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This study compared students’ epistemological beliefs of mathematics after 

completing 3 years of a reform-oriented curriculum developed by the Core-Plus 

Mathematics Project (CPMP) versus a more traditional curriculum developed by Glencoe 

Mathematics.  The Conceptions of Mathematics Inventory (CMI; Grouws, Howald, & 

Colangelo, 1996) was administered to 11th-grade students in four rural Maine high 

schools (n=102) to measure student beliefs of mathematics.  CPMP was used as the 

primary textbook series in 2 of the schools, while the other 2 schools used Glencoe 

Mathematics.  A variation of the Reformed Teaching Observation Protocol (RTOP; 

Piburn & Sawada, 2000) and teacher questionnaires were used to characterize the level of 

reform-oriented instruction occurring in each of the schools. 

The results indicated that the students who were taught using the traditional 

curriculum combined with reform-oriented teaching practices expressed the most positive 



beliefs of mathematics, while the students who were taught using the reform-oriented 

curriculum expressed less healthy beliefs of mathematics, especially when taught using 

reform-oriented teaching practices.  Some of the differences in beliefs appeared to be 

gender-related. 

This study extends the previous research of Grouws et al. (1996), Walker (1999), 

and Star and Hoffmann (2005) by demonstrating the feasibility of using instruments such 

as the CMI to assess students’ epistemological beliefs of mathematics in order to expand 

the notion of impact of reform-oriented curricula beyond students’ performance on 

achievement tests.  This study also illustrates the importance of determining what is 

actually happening in the classrooms when performing such research.
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Chapter 1 
 

INTRODUCTION 
 

 

This thesis is a report of a study of students’ epistemological beliefs of 

mathematics when taught using a traditional curriculum, Glencoe Mathematics (Holliday 

et al., 2003a, 2003b; Boyd, Burrill, Cummins, Kanold, & Malloy, 2001) versus a reform-

oriented curriculum, Contemporary Mathematics in Context (Coxford et al., 1998).  The 

study was based primarily on responses to a questionnaire administered to 11th-grade 

students in four rural Maine high schools.  Direct observations and teacher questionnaires 

were also used to assess the level of reform-oriented teaching practices occurring in each 

school.  The goal of the study was to determine if students’ epistemological beliefs of 

mathematics are correlated with curriculum, teaching practices, and other variables such 

as gender. 

This first chapter discusses the general background of the study, specifies the 

problem of the study, describes its significance, and presents an overview of the 

methodology used.  Finally, the delimitations of the study are discussed. 

 

1.1. General Background of the Study 

In the past 20 to 25 years, epistemological beliefs research has come to be viewed 

as essential to mathematics education research (Lester, 2002; McLeod, 1992).  

Epistemological beliefs help provide a context for learning mathematics and they affect 
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how students conceptualize and engage in mathematical activities (Schoenfeld, 1985, 

1992; King & Kitchener, 1994; Kardash & Scholes, 1996; Grouws, Howald, & 

Colangelo, 1996; Schommer, 1990, 1993; Clarebout, Elen, Luyten, & Bamps, 2001).  

Although students’ attitudes toward mathematics have been researched extensively, 

students’ epistemological beliefs of mathematics have only recently been explored.  How 

do students view the field of mathematics?  What do students think it means to “do 

mathematics?”  How do beliefs vary between groups of students?  Such questions have 

important implications for mathematics education.  For example, students who view 

mathematics as a collection of isolated facts rather than as a meaningful system of 

connected concepts have been shown to have difficulty solving non-routine problems and 

understanding mathematical procedures (Schoenfeld, 1985; Schommer, 1990; Schommer, 

Crouse, & Rhodes, 1992). 

Based on constructivist theories of learning, many current mathematics education 

researchers and reformers view mathematics as a dynamic field that is best learned 

through an active process of construction in which students are empowered to explore, 

conjecture, and reason logically (Frykholm, 1995).  Researchers have identified common 

beliefs of mathematics which many students have that are considered unhealthy and not 

aligned with the vision of mathematics instruction described in Curriculum and 

Evaluation Standards for School Mathematics (National Council of Teachers of 

Mathematics [NCTM], 1989; Frank, 1988; Spangler, 1992).  Mtetwa and Garofalo (1989) 

and Schoenfeld (1992) conjectured that such beliefs are perpetuated by teachers, 

textbooks, and classroom experiences.  Schoenfeld provided a compilation of the 

students’ typical beliefs of mathematics: 
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• Mathematics problems have one and only one right answer. 

• There is only one correct way to solve any mathematics problem – usually the 

rule the teacher has most recently demonstrated to the class. 

• Ordinary students cannot expect to understand mathematics; they expect simply to 

memorize it and apply what they have learned mechanically and without 

understanding. 

• Mathematics is a solitary activity, done by individuals in isolation. 

• Students who have understood the mathematics they have studied will be able to 

solve any assigned problem in five minutes or less. 

• The mathematics learned in school has little or nothing to do with the real world. 

• Formal proof is irrelevant to processes of discovery or invention. 

Schoenfeld argued that “these beliefs shape [students’] behavior in ways that have 

extraordinarily powerful (and often negative) consequences” (p. 359), and according to 

the Curriculum and Evaluation Standards for School Mathematics, students’ beliefs 

“exert a powerful influence on students’ evaluation of their own ability, on their 

willingness to engage in mathematical tasks, and on their ultimate mathematical 

disposition” (NCTM, 1989, p. 233).  Therefore, it is important that educators consider 

students’ beliefs (Lester, 2002). 

Based on the notion that learning environments provided by teachers may shape 

students’ beliefs about mathematics, most research on epistemological beliefs of 

mathematics has focused on teachers’ beliefs of mathematics and how those beliefs 

influence instruction (Chval, Grouws, Smith, Weiss, & Ziebarth, 2006; Herbel-

Eisenmann, Lubienski, & Id-Deen, 2006; Frykholm, 1995; Ernest, 1994; Greeno, 1989; 
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Prawat, 1992; Thompson, 1984; Cooney, Sheally, & Arvold, 1998; Brosnan, Edwards, & 

Erickson, 1996; Cooney, 1985).  For example, a teacher who views mathematics as a 

collection of simple isolated facts may subdivide tasks into separate components that are 

taught and practiced in isolation (Arredondo & Rucinski, 1996).  Thompson (1992) 

provided a summary of earlier research on the complex relationships between teachers’ 

beliefs of mathematics and instruction. 

Traditional mathematics instruction is based on the traditional philosophical view 

of epistemology in which our knowledge is the sum total of what we know.  From this 

perspective, learning mathematics can be defined as “mastering, in some coherent order, 

the set of facts and procedures that comprise the body of mathematics” (Schoenfeld, 

1992, p. 342).  Mathematics instruction is usually characterized as traditional if it 

“provides clear, step-by-step demonstrations of each procedure, restates steps in response 

to student questions, provides adequate opportunities for students to practice the 

procedures, and offers specific corrective support when necessary” (Smith, 1996, p. 390; 

cited in Herbel-Eisenmann, Lubienski & Id-Deen, 2004, p. 1).  For example, traditional 

algebra instruction features teacher explanation and students practicing routine symbol-

manipulation rather than student exploration of real world problems that incorporate 

algebra concepts (Kieran, 1992).  Traditional assessment also focuses on symbol-

manipulation rather than the application of algebra concepts to problem-solving (Huntley, 

Rasmussen, Villarubi, Sangtong, & Fey, 2000).  One limitation often associated with 

traditional mathematics instruction is that students come to view mathematics as a 

collection of facts and rules that must be memorized (Schoenfeld, 1992; Boaler, 1999). 
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Reform-oriented instruction, on the other hand, is based on the view that 

knowledge comes from the development of complex cognitive skills and processes.  

From this perspective, learning mathematics is best accomplished through students’ 

active participation in their own learning with a curriculum that emphasizes problem-

solving, communication, reasoning, and mathematical connections, along with grade-

specific content standards (McCaffrey, Hamilton, Stecher, Klein, & Robyn, 2001).  The 

teacher’s role is that of a “facilitator who selects tasks, models important mathematical 

actions, guides student thinking, and encourages classroom discourse” (Herbel-

Eisenmann et al., 2004, p. 1).  This vision has been promoted through curriculum 

standards and guidelines published by the National Research Council (1996), the 

American Association for the Advancement of Science (1993), and the National Council 

of Teachers of Mathematics (NCTM, 1989, 1991, 2000).   

Most research comparing traditional and reform-oriented curricula has focused on 

achievement as measured by students’ performance on standardized tests of procedural or 

problem-solving skills.  Such research has generally found that students taught using 

reform-oriented curricula have greater conceptual understanding and problem-solving 

abilities than students taught using traditional curricula, while performance on traditional 

standardized tests of procedural skills is comparable (Senk & Thompson, 2003; see also 

Thompson and Senk, 2001; Boaler, 1999; Huntley et al., 2000; Chung, 2004; Stein, 

Boaler, & Silver, 2003).  Most curricular research that has considered students’ beliefs or 

attitudes has focused on elementary or middle school levels (e.g., Cobb, Wood, Yackel, 

& Perlwitz, 1992).  Some studies have found that students taught with reform-oriented, 

problem-centered instruction are more likely to have healthier beliefs and attitudes about 
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mathematics (Stein et al., 2003), although conceptual and methodological problems have 

made the results less than conclusive (Smith & Star, 2007). 

Efforts to assess the impact of reform programs must expand beyond students’ 

performance on standardized tests (Smith & Star, 2007; Star & Hoffmann, 2002).  One 

goal of reform-oriented mathematics instruction in recent years has been to promote 

healthy beliefs and attitudes about mathematics.  This study hoped to contribute to the 

field of research on the impact of reform programs by assessing students’ beliefs of 

mathematics when taught using different curricula and teaching practices. 

 

1.2. Problem Statement 

The general question this study attempted to answer was as follows: “Do high 

school students’ epistemological beliefs differ when using traditional versus reform-

oriented curricula?”  That general question subsumed the following related questions: 

1. Are there differences related to teaching practices? 

2. Are there differences related to demographic factors such as gender or parents’ 

level of education? 

3. Are there differences related to academic achievement? 

Researchers have conjectured that curriculum can influence students’ beliefs of 

mathematics (Gresalfi, Boaler, & Cobb, 2004; Star & Hoffmann, 2005).  Since one of the 

goals of reform-oriented mathematics instruction is to promote healthy beliefs and 

attitudes, one might expect that schools using reform-oriented curricula and teaching 

practices develop students with healthier beliefs.  However, no such assumptions were 
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made in the design of this study with respect to the influence of reform-oriented 

instruction on students’ beliefs of mathematics. 

 

1.3. Professional Significance of the Problem 

Research on epistemological beliefs has provided insight into how students learn 

and engage in mathematics.  For example, beliefs about doing mathematics have been 

shown to influence students’ problem-solving abilities (Schoenfeld, 1989), and students 

who believe that all mathematics problems can be solved in a few minutes often give up 

quickly on challenging problems (Schoenfeld, 1988).  This study aimed to contribute, in a 

variety of ways, to the important line of research exploring the complex relationships 

between learning environments and students’ beliefs. 

This study addressed some of the conceptual and methodological problems that 

have prevented previous studies from yielding conclusive results (Smith & Star, 2007).  

Hammer (1994) illustrated the importance of using an a priori framework when assessing 

students’ beliefs.  Hammer also suggested that providing a specific mathematical context 

is more likely to yield meaningful results.  Researchers have developed methodologies to 

address those concerns, but more consideration of the learning environment is necessary 

(Hammer; see also Star & Hoffmann, 2005; Herbel-Eisenmann, et al., 2006).  This study 

explored the feasibility of extending the research methodologies used in recent studies by 

including classroom observations and other methods to measure aspects of the 

instructional context that may affect beliefs. 

Another significant aspect of this study was its unique setting: rural Maine high 

schools.  The stark reality of teaching mathematics in Maine stands in contrast to the 
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settings for curriculum field studies in which teachers are provided extensive training, 

technology, and other support.  While most teachers and administrators who participated 

in this study expressed strong interest in research on the impact of different curricula on 

students’ beliefs, several participants felt that choosing a more typical setting would yield 

results that are more meaningful for educators in Maine. 

Finally, there are dozens of curricula used in Maine high schools, and there are 

very few resources available to help teachers, administrators, and other policy makers in 

these schools decide which curriculum to implement.  Standardized achievement test 

scores are often the primary evidence for making those decisions.  This study aimed to 

provide additional evidence for educators in Maine who are concerned with students’ 

learning beyond their performance on exams (Hoffmann, 2003). 

 

1.4. Overview of the Methodology 

This cross-sectional correlation study was designed to analyze the relationships 

between two curricula and the epistemological beliefs of mathematics held by students in 

four schools after studying three years of those curricula.  One curriculum in this study 

was an NSF-funded, Standards-based curriculum; the other was a more popular 

traditional curriculum.  Other variables, such as teaching practices and students’ gender, 

were also considered. 

The research perspective for this study was quantitative primary, qualitative first.  

The study began with a qualitative approach, using a series of informal interviews, 

classroom observations, and questionnaires to characterize the teaching practices 

occurring in the schools.  That qualitative data on teaching practices was then used as a 
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basis for collecting and interpreting the quantitative data (the primary method) on 

students’ epistemological beliefs of mathematics. 

The primary method used in this study was a questionnaire that was administered 

to 11th-grade students in four rural Maine high schools to assess their beliefs of 

mathematics.  The specific instrument used was the Conceptions of Mathematics 

Inventory (CMI; Grouws et al., 1996).  Secondary methods used included classroom 

observations, questionnaires, and informal interviews to describe the level of reform-

oriented teaching occurring in the schools.  Teachers were observed using a variation of 

the Reformed Teaching Observation Protocol (RTOP; Piburn & Sawada, 2000; Sawada 

& Piburn, 2000).  Teachers also completed questionnaires to study their backgrounds and 

teaching practices. 

The methodologies used in this study are discussed fully in Chapter 4. 

 

1.5. Delimitations of the Study 

Several delimitations should be considered before generalizing the findings of this 

study.  First, the unique setting of rural Maine high schools created restrictions on the 

nature and size of the sample population.  Although the setting provided an opportunity 

for survey participation by most 11th-grade students and teaching observations for most 

teachers and in the four schools, it also limited the number of available participants.  

Observed class sizes ranged from 6 to 17 students, and each school had only 2 to 4 

mathematics teachers.  Schools with greater enrollment might have yielded different 

results. 
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Second, there are questions about the validity of assessing 11th-grade students’ 

beliefs of mathematics without first establishing some sort of baseline.  The premise that 

students’ beliefs at the end of 11th-grade are the result of the learning environment 

provided to them in high school ignores the fact that students may have different beliefs 

before entering high school.  This study assumed that students’ beliefs are somewhat 

malleable, an assumption that may or may not be true.  Anecdotal evidence indicated that 

the curricula and teaching practices used in high schools and their feeder schools were 

similar (reform-oriented versus traditional).  Future researchers may consider longitudinal 

methods to address this concern. 

Finally, the use of questionnaires is an efficient and convenient method of 

gathering large amounts of data, but there are concerns about using this approach.  

Although the CMI framework is useful for conceptualizing students’ beliefs of 

mathematics, “it may be difficult to assume that a continuum of epistemological beliefs 

can be represented or measured by simply stating extreme positions and registering 

degrees of agreement” (Hofer & Pintrich, 1997, p. 110).  Furthermore, some researchers 

have expressed concern about using such a predetermined framework to extract students’ 

epistemological beliefs since “inevitably, that [framework] will be constructed, not out of 

the child’s conceptual elements, but out of conceptual elements that are the [researcher’s] 

own….  The [researcher] can never compare the model [the researcher] has constructed 

of a child’s conceptualizations with what actually goes on in the child’s head” 

(Glaserfield, 1987, p. 13). 
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1.6. Organization of the Thesis 

This chapter has described the general background of the study, the research 

problem, the significance of the problem, and the methodology used in the study.  The 

remaining chapters of this thesis are organized as follows: Chapter 2 provides a review of 

the relevant literature, including theoretical perspectives and empirical research; Chapter 

3 describes the influence and use of high school mathematics curricula, including a 

comparison of the two textbooks used in this study; Chapter 4 provides details on the 

methodology used, including the research setting, the participants, the instruments used, 

the procedures followed, and the data analysis made; Chapter 5 presents the results of the 

study; and Chapter 6 presents a summary and discussion of the findings. 
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Chapter 2 
 

LITERATURE REVIEW 
 
 
 

Although epistemological beliefs have only been viewed as essential to 

mathematics education research for the past 20 to 25 years, a large body of literature on 

the subject provides a basis for this study.  This chapter begins with a description of the 

search process that was used to review the literature.  Next, a review of the relevant 

theoretical literature is provided, including discussions of constructivist learning theories, 

the reform movement, epistemological beliefs, and epistemological beliefs theories.  

Finally, a review of empirical research is presented, including efforts to measure 

epistemological beliefs and selected studies of epistemological beliefs of mathematics. 

 

2.1. Search Process 

The literature review was performed using a systematic process conducted in 

three phases.  First, a broad scan was conducted to identify review articles, books, and 

other resources to help identify and develop the research problem.  Second, a focused 

review was conducted to develop a research prospectus.  This phase involved searching 

online resources such as the Education Resources Information Center (ERIC™), 

Google™ Scholar, and Dissertations Abstracts.  Finally, a comprehensive critique was 

conducted as an ongoing process throughout the remainder of the thesis project to 

identify any research related to this study. 



 13

Several research practices were followed throughout the focused review and the 

comprehensive critique.  First, a record of search terms and results was maintained in a 

spreadsheet, allowing for periodic updates of search results.  An annotated bibliography 

was maintained as a web page, each entry consisting of a reference, a brief indication of 

why the reference was selected, any relevant instrumentation used, a usefulness score 

from 1 (not useful) to 10 (essential) indicating the level to which the reference directly 

applies to the thesis, and a hypertext link to an electronic version of the reference if 

possible.  Thesis committee members were provided access to the annotated bibliography 

by posting it on a web page, along with meeting notes and other resources related to the 

thesis.  Printouts or photocopies of all sources, along with full bibliographic information, 

were placed in a series of three-ring binders. 

Next, the reference list of each source located was checked for leads to other 

sources.  This practice, known as ancestor searches, helped identify several essential 

resources, such as doctoral dissertations and conference proceedings.  Additional 

resources, such as the Mental Measurements Yearbook (Buros et al., 1938–2005), were 

identified by asking experts for help and from online reference lists found. 

Finally, the contents of several journals (e.g., Journal for Research in 

Mathematics Education) and conference programs (e.g., American Educational Research 

Association) were scanned periodically to identify relevant articles. 

 

2.2. Theoretical Literature 

The modern reform movement in mathematics education is based on the theory of 

constructivism (Glasersfeld, 1989), which assumes that “knowledge is not transmitted 
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directly from one knower to another, but is actively built up by the learner” (Driver, 

Asoko, Leach, Mortimer, & Scott, 1994, p. 5).  As described earlier, the primary purpose 

of this study was to explore relationships between reform-oriented (constructivist) 

mathematics instruction and students’ epistemological beliefs.  This discussion on 

theoretical literature is divided into three sections: constructivism and the reform 

movement, epistemological beliefs and learning, and models of epistemological beliefs. 

 

2.2.1. Constructivism and the Reform Movement 

Many educators consider Jean Piaget to have been the “first constructivist” 

(Glasersfeld, 1989, p. 125).  Piaget (1954) argued that students learn by either 

assimilating new experiences to what they already know, or accommodating their ideas to 

incorporate new information.  Instruction based on this theory therefore “often attempted 

to induce dissonance, or disequilibrium, that was designed to create conceptual conflict 

and then to help the student resolve that conflict” (Piburn & Sawada, 2000).  Another 

perspective on constructivism was provided by Vygotsky (1978), who viewed learning as 

a socio-linguistic activity that involves active participation in the negotiation and 

resolution of meaning.  Socio-cultural constructivists (e.g., Cobb, 1995) later expanded 

this perspective to include the role of culture in learning. 

From the variety of theoretical perspectives on constructivism, Piburn and 

Sawada (2000) provided a useful description of a constructivist classroom: 

A constructivist classroom would be one in which people are working together to 

learn….  It would be a place where inquiry was conducted.  Discourse would be 

the primary mode by which participants engaged in negotiations of meaning.  
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Cognitive, social and cultural differences among participants would be honored 

and alternative world-views respected.  A high level of rigor, and an 

accompanying demand for evidence and argument, would be a hallmark of such a 

community.  Conventions would be established for negotiating meaning but only 

as they facilitated the knowledge-building priorities already honored within the 

community (p. 4). 

By the mid-1980s, constructivism was widely accepted in the research 

community, as evidenced by the Romberg and Carpenter (1986) statement, “The research 

shows that learning proceeds through construction, not absorption” (p. 868; see also 

Schoenfeld, 1992).  As a result, several mathematics education professional 

organizations, such as the National Council of Teachers of Mathematics (NCTM, 1989, 

1991, 1995, 2000), recommended the following changes: a) design of curricula with a 

common core of broadly useful mathematics for all students, b) emphasis on student-

centered instruction that engages students in exploration of mathematical facts and 

principles through collaborative work on authentic problems, and c) assessment of 

student learning through a variety of strategies that are embedded in regular classroom 

activity (Huntley et al., 2000, pp. 1–2). 

2.2.1.1. The NCTM Standards.  A constructivist perspective was evident in 

Principles and Standards for School Mathematics (NCTM, 2000), where a vision of a 

classroom was presented as follows: 

Imagine a classroom … [in which] students confidently engage in complex 

mathematics tasks chosen carefully by teachers.  They draw on knowledge from a 

wide variety of mathematical topics, sometimes approaching the same problem 
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from different mathematical perspectives or representing the mathematics in 

different ways until they find methods that enable them to make progress.  

Teachers help students make, refine, and explore conjectures on the basis of 

evidence and use a variety of reasoning and proof techniques to confirm or 

disprove those conjectures…. Alone or in groups and with access to technology, 

they work productively and reflectively.… Orally and in writing, students 

communicate their ideas and results effectively. (p. 3) 

The Piagetian view of constructivism was also apparent in Principles and Standards for 

School Mathematics when it stated that “Students must learn mathematics with 

understanding, actively building new knowledge from experience and prior knowledge” 

(The Learning Principle; p. 20) and “Assessment should support the learning of important 

mathematics and furnish useful information to both teachers and students” (The 

Assessment Principle; p. 22). 

McCaffrey et al. (2001) provided an overview of the changes that were proposed 

in Professional Standards for Teaching Mathematics (NCTM, 1991).  Some of those 

changes directly addressed students’ epistemological beliefs of mathematics, such as (a) 

using logic and mathematical evidence to validate results rather than relying on the 

teacher, (b) emphasizing mathematical reasoning rather than memorizing procedures, and 

(c) making connections among mathematical ideas and applications.  Beliefs were also 

addressed in Curriculum and Evaluation Standards for School Mathematics (NCTM, 

1989), where mathematical disposition, including beliefs, was considered to be an 

important component of students’ mathematical knowledge. 
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Ultimately, Principles and Standards for School Mathematics (NCTM, 2000) was 

based on a variety of constructivist and epistemological belief theories, as seen in the 

Standards themselves: 

• Problem Solving: “Teachers play an important role in the development of 

students’ problem-solving dispositions by creating and maintaining classroom 

environments, from prekindergarten on, in which students are encouraged to 

explore, take risks, share failures and successes, and question one another” (p. 

53). 

• Reasoning and Proof: “By developing ideas, exploring phenomena, justifying 

results, and using mathematical conjectures in all content areas and – with 

different expectations of sophistication – at all grade levels, students should see 

and expect that mathematics makes sense” (p. 56). 

• Communication: “Listening to others’ explanations gives students opportunities to 

develop their own understanding.  Conversations in which mathematical ideas are 

explored from multiple perspectives help the participants sharpen their thinking 

and make connections” (p. 60). 

• Connections: “When students can connect mathematical ideas, their 

understanding is deeper and more lasting.  They can see mathematical 

connections in the rich interplay among mathematical topics, in contexts that 

relate mathematics to other subjects, and in their own interests and experience” (p. 

64). 

• Representation: “The importance of using multiple representations should be 

emphasized throughout students’ mathematical education … As students become 
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mathematically sophisticated, they develop an increasingly large repertoire of 

mathematical representations as well as a knowledge of how to use them 

productively” (p. 69). 

2.2.1.2. The Influence of the NCTM Standards.  Although constructivist 

learning theories and the NCTM Standards have been widely accepted by mathematics 

educators and researchers, mathematics instruction in school continues to be dominated 

by the traditional transmission view of knowledge (Brosnan et al., 1996).  According to 

the Report of the 2000 National Survey of Science and Mathematics Education (Weiss, 

Banilower, McMahon, & Smith, 2001) roughly half of elementary, middle, and high 

schools are reportedly implementing changes based on the NCTM Standards, while only 

30 percent of respondents indicated that the Standards had been thoroughly discussed by 

teachers in the school. 

Despite the consensus that emerged when Curriculum and Evaluation Standards 

was released in 1989, there has been some dissent (e.g., Addington & Roitman, 1996; 

Wu, 1997); this has usually been related to the issue of balancing conceptual and 

procedural knowledge in algebra (Huntley et al., 2000).  Even during the early 

development of the Standards, some mathematicians expressed concern about reducing 

emphasis on computational skills.  McCleod (1999) described NCTM’s efforts to reform 

curricula, including some of the cultural barriers encountered for curriculum reform. 

Another barrier for curriculum reform has been the lack of consensus on what it 

means for a curriculum to be effective.  This issue was addressed by Reys (2001): 

With mathematics curriculum materials, determining what is effective depends on 

the evidence one values.  Some people place the highest priority on skill 
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development, so any evidence of improved skill is judged positively.  Others may 

value understanding mathematical concepts, while still others may view problem 

solving as most important.  While these goals are not mutually exclusive, 

obtaining valid and reliable evidence to support them all is very difficult (pp. 

256–257). 

Epistemological beliefs could potentially be considered when determining the 

effectiveness of curricula.  However, belief is a “messy construct” (Pajares, 1992; 

Schommer-Aikens, 2004), and there are many unanswered questions about beliefs and 

learning.  A review of recent theories about epistemological beliefs and learning follows. 

 

2.2.2. Epistemological Beliefs and Learning 

Epistemological beliefs have been associated with constructivism since the 

pioneering work of Piaget (1950; cited in Sinatra, 2001) and Perry (1970).  Educational 

psychologists interpret epistemological beliefs as beliefs about the nature of knowledge, 

which may include beliefs about the certainty, source, acquisition, and structure of 

knowledge (Duell & Schommer-Aikins, 2001).  In mathematics education research, 

epistemological beliefs are often interpreted as “an individual’s understanding and 

feelings that shape the ways that the individual conceptualizes and engages in 

mathematical behavior….  They establish a psychological context for what it means to 

know and do mathematics” (Schoenfeld, 1992), and may “ultimately … prove the most 

valuable psychological construct to teacher education” (Pajares, 1992; cited in Star & 

Hoffmann, 2005). 
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Although researchers have used a variety of terms and definitions when 

discussing epistemological beliefs (see Schommer-Aikins, 2004), Breiteig, Grevholm, 

and Kislenko (2005) addressed the notion of a definition as follows: 

The definition does not play a major part in research, and thus every scientist will 

ascribe the importance of different aspects related to particular investigations.  It 

means that the definition is affected by the questions and the motive of the 

research.  Hence one cannot say that some definition is wrong and the other is 

right, they can be considered to be more or less suitable (Definition of beliefs 

section, para. 4). 

In the present study, epistemological beliefs are more or less defined by the instrument 

used to measure beliefs (see section 4.4.1) and the framework from which it was 

developed. 

In the last 20 to 30 years, many researchers have explored connections between 

epistemological beliefs and learning (e.g., Dweck & Leggett, 1988; Hammer, 1994; 

Schommer & Walker, 1995; Hofer & Pintrich, 1997; Kloosterman, 2002; Lester, 2002); 

several excellent reviews are available on the subject (e.g., Hoffmann, 2003; Lester, 

2002; Hofer & Pintrich, 1997).  However, many questions about epistemological beliefs 

remain unanswered (e.g., the dimensions encompassed and their domain-specificity, the 

connections to other constructs in cognition and motivation, and the actual construct of 

belief; see Hofer & Pintrich, 1997; Schommer-Aikens, 2004).  Exactly how beliefs are 

involved in the learning process is unclear: according to Schoenfeld (1985), “Belief 

systems shape cognition, even when one is not consciously aware of holding those 
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beliefs” (p. 35), while Kardash & Sinatra (2003) state, “Learning involves the awareness 

of and regulation of knowledge, beliefs, and goals” (p. 3). 

Despite unanswered questions, research has consistently shown that 

epistemological beliefs are an important part of learning, thinking, information 

processing, and problem-solving (Schommer, 1990, 1993; King & Kitchener, 1994; 

Kardash & Scholes, 1996; Schoenfeld, 1985; Clarebout et al., 2001; Gfeller, 1999).  

According to Curriculum and Evaluation Standards for School Mathematics (NCTM, 

1989), “[Students’] beliefs exert a powerful influence on students’ evaluation of their 

own ability, on their willingness to engage in mathematical tasks, and on their ultimate 

mathematical disposition.” (p. 233).  Stated broadly, “Epistemological beliefs affect 

comprehension in important ways” (Schommer, 1990, p. 498). 

Some researchers have associated beliefs with other constructs, such as 

motivation and conception.  Kloosterman (2002) described the connection between belief 

and effort: “Student’s belief is something the student knows or feels that affects effort – 

in this case effort to learn mathematics” (p. 248).  However, personal goals also come 

into play in mathematics: 

Many students believe that mathematics is boring, and strong effort is needed to 

learn it, but still find it important for life.  This is a paradox.  The reason for 

seeing mathematics as important can be practical – needs for a better profession 

and to some degree for a better life (Breiteig et al., 2005, Definition of beliefs 

section, para. 1). 

Spangler (1992) described the cyclic relationship between beliefs and learning: 

“Students’ learning experiences are likely to contribute to their beliefs about what it 
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means to learn mathematics.  In turn, students’ beliefs about mathematics are likely to 

influence how they approach new mathematical experiences” (p. 19).  Spangler suggested 

that the cycle of influence could be broken by providing mathematical experiences that 

enrich students’ beliefs.  Many researchers have considered how beliefs of teachers 

themselves can influence those mathematical experiences (e.g., Greeno, 1989; Prawat, 

1992).  For example, a teacher who views mathematics as simple may decide to 

subdivide mathematics content into component skills that are learned in isolation 

(Arredondo and Rucinski, 1996). 

 

2.2.3. Models of Epistemological Beliefs 

Hammer (1994) illustrated the value of an a priori framework in characterizing 

epistemological beliefs.  A variety of useful models of epistemological beliefs have been 

developed from diverse perspectives (Hofer & Pintrich, 1997).  Although beyond the 

scope of this thesis, some researchers have expanded those models into systemic models 

of belief systems and their interactions with other constructs (Schommer-Aikens, 2004; 

Malmivuori, 2001).  This section describes three types of theoretical models that have 

been used as frameworks for empirical research on students’ beliefs: (a) 

multidimensional models, (b) hierarchical models, and (c) separate and connected 

knowing. 

2.2.3.1. Multidimensional Models.  Perry (1968) and other researchers (e.g., 

Ryan, 1984) assumed that epistemological beliefs are unidimensional, developing in a 

fixed progression of stages (Schommer, 1990).  Other researchers have argued that 

epistemological beliefs are too complex to represent in a single dimension.  For example, 



 23

Oaks (1987) classified epistemological beliefs of mathematics along several dimensions 

as either dualistic or relativistic (see Table 1). 

 
Table 1.  Dimensions of epistemological beliefs defined by Oaks (1987). 

Dualistic Relativistic 
Mathematics is a process for finding answers 
to problems in a single prescribed way where 
the solutions to these problems are strictly right 
or wrong. 

Not all problems have exact answers, and 
depending on the context, they might have 
different answers in different situations. 

Mathematics is an exact body of knowledge 
over which students have no control, and the 
purpose of class activity is recording correct 
algorithms as provided by a higher authority.   

Results and processes can be deduced rather 
than memorized. 

Students view understanding new concepts as 
being able to recall each step in an algorithm. 

The primary goal in learning mathematics is to 
know the meaning behind problems as well to 
solve them. 

 
 

Borasi (1990) proposed four belief categories based on her own and Oaks’ work: 

(a) the scope of mathematical activity (providing correct answers to well defined 

problems), (b) the nature of mathematical activity (appropriately recalling and applying 

learned procedures), (c) the nature of mathematical knowledge (right or wrong), and (d) 

the origin of mathematical knowledge (existing only as a finished product to be absorbed 

as it is transmitted) (Grouws et al., 1996). 

Schommer (1990) proposed that there are at least five more or less independent 

dimensions: a) structure of knowledge, b) certainty of knowledge, c) source of 

knowledge, d) control of knowledge acquisition, and e) speed of knowledge acquisition.  

The structure, certainty, and source of knowledge dimensions were derived from the 

work of Perry, the control of knowledge acquisition dimension was derived from 

Dweck’s research (e.g., Dweck & Leggett, 1988) on beliefs about the nature of 

intelligence, and the speed of knowledge acquisition dimension was derived from 
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Schoenfeld’s (1985) work showing that some high school geometry students believe in 

quick, all-or-none learning.  Although there are conceptual and measurement issues that 

remain unresolved, (see Clarebout et al., 2001), Schommer’s model and its related 

questionnaire for assessing students’ beliefs initiated an important line of research linking 

epistemological beliefs to learning (Hofer & Pintrich, 1997). 

Hammer (1994) developed an analytic framework for studying beliefs about 

physics with three dimensions: (a) beliefs about the structure of physics knowledge as 

either a collection of isolated pieces or as a coherent system, (b) beliefs about the content 

of physics knowledge as either formulas or as concepts that underlie the formulas, and (c) 

beliefs about learning physics, as either receiving information from an authority or as an 

active process of reconstructing one’s understanding.  Hammer demonstrated the 

importance of context in analyzing student beliefs and introduced three criteria for 

evaluating his framework: recognizability, evident involvement, and consistency. 

Grouws et al. (1996) incorporated the research of Oaks (1987), Schoenfeld 

(1989), Borasi (1990), and Fennema and Sherman (1976) to develop the Student 

Conceptions of Mathematics Framework.  This mathematics-specific model was used as 

a basis for a questionnaire, the Conceptions of Mathematics Inventory (CMI), in order to 

gather data on a large number of students and to facilitate analysis of students’ beliefs of 

mathematics in a systemic manner.  The model includes seven more or less independent 

dimensions: composition, structure, status, doing, validating, learning, and usefulness.  

The seven dimensions are grouped into four themes: (a) what students see as the nature of 

mathematical knowledge, (b) the character of mathematical activity, (c) the essence of 

learning mathematics, and (d) the usefulness of mathematics.  Although some researchers 
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have argued that the fourth theme, usefulness of mathematics, should not be considered a 

part of epistemological beliefs, it was added as a dimension after considering research 

that used the Fennema-Sherman Mathematics Attitudes Scales (Fennema, Wolleat, Pedro, 

and Becker, 1981).  The Student Conceptions of Mathematics Framework was selected as 

the framework for this study and is discussed more fully in section 4.4.1. 

2.2.3.2. Hierarchical Models.  In contrast to the dualistic versus relativistic 

models described above, some researchers have extended Perry’s work by proposed 

hierarchical models of epistemological beliefs.  Based on Thompson’s (1984) 

observations of students’ conceptions of mathematics, Ernest (1994) proposed a three-

level hierarchy.  The lowest level is instrumentalism, where mathematics is viewed as an 

accumulation of unrelated but utilitarian rules and facts.  The next level is the Platonist 

view of mathematics as a consistent, connected and objective body of certain knowledge 

that is discovered, not created.  At the highest level, there is the problem-solving view of 

mathematics as a dynamic, continually expanding field of human creation and invention 

in a social and cultural context.  Mathematics is seen as a process of inquiry and coming 

to know, not a finished product. 

King and Kitchener (1994) proposed the Reflective Judgment Model, a seven-

stage model examining “the ways that people understand the process of knowing and the 

corresponding ways they justify their beliefs about ill-structured problems” (p. 13).  Their 

model contains seven stages of development divided into three sequential, hierarchical 

phases: pre-reflective, quasi-reflective, and reflective.  The Reflective Judgment Model 

examines how epistemological beliefs affect thinking and reasoning processes (Whitmire, 

2004). 
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Baxter Magolda (1992) proposed the Epistemological Reflection Model to address 

gender biases found in other models of epistemological beliefs.  Four ways of knowing 

were arranged into three levels: 

1. Absolute knowing – Knowledge is certain or absolute. 

2. (a) Transitional knowing – Knowledge is partially certain and partially 

uncertain; and (b) Independent knowing – Knowledge is uncertain, everyone 

has individual beliefs. 

3. Contextual knowing – Knowledge is contextual, judged on basis of evidence 

in context. 

Based on constructivist learning theories, the Epistemological Reflection Model was 

developed to examine how individuals make sense of their educational environments 

based upon their epistemological beliefs (Whitmire, 2004). 

2.2.3.3. Separate and Connected Knowing.  Belenky, Clinchy, Goldberger, & 

Tarule (1985, 1986) described five different epistemological positions, or Women’s Ways 

of Knowing, based on interviews with 135 women at educational institutions.  The 

position that has received the most attention is that of procedural knowing, modes of 

thinking in which an individual constructs or adopts one or more means of “obtaining, 

reflecting on, evaluating, and communicating knowledge” (p. 19).  Procedural knowing 

was further categorized into two distinct types called separate and connected knowing 

(Belenky et al., 1985, 1986; Ryan & David, 2002).  Separate knowing involves objective, 

analytical, detached evaluation of an argument or piece of work.  It often takes on an 

adversarial tone, involving argument, debate, playing devil’s advocate, “shooting holes” 

in another’s position, or critical thinking (Clinchy, 1990, as cited in Galotti, Clinchy, 
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Ainsworth, Lavin, & Mansfield, 1999).  Connected knowing, in contrast, involves trying 

to look at things from the another’s point of view, in the another’s own terms, and trying 

first to understand another’s point of view rather than evaluating it.  The two modes are 

not mutually exclusive and “can and do coexist within the same individual” (Clinchy, 

1996, p. 207, as cited in Galotti, et al., 1999). 

 

2.3. Empirical Research 

As theories of epistemological beliefs have evolved over the last 20-25 years, so 

have the empirical methods and research goals.  Some researchers have used interviews, 

observations, or open-ended questions to assess epistemological beliefs (e.g., Oaks, 1987; 

Glasersfeld, 1987; Baxter Magolda, 1992; Belenky et al., 1986; King & Kitchener, 1994), 

while others have used questionnaires in order to gather larger amounts of data and to 

facilitate analysis (e.g., Schoenfeld, 1985; Schommer, 1990; Spangler, 1992; 

Kloosterman and Stage, 1992; Grouws et al., 1996; Kardash & Wood, 2000).  (See Duell 

and Schommer-Aikins, 2001, for an overview of the major epistemological belief 

instruments and a discussion of issues in selecting an instrument.)  The focus of research 

of epistemological beliefs has expanded from beliefs about the nature of knowledge 

(Perry, 1968) to include relationships to learning (e.g., Schommer, 1990), social 

interactions (e.g., Baxter Magolda, 2004; Schommer-Aikins, 2004), and classroom 

practices (e.g., Lester, 2002). 

This section is divided into three parts.  First, a brief review of the domain-

independent empirical research is presented, focusing on the major instruments used in 

the field.  Second, mathematics-specific studies on epistemological beliefs are described, 
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including the instruments used and important findings.  Finally, studies that focus on the 

relationships between reform-oriented instruction and epistemological beliefs are 

described. 

 

2.3.1. Domain-Independent Studies 

Much empirical research on epistemological beliefs has made use of Schommer’s 

(1990) Epistemological Belief Questionnaire, a 63-item Likert scale instrument with four 

scales based on Schommer’s framework described earlier (see section 2.2.3.1).  This 

questionnaire provides an efficient method for collecting large amounts of data (Hofer & 

Pintrich, 1997).  Studies have investigated correlations between epistemological beliefs 

and mathematical text comprehension (Schommer, 1990); confidence, academic 

performance, gender, and level of education (Schommer, 1993; Schommer, Crouse, & 

Rhodes, 1992; Schommer, Calvert, Gariglietti, & Bajaj, 1997); gifted versus other 

students (Schommer & Dunnell, 1994); different domains (Schommer & Walker, 1995); 

“learned helplessness” and conceptual change learning (CCL; Qian & Alvermann, 1995); 

and learning strategies (Dahl, Bals, & Turi, 2005). 

Despite widespread usage, some researchers have raised questions about the 

construction and use of Schommer’s questionnaire.  Factor analysis by Schommer 

yielded four factors: Fixed Ability, Quick Learning, Simple Knowledge, and Certain 

Knowledge (Schommer, 1990; Hofer & Pintrich, 1997).  However, other researchers 

have expressed concerns about the psychometric properties (Clarebout et al.; 2001; Qian 

& Alvermann, 1995) and possible cultural bias (Arredondo & Rucinski, 1996) of the 

instrument.  Hofer and Pintrich (1997) suggested that the theoretical framework itself 
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may be a problem, particularly the dimensions of quick learning and source of 

knowledge.  Hofer and Pintrich also questioned the relevance of some items, such as one 

item that refers to the value of self-help books as an indicator of belief in the ability to 

learn how to learn.  Some researchers (e.g., Wood & Kardash, 2002) have made efforts to 

improve and expand Schommer’s questionnaire, and it continues to be used widely for 

large-scale quantitative assessment. 

Several other instruments have been developed from the theoretical models 

discussed in section 2.2.3.  Galotti et al. (1999) used the Ways of Knowing model as a 

basis for developing the Attitudes toward Thinking and Learning Survey (ATTLS), a 50-

item Likert scale questionnaire consisting of statements illustrating separate (critical, 

detached) and connected (empathic) knowledge.  Several studies have used the ATTLS to 

explore differences between male and female students (Galotti et al., 1999; Ryan & 

David, 2003; Schommer-Aikins & Easter, 2006). 

Baxter Magolda (1992, 2004) developed the Measure of Epistemological 

Reflection (MER) instrument based on her Epistemological Reflection Model to explore 

reasoning patterns in male and female students, and King and Kitchener (1994) 

developed the Reflective Judgment Interview (RJI) based on their Reflective Judgment 

Model to measure reasoning ability.  Whitmire (2004) used both the MER and the RJI to 

examine correlations between undergraduate students’ epistemological beliefs and 

information-seeking behavior. 

Wood and Kardash (2002) developed the Kardash Epistemological Belief Scale, a 

36-item Likert scale questionnaire that measures both cognitive disposition and 

epistemological belief constructs.  This questionnaire includes five scales: speed of 
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knowledge acquisition (speed), the structure of knowledge (structure), knowledge 

construction and modification (construction), characteristics of successful students 

(success), and attainability of truth (truth).  Initial studies using the questionnaire have 

indicated considerable overlap between the constructs (Kardash & Sinatra, 2003; Kardash 

& Wood, 2000).  Schommer-Aikins & Easter (2006) used the Kardash Epistemological 

Belief Scale in their study of how ways of knowing relate to beliefs about knowledge and 

learning. 

 

2.3.2. Studies of Students’ Beliefs of Mathematics 

Much of the early research on epistemological beliefs of mathematics focused on 

the beliefs of teachers (e.g., Thompson, 1984), often demonstrating strong relationships 

between teachers’ beliefs and instructional behavior (Ernest, 1994; Frykholm, 1995).  As 

theories and instruments for studying epistemological beliefs have evolved, more 

emphasis has been placed on students’ beliefs of mathematics and their relationships to 

learning and cognition.  Although some researchers have used context-free instruments to 

explore students’ epistemological beliefs of mathematics (e.g., Schommer et al., 1992; 

Schommer & Walker, 1995), other researchers have shown that providing a specific 

mathematical context can be more effective (Schoenfeld, 1989; Hammer, 1994; Grouws 

et al., 1996; Lester, 2002).   

Early studies of students’ epistemological beliefs of mathematics often focused on 

individual beliefs; those studies provided the foundation for many of the theoretical 

models described earlier in section 2.2.3 and instruments developed from those models.  

Oaks (1987) interviewed college students enrolled in remedial mathematics classes, 
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finding that students who fail those classes often view mathematics as rote manipulation 

of symbols, focusing on memorization rather than conceptualization.  Frank (1988; cited 

in Hoosain, 2003) used a questionnaire, interviews, and observations to study the 

relationship between mathematically-talented middle school students’ beliefs and their 

problem-solving practices.  Frank found that many students believed that if a problem 

could not be solved in under 5 to 10 minutes, it could not be solved at all; either 

something was wrong with them or the problem.  Another common belief of students was 

that the purpose of mathematics was to obtain correct answers.  Spangler (1992) used a 

series of open-ended questions to assess students’ beliefs of mathematics (e.g., “If you 

and your friend got different answers to the same question, what would you do?”), 

finding that many students believe that a mathematical problem has only one correct 

answer and that students preferred one method of solving a problem. 

In another line of research, Schoenfeld (1985, 1988, 1989) used an 81-item 

questionnaire dealing with students’ attributions of success and failure to explore a 

variety of beliefs about mathematics in the context of high school geometry classes.  

Schoenfeld identified a number of students’ beliefs about the nature of mathematical 

thinking that appeared to be a factor in some of their learning problems.  For example, 

students who believed that mathematics consists of isolated facts often have difficulty 

understanding mathematical concepts and procedures (1985).  Many students believed 

that solving mathematics problems depends on knowing rules, and mathematics is 

presumed to be more rule-bound than English or social studies (1989).  Schoenfeld also 

found that students’ beliefs about the nature of mathematical thinking could prevent them 

from solving problems that they are capable of solving. 
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The first large-scale study of students’ beliefs of mathematics was conducted as 

part of the 1992, 1996, and 2000 mathematics assessments of the National Assessment of 

Educational Progress (NAEP).  This study reported 4th-, 8th-, and 12th-grade students’ 

beliefs about the nature of mathematics as indicated by their level of agreement with 

statements such as “Learning mathematics is mostly memorizing facts,” “There is only 

one correct way to solve a mathematics problem,” “Mathematics is useful for solving 

everyday problems,” and “All students can do well in mathematics if they try.”  Although 

the statements used were of a general nature and the responses were not analyzed with 

respect to achievement or curricula used, significant differences by age and gender 

(Lubienski, McGraw, & Strutchens, 2004) as well as race and ethnicity (Strutchens, 

Lubienski, McGraw, & Westbrook, 2004) were found for some items. 

In 1992, Kloosterman and Stage introduced the Indiana Mathematics Belief 

Scales, the first empirically-validated instrument for measuring secondary school and 

college students’ beliefs about mathematics and learning mathematics.  This 36-item 

Likert scale questionnaire focused on six beliefs related to motivation and problem-

solving: (a) I can solve time-consuming mathematics problems; (b) there are word 

problems that cannot be solved with simple, step-by-step procedures; (c) understanding 

concepts is important in mathematics; (d) word problems are important in mathematics, 

(e) effort can increase mathematical ability; and (f) mathematics is useful in daily life.  

The purpose of the questionnaire was to allow mathematics instructors to measure the 

beliefs of their students, “modifying instruction to improve beliefs if needed” (p. 109).  

The six measured scales were based on previous research (e.g., Schoenfeld, 1985), and 

the sixth scale (mathematics is useful in daily life) was a reworded subset of the 
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Fennema-Sherman Mathematics Attitudes Scales (Fennema & Sherman, 1976; Fennema, 

Wolleat, Pedro, & Becker, 1981).  Although the Indiana Mathematics Belief Scales 

questionnaire has been used by many researchers to explore relationships between beliefs 

about mathematics and problem-solving (e.g., Stage & Kloosterman, 1991), some 

researchers have raised questions about its reliability (e.g., Mason, 2003), and 

Kloosterman has shifted his focus onto constructing interview instruments that ask 

students directly about their beliefs (Lester, 2002). 

In 1996, Grouws et al. introduced the Conceptions of Mathematics Inventory 

(CMI), a 56-item Likert scale questionnaire for measuring high school students’ beliefs 

of mathematics.  (The CMI was selected as the primary instrument for this study, and it is 

described fully in section 4.4.1.)  The CMI was based on the Student Conceptions of 

Mathematics Framework described earlier in section 2.2.3.1, and Grouws et al. used the 

CMI to study two groups of high school students: one consisting of “typical” students and 

one consisting of “mathematically talented” students.  The major goals of the study were 

to develop a framework for studying students’ beliefs of mathematics, to gather baseline 

data about the two groups of students, and to generate hypotheses about the relationships 

between students’ beliefs and learning.  Summarizing the results, 

Mathematically talented students tended to view mathematics as a field composed 

of a system of coherent and interrelated concepts and principles, which is 

continuously growing.  Doing mathematics is a sense-making process in which 

one must rely on personal thought and reflection to establish the validity of that 

knowledge.  Algebra students also viewed mathematics as a dynamic and growing 
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field, but they were much more likely to see it as a discrete system of facts and 

procedures that requires more memorizing than thinking (p. 32). 

Although Grouws et al. did not consider the impact of curricula or teaching practices on 

students’ beliefs of mathematics, the CMI authors have indicated to other researchers that 

the students were all taught using “traditional” curricula (Star & Hoffmann, 2005).  Other 

researchers (e.g., Walker, 1999) have used the CMI to assess the impact of reform-

oriented curricula; those studies are discussed in the next section.   

The KIM project (Streitlien, Wiik, & Brekke, 2001; cited in Kislenko, Grevholm, 

& Lepik, 2005) collected data on students’ understandings of key concepts in the 

Norwegian mathematics curriculum and developed a 125-item Likert scale questionnaire 

designed to expose students’ beliefs about mathematics and mathematics teaching and 

learning.  The KIM Questionnaire includes 13 groups of questions concerning beliefs 

about the following: mathematics as a subject; learning mathematics; own mathematical 

abilities; own experiences (security) during mathematics lesson; teaching of mathematics; 

learning a new topic in mathematics; environment in class; environment in school; 

differences between boys and girls; teaching tools in mathematics lesson; own evaluation 

for importance of mathematics; evaluation for teaching mathematics; and mathematics 

and the future (Breiteig et al., 2005).  In a recent pilot study carried out in Norway, 

Kislenko et al. performed factor analysis to identify five groups of statements about 

mathematics: interest, usefulness, self-confidence, diligence, and security.  One striking 

result from the pilot study was that although 97% of ninth-grade students said that 

mathematics is important, more than half said that mathematics is boring.  Numerous 
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researchers have adopted the KIM Questionnaire as a primary instrument for studying 

mathematical beliefs and attitudes. 

 

2.3.3. Studies of Reform-Oriented Instruction 

Most research comparing the effectiveness of reform-oriented curricula has 

focused on students’ achievement (e.g., Schoen, Hirsch, & Ziebarth, 1998).  Although 

several studies have focused on the relationships between curricula and students’ 

epistemological beliefs of mathematics (e.g., Boaler, 1999), most of those studies did not 

consider the teaching practices used to deliver the curricula (e.g, Hirschhorn, 1993; 

Walker, 1999; Star & Hoffmann, 2005).  Other studies have suffered from 

methodological limitations (e.g., Hofer, 1994), or focused on elementary school students 

(e.g., Wood & Sellers, 1997; Franke & Carey, 1997).  This section reviews the empirical 

research on the relationships between reform-oriented instruction and students’ beliefs, 

emphasizing research directly relevant to this study. 

Hirschhorn (1993) compared achievement and attitudes of students who 

completed the reform-oriented University of Chicago School Mathematics (UCSMP) 

high school mathematics curriculum to those of two groups of comparable students who 

completed a traditional mathematics curriculum.  Hirschhorn developed a 25-item Likert 

scale Student Opinion Survey consisting of items from various field studies (e.g., 

“Mathematics is an interesting subject,” “I enjoy working word problems,” and “Using a 

calculator helps me learn math”).  Unfortunately, no evidence was collected on the 

instructional practices used to implement the curricula.  Although no correlation was 

found between the use of UCSMP and students’ attitudes toward mathematics, the belief 
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that mathematics is useful was positively correlated with higher achievement on 

standardized tests.  Hirschhorn did not examine epistemological beliefs as defined by the 

theoretical models discussed earlier (see section 2.2.3), but the study did signify 

researchers’ increasing interest in affective outcomes of curricula and instruction. 

Hofer (1994) explored relationships between epistemological beliefs, motivation, 

and cognition with two groups of undergraduate first-semester calculus students: one 

group was taught using instructional practices that focused on word problems and 

emphasized active and collaborative learning; the other group was taught using a 

traditional lecture and demonstration approach.  Hofer developed a questionnaire that 

includes six Likert scale items from a list of typical student beliefs about mathematics, 

such as “Mathematics problems have one and only one right answer” and “Math is a 

solitary activity done by individuals in isolation” (Lampert, 1990; Schoenfeld, 1992).  

Other items assess students’ motivation, learning strategies, and achievement.  Hofer 

found that students enrolled in the classes that focused on word problems and emphasized 

active and collaborative learning were more likely to have sophisticated beliefs about 

mathematics than students enrolled in the traditional classes.  However, Hofer reported 

several major limitations to the findings, including problems with reliability and validity 

of the questionnaire, a low response rate (25.2%) with disproportionate response among 

students of higher achievement, nonrandom assignment to the two groups, and no 

assessment of beliefs prior to enrollment. 

Wood and Sellers (1997) performed a longitudinal study of the mathematical 

achievement and beliefs of three groups of elementary school students: the first group 

received two years of problem-centered mathematics instruction, the second group 
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received one year of problem-centered instruction and one year of textbook instruction, 

and the third group received two years of textbook instruction.  Wood and Sellers 

developed the Personal Goals and Beliefs Questionnaire (see also Thompson & Senk, 

2001), which includes five subscales for students’ beliefs about reasons for success in 

mathematics: working hard and being interested in mathematics (Effort); persisting and 

collaborating to understand (Understand and Collaborate); conforming to the solution 

methods of others (Conform); being superior to peers (Competitiveness); and being 

lucky, neat, or quiet (Extrinsic).  Wood and Sellers found that students who participated 

in two years of problem-centered instruction had better scores on standardized 

achievement tests, better conceptual understanding, and more task-oriented beliefs about 

learning mathematics than those who participated in textbook instruction. 

Boaler (1999) performed a three-year longitudinal case study comparing the 

mathematical perceptions and behaviors of students in two UK high schools where 

mathematics was taught using different instructional practices: one school used a 

traditional lecture and demonstration approach; the other school used a project-based 

approach.  Research methods included teacher and student interviews, lesson 

observations, questionnaires, contextualized assessment questions, and other achievement 

tests.  Boaler concluded that the differences in instructional practices had a significant 

impact on the students’ mathematical perceptions and behaviors.  Students taught using 

the project-based approach enjoyed mathematics more and viewed mathematics as a 

flexible subject that involved thinking about real world situations.  Students taught using 

the traditional approach viewed mathematics as a collection of rules, formulas, and 

equations that require memorization rather than thinking.  Gresalfi et al. (2004; cited in 
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Star & Hoffmann, 2005) extended this line of work with high school students in the 

United States, examining the epistemological beliefs of students taught with traditional 

versus reform-oriented approaches, arguing that the students’ beliefs are determined more 

by the curriculum than the learning preferences of the students. 

Walker (1999) extended Grouws’ line of research (see section 2.3.2) by using the 

CMI to characterize the epistemological beliefs of mathematics held by students after 

completing four years of the CPMP curriculum.  Walker measured students’ beliefs as 

they completed high school, and again after they completed one semester of college 

mathematics.  The goal of the study was to determine how strongly the students held their 

beliefs of mathematics as they made the transition from reform-oriented high school 

mathematics to college mathematics.  In addition to the CMI results, case studies 

described how six of the students reacted as they made the transition to college 

mathematics.  The study did not take into account how the curriculum was implemented, 

and Walker had no way of determining how students’ beliefs of mathematics would have 

differed if they had been taught using a more traditional curriculum.  However, Walker 

explored the validity and reliability of the CMI, providing guidance for future researchers 

examining the relations between curricula and students’ epistemological beliefs of 

mathematics. 

Star and Hoffmann (2005) used the CMI to explore the beliefs of ninth-grade 

students’ who had been taught with a middle school reform-oriented curriculum, the 

Connected Mathematics Project (CMP Educational Program, 2001; Lappan, Fey, 

Fitzgerald, Friel, & Phillips, 1997).  The results were compared to results obtained from 

an earlier study (Grouws et al., 1996) that involved students taught with a traditional 
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curriculum.  Star and Hoffmann found that "students at the Standards-based site 

expressed more sophisticated epistemological conceptions of mathematics than those of 

the students from the non-Standards-based site” (p. 25), particularly with the Usefulness 

scale of the CMI.  There were two major limitations of the study.  First, although the 

authors believed that the reform-oriented curriculum was “extremely well enacted” (p. 

29), there was no evidence of the teaching practices (e.g., classroom observations) that 

were used to implement the traditional curriculum in the earlier study.  Second, the 

authors had limited access to the data set for the traditional students.  Despite these and 

other limitations, the study demonstrated the feasibility of using the CMI to assess the 

impact of reform-oriented curricula on students’ epistemological beliefs of mathematics.  

Star and Hoffmann also described procedures for analysis of CMI responses, including 

reliability and effect size (see also Star & Hoffmann, 2002). 

 

2.4. Summary of the Previous Research 

As the previous discussion illustrates, constructivism is widely accepted in the 

research community, and NCTM and other organizations have promoted reform-oriented 

curricula and instruction based on constructivist principles.  Epistemological beliefs are 

an important part of constructivist theories of learning, and a variety of theoretical models 

and research methodologies from diverse perspectives have been developed to study 

those beliefs. 

Empirical research has consistently shown that the epistemological beliefs held by 

students and teachers can impact learning in a variety of ways.  Although there are many 

unanswered questions about the construct of epistemological beliefs, research has helped 
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to expand the notion of impact of reform-oriented curricula and instruction beyond 

students’ achievement and attitudes (Smith & Star, 2007). 

NCTM’s Principles and Standards for School Mathematics (2000) clearly 

recommended that mathematics curricula promote healthy epistemological beliefs of 

mathematics.  However, there has been little empirical evidence demonstrating whether 

the use of reform-oriented curricula actually impacts students’ beliefs.  Such evidence is 

needed by teachers, administrators, and other policy-makers making decisions about 

curricula. 

The present study takes into account many lessons learned from previous studies 

of the relations between curricula and students’ epistemological beliefs, such as the value 

of using a framework when studying beliefs, the importance of assessing the instructional 

context and practices used to deliver the curricula, and the reliability and validity of the 

instrument used.  Those lessons helped determine the methods used in this study, 

including the specific instruments used, procedures followed, and analyses performed. 
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Chapter 3 
 

HIGH SCHOOL MATHEMATICS TEXTBOOKS 
 
 
 

In the U.S., school districts spend more than $4 billion each year on textbooks, 

and schools typically adopt new mathematics textbooks every five to seven years.  Unlike 

most industrialized countries, the selection of textbooks and other curriculum materials is 

usually a local decision, and the federal government does not provide national curriculum 

standards to guide those decisions (Reys, Reys, & Chavez, 2004).  This chapter discusses 

high school mathematics textbooks in the U.S., and is divided into five sections: (a) the 

influence of mathematics textbooks in the U.S., (b) an overview of the CPMP, (c) 

research on the effectiveness of CPMP, (d) research on the effectiveness of Glencoe 

Mathematics, and (e) an example contrasting CPMP and Glencoe Mathematics. 

 

3.1. The Influence of Mathematics Textbooks in the U.S. 

The textbook selected by a school district strongly influences both what and how 

mathematics is taught (Tarr, Chávez, Reys, & Reys, 2006).  Teachers often use the 

textbook as a set of lesson plans, and the proportion of the textbook devoted to a 

particular topic influences the amount of time spent on that topic.  In addition, the 

textbook often determines the sequence for presenting mathematics content (Reys et al., 

2004). 
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Most mathematics textbooks have been practically indistinguishable until recent 

years.  Each unit typically provides examples that the teacher demonstrates, followed by 

exercises for the students to try and homework problems similar to those already 

demonstrated.  Mathematical ideas are typically presented as facts to memorize.  The 

NCTM’s Curriculum and Evaluation Standards for School Mathematics (1989) provided 

a K-12 curriculum framework for mathematics, and the National Science Foundation 

funded several efforts to create new mathematics textbooks based on that framework.  

Some publishers have also incorporated elements of that framework into their textbooks.  

However, research has indicated that teachers’ implementation of reform-oriented 

curricula varies widely (Reys et al., 2004). 

The Report of the 2000 National Survey of Science and Mathematics Education 

(Weiss et al., 2001) described market share of commercial mathematics textbook 

publishers and usage of mathematics textbooks as reported by school mathematics 

program representatives.  Three publishers—McGraw-Hill/Merrill Co.; Houghton 

Mifflin/McDougall Littell/D.C. Heath; and Addison-Wesley Longman, Inc./Scott, 

Foresman—accounted for 61% of the mathematics textbook usage in grades 9–12. 

McGraw-Hill/Merrill Company, the publisher of both the Glencoe Mathematics and 

CPMP textbooks used in this study, accounted for 22% of the market share at the high 

school level, although CPMP accounted for only 1% of the market share at the high 

school level.  Reys et al. (2004) reported that 10-15% of U.S. classrooms use reform-

oriented textbooks based on the NCTM curriculum framework. 
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Research on the usage and impact of textbooks in the U.S. has been limited, but 

there is one consistent finding: textbooks impact students’ mathematics experience in 

important ways (Tarr et al., 2006). 

 

3.2. The Core-Plus Mathematics Project (CPMP) 

In 1992, the National Science Foundation funded several projects to produce 

elementary, middle, and high school mathematics textbooks based on the principles 

outlined in the NCTM’s Curriculum and Evaluation Standards for School Mathematics 

(1989; Reys, Robinson, Sconiers, & Mark, 1999; Ziebarth, 2003).  The Core-Plus 

Mathematics Project (CPMP) is one of four high school projects funded, and the resulting 

textbook is published under the title Contemporary Mathematics in Context: A Unified 

Approach (Coxford et al., 1998), commonly referred to as CPMP or Core-Plus. 

CPMP is based on the theme of using mathematics as a tool for making sense of 

the world around us.  Investigations of real-life questions lead students to develop 

mathematical understanding and skills.  Rather than the traditional Algebra I, Geometry, 

Algebra II sequence of topics, each year of CPMP includes topics in algebra and 

functions, geometry and trigonometry, statistics and probability, and discrete 

mathematics.  Those four interwoven content strands are unified by the common themes 

such as symmetry, functions, matrices, and data analysis and curve fitting.  While 

traditional algebra curricula have focused on symbolic manipulation and procedures to 

solve rational and polynomial procedures, CPMP uses a function perspective where 

algebra is presented as a tool for problem-solving and modeling (Schoen, Cebulla, & 

Winsor, 2001).  CPMP also promotes several habits of mind, including visual thinking, 
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recursive thinking, reasoning with multiple representations, and providing convincing 

arguments (Hirsch, Coxford, Fey, & Schoen, 1995; Huntley et al., 2000). 

The underlying principle apparent throughout CPMP is the constructivist view 

that “exploration and experimentation necessarily precede and complement theory” 

(Schoen, Finn, Cebulla & Fi, 2003, p. 7).  CPMP also recognizes the importance of 

small-group collaborative learning, social interaction, and communication in the 

construction of mathematical ideas, particularly for females and underrepresented 

minorities (Schoen & Hirsch, 2003a).  Each lesson is launched with a real world situation 

and questions for the entire class to think about, setting the context for the student work.  

Students then explore more focused problems related to the launch situation, and a shared 

understanding of concepts, methods, and approaches is developed during class 

discussions.  Each lesson also includes tasks for students to complete on their own, 

engaging students in modeling with, organizing, reflecting on, and extending their 

understanding.  CPMP incorporates the principles on teaching and learning mathematics 

listed below (Schoen, Hirsch, et al., 1998; Ziebarth, 2003; Schoen & Hirsch, 2003a): 

1. Mathematics is a vibrant and broadly useful subject to be explored and understood 

as an active science of patterns. 

2. Each part of the curriculum should be justified on its own merits. 

3. Computers and calculators have changed not only what mathematics is important, 

but also how mathematics should be taught. 

4. Problems provide a rich context for developing student understanding of 

mathematics. 
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5. Deep understanding of mathematical ideas includes connections among related 

concepts and procedures, both within mathematics and to the real world. 

6. Classroom cultures of sense-making shape students’ understanding of the nature 

of mathematics as well as the ways in which they can use the mathematics they 

have learned. 

7. Social interaction and communication play vital roles in the construction of 

mathematical ideas. 

8. Small-group cooperative learning environments encourage more female 

participation in the mathematics classroom, and encourage a variety of social 

skills that appear particularly conducive to the learning styles of females and 

underrepresented minorities. 

Another significant distinguishing feature of CPMP is the frequent presentation of 

algebraic ideas through tabular, graphic, and symbolic representations using technology 

(Huntley et al., 2000; Schoen, Hirsch, et al., 1998; Schoen et al., 2001; Schoen, Finn, et 

al., 2003).  Because of equity considerations, graphing calculators are used rather than 

computers.  This and other features of CPMP that distinguish it from more traditional 

curricula were summarized by Schoen & Hirsch (2003b): 

• Each course advances students’ understanding of mathematics along interwoven 

strands of algebra and functions, statistics and probability, geometry and 

trigonometry, and discrete mathematics. 

• These mathematical strands are developed in coherent, focused units that are 

connected by fundamental ideas such as function, symmetry, and data analysis; 
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and by mathematical habits of mind such as visual thinking, recursive thinking, 

and searching for and explaining patterns. 

• Mathematics is developed in context with an emphasis on problem solving and 

mathematical modeling. 

• Graphing calculators are used as tools for developing mathematical understanding 

and for solving authentic problems. 

• Instructional materials promote active learning and teaching centered around 

collaborative small-group investigations of problem situations followed by whole-

class summarizing activities that lead to analysis, abstraction, and further 

application of underlying mathematical structures. 

• Conceptual understanding, reasoning with multiple representations, and oral and 

written communication are emphasized. 

• Mathematical thinking and reasoning are central to all courses; with formal proof 

developed “semilocally” in Courses 3 and 4. 

• The design of Course 4 permits tailoring of seven-unit courses around core units 

(1-4) plus options so as to keep all college-bound students in the mathematics 

pipeline, whether their intended undergraduate program is calculus-based or not. 

• Assessment of students is an integral part of the curriculum and instruction. 

The broad differences between CPMP and traditional mathematics textbooks are 

presented in Table 2. 
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Table 2.  Comparison of Core-Plus Mathematics Project (CPMP) and Traditional 
Mathematics textbooks (Herbel-Eisenmann et al., 2006). 

Traditional Algebra Sequence CPMP Sequence 
• Mathematics strands are studied 

separately, one each year. 
• Teacher demonstrates. 
• Students practice. 

• Mathematics strands are integrated each 
year. 

• The teacher guides and assesses (using 
multi-dimensional assessment). 

• Students investigate real-life contexts 
(often in groups) and apply the 
mathematics from these problems to new 
problems 

 
 

The design, theoretical framework, and student outcomes for CPMP were 

discussed in more detail by Schoen & Hirsch (2003a) and in many field study reports on 

CPMP (e.g., Hirsch et al., 1995; Hirsch & Coxford, 1997; Huntley et al., 2000; Schoen, 

Finn, et al., 2003; Schoen, Hirsch, et al., 1998; Schoen et al., 2001; Schoen & Hirsch, 

2003b; Ziebarth, 2003).  Schoen & Pritchett (1998) provided a bibliography of CPMP 

publications. 

 

3.3. Research on the Effectiveness of CPMP 

Some educators have argued that CPMP and other reform-oriented curricula do 

not have a research base to support their use (Reys, 2001) or that the existing research 

may be biased because it was performed by the curriculum developers themselves 

(Latterell, 2006).  Others have cited research that reform-oriented students may not 

perform as well as traditional students on college entrance exams.  This section addresses 

those concerns and provides an overview of the research comparing CPMP and 

traditional textbooks. 

A large amount of quantitative and qualitative data has been generated during 

CPMP field tests and several focused research studies conducted in CPMP classrooms 
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(Schoen & Pritchett, 1998).  Studies and reports comparing CPMP and traditional 

students have focused on a variety of outcomes such as achievement on standardized 

achievement tests (Schoen, Hirsch, et al., 1998; Schoen & Hirsch, 2003a; Schoen et al., 

2001), teachers’ and students’ perceptions and attitudes about mathematics (Schoen & 

Hirsch, 2003a; Schoen & Pritchett, 1998), students’ preparation for college mathematics 

(Schoen & Hirsch, 2003a; Schoen et al., 2001), and understanding, skill, and problem-

solving ability in algebra (Huntley et al., 2000). 

Although college entrance exams such as the SAT and ACT generally measure 

algebraic manipulation skills and are not aligned with the content goals of the CPMP 

curriculum, field tests have generally found that CPMP students perform at least as well 

as traditional students on those assessments (Schoen et al., 2001), and CPMP students 

perform better than traditional students on measures of conceptual understanding, 

interpretation of mathematical representations and calculations, and problem-solving in 

applied contexts (Schoen & Hirsch, 2003b).  Ziebarth (2003) provided a summary of the 

main findings from eight studies, and several other reports have also included summaries 

of findings (Latterell, 2006; Huntley et al., 2000; Schoen, Finn, et al., 2003; Schoen & 

Hirsch, 2003a; Schoen, Hirsch, et al., 1998; Schoen & Pritchett, 1998). 

In an independent study, Latterell (2006) found no significant differences in 

problem-solving abilities for students in three CPMP and three traditional Algebra 2 

classes.  Latterell also found that the ability to solve routine algebraic problems without a 

context was considerably lower for the CPMP students than for the traditional students.  

One specific concern of some educators, including many teachers participating in the 

present study, is the perception that traditional students often perform better than reform-
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oriented students on standardized tests, such as college entrance exams.  Although the 

CPMP authors have made efforts to address that concern, a fundamental problem is that 

“curricula like CPMP may be penalized by the content, format, and administration 

procedures of tests designed to align with traditional curricula” (Schoen et al., 2001, p. 

24).  Much CPMP content, such as statistics, probability, and discrete mathematics, is 

seriously underrepresented in both the SAT and the ACT, and some topics on the SAT 

and ACT are not introduced in CPMP until the fourth course, penalizing CPMP students 

taking those exams during their third year of high school. 

It is an unfortunate fact that college entrance exams that focus on manipulation of 

algebraic symbols are often the primary measure of success for students’ achievement in 

mathematics.  Many educators who might otherwise adopt reform-oriented instructional 

practices are unwilling to risk the consequences of having their students perform poorly 

on standardized tests, despite some evidence that reform-oriented students perform at 

least as well as traditional students. 

Concern about students’ performance on standardized tests and possible bias in 

the research is valid, but the argument that CPMP and other reform-oriented curricula are 

not supported by research is unfounded for two reasons.  First, CPMP and several other 

reform-oriented curricula have been piloted, revised, and field-tested extensively as 

described earlier.  Reys (2001) summarized this point: “To criticize these curricula 

because of the philosophy they embody or the mathematical content of the materials is 

one thing.  To suggest that they have not been extensively field-tested with teachers and 

students is blatantly untrue and irresponsible.”  Second, the claim that reform-oriented 

curricula are not supported by research implies that traditional curricula have been 
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successful and are supported by research.  Most publishers of traditional textbooks 

simply do not gather scientific evidence during the development of textbooks (Reys et al., 

2004), as illustrated in the next section. 

 

3.4. Research on the Effectiveness of Glencoe Mathematics 

Despite an exhaustive literature search, no scientific evidence on the effectiveness 

of Glencoe Mathematics was found.  The publishers of Glencoe Mathematics simply 

have not reported any scientific studies, such as randomized field trials, demonstrating 

the effectiveness of the curriculum.  When asked about research supporting the 

curriculum, representatives of the publisher provided four documents that address the 

design principles, research base, and research reports for Glencoe Mathematics.  This 

section summarizes those four documents.  

The first document was a white paper entitled Glencoe Mathematics White Paper: 

Research-Based Strategies Used to Develop Glencoe Algebra 1, Glencoe Algebra 2, and 

Glencoe Geometry (McGraw-Hill Companies, n.d.).  This document began with a brief 

overview of the NCTM’s Principles and Standards for School Mathematics (2000), 

followed by a discussion of how Glencoe Mathematics meets those principles and 

standards.  The discussion on the NCTM principles was cursory.  For example, the 

curriculum principle was only addressed as follows: “Glencoe’s Algebra 1, Algebra 2, 

and Geometry were developed with a philosophy, scope and sequence to ensure a 

continuum of mathematical learning that builds on prior knowledge and extends concepts 

toward more advanced mathematical thinking” (Principles section, para. 1).  The 

discussion on the NCTM content standards was more substantive: a two-page table was 
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provided that lists each of the NCTM Standards along with specific page numbers in the 

Glencoe Mathematics textbooks that meet those standards.  Finally, a summary of 

research-based instructional strategies was presented; none of the research described 

examined Glencoe Mathematics directly. 

The second document provided by the publisher was entitled Glencoe 

Mathematics High School Learner Verification Research Summary (McGraw-Hill 

Companies, n.d.).  This document summarized four studies representing the publisher’s 

“in-depth and quantitative research surveys, commentaries, and testing results” (p. 4).  

The first study was a survey mailed to randomly selected high schools from all fifty states 

over five years.  The survey included approximately 70 questions on topics such as what 

mathematics textbook is used, whether students’ ACT or SAT scores have changed, and 

how the mathematics program could be improved.  The study found that teachers using 

Glencoe Mathematics reported ACT and SAT score increases ranging from 15% to 23% 

over a five year period.  It is difficult to draw conclusions from this study since no results 

are presented for teachers using other textbooks, and the primary instrument was a 

teacher self-report survey with a 32% response rate.  In the second study, teachers in 

several schools administered a pre-test to over 200 students prior to teaching Chapter 3 

from Glencoe Algebra 1.  A post-test was administered after completing the chapter, and 

a post-study questionnaire was completed by participating teachers.  Results indicated 

that test scores increased for eight out of ten students.  However, without a comparison 

group it is impossible to determine whether Glencoe Mathematics was more or less 

effective than other textbooks.  For the third study, over fifty geometry teachers reviewed 
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the manuscript and design for new editions of Glencoe Mathematics textbooks, rating 

their effectiveness in a ten categories. 

The third document, Results with Pre-Algebra, Algebra 1, Geometry, and Algebra 

2 (McGraw-Hill Companies, 2004), presented anecdotal evidence of the effectiveness of 

Glencoe Mathematics in eleven schools.  Much of the evidence consisted of statements 

from teachers such as, “Our scores improved in 2002, with 65% of our students scoring 

proficient to basic, and in 2003, 72% of our students scoring proficient to basic” (p. 21).  

Some schools provided figures of students’ performance on achievement tests, but there 

was no mention of comparison groups. 

The fourth document was entitled Glencoe Mathematics Qualitative Pre-

Development Research: Proven education strategies, based on current and confirmed 

research, incorporated into Glencoe’s mathematics programs (McGraw-Hill Companies, 

2005).  This document described educational research supporting the Glencoe 

Mathematics textbooks, including research on educational principles (e.g., curriculum 

and instruction), instructional strategies (e.g., cooperative learning), mathematical 

concepts and skills (e.g., proportional reasoning), and mathematical processes (e.g., 

reasoning and proof).  Each topic was discussed in four parts: (a) What Are They?, (b) 

Why Is It Important?, (c) What the Research Says, and (d) In the Glencoe Curriculum.  A 

selection of widely recognized studies was presented throughout the document.  As in the 

other documents, no scientific evidence on the effectiveness of Glencoe Mathematics was 

presented: “Although the studies noted here did not make use of Glencoe textbooks or 

other specific curriculum materials, they provide the best available guide to what works” 

(p. iv). 
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It is ironic that the introduction section of the fourth document, Glencoe 

Mathematics Qualitative Pre-Development Research, discussed the need for research, the 

use of randomized trials in education research, the types of research designs used, and 

what constitutes good research.  The following criteria were presented for evaluating 

research (p. viii): 

• What type of research study was conducted?  Was it an experiment or another 

type? 

• Is it reliable research?  Do the design and the analysis of the data support the 

conclusions? 

• Is it relevant?  Are the circumstances of the research setting similar to ours? 

• Is it generalizable?  Have the results been replicated in other settings? 

• Has it been published in a peer-reviewed journal or book? 

 
By those criteria, no good research on the effectiveness of Glencoe Mathematics exists. 

 

3.5. An Example Contrasting CPMP and Glencoe Mathematics 

One way to compare curricula is by examining how they present particular topics.  

Reys et al. (2004) compared reform-oriented and traditional textbook presentations on the 

topic of finding the volume of cylinders and cones.  In another study, one teacher 

explained that ideas such as the Pythagorean Theorem “are simply given to students in 

the Algebra text and then students are asked to apply them,” whereas integrated materials 

“pose problems to help students discover the Pythagorean Theorem and connect it to their 

previous knowledge” (Herbel-Eisenmann et al., 2006, Results section, para. 14).  This 
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section explores that example by contrasting the CPMP and Glencoe Mathematics 

presentations of the Pythagorean Theorem. 

 

3.5.1. Glencoe Mathematics: Presenting the Pythagorean Theorem 

Glencoe Mathematics first introduces the Pythagorean Theorem in Algebra 1 

(Holliday et al., 2003a, pp. 605-610).  Like all lessons in that textbook, it begins with a 

statement of “What you’ll learn” (see Figure 1), followed by an example of how the topic 

is used in real life (see Figure 2).  Next, a definition of the Pythagorean Theorem is 

presented (see Figure 3), and an example of using the Pythagorean Theorem to find the 

length of the hypotenuse of a right triangle is demonstrated (see Figure 4). 

The pages that follow present more examples, a corollary to the Pythagorean 

Theorem, a “Check for Understanding” section containing problems similar to the 

examples, and a “Practice and Apply” section consisting of many more problems similar 

to the examples.  It is not until exercise 41 (see Figure 5) in the “Practice and Apply” 

section that the roller coaster context introduced at the beginning of the lesson (see Figure 

2) is revisited.  Finally, “Standardized Test Practice” and “Maintaining Your Skills” 

exercises are provided. 

 
Figure 1.  Statement of "What you'll learn" at the beginning of Pythagorean Theorem 
lesson in Glencoe Mathematics Algebra 1 (Holliday et al., 2003a, p. 605). 
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Figure 2.  Example of how the Pythagorean Theorem is used in real life in Glencoe 
Mathematics Algebra 1 (Holliday et al., 2003a, p. 605). 

 
 
 

Figure 3.  Definition of Pythagorean Theorem presented in Glencoe Mathematics 
Algebra 1 (Holliday et al., 2003a, p. 605). 
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Figure 4.  Example of using the Pythagorean Theorem presented in Glencoe 
Mathematics Algebra 1 (Holliday et al., 2003a, p. 605). 

 
 
 

Figure 5.  Exercises relating Pythagorean Theorem to the real-life context introduced 
earlier in Glencoe Mathematics Algebra 1 (Holliday et al., 2003a, p. 609). 

 
 

 

3.5.2. CPMP: Presenting the Pythagorean Theorem 

CPMP introduces the Pythagorean Theorem in Course 1 Part B (Coxford et al., 

1998, pp. 362-372).  Like Glencoe Mathematics, CPMP begins by presenting a real-life 

problem that involves using Pythagorean Theorem: in this case, determine the diagonal 

measurement of a television (see Figure 6).  Then, rather than presenting a definition of 

the Pythagorean Theorem along with examples, a radically different approach is used: 

students work in groups to model the real-life example using notebook paper (see Figure 

7).  Further student exploration follows, with students considering the areas of squares 
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constructed on the sides of right triangles (see Figure 8).  After students have discovered 

the relationship between the legs and hypotenuses of right triangles, the term 

Pythagorean Theorem is given and subsequent activities use the term (see Figure 9).  

Students are not presented the definition of the Pythagorean Theorem until after the 

investigation is complete (see Figure 10). 

After a brief “On Your Own” problem designed to assess students’ understanding 

of the Pythagorean Theorem, CPMP presents a series of tasks to be completed 

individually where students engage in modeling with, organizing, reflecting on, and 

extending their understanding. 

Figure 6.  Example of using the Pythagorean Theorem in real-life presented in Core-Plus 
Mathematics Project (CPMP) Course 1 Part B (Coxford et al., 1998, p. 362). 
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Figure 7.  Activity in which students model the diagonal measurement of a television 
presented in Core-Plus Mathematics Project (CPMP) Course 1 Part B (Coxford et al., 
1998, p. 362). 
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Figure 8.  Construction of squares on the sides of right triangles, demonstrating how to 
calculate the diagonal lengths of television screens, presented in Core-Plus Mathematics 
Project (CPMP) Course 1 Part B (Coxford et al., 1998, p. 363). 
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Figure 9.  Introduction of the term Pythagorean Theorem presented in Core-Plus 
Mathematics Project (CPMP) Course 1 Part B (Coxford et al., 1998, p. 364). 

 
 
 

Figure 10.  Definition of the Pythagorean Theorem presented in Core-Plus Mathematics 
Project (CPMP) Course 1 Part B (Coxford et al., 1998, p. 365). 

 
 

 

3.6. Summary 

The example in the previous section demonstrates CPMP’s strong commitment to 

the constructivist principles of teaching and learning outlined in section 2.2.1.  Compared 

to the Glencoe Mathematics textbook, the CPMP textbook presents more problems in real 
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world contexts and engages students in exploring ideas, solving problems, sharing 

strategies, and building new knowledge based on conceptual understanding.  The 

experiences of students taught using CPMP and Glencoe Mathematics are clearly 

different. 

Field tests conducted by CPMP researchers have generally found that CPMP 

students perform better than or the same as traditional students on measures of conceptual 

understanding and problem-solving in applied contexts, while traditional students 

sometimes perform better than CPMP students on measures of algebraic manipulation 

and procedural skills.  No scientific evidence on the effectiveness of Glencoe 

Mathematics has been reported in the literature. 

The influence of textbooks on mathematics instruction is significant, and more 

research assessing the impact of reform-oriented versus traditional textbooks is needed.  

The present study does not resolve the issues described in this chapter; rather, it suggests 

that future research on the effectiveness of curricula expand the notion of impact by 

including measures of students’ epistemological beliefs of mathematics. 
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Chapter 4 
 

METHODOLOGY 
 

 
 

This chapter explains the methods used in carrying out this study, including 

information about the participants, specific instruments used, procedures followed, and 

analyses performed. 

 

4.1. General Methodology 

This study compared the epistemological beliefs of mathematics held by high 

school students after studying three years of an NSF-funded, Standards-based curriculum 

versus a more traditional curriculum.  In addition, this study explored the teaching 

practices used to implement those curricula.  The design of the study evolved to include 

more emphasis on teaching practices after it became clear that some teachers were 

opposed to the instructional strategies presented by their textbooks. 

There were two main components to the study.  The first was a questionnaire that 

was administered to 11th-grade students in four rural Maine high schools to assess their 

beliefs of mathematics.  The questionnaire included all 56 items from the Conceptions of 

Mathematics Inventory (CMI; Grouws et al., 1996), as well as some additional 

background items.  The second component was a series of classroom observations, 

teacher questionnaires, and informal interviews used to characterize the level of reform-

oriented teaching occurring in the four schools.  The primary instrument used for 
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classroom observations was a variation of the Reformed Teaching Observation Protocol 

(RTOP; Piburn & Sawada, 2000; Sawada & Piburn, 2000). 

Implementation of reform-oriented curricula and teaching practices can vary 

greatly from one school, classroom, or teacher to another (Schoen, Finn, et al., 2003).  

Most research on students’ beliefs of mathematics has been far removed from the 

learning environment (Hammer, 1994), and several researchers have recommended that 

future studies of students’ beliefs include classroom observations, interviews, and other 

methods to measure aspects of the instructional context that may affect beliefs 

(Hirschhorn, 1993; Hofer, 1994; Frykholm, 1995; Hofer & Pintrich, 1997; Kislenko et 

al., 2005; Star & Hoffmann, 2005; Herbel-Eisenmann et al., 2006).  Reform-oriented 

curricula differ from traditional curricula in their mathematical content and pedagogical 

focus (Tarr et al., 2006).  The National Research Council (2004) recommended that 

research on the effectiveness of curricula measures the implementation fidelity and the 

extent of use of the curricular materials.  At a minimum, “there should be documentation 

of the extent of coverage of curricular material (what some investigators referred to as 

‘opportunity to learn’)” (p. 6).  By including classroom observations, teacher 

questionnaires, and informal interviews in this study, this study documented what 

actually happened in the classrooms rather than making assumptions about the teaching 

practices used to implement the curricula. 

 

4.2. Research Setting 

This study took place in four rural Maine high schools.  Data collection activities 

covered a two-month period, from February 13, 2007 to March 23, 2007.  For purposes 
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of confidentiality, the schools are referred to by the textbook used and the teaching 

characteristics that were identified by classroom observations (e.g., Glencoe/Reform), and 

some specific values have been approximated to prevent the possible identification of 

individual students, teachers, or schools. 

In fall 2006, two curricula were selected for this study based on the results of a 

state-wide survey of high school mathematics curricula conducted by John E. Donovan II 

(personal communication, September 2006) at the University of Maine.  Although several 

NSF-funded, Standards-based curricula were used in Maine high schools, the survey 

indicated that CPMP was the most prevalent.  Among more traditional curricula, the 

survey indicated that many Maine high schools used the Glencoe Mathematics textbooks. 

After selecting the two curricula, 12 candidate schools were identified that 

exclusively used either curriculum.  Exclusive use of curricula was an important 

consideration since the survey indicated that many Maine high schools implement 

multiple curricula, sometimes separating high- and low-achieving students as reported by 

other researchers (Huntley et al., 2000). 

During initial discussions with administrators and teachers at candidate schools, it 

became clear that some teachers did not implement the curricula as intended by the 

developers.  In one school, teachers using CPMP expressed strong opposition to the 

curriculum, but had been told to use CPMP by the administration.  In another school, 

administrators indicated that teachers using Glencoe Mathematics often supplemented the 

curriculum with technology and other reform-oriented materials.  Rather than exclude 

such schools from this study, the design was modified to include them while 

documenting the teaching practices.  Although the initial research questions focused on 
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relationships between curricula and students’ beliefs of mathematics, teaching practices 

became an important variable as well. 

Based on the initial discussions described above, as well as consideration of 

demographic, enrollment, and student achievement data, teachers and students at four 

schools were invited to participate in the study.  The schools are described in the 

following section. 

 

4.2.1. Schools and Curricula 

The four high schools in this study were located in rural Maine, with enrollment 

ranging from 150 to 450 students.  Student/teacher ratios ranged from 10:1 to 12:1.  Class 

scheduling in all four schools was accomplished using 4×4 or A/B plans, with classes 

typically lasting 75 to 80 minutes.  The schools’ average scaled scores for the 

mathematics section of the 2004-2005 Maine Educational Assessment (MEA) were 

between 520 and 530 on a scale ranging from 200 to 800, close to the state average of 

529.  Teachers were competent and experienced in all four schools, but very little training 

in the use of their curricula had been provided.  Teachers in all four schools described 

their school districts as economically depressed, and three of the four schools are Title I 

schools.  Demographic characteristics of the schools are described in the next section. 

The first school in the study used the CPMP curriculum for all but a few students 

who had completed an Algebra 1 course in middle school.  Although teachers used 

CPMP in this school, they made it clear that it was only because administrators insisted 

they use it, with one teacher even stating, “I am on record as being opposed to this 

curriculum.”  When asked why they were opposed to CPMP, teachers cited concerns 
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about students’ performance on standardized tests and preparation for college.  The 

perception that using Standards-based curricula leads to lower scores on standardized 

tests despite data indicating the otherwise was also encountered during initial discussions 

at other schools and has been reported by other researchers (Herbel-Eisenmann et al., 

2006).  Teachers also expressed the opinion that CPMP students rely too much on 

calculators without developing number sense. 

Despite teachers’ expressed opposition to CPMP, classroom observations and 

Teacher Classroom Description Questionnaire (see section 4.4.4) results for the first 

school indicated that teachers usually plan and implement lessons as outlined by the 

curriculum, although supplemental materials are often incorporated.  The high frequency 

of small-group work, whole-class discussions, use of graphing calculators, and extended 

investigations clearly indicated that CPMP has a strong influence on instruction in this 

school.  However, RTOP (see section 4.4.2) scores indicated a lower level of reform-

oriented instruction than observed in the other CPMP school participating in this study.  

For example, the lessons observed involved less student exploration prior to formal 

presentation, less reflection about learning, and fewer connections with real world 

phenomena.  Based on a mean overall RTOP score of 2.33, coupled with the teachers’ 

expressed traditional beliefs about teaching mathematics, the first school is referred to as 

the CPMP/Traditional school. 

The second school in the study also used the CPMP curriculum for all but a few 

students.  Teachers expressed support for the Standards-based approach of CPMP, but 

they also expressed some concerns about implementing CPMP in their school, including 

a high level of reading required, a need to supplement for practice of procedures, and lack 
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of some content such as permutations and combinations.  As in the first school, teachers 

in the second school expressed concern about standardized test scores; lessons often 

began with SAT practice questions that teachers used to supplement the lesson. 

Classroom observations and Teacher Classroom Description Questionnaire results 

for the second school indicated that teachers often use the CPMP curriculum to plan and 

implement lessons, although supplemental materials are usually incorporated as well.  

Lessons often included small group work, whole-class discussions, exploration of 

alternative solutions, use of graphing calculators, written reflections, and formal student 

presentations.  Teachers often asked students to explain their reasoning when giving 

answers, and connections with real world phenomena are emphasized.  RTOP scores for 

this school indicated the highest level of reform-oriented instruction out of all four 

schools participating in this study, and lessons exhibited reform-oriented practices such 

as student exploration preceding formal presentation.  Based on a mean overall RTOP 

score of 3.83 and the teachers’ expressed support for Standards-based instruction, the 

second school is referred to as the CPMP/Reform school. 

The third school in the study used the Glencoe Mathematics curriculum for all but 

a few students.  During initial discussions, teachers expressed strong support for 

traditional mathematics education, with one teacher going as far as saying, “We have 

known since the fifties what should be taught…”  Teachers expressed a belief that 

students’ performance on standardized tests is better with a traditional curriculum, and 

they described an earlier attempt to implement a Standards-based curriculum at a local 

middle school as a “disaster.” 
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Based on initial discussions, the third school was included in this study as an 

example of a school that used the Glencoe Mathematics curriculum with traditional 

teaching practices.  In fact, teachers in the school emphasized that they should not be part 

of the study unless traditional teaching practices were required.  Classroom observations 

and Teacher Classroom Description Questionnaire results indicated a different story.  

Although teachers used Glencoe Mathematics to plan and implement lessons, the 

frequency of small group work, whole-class discussions, exploration of alternative 

solutions, use of graphing calculators, and extended investigations indicated a high level 

of reform-oriented instruction.  Teachers frequently asked students to explain their 

reasoning when giving answers, and active participation of students was encouraged.  

RTOP scores generally indicated a high level of reform-oriented instruction, although 

some specific reform-oriented practices were noticeably absent during classroom 

observations.  For example, student exploration preceding formal presentation was not 

observed.  Similarly, connections with real world phenomena were rarely made.  When 

asked later about the lack of real world connections, teachers agreed that they could 

improve in this respect, but they were also able to provide examples of lessons that 

clearly demonstrated such connections.  The third school has not implemented inquiry-

based instruction, but many other reform-oriented practices were observed and it received 

a mean overall RTOP score of 3.67.  Therefore, the third school is referred to as the 

Glencoe/Reform school. 

The fourth school in the study used the Glencoe Mathematics curriculum for most 

of its students.  Teachers expressed strong support for the traditional curriculum, giving 

high overall quality ratings to the textbook.  One teacher did express some concern about 
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students’ conceptual understanding, describing students who have learned procedures 

without knowing why they make sense or when to apply them. 

During initial discussions at the fourth school, administrators described the 

mathematics instruction as being very progressive, with heavy use of computer 

technology to enhance lessons and very little use of textbooks per se.  The fourth school 

was therefore included in the study as an example of a school using Glencoe 

Mathematics, and it was anticipated that reform-oriented teaching practices would be 

observed in the classrooms.  Quite the opposite was found.  Classroom observations and 

Teacher Classroom Description Questionnaire results indicated solid traditional teaching 

practices, with very low frequencies of group work, use of technology, whole-class 

discussions, or extended investigations.  Graphing calculators were not used, and 

computer technology was only used by one teacher for occasional demonstrations.  

Student exploration did not precede formal presentation, and connections with real world 

phenomena were not apparent.  Students were not typically asked to explain their 

reasoning when giving an answer, and alternative solutions were not explored often.  The 

mean overall RTOP score for the fourth school was 2.00, indicating the lowest level of 

reform-oriented instruction out of all four participating schools.  In short, teachers in the 

fourth school clearly demonstrated traditional teaching practices.  Therefore, the fourth 

school is referred to as the Glencoe/Traditional school. 
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4.2.2. Demographics 

For each school participating in this study, the total population in the school 

district ranged from about 3,000 to 10,000 people, with at least 96% of the population 

being white and non-Hispanic (National Center for Educational Statistics, 2006). 

Throughout this study, teachers and administrators at all four schools expressed 

concern about the economic situations in their districts.  Many of Maine's traditional 

economic activities have experienced difficulties in recent years, and the populations in 

the school districts included in this study have suffered as a result.  The median 

household income in 1999 for each school district ranged from about $27,000 to $32,000, 

and the percentage of households below the poverty level ranged from 13% to 18%.  

Three of the four schools qualified for Title I assistance.  Another measure of the 

economic situation for a school is the percentage of students eligible for free or reduced 

price lunch.  For each school participating in this study, the percentage of students 

eligible for free lunch ranged from about 20% to 40%, and the percentage of students 

eligible for free or reduced price lunch ranged from about 30% to 60%, well above the 

state average of 32%. 

In all four school districts, about 70% of males and females over age 24 were high 

school graduates or equivalent.  In three of the four school districts, about 10% of males 

and females over age 24 were college graduates.  In the Glencoe/Reform school district, 

however, about 20% of males and females over age 24 were college graduates. 
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4.3. Participants 

During initial visits to each of the schools in this study, teachers were given an 

overview of the purpose and methodology of the study.  All teachers were remarkably 

receptive to participating in this study.  Classroom observations were generally welcomed 

in all four schools and many teachers went as far as to say that no advance notice was 

necessary.  All teachers expressed strong interest in educational research, particularly 

research related to curricula and teaching practices. 

In both the CPMP/Reform and Glencoe/Reform schools, teachers were observed 

interacting regularly before, during, and after classes.  Group discussions about lesson 

planning, curriculum issues, and teaching practices appeared to be routine in these 

schools.  In the CPMP/Traditional school, a similar collegial atmosphere was observed 

during school, but direct observations of teacher interactions before and after school were 

not possible due to scheduling factors.  Interactions between teachers in the 

Glencoe/Traditional school were clearly hampered by the fact that classrooms were 

physically separated; going between mathematics classrooms required walking outside to 

another building. 

Students in all four schools appeared comfortable having an observer in the 

classroom, and observations did not appear to influence their actions or behavior.  All 

students were cooperative when invited to complete a questionnaire and appeared to take 

it seriously. 
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4.4. Instruments and Materials Used 

Four instruments were used in the data collection process.  A Student 

Mathematics Questionnaire was used to measure students’ beliefs about mathematics.  

Three instruments were used to measure teaching practices: (a) the Teaching Observation 

Protocol was used to measure the level of reform-oriented instruction in classrooms, (b) 

the Teacher Background Questionnaire was used to measure teachers’ level of 

preparation to teach various topics and beliefs about student learning, and (c) a Teacher 

Classroom Description Questionnaire was used to measure frequencies of various 

classroom activities and textbook usage.  This section describes each instrument used. 

 

4.4.1. Student Mathematics Questionnaire 

Although many instruments are available for measuring students’ epistemological 

beliefs, few instruments are available that focus on students’ epistemological beliefs of 

mathematics (see section 2.3).  There is some evidence that epistemological beliefs may 

span domains (e.g., Schommer & Walker, 1995), but Hammer (1994) suggested that 

providing a specific mathematical context is more likely to yield success when addressing 

certain beliefs.  Hammer also illustrated the value of an a priori framework when 

assessing students’ beliefs.  The Student Mathematics Questionnaire included all items 

from the Conceptions of Mathematics Inventory (CMI; Grouws et al., 1994) based on 

those requirements and the fact that the CMI has already been shown to be a useful, valid, 

and reliable instrument for assessing students’ beliefs of mathematics (Walker, 1999; Star 

& Hoffmann, 2002, 2005). 
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The CMI is a Likert scale questionnaire with 56 items based on themes from the 

Student Conceptions of Mathematics Framework described in section 2.2.3.  Questions in 

the CMI ask students to indicate whether they agree or disagree with statements about 

four themes: (a) the nature of mathematical knowledge, (b) the nature of mathematical 

activity, (c) learning mathematics, and (d) the usefulness of mathematics.  Those four 

themes are composed of seven related scales, with each scale considered as a continuum 

with two poles as shown in Table 3.  Eight items from the Fennema-Sherman Usefulness 

Scale (Fennema & Sherman, 1976) are included, and several items are included from the 

NAEP and the Indiana Mathematics Belief Scales (Kloosterman & Stage, 1992). 

Each scale of the CMI contains eight items, with half of the items phrased 

positively (e.g., “When learning mathematics, it is helpful to analyze your mistakes”) and 

half of the items phrased negatively (e.g., “One can be quite successful at doing 

mathematics without understanding it.”)  Students respond on a six-point, forced-choice 

Likert scale, with a 6 expressing strong agreement and a 1 expressing strong 

disagreement. 

A student who mostly agrees with positively phrased items and disagrees with 

negatively phrased items would be considered to have reform-oriented epistemological 

beliefs.  Such a student considers mathematics as a useful, dynamic, and coherent system 

of important ideas and the relations among them, involving thinking and figuring things 

out, validating results through personal reflection and individual thought and reasoning, 

with new mathematical knowledge formed by fitting things with past experiences.  

Conversely, a student who mostly disagrees with positively phrased items and agrees 

with negatively phrased items views mathematics as a static collection of independent
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Table 3.  The seven scales of the Conceptions of Mathematics Inventory (CMI) and their 
characteristics (Grouws et al., 1996). 

I. Nature of Mathematical Knowledge 
1. Composition 
 Knowledge as concepts, 

principles, and 
generalizations 

Mathematical knowledge consists of important ideas and the 
relations among them. 

 vs.  
 Knowledge as facts, 

formulas, and algorithms 
Mathematical knowledge consists of important procedures and 
statements. 

2. Structure 
 Mathematics as a 

coherent system 
As one does mathematics one finds meaningful connections 
between and among concepts, principles, and skills. 

 vs.  
 Mathematics as a 

collection 
of isolated pieces 

Mathematics consists of a variety of independent topics and 
skills; losing or gaining one piece of information has little effect 
on the development of another. 

3. Status 
 Mathematics as a 

dynamic field 
Mathematics is growing and changing and this growth affects the 
entire discipline for both mathematicians and students. 

 vs.  
 Mathematics as a 

static entity 
Mathematics is a compilation of information that remains fixed 
once developed. 

II. Nature of Mathematical Activity 
4. Doing 
 

Mathematics as 
sense-making 

The process of doing mathematics depends on valuing, 
exploring, comprehending, and expanding the concepts and 
principles underlying mathematics. 

 vs.  
 Mathematics as 

results 
The process of doing mathematics is implementing procedures 
and finding results. 

5. Validating 
 

Logical thought 
The validity of mathematical knowledge is established through 
personal reflection and individual thought and reasoning. 

 vs.  
 Outside authority One receives valid mathematical knowledge from an authority: a 

text, a knowledgeable peer, a teacher, or a mathematician. 
III. Learning Mathematics 

6. Learning 
 Learning as constructing 

and understanding 
One creates new knowledge by fitting things with past 
experiences. 

 vs.  
 Learning as memorizing 

intact knowledge 
Learning mathematics is a process of mentally storing what one 
has been taught; that is, the learner is a passive receiver who 
records existing knowledge. 
IV. Usefulness of Mathematics 

7. Usefulness 
 Mathematics as a 

useful endeavor 
Mathematics is a worthwhile subject that will be useful to 
students in many ways as adults. 

 vs.  
 Mathematics as a school 

subject with little value in 
everyday life or future work 

Mathematics will not be important to students when they get out 
of school. 
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procedures that have little value in everyday life or future work, primarily involving the 

implementation of those procedures and finding results that are validated from an 

authority, and best learned by mentally storing what one has been taught. 

Following the 56 items of the CMI, the Student Mathematics Questionnaire asked 

each student to indicate gender, year in school, expected grade in the current mathematics 

course, cumulative high school grade point average, expectation of pursuing an education 

after high school, expectation of pursuing an education in a mathematics-, science-, or 

engineering-related field, highest level of formal education attained mother, and highest 

level of formal education attained by father.  To ensure anonymity of the participants, no 

items related to race or ethnicity were included. 

 

4.4.2. Teaching Observation Protocol 

The primary measure of teaching practices was the Teaching Observation 

Protocol (TOP; see Appendix M), adopted by the Center for Science and Mathematics 

Education Research at the University of Maine.  TOP consists of all sections from the 

Reformed Teaching Observation Protocol (RTOP; Piburn & Sawada, 2000; Sawada & 

Piburn, 2000) with the addition of standardized codes for describing events from the 

Collaboratives for Excellence in Teacher Preparation (CETP) Classroom Observation 

Protocol (COP; Lawrenz, Huffman, & Appeldoorn, 2002; Collaboratives for Excellence 

in Teacher Preparation, n.d., 2002). 

RTOP was created by the Evaluation Group of the Arizona Collaborative for 

Excellence in the Preparation of Teachers (ACEPT) as an observational instrument for 

measuring reformed teaching practices.  Based on a framework of Standards-based 
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inquiry, RTOP assesses five major pedagogical domains: (a) lesson design and 

implementation, (b) propositional knowledge, (c) procedural knowledge, (d) 

communicative interactions, and (e) student-teacher relationships. 

Many classroom observation instruments have been developed recently to provide 

both qualitative and quantitative data to document and describe mathematics and science 

teaching from a Standards-based perspective (see MacIsaac, Sawada, & Falconer, 2001, 

p. 1, for examples).  Unique characteristics of RTOP include: (a) focus on mathematics 

and science, (b) developed for classrooms from kindergarten to college, (c) focus 

exclusively on reform rather than general characteristics such as classroom management, 

lesson closure, etc., (d) brief to administer, (e) very high interrater reliability, (f) factor 

analyzed for construct validity, (g) proven predictive validity, and (h) training and 

reference manuals are available.  Another benefit of using RTOP is that the language in 

the instrument provides participants with specific concepts and terms for thinking about 

and talking about reform-oriented teaching (MacIsaac et al., 2001). 

 

4.4.3. Teacher Background Questionnaire 

The Teacher Background Questionnaire (see Appendix K) was developed to 

measure teachers’ attitudes and beliefs about teaching mathematics and perceptions of 

their preparedness in mathematics content and in using particular pedagogical strategies.  

Items were selected from a questionnaire developed by the Center for the Study of 

Mathematics Curriculum (CSMC) for a recent study of curriculum enactment (Chval et 

al., 2006).   
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Teachers were asked to indicate how well-prepared they were to teach specific 

mathematical topics (e.g., “Data collection and analysis”) and guide student learning in 

various domains (e.g., “Connections within mathematics and from mathematics to other 

disciplines”).  The response options were Not Adequately Prepared, Somewhat Prepared, 

Fairly Well Prepared, and Very Well Prepared, which were coded 1, 2, 3, and 4, 

respectively, for analysis. 

Teachers were also asked to indicate their opinions about several statements about 

student learning (e.g., “At the grades I teach, a lot of things in mathematics must be 

simply accepted as true and remembered.”).  The response options ranged from Strongly 

Disagree to Strongly Agree and were coded from 1 to 5, respectively, for analysis. 

 

4.4.4. Teacher Classroom Description Questionnaire 

The Teacher Classroom Description Questionnaire was developed to supplement 

the TOP instrument.  The questionnaire asked teachers to report teaching practices and 

textbook usage for each class taught; such a method was shown to be valid in previous 

research (McCaffrey et al., 2001).  In this study, most teachers completed only one 

questionnaire, while indicating that there was little variation between classes.  Most items 

were selected from the CSMC questionnaire described in the previous section (Chval et 

al., 2006). 

After a short five-item section covering general class characteristics, teachers 

were asked to indicate what percentage of instructional time was allotted to various 

instructional activities (e.g., “Small group work”).  Teachers were then asked to indicate 

how often they performed various activities (e.g., “Require students to explain their 
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reasoning when giving and answer”) and how often students performed various activities 

(e.g., “Engage in mathematical activities using concrete materials”).  The response 

options were Never, Rarely (e.g., a few times a year), Sometimes (e.g., once or twice a 

month), Often (e.g., once or twice a week), and Always (e.g., done at least once a day), 

which were coded 1, 2, 3, 4, and 5, respectively, for analysis. 

To determine the extent to which the textbook influenced instruction, teachers 

were asked to indicate how often the textbook was used in a variety of ways (e.g., 

“Students in this class use their textbook during the mathematics lesson”), with response 

options ranging from Never to Always as in the previous sections.  Finally, teachers were 

asked to indicate what percentage of instructional time was based on the textbook, how 

much of the textbook will be covered during the school year, and the overall quality of 

the textbook.  Teachers were not asked about mathematics content, per se. 

 

4.5. The Procedures Followed 

Several specific procedures were used in implementing the research design.  This 

section describes the procedures used for administering the TOP teaching observations, 

the Teacher Background Questionnaire, and the Teacher Classroom Description 

Questionnaire. 

All teachers were given a copy of the Informed Consent Form for Teachers at the 

beginning of the study (see Appendix I).  Prior to each teaching observation, teachers 

were asked to provide an overview of the lesson and a copy of any materials that would 

be used.  Teachers were asked to explain to the students at the beginning of the lesson 

that the class was being observed for research purposes, and that the goal of the research 
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was to help improve mathematics education.  In general, teaching observations occurred 

from the back of the classroom and students’ behavior did not appear to be influenced by 

the observations.  As Frykholm (1995) and Spradley (1979) suggested, notes taken during 

the lesson were “cooked” immediately upon completion to retain accurate descriptions 

for later analysis; most lessons were followed by a break of at least ten minutes, and 

teachers were usually available to answer questions about the lesson during those times. 

Teaching observations were performed at each school over one or two weeks.  On 

the first day of teaching observations, students who would be invited to participate in the 

study were given a copy of the Information Form for Parents and Guardians (see 

Appendix H).  After teaching observations were performed at each school, students in 

predominately 11th-grade classes were given a copy of the Informed Consent Form for 

Students (see Appendix G) and invited to participate during class.  Students were then 

given the Student Mathematics Questionnaire and told that it generally takes less than 10 

minutes to complete.  Although participation was voluntary, all students in the 

participating classes completed the questionnaire. 

While students completed the Student Mathematics Questionnaire, teachers were 

asked to complete the Teacher Background Questionnaire and the Teacher Class 

Description Questionnaire.  Upon completion of the questionnaires, students and teachers 

were thanked for their participation and most classes were given an opportunity to 

discuss the content and format of the Student Mathematics Questionnaire. 
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4.6. Data Analysis Strategies 

This section describes the strategies used to analyze the TOP, Teacher 

Background Questionnaire, Teacher Class Description Questionnaire, and Student 

Mathematics Questionnaire data.  All calculations were performed using Statistical 

Package for the Social Sciences (SPSS).  Schools were labeled as having Reform or 

Traditional teaching practices as described in section 4.2.1. 

For the TOP data, mean score reports were generated for each scale (see Table 4) 

and the Overall Level of Reform Teaching scores (see Table 5).  Due to the low number 

of teachers participating and teaching observations performed, frequency distribution 

tables are provided for individual items (see Appendix B).  Cronbach's α values were 

computed for each TOP scale to measure reliability and are reported in Table 6. 

 
Table 4.  Mean Teaching Observation Protocol (TOP) scores by scale. 

CPMP Glencoe  
Trad. 
(n=3) 

Reform 
(n=6) 

Reform 
(n=6) 

Trad. 
(n=5) 

All 
Schools 
(N=20) 

Lesson Design and 
Implementation 

2.33 3.17 3.00 1.60 2.60

Propositional Knowledge 1.33 1.83 1.83 0.80 1.50
Procedural Knowledge 4.00 3.33 3.67 3.80 3.65
Communicative Interactions 2.33 2.17 1.83 0.80 1.75
Student/teacher Relationships 2.00 2.00 1.67 1.00 1.65

Mean 2.40 2.50 2.40 1.60 2.23
(0=Never Occurred, 4=Very Descriptive). 
 
 

Table 5.  Mean Overall Level of Reform Teaching scores for the Teaching Observation 
Protocol (TOP). 

CPMP Glencoe 
Trad. (n=3) Reform (n=6) Reform (n=6) Trad. (n=5) 

All Schools 
(N=20) 

2.33 3.83 3.67 2.00 3.10
(1=Ineffective Instruction, 4=Exemplary Instruction) 
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Table 6.  Cronbach's α reliability for the five scales of the Teaching Observation Protocol 
(TOP). 

 α 
Lesson Design and Implementation .65
Propositional Knowledge .60
Procedural Knowledge .85
Communicative Interactions .71
Student/Teacher Relationships .76
(N = 20) 
 
 

For both the Teacher Background Questionnaire and Teacher Class Description 

Questionnaire, mean score reports were generated, but were not useful due to the limited 

number of participants in each school.  Instead, frequency distribution tables are provided 

for individual items in these instruments (see Appendix C and Appendix D). 

Several strategies were used to analyze the CMI data from the Student 

Mathematics Questionnaire.  First, mean scores for each of the seven scales of the CMI 

were computed and compared to results from previous studies (see Table 7).  Cronbach's 

α values were computed for each scale of the CMI to measure reliability and are reported 

in Table 8.  As Star and Hoffmann (2005) discussed, Cronbach's α values close to or 

above 0.7 indicate satisfactory internal consistency of constructs.  While only the 

Usefulness scale appears to meet this recommendation, Star and Hoffmann also reported 

large effect sizes using Cohen’s d.  In any case, caution should be used when interpreting 

results for the scales with low Cronbach's α values. 
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Table 7.  Mean scores and standard deviations on Conceptions of Mathematics Inventory 
(CMI) scales.  The higher the number, the more reform-oriented the responses were. 

  This Study Walker (1999) 

  
Male 

(n=49) 
Female 
(n=53) 

All 
(N=102) 

Grouws (1996) 
(N=163)* 

Star (2005) 
(N=134)* 

May 
(N=92) 

January
(N=92) 

Composition Mean 3.55 3.51 3.53 3.10 3.66 3.89 3.77
 SD .65 .65 .65 .9 .5 .54 .54
Structure Mean 4.38 4.51 4.45 3.31 4.24 4.67 4.69
 SD .78 .72 .75 .8 .7 .54 .50
Status Mean 3.95 4.01 3.98 3.31 4.25 4.34 4.22
 SD .63 .76 .70 .9 .7 .55 .64
Doing Mean 4.41 4.59 4.51 3.11 4.35 4.57 4.61
 SD .56 .60 .59 .9 .6 .49 .51
Validating Mean 3.94 4.04 3.99 3.04 3.99 4.26 4.25
 SD .67 .70 .68 .9 .6 .55 .60
Learning Mean 3.83 3.97 3.90 3.27 3.99 4.21 4.09
 SD .50 .54 .52 .8 .5 .50 .55
Usefulness Mean 4.76 4.39 4.57 3.50 4.80 5.19 4.88
 SD .99 1.28 1.16 .8 1.1 .69 .90
* Grouws (1996) and Star (2005) originally assigned lower numbers to reform-oriented responses.  These 
mean scores have been adjusted to match this study. 
 
 

Table 8.  Cronbach's α reliability scores for the seven scales of the Conceptions of 
Mathematics Inventory (CMI). 

 Walker (1999) 
 This Study Star (2005) May January 
 N α N α N α N α 

Composition 92 .42 134 .29 92 .45 92 .47
Structure 99 .65 134 .57 92 .63 92 .59
Status 96 .51 134 .52 92 .65 92 .75
Doing 99 .37 134 .43 92 .49 92 .45
Validating 95 .55 134 .36 92 .58 92 .65
Learning 95 .30 134 .26 92 .49 92 .63
Usefulness 96 .91 134 .87 92 .91 92 .90

 
 

CMI responses were grouped by textbook (CPMP vs. Glencoe), teaching practice 

(reform vs. traditional), gender (female vs. male), and intended major (math vs. non-

math), and two-tailed t tests of significance were performed on the mean scores of each 

CMI scale and individual item.  In addition, responses were grouped using combinations 

of variables, such as gender and textbook, and one-way ANOVA and Tukey’s HSD tests 
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of significance were performed on the mean scores.  Significant differences are reported 

in section 5.2. 

Pearson r values were computed for each scale and individual item of the CMI to 

measure correlations between CMI responses and other variables, such as parents’ level 

of education.  Results for each scale and significant results for individual items are 

reported in section 5.3. 

 

4.7. Summary of the Methodology 

To summarize the previous explanation, this study used the CMI to measure the 

epistemological beliefs of mathematics for students taught with either a reform-oriented 

(CPMP) or a traditional (Glencoe Mathematics) curriculum in four rural Maine high 

schools.  Based on lessons learned from previous research, teaching observations, teacher 

questionnaires, and informal interviews were used to characterize the teaching practices 

in each of the schools.  The next chapter presents the results obtained from those 

methods. 
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Chapter 5 
 

RESULTS 
 
 
 

As stated in Chapter 1, the study reported here examined whether students’ 

epistemological beliefs of mathematics differ when taught using traditional versus 

reform-oriented curricula and teaching practices.  Other student variables were also 

considered, including gender, expected grade in current mathematics course, cumulative 

GPA, parents’ level of education, and planned college major.  This chapter reports the 

results as measured by the CMI, and is divided into three sections.  The first section 

provides an overview of the students’ beliefs of mathematics in terms of response 

patterns for the CMI.  The second section reports significant differences by each of the 

seven CMI scales and items described in section 4.4.1.  The third section reports 

significant correlations by each CMI scale and by individual item for each CMI scale.  

The reader is strongly advised to review the description of the CMI in section 4.4.1 

before reading this chapter. 

The CMI was completed by 102 11th-grade students in 4 participating schools for 

this study.  After analyzing the data as described in section 4.6, over 700 pages of SPSS 

reports were generated; obviously, it is impractical to present all results in this report.  In 

general, only statistically significant results are presented in this chapter.  An alpha level 

of .05 was used for all statistical tests. 
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Before reading this chapter, it is important to be aware of two conventions used to 

report results.  First, responses for each CMI item were scaled so that a score of six 

indicates strong agreement with the positive pole of the CMI scale; the higher the 

number, the more reform-oriented the response.  Second, schools are identified 

throughout by the textbook used (CPMP or Glencoe) and the observed teaching practices 

(reform or traditional) as discussed in section 4.2.1.  For example, the school using 

Glencoe Mathematics combined with reform-oriented teaching practices is referred to as 

Glencoe/Reform. 

 

5.1. Overview of Students’ Beliefs of Mathematics 

Before exploring significant differences and correlations found for the CMI, it is 

useful to consider the overall response patterns.  Mean scores and standard deviations on 

CMI Scales are presented by gender (see Table 9), textbook (see Table 10), and school 

(see Table 11).  The mean scores for each CMI scale range from 3.53 to 4.57.  The 

strongest responses were in the Usefulness, Doing, and Structure scales, while the 

weakest responses were in the Composition scale.  Other researchers have reported 

similar results (Walker, 1999; Star & Hoffmann, 2005). 

Histograms indicating the proportions of responses for each CMI scale are 

presented in Figure 11 through Figure 17.  In those figures, the proportions were 

calculated by dividing the number of responses that were assigned each score by the total 

number of responses.  For example, the highest proportion presented in Figure 11 

indicates that for the CPMP/Traditional school, 31% of the responses to items in the 

Composition scale were assigned a score of 4.  (Remember that half of the items are  
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Table 9.  Mean scores and standard deviations on Conceptions of Mathematics Inventory 
(CMI) scales by gender. 

  
Male 

(n=49) 
Female 
(n=53) 

All 
(N=102)

Composition Mean 3.55 3.51 3.53
 SD .65 .65 .65
Structure Mean 4.38 4.51 4.45
 SD .78 .72 .75
Status Mean 3.95 4.01 3.98
 SD .63 .76 .70
Doing Mean 4.41 4.59 4.51
 SD .56 .60 .59
Validating Mean 3.94 4.04 3.99
 SD .67 .70 .68
Learning Mean 3.83 3.97 3.90
 SD .50 .54 .52
Usefulness Mean 4.76 4.39 4.57
 SD .99 1.28 1.16

 
 

Table 10.  Mean scores and standard deviations on Conceptions of Mathematics 
Inventory (CMI) scales by textbook. 

  
CPMP 
(n=55) 

Glencoe 
(n=47) 

All 
(N=102)

Composition Mean 3.54 3.52 3.53
 SD .70 .59 .65
Structure Mean 4.31 4.62 4.45
 SD .70 .77 .75
Status Mean 3.98 3.98 3.98
 SD .72 .68 .70
Doing Mean 4.33 4.71 4.51
 SD .61 .48 .59
Validating Mean 3.89 4.11 3.99
 SD .73 .60 .68
Learning Mean 3.85 3.97 3.90
 SD .54 .51 .52
Usefulness Mean 4.43 4.72 4.57
 SD 1.14 1.17 1.16
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Table 11.  Mean scores and standard deviations on Conceptions of Mathematics 
Inventory (CMI) scales by school. 

  
CPMP/Trad. 

(n=11) 
CPMP/Reform 

(n=44) 
Glencoe/Reform 

(n=21) 
Glencoe/Trad. 

(n=26) 
All 

(N=102)
Composition Mean 3.56 3.54 3.51 3.52 3.53
 SD .72 .70 .67 .53 .65
Structure Mean 4.56 4.24 4.97 4.34 4.45
 SD .63 .71 .65 .75 .75
Status Mean 3.95 3.98 4.05 3.93 3.98
 SD .61 .75 .61 .74 .70
Doing Mean 4.52 4.28 4.79 4.65 4.51
 SD .57 .62 .50 .47 .59
Validating Mean 4.11 3.83 4.29 3.97 3.99
 SD .79 .71 .52 .64 .68
Learning Mean 4.15 3.77 4.08 3.87 3.90
 SD .37 .55 .56 .45 .52
Usefulness Mean 4.86 4.32 5.27 4.27 4.57
 SD .85 1.19 .67 1.30 1.16

 
 
phrased negatively and were scaled accordingly.)  The total of all proportions for each 

school is 1.0.  Note that the scales are different for some of the figures. 

In general, the distribution shapes are approximately the same for each school and 

are negatively skewed, indicating high frequencies of strong responses.  Some 

distributions are extremely negatively skewed, such as the distribution representing the 

Usefulness scale for the Glencoe/Reform school; in that case, over 50% of responses for 

items in the Usefulness scale were assigned a score of 6.  There do not appear to be any 

bimodal distributions of any concern.  Walker (1999) suggested that a strong negative 

skew for a scale may indicate that the positive beliefs in the scale were held more 

strongly than those in other scales; this would indicate that the students in this study held 

stronger beliefs in the Usefulness, Doing, and Structure scales than in the other scales. 
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Figure 11.  Proportions of responses for CMI Composition scale by school. 
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Figure 12.  Proportions of responses for CMI Structure scale by school. 
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Figure 13.  Proportions of responses for CMI Status scale by school. 

Status

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5 6

Response

Pr
op

or
tio

n
CPMP/Trad. CPMP/Reform Glencoe/Reform Glencoe/Trad.

 
 

 
Figure 14.  Proportions of responses for CMI Doing scale by school. 
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Figure 15.  Proportions of responses for CMI Validating scale by school. 
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Figure 16.  Proportions of responses for CMI Learning scale by school. 
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Figure 17.  Proportions of responses for CMI Usefulness scale by school. 
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5.2. Significant Differences for CMI Scales and Items 

As discussed in section 4.6, CMI responses were grouped by textbook (CPMP vs. 

Glencoe), teaching practice (reform vs. traditional), gender (female vs. male), and 

intended major (math vs. non-math), and two-tailed t tests of significance were performed 

on the mean scores of each CMI scale and individual item.  In addition, responses were 

grouped using combinations of variables, such as textbook and gender, and one-way 

ANOVA and Tukey’s HSD tests of significance were performed on those mean scores.  

This section presents all significant differences found for each CMI scale and individual 

item. 
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5.2.1. CMI Scales 

Results of two-tailed t tests and one-way ANOVA indicate significantly different 

mean responses for the Structure, Doing, and Usefulness scales of the CMI (see Table 

12).  There were no significant differences for the Composition, Status, Validating, and 

Learning scales; differences in mean responses for individual items within those scales 

are discussed later. 

For the Structure, Doing, and Usefulness scales, mean responses for Glencoe 

students were generally higher than mean responses for CPMP students.  The 

Glencoe/Reform students’ mean scores were generally higher, most noticeably for female 

students, while CPMP/Reform students’ mean scores were generally lower.  Students 

who indicated that they plan to major in a mathematics-related field had a high mean 

response for Usefulness scale. 

 

5.2.2. Composition Items 

Although the mean responses for the Composition scale as a whole did not differ, 

two differences were found for individual items (see Table 13).  Male students were more 

likely than females to agree with the statement, “While formulas are important in 

mathematics, the ideas they represent are more useful.”  Glencoe students were more 

likely than CPMP students to disagree with the negatively-phrased statement, “Learning 

computational skills, like addition and multiplication, is more important than learning to 

solve problems.” 
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Table 12.  Significant differences for each Conceptions of Mathematics Inventory (CMI) 
scale. 
CMI Scale Variable(s) Sig. Group N Mean SD 

Composition No significant differences. – – – – –
CPMP 55 4.31 .70Textbook .034* 
Glencoe 47 4.62 .77
CPMP/Reform 44 4.24 .71School .001** 
Glencoe/Reform 21 4.97 .65
Glencoe/Reform 21 4.97 .65School .015* 
Glencoe/Trad. 26 4.34 .75
CPMP Female 27 4.25 .65Textbook and Gender .040* 
Glencoe Female 26 4.79 .69
CPMP/Reform Female 20 4.22 .66School and Gender .042* 
Glencoe/Reform Female 12 5.02 .66
CPMP/Reform Male 24 4.26 .77School and Gender .050* 
Glencoe/Reform Female 12 5.02 .66
Glencoe/Reform Female 12 5.02 .66

Structure 

School and Gender .019* 
Glencoe/Trad. Male 12 4.05 .76

Status No significant differences. – – – – –
CPMP 55 4.33 .61Textbook .001** 
Glencoe 47 4.71 .48
CPMP/Reform 44 4.28 .62School .004** 
Glencoe/Reform 21 4.79 .50
CPMP/Reform 44 4.28 .62School .042* 
Glencoe/Trad. 26 4.65 .47
CPMP Male 28 4.31 .61Textbook and Gender .003** 
Glencoe Female 26 4.83 .48
CPMP Female 27 4.36 .63Textbook and Gender .011* 
Glencoe Female 26 4.83 .48
CPMP/Reform Male 24 4.26 .63

Doing 

School and Gender .037* 
Glencoe/Reform Female 12 4.90 .45

Validating No significant differences. – – – – –
Learning No significant differences. – –  – 

CPMP/Reform 44 4.33 1.19School .009** 
Glencoe/Reform 21 5.27 .67
Glencoe/Reform 21 5.27 .67School .014* 
Glencoe/Trad. 26 4.28 1.30
Glencoe/Reform Female 12 5.31 .64School and Gender .010* 
Glencoe/Trad. Female 14 3.76 1.37
Glencoe/Reform Male 9 5.22 .75School and Gender .042* 
Glencoe/Trad. Female 14 3.76 1.37
Yes 27 5.07 .72

Usefulness 

Math-related Major? .011* 
No 35 4.35 1.27

**. The mean difference is significant at the 0.01 level (2-tailed). 
*. The mean difference is significant at the 0.05 level (2-tailed). 
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Table 13.  Significant differences for Composition scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

Female 53 4.28 1.259 While formulas are important in mathematics, 
the ideas they represent are more useful. 

Gender .029* 
Male 47 4.81 1.12
CPMP 52 3.13 1.6033N Learning computational skills, like addition and 

multiplication, is more important than learning to 
solve problems. 

Textbook 0.47* 
Glencoe 47 3.72 1.28

*. The mean difference is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 

 

5.2.3. Structure Items 

While there were general differences in mean responses for the Structure scale, it 

is also useful to look at the individual item differences (see Table 14).  For example, it 

appears that male students in the Glencoe/Traditional school had lower mean responses 

than male students in both the Glencoe/Reform and CPMP/Traditional schools for the 

statement, “Diagrams and graphs have little to do with other things in mathematics like 

operations and equations.”  Similar results were found for the statement, “Finding 

solutions to one type of mathematics problem cannot help you solve other types of 

problems.” 

Two items indicate that Glencoe students may be more likely than CPMP students 

to view mathematical concepts as connected: (a) Glencoe students were more likely than 

CPMP students to agree with the statement, “Most mathematical ideas are related to one 

another,” and (b) Glencoe students were more likely than CPMP students to disagree with 

the negatively-phrased statement, “Mathematics consists of many unrelated topics.” 
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Table 14.  Significant differences for Structure scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

Glencoe/Reform 21 4.90 1.09School .018* 
Glencoe/Trad. 26 3.77 1.45
Glencoe/Reform 
Male 

9 5.11 1.36School and 
Gender 

.006** 

Glencoe/Trad. 
Male 

12 3.00 1.54

Glencoe/Reform 
Female 

12 4.75 .866School and 
Gender 

.020* 

Glencoe/Trad. 
Male 

12 3.00 1.54

CPMP/Trad. Male 4 5.25 .957

7N Diagrams and graphs have little to 
do with other things in mathematics 
like operations and equations. 

School and 
Gender 

.049* 
Glencoe/Trad. 
Male 

12 3.00 1.54

Glencoe/Reform 21 5.10 1.45School .036* 
Glencoe/Trad. 26 3.88 1.66
Glencoe/Reform 
Male 

9 5.56 1.33School and 
Gender 

.024* 

Glencoe/Trad. 
Male 

12 3.33 1.78

Yes 27 4.96 1.22

19N Finding solutions to one type of 
mathematics problem cannot help 
you solve other types of problems. 

Math-related 
Major? 

.016* 
No 35 4.00 1.70
CPMP Female 27 4.00 1.0731N There is little in common between 

the different mathematical topics 
you have studied, like 
measurement and fractions. 

Textbook 
and Gender 

.036* 
Glencoe Female 26 5.00 1.27

CPMP/Reform 43 5.05 .98School .012* 
Glencoe/Reform 21 5.81 .40
Glencoe/Reform 21 5.81 .40

37 Concepts learned in one 
mathematics class can help you 
understand material in the next 
mathematics class. 

School .036* 
Glencoe/Trad. 26 5.08 1.09
CPMP 54 3.80 1.6341N Mathematics consists of many 

unrelated topics. 
Textbook .049* 

Glencoe 47 4.38 1.28
CPMP 54 4.30 1.3350 Most mathematical ideas are 

related to one another. 
Textbook .040* 

Glencoe 46 4.80 1.07
*. The mean difference is significant at the 0.05 level (2-tailed). 
**. The mean difference is significant at the 0.01 level (2-tailed). 
N. The item is phrased negatively. 

 

5.2.4. Status Items 

The mean responses for the Status scale as a whole did not differ, but there were 

two items that differed significantly by gender (see Table 15).  Male students were more 

likely than female students to agree with the statement, “New mathematics is always 

being invented,” while female students were more likely than male students to disagree 
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with the negatively-phrased statement, “Mathematics today is the same as it was when 

your parents were growing up.” 

Students who expected to major in a mathematics-related field were more likely 

to agree with the statement, “Sometimes when you learn new mathematics, you have to 

change ideas you have previously learned.” 

Table 15.  Significant differences for Status scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

Female 51 3.49 1.3211 New mathematics is always being invented Gender .003** 
Male 47 4.28 1.26
Yes 27 3.30 1.4442 Sometimes when you learn new 

mathematics, you have to change ideas you 
have previously learned. 

Math-related 
Major? 

.043* 
No 35 4.00 1.24

Female 52 5.08 1.2744N Mathematics today is the same as it was 
when your parents were growing up. 

Gender .020* 
Male 48 4.44 1.43

*. The mean difference is significant at the 0.05 level (2-tailed). 
**. The mean difference is significant at the 0.01 level (2-tailed). 
N. The item is phrased negatively. 

 

5.2.5. Doing Items 

Although the comparison of mean responses for the Doing scale as a whole 

indicated that Glencoe/Reform students generally had higher responses than other 

schools, the differences at the item level were only significant at the textbook level (see 

Table 16).  For four of the eight statements in the Doing scale, Glencoe students were 

more likely than CPMP students to view mathematics in terms of sense-making.  For 

example, Glencoe students were more likely than CPMP students to disagree with the 

negatively-phrased statement, “One can be quite successful at doing mathematics without 

understanding it.” 
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Table 16.  Significant differences for Doing scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

CPMP 54 5.28 1.0716 When working mathematics problems, it is 
important that what you are doing makes sense 
to you. 

Textbook .039* 
Glencoe 47 5.64 .53

CPMP 54 4.50 1.2732 Understanding the statements a person makes 
is an important part of mathematics. 

Textbook .036* 
Glencoe 47 4.96 .81
CPMP 54 4.06 1.4948N One can be quite successful at doing 

mathematics without understanding it. 
Textbook .018* 

Glencoe 47 4.74 1.38
CPMP 54 4.28 1.4156 Solving a problem in mathematics is more a 

matter of understanding than remembering. 
Textbook .031* 

Glencoe 46 4.85 1.15
*. The mean difference is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 

 

5.2.6. Validating Items 

Although the mean responses for the Validating scale as a whole did not differ, 

one item was found to differ by gender: female Glencoe/Reform students were more 

likely than CPMP/Reform students to agree with the statement, “When one’s method of 

solving a mathematics problem is different from the instructor’s method, both methods 

can be correct” (see Table 17). 

Table 17.  Significant differences for Validating scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

CPMP 55 4.75 1.22Textbook .013* 
Glencoe 46 5.30 .96
CPMP/Reform 44 4.57 1.25School .019* 
Glencoe/Reform 21 5.43 .87
CPMP/Reform 
Female 

20 4.25 1.52

52 When one’s method of solving a 
mathematics problem is different from 
the instructor’s method, both methods 
can be correct. 

School and 
Gender 

.043* 

Glencoe/Reform 
Female 

12 5.50 .80

*. The mean difference is significant at the 0.05 level (2-tailed). 
 

5.2.7. Learning Items 

Mean responses for the Learning scale as a whole did not differ, but differences 

were found for two items (see Table 18).  First, Glencoe/Reform students were more 

likely than CPMP/Reform students to agree with the statement, “When learning 
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mathematics, it is helpful to analyze your mistakes.”  Second, female students were more 

likely than male students to disagree with the negatively-phrased statement, “Asking 

questions in mathematics class means you didn’t listen to the instructor well enough.”  

Mean responses for male students taught using reform-oriented teaching practices were 

generally lower than for females, particularly in the CPMP/Reform school. 

Table 18.  Significant differences for Learning scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

CPMP/Reform 43 5.02 1.0822 When learning mathematics, it is 
helpful to analyze your mistakes. 

School .027* 
Glencoe/Reform 21 5.71 .46
Female 53 5.74 .56Gender .001** 
Male 47 4.98 1.48
CPMP Male 26 4.73 1.66Textbook and 

Gender 
.003** 

Glencoe Female 26 5.81 .63
CPMP Male 26 4.73 1.66Textbook and 

Gender 
.012* 

CPMP Female 27 5.67 .48
Reform Male 31 4.68 1.60Teaching 

Practice and 
Gender 

.005** 
Trad. Female 21 5.71 .72

Reform Female 32 5.75 .44Teaching 
Practice and 
Gender 

.001** 
Reform Male 31 4.68 1.60

Reform Male 31 4.68 1.60Teaching 
Practice and 
Gender 

.040* 
Trad. Male 16 5.56 1.03

CPMP/Reform 
Male 

22 4.50 1.71School and 
Gender 

.009** 

Glencoe/Reform 
Female 

12 5.92 .29

CPMP/Reform 
Female 

20 5.65 .49School and 
Gender 

.017* 

CPMP/Reform 
Male 

22 4.50 1.71

CPMP Reform 
Male 

22 4.50 1.71

30N Asking questions in 
mathematics class means you 
didn’t listen to the instructor well 
enough. 

School and 
Gender 

.027* 

Glencoe/Trad. 
Female 

14 5.71 .83

*. The mean difference is significant at the 0.05 level (2-tailed). 
**. The mean difference is significant at the 0.01 level (2-tailed). 
N. The item is phrased negatively. 

 

5.2.8. Usefulness Items 

Of the 18 items with differences in mean responses found for individual CMI items, 7 are 

included in the Usefulness scale (see Table 19).  In general, students in the  
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Table 19.  Significant differences for Usefulness scale items. 
 CMI Item Variable(s) Sig. Group N Mean SD 

CPMP/Reform 43 4.28 1.42School .024* 
Glencoe/Reform 20 5.30 .92
Glencoe/Reform 20 5.30 .92School  .044* 
Glencoe/Trad. 26 4.27 1.34
Yes 27 5.26 .76

6 Students need 
mathematics for their 
future work. 

Math-related 
Major? 

.001** 
No 34 4.15 1.42
CPMP/Reform 44 4.09 1.72School .002** 
Glencoe/Reform 20 5.55 .89
Glencoe/Reform 20 5.55 .89School .010* 
Glencoe/Trad. 26 4.15 1.49
Glencoe/Reform Female 11 5.64 .81School and 

Gender 
.033* 

Glencoe/Trad. Female 14 3.71 1.64
CPMP/Reform Female 20 3.90 1.80

20 Mathematics is a 
worthwhile subject for 
students. 

School and 
Gender 

.044* 
Glencoe/Reform Female 11 5.64 .81
CPMP 55 4.31 1.86Textbook .040* 
Glencoe 47 5.00 1.43
CPMP/Reform 44 4.00 1.87School .001** 
Glencoe/Reform 21 5.62 .81
CPMP/Reform 44 4.00 1.87School .023* 
CPMP/Trad. 11 5.55 1.21
CPMP/Reform Male 24 3.92 1.86School and 

Gender 
.049* 

Glencoe/Reform Female 12 5.67 .65
Yes 27 5.41 1.15

23N Taking mathematics is 
a waste of time for 
students. 

Math-related 
Major? 

.003** 
No 35 4.29 1.60
Female 53 4.28 1.42Gender .012* 
Male 49 4.94 1.14
CPMP Female 27 4.07 1.44

34 Knowing mathematics 
will help students earn 
a living. Textbook and 

Gender 
.027* 

Glencoe Male 21 5.14 .79
CPMP/Reform 44 4.45 1.56School .031* 
Glencoe/Reform 21 5.48 .68
Glencoe/Reform 21 5.48 .68School .040* 
Glencoe/Trad. 26 4.38 1.50
Glencoe/Reform Female 12 5.58 .67School and 

Gender 
.033* 

Glencoe/Trad. Female 14 3.86 1.70
Yes 27 5.33 1.11

36N Mathematics will not 
be important to 
students in their life’s 
work. 

Math-related 
Major? 

.004** 
No 35 4.29 1.51
Reform Male 31 4.84 1.19Teaching 

Practice and 
Gender 

.030* 
Trad. Female 21 3.81 1.37

Reform Female 32 4.78 1.29Teaching 
Practice and 
Gender 

.043* 
Trad. Female 21 3.81 1.37

Glencoe/Reform Female 12 5.17 1.03

46 Students will use 
mathematics in many 
ways as adults. 

School and 
Gender 

.044* 
Glencoe/Trad. Female 14 3.57 1.45
Trad. Female 20 3.75 1.8053N Students should 

expect to have little 
use for mathematics 
when they get out of 
school. 

Teaching 
Practice and 
Gender 

.038* 
Trad. Male 16 5.19 .75

*. The mean difference is significant at the 0.05 level (2-tailed). 
**. The mean difference is significant at the 0.01 level (2-tailed). 
N. The item is phrased negatively. 
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Glencoe/Reform school had the higher mean responses, and female students taught with 

reform-oriented teaching practices had higher mean responses than traditional female 

students.  For example, female students taught using reform-oriented teaching practices 

were more likely than traditional female students to agree with the statement, “Students 

will use mathematics in many ways as adults.”  Female students in the Glencoe/Reform 

school were more likely than those in the Glencoe/Traditional school to agree with the 

statement, “Mathematics is a worthwhile subject for students.” 

 

5.3. Significant Correlations for CMI Scales and Items 

As discussed in section 4.6, Pearson r values were computed for each CMI scale 

and individual item to find correlations with students’ expected grade in current 

mathematics course, cumulative GPA, and parents’ level of education.  This section 

presents results for each CMI scale and individual item within those scales. 

Responses for all CMI scales except the Status and Doing scales were positively 

correlated with students’ expected grade in mathematics.  Correlation was found for 

individual items within all seven CMI scales, including the Status and Doing scales.  

Successful students disagreed with statements such as, “Diagrams and graphs have little 

to do with other things in mathematics like operations and equations,” “Finding solutions 

to one type of mathematics problem cannot help you solve other types of problems,” “In 

mathematics, the instructor has the answer and it is the student’s job to figure it out,” and 

“Learning mathematics involves memorizing information presented to you.” 

Correlation with students’ cumulative GPA was not as strong; however, many 

students indicated during the administration of the Student Mathematics Questionnaire 



 101

that they did not know how to compute GPA, and about half of the students responded to 

the GPA item. 

The Structure and Usefulness scales were positively correlated with parents’ level 

of education, and two individual items in other scales were positively correlated with 

with parents’ level of education.  On the whole, responses for the Usefulness scale were 

most correlated with parents’ level of education.  For example, students whose parents 

had a high level of education were more likely to disagree with the negatively-phrased 

statement, “Mathematics has very little to do with students’ lives.”  

Table 20.  Significant correlations for each Conceptions of Mathematics Inventory (CMI) 
scale. 

CMI Scale  

Expected 
grade in 

current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

Composition Pearson r .282** .236 -.035
 Sig. .006 .083 .738
 N 94 55 96
Structure Pearson r .340** .235 .213*
 Sig. .001 .084 .037
 N 94 55 96
Status Pearson r -.038 -.068 -.088
 Sig. .713 .624 .391
 N 94 55 96
Doing Pearson r .192 .130 .063
 Sig. .064 .342 .544
 N 94 55 96
Validating Pearson r .268** .142 .038
 Sig. .009 .303 .714
 N 94 55 96
Learning Pearson r .236* .243 .003
 Sig. .022 .074 .974
 N 94 55 96
Usefulness Pearson r .259* .018 .238*
 Sig. .012 .898 .020
 N 94 55 96
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 21.  Significant correlations for Composition items. 

   Expected grade 
in current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

1N Pearson r .229* – –
 Sig. .027  
 

There is always a rule to follow when 
solving a mathematical problem. 

N 93  
17N Pearson r .208* – –
 Sig. .046  
 

Mathematicians work with symbols 
rather than ideas. 

N 93  
33N Pearson r .217* – –
 Sig. .037  
 

Learning computational skills, like 
addition and multiplication, is more 
important than learning to solve 
problems. N 92  

49N Pearson r .256* – –
 Sig. .014  
 

The field of mathematics is for the 
most part made up of procedures 
and facts. 

N 91  
*. Correlation is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 
 
 

Table 22.  Significant correlations for Structure items. 

   Expected grade 
in current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

7N Pearson r .405** .284* –
 Sig. .000 .036 
 

Diagrams and graphs have little to 
do with other things in mathematics 
like operations and equations. 

N 94 55 
19N Pearson r .284** – –
 Sig. .006  
 

Finding solutions to one type of 
mathematics problem cannot help 
you solve other types of problems. 

N 94  
31N Pearson r .254* – –
 Sig. .014  
 

There is little in common between 
the different mathematical topes you 
have studied, like measurement and 
fractions. N 93  

37 Pearson r .240* – –
 Sig. .020  
 

Concepts learned in one 
mathematics class can help you 
understand material in the next 
mathematics class. N 94  

41N Pearson r – – .243*
 Sig.   .018
 

Mathematics consists of many 
unrelated topics. 

N   95
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 
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Table 23.  Significant correlations for Status items. 

   Expected grade 
in current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

11 Pearson r -.227* -.323* –
 Sig. .030 .017 
 

New mathematics is always being 
invented. 

N 91 54 
35N Pearson r .372** .308* –
 Sig. .000 .023 
 

When you do an exploration in 
mathematics, you can only 
discover something already 
known. N 92 54 

42 Pearson r -.209  –
 Sig. .043  
 

Sometimes when you learn new 
mathematics, you have to change 
ideas you have previously 
learned. N 94  

44N Pearson r – – -.259*
 Sig.   .011
 

Mathematics today is the same as 
when your parents were growing 
up. 

N   95
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 
 
 

Table 24.  Significant correlations for Doing items. 

   Expected grade 
in current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

16 Pearson r – -.295* –
 Sig.  .030 
 

When working mathematics 
problems, it is important that what 
you are doing makes sense to you. 

N  54 
56 Pearson r .266* – –
 Sig. .010  
 

Solving a problem in mathematics is 
more a matter of understanding 
than remembering. 

N 92  
*. Correlation is significant at the 0.05 level (2-tailed). 



 104

Table 25.  Significant correlations for Validating items. 

   Expected 
grade in 
current math 
course 

Cumulative 
GPA 

Parents’ 
level of 
education 

28N Pearson r .262* – –
 Sig. .011  
 

You can only find out that an answer to 
a mathematics problem is wrong when 
it is different from the book’s answer or 
when the instructor tells you. N 94  

45N Pearson r .322** – –
 Sig. .002  
 

In mathematics, the instructor has the 
answer and it is the student’s job to 
figure it out. 

N 93  
52 Pearson r .243* – –
 Sig. .019  
 

When one’s method of solving a 
mathematics problem is different from 
the instructor’s method, both methods 
can be correct. N 93  

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 
 
 

Table 26.  Significant correlations for Learning items. 

   Expected grade 
in current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

14 Pearson r – – -.205*
 Sig.   .046
 

Memorizing formulas and steps is 
not that helpful for learning how to 
solve mathematics problems. 

N   95
18N Pearson r .301** – –
 Sig. .003  
 

Learning mathematics involves 
memorizing information presented 
to you. 

N 94  
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 
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Table 27.  Significant correlations for Usefulness items. 

   Expected grade in 
current math 
course 

Cumulative 
GPA 

Parents’ level 
of education 

6 Pearson r .253* – .214*
 Sig. .015  .039
 

Students need mathematics for 
their future work. 

N 91  93
12N Pearson r .259* – .367**
 Sig. .012  .000
 

Mathematics has very little to do 
with students’ lives. 

N 94  96
20 Pearson r .212* – –
 Sig. .041  
 

Mathematics is a worthwhile 
subject for students. 

N 93  
23N Pearson r .296** – .214*
 Sig. .004  .037
 

Taking mathematics is a waste of 
time for students. 

N 94  96
53N Pearson r – – .207*
 Sig.   .043
 

Students should expect to have 
little use for mathematics when 
they get out of high school. 

N   96
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N. The item is phrased negatively. 
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5.4. Summary 

The results of this study indicated that students’ epistemological beliefs of 

mathematics differed for some CMI scales when different textbooks and teaching 

practices were used in the four participating schools.  In general, students in the 

Glencoe/Reform school had the highest mean CMI responses, while students in the 

CPMP/Reform school had the lowest mean CMI responses.  In fact, for all items 

analyzed and all possible ways of grouping students, only one case was found where a 

CPMP group had a higher mean response than a Glencoe group: male CPMP/Traditional 

students were more likely than male Glencoe/Traditional students to agree with the 

statement, “Diagrams and graphs have little to do with other things in mathematics like 

operations and equations.” 

Gender was a factor in some cases, and students with more reform-oriented views 

of mathematics expected higher grades in their mathematics courses.  Parents’ level of 

education was most positively correlated with the Usefulness scale. 

The next chapter summarizes the results and discusses their implications. 
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Chapter 6 
 

SUMMARY AND DISCUSSION 
 
 
 

To aid the reader, this chapter begins by restating the research problem and the 

major methods used in the study.  The results are then summarized and discussed. 

 

6.1. Statement of the Problem 

The general question this study attempted to answer was as follows: “Do high 

school students’ epistemological beliefs of mathematics differ when using traditional 

versus reform-oriented curricula?”  That general question subsumed the following related 

questions: 

1. Are there differences related to teaching practices? 

2. Are there differences related to demographic factors such as gender or parents’ 

level of education? 

3. Are there differences related to academic achievement? 

 

6.2. Review of the Methodology 

As explained in Chapter 4, this study was a cross-sectional correlation study 

designed to analyze the relationships between two curricula and the epistemological 

beliefs of mathematics held by students in four schools after studying three years of those 

curricula.  One curriculum in this study was an NSF-funded, reform-oriented curriculum; 
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the other was a more popular traditional curriculum.  Other variables, such as teaching 

practices and students’ gender, were also considered. 

The research perspective for this study was quantitative primary, qualitative first.  

The study began with a qualitative approach, using a series of informal interviews, 

classroom observations, and questionnaires to characterize the teaching practices 

occurring in the schools.  That qualitative data on teaching practices was then used as a 

basis for collecting and interpreting the quantitative data (the primary method) on 

students’ epistemological beliefs of mathematics. 

The primary method used in this study was a questionnaire including items from 

the Conceptions of Mathematics Inventory (CMI) that was administered to 11th-grade 

students in four rural Maine high schools to assess their beliefs of mathematics.  

Secondary methods used included classroom observations, questionnaires, and informal 

interviews to describe the level of reform-oriented teaching occurring in the schools.  

Teachers were observed using a variation of the Reformed Teaching Observation 

Protocol (RTOP). 

 

6.3. Summary of the Results 

The results of this study indicated that high school students who were taught with 

a traditional textbook, Glencoe Mathematics, expressed more reform-oriented 

epistemological beliefs of mathematics than students who were taught with a reform-

oriented textbook, CPMP, for some scales of the CMI.  Student responses on the CMI 

indicated that Glencoe Mathematics students were more likely than CPMP students to 

view the structure of mathematics as a coherent system of concepts, principles, and skills 
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rather than as a collection of isolated pieces.  Glencoe mathematics students were also 

more likely than CPMP students to view the process of doing mathematics as valuing, 

exploring, comprehending, and exploring concepts and principles rather than simply 

implementing procedures and finding results. 

The use of reform-oriented teaching practices to deliver the curricula appeared to 

magnify the differences between Glencoe Mathematics and CPMP students’ responses on 

the Structure, Doing, and Usefulness scales of the CMI.  The mean responses on those 

scales were higher for Glencoe Mathematics students and lower for CPMP students, 

especially when the students were taught with reform-oriented teaching practices. 

Some of the differences appeared to be gender-related.  For example, female 

students who were taught using Glencoe Mathematics were much more likely to view 

mathematics as a useful endeavor if reform-oriented teaching practices were used; the 

difference was not significant for male students who were taught using Glencoe 

Mathematics.  Female students were much more likely than male students to disagree 

with the negatively-phrased statement, “Asking questions in mathematics class means 

you didn’t listen to the instructor well enough,” while male students were more likely 

than female students to agree with the statement, “Knowing mathematics will help 

students earn a living.” 

Parents’ level of education was positively correlated with students’ mean 

responses for the Structure and Usefulness scales of the CMI.  Although previous 

research has shown that some epistemological beliefs predict GPA (Schommer, 1993), 

students’ self-reported cumulative GPA was not correlated with students’ responses for 

any of the CMI scales.  This may have been due to students’ unfamiliarity with GPA (see 
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section 5.3).  Expected grade in current mathematics course was positively correlated 

with responses for all but the Status and Doing scales of the CMI. 

Students who planned to major in a mathematics-related field were more likely to 

view mathematics as a useful endeavor, but did not exhibit different beliefs about 

mathematics in general. 

 

6.4. Discussion of the Findings 

Some researchers have expressed concerns about the reliability of the CMI (e.g., 

Star & Hoffmann, 2005) and whether it is even possible to assess students’ beliefs about 

mathematics (e.g., Lester, 2002).  Those concerns may be valid, but one finding of this 

study stands out: students who were taught using Glencoe Mathematics, a traditional 

textbook, consistently indicated more reform-oriented beliefs about mathematics than 

students who were taught using CPMP, a reform-oriented textbook.  This finding 

contradicts previous research by Star and Hoffmann (2005). 

It is not surprising that Glencoe Mathematics students who were taught using 

more reform-oriented teaching practices expressed more reform-oriented beliefs of 

mathematics than Glencoe Mathematics students who were taught using traditional 

teaching practices.  However, the finding that CPMP students who were taught using 

reform-oriented teaching practices expressed the least reform-oriented beliefs of 

mathematics was unexpected.  The goals stated by the CPMP authors are reform-oriented 

(see section 3.2), yet the expressed beliefs of mathematics for students who completed 

three years of CPMP appeared to be less reform-oriented, especially if they were taught 

using reform-oriented teaching practices. 
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Many factors other than the textbook and teaching practices used may have 

contributed to the results of this study.  Subtle differences in school demographics, 

students’ experiences in earlier mathematics courses, varying levels of administrative 

support for teachers, and other unknown factors may have influenced students’ beliefs of 

mathematics in addition to the textbook or teaching practices used.  For example, CPMP 

students in this study were clearly aware that they were being taught using a reform-

oriented approach; that awareness may have caused some students to be less enthusiastic 

about the curriculum. 

This study extends previous research on the feasibility of using the CMI to assess 

students’ beliefs of mathematics (Grouws et al., 1996; Walker, 1999; Star & Hoffmann, 

2005) by demonstrating the importance of determining what is actually happening in the 

classrooms.  Teachers do not always implement curricula as intended by the developers, 

and teaching practices may actually influence students’ beliefs of mathematics as much 

as the curricular materials used. 

Beliefs about the nature of mathematics and learning mathematics influence how 

students engage in mathematical activity, and further research is needed to determine 

how reform-oriented curricula and teaching practices impact those beliefs.  This research 

could involve (a) the development of more reliable instruments for assessing students’ 

beliefs, (b) exploring factors outside the classroom, such as the beliefs of family members 

and society in general, and (c) exploring whether students’ achievement is related to their 

beliefs of mathematics. 

It would be a mistake to draw sweeping conclusions about students’ 

epistemological beliefs of mathematics from a single study using a particular instrument 
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or conceptual framework, especially with such a limited number of participants.  

Theoretical models of epistemological beliefs continue to evolve, and researchers 

continue to develop methods of assessing beliefs.  It is possible that different results 

would be found if another instrument or framework were used.  Some researchers (e.g., 

Schommer-Aikins & Easter, 2006) have suggested using combinations of frameworks to 

explore students’ epistemological beliefs. 

A single instrument cannot provide educators with definitive information about 

students’ epistemological beliefs of mathematics, but this study used the CMI to 

demonstrate that some students expressed different beliefs about the structure and nature 

of mathematics in the four participating schools.  It is unclear whether the responses on 

the CMI accurately reflect the students’ beliefs about mathematics, but such information 

can help educators assess the impact of mathematics curricula and teaching practices in 

ways that standardized achievement tests do not. 

A school system has failed if students emerge viewing mathematics as a static 

collection of isolated facts to be memorized and having little value in life after school.  

Although this study does not provide conclusive evidence about the impact of different 

curricula and teaching practices on students’ epistemological beliefs of mathematics, the 

lessons learned from this study may help guide researchers when assessing the impact of 

reform-oriented curricula in the future. 
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Appendix A. Items in the Conceptions of Mathematics Inventory (CMI) 
 

Composition 
9. While formulas are important in mathematics, the ideas they represent are useful. 

25. Computation and formulas are only a small part of mathematics. 
39. In mathematics there are many problems that can’t be solved by following a given 

set of steps. 
51. Essential mathematical knowledge is primarily composed of ideas and concepts. 
1N. There is always a rule to follow when solving a mathematical problem. 

17N. Mathematicians work with symbols rather than ideas. 
33N. Learning computational skills, like addition and multiplication, is more important 

than learning how to solve problems. 
49N. The field of mathematics is for the most part made up of procedures and facts. 
N. Statement phrased negatively. 
 
Structure 
13*. Often a single mathematical concept will explain the basis for a variety of 

formulas. 
24. Mathematics involves more thinking about relationships among things such as 

numbers, points, and lines than working with separate ideas. 
37. Concepts learned in one mathematics class can help you understand material in 

the next mathematics class. 
50. Most mathematical ideas are related to one another. 
7N. Diagrams and graphs have little to do with other things in mathematics like 

operations and equations. 
19N. Finding solutions to one type of mathematics problem cannot help you solve other 

types of problems. 
31N. There is little in common between the different mathematical topics you have 

studied, like measurement and fractions. 
41N. Mathematics consists of many unrelated topics. 
N. Statement phrased negatively. 
*. Statement 13 was omitted in this study due to a typographical error. 
 
Status 
11. New mathematics is always being invented. 
27. The field of mathematics is always growing and changing. 
42. Sometimes when you learn new mathematics, you have to change ideas you have 

previously learned. 
54. Students can make new mathematical discoveries, as well as study 

mathematicians’ discoveries. 
3N. When you learn something in mathematics, you know the mathematics learned 

will always stay the same. 
21N. New discoveries are seldom made in mathematics. 
35N. When you do and exploration in mathematics, you can only discover something 

already known. 
44N. Mathematics today is the same as it was when you parents were growing up. 
N. Statement phrased negatively. 
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Doing 
2. Knowing why an answer is correct in mathematics is as important as getting a 

correct answer. 
16. When working mathematics problems, it is important that what you are doing 

makes sense to you. 
32. Understanding the statements a person makes is an important part of 

mathematics. 
56. Solving a problem in mathematics is more a matter of understanding than 

remembering. 
8N. If you cannot solve a mathematics problem quickly, then spending more time on it 

won’t help. 
29N. Being able to use formulas well is enough to understand the mathematical 

concept behind the formula. 
38N. If you knew every possible formula, then you could easily solve any mathematical 

problem. 
48N. One can be quite successful at doing mathematics without understanding it. 
N. Statement phrased negatively. 
 
Validating 
10. Justifying the statements a person makes is an important part of mathematics. 
26. It is important to convince yourself of the truth of a mathematical statement rather 

than to rely on the word of others. 
40. When two classmates don’t agree on an answer, they can usually think through 

the problem together until they have a reason for what is correct. 
52. When one’s method of solving a mathematics problem is different from the 

instructor’s method, both methods can be correct. 
5N. When two students don’t agree on an answer in mathematics, they need to ask 

the teacher or check the book to see who is correct. 
15N. You know something is true in mathematics when it is in a book or an instructor 

tells you. 
28N. You can only find out that an answer to a mathematics problem is wrong when it is 

different from the book’s answer or when the instructor tells you. 
45N. In mathematics, the instructor has the answer and it is the student’s job to figure it 

out. 
N. Statement phrased negatively. 
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Learning 
14. Memorizing formulas and steps is not that helpful for learning how to solve 

mathematical problems. 
22. When learning mathematics, it is helpful to analyze your mistakes. 
43. When you learn mathematics, it is essential to compare new ideas to mathematics 

you already know. 
55. Learning mathematics involves more thinking than remembering information. 
4N. Learning to do mathematics problems is mostly a matter of memorizing the steps 

to follow. 
18N. Learning mathematics involves memorizing information presented to you. 
30N. Asking questions in mathematics class means you didn’t listen to the instructor 

well enough. 
47N. You can only learn mathematics when someone shows you how to work a 

problem. 
N. Statement phrased negatively. 
 
Usefulness 

6. Students need mathematics for their future work. 
20. Mathematics is a worthwhile subject for students. 
34. Knowing mathematics will help students earn a living. 
46. Students will use mathematics in many ways as adults. 

12N. Mathematics has very little to do with students’ lives. 
23N. Taking mathematics is a waste of time for students. 
36N. Mathematics will not be important to students in their life’s work. 
53N. Students should expect to have little use for mathematics when they get out of 

school. 
N. Statement phrased negatively. 
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Appendix B. Teaching Observation Protocol (TOP) Results 
 
Table 28.  Teaching Observation Protocol (TOP) Results: Lesson Design and 
Implementation. 
   School 
 

  

CPMP/ 
Trad. 
(n=3) 

CPMP/ 
Reform 
(n=6) 

Glencoe/ 
Reform 
(n=6) 

Glencoe/ 
Trad. 
(n=5) 

Total 
(N=20) 

Never Occurred  
Rarely Occurred  
Sometimes Occurred  1 1
Descriptive 3 2 5 3 13

1. The instructional 
strategies and 
activities 
respected 
students’ prior 
knowledge and 
the 
preconceptions 
inherent therein. 

Very Descriptive 4 1 1 6

Never Occurred  
Rarely Occurred  2 2
Sometimes Occurred 2 2 2 3 9
Descriptive 1 2 2 5

2. The lesson was 
designed to 
engage students 
as members of 
a learning 
community. 

Very Descriptive 2 2 4

Never Occurred 1 2 5 8
Rarely Occurred 2 2 1 5
Sometimes Occurred 3 2 5
Descriptive  

3. In this lesson, 
student 
exploration 
preceded formal 
presentation. Very Descriptive 1 1 2

Never Occurred 1 1 2
Rarely Occurred 2 1  2 5
Sometimes Occurred 1 2 2 3 8
Descriptive 1 3 4

4. This lesson 
encouraged 
students to seek 
and value 
alternative 
modes of 
investigation or 
of problem 
solving. 

Very Descriptive 1  1

Never Occurred 4 1 5
Rarely Occurred 3 1 3 4 11
Sometimes Occurred 1 2 1 4
Descriptive  

5. The focus and 
direction of the 
lesson was 
often 
determined by 
ideas originating 
with students. 

Very Descriptive  
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Table 29.  Teaching Observation Protocol (TOP) Results: Propositional Knowledge. 
   School 
 

  

CPMP/
Trad. 
(n=3) 

CPMP/ 
Reform 
(n=6) 

Glencoe/ 
Reform 
(n=6) 

Glencoe/ 
Trad. 
(n=5) 

Total 
(N=20) 

Never Occurred  
Rarely Occurred  
Sometimes Occurred 1  2 3
Descriptive 2 1 2 2 7

6. The lesson 
involved 
fundamental 
concepts of the 
subject. Very Descriptive 5 4 1 10

Never Occurred  
Rarely Occurred 3  1 4
Sometimes Occurred 3 2 3 8
Descriptive 2 2 1 5

7. The lesson 
promoted 
strongly 
coherent 
conceptual 
understanding. 

Very Descriptive 1 2 3

Never Occurred  
Rarely Occurred  
Sometimes Occurred  
Descriptive 1 1 1 3

8. The teacher had 
a solid grasp of 
the subject 
matter content 
inherent in the 
lesson. 

Very Descriptive 3 5 5 4 17

Never Occurred 2  2
Rarely Occurred 1 1  1 3
Sometimes Occurred 2 4 4 10
Descriptive 1  1

9. Elements of 
abstraction (i.e., 
symbolic 
representations, 
theory building) 
were 
encouraged 
when it was 
important to do 
so. 

Very Descriptive 2 2 4

Never Occurred 1 3 4 8
Rarely Occurred 1 1 1 3
Sometimes Occurred 2 2 1 5
Descriptive 2 1 3

10. Connections 
with other 
content 
disciplines 
and/or other real 
world 
phenomena 
were explored 
and valued. 

Very Descriptive 1  1
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Table 30.  Teaching Observation Protocol (TOP) Results: Procedural Knowledge. 
   School 
 

  

CPMP/
Trad. 
(n=3) 

CPMP/ 
Reform 
(n=6) 

Glencoe/ 
Reform 
(n=6) 

Glencoe/ 
Trad. 
(n=5) 

Total 
(N=20) 

Never Occurred 2 1 1 4
Rarely Occurred 1 1 2 4
Sometimes Occurred 2 2 3 2 9
Descriptive 1 1 2

11. Students used a 
variety of means 
(models, 
drawings, 
graphs, 
concrete 
materials, 
manipulatives, 
etc.,) to 
represent 
phenomena. 

Very Descriptive 1  1

Never Occurred 1 3 3 4 11
Rarely Occurred 1 1
Sometimes Occurred 2 1 1 4
Descriptive 1 1 1 3

12. Students made 
predictions, 
estimations, 
and/or 
hypotheses and 
devised means 
for testing them. 

Very Descriptive 1  1

Never Occurred  1 1
Rarely Occurred 2 2 2 4 10
Sometimes Occurred 1 1 2 4
Descriptive 2 2 4

13. Students were 
actively 
engaged in 
thought-
provoking 
activity that 
often involved 
the critical 
assessment of 
procedures. 

Very Descriptive 1  1

Never Occurred  1 1
Rarely Occurred 2 1 3 4 10
Sometimes Occurred 1 2 1 4
Descriptive 2 2 4

14. Students were 
reflective about 
their learning. 

Very Descriptive 1  1
Never Occurred  
Rarely Occurred 2 1 1 3 7
Sometimes Occurred 1 2 2 2 7
Descriptive 1 2 3

15. Intellectual rigor, 
constructive 
criticism, and 
the challenging 
of ideas were 
valued. 

Very Descriptive 2 1 3
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Table 31.  Teaching Observation Protocol (TOP) Results: Communicative Interactions. 
   School 
 

  

CPMP/
Trad. 
(n=3) 

CPMP/ 
Reform 
(n=6) 

Glencoe/ 
Reform 
(n=6) 

Glencoe/ 
Trad. 
(n=5) 

Total 
(N=20) 

Never Occurred 1 1 2
Rarely Occurred 1 1 2 3 7
Sometimes Occurred 2 2 3 1 8
Descriptive 2  2

16. Students were 
involved in the 
communication 
of their ideas to 
others using a 
variety of means 
and media. 

Very Descriptive 1  1

Never Occurred  
Rarely Occurred 2 2  5 9
Sometimes Occurred 1 3 3 7
Descriptive 1 3 4

17. The teacher’s 
questions 
triggered 
divergent modes 
of thinking. Very Descriptive  

Never Occurred  1 1
Rarely Occurred 1 3 1 3 8
Sometimes Occurred 1 1 5 1 8
Descriptive 1 2  3

18. There was a 
high proportion 
of student talk 
and a significant 
amount of it 
occurred 
between and 
among students. 

Very Descriptive  

Never Occurred  
Rarely Occurred 3 2 3 4 12
Sometimes Occurred 4 2 6
Descriptive 1 1 2

19. Student 
questions and 
comments often 
determined the 
focus and 
direction of 
classroom 
discourse. 

Very Descriptive  

Never Occurred  
Rarely Occurred  
Sometimes Occurred  
Descriptive 1 1 1 3

20. There was a 
climate of 
respect for what 
others had to 
say. Very Descriptive 3 5 5 4 17
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Table 32.  Teaching Observation Protocol (TOP) Results: Student/Teacher Relationships. 
   School 
 

  

CPMP/
Trad. 
(n=3) 

CPMP/ 
Reform 
(n=6) 

Glencoe/ 
Reform 
(n=6) 

Glencoe/ 
Trad. 
(n=5) 

Total 
(N=20) 

Never Occurred  
Rarely Occurred  2 2
Sometimes Occurred 2 1 1 3 7
Descriptive 1 3 4 8

21. Active 
participation of 
students was 
encouraged and 
valued. Very Descriptive 2 1 3

Never Occurred 1  2 3
Rarely Occurred 2 1 2 2 7
Sometimes Occurred 1 2 3 1
Descriptive 2 1 3

7 Students were 
encouraged to 
generate 
conjectures, 
alternative 
solution 
strategies, and 
ways of 
interpreting 
evidence. 

Very Descriptive  

Never Occurred 1  1
Rarely Occurred  
Sometimes Occurred  
Descriptive 2 2 1 5

23. In general the 
teacher was 
patient with 
students. 

Very Descriptive 3 3 4 4 14
Never Occurred  1 1
Rarely Occurred 3 2 4 9
Sometimes Occurred 2 3 5
Descriptive 1 2 1 4

24. The teacher 
acted as a 
resource 
person, working 
to support and 
enhance student 
investigations. 

Very Descriptive 1  1

Never Occurred  
Rarely Occurred 2 2 5 9
Sometimes Occurred 3 2 4 9
Descriptive 2  2

25. The metaphor of 
“teacher as 
listener” was 
very 
characteristic of 
this classroom. 

Very Descriptive  
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Appendix C. Teacher Background Questionnaire Results 
 
Table 33.  Teacher Background Questionnaire Results: Level of Preparedness to Teach 
Topics (Means). 
(1=’Not Adequately Prepared’, 4=’Very Well Prepared’) 
  School 
 

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=2) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=2) 

Total 
(N=8) 

a. Estimation 4.0 3.5 4.0 4.0 3.87
b. Measurement 4.0 4.0 4.0 4.0 4.00
c. Pre-Algebra 4.0 4.0 4.0 4.0 4.00
d. Algebra 4.0 4.0 4.0 4.0 4.00
e. Patterns and relationships 4.0 4.0 4.0 3.5 3.88
f. Geometry and spatial sense 4.0 3.5 4.0 4.0 3.87
g. Functions (including trigonometric 

functions) and precalculus 
concepts 

4.0 3.0 3.7 3.0 3.38

h. Data collection and analysis 4.0 3.5 3.7 3.0 3.50
i. Probability 2.0 3.0 3.3 3.0 3.00
j. Statistics (e.g., hypothesis tests, 

curve fitting, and regression) 
2.0 3.0 4.0 1.5 2.71

k. Topics from discrete mathematics 
(e.g., combinatorics, graph 
theory, recursion) 

3.0 3.0 3.3 2.5 3.00

l. Calculus 4.0 2.5 3.0 2.5 2.88
m. Technology (calculators, 

computers) in support of 
mathematics 

4.0 3.0 4.0 2.5 3.38

 
 

Table 34.  Teacher Background Questionnaire Results: Level of Preparedness to Guide 
Student Learning (Means). 
(1=’Not Adequately Prepared’, 4=’Very Well Prepared’) 
  School 
 

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=2) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=2) 

Total 
(N=8) 

a. Problem solving 4.0 3.5 4.0 3.5 3.75
b. Reasoning and proof 4.0 3.0 3.7 4.0 3.63
c. Communication (written and oral) 3.0 3.0 3.7 4.0 3.63
d. Connections within mathematics 

and from mathematics to other 
disciplines 

– 3.0 3.3 3.0 3.14

e. Multiple representations (e.g., 
concrete models, and numeric, 
graphical, symbolic, and 
geometric representations) 

3.0 3.0 3.7 3.0 3.25

 
 



 136

Table 35.  Teacher Background Questionnaire Results: Beliefs (Means). 
(1=’Strongly Disagree’, 5=’Strongly Agree’) 
  School 
 

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=2) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=2) 

Total 
(N=8) 

a. Students generally learn 
mathematics best in classes with 
students of similar abilities. 

4.0 2.5 4.3 3.0 3.50

b. It is just as important for students 
to learn data analysis and 
probability as it is to learn 
multiplication facts. 

4.0 3.5 4.0 4.0 3.87

c. Generally, students learn 
mathematics best through 
investigative approaches (e.g., 
hands-on experiences, inquiry). 

2.0 4.0 2.7 3.5 3.13

d. Every student in my room should 
feel that mathematics is 
something she or he can do. 

4.0 4.5 4.3 4.5 4.38

e. Using computers or calculators to 
solve mathematics problems 
distracts students from learning 
basic mathematical skills. 

3.0 2.0 2.0 2.5 2.25

f. Students generally learn 
mathematics best through 
traditional approaches (e.g., 
lecture, drill, and 
practice/memorization). 

3.0 3.0 4.0 3.0 3.38

g. At the grades I teach, a lot of 
things in mathematics must be 
simply accepted as true and 
remembered. 

2.0 3.0 3.3 3.0 3.00
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Appendix D. Teacher Class Description Questionnaire Results 
  

Table 36.  Teacher Class Description Questionnaire Results: Instructional Time. 
   School 
  

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10) 

a. 0-10% 3 2 3 8
 11-20% 1  1
 21-30% 1 1
 31-40%  
 41-50%  
 51-60%  
 61-70%  
 71-80%  
 81-90%  
 

Daily routines, 
interruptions, and other 
non-instructional activities. 

91-100%  
b. 0-10%  

 11-20%  
 21-30% 1 3  4
 31-40% 1 1
 41-50% 1 1
 51-60%  2 2
 61-70% 1 1
 71-80%  1 1
 81-90%  
 

Whole class 
lecture/discussions. 

91-100%  
c. 0-10% 1 1 2

 11-20% 1  1
 21-30% 3 2 2 7
 31-40%  
 41-50%  
 51-60%  
 61-70%  
 71-80%  
 81-90%  
 

Individual students reading 
textbooks, completing 
worksheets, etc. 

91-100%  
d. 0-10% 1 3 4

 11-20% 1 1
 21-30% 1 1 1 3
 31-40% 2  2
 41-50%  
 51-60%  
 61-70%  
 71-80%  
 81-90%  
 

Small group work. 

91-100%  
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Table 37.  Teacher Class Description Questionnaire Results: Teacher Activities. 
   School 
  

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10) 

a. Never  
 Rarely  
 Sometimes 2  2
 Often 1 1 2 1 5
 

Introduce content through 
formal presentations. 

Always 1 2 3
b. Never  

 Rarely 1  1 2
 Sometimes 2  1 3
 Often 1 1 2
 

Pose close-ended 
questions. 

Always 2 2
c. Never  

 Rarely  1 1
 Sometimes 1 1 2
 Often 1 2 1 1 5
 

Engage the whole class in 
discussions. 

Always 1 1 2
d. Never  

 Rarely  
 Sometimes 1 1 2 4
 Often  1 1
 

Require students to 
explain their reasoning 
when giving an answer. 

Always 3 2 5
e. Never  

 Rarely  
 Sometimes  
 Often 1 1  1 3
 

Assess student progress 
by reviewing homework. 

Always 2 3 2 7
f. Never  1 1
 Rarely  
 Sometimes  
 Often 1 1 2 2 6
 

Encourage students to 
explore alternative 
methods for solutions. 

Always 2 1 3
g. Never  

 Rarely  
 Sometimes 1 1 2
 Often 1  1 2
 

Require students to use 
calculators/computers for 
learning or practicing 
skills. 

Always 1 2 2 1 6
h. Never  

 Rarely  
 Sometimes  1 1
 Often 1 3 2 2 8
 

Help students see 
connections between 
mathematics and other 
disciplines. 

Always 1 1
i. Never  
 Rarely  
 Sometimes  3 3
 Often 1 1 2 4
 

Encourage students to 
use multiple 
representations (e.g., 
numeric, graphic, 
geometric, etc.). Always 2 1 3
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Table 38.  Teacher Class Description Questionnaire Results: Student Activities. 
   School 
  

 

CPMP/ 
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10)

a. Never  
 Rarely 1  1
 Sometimes 3  3
 Often 2 1 3
 

Listen and take notes 
during a presentation by 
the teacher. 

Always 1 2 3
b. Never  

 Rarely  
 Sometimes 2 3 5
 Often 1 1 1 3
 

Work in groups. 

Always 1 2 3
c. Never  1 1

 Rarely 1  2 3
 Sometimes 1 2 3
 Often 1 1 1 3
 

Read from a mathematics 
textbook in class. 

Always  
d. Never 1 3 4

 Rarely 1 2 1 4
 Sometimes 1 1 2
 Often  
 

Read other (non-
textbook) mathematics-
related materials in class. 

Always  
e. Never  

 Rarely  
 Sometimes 1 3 1 3 8
 Often 1 1
 

Engage in mathematical 
activities using concrete 
materials. 

Always 1 1
f. Never  
 Rarely 1  1
 Sometimes  
 Often 3 1 3 7
 

Practice routine 
computations/algorithms. 

Always 2 2
g. Never  

 Rarely  
 Sometimes 1  1
 Often 1  1 2
 

Review 
homework/worksheet 
assignments. 

Always 2 3 2 7
h. Never  

 Rarely  
 Sometimes 1  1
 Often 1 1 2 4
 

Use mathematical 
concepts to interpret and 
solve applied problems. 

Always 2 2 4
i. Never  
 Rarely  
 Sometimes 1  1
 Often  1 1
 

Answer textbook or 
worksheet problems. 

Always 3 3 2 8
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   School 
  

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10)

j. Never 1 1 3 5
 Rarely 1 2 3
 Sometimes 2  2
 Often  
 

Write reflections (e.g., in a 
journal). 

Always  
k. Never 1  1 2

 Rarely  2 2
 Sometimes 3 3 6
 Often  
 

Make formal 
presentations to the rest 
of the class. 

Always  
l. Never  
 Rarely 1 1 1 3
 Sometimes  
 Often 1 2 1 4
 

Keep notes in an 
organized notebook that 
is periodically reviewed by 
teacher. 

Always 1 2 3
m. Never 1 1

 Rarely 2  3 5
 Sometimes 1 2 3
 Often 1  1
 

Work on extended 
mathematics 
investigations or projects 
(a week or more in 
duration). Always  

n. Never  
 Rarely  1 1
 Sometimes 1 2 3 2 8
 Often 1  1
 

Record, represent, and/or 
analyze data. 

Always  
o. Never  

 Rarely  
 Sometimes  1 1
 Often 1 1 2 2 6
 

Use calculators or 
computers to develop 
conceptual 
understanding. 

Always 2 1 3
p. Never  

 Rarely  
 Sometimes 1 3  2 6
 Often 2 1 3
 

Take a test or quiz. 

Always 1 1
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Table 39.  Teacher Class Description Questionnaire Results: Textbook Use. 
   School 
  

 

CPMP/ 
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10)

a. Never  
 Rarely  
 Sometimes 1  1 2
 Often 3 3 1 7
 

The textbook guides the 
structure (content 
emphasis) of this class. 

Always  1 1
b. Never  

 Rarely 1 1
 Sometimes 1 2 1 4
 Often 3  3
 

I follow the textbook page 
by page. 

Always  2 2
c. Never  

 Rarely  1 1
 Sometimes 1  2 3
 Often 2 2 4
 

I pick what I consider 
important from the 
textbook and skip the 
rest. 

Always 1 1 2
d. Never 1  1

 Rarely 1 1
 Sometimes  1 1
 Often 3  1 4
 

I follow my district’s 
curriculum 
recommendation 
regardless of what is in 
the textbook. Always 2 1 3

e. Never  
 Rarely  1 1
 Sometimes  1 1
 Often 1 1 2 1 5
 

I incorporate activities 
from other sources to 
supplement the textbook. 

Always 2 1 3
f. Never 1 1
 Rarely  
 Sometimes  
 Often 1 3 1 1 6
 

I use the student textbook 
to plan lessons for this 
class. 

Always 1 2 3
g. Never  

 Rarely  
 Sometimes 1 1 2
 Often 2 1 3 6
 

I read and review 
suggestions in the 
textbook’s teacher guide 
to plan lessons for this 
class. Always 1 1 2

h. Never  
 Rarely  
 Sometimes 1  1
 Often  
 

I assign homework from 
the textbook. 

Always 3 3 2 8
i. Never  
 Rarely  1 1
 Sometimes  
 Often 1 1 2
 

Students in this class use 
their textbook during the 
mathematics lesson. 

Always 1 2 2 2 7
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Table 40.  Teacher Class Description Questionnaire Results: Textbook Coverage. 
   School 
  

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10) 

11. < 25%  
 25-49%  
 50-74% 2 1 3
 75-90% 1 1 2 2 6
 

Over the course of the 
school year, 
approximately what 
percentage of 
mathematics instruction 
time for this target class 
will be based on that 
mathematics textbook? 

> 90%  1 1

12. < 25%  
 25-49%  
 50-74% 2 3 5
 75-90% 2 1 3
 

Estimate the percentage 
of that mathematics 
textbook you will cover 
during the school year 
with this target class. > 90% 1 1  2

 
 

Table 41.  Teacher Class Description Questionnaire Results: Textbook Quality. 
   School 
  

 

CPMP/
Trad. 
(n=1) 

CPMP/ 
Reform 
(n=3) 

Glencoe/ 
Reform 
(n=3) 

Glencoe/ 
Trad. 
(n=3) 

Total 
(N=10) 

13. Very Poor  
 Poor  
 Fair 1 2  3
 Good 1  1
 Very Good 3 1 4
 

How would you rate the 
overall quality of that 
mathematics textbook for 
this target class? 

Excellent  2 2
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Appendix E. Application for Approval of Research with Human Subjects 
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Appendix F. Approval of Research with Human Subjects 
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Appendix G. Informed Consent Form for Students 
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Appendix H. Information Form for Parents and Guardians 
 

 



 153



 154

Appendix I. Informed Consent Form for Teachers 
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Appendix J. Student Mathematics Questionnaire 
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Appendix K. Teacher Background Questionnaire 
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Appendix L. Teacher Class Description Questionnaire 
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Appendix M. Teaching Observation Protocol (TOP) 
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