model. 

However, at the lowest frequencies only a small number of modes propagate. The consideration of only 

these modes may provide insufficiently accurate results in the expansion to determine the amplitudes of the 

modes. To  ensure suficient accuracy, evanescent modes should also be considered in the expansion. 

Thus, an area of concern with the model is the number of modes to consider in the calculations. 

The least squares method of solving the coefficients in the expansion is quite robust, so the results 

do not typically change much with an increase in the number of modes. Transfer functions of the first four 

modes were calculated using various numbers of modes in the expansion, including just the real modes and 

up to nine modes. It was found that the difference in the calculated transfer functions of the individual 

modes was typically less than two percent of the maximum value except for the rangc of frequencies before 

the second mode cutoff frequency where the difference was larger. However, it was found that at high 

frequencies with a large number of propagating modes, considering nine modes in the expansion provided 

good results. 



Similar results were also observed when only the normal strcss was considered in the expansion. 

This is also a result of considering bars with lengths that are in the far field. From an experimental 

standpoint the negligible effects of the second boundary condition can be thought of in t a m s  of a dynamic 

Saint-Venant's principle. 

The evaluation of the expansion at a discrete number of points along the radius produces some 

obvious erroneous calculations at some frequencies. It was often found that just above a mode's cutoff 

frequency the amplitude of the mode would often spike along with one of the lower modes. The naturc of 

the mode shapes required large offsetting amplitudes to satisfy the boundary conditions. However, it was 

found that if the number of modes considered was limited, the errors disappeared. The aigorithm that 

provided the best results considered a fixed number of modes on eithcr side of the mode with the largest 

average normal stress. 

A number of additional steps were used to simplify the model and minimize numerical problems. 

The stress functions of the modes are complex valued at any given radius, so the coefficients in the 

expansion are complex as well. However, the phase shift of each stress function can be calculated to 

eliminate the imaginary part of the stress function. The real form of the stress functions simplifies both thc 

matrix operations and the integration and produces a real coefficient. 

The amplitudes of the stress functions change with frequency; therefore, it is prudent to also 

normalize the real form of the strcss functions to help prevent the matrix from becoming singular. This 

also ensures that the stresses are the same order of magnitude as the applicd excitation pressure. It is 

necessary that the same form of the stress functions be used in the expansion and the intenation, so that 

there are no erroneous phase or amplitude terms added to the transfer functions. 

4.3. Experimental Comparison of Analytical Model 

A number of experiments in a through-transmission configuration were performed for comparison 

to the analytical model. The signals and the size of the waveguides used In the experiments are 

representative of ultrasonic NDE experiments (e.g. Jen el al. 1997, Peterson 1994). The application of the 

analytical model is discussed in the description of the experiments. 

The experiments used two 28.6 mm diameter, 1 MHz broadband, longitudinal contact transducc~.~ 

[Panametrics, model V194, Waltham, MA] to excite and rcceive the ultrasonic signals. The transducers 



had a bandwidth, corresponding to a 6 dB drop in the peak amplitude of the spectrum, of 0.4 MHz to 1. I 

MHz. The pressure distribution over the area of the transducers was nearly uniform (Puckett and Peterson 

2003). Therefore, the pressure distribution, Pfi) ,  used in the analytical model was prescribed as having a 

value of unity at all radii and for all kequencies. 

Signals were provided by two different sources depending on the experiment. For one of the 

experiments a pulserlreciever [Panametrics, 5072PR, Waltham, MA] was used to generate a pulse and 

amplify the received signal. For the other experiments an arbitrary waveform generator [Agilent 33250A, 

Palo Alto, CAI was used to generate more complex signals to drive the transducer. With this configuration 

a radio frequency power amplifier [EN1 A-300, Rochester, NY] with a gain of 55 dB was used to amplify 

the signal to the kansducer, and the signal generated by the receiving transducer was amplified by an 

ultrasonic preamplifier [Panametrics model 5660C, Waltham, MA] with a gain of 40 dB. For both setups 

the amplified signal was averaged to remove noise and recorded by a digital storagc oscilloscope 

[Tektronix TDS 520A, Wilsonville, OR]. 

Waveguides of 10 mm and 25 mm diameter fused quartz cylindrical rods w ~ r c  used. An 

amorphous material was chosen for the waveguide because linear elastic and homogeneous assumptions are 

well satisfied. The properties of the fused quartz rods used in the experiments arc a Young's modulus, E; 

of 72 GPa, a denslty, p, of 2200 kg/m3, and a Poisson's ratio, v, of0.162 (General Electric Advanced 

Materials 2004). A coupling fluid [Sonotech, Inc. UT-30, State College, PA] was used betwcen the 

transducers and the waveguide to improve the transmission of the ultrasonic signal. 

4.3.1. Thick Rod 

A thick cylindrical rod was considered with narrow band and broad band excitations. Thc narrow 

band excitations requued the consideration of up to nine modes over anarrow range of frequencies. The 

broadband excitations considered a similar number of inodes but over a much larger range of frequencies. 

Narrow Band 

The fcrst experiments cons~dered a 0.25 m long, 25 mm diameter, fused quartz waveguide excited 

by a Gaussian modulated sine wave. Two different frequencies of the sine wave are shown that compare 

the results of the experiments to the analytical model. The first frequency, at I MHz, coincides with the 

maximum group velocity of the 61h propagating mode. The other frequency, at 1 107 kHz, was chosen so 
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that the group velocities of all of the modes were well below the velocity of a longitudinal wave in an 

infinite medium, in this case, the dip in the group velocity curves following the maximum group velocity of 

the 6Ih mode. Fig. 4.1 displays the group velocity curves for the 25 mm quartz waveguide with the vertical 

dashed lines defining the two t?equencies. For each frequency the signal was propagated through the 

waveguide experimentally and calculated using the model 
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Fig. 4. I .  Group veloclty curves of a 25 mm diameter hsed quartz bar. The vertical dotted lines indicate the 

frequencies used in the Gaussian cxcitations. 

For the model, the discrete Fourier transform (DFT) of the Gaussian was used as XR, the reference 

signal. Dispersion curves (in a wave numbers vs. frequency domain) were calculated for the propagating 

modes at the appropriate frequencies prior to running the model. At each frequency step the phase 

velocities and the normal stress functions were used to calculate the complex value of the dispersion 

function, FD(0). TO evaluate the coefficients, A ~ ) ,  in the expansion, 100 points along the radius were 

considered. Therefore, in Eq. (4.7) the pressure, {PI, is a l O O x  1 column vector, all entries have a valuc of 

unity for the constant pressure distribution. The stress, (a], is a 100 x J matrix where J represents the 

number of modes being considered. Each column of the matnx contains the values of the normal stress 



(Eq. 2.11) along the radius for one of the modes being considered. For the two Gaussian signals, all of the 

energy is in the higher propagating modes, so only the propagating modes were considered in the 

expansion. For the phase shift, S P ~ ) ( ~ ) ,  the length of the rod (0.25m) and the phase velocity are used. ? b e  

phase velocity is calculated from the wave number by coj = o@. Finally, the average normal stress over 

the end ofthe waveguide is calculated for each mode. The coefficient for each m d e  is multiplied by its 

phase shift and average pressure. This product is summed with the products calculated for the other modes 

to produce the value of the dispersion hnction for that frequency. These calculations are repeated at each 

frequency step. The inverse DFT of the dispersion function multiplied by the spectrum of the excitation 

signal is the calculated dispersed signal. This calculated dispersed signal is compared to the measured 

dispersed signal. 

Fig. 4.2 compares the input Gaussian signal (top) to the experimental signal (middle) and the 

analytical signal (bottom) for the 1 MHz frequency. There is good agreement between the analytical signal 

and the experimental signal, and both signals exhibit very little dispersion. This is not the case for the 

second fiequency. Dispersion is much more apparent in the comparison of the signals from the 1 107 kHz 

Gaussian excitation, Fig. 4.3. Despite the dispersion, the analytical and experimental signals are still very 

similar. 

Broadband 

The ability of the model was also considered with a broadband excitation. For this experiment a 

pulse excitation of the transducers was used with the 0.5m long 25 mm diameter quartz waveguide. There 

are 13 modes that have cutoff Gequencies below the upper 6-dB limit of the frequency spectrum of the 

pulse. The same procedure was used for the analytical model, and again only the propagating modes were 

considered in the expansio~l because the Gequmcy spectrum of the signal contains very little energy in the 

first modes. 

Fig. 4.4 compares the experimental and analytical signals through a 0.5 m long 25 mm diameter 

fused quartz waveguidc. For this excitation trailing pulses are observed; which are consistent with plane 

wave theory (Redwood 1960). The general shape between the a~ialytical and experimental signals is very 

similar, and the anival times and the amplitudes of the pulses are in good agreement. The analytical model 



1 
a, 
3 
3 

experimental 
a 

'2 + 
m 

-0.5 

I 

50 GO 70 80 90 100 110 120 130 140 

Time @s) 

Fig. 4.2. 1 MHz Gaussian excitation of a 0.25m long 25 mm diameter hsed quartz waveguide. The 

excitation signal (top) is compared to the experimental received signal (middle) and the analytical signal 

(bottom). 
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Fig. 4.3. 1 107 kHz Gaussian excitation of a 0.25m long 25 mm diameter fused quartz waveguide. The 

excitation signal (top) is compared to the experimental received signal (middle) and the analytical signal 

(bottom). 



appears to capture nearly all of the physics of the wave propagation in the cylindrical waveguide in this 

experimental configuration. 
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Fig. 4.4. Measured and calculated signals of a pulse propagated through a 0.5 m long 25 mm diameter 

fused quartz waveguide. 

A comparison in the frequency domain indicates similar results. The top graph in Fig. 4.5 is the 

magnitude of the dispersion function for a 0.2 m long 25 mm diameter quartz bar calculated by the model. 

There are observed dips in the dispersion function, but these characteristics are also observed 

experimentally. The lower graph in Fig. 4.5 is the magnitude of the fiequency spectrum of an experimental 

signal measured in the quartz bar. For comparison, the magnitude of the fiequency spectrum of the 

excitation signal is also sho\m, middle graph Fig. 4.5. Similar dips appear in the 6-equency spectrum of the 

measured experimental signal and at the same locations as the dispersion function. These dips are a result 

of the insensitivity of the receiving transducer to radial variations in the normal stress. It is advantageous to 

consider the transfer functions of the modes to explain the occurrence of the dips, 
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The transfer functions ofthe I", 61h, and 7Ih modes for the 0.5 m long waveguide are plotted in thc 

lower graph of Fig. 4.6 (other modes are not shown for clarity). The upper graph of Fig. 4.6 shows the 

d~spersion function for this waveguide. A comparison of the two graphs indicates that the large dips in the 

transfer function of the waveguide appear at frequencies where the magnitudes of the transfer functions of 

two neighboring modes are equal. The phase velocities of the two modes at these frequencies axe different. 

For certain length bars the modes will be entirely out of phase at the receiving end of the bar, and the 

magnitudes will cancel each other. Similar effects are observed at other Grequencies though not as 

pronounced. In all cases it is a result of the interaction of the modes. The energy is present; however, the 

superposition of the normal stress of the modes ovcr the radius is such that the energy is not measured 

because the response of the transducer is proportional to the average normal stress. It must be stressed 

though that the model is intended to represent the experiment not mathematical modeling. Similar models 

that do not include receiving end conditions have been used in theoretical studies and have shown to satisfy 

energy criteria (Gregory and Gladwell 1989, Rattanawangcharoen, Shah, and Datta 1994). 
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Fig. 4.6. Magnitude of the transfer hnction of the cvaveguide (top) and the mamitudes of the transfer 

functions of the lst, 6th, and 7th modes (bottom). Other modes are not shown for clarity. 



The transfer functions of the modes also illustrate that each mode is dominant over a small 

fkequency range. This is consistent with the observations of Zemanek (1962) who found that the stress 

hnction of a mode is entirely in phase when the group veloclty is close to the longitudinal wave speed. The 

experiments and the model used a uniform excitation across the radius of the cylindrical bar, which most 

excites the modes whose normal stress hnctions are in phase. The averaging over the area of the normal 

stress of the receiving transducer further emphasizes the modes that are in phase. 

4.3.2. Long Rod 

Experiments also considered a 1.22 m long 10 mm diameter fused quartz waveguide with a 

Gaussian excitation of the transducer for the reference signal. The reference signal and its spectrum appear 

in Fig. 4.7. At the I-MHz centcr frequency the diameter-to-wavelength ratio &A, is 1.7, where is A, is 

calculated using the longitudinal wave speed, c,. For this geometry waveguide, thc fmst four modes have 

cutoff frequencies below the upper 6-dB limit of the frequency spectrum of the signal. The analytical 

model for this waveguide considered the first five modes at every frequency. For the lower 6equencies 

some of the modes were evanescent. At the highest bequencies the five modes consisted of the mode with 

the largest average normal stress and the two modes above and below. 

The same procedure was used for the analytical model with exception of different dispersion 

curves. The dispersed signal calculated by the analytical model is compared to the measured dispersed 

signal in Fig. 4.5. The a-rival times, the lengths, and the general shape of the two signals are quite similar. 

There are discreparicics between tile two signals in the interference patterns. This is not unexpected. In thc 

kequcncy range of the signal the model is evaluated at 5000 different frequencies, so a slight error in the 

phase velocities have a profound effect on signal. Therefore, it is useful to look at several different 

domains to determine the ability of the model. 

One domain in which signals can be compared is a time-reversal mirror (TRM) (Fink 1997). For a 

regular TRM all of the signals are exited and measured expa-imentally. A TRM experiment consists of two 

steps. In the case of a cylindrical rod, first, an acoustic signal is excited by a source at one m d  of the rod. 

The acoustic signal propagates through the rod, and the altered signal is recorded at  the opposite end. In 

the second step of the TRM the recorded signal is reversed in time, and the receiver is excited with the 
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Fig. 4.7. Reference signal used with a 1.22 rn long I0 mm diameter fused quartz waveguide. Upper graph 

is the time domain. Lower graph is the frequency domain. 
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Fig. 4.8. Measured and calculated signals of the reference signal propagated through a 1.22 m long 10 mm 

diameter fused quartz waveguide. 



reversed signal. The reversed signal propagates through the rod, and a new signal is recorded at the source. 

If time invariance is satisfied, this new signal is the same as the original acoustic signal. This ability of the 

TRM can be used to produce a compact time signal fiom a dispersive system. For this experimental setup, 

time invariance has been demonstrated using a TRM, and a compact signal has been produced in. a 

dispersive waveguide (Puckett and Peterson 2003). 

If the analytical model correctly captures the physics of the waveguide then the calculated 

dispersed signal should also be ablc to produce a signal with compact support in the time domain. The 

previously calculated signal was used in place of the experimental signal in a T k V  as a means ofjudging 

the ability of the analytical model. For t'he experimcnt, both the experimentally measurcd dispersed signal 

and the calculated dispersed signal were reversed in time and used to excite the transducer in the 

esperimental setup. The measured signals are compared in Fig. 4.9. It cui bc seen that the expcrimcntal 

signal reproduced the original signal consistcnt with previously reported experiments. Thc analytical 

signal, however, also produces a signal with compact support in the time domain, which when compared 

with the original dispersed signal is significantly shorter. Thcrc are discrepancies between the signals, 

which again are not unexpected considering the number of calculations. Additionally, if there were a major 

error in the model then such a compact signal would not have been measured. 

A second domain for hrther comparison ofthe calculated dispersed signal with experimentally 

measured dispersed signal is the time-frequency domain. Time-frequency analysis provides an additional 

mcans of evaluating the calculated signal. One standard tool to -analyze ultrasonic signals is the sh.ort-time 

Fourier transform (STFT) (e.g. Niethammer and Jacobs 2001). The energy density spectrum of the STFT, 

called a spectrogram, can be used to visualize the rcsults of a STFT. Spectrograms of the dispersed signals 

appear in Fig. 4.10 and Fig. 4.1 1 with the analytical curves in black. These curves are the calculated arrival 

times of the modes based on the group velocity curves. In both spectrograms the individual modes are 

appuent and follow the analytical curvcs. Additionally, the same modes appear in both spectrograms. 

However, there does appear to be slightly more energy in the analytical signal especially in the slower 

group velocities. 
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Fig. 4.10. Spectrogram of the measured dispersed signal from Fig. 4.8. Theoretical curves appear in black. 
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Spectrogram of the calculated dispersed signal from Fig. 4.8. Theoretical curves appear in black. 



4.4. Parametric Study 

Experimental comparison with the analytical model shows the model adequately captures the 

physics of the wave propagation for d/A, of 1.7 and 4.2. At. lower values of d/L, there are fewer propagating 

modes. The analytical model may not be able to capture all of the physics of the wave propagation with 

only a couple of modes. For values of d//l, greater than 4.2 there are more propagating modes, so the model 

should be capable of capturing the physics of the wave propagation. 

4.4.1. Smaller Values of #I.., 

The 10 mm diameter, 1.22 m long hsed  quartz waveguide was also excited with a Gaussian 

broadband signal centered at 250 kHz. The experiments used 500 kHz transducers, the frequency response 

of which shiftcd the center fiequency of the Gaussian to about 300 kHz. At the 300 kHz center fiequency 

the diameter-to-wavelength ratio, &I,,, is 0.5 1, where is A, is calculated using the longitudinal wave speed, 

c,. A phase corrected 250 kHz Gaussian signal propagated through a nondispersive aluminum sample 

provided the signal used for the analytical model. 

The same comparisons used to evaluate the 10 mm diameter waveguide at 1 MHz are used to 

evaluate the 10 mm waveguide at 250 kHz. The dispersed signals are compared, Fig. 4.12. The 

experimental time-reversal mirror was performed using the analytically calculated and experimentally 

measured time-reversed dispersed signal, Fig. 4.13. The spectrograms of the dispersed signals were 

calculated, Fig. 4.14, and Fig. 4.15. Additionally, the ftequency spectrums of the anal.ytically calculated 

and experimentally measured dispersed signals are compared, Fig. 4.16. 

From these figures there are mixed results about the ability of the analytical model. The d~spersed 

signal calculated by the analytical model has a noticeably different shape than the measurc signal. 

However, the calculated dispersed signal is almost as effective as the experimentally measurcd dispersed 

signal in the TRM experiment. The spectrograms of both the experimental and analytical signals follow the 

theoretical curves closely and exhibit the same modes. However, the experimental spectrogram indicates 

that the second mode dominates entirely not long after the second mode cutoff fiequency, and there is no 

power transmitted in the thud mode. The spectrogram of the analytical signal shows there is still some 

power in the fust mode at higher €requencies than the experimental signal, and thtre is power in the third 

mode as well. Finally, the frequency spectrums of the two signals appear quite different. However, in both 
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Fig. 4.1 2. Calculated and measured signals from a 250 kHz Gaussian excitation through a 1.22 m long, 10 

rnm dia. quartz rod. 
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Fig. 4.1 3. Measurcd signals kom a time-reversal mirror in a 1.22 m long, 10 mm dia. quartz rod. Top and 

bottom signals were excited by the time-reversed analytical and experimental signals from Fig. 4.12. 
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Fig. 4.14. Spectrogram ofthe measured dispersed signal fiom Fig. 4.12. Theoretical curves appear in black. 

Fig. 4.15. Spectrogram of the calculated dispersed signal from Fig. 4.12. Theoretical curves appear in black. 



of the spectrums there is a dip between 300 kHz and 400 kHz, and right a f t a  the dip there is "noise" in the 

spectrum. This "noise" is due to the interaction of the fust and second modes. 
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Fig. 4.16. Frequency spectrum of the signals in Fig. 4.12. 

Jt is apparent that the analytical model is capturing some of the physics of the wave propagation; 

however, there are discrepancies. The poor quality of the experimental time-reversal indicates there may 

be some issues relatcd to this experimental setup. Thesc issues are also indicated by the frequency 

spectrum of the experimental system, which does not have the general shape of the excitation I k e  the 

a~~alytical signal. Problems arise when conducting ultrasonic experiments to excite only the first one or two 

axially symmetric modes. For a large diameter waveguide a low frequency is needed to excite only the frst 

mode. A low center-frequency contact transducer has a large diameter to acconlmodate the si.ze of the 

piezo-electric element. In order to excite the fust mode ultrasonically the diameter of the transducer must 

be much larger than the diameter of the cylinder. However, for good experimental results, the size of the 

transducer and the diameter of the bar should be comparable. This experimental scenario is on the outer 

limits of ultrasonic uses, and will be rarely encountered. 



4.4.2. Large Values of &AL 

A fi~sed quartz waveguide 25 mm in diameter was used to consider values of d/AL up to 20. A 

pulse excitation was used with 5 MHz center-frequency transducers. At 5 MHz the diameter-to-wavelength 

ratio, d/&, is near 2 1. The dispersed signal calculated by the model was compared to the experimentally 

measured dispersed signal in a 0.2 m long waveguide, Fig. 4.17. Consistent with the 1 MHz pulse the 

signal calculated by the model compares well to the experiment. Although the exact shapes of the signals 

are only similar, the arrival times and relative amplitudes are very accurate for all of the trailing pulses. 

Note that the vertical scales of the lower graphs are smaller than the vertical scale of the top graph. The 

frequency spectrum of the experimental signal is compared to the dispersion function in Fig. 4.5 
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Fig. 4.17. Comparison of the experimental and analytical signals in a 200 mm long, 25 mm diameter fused 

quartz waveguide excited by a 5 MHz pulse. 

4.5. Discussion of Experiments 

The comparisons made for a number of experimental conditions demonstrate the ability of the 

model. Within those experimental conditions the model produced consistent results. The experimental 



comparisons indicate the analytical model captures the general physics of multiple mode wave propagation 

in cylindrical waveguides. The ability of the model was demonstrated in four different domains. In the 

time and frequency domain the dispersed signals calculated by the analytical model were found to be 

similar to the experimentally measured dispersed signals for the same waveguide. In the time-reversal 

domain the calculated dispersed signal was able to produce a signal with compact time domain in a 

dispersive waveguide using a time-reversal mirror. In the time-kequency domain the spectrograms of the 

analytical and experimental signals demonstrated the presence of the same modes in each signal. In all the 

domains it was shown that the model captures the general physics of multiple mode wave propagation in 

cyhndrical waveguides. However, there were some slight discrepancies between the signals calculated by 

the analytical model and the experimental signals. 

The comparison of the dispersed signals for all of the different waveguides produced similar 

results. The analytical signals normally had a similar shape as the experimental signal with somc 

discrepancies. These discrepancies are not unexpected. For most comparisons the model considered 5000 

different frequencies and up to 9 modes. A slight variation in the material properties affects both the phase 

velocities and the normal stress functions. However, the discrepancies seem to be related to the relative 

amplitudes of the modes. The arrival times of the dispersed signals agreed well betwccn thc experiments 

and the model. Also, the length of the dispersed signals agreed well. For the 5 MHz pulse the arrival times 

of all of the pulses calculated by the model were exactly the same as the arrival times of thc pulses 

observed in the experiments. However, the shapes of the pulses are only similar with obvious differences. 

These comparisons imply the phase information in the rnodcl is accurate, but the amplitudes of the modcs 

may be off. 

The TRM experiments and the spectrograms indicate similar results. The ability of the analytical 

signal to create a signal with compact support in the time domain was demonstrated with the TRM 

experiments despite the discrepancies between the experimcntal and analytical dispersed signals. These 

observations are consistent with previous time reversal research h a t  has shown that only the phase 

information is needed in the time reversal mirror to creatc a signal with compact support in the time domain 

(Montaldo el al. 2001). Therefore, the TRM experiments imply thc phase velocity information seems to be 

accurate regardless of the accuracy of the amplitude information. 



The best indication that the amplitude information is not perfect appears in the spectrograms. The 

spectrograms of the dispersed signals calculated from the analytical model show that the higher ~nodcs 

contain cnergy at frequencies not observed in the spectrograms of the experimental dispersed signals. 

Specifically, the spectrograms in Fig. 4.10 and 4.1 1 show there is extra energy in the third modc of the 

analytical signal. 

The experimental comparisons with the analytical model indicate that for these waveguides thc 

phase information is accurate. This implies the material properties of the waveguide used in the analytical 

model are accurate. The accuracy of the material properties would imply the normal strcsses should also be 

accurate. Therefore, the discrepancies in the amplitude information may be due to the assumptions of the 

end conditrons. Both the excitation transducer and the receiving transducer have been idealized. Tha-e 

may be aspects of the experimental system that are not captured in the analytical model. Meitzla (1961) 

observed mode coupling between the first axially symmetric mode and certain flexural modes at 

fiequencies where the phase velocity of the first axially symmetric mode was the same as the phase 

velocity of one of the flexural modes in long \\ires. The measured signals displayed a reduction in thc pcak 

amplitude and an increase in the duration of the pulse. The waveguides considered in this research arc not 

as long; however, there may be some excited flexural modcs that contribute to the measured s~gnal,  which 

are not accounted for in the analytical model. However, the information from the model is adequate to 

produce results that generally capture the physics of wave propagation in cylindrical waveguides. 

This model assumes linear elastic homogeneous isotropic materials. If these criteria are not 

satisfied then calculated signals may not agree well with experiments. A possible cxtension of this work 

could consider the use of modes sensitive to anisotropy to characterize the radial material properties of the 

waveguide. 



CHAPTER 5: PHYSICAL INSIGHTS 

The ability of the analytical model to caphire thc physics of the wave propagation allows the 

model to be used to explore the behavior of axially symmetric wave propagation in the wavegujdc. The 

contribution of each propagating mode can be determined from the transfer fbnctions of the modes, which 

have already indicated that different modes dominate ovcr certain frequency ranges. I t  is thc interactions of 

the modes that describe the experimentally observed phenomena. 

5.1. Trailing Pulses 

When the end of a solid cylindrical bar is excited by a high ficquency pulse the measurement of 

the transmitted signal at the opposite end of the bar is characterized by the appearance of several secondary 

pulses of similar shapc trailing the main pulse as shown in Fig. 5.1. These secondary pulses are known as 

trailing pulses, and were first observed by Mason and McSkimin (1 947). They explained the appearance of 

the trailing pulscs by considering the transverse wave reflected from an incident longitudinal wavc. 

Initial excitation 1 I 

I 

Fig. 5.1. Comparison of a IMHz pulse excitation with the measured signals fiom two different length bars. 
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A longitudinal wave at glancing incidence on the traction fjcc boundary of the cylinder reflects a 

longitudinal wavc and a transverse wave to satisfy the boundary conditions. The angle of the transverse 

wave with the wall of the bar is considerable, such that the transverse wave propagates across the diameter 

of the bar over a relatively short length of the bar, Fig. 5.2. On the opposite side of the cylinder thc 

transverse wave reflects a transverse wave and a new Longitudinal wave, which propagates in the samc 

direction as the original longitudinal wave and corresponds to thc first observed trailing pulse after the 

main pulse. The time delay of the trailing pulse behind the first pulse is the time for thc transverse wave to 

propagate across the diameter of the bar. The transverse wave continues to excite additional longitudinal 

waves at each reflection with the cylinder wall. The longitudinal waves appear as additional trailing pulses 

in the measured signals of Fig 5.1. Although these wave interactions occur for any excitation, distinct 

trailing pulses are generally observed in experiments where the excitation signal has sufficient bandwidth 

such that the pulsc length is less than the time delay between pul.ses. 

A complete description of axially symmetric wave propagation in infinite solid cylinders is given 

by the solutions ofpochhammer (1876) and Chree (1889). However, the relationship of the solutions with 

trailing pulses has not been considered extensively. McSkimin (1956) approximated the cylinder as a fluid 

waveguide by considering only the dilatational components of the Pochhammer-Chree solutions. The 

approximation was used to determine the effective loss &om the mode conversion at the boundary, so the 

main pulse could be used to measure attenuation. Using the approximation of a fluid waveguide introduced 

by McSkimm, Redwood (1959) conducted a more rigorous analysis, which also considered inward 

traveling transverse waves. Redwood hrther suggested that the Pochhammer-Chree solutions do not 

predict the existence of trailing pulses or the observed amplitudes of the pulses. 

Trailing pulses have been observed for pulse excitations consisting of a single cycle as well as for 

pulse excitations consisting of several hundred cycles. In the lattcr case, the excitation signal has a 

bandwidth that is very narrow, and Redwood focused on this case. From experimental observations of high 

ficquency excitation signals in waveguides (a radius to wavelength ratio, a/),, of the order of 10) Redwood 

concluded the fust pulsc in the series of trailing pulscs travels with a velocity close to that of longitudinal 

waves in an infinite medium, CL. If the pulse were to be described by the Pochhammer-Chree theory, then 

the signal would have to be propagating in one of the higher modes. However, Redwood noticed the 



Fig. 5.2. Propagation of a compressional wave (solid) excites a trailing shear wave (dashed), which excites 

additional longitudinal and shear waves. 



dispersion curves predict the anivals of the pulses will change as the phase velocity and group velocity 

change with frequency, while in the experiments, the pulses arrivcd at the same times independent of 

frequency. Rcdwood concluded the Pochhammer-Chree solutions could predict ne i tha  the observed loss 

in amplitude of the main s i ~ a l  nor the presence of any trailing pulses and developed the modified solution. 

However, these conclusions are based solely on the phase velocity curves and are incorrect. For 

the case of trailing pulses, the idea of the first pulse in the series propagating in a single higher mode is 

wrong. A new look at the relationship of trailing pulses to the Pochhammer-Chree theory is needed, and 

the advances of computer technology allow a Inore detailed analysis to be made. The semi-analytical 

model based on the Pochhamrner-Chree solutions allows the contribution of each individual mode to be 

determined. The individual modal contributions make clear the relationship of the Pochhammer-Chree 

solutions to trailing pules. 

A closer look at the excitation signal and the transfer functions of the propagating modes reveals 

the relationship of the Pochhammer-Cluee solutions to the observed behavior of trailing pulses. Fig. 5.3 

compares the frequency spectrum of the excitation signal used in Fig. 5.1 (top) with the transfer functions 

of the modes of the cylindrical bar (middle) and the group velocity curves (bottom). In thc graphs of the 

transfer functions and the group velocity curves, each Line corresponds to a diffcrent propagating mode. It 

is apparent from the middle graph that the magnitude of the transfer function of each mode is largest o v a  a 

small range of frequencies. In effect a mode dominates over a specific frequency range. This is consistent 

with Zemanek's (1962) findings and other explanations. Zemanek noted that the axial displacement is in 

phase over a range of frequencies where the mode's group velocity is near the longitudinal wave speed. 

The same behavior is observed for the normal stress. The experiments and the model used a uniform 

excitation across the radius of the cylindrical bar, which most excites the modes whose normal stress 

functions a - e  in phase. The averaging ovcr the area of the receiving transducer further emphasizes the 

modes that are in phase. These two boundary conditions produce the shape of the transfer functions of the 

modes. 

The frequency spectrum of the excitation pulse overlaps the txansfer functions of multiple modes, 

which implies the pulse excites rnult~ple propagating modes in the bar. But how do the trailing pulses 

relate to the propagating modes? Qualitatively the shape of each of the trailing pulses is similar to the 



excitation pulse. This would imply that the magnitude of thc frequency spectrum of each of the trailing 

pulses is similar to that of thc excitatjon pulse. Therefore, cach of the trailing pulses contains energy &om 

each of the propagating modes. Additionally, each mode has a similar range of group velocities, so all of 

the modes should arrive at nearly the same time. 
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Fig. 5.3. Comparison of the magnitude of the fiequcncy spectrum of the excitation signal (top) with transfer 

hnctions of the modcs (middlc) and the group velocity curves (bottom). 

The nature of the model allows these behaviors to be verified. The inverse discrete Fourier 

transform is a linear opcrator, so the summation of the modes in the dispersion function can occur after the 

inverse transform operation instead of before as shown above. Therefore, thc contribution of each mode 

can be determined in the time domain and the ficquency domain. Fig. 5.4 shows the time representation 

and the frequency representation of the propagating modes for a pulse propagated in a 0.2 m long 25 rnm 

diameter waveguide. The second mode through the ninth mode are dominant in the fiequcncy spectrum of 

the excitation signal and contribute to the dispersed signal. In the figure, the temporal signals appear on the 

left and the magnitudes of the spectral signals appear on the right. The bottom left graph is the summation 
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Fig. 5.4. Contributions of the individual modes for the trailing pulses observed in a 0.2 n~ long 25 mm 

diameter fused quartz rod. Temporal signals are on the leR and spectral signals are on the right 



of the temporal signals, and the bottom right graph is the magnitude of the dispersion function. The spectral 

signals of all of the modes are plotted in the penultimate graph on the riglit. 

The temporal signals in Fig. 5.4 confirm that each of the propagating modes contributes cnergy to 

each of the trailing pulses. It is thc interference pattern of the modal signals that produces the observcd 

trailing pulses. The relationship of trailing pulses to the Pochhammer-Chree solutions is more apparent, but 

considerably more complicated than described by Redwood. However, Redwood based his arguments on 

observations of trailing pulses from pulse excitations of many cycles, i.e. a sine burst, which have a 

narrower bandwidth than a pulse excitation. 

The observation of trailing pulses fiom narrow band sine burst excitations can be explained by 

considering the fiequency spectrum of a sine burst. An increase in the numbcr of cycles in a sine burst 

increases the magnitude of the hequency spectrum very close to the frequency of the sine wave. The 

bandwidth is defined as the range of fi-equencies with magnitudes within a certain decibel drop of the 

maximum magnitude, so an increase in the number of cycles in a sine burst narrows the bandwidth of the 

signal. Fig. 5.5 compares the frequency spectra of a I0 cycle sine burst and a 20 cycle sine burst with 

different scales. From Fig. 5.5 it is apparent the 20 cycle sine burst has a narrower band liequency 

spectrum than the 10 cycle sinc burst. However, the magnitudes of the frequencies away from the cerltm 

frequency remain the same. The magnitudes of these hcquencies are sufficient to create the characteristics 

of trailing pulses. 

As an illustration, the calculated signals for two 1 MHz sine burst excitations in a 0.25 m long 25 

mln diameter quartz bar are shown. The modal components of a 10 cycle sine burst are presented in Fig. 

5.6, and the modal components of a 20 cycle sine burst are presented in Fig. 5.7. Both figures use the same 

scale, and in both signals the trailing pulses overlap because the length in time of the sine burst is greatcr 

than the time between trailing pulses. The peak of the frequency spectrum coincides with the maximum 

magnitudes of the transfer function of the sixth mode, which has by far the largest amplitude signal of the 

propagating modes. However, in both signals other propagating modes are very important in composing 

the shape of the propagating s i p a l .  
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Fig. 5.5. Comparison of the frequency spect~vms of sine bursts 

A comparison of Fig. 5.6 and Fig. 5.7 shows the beginnings of the temporal signals of the 

corresponding modes are the samc for both excitations, which is expected since the beginnings of thc 

excitations are the same. The remaining portions of the corresponding temporal signals are different due to 

the different interference of the two excitations. The amplitudes of the temporal signals do not change 

noticeably with the inc~ease in the number of cycles; only the magnitudes of the frequency components 

directly above and below the ccntcr frequency change. The magnitudes of thc frequency components away 

born the center frequency are only changed by the phase components. For a hrther increase in the number 

of cycles in the sinc burst the same effects will occur, and the same modes will contribute to the signal. 

A smooth variation of the group velocity with frequency is one of the experimental obse~.vations 

on which Redwood (1 959) based his conclusions. The modal decomposition indicates that morc than one 

mode is excited with a sine burst. These modes have a similar range of group velocities, so a shift in the 

center frequency up or down will simply put more energy into the neighboring modes with, the same group 

velocities. Therefore, the arrival time of the signal will not change. 
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Fig. 5.6. Contributions of the individual modes for a 10 cycle sine burst propagated through a 0.25 m long 
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2.5 rnm diameter quartz bar. Temporal signals are on the left and spectral signals are on the right. 
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Fig. 5.7. Contsibutions of the individual modes for a 20 cycle sine burst propagated through a 0.25 m long 

25 mm diameter quartz bar. Temporal signals are on the Icft and spectral signals are on the right. 



A signal such as a Gaussian modulated sine wave has much less energy in the fiequencies away 

fiom thc f?equency of the sine wave. Meitzler (1965) used a 2.5 MHz Gaussian excitation with a 

bandwidth uf 10 kHz in a 2.12 m long 1.44 mm diameter wire of Isoelastic alloy to de:nonstrate the 

backward wave motion of the third axially symmetric mode. For the wire, this was a sufficiently narrow 

band signal to exhibit the variation of the group velocities of the first three modes over the narrow 

frequency range pred~cted by the Pochhammer-Chree solutions. In this case, although multiple modes arc 

excited, over the narrow frequcncy range the modes do not havc the same group velocities. As such, th.e 

pulses in the received signals correspond to individual modes. However, for the modes to be separated in 

time, long cylinders are required due to the large time signatures of the narrow band signal. Meitzler's 

cylindw had a length to diameter ratio, L/d, of almost 1500 where as liedwood based his conclusions on 

bars with a L/d of less than 10. 

5.2. Excitation of a Single Mode 

The propagation of a single nondispcrsive mode in a cylindrical bar is of interest in ultrasonic 

NDE and the SHPB. The propagation of a single nondispersive mode allows information from a s;miple to 

be transmitted though the cylinder without changing. Previously only the first mode has bcen considered 

because it is described by one-dimmsional theoly and is the only [node excited for lo\v 6-cquency signals. 

However, the use of the first mode limits the diameter of the waveguide and the fiequencies that can be 

used. From the transfer functions and group velocity curves the low fiequencies over which thc first mode 

is nondispersive are apparent. The transfer functions and group velocities also show that all of the higher 

modes are nondispersive over a small frequency range. Over this frequency range the other modes have 

considerably smaller amplitude. Zemanek (1962) qualitatively observed this by just considering tlie group 

velocity curves and normal stresses of the modes. The transfer functions provide a quantifiable prediction 

of the amplitude of the propagating modes at a frequency. Therefore, with a sufficiently narrow band 

excitation, it should be possible to propagate a single Inode at higher frequencies with little dispersion. 

5.2.1. Frequency Dependence 

It is quite interesting that excitations that are centered on certain frequencies will propagate 

nondispersively while others will be very dispersive. A series of analytical calculations are presented to 



show the change of a Gaussian excitation propagated through a cylinder for different frequencies. The 

nondispa-sive and dispersive frequency ranges can be found h:. considering the transfer functions of the 

wavegui.de, which are specific to the dianretcr of the waveguide and the end conditions. Of most interest 

are the peaks of the transfer functions of the modes, which have a group vclocity close to ii c lvngitudinal 

wave speed and are the least dispersive. The intersection of the transfer functions of the modes are also of 

interest because at these frequencies the signals are most dispersive. Fig 5.8 shows the transfer functions 

and the group vclocity of modes. Table 5.  I lists the frequencies of the peaks of the transfer functions and 

theu group velocities. Table 5.2 lists the liequencies of the intersections of the transfer functions of two 

neighboring modes and the group velocities of the modes. 
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Fig. 5.8. Group velocities (top) and transfer functions (bottom) of thc propagating modes. 



Table 5.1. Frequencies of the peaks of the transfer functions of the modes and the corresponding ~ o u p  

velocities 

Table 5.2. Frequencies of the intersections of the transfer functions of the modes and the corresponding 

group velocities. 

Two frequency ranges were considered in the analytical calculations. The fust set of calculations 

considered the 6equency range of 240 kHz to 420 kHz. This range of frequencies contains the peaks of the 

second and third mode and the intersection of the second and the third mode for a 25 mm diameter fused 

quartz cylinder. The second set of experiments considered the fi-equency range 1000 kHz to 1200 kHz, 

which contains the peaks of the sixth and seventh modes and theu intersection for a 25 mm diameter filsed 

quartz cylinder. Over each frequency range a 25 mm diameter, 0.252 m long fused quartz waveguide was 

considered in the analytical model with a Gaussian excitation. 



A Gaussian signal is similar to a sine burst, but the start and end of the burst are gradual; and the 

kequency spectrum of the Gaussian signal can be very narrow. The downside of the Gaussian signal is the 

shape is neither flat nor compact in time. All of the Gaussian signals \yere defined by the equation, 

x, ( I )  = exp[-0.5((1- p) / D ) ~  lsin(2nlf) , (5.1) 

where x, is the time representation of the reference signal used in the model, p is the location of the pulse in 

time, a is the standard deviation, and f is the ccnter frequency of the signal. For all of the Gaussiarl signals 

only the center frequency changed, so the envelope of the signals defined by the Gaussian distribution is 

the same. The standard deviation was chosen so the frequency spectrums of the signals defined by a 40 dl3 

drop in amplitudc were plus or minus 100 kHz around the center fkequency. This is a sufficiently narrow 

spectrum that, when centered at the frequency associated with the peak amplitude of a single mode, will fall 

within the transfer hnction of the mode and predominantly escite the mode. The propagated signal of this 

mode should have little dispersion because the group velocity of the signal is nearly constant. The 

Gaussian signals centered at 240 kHz, 420 kHz, 1000 kHz, and 1200 kHz meet this criterion, and 

correspond to the frequencies of the peaks of the transfer functions of the second, third, sixth and scventh 

modes respectively. Fig. 5.9 compares the propagated signals for the different Gaussian signals. 

The calculated signals illustrate the varying amounts of dispersion for the different frequencies. In 

both frequency ranges the signals increase in length as the 6equency changes 6 o m  the peak of a transfer 

function to the intersection of two transfer functions, and decrease in lcngth as thc frequency approaches 

the peak of the next mode. The four fi-equencies corresponding to the peaks of the transfer hnctions 

maintain their shape and arrive at a time corresponding to a group velocity near the longitudinal wave 

speed. At 330 kHz both the second and third modes are nearly equally excited and the group velocity of 

both modes is approximately 3525 mls. This is substantially slower than the longitudinal wave speed, so 

the signal should appear later in time than the Gaussian excitations at thc frequencies near the maximum of 

modes. However, there is still energy that arrives at  the time corresponding to waves with the longitudinal 

wave speed. Although the Gaussian is a narrow band signal, there is still appreciable energy away from the 

center frequency that includes frequencies with group velocities near the longitudinal wave speed. The 

same phenomenon is observed in the second range of kequencies at I100 kHz, the intersection of the sixth 

and seventh mode. 
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Fig. 5.9. Comparison of the calculated signals from a Gaussia~i excitation over a range of frequencies 

corresponding to the second and third modes (left graphs) and the sixth and seventh modes (right graphs). 

5.2.2. Distance 

The analytical results show the amount of dispersion in the £i-equencies centered at the peaks of the 

transfer functions. There does appear to be some energy trailing the main pulse over the same time period 

as the more dispersive signals. The Gaussian excitations were considered in a set of experiments to 

observe the changc of the signal with distance. Four frequencies, 335 kHz, 420 kHz, 1000 kHz, and 1 107 

kHz were considered for two different lengths, 0.25 m and 0.5 m. The excitation signal is compared to the 

measured dispersed signals for the two length bars for each frequency in Figs. 5.10 to 5.13 

For the longer lengths, more dispersion is apparent at all of the frequencies. For 335 kHz and 

1 107 kHz this is not unexpected because two modes are equally excited and there is a large amount of 

variation in the group velocity. However, the frequencies associated with the peaks of the transfer 

functions are also more dispersive, and there is energy that trails the main pulse. There are two factors that 

contribute to this dispersion, the excitation of the neighboring modes and the variation of the group velocity 
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of the predominantly excited mode. With an annular array transducer, it is theoretically possible to excite a 

single mode without exciting the neighboring modes by adjusting the radial pressure distribution with 

fr-equncy. However, the group velocities of the mode with frequency do not change, so the signal will still 

be slightly dispersive. A narrower band signal can reduce both of these effects, but a narrower band signal 

corresponds to a Longer signal in the time domain. The techniques for obtaining data using a narrow band 

Gaussian require very careful analysis of the signals to ensure accurate data. 

A pulse is a much simpler signal to analyze; however, the usc of a pulse excitation produccs 

trailing pulses in the observed signals. For the narrow band Gaussian excitation, hailing pulses are also 

excited, and as in the sine bursts, the trailing pulses overlap because of the long time signature. However, 

the unique shape of the signal and the kequency content of the signal minimize the appearance of the 

trailing pulses. The superposition of the excitation signal and the trailing pulses maintain the shape of the 

excitation signal. Some of the energy does appear behind the signal at long lengths, because the 

superposition of the signals is not totally effective. A narrower band signal will bc more effective. but with 

the consequences previously discussed. For reference, the pulse excitation is compared to the Gaussian 

excitation, Fig. 5.14, in a 25 mm diameter fused quartz rod at two different lengths 0.25 m and 0.5 m, Figs 

5.15 and 5.16 respectively. The main energy of the narrow band signal maintains its shape with some 

cnergy trailing the main signal. The main energy of the pulse signal expands in time and covers a similar 

length of time as the Gaussian excitation. With proper experimtntal techniques the narrow band Gaussian 

excitation might be an effective signal for obtaining infornlation using cylindrical waveguides. Howcver, 

time-reversal is a more attractive choice bectiuse of its effectiveness to produce a pulse response in a 

waveguide. 
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CHAPTER 6: CONCLUSIONS 

6.1. Summary 

An analytical model for wave propagation in cylindrical waveguides has been presented. The 

model uses the phase velocitics and normal stresses of the Pochhammer-Chree theory to calculate the 

dispersed signal. measured at the end of the waveguide. The analytical model is desibmcd around a gencral 

experimental configuration and considers three parts, the excitation of the ultrasonic signal into the 

waveguide, the propagation of the signal in the waveguide and the reception of the ultrasonic signal. I31e 

frequency dependence of the solutions generates a transfer function for each propagating mode. The 

magnitude of the transfer hnction at each frequency is determined by the boundary conditions on the ends 

of the waveguide. The phase shift is calculated ffom the phase velocity and the length of the waveguide. 

The sum of these transfer functions of the modes is the transfer function of the waveguide, which can be 

used to predict the change of a signal. 

The ability of the model to accurately capture the general physics of multiple mode wavc 

propagation was demonstrated in the time, frequency, and joint-time frequency domain. Additionally, 

using time-reversal, the calculated dispersed signal is shown to produce a signal with conlpact time domain 

in a dispersive waveguide. A range of diameter to wavelength ratios was considered for comparison to the 

model. For wavelengths less than the radius of the cylinder discrepancies may be observed between the 

model and experiments. However, this configuration is not commonly encountered in ultrasonics. 

The transfer functions generated by the model confirm previous conclusions and provide ncw 

insight into thc propagation of multiple modes. For this experimental configuration the transfer functions 

show each mode is dominant over a different range of Erequencies. The range of frequencies over which a 

mode is dominant corresponds to frequencies where the group velocity of the mode is near the longitudinal 

wave speed in an unbounded medium. Over these frequencies the other modes have a much smaller or 

negligible magnitude. The transfer functions further indicate that broadband signals are composed of 

multiple modes. It is found that observed trailing pulses contain energy liom multiple propagating modes, 

it is the superposition of the modes that creates the trailing pulses. The information from the transfer 



functions also shows that a sufticientlynarrow band signal can excitc a single higher order mode with little 

dispersion. 

6.2. Suggestions for Future Work 

The other motivation for this work was the split Hopkinson pressure bar (SHPB). The transfer 

functions for the SHPB are different because of the use of strain-gages instead of contact transducers. 

Future work would modify the analytical model to consider the SHPB experimental configuration, which 

could provide a usekl tool for predicting the experimental signals and determining the influence of highw 

modes. This model would also have the potential to remove the dispersion of multiple propag-nting rnodes 

from the data using time reversal. 

For NDE the potential of time reversal with cylindrical waveguides is enonnous. The 

experimental abilities are good for even a single element contact transducer. The ability of the model 

allows time reversal to be extended to situations where the necessary reversed signal is not available 

experinlentally. Industrial and commercial applications could take advantage of the ab~li ty of time revusal 

in cylindrical waveguides using techniques like those presented in Section 3.2.3. The field of NDE might 

also be able use a single propagating mode effectively. Research nceds to determine if i t  is possible to 

propagate a single mode and obtain meaningful data. 
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APPENDIX A. TIME REVERSAL 

The property of time invariance allows a signal with compact support in the tirnc domain to be 

generated from a multiple mode dispersive waveguide. The excitation signal necessaly to generate a 

compact signal is found by exciting the waveguide with the desired signal and measuring the dispersed 

signal. Alternatively, the dispersed signal can be calculated using the MATLAB code in Appendix D. The 

dispersed signal reversed in time is the excitation signal that will generate the desired signal with compact 

support in the time domain. Any end reflections should not be included in thc reversed signal. The 

corrlplex nature of the excitation signal requires the arbitrary wave generator and a power amplifier to 

excite the signal. The MATLAB code for programming the function generator follows. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Program to write reversed dispersed signal to Waveform Generator 
% t * * * * " * * * * * t * * * * * * * * * * * * * " * * * * * * t * * * * * * * * * * * * * " * * % * * * * * * * * * * * * * * * * * * *  

% Open dispersed signal, amplitude only if analytical, amplitude and time if experimental 

% specify tlme step and length of the signal of interest 
tstep=2e-8: 
n-length (signal) ; 
n-1500; %length of dispersed signal without reflections 
~=2^14; %length of programmed signal 
signal=signal(l:n) ; 
volt=signal; 
volt=volt-volt(1); % remove dc offset 
volt=~volt.';zeros(N-n.l)l; % add zeros, so the signal 1s N data points 
volt=flipud(volt); %reverse the signal in time 
volt.=volt/max(abs(voIt)); % normalize signal 
V=ahs(fft(volt)); % magnitude of the frequency spectrum 

D Plot of slgnals to verify correctness before writing to waveform generator 
figure 
subplot (2.1.1) 
plot ((0:N-1) .volt) ; 
subplot (2,l. 2 )  
plot (0: 1/ (Netstep) : 1/ (16* (tstep)) ,V(l:N/16+1) I ; 
pause 

% Write signal to waveform generator 
file='tempdata.txt1; 
fid=fopen(flle,'wt'): 
count=fprintf(fid,'data\t volatile\t, %4.3f\t, ' ,  volt(1)) ; 
for 1=2:1:N-1 

count=fprintf(fid,'%4,3f\t, ' ,  volt(i)); 
end 
count.:fprintf ffid, '%4.3f\nt, volt (N)): 
fclose (fid) ; 
format.=textread (file, '%c' , 'whit.espncee , ' ' ) . ' ; 
f orrnat ; 

fopen(g) 
fprintf (g, format) ; 

fprintf(g,'data:copy sigtr'); % sigtr is the name of the signal, which can change 
fprintf (g, 'func:user sigtr') ; 
fprintf (g, ' func user' ) ; 
fprintf (g, 'app1:user %10.2f, -01, - .  005'. 1/ (N*tstep) ) ; 

fclose (g) 
delet-e (g) 
clear g 



APPENDLX B. TRANSDUCER FACE MAPPING 

Chapter 3 describes the procedure for mapping the face of a transducer. This appendix contains 

the MATLAB code for performing the cross correlation and displaying the pressure distribution across the 

diameter. Threc signals were taken at each data point, so the file name of each signal contains two 

numbers. The fust number represents the point along the diameter, and the second numbcr is which of the 

three signals, for example horl9-l.daf. A separate file, in this case, 'hor3dist.dat' contains the distance of 

each measurement point. 

% Thls program performs the cross correlation for all of the slgnals. 
% Only the amplitude and time delay of a speclfic peak is calculated. 
% The amplitude variation and the time delay variation are plotted 
% for the horizontal data from the transducer. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% read in distances at which signals were acqulred 
[dist] = textread('~:\~1~~0~S\~esktop\Resear~h\hor3dist.dat~); 

% read In reference signal 
[signalref] = textread('C:\WINDOWS\Desktop\Research\horl9-l.DAT'); 

tstep=signalref (2.1) -signalref (1,l) ; % specify time st.ep 
M=length(signalref(:,Z) ) ;  % determine lergth of the refere~ce signal 
N=5500; 
refspect=fft(signalref(:,2)); % Find frepeuncy spectrum of reference signal 
freqstep=l/slgnalref(M,i); % frequency step of reference signal 
refspect(l)=O; % remove dc offset of reference signal 
refspect(61:~-60)=0; % filter out hlgh frequency noise 
signalref(:,2)=real(ifft(refspect)); % Generate filtered reference signal 

range=100; % the number of points considered in the cross correlation 
for n=1:35 % number of points on the radius at which sigrals were taken 

for m=1:3 % number of signals taken at each point 
file='file.txt'; 
fid=fopen(file, 'w+') ; 
fprintf(fld,tC:\\WINSCWS\?Desktop\\Research\\hor%02i-%ii,DATq,n,m) ; 

fclose (f id) ; 
fllename=textread(file,'%c','whitespace'.'\t1) . ' ;  % open one of the signals 
[signaltemp] = textread (filename) ; 
tempspect=fft(signaltemp(:,2) ; 
tempspect (1) = O ;  
tempspect (61:N-60) =O; 
signaltemp(:,2)=real(ifft(tempspect) ) ;  % filtered signal 
for k=-range:range 

clear temp 
clear ref 
if k<O 

temp=signaltemp(l-k:N,2) ; 
ref=signalref(l:N+k.2); 

elseif k>O 
temp=signaltemp(l:N-k.2); 
ref=signalref (l+k:N, 2) ; 

else 
temp=signaltemp ( :  ,2) : 
ref=signalref(:,2); 

end 
temp=temp(l:N-range); 



ref=ref (1 :N-range) ; 
C(range+l+k)=sum(temp.*ref~; % cross correlation 

end 
[MAX(n,m),I(n,m)l=max(C); % flnd max of the cross correlation, value and indices 
fprintf(l,'num=%-2i %li\nl,n,m); 

end 
end 
tdelay=(I-(rangecl) )*tstep; % convert indlces to time delay 
amp=MAX/YAX(19,1) ; % find relative amplitude 
ampaveraqe=mean(amp,2); % flnd average 
ampmax=max (amp, [ I  ,2) ; % error bars 
ampmin=min(amp, [ 1 , 2 ) ;  % error bars 
taverage=mean (tdelay, 2) ; 
tmax-max(tdelay, [ I ,  2) ; 
tmin=min(tdelay, 11 ,2) ; 

distzdist-0.68; % Shift o r l g l n  to the center of the transducer 

% Plotting statements 
figure 
subplot (2.1.1) 
errorhar(dist*25.4,ampaverage,abs(ampaverage-ampmin),ab~(ampaverage-ampmax),'k') ; 

hold on 
pos=get (gca, 'position') ; 
set(gca,'Ylabel',text('St.ring','Relative Amplitdde','FontSize',lO), . . .  

'Xlabel' ,text ('String', 'Distance (mm) ' . 'Fontsize', lo!. . . . 
'Fontsize', 10) 

set (gca, 'position', [pos(l) -O.2*pos(l) pos(2) pos(3) pns(4)I. 'YLim', I0 1.51) ; 

subplot (2,1.2) 
ax(1) = newplot; 
errorbar(dist*25.4,taverage*le6,abs(taverage-tm~n)*le6,abs(taverage-tmax) *le6, ' k t )  ; 

set (gcf, 'nextplot', 'add' ) 
set (ax(l), 'box', 'on') 
xliml = get (ax (1) , 'xlim' ) ; 
yliml = get (ax (1) , 'ylim' ) ; 
ax(2) - axes('position',get(ax(l), 'position')) ; 
set(ax(2),'YAxisLocation','right','color','none', . . .  

'xgrid','off','ygrid','of£','box','off'); 
xlim2 = xliml; 
yl1m2 = yliml; 
set (ax, 'xlim', [min(xliml(l) ,xlim2(1)) max(xliml(2) ,x11m2(2))1) 
set(get(ax(l),'Ylabel'),'Strlng','Time delay (\mus) ','~ontSize',lO, . . .  

'Color', 'k'l 
set(ax(l),'Ycolor','k','FontSize',lO) 
ylimits = I-0~15 0.151; 
set (ax(1) , 'YLim' , ylimits) ; 
pos=get (ax(1). 'position') ; 
set(ax(l),'position', ~pos(l)-O.2*pos(l) pos(2) pos(3) pos(4)I); 
set(get(ax(2),'Ylabel'),'Strinq','Distance (mm)','Font~ize',l~, . . .  

'Color', 'k') 
set(ax(2),'Ycolor','k','FontSize',lO, . . .  

'YLimT, [ylimits(l)*333000/1e6 ylimits(2)*330000/le61) 
set(ax(2). 'position', [pos(l) -0.2*p0~(1) pos(2) pos(3) pos(4) 1) ; 
xlabel('Distance (mm) ','FontSizel,lO) 
set(ax(2). 'ytick', (-0.025 0 0.0251) ; 
set(ax(1). 'ytlck'. [ - . I 5  0 .151) ; 



APPENDIX C. DISPERSION CURVES 

Dispersion curves for the propagating modes as well as the evanescent modes are required for the 

analytical model. The MATLAB files necessary for the propagating modes follow. POCHPR0P.M 

specifies the material properties of the waveguide. It also specifies the time step, frequency step, and 

therefore, the number of points in the discrete transform pair. POCHCUT0FF.M tinds the cutoff 

frequencies of all of the modes below the kequency of interest. P0CHSTARTFREQ.M calculates the fust 

two points for the each dispersion curve. POCHD1SPCURV.M calculates the dispersion curvcs 

(wavenumber and fiequency) for the propagating modes. The program uses a bisection method to 

determine the wavenumber at each frequency and the following subroutines. P0CHKEVAL.M determines 

the slope between the two points in the bisection. P0CHFREQEVAL.M evaluates the frequency equation 

with the current wavenumber. The ftequency equation should equal zero. POCHB1SECT.M performs the 

bisection using the specifi cd values. If the two points-in the bisection are both positive or both negative 

P0CHKFMD.M itcrates to find the wavenumber. 

The imaginary modes require the similar files except the wavenumber is imaginary. 

POCHPR0P.M is needed to specify the material properties. POCHDISPCURVIMAG.IM calculates the 

imaginary portion of the dispersion curves. The beginning and ending frequencies are specifies along the 

wavenumber. The files POCHKFMD1MAG.M and POCHBISECT1MAG.M are called in the 

POCHDISPCURV1MAG.M. 

The evanescent modes require a .different numerical method for finding the complcx 

wavenumbers. For these dispersion curves, Davidenko's method was used (see Talisa 1985 and Hejase 

1993). Davidenko's requires an initial guess to find the wavenumber. The paper by Onoe et al. provides a 

means of finding the initial guesses for each of the modes. However, sometimes other guesses are required. 

POCHPR0P.M is needcd to specify the material properties. The file POCHDISPCURVC1MPLX.M steps 

through the desied frequencies and writes the real and imaginary portions of the wavcnumber to a file. 

The function DAVIDENK0.M is called to find the wavenumber. It was found that for some of the modes, 

primarily the fust mode, the signs of the variables drealdt and dimagt needed to be switched for the solution 

to converge. 



% lambda - Lame constant 
% mu - lame constant 
% cd - dllitational wave speed in unbounded medla 
% ct - tranverse wave speed in unbounded medla 
% cb - lo~gitudinal wave speed in infinitesimally thin bar 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

lambda = nu*E/ ( (l+nu) * (1-2*nu) ) ; 
mu = E/ ( z *  (l+nu) ) ; 
cd = sqrt ( (lambda+2*mu) /rho) ; 
ct = sqrt (mu/rho) ; 
cb = sqrt (E/rho) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% NIIIUIERICAL P W B T E R S  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% num - the number of modes to calculate dispersion curves. It is 
% based on the highest frequency and the cutoff frequencies. 
% success - the number of times In a row that Newton's method 
a must meet tolerance for the iteration to stop 
% to1 - the tolerance on Newton's method 
% maxiter - the maximum iterations of Newton's method 
% deltat - tlme step, based on input file or desired time step 
% N - number of data points 
% deltaf - frequency step in Hz 
% wstep - freqeuncy step in radians 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

save properties 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of scrlpt 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% This Matlab file computes the cutoff frequencies for all the 
% modes with a cutoff frequency under the highest frequency(high). 
% 
% The frequency equations are those derived by Redwood(l960) 
% pg. 145 e0r.s. 6.24 and 6.25. The former calculates the 
% dilitatlonal modes and the latter the transverse modes. 
% 
% Newton's method is employed to iterate to the final solutions. 
% There will be several duplicates and triplicates, and those are 
% removed. Finally, the dilitational and transverse modes are put 
% together, sorted, and the first num modes are selected. 
% 
% Wrltten by Anthony Puckett, February 2001. 
% 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Initialize Variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% * * * * * * * * * * * * * * * * 4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Dilitational Modes 
% * * * * * * * * * * * * * * * * * * * * * * + * % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
% The cutoff frequencies for the dilitatiocal modes are fo.and 
% and the duplicates are removed. 
% 
% freqd - cutoff frequency equation for the dilitat.ional modes 
% dfreqd - the derivative of freqd 
% subd - a substitution to make the line shorter 
% broots - the roots of the dilatat.iona1 cutoff frequency eqn. 
% freqsdll - the cut-off frequencies of the dilit.atini~1 modes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Roots found by iterating 
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * , * * * * * * * * * * * * * * * k *  

xstep=O.Ol; 
oldfreqd=1.5; 
count =l; 

for x=xstep:xstep:lEO 
freqd=x* (bessel(0,x) /bessel (1.x) ) -2* (ct/cd) *2; 
if sign (oldf reqd) -sign (freqd) ==2 

dilroots (count) =x; 
count=count+l; 

end 
oldfreqd-freqd; 

end 

% Roots found more precisely by bisection method 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
clear x 
goodcount=O; 
iter=O; 
oldx=O; 
for n=l:l:count-l 

xl=dilroots(n) -xstep; 
x2=dilroots (n) ; 
while goodcountcsuccess & itere200 

deltax= (x2-xl) /2; 
x-xl+delt.ax; 
freqd=x*(bessel(O,x)/bessel(l,x))-2*(ct/cdIA2; 

if abs (oldx-x) ~0.00001 & abs ifreqd) ~0.0001 
goodcount=goodcount+1; 

else 
goodcount=O; 

end 



if freqd>O 
x1=x; 

elseif freqd==O 
goodcount = 4  ; 

else 
x2=x; 

end 
iter=iter+l; 
oldx-x; 

end 
dilroots (n) = x ;  
goodcount. = 0 ; 
iter=O; 

end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Calculate the cutoff frequencies from the roots. 
% * * t * * * f * * * * r * * * * * * * * ~ * * * * * r * * * t * * t * * * * f * * * * * * * h + * * * * * * * * * * * * * * * * *  

for n=l:l:length(dilroots) 
freqsdll (n, 1 )  =dllroots (n) *cd/ (a-pi) ; 

freqsdil(n,Z)=l; 
end 

.......................................................... 

% Transverse Modes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% The cutoff frequencies for the transverse modes are found 
% and the duplicates are removed. 
'6 
% freqt - cutoff frequency equations for the transverse modes 
% tranroots - the roots of the dilitational cutoff frequency eqn. 
% freqstran - the cutoff f~requencies of the dilltatinal modes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Roots found by iterating 
% * * t * * * * t * * * * * * * * x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * * * * * * * * * * *  

for x=xstep:xstep:300 
freqt=hessel(l,x) ; 
lf abs(slgn(o1dfreqt) -slgn(freqt) ) = = 2  

tranroots (count ) =x; 
count=counttl; 

end 
oldfreqtrfreqt; 

end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Roots found more precisely by bisection method 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

clear x 
goodcount=O; 
lter=O; 
oldx=O ; 
for n=l:l:count-1 

xl=tranroots(n) -xstep; 
xZ=tranroots (n) ; 
while goodcount<success & iterc200 

deltax= ( ~ 2 . ~ 1 )  /2; 
x=xl+deltax; 
freqt=bessel(l,x); 

if abs (oldx-x) <0.00001 h abs (freqt) ~0.0001 
goodcount=goodcount+1; 

else 
goodcount=O; 

end 



if freqt>O 
Xl =x ; 

elseif freqt==O 
goodcount=4; 

else 
x2.x; 

end 
iter=iter+l; 
oldx=x; 

end 
tranroots ( n )  =x; 
goodcount-0; 
iter-0; 

end 

% Calculate the cutoff frequencies from the roots. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

for n=l:l:length(tranroots) 
freqstran (n, 1) =tranroots (n) *ct/ (a-1) ; 

freqstran (n, 2 )  =2 ; 
end 

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * W * * * * * * * * * * * * * * * * * * . * * * * * * * * * * * * * * *  

% Combine cutoff frequencies, sort 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
freqstot=[O 1:freqsdil;freqstranl; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Print Cutoff Frequencies 
% num - total number of modes with cutoff frequencies below highfreq 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n=2; 
while freqstot ( n ,  1) c hlghfreq; 

if freqstot (n. 2) ==1 
fprintf(1,'The cut off frequency for mode %li 1s %9.2f %s\nl, 

n,freqstot(n,ll,'Hz. dilitatlonal' ) ; 
else 

fprlntf(1,'The cut off frequency for mode %11 1s %9.2f %s\n', 
n,freqstot (n,l), ' H z .  transverse ' ) ; 

end 
n=n+l; 

end 
num=n - 1 ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
%***************************tt************************************ 



% This Matlab flle computes the starting frequency and 
% wavenumber for each mode to ensure that none of the dispersion 
% curves are duplicated or absent. 
% 
% Written by Anthony Puckett, February 2001. 
% 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Initialize Variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

load properties 

% Calculate Start Frequencies and Wave Numbers 
% * t * * * * * * C * * * f t * * * * * * * * * t * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% The start frequency for the first mode is based on the fact 
% cp-cb at small k. The start frequency for higher modes is 
% calculated by the cutoff frequency plus wstep rad/s. 
% 
% Wave numbers are determined by lncrementing the wave number 
% untll the frequency equation changes sign and does not 
% correspond to a singularity. 
% 
% propstart - wave number for first two frequencies of each mode 
% pochkficd - function to find k for a frequency 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
for n=l:l:num 

kinc=0.01; 
if n==l 

kinc=0.001; 
w=wstep; 
k=kinc; 

else 
w= (cell ( (2*pi*freqstot ( n ,  1) ) /wstep) ) *wstep+2*wstep; 
k=kinc; 

end 
Ik,k~ncl=pochkfind(w,cd,~t,a,kin~,k); 
[k.kincl=pochkfind!w,cd,ct,a,kinc,k-3*kinc); 
propstart (n, 1) =k-kinc; 
propstart (n, 2) =w; 
propst.art (n, 3) =kinc/3: 

% Calculate Next Frequencies and Wave Numbers 
~ * * * * t t * * * * * * * * * * * * * * t * C * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * *  

% The frequencies and wave numbers for the flrst frequency step 
% are calculated. The new frequency equals the old frequency 
% plus wstep rad/s. New wave numbers are found the same way as previous 
% t * * * * * * % * * * * * * * * * * * * t * * * * * * * * * * * * f f l * * * * * * * * * * * * * * * * * * * * * * * * % * *  

if n==l 
klnc-0.001; 

else 
kinc=O 01; 

end 
w=w+wstep; 
k=propstart (n, 1) ; 
[k, kinc] =pochkfind(w,cd,ct, a, k c  k) ; 
~ k , k i n c ] = p o c h k f i n d ( w , c d , c t , a , k ~ i n c ;  
propstart (n, 4) =k-kinc; 
propstart ( n ,  5) =w; 
propstart(n,6)=kinc/3; 
fprlntf (1, 'For mode %2i kstart=%fi .3f 

~start=%10.2f\n',n,propstart(n,l) ,propstart!n,il); 
end 

% * * * * + * * l * * * f * * * * * * * * * * * * * * * * * * * * * * f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% end of scrlpt 
% * t * * * * * * t * * * * * * * * * * * * * t t , t * * * * * * * * * * * . * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  



% This Matlab file computes the dispersion curves for the first. 
% num modes for the given material properties. 
% 
% The dispersion curves are calcuted by stepping the frequency, w 
% and uslng a bisection method to find the wavenumber. 
% 

% Written by Anthony Puckett, February 2001. 
% 
% * * * * * * c * * * t ~ * * * * * * * * * t * * f * t * * f t " * * * * * * * * * * * * * * * * * * * ~ * * * * *  

% Initialize Variables 
................................................................ 

load properties 

% Plotting Commands 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Phase velocity and group velocity flgures are created w1t.h lines 
% indicating transverse and dilatational phase velocities. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

plotcurves=l; 
if plotcurves==l 
figure (1) 
xlabel('f3) 
ylabel( 'cp /cb' ) 
axis( 10 1. 5*freqstot(num, 1) 0 2.51) 
cpvs=0~1.5*freqstot(num,1)/1000:1.5*freqst0t~num~; 
plot (cpvs, ct/cb, ' -r' , cpvs, cd/cb, ' -r ) 
hold oc 
figure (2) 
xlabel('fl) 
ylabel( 'cg /cb' ) 
axis( [O 1. 5'freqstot (num, 1) 0 2.51) 
c p v s = 0 ~ 1 . 5 * f r e q s t o t ( n u m , 1 ~ / 1 0 0 0 ~ 1 . 5 * f r e c s t o t ~ n u m ~ ;  
plot(cpvs,ct/cb,'-r' ,cpvs,~d/cb,~-r') 
hold on 
end 

% Variables 
$ * . * f * * t * * * * f * * * * * * * * * * * t * * * * * * * * * * i t * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% a - radius 
% cb - wave speed in a long bar 
% cd - drlatational wave speed 
% counter - variable to keep track of iteration 
% ct - transverse wave speed 
% deltakstep - change in kstep 
% dk - difference between kprev and k 
% dwdk - matrix containing all of the group velocities for a specific mode 
% freqroots - matrlx containing all of the frequencies for a specific mode 
% highfreq - highest frequency, specified by user 
% k - wavenumber 
% kl - lower wavenumber used in bisection method 
% klprev - previous value of kl 
% k2 - upper wavenumber used in bisection method 
% kinc - increment of k used in p0chkfind.m 
% kprev - previous value of k 
% kstepprev - previous value of kstep 
% omega - matrix containing all of the frequencies for a specific mode 
% pochbisect - functlon to find wavenumber by bisection method 
% pocheval - function to evaluate kl and k2 and determine I£ there is a root between the 
values 
% pochkflnd - function to find wavenumber by lteratlng 
% propstart - wavenumbers and frequencies for first two frequeccies of each mode 
% results - matrix that contains the wavenumber and phase veloclty informatior, of all the 
modes 
% slope - a value from function pocheva1.m to indlcate kl and k2 contaln root 
% w - frequency 



% wavenum - matrix containing all of the wavenumbers for a specific mode 
% wend - end frequency, same for all modes 
% wstart - start frequency, different for each mode 
% wstep - frequency step 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Calculate wavenumbers 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% For each mode the frequency is incremented. For each freqeuncy 
b increment, wstep,the wavenumber, k, is calculated. kl and k2 
% are calculated based on the starting values calculated in 
% pochstartfreq, in the matrix propstart. 
% 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

klnc=0.01; 
wend=ceil(high£req*Ztpi/wstep) *wstep; 
for n=4:1:4 

kl=propstart (n, 1) - 3*pxopstart (n.)) ; 

k2=propstart ( n ,  1) +3*propstart (n, 3 )  ; 
klprev=kl; 
dk=kinc; 
wstart=propstart(n,2); 
clear freqroots; 
clear wavenum; 
clear dwdk; 
clear omega; 
ctcount-0; 
crcount=O; 
countersl; 
off set=roucd (propstart (n, 2) /wstep) ; 
for w=wstart:wstep:wecd 

% 6ir.d wavenumber. If bisection method does not 
% converge, recalculate starting values and find 
% wavenumber again. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
slope=pochkeval(w,cd,ct,a,kl,k2); 
[k, iter,slope] =pochbisect (w,cd,ct,a,kinc,k2, kl, slope) ; 
if slope==O 

fprintf(1,'Did not converge. slope=%-2i\n1,slope); 
~f w==wstart 

kprevzkl ; 
end 
k=kprev; 
kinc=dk/100; 
[k,kincl=pochkfind(w,cd,ct,a,kinc,k); 
if (k> (5*dk+kprev) ) &(counter-=2) 

k=kprev+dk; 
fprintf(1,lk = kprev + dk\nl) 

else 
kl=k-2*kinc; 
kZ=k+kinc; 
slope=pochkeval(w,cd,ct,a,kl,k2); 
fprintf(l,'slope=%-2i\n',slope); 
Ik,iter,slopel=pochbisect(w,cd,ct,a,kinc,k2,kl,slope); 

end 
end 

% Progress statement, displays mode and frequency 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Write values of'wavenumber and phase velocity to 
% martix 'results'. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



freqroots (counter) =real (w) ; 
wavenum (counter) =real (k) ; 
results(counter+offset-1,1+2* (n-1)) =waven~dm(counter) ; 

results(counter+offset-1,2*n)=freqroots(counter~/wavenum(~ounter~; 
iters (counter) =iter; 

% Calculate parameters for next step 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
if counter==l 

kl=propstart (n, 4) -2*propstart (n, 6 )  : 
k2=propstart(n,4)+2'propstart(n,6); 
klprev=kl; 
kprev=k; 
kstepprev=ahs (propst-art (n, 4 ) -propstart (n, 1) ) ; 

else 
dw=wstep; 
dk=k-kprev; 
dwdk(counter-l)=(dw/dk)/cb; %group velocity 
omega(counter-l)=freqroots(counter) ; 
kstep=k-kprev; 
kprev=k ; 
k=k+kstep; 
deltakstep=abs(kstep-kstepprev) ; 
if (deltakstep/kstep) cO. 01 

deltakstep=O.Ol*kstep; 
end 
kl=k-lO*deltakstep; 
k2=k+lO*deltakstep; 
klprev=kl; 
kstepprev=kstep; 

end 
counter=counter+l; 

end 
flgure(1) % plot phase velocity curve 
plotlfreqroots/(2*pi), (freqroots./(wavenum))/sqrt(E/rho).'k') 
figure(2) % plot group velocity curve 
plot lomega/ (2*pi) ,dwdk, ' k t )  
pause ( 2  ) 

end 

% Write data to file. k and cp 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
wrtflle=l; 
if wrtfile==l; 

file='format.txt'; 
fid=fopen(file, 'w+') ; 
for i=l:l:num-1 

count=fprintf(fid,'%%12.4f\\t %%10.6f\\t ' ) ;  

end 
count=fprintf(fid,'%%l2.4f\\t %%10.6f\\n'); 
fclose (fld) ; 
f ~ r m a t = t e x t r e a d ( f l l e , ~ % c ' , ' w h l t e s p a c e ' , ' \ t ' )  . ' ;  

fid=f0pen('~uartz25-nu1'6-2~hz.dat','w'); 
fprintf(fid,format,results.'); 
fclose (£id) ; 

end 

hold off 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% This Matlab file evaluates the values of kl and k2 to determine 
% if the slope is positive or negative. If the values of kl and k2 
% are not on either side of zero, the slope is set equal to zero. 
% 
% Written by Anthony Puckett, February 2001. 
% 
.......................................................... 

% Variables 
% * * * * * * * * * * * c * * * * * * * + * * * * * * * * X * t * * * * * * * * * * * . * * * * * * * * * * * * * * *  

% k - wavenumber. 
% kinc - k increment. This is made smaller at first in order to 
% make sure small wave number roots are found. 
% ksize - used to adjust the the size od kinc. 
% value - real value of the frequency equation. 
% freq - Pochhammer frequency equation, should equal zero 
% * * * * * * * * t * * * * * * * * t * * * * * * * * * * * * * t * * * * * * * - ~ * * ~ * * * * * * * . * ~ * * * *  

function slope=pochkeval(w,cd,ctta,kl,k2I 

freqkl=pochfreqvalue (w, cd, ct, a, kl) ; 

freqk2=pochfreqvalue (w, cd, ct, a. k2) ; 

~f sign (real (freqk2) ) -sign (real (freqkl) ) ==2 

slopezl; 
elself s i g ~  (real (freqk2) ) -sign(real (freqkl) ) ==-2 

slope=-1; 
else 

slope-0; 
end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% P0CHFRBQVALUE.M 
% t * * * * * * * * * * * * * * * * * f * f * * * * * * * * * * * * t * f * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Thls Matlab flle calculates the value of Pochhammer-Chree freq. 
% equatlon for a speclflc frequency and wavenumber. 
% 
% Wrltten by Anthony Puckett, February 2001. 
% 
~ * * * * * X * * * * * t * * * * * * * * * * * * * * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Variables 
................................................................ 

% freq - Pochhammer frequency equation evaluated at k 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

p=sqrt((wA2/cdA2)-kA2); 
q=sqrt((w*2/ctA2)-kA2); 
freq=kA2*q*besselj (O,q*a)/bessel] (l,qta) - O . * w / c t 2 ) / a +  . .  

(O 5 *  (w/ct) ̂2-kA2) ^ 2 *  (besselj (0,p"a) / (p*besselj (l,p*a)) ) ; 

% end of scrlpt 
% * t * * * * * * * * * * * * * * * * * I * * * t * * * * * * * * * * * * * f * t * * * * * * * * * * * * * * * * * * * * * * * *  



% This Matlab flle uses a bisection method to find the wavenumber 
% for a specific frequency and mode 
% 
% Wrltten by Anthony Puckett, February 2001. 
% 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Variahles 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% deltak - difference between kl and k2, used to find k 
% kl - lower point. of bisection 
% k2 - upper polnt of bisection 
% freq - Pochhammer frequency equation, should equal zero 
............................................................. 

oldk=0 ; 
iter=O; 
goodcount=O; 
while goodcount<4 & itere300 

deltak=k2-kl; 
delt.ak=O. 5*deltak; 
k-kl+deltak; 
freq=pochfreqvalue (w, cd, ct, a, k) ; 

if abs (oldk-k) <0.0001 & abs (freq) <l 
goodcount=goodcount+1; 

else 
goodcount=O; 

end 

lf slope==l; 
~f freq<O 

kl=k; 
elseif freq==O 

goodcount=4; 
else 

k2=k ; 
end 

elself slope==-1 
if freq>O 

kl=k; 
elseif freq==O 

goodcount-4; 
else 

k2=k; 
end 

else 
goodcount=4; 

end 

iter=iter+l; 
oldk-k; 

end 

if itcr--300 
freql=pochfreqvalue(w,cd,ct,a,k) : 
freq2=pochfreqvalue(w,cd,ctta,k+deltak) ; 

freq3=pochfreqvalue(w,cd,ct.a,k+L'*de1ta~); 
I£ (sign(freq3-freq2) -sign (freq2-freql! ) -=G 

slope=O; 
else 

slope=slope; 
end 

end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% POCHKFIND . M 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% This Matlab file increments the value of k until a root is 
% found. 
% 
% Written by Anthony Puckett, February 2001. 
% 
% * * i * * * * f + * * * * * * * * * * * * * * * * * * * * * * * * f * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% k - wavenumber. 
% kinc - k increment. This is made smaller at first in order to 
% make sure small wave number roots are found. 
% ksize - used to adjust the the size of kinc. 
% value - real value of the frequency equation. 
% freq - Pochhammer frequency equation, should equal zero 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
function [k, klnc] =pochkfind (w, cd, ct, a, klnc, k) 

value (3) =l ; 
value ( 2 )  =l; 
value(1) =l; 
count=3; 
whlle - ( (abs (sign(value(count) ) -sign(value(count-1) ) ) = = 2 )  &,. . 

( (sign (value (count) -value (count-1) ) -sign (value (count-1) -value (count-2) ) ) = T O )  ) 
count=count+l; 
freq=pochfreqvalue(w,cd,ct,a,k) : 
value (count) =real (freq) ; 
if count==500 

kinc=kinc*20; 
end 
k=k+kinc; 

sign (value (count) -value (count-1) ) -sign (value (count -1) -value (count - 2 )  ) ) ; 

end 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% POCHDISPCURVIMAG M 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Thls MATLAB file computes the lmaglnary portlon of a dispersion 
% curve for the given material properties. 
% 
% The dispersion curves are calcuted by stepping the frequency, w 
% and using a bisection method to flnd the wavenumber. 
% 

% Written by Anthony euckett, February 2001. 
% 
% * * * * * * * * * * * * * * * * * * * * * * * f * * * * * * f + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Initlallze Variables 
$ * * * * * * * * * * * * * * * * * * * * * * * * * t * * * * * t t * * * * * * * * * * * * * * * * * * * * * * * * * * *  

load properties 
clear i: 

startk=450*i; % initial k 
wstart=1863*wstep; % start frequency 
wend=2548*wstep; % end frequency 
clear freqroots; 
clear wavenum; 
clear compval; 
counter=l; 
for w=wstart:wstep:wend 

if counter==l 
k=startk; 
pochkf indimag 
pochbisectimag 
frecroots (counter) =real ( w )  ; 
wavenum(counter) =lmag(k) ; 
fprintf(l,'w=%-8i k=%-6 4f iter=%-31 counter=%-5i mode=%-2i\n', . 

w ,  imag(k) ,lter,counter,n) ; 
kprev=k; 

elseif counter=-2 
kzstartk; 
pochkfindimag 
pochblsectimag 
freqroots (counter) =real (w) ; 
wavenum(counter) =imag(k) ; 
fprintf(l,'w=%-8i k=%-6.4f iter=%-3i counter=%-5i mode=%-2i\n',.. 

w, imag(k) , iter,counter,n) ; 
oldkstep=k-kprev; 
kprev=k; 

elseif counter=-3 
k=startk; 
pochkflndimag 
pochbisectimag 
freqroots (counter) =real (w) ; 
wavenum (counter) =imag (k) ; 
fprintf(l,'w=%-8i k=%-6.4f iter=%-3i counter=%-5i mode=%-2i\n1,.. 

w, imag(k) , iter, c0unter.n) ; 
kstep=k-kprev; 
kprev=k; 
k=k+kstep; 
deltakstep=ifabs(imag(kstep-oldkstep)) ; 
kl-k-lO*deltakstep; 
k2=ktlO*deltakstep; 
0ldk=kl; 
oldkstep=kstep; 

else 
ksizeyl; 
pochblsectimag; 
lf iter>199 

k=O; 
pochkfindimag; 
kl-k-3*kinc/ksize; 
k2=k+3*kinc/ksize: 
pochbisectimag; 



end 
fprintf(l,'w=%-8i k=%-6.4f iter=%-3i counter=%-5i mode=%-21\n1, 

w, imag(k) ,iter,counter,n) ; 
freqroots (counter) =real (w) : 
wavenum (counter) =imag (k) ; 
kstep~k-kprev; 
kprev=k; 
k=k+kstep; 
deltakstep=i*abs (imag (kstep-oldkstep) ; 
kl=k-lo*deltakstep; 
k2=k+lO*deltakstep; 
oldk=k1; 
oldkstep=kstep; 

end 
compval (counter, 1) =w; 
compval (counter, 2 )  =wavenum(counter) ; 
cOunter=cOunter+l; 

end 
figure ( 1 1  
plot(freqroots, wavenum) 

% Write imaginary wavenumber 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

fid=fopen('C:\WINDOh'S\3esktop\Research\matlab code\dispersion 
model\steel-lO\imagk5~~5r-stlO.dat','w'~; 
fprintf(fid.'%l2.4£ %lC.6f\n',compval.') ; 
fclose (f id) ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% end of scrlpt 
% + * * * * 8 * * * * * * * * * * * * t * * t * * * * * * * 8 * * * * * * * & * 8 8 * * * * 8 * * * * * * * * * * * * * * * * * * * * * * *  



% Thls Matlab file increments the value of k until a root is 
% found. 
% 
% Written by Anthory 'uckett, Pekruary 2001. 
% 
$ t * * * * * * * * * * t * * * * * * * * * * t t * * * * * * * t f t * * * * ' * * * * * * * * * * * * * * * * * * * * *  

% Variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% k - wavenumher. 
% kinc - k Incremect. This is made smaller at first. in order to 
% make sure small wave number roots are found. 
% ksize - used to adjust the the size od kinc. 
% value - real value of the frequency equation. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
clear j 
value (3) =l ; 
value (2) =l; 
value(l)=l; 
count=3; 
klnc=0.2*]: 

% The while statement requires the sign of the slope to not change 
% when the slgn of the frequency equation does change. This eliminates 
% poles from the roots. 

while - ( (abs(sign(value(count) ) -sign(value(count-1) ) ) ==2) & (  ~sign(va1ue~count~ - 

value(count-1)) -sign(value(count-1) -value(count-2)) ) = = O ) )  

count=count+l; 
p=sqrt((wA2/cdA2)-kA2); 
q=sqrt ( (wA2/ctA2) -kA2) ; 

freql=kA2*q*bessel] (O,q*a)/besselj (l,q*a); 
freq2=-0,S*((w/~t)~2)/a; 
freq3=(0.5*(w/ct)*2-k*2)~2*(besselj (~.p'a)/(p*besselj (l,p*a))) ; 
freq=freql+freq2+freq3; 
freqslgn-sign(real(freq)); 
value (count) =real (freq) ; 
if count--500 

klnc=O. 0 5 * j ;  
end 
k=k+kinc; 

end 

% end of scrlpt 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% This Hatlab file uses a bisection method to find the wavenumber 
% for a specific frequency and mode. 
% 
% Wrltter. by Anthony Puckett, February 2001. 
% 
% * f * * t * * * * * * * * * * * * * * * * * * * * * * t f * * * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * * * *  

% deltak - difference between kl and k2, used to find k 
% kl - lower point of bisection 
% k2 - upper point of bisection 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if abs(o1dk-k)<O.OOl*kratio & abs(freq)<kratio 
goodcount=goodcount+1; 

else 
goodcount=O; 

end 

if freqsign==l 
if freq<O 
kl=k; 
elseif freq==0 

goodcount-4; 
e 1 se 

k2=k; 
er.d 

else 
if freq>O 
kl=k; 

elseif freq==O 
goodcount=4; 

else 
k2=k; 

end 
end 
~ter-ltertl; 
oldk=k; 

end 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
% * * * * * * * * * * * * * * * * * t * * * * * * * * * * * * * * * * + * * * * * * w * * * * * * * * * * * ~ . * * * * * * * * * * *  



% POCHD1SPCURVCMPLX.M 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% This MATLAB file computes the complex portlon of a dispersion 
% curve for the given material properties. 
% 
% The dispersion curves are calcuted by stepping the frequency, w 
8 and using a bisection method to find the wavenumber. 
% 

% Written by Anthony Puckett, February 2001. 
k 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

k Initialize Variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

load properties 

counter-1; 
clear waver; 
clear wavei; 
clear compval; 
clear freqrad; 

kr-415.3232; 
ki-3119.30; 
oldk=kr+ki* j ; 
wend=4000*wstep; 
tlen=lel2; 
for w=wstep:wstep:wend 

iter=l; 
goodcount-0; 
while goodcount<success & iter<lOO 

[t, y l  = odel5s(@davidenko, i0 tlenl , [kr; kiJ , 1.1, w,cd,ct,a) ; 
kr=y(length(t) ,l) ; 
ki=y(length(t.), 2 )  ; 
k=kr+ki* j ; 
if abs (oldk-k) ~0.001 

goodcount=goodcount+l; 
else 

yoodcount=O; 
end 
oldk=k; 
~ter=iter+l; 

end 
fprintf(l,'w=%-8i kreal=%-6.4f klmag=%-6.4f counter=%-5i iter=%-41\n1,.. 

w,kr, kl,counter, iter) ; 
freqrad (counter) =w; 
waver (counter) =kr; 
if kicO 

ki=-ki; 
end 
wavei (counter) =ki; 
compval (counter, 1) =w; 
compval (counter, 2) =kr; 
compval (counter, 3) =ki: 
counter=counter+l: 

end 
f lyure (1) 
p l o t ( f r e q r a d , w a v e r , f r e g r a d . w a v e i ) ;  

8 Write complex wavenumber 
% * t * * * * * * * * * * * * * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

fld=fopen('complexk89-ql0 dat','wl); 
fprlntf(fld,'%12.4f %10.6f %10.6f\n',compval.'); 
fclose (fid) ; 
%*********************************t**t***.********************** 

% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



$ * * * * * * * * * * * * * * * * t * f * * * t * f t * * * * * * * ~ * * * * * * * * * * * * * + * * * * * * * * * * * * * * * * *  

% DAVIDENKO . M 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% This MATLAE file uses Davidenko's method to find the complex 
% wavenumbers for the evanescent modes. 
% * t * * t * i * * * t * * * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

function dydt=davidenko (t, y , ~ ,  cd, ct,a) 

dlfreq3=2*(0.5*(~/ct)~2-k~2)*(-2)*k*ibesselj (O,p*a)/(p*besselj (l,p*a) 1 )  ; 
d2freq3=(0.5* (w/ct) "2-kA2) ?*(-dpdk/pA2) *besselj (O,p*a)/besselj (l,p*a) ; 
d 3 f r e q 3 = ( 0 . 5 + ( ~ / c t ) ~ 2 - k * 2 ) * 2 * ( - d p d k * a * p ) ;  
d4freq3=(0.5* (w/ct)*2-kA2) *2*dpdk*a*(-besselj (O,p*a) )*O.S*(bessel] (O,p*a) - 

besselj (2,p*a) ) / (besselj (l.p*a) )^2; 

drealdt=- (l/( (real (dfreq) 1 ^2+ (imag(dfreq1 2 r e  r e  a d f r e q  + . . 
lmag(freq) *imag(dfreq) ) ; 

dimagdt= (l/ ( (real (dfreq) ) *2+ (imag (dfreq) ) 2 ) * real r e  * m a ( d r e q )  - . . 
 mag (freq) *real (df req)) ; 

dydt- l drealdt ;dimagdt I ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



APPENDIX D. ANALYTICAL MODEL 

The analytical model uses the dispersion curves to calculate the phase velocities and stress 

functions for each of the modes. The file VEL0CTTLES.M combines the real, imaginary, and complex 

wavenumbers into a single set of dispersion curves. A lot of manual effort is required to determine tlie 

frequencies where each dispersion curvc changes Erom complex to real or imaginary. The higher modes 

change iiom complex to imaginary many times before becoming real. 

The linear nature of the model allows the components of the transfer functions from the end 

conditions to be calculated separately from the components from the propagation. Therefore, the end 

conditions can be calculated for a specific diameter and material waveguide separate from the propagation, 

which is based on the length ofthe bar. The calculation of the propagation does not require ncarly as much 

computation as the end conditions, so different length bars can be considered easily. 

The MATLAB code for determining the transfer functions of the waveguides, as well as finding 

the dispersed signals is included. The programs for the consideration of the propagating and evanescent 

modcs are presented as well as the programs for considering just the propagating modes. In both cases 

P0CHPROP.M should be run first to make sure the necessary material properties are available. 

The files for consideration of the real and evanescent modes are presented first. 

VELOCITES-QIO-NUlG-C0MPLEX.M provides the complex dispersion curves for a 10 mm diameter 

fused quartz rod. The file QIO-EXCITE-5MODE-C0MPLEX.M calculates the transfcr hnctions of the 

cnd conditions, and the file QlO-DISPSIGCALC-C0MPLEX.M calculates the dispersion h n c t i o ~ ~  and the 

dispersed signal. Thc files for the consideration of just the propagating modes are then presented, 

VELOCITIES-Q25-NU16.M, Q25-EXCITE-7MODE.M, Q2.S-DISPS1GCALC.M. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% VELOCITIES-QlO-I~~Jl6_COMPLEX. M 
% * * * * * * * * * * * * * * * * * * * * t * X * * * * * * * * * * u * * * * * * * * * * * * * * * u * * * * * * * * * * * * * * * * *  

% This program puts the necessary information ir. a matrix called 
8 modes for the analytical dispersion program. The values for 
% the real, complex, and imaginary modes are read ic+o the program 
% * * * . * f * * * * * * * * * * * * * * * X * * * * * * t * * * * * * * * . * * * * * * * u * * * * * * * * * * * * * * *  

% Read files containing dispersion curves 
[model] = textread('quartz010~nu166~omplexCmodeOl.dat') ; 

(mode21 = textread('quartz010~n~16~complex~moderJ2~dat') ; 

[mode31 = textread('quartz010~nu166complex~m~d~033dat0 ; 

[mode41 = textread('quartz010~nu16~complex~modeQ4.dat~') ; 

(mode51 = textread('quartz010~n~16~complex~modeOS.dat'~ ; 

[mode61 = textread ( 'quart z 0 1 0 ~ n ~ 1 6 , ~ ~ c o r n p l e x ~ m o d e O 6  dat ' ) ; 

[mode71 = textread('quartz010~n~16~complex~m0deO7.dat'~; 
[mode81 = textread('quartz010~~nul6_complex~m0de08.dat'~ ; 

Lmode23-complex] = textread('complexk23-q10.datu); 
Imode45-complex1 = textread('complexk45~q1O.dat') ; 
Lmode67-complex1 = textread('complexk67-ql0.dat') ; 
(mode89-complex1 = textread('complexk89-q1O.dat') ; 
[mode3_imagl = textread('imagk3i-3r-qlOOdatl); 
Lmode4-lmag] - textread i ' imagk4c-4r-q1O0 dat' ) ; 
[mode5_imagI = textread('imagk5c-5r-q1O.dat'); 

% Combination of modes. Only the wavenumbers are recorded. All files 
% ar.d modes have the same frequency step. Odd columns are the real 
% part. of the wavenumber and even columns are the imaginary part. 

clear modes 
nrow=5000: 

modes (1 :nrow, 1,l) =model (1 :nrow, 1) ; 
modes(l:nrow,l,2)=0; 

m o d e s ( l ~ 9 3 6 , 2 , 1 ) = m o d e 2 3 ~ ~ o m p l e x i l : 9 3 6 , 2 ) ;  
modes(l:936,2,2)=mode23~complex(l:936,3); 
modes(937:nrow,2,1)=mode2(937:nrow.l); 
modes i937:nrow,2,2) = 0 ;  

modes(l:936,3,1)=-mode23~cornplex~l:936,2); 
m o d e s ( l : 9 3 6 , 3 , 2 ) = m o d e 2 3 ~ ~ o m p l e x ( l : 9 3 6 , 3 ) :  
modes(937:nrow. 3,1)=mode3 (937:nrow, 1) ; 
modes(937:nrow,3,2)=0; 
modes (377:1199,3.1) = O ;  
modes(977:1199,3,2)=mode3_imag(:,2); 

modes(l:21,86,4,1)=mode45_complex(l:2186,2~; 
modes(l:2186,4,2)=mode45~comple~(l:2186,3~; 
modesi2187:2196,4,1)=0; 
modes (2187:2196,4,2) =mode4_imag(: , 2 )  ; 
modes (2197:nrow, 4.1) =mode4 (2197:nrow, 1) ; 
modes(2197:nrow,4,2)=0; 

modes(l:2186,5,1)=-mode45_complex(l:2186,2~; 
rnodes(l:2186,5,2)=mode45_complexil:2186,3); 
modes(2187:2647,5,1)-0; 
modes(2187:2647,5,2)=mode5_lmag(:.2); 
modes (2648:nrow, 5,l) =mode5 (2648:nrow, 1) ; 
modes(2648:nrowr5.2)=0; 

modes (1 :nrow, 6,l) =mode6 (1 :prow, 1) ; 
modes(l:nrow,6,2)=0; 
modes(l.2905,6,1) =m0de67~complexil:2905.2); 
modes(1:2905,6,2)=mode67~~complex(1:2905,3); 



modes (1 : nrow, 8.1) =mode8 (1 : nrow, 1) ; 
modes(l:nrow.8,2)=0; 
modes (1: 3898.8.1) =mode89-complex(l:3898.2) ; 
modes(l:3898,8,2l=rnode89~~omplex(l:389R,3~; 

clear model 
clt~ar mode2 
c11.ar mode3 
clcar mode4 
clear mode5 
clear modeG 
clear mode7 
clear mode8 
clear mode23-complex 
clear mode45-complex 
clear modeG7-complex 
clear mode89-complex 
clear mode3-imag 
clear mode4-imag 
clear mode5 lmag 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% end of script 
% * * * * * * f t * * * * * * * * * * * t t * t * * t * * * * * * * * * * * * * * * * * * * n * * * * * * * * * * * * * * * * * * * * * *  



% This program calculates the transfer 
% function for the end conditions 
% * * * * t * t * t * f * * * * * * * * * * f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% The least squares method is used in the expansion to determine 
% the relative mode amplitudes. 
% 
% Only 5 modes are considered for the expansion. Modes with 
% imaginary wavenumbers are not considered in the expansion. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
load properties; 

% The dispersion curves are specified 
% by the program velocities~ql0~nul6~comp1ex 

velocltles-ql0-nul6-complex 
[ A  B C1 =size (modes) ; 
mode=B ; 
clear X3 
clear XD1 
clear x 
clear i 
clear dfunc 
clear DISP 
clear modemag 
clear excamp 
clear modeamp 
clear modeint 
clear C 
hfreq~5000; % Highest frequency in terms of the frequency step 
timestep=deltat; 
modelow-1; 
modehlgh-5; 
tol(l:B)=le-6; % tolerance for the ~ntegratlon 
polnts=50; % number of points along the radius in the expansioc 

% The amplitude is calculated at each frequency 
for h=l:l:hfreq 

w=h*wstep; 
clearvar 

% The number of propagating modes 1s calculated at each frequency. 

propmode=5; 
for j=2:mode 

if w >= freqstot(j,l)*Z*pi 
propmode- j ; 

end 
I£ propmode < 5 

propmode=5; 
er.d 

end 

% The wavenumber is acquired for each mode at 
for j =l : propmode 

wnum(j)=modes(h,j,l)+i*modes(h,j,2); 
end 
fprlntf(l,'step=%-81 modelow=%-21 modehigh=% 

h.mode1ow.modeh~gh.count) ; 

if propmodec6 
modelow=l; 
modehigh=S; 

end 

each frequency. 

21 count=%-3i\n1, . 

% Construct matrix of tzz 
clear tzz 
clear tzzsmall 
magemode ( 1 : propmode ) = 0 ; 



for m=modelow:modehigh 
k=wnum (m) ; 

' if ~mag(k)-=0 & real(k)--0 %complex wavenumbers 
p=sqrt ( (wA2/cd^2) -kA2) ; 
q=sqrt ( (wAz/ctA2) -kA2) : 
A= (qA2-kA2) *bessel(l, q*a) / (-2*iek*p*besse1 (1,pta) ) ; 

for n=l:points/Z; 
P I  (n, 1) =l; 

r= (n-1) *a/ (points/2-1) ; 
tauz=-A*bessel(0,p*r)*(lambda*(kA2+pA?)+2*mu*kA2)+.. 

bessel (O,q*r) *i*q*2*mu*k; 
tzz (n,m) = (tauz) ; 

end 
for n=points/2+1:points 

P I  (n, 1) =O; 
r-(n-points/2-l)*a/(points-points/2-1); 
taurz=-mu*(A*2*i*k*p*bessel(l,p*r~+!qA2-kA2)*bessel(l,q*r)); 
tzz (n.m) =taurz; 

end 
elseif imag(k)-=0 % modes with lmaglnary wavenumbers are Ignored 

tzz(:,m)=O; 
imagemode (m) -1; 

else 
p=sqrt ( (wA2/cdA2) -kA2) ; 
u=sqrt ( (wA2/ct^2) -kA2) ; 
~=(~~2-k~2)*hessel(l,q+a)/(-2*i*k*p*bessel~l,p*a)); 
% normal stress 
for n=l:points/2; 

P I  (n,l)=l; 
r= (n-1) *a/ (points/2-1) ; 
ta~z=-A*bessel(O,p*r)*(lambda*(k^2+~*2)+2*mu*k~2)+ . . .  

bessel (0, q*r) *i*qt2*mu*k; 
tzz (n,m) = (tauz) ; 

end 
% shear stress 
for n=points/2+1:points 

P I  (n, 1) = O ;  

r= (n-points/2-1) *a/ (points-points/2-1) ; 
taurz=-mu*(A*2*i*k*p*bessel(l,p*r)+(qA2-kA2)*bessel(l,q*r) ) ;  

t.zz (n,m) =taurz; 
end 
normdivs (m) =l; 
phashift (m) =angle (tzz (1.m) ) ; % calculate phase shift 
tzz(:,m)=tzz(:,m)*exp(-i*phashift(m)) ; % remove phase shift and imaginary 

component 
modeint (h,m) =quadl (@Isintegrate, 0, a, to1 ( m  , LO], wnum(m), phashift (m) , . . . 

normdivs(m),w,cd,ct,mu,a,lambda); % calculate receiving end condition 
to1 (m) =abs (modeint (h,m) *le-6) ; 
modeint (h,m) =modeict (hem)/ ( ~ 1 6 2 )  ; 

end 
end 

% normalize stresses and receiving end conditions 
normdivstauz (h) :max (max (abs (tzz) ) ) ; 

modeint (h, : ) =modeint (h, : ) /normdivstauz (h) : 

% Calculate mode amplitudes, imaginary modes are not included in the expansion 
tzzcount=l; 
clear tzzsmall 
clear Csmall 
clear modeloc 
for m=modelow:modehigh 

if imagemode(m)==O 
tzzsmall(:, tzzcount) :tzz(: ,m) ; 
modeloc(tzzcount)=m; 
tzzcount=tzzcount+l; 

end 
end 

Csmall=(inv(tzzsmall.'*tzzsmall))*tzzsmall.*PI; % Least squares 



for m=l:length(modeloc) 
excamp(h,modeloc (m) ) =Csmall (m) ; 

end 

for m=l:l:modehigh 
if imag(wnum(m) ) ==0 & imagemode (m) =.0; 

modeamp (h,m) =modelnt (h,m) lexcamp (h,m) ; 
end 

end 
[maxmodeint maxmodeindl =max (modeamp (h, : ) ) ; 

I£ maxmodeind > 2 
modelow=maxmodeind-2; 
modehigh=maxmodeind+2; 

end 

end 

figure 
plot ( (1 :hfreq) *deltaf ,ercamp(l.hfreq, : ) ) 

% Write excitation transfer function to file. 

writesignal=O; 
if writeslgnal==l 

file='format.txtl; 
fid=fopen(file,'w+') ; 
for i=l:l:propmode-l 

count=fprintf(fid.'%%t?.4e\\t ' 1 ;  
end 
count=fprintf(fid.'%%8.4e\\n1); 
fclose(fid) ; 
format=textread(file, '%c','whitespace', '\t') . ' ;  
f ~ d = f o p e n ( ' q l 0 ~ n u l 6 ~ e x c ~ t e a m p ~ ~ 5 m o d e ~ c o m p l e x . d a t ' , ' w ' )  ; 

fprintf(fid,format,excamp.'); 
fclose (f id) ; 

end 

figure 
plot((l:hfreq)*deltaf,abs(modeamp(l:hfreq,l~modehigh) ) )  

% Write end condition transfer function to file 

writeslgnal=l; 
if writesignal==l 

flle='format.txtl; 
fid=fopen(file, 'w+') ; 
for i=l:l:modehigh-l 

count=fprintf(fid,'%%8.4e\\t ' ) ;  

end 
count=fprintf(fid,'%%B.4e\\n3); 
fclose (£id) ; 
format=textread(file, '%c', 'whitespace', ' \ t l )  . ' ;  
fid~fopen('q10~nu16_modeamp_5mcomplex.dat','w'~; 
fprintf (fid,format,real(modeamp) . ' )  : 
fclose(fid) ; 

end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% end of script. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% This program calculates the phase shift of each mode and uses 
% the transfer functions of the end conditions to calculate 
% the dispersed signal 
% t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * t f t * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Only the propagating modes are considered in the propagation. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
clear all 
load properties; 

% Specify the dispersion curves 
velocities~ql0~nul6~comp1ex 
[A B Cl =size (modes) ; 
mode=B; 
clear XD 
clear XD1 
clear x 
clear i 
clear dfunc 
clear DISP 
clear modemag 
clear C 
clear count 
D=48*0.0254; 
hfreq=5000; 
timestep=deltat; 

% Read in the transfer functions of the end conditions 
[Cl=textread('qlO~nu16~modeampP5mcomplex~trz.dat'~; 

% Specify the excitation signal, already in the frequency spectrum 
[trandatal = textread('refsig.datl); 
refsig=trandata(:,l)+i'trandata(:.2); 
XR=refslg; 

% The arnplltude is calculated at each frequency 
for h = l  : 1 : hf req 

w=h*wstep; 
clearvar 

% The number of propagating modes is calculated at each frequency 

% The wavenumber is acquired for each mode at each frequency 
count = 0  ; 
for ]=l:propmode 

if modes (h, j, 2) ==0 & modes (h, 1 ,l) -=0 
count=count+l; 
wnum (count) =modes (h, j ,I) ; 

end 
end 
fprintf(l, 'step=%-8i count=%-3i ',h.count); 

% Sum the REAL part of the modes at each frequency 

for m=l:l:count 
phvel (m) =w/real (wnum(m) ) ; 
if real (wnum(rn) ) ==0; 

Q (m) =O; 
else 

Q(m) =exp(-i*h* (D/phvel(m) /deltat) *(2*pi/N)) ; 
end 
modtranfunc (h,m) =Q(m) *C(h,m) ; 
fprintf (1, '%-3i ',m) 
modexf unc (h, rn) =abs (modtranfunc (h, m) ; 

end 
fprintf (1, '\nu) 
dfunc (h) =sum(modtranfunc [h, : ) ; 



% Fdltiply frequency spectrum of input signal by the 
% transfer function of the waveguide. 
XD(h+l) =dfunc ih) *XR(h+l) ; 

end 

% Take the inverse transfo,~. 
XD= [XD. ' ;zeros(N-hfreq,l) 1 ; 
xd=ifft (XD) ; 

num=count; 
$ Write dispersed signal and dispersion function and transfer functions to files. 
writesignal=l; 
if writeslgnal==l 

fid=fopen('qlO-nul6-1MHz-complex_trz.dat'.'w'); 
fprintf(fid,'%8.4e\n',xd.'); 
£close (fid) ; 
f i d = f o p e n ( ' q l 0 ~ n u l 6 ~ d i s p ~ f u n c _ c o m p l e x ~ t r z . d a t ' , ' w O ;  
fprintf(fid,'%8.4e %8.4e\n1,dfuncfile.'); 
£close(fid) ; 

file='format.txt' ; 
fid=fopen(£ile, ' w + ' )  ; 
for l=l.l:nurn-1 

count=fprintf(fid,'%%8.4e\\t ' 1 ;  
end 
count=fprintf (£id, '%%8 . 4 e \ \ n 1 )  ; 
fclose(fid) ; 
format=textread(file,'%c','whitespace','\t') . ' ;  
fid=fopen('ql0~~nul6~modexfunc~complex~trz.dat','w') ; 

fprintf(fid,forrnat,modexfunc.') ; 
fclose(fid) ; 

end 

figure 
subplot (2.1.1) ; 
plot(deltat:deltat:length(xd) *deltat,xd) ; 
l=axis; 
axis( [O (2^14-1) *delt.at l(3) l(4) 1 )  ; 

% end of script 
%***********************************t************************** 



% * t * * * * * * * * * * * * * * t * * * * * * * * * * * * * * * * * t * t * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% VELOCITIES-Q25-NU16.M 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% This program puts the necessary information in a matrix called 
% 'modes' for the analytical model. Only the real modes are 
% considered 
% * f * * * * * * f f f * * * * * * * * t f * * * * * * * * * * * * * * f * * * * * * * * * * * * * * * * * * * * * * * * * *  

% Read files containing dispersion curves 
[results] = te~tread('quartz025-nu16~4Mhz.dat~); 

% Combination of modes. Only the wavenumbers are recorded 
% All files and modes have the same frequency step. 
% Odd columns are the real part of the wavenumber and even 
% columns are the imaginary part. 

clear modes 
nrow-10000; 
[matlen matwidl =size iresults) ; 
for n=l:matwid/2 

modes(: ,n, 1) =results(l:nrow,2*n-1) ; 
modes ( :  ,n, 2) =zeros (nrow, 1) ; 

end 
clear results 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% This program calculates the transfer 
% function for the end conditions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% The least squares metnod is used In the exphnslon te determlce 
% the relative mode amplitrtdes. 
% 
% Only the real modes are considered I n  the expansion with a 
% maximum of 7 modes considered. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
load properties; 

% The dispersion curves are specified 
v e l o c i t i e s ~ q 2 5 ~ ~ n u l 6 ~ s r n o o t h  
[ A  B C l  =size (modes) , 
mode-B ; 
c l ~ a r  XD 
clear SD1 
clear x 
clear i 
clear dfunc 
clear DISP 
clear modemag 
clear C 
hfreq=10000; % highest frequency 
timestep=deltat; 
modelow=l; 
modehlgh=O; 

% The amplitude is calculated at each frequency 
for h=l:l:hfreq 

w-h*wstep; 
clearvar 

% The number of propagating modes is calculated at each frequency 

propmode=l; 
for j=Z:mode 

if w >=  freqstot. ( j ,  1) *2*pi+2*wstep 
propmode=j; 

end 
end 

% The wavenumber is acquired for each mode at each frequency 
count - 0 ; 
for j=l:propmode 

count=count+l; 
wnum (count I =modes ( h ,  j ,I) ; 

end 

fprintf(l,'step=%-8i modelow=%-2i modehigh=%-2i count=%-3i\n1 , . . .  
h, modelow, modehigh, count) ; 

if countca 
modelow=l; 
modehigh=count; 

elseif modehigh==O 
modelow=l; 
modehigh=count. ; 

end 

% Construct matrix of tzz 
clear tzz 
clear tzzsmall 
for m=modelow:modehigh 

k=wnum(ml ; 
c=w/k; 
p=sqrt((w*2/cdA2) -kA2); 
q=sqrt((w*2/ctA2)-k-2); 



A=(qA2-kA2) *bessel (l,q*a) / (-Z*l*k*p*bessel(l, p*a) ) ; 
for n=l:lOO; 

PI (n, 1) =1: 
r= (n-1) *a/(lOO-1) ; 
tauz=-A*bessel(O, pfr) * (lambda* (kA2+pA2) +2*mu*kA2) +bessel (O,q*r) *i*q*2*mu*k; 
tzz(n,m) =(t.auz) ; 

end 
phashlft (m) =angle(tzz (1.m) ) ; 
tzz ( : ,m) =tzz ( : ,m) *exp (-i*phashift(m) ) ; % remove phase shift a ~ d  imaginary 

% component of stress 
normdlvs (m) =real (max (tzz ( :.m) ) ) ; 
tzz ( : , m) =real (tzz ( : , m) Inormdivs (m) ) ; % normalize 

end 

% Calculate the average stress over the end of the cylinder 

for m=modelow:modehigh 
modeint (h,m) =quadl (alsintegrate, O,a, le-10, [Ol , wnum(m) , 

phashlft (m) . normdivdm) , w, cd, ct,mu,a, lambda) ; 
modeint (h,m) =modeint (h,m) / (pi*aA2) ; 

end 
Imaxmodelnt maxmodeindl =max (modeint (h, : ) ) ; 

% Calculate the relative amplitudes of each mode. 

clear C 
if coilnt>7 

tzzsmall=tzz(:,modelow:modeh~gh); 
Csmall=(inv(tzzsmall.'*tzzsmali) )*tzzsrnall.'*PI; 
excamp(h,l:count)=O; 
excamp(h,modelow:modehigh) =Csmall.'; 
modelow=maxmodeind-3; 
modehigh=maxmodeind+3; 

else 
C=(inv(tzz.'*tzz))*tzz.'*PI; 
excamp(h,l:count)=C.'; 

end 
end 

figure 
plot ( (1: hfreq) *deltaf, excamp) 

% Write excitation transfer functions to file 

wrltesignal-1; 
lf wr~tesignal==l 

file='format.txt'; 
fid=fopen(file,'w+') ; 
for i=l:l:propmode-1 

count=fprintf(fid,'%%8.4e\\t ' ) ;  

end 
count=fprlntf(fid,'%%8.4e\\n'); 
fclose (fld) ; 
format=textread(file,'%c','whitespace', '\tl).'; 
f~d=fopen('q25-nul6-exciteamp_sm7modeLS.dat','w'); 
fprintf(fid,format,excamp.'); 
fclose (fid) ; 

end 

for m-1:l:modehigh 
modeamp ( : ,m) =modeint ( : ,m) . *excamp ( : ,m) ; 

end 

figure 
plot ( (1 : hfreq) *deltaf.modeamp) 

% Write transfer functions of the both end conditions to file. 



fid=fopen(file, ' w + ' )  ; 
for i=l:l:modehigh-1 

count=fprintf(fld,'%%8,4e\\t ' ) ;  

end 
count=fprlntf(fid,'%%8.4e\\n') ; 
fclose(fid) ; 
format=textread(file,'Oc','whitespace', '\t') . ' ;  
fid=fopen('q25~nul6~modearnp~sm7modeLS.dat','w1~; 
fpr~ntf(fid,format,modeamp.O; 
fclose(fid) ; 

end 

% end of scrlpt 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



% This program calculates the phase shift and transfer functions 
% for each mode and t.he dispersed signal. 
% * * * * * * * * + * * * * * t * * * * * * * * * * * * * * * f t * * * * * + * * * * * * * * * * * * * * * * * * * * *  

% Only the real modes are considered. 
% * * * t * t t * * * * t * * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

clear all 
load properties; 

% The dispersion curves are specified 
velocities~q25~,nul6~smooth 
LA Bl =size (modes) ; 
mode-B ; 
clear XD 
clear XD1 
clear x 
clear i 
clear dfunc 
clear D I S P  
clear modemag 
clear C 
clear count 
D=0.200; % length of waveguide 
hfreq=5000; 
timestep-deltat; 

% The input signal and FFT of the signal is specified. 
Itrandata] = textread('refsig.datl); 
refsig=trandata(:,l)+i*trandata(:.2); % Excitation signal, xr in the model 
XR=refsig: 

% The arnplltude is calculated at each frequency. 
for h=l:l:hfreq 

w=h*wst.ep; 
clearvar 

% The number of propagating modes is calculated at each frequency. 

propmode=l; 
for j -2 :mode 

if w > =  freqstot(1,l) *2*p1 
propmode=j; 

end 
end 

% The wavenumber is acquired for each mode at each frequency 
count=O ; 
for j=l:propmode 

if j ;propmode 
elself modes (h, j )  < P O ;  
else 

count=count+l; 
wnurn(count) =modes (h, 1 )  ; 

end 
end 
fprintf(lrlstep=%-81 count=%-3i ',h,count); 

% Calculates the phase shift of each mode 

for m=l:l.count 
phvel (in) =w/real (wnum(m) ) ; 
I£ real (wnum (m) ) ==0; 

Q(m) =O; 
else 

Q(m) =exp(-1*h* (D/phvel (m) /deltat) '(2'pi/N) 1 ; 
end 



modtranfunc (h,m) =Q(m) *C(h,m) ; 
modedisp(h+l,m) cmodtranfunc (h.m) *XR(h+l) ; 
modexfunc (h, m) =abs (modtranfunc (h,m) ) ; 

end 
fprintf(l,'\n') 
dfunc (h) =s~lm(modtranfunc (h, : ) ) ; 

dfuncfile (h, 1) =real (dfunc ( h )  ) ; 
dfuncfile (h, 2) =imag(dfunc(h) ) ; 

% V~ultiply frequency spectrum of input slgnal by the 
% transfer function of the waveguide. 
XD(h+l) =dfunc(h) *XR(h+l) ; 

end 

% Take the inverse transform. 
XD= IXD. ' ;zeros (N-hfreq, 1) 1 ; 
xd-lfft (XD) ; 

num=count; 
% Write dispersed slgnal and dispersion functions to file 
writesignal=O; 
if writesignal==l 

fid=fopen( 'q25-len20O_nul6_1MHz.dat ' .  'w'); 
fprintf (fld. '%8 4e\n1,real(xd. ' 1 )  ; 
fclose (fid) ; 
f~d=fopen('q25-len20O_nul6_dispxfunc.dat','w') ; 

fprintf(fid,'%R.4e %8.4e\n',dfuncfile.'); 
fclose (f id) ; 

file='format.txt'; 
fid=fopen(file, 'w+' ) ; 
for i=l:l:num-1 

count=fprintf(fld,'%%8,4e\\t I ) ;  

end 
count=fprintf(fld,'%%8.4e\\n'); 
£close (f id) ; 
format=textread(file,'%c','whit-espacel,'\t').'; 
fid=fopen('q25~~len200~nu16~modexfun~.dat','w'); 
fprintf (£id, format,modexfunc. ' 1  ; 
fclose (f id) ; 

end 

% Plotting statements for trailing pulses figure. 
modesumw= [zeros (hfreq, 1) 1 ; 
f lgure 
set (gcf, 'Units', 'inches','Position'. [l -2 (4/5) '6 (4/5) *91 ) 
for m=2:10 

modesumw (1: hfreq) =modesumw (I.: hfreq) +modedisp (1: hfreq, m) ; 
modesig ( : ,m) =ifft ( lmoded~sp(l:hfreq,mi ;zeros (N-hfreq, 1) 1 ) ; 

subplot(11,2,2*m-3) ; 

plot(deltat:deltat:length(modes~g)*deltat,modesig(:,m~,'k'!; 
1-axis; 
axis(l3e-5 8e-5 -0.05 0.051); 
set(gca,'yticklabel1,(),'xticklabel',{),'Unit?','inches','Position', . . .  

[ (4/5)*.25 (4/5) *(9- (m-1)*0.625- (m-1)*0.125! (4/5) *2.5 (4/5) *0.6251) 
file='file.txt3; 
fid=fopen(file, 'w+') ; 
fprintf (fld, 'L(O,%li) ',m) ; 
£close (fid) ; 
textlabel=textread(file,'%c','whltespace','\t').'; 
text(7e-5,0.03,textlabel,'FontS~ze',8,'FontNan1e','times')%.'FontWeight','Bold') 
subplot(ll,2,2*(m-1)); 
plot (0: wstep/ (2*pi) : wstep/ (2*pi) * (hfreq-1) ,abs (modedisp( (1:hfreq) ,m) ) , 'k' ) ; 
1-axis; 
axis ( [l(l) l(2) 0 151 ) ; 
set(gca,'yticklabel',{),'xticklabel',(},'Units','inches','Position', . . .  

[(4/5) *3.25 (4/5)*(9- (m-1) *0.625- (m-i)*O.l25) (4/5) *2.5 (4/5) *0.6251) 
text(l.6e6,12,text1abe1,'FontSize',8,'FontName','times')%,'PontWeight','Bo1d1) 

end 



subplot(ll,2,19); 
plot(deltat:deltat:lcngth(mod~sumt~*de1tat,modesumt,'k'~; 
1 =axis ; 
axis(13e-5 8e-5 -0.15 0.151 \ ;  

set(gca,~yt~cklabel',(),'xticklabel~.{).'Units','inches','Position', . . .  
1 (4/5) *.25 (4/5) * (9-12*0.625-4'0.125) (4/5) *2.5 (4/5: *1.875] ) 

text(7e-5,0 13,'signal','FontSize',6,'FontName','t.imes')~,'PontWe~ght'.'Bold') 
xlabel('time','FontSize',8,'PontNarne','times') 
subplot (11.2.20) ; 
plot (O:wstep/ (2*pi) :wstep/ (2*pi) * (hfreq-1) ,abs (modedisp(l:hfreq, : )  ) , 'k') : 
l=axis; 
axls(ll(1) l(2) 0 151 1 ;  
set(gca,'yt~cklabel',(),'xt~cklabel',{),'tJnits','inches','Posit~on~,.. 

1 (4/5) '3.25 (4/5) *(9-lO"O.625-4*0.125) (4,'5) *2.5 (4/5) *0.625]) 
text (1.5e6,12, 'all modes', ' FontSlze', 8, ' FontNarn,?', 'times') 'b, 'Fontweight', 'Eold') 
subplot (11,2,22) ; 
plot(0:wstep/(2*pi):wstep/(2*pi)*(hfreq-l),ab~(modrsumw((l:hfreq))),'k'); 
1-axis; 
axis([l(l) l(2) 0 151); 
set(gca,'yticklabel',(),'xticklabel'.(),'Units','inches','Position', . . .  

[ (4/5) *3.25 (4/5) '(9-12*0.625-4*0.125) (4/5) '2.5 (4/5) *0.625]) 
text(1.6e6,12,~signa1~,'FontSize',8,~PontName','tirnes')%,'FontWeight','Bold') 
xlabel('frequencyl, 'FontSize'.8,'PontNarne','times') 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% end of script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



APPENDIX E. TRANSFER FUNCTIONS 

The transfer hc t ions  of the modes are a combination of the excitation end conditions and 

reception end conditions, each of which is represented by a set of transfer functions. The shape of these 

transfer functions vary depending on what scheme is used to normalize the stress functions. For this 

research the stress hc t ion  of each mode was divided by the maximum stress of the mode. However, 

regardless of how the stress functions are normalized, the multiplication of the transfer functions of 

excitation end conditions and the transfer functions of the reception end conditions will always create the 

same transfer hc t ions  for the modes. Fig. El. shows the excitation transfer functions and reception 

transfer functions for the stress fhctions normalized by the maximum value of the stress. 
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Fig. El.  Transfer functions of the excitation (left) and reception (right) end conditions. 

If the excitation end conditions change then the transfer functions of the excitation end conditions 

change as do the transfer functions of the modes. Fig. E2 shows the transfer hnctions for a number of 

different pressure distributions of the excitation. The magnitudes of the transfer functions change because 

the maximum amplitudes of each pressure distributions is the same and not the average pressure. Therefore, 



there is less energy in the nonuniform pressure distributions. A closer look at the versine pressure 

distribution shows some interesting results, Fig. E3. There are two noticeable differences between the 

transfer fimctions fiom the versine distribution and the transfer functions fiom the uniform distribution. 

First, the transfer functions of the versine distribution have a wider bandwidth with a different shape. 

Second, the location of the transfer function of each mode is shifted to the left. Both of these are due to the 

shape of the versine. The versine pressure distribution is closest in shape to a Bessel finction, which 

appears in the stress functions of the modes. It is crucial that the boundary conditions on the bar ends are 

well understood for accurate comparison to experiments. 
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Fig. E2. Comparison of the transfer functions (right) for different pressure distributions (right) for the 

excitation. Top to bottom the pressure distributions are uniform, versine, havasine, and cosine. 
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Fig. E3. Comparison of the transfer functions of the modes for a uniform pressure distribution (top) and a 
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versine pressure distribution (bottom). 
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