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The extent of precommercial thinning (PCT) to manipulate stand density in 

overstocked, regenerating stands and to accelerate growth, yield, and the rate of 

development of crop trees has been increasing within the Acadian forest of northeastern 

North America. Although the silvicultural responses of crop trees to thinning are well 

studied, few studies have evaluated the effects of PCT on forest-dependent wildlife and 

their habitat. I investigated the effects of PCT and stand succession on snowshoe hares, 

small mammals, and forest structure on 38 stands (25 treated with PCT, 13 unthinned 

stands) from 1 to 16 years post-treatment within 7 townships in the commercial forests of 

northern Maine. Forest stands were clearcut from 1967-1983, treated with an aerial 

herbicide during 1977-1988, and treatment stands were manually thinned from 1984- 
, , 

1999. 



Densities of snowshoe hares were examined by establishing approximately 46 km 

of pellet transect across 30 stands and live-trapping a subset of 8 stands to determine the 

relationship between densities of pellets and estimated densities of hares. Densities of 

hares were linearly related to pellet densities from 0-3 hareslha (P < 0.001). Two similar 

pellet x hare density regressions developed outside Maine did not perform well (AIC, > 

10) and predictions from these regressions underestimated densities of hares. Unthinned 

stands had approximately 2x greater densities of hares than similar stands treated with 

PCT across stand ageclasses, 2 years of sampling, and during leaf-off (October -May) 

and leaf-on (June - September) seasons (P < 0.10). Although densities of hares were 

lower in stands treated with PCT, thinned stands still maintained densities greater than 

stands managed using some alternative silvicultural regimes. 

I examined the temporal effects of PCT on small mammals by live-trapping 

within 37 stands (24 treated with PCT) during June-August 2000 and 2001. Thinning 

increased [red-backed voles (Clethrionomys gapperi), P = 0.008; masked shrews (Sorex 

cineus), P < 0.0011 or produced no detectable effect [deer mice (Peromyscus 

maniculatus), P = 0.544; short-tailed shrews (Blarina brevicauda), P = 0.5171 on the 4 

- most abundant species of small mammals captured on my study areas; therefore, PCT 

was compatible with maintaining or enhancing densities of common species of forest- 

dwelling small mammals in regenerating conifer stands. 
' 

Dominant changes in forest structure were described from 1 to 11 years post- 

treatment between herbicide treated clearcuts with and without PCT, to predict wildlife 

responses to thinning and stand succession. During summers 2001 and 2002,29 

structural characteristics were quantified across 30 forest stands (17 treated with PCT). 



Variables with either significant effects of treatment or thinning class were incorporated 

into a principal components analysis (PCA) to reduce the dimensionality of data. Near- 

ground cover, overhead cover, and understory structure described approximately 80% of 

variation between thinned and unthinned stands. Horizontal cover, an overstory to 

understory contrast, and a gradient of herbaceous vegetation accounted for 75% variation 

in forest structure among thinning classes of stands. Wildlife associated with dense, early 

successional habitat, such as snowshoe hares, have been negatively affected by PCT, but 

thinning could positively influence species that use more mature forest with a more open 

understory (i.e. red-backed voles). 
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PREFACE 

The Acadian forest is located in  the transitional zone between deciduous forest to 

the south and coniferous forest to the north, and extends from northern New England east 

through the maritime provinces of Canada (Seymour and Hunter 1992). The Acadian 

forest is further identified as the region of geographic overlap between the distributions 

of balsam fir (Abies balsamea), primarily a boreal species, and red spruce (Picea rubens), 

an Appalachian species. The region has received widespread disturbance by the eastern 

spruce budworm (Choristoneura fumiferana), which reached outbreak status about every 

30-50 years in the last century (Irland et al. 1988). The most recent budworm outbreak in 

the region occurred during the 1970's-1980's, with large areas of susceptible conifer 

forest having widespread mortality. Spruce budworm kills spruce and fir trees by 

defoliating them for several years and reducing vigor or causing direct mortality. 

Landowners of commercial forest responded to the budworm outbreak by conducting 

extensive salvage operations and accelerating rates of pre-salvage clearcutting to 

minimize loss of fiber (Maine Forest Service, unpublished data). 

During the end of the outbreak (1985) and the 5 years following (1985 to 1990), 

an average of 46,921 ha were clearcut each year in Maine (Maine Forest Service, 

unpublished data), and > 420,000 ha were clearcut across Maine, New Brunswick, 

Quebec, and Nova Scotia (Canadian Council of Forest Ministers 2002). In the following 

decade (1991- 1999), Maine's average number of ha harvested annually by clearcutting 

dropped to 17,927, but clearcutting remained a dominant silvicultural practice over much 

of eastern Canada. The large land area of regenerating forest created during a relatively 

short period of time contributed to an age class unbalance with a preponderance of 



young, regenerating stands (Seymour 1985). A few years after harvesting (from 1985- 

1995), an average of 19,184 ha a year (Maine Forest Service, unpublished data) of young 

clearcuts were treated with an aerial herbicide (i.e. Glyphosate or Triclopyr) to promote 

softwood regeneration in Maine. Herbicide treatments, prolific seeding of shade-tolerant 

conifers, and abundant precipitation yielded sapling stands that were often stocked with > 

37,000 conifer stems per hectare (Gadzik 1999). Overstocked conifer stands often result 

in a reduced growth rate and fiber loss to mortality, via self-thinning (Wilson et al. 1999). 

Many companies responded by exploring new methods, including precornmercial 

thinning (PCT), to reduce competition to accelerate the growth of residual trees in young, 

overstocked stands and to minimize the effects of an imbalance in age structure across the 

landscape (Seymour 1999). 

Within commercially managed forests, PCT has been used to manipulate stand 

density in stands 10-20 years after harvest when crop trees typically average 1.5-3.0-m 

height. A typical example of this high-yield silvicultural system includes a progression 

of a complete overstory removal followed by herbicide application 2-5 years later to 

control competing vegetation (Seymour and Hunter 1992). Next, at about age 15, stands 

are thinned with motor manual brush saws to about 2,000-2,500 trees per hectare to 

reduce the density of overstocked sapling stands and remove competing deciduous trees 

(Seymour 1999). 

Large shifts in the dominant silvicultural practices in Maine have occurred over 

the last 15 years. Whereas clearcutting was once the dominant silvicultural regime, 

partial harvesting now accounts for about 96% of the annual total area harvested in the 

state. The pasage of the Maine Forest Practices Act in 1989 (Title 12 MRSA Chapter 



805) placed a regulatory disincentive on large clearcuts. This act resulted, in  part, from a 

negative public perception of clearcutting (Bliss 2000) and contributed to a substantial 

decline in the number of ha clearcut each year from the late 1980's to 2002 (Figure P. 1). 

In contrast, the number of ha precommercially thinned each year has shown a slow, but 

steady increase from about 2,428 ha in 1987 to > 8,499 ha in 2001. Over 8,000 ha of 

regenerating softwood stands are treated with PCT each year in Maine and at this current 

rate approximately 13 1,000 ha (or 2% of Maine's commercial timberland) will have been 

spaced by 2005. The increased prevalence of PCT on forested landscapes is not unique 

to Maine. From 1990-2000, the annual land area treated with PCT increased 2 . 7 ~  in New 

Brunswick and 4 . 3 ~  in Quebec (Canadian Council of Forest Ministers 2002), indicating 

that much of the Acadian forest has experienced this silvicultural trend. . . 

Although area clearcut (< 3.0% in 2001) and thinned (3.5% in 2001) annually in 

Maine only account for a small portion of the total silvicultural activity, these practices 

may have significant effects on species that reach their highest densities in regenerating, 

early successional habitat. During both 2000 and 2001, a greater number of ha of forest 

were treated with PCT than were clearcut (Figure P. l), emphasizing the trend towards 

thinning of overstocked stands and a move away from even-aged management. The 

effects of these changes on the management of Maine's forests and on wildlife species 

that are dependent upon early-successional forests are unknown. 

Wildlife generally respond to forest structure rather than stand-age (Carey and 

Johnson 1995, Hayes et al. .1997), and the post-treatment changes that occur in stand 

structure following forest management may have strong effects on a suite of forest- 

dependent wildl~fe. For example, understory structure and diversity provides foraging, 
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Figure P. 1. Changes in the annual number of acres clearcut and precomrnercially thinned 
in Maine, 1987 to 2002 (Data from the Maine Forest Service). 



nesting, and perching substrate for numerous species of songbirds (MacArthur and 

MacArthur 196 1 ,  Woodcock et al. 1997), thermal cover and protection from predators for 

small herbivores (Wolff 1980, Pietz and Tester 1983, Litvaitis 1993, Litvaitis et al. 1985, 

Fuller 1999), and browse for ungulates (Doerr and Sandburg 1986, Newton et al. 1989, 

Lautenschlager et al. 1999). A structurally diverse canopy layer may function as escape 

cover and rest sites for meso-carnivores (Buskirk 1984, Payer and Harrison 2000) and 

gallinaceous birds (Allan 1985, Kilpatrick et al. 1988, Chamberlain et al. 2000), 

protection from extreme weather for ungulates (Ozoga and Gysel 1972), and nesting and 

foraging sites for songbirds (MacArthur and MacArthur 1961, Sharpe 1996). Lastly, 

coarse woody debris and snags contribute subnivian access for small predators 

(Sherburne and Bissonette 1994), nesting and foraging sites for cavity nesters (Hunter 

1990, Sharpe 1996), escape cover from predators, habitat for invertebrate prey, and 

mediation of microclimate for small mammals (Hayes and Cross 1987, Carey and 

Johnson 1995, Hagan and Grove 1999), and herpetofauna (Whiles and Grubaugh 1993, 

deMaynadier and Hunter 1995). Therefore, human alteration of structural characteristics 

of forested ecosystemsmay have varied effects upon the vertebrate species whose 

geographic distribution includes commercially managed forest. 

The purpose of this thesis was to examine the effects of PCT on wildlife species, 

with special emphasis on the primary prey of the federally threatened (US Department of 

the Interior 2000) Canada lynx (Lynx canadensis) (O'Donoghue et al. 1998). 

Specifically, I studied the effects of PCT on snowshoe hares (&pus americanus) 

(Chapter 2), an early successional species that may be important to the recovery of 

Canada lynx (Hickenbottom et al. 1999), small mammals (Chapter 3), which are 



important prey items for a diverse group of forest carnivores (Dibello et al. 1990, 

Cumberland 2001), and on the within-stand and structural attributes of regenerating 

clearcut stands that result following herbicide application and PCT (Chapter 4). Further, 

I developed a predictive relationship for estimating density of snowshoe hares based on 

counts of fecal pellets and determined the utility of this method for predicting numbers of 

hares (Chapter 1). 



CHAPTER 1 

QUANTIFYING DENSITIES OF SNOWSHOE HARES IN NORTHERN 

MAINE USING PELLET PLOTS 

ABSTRACT 

Snowshoe hare (Lepus americanus) have important community-level roles 

throughout their range as prey for numerous species of wide-ranging carnivores and as a 

dominant herbivore. Monitoring populations of hares across landscapes requires surveys 

that are efficient and accurate. Predictive relationships between densities of fecal pellets 

and snowshoe hares have been reported for boreal forests in northwestern Canada and for 

Idaho; however the authors recommended further testing of the pellet-survey technique 

across the geographical range of hares. I developed a functional relationship of hare 

densities in relation to pellet densities in northern Maine and evaluated the utility of using 

previously published regression coefficients to predict densities of hares in Maine. I 

estimated pellet densities by establishing 1.6 lun of transect in each of 8 forest stands and 

by counting the number of pellets deposited by hares during leaf-off seasons (0ct.-May 

2000-2001 and 2001-2002). . Further, I live-trapped hares on those stands during May- 

June 2001-2002 to estimate densities. Minimum number of hares known alive were a . 

linear function of pellet densities (P < 0.001) to 3 1,000 pelletsha/month (3.04 haresha) 

for the 8 stands that I sampled; this equation best balanced goodness of fit with statistical 

parsimony (AAICc = 0.00). However, a previously developed regression. for Maine 

(AAICc = 2.77) performed similarly well (r = 0.93) and had the advantage of predicting 

actual densities of hare. In contrast, regressions reported for the Yukon Territory, Canada 

(AAICc = 29.03) and northern Idaho (AAICc = 32.79) did not perform well and 



underestimated densities of hares (mean differences -0.40 and -0.42 haredha, 

respectively) when compared to predicted densities in Maine. I suggest that future 

research be directed towards documenting functional relationships between pellet 

densities and hare densities during the leaf-off season to avoid potential biases resulting 

from pooling data across seasons. My data suggest that predictive relationships between 

number of fecal pellets and densities of snowshoe hare are region-specific. Therefore, 

caution should be exercised when regression equations developed to estimate density of 

hares from one ecoregion are applied within other ecoregions. 

INTRODUCTION 

The ecology of snowshoe hares has been extensively studied, partly because of 

this species' role as prey for numerous wide-ranging mammalian and avian predators. 

Hares are a prevalent prey item for Canada lynx (Lynx canadensis) (07Donoghue et al. 

1998), American marten (Martes americana) (Soutiere 1979, Cumberland et al. 2001), 

coyotes (Canis latrans), fishers (Martes pennanti), bobcats (Lynx rufus) (Dibello et al. 

1990), goshawks (Accipiter gentilis), broad-winged hawks (Buteo platypterus), barred 

owls (Strix varia), snowy owls (Nyctea scandiaca) and great homed owls (Bubo 

virginianus) (Mendall 1944, Rohner and Krebs 1996). Snowshoe hares are also a 

primary consumer within the northern forest ecosystem (Krebs et al. 2001a) and can 

cause dramatic decreases in the available biomass of woody stems (Pease et al. 1979), 

especially during cyclic population "peaks." Snowshoe h i e s  browse and girdle woody 

stems (Pease et al. 1979, Radvanyi 1987, Bergeron and Tardif 1988); therefore, they may 

also play an important role in nutrient cycling (Krebs et al. 2001a). 



Ecologists and managers are often interested in densities of snowshoe hare across 

large areas because of direct and indirect interactions with many other wide-ranging 

species via predation, competition, and herbivory. Further, concern about the habitat 

relationships of snowshoe hare under various forest management scenarios has increased 

since the federal listing of Canada lynx as a threatened species in the contiguous United 

States in March 2000 (United States Department of the Interior 2000). Accurate and 

expedient methods to indirectly estimate snowshoe hare populations are needed to 

evaluate and monitor temporal, successional, and human-induced changes in hare 

densities across large areas. 

Conventional mark-recapture techniques are labor intensive, costly to employ, 

and are usually constrained to relatively small areas (Litvaitis et al. 1985b, Krebs et al. 

2001b). Counts of fecal pellets of snowshoe hares on numerous small plots provide a 

quicker and more cost-effective measure of abundance of hares, and have been shown to 

accurately predict population densities within the regions where they are developed 

(Krebs et al. 1987, Long 1995, Krebs et al. 2001b, Murray et al. 2002). Krebs and others 

(2001b) recently recalculated the relationship between observed densities of hares and 

pellet densities for the Kluane region of northwestern Canada and assessed the temporal 

generality of the regression. They cautioned against making management 

recommendations with this regression outside of the Kluane boreal forest region, and 

questioned the spatial generality of hare-pellet regression equations throughout the 

species' geographic range. Murray et al. (2002) examined the utility of the regression 

developed in the Yukon for estimating hare densities in Idaho and concluded that the 



equation predicted hare densities moderately well at higher densities (- 0.50 haresha), 

but underestimated hares when pellet densities were close to zero. 

The objectives of my study were to develop a predictive equation of observed 

snowshoe hare densities based on fecal pellet densities in northern Maine, to examine the 

evidence supporting that predictive model relative to hare pellet-density relationship 

models reported for western and eastern Maine (Litvaitis et al. 1985a, Long 1995), the 

Yukon Territory (Krebs et al. 2001b), and Idaho (Murray et al. 2002), and to evaluate 

whether a regional-specific model is required to estimate densities of hare in the 

northeastern United States. 

STUDY AREA 

Four townships (T 4 R 11 WELS, T 5 R 11 WELS, T 1 R 13 WELS, and T 1 R 14 

WELS) spanning 50 krn north to south and 43 krn east to west in Piscataquis County, 

Maine comprised the study area (Figure 1.1). Two industrial forest owners (i.e. Great 

Northern Paper, Inc., Millinocket, Maine and Plum Creek Timber Company, Fairfield, 

Maine) managed the lands for pulpwood and sawtimber. 

Each of the 8 study sites in the 4-township area were located in the transitional 

zone between the sub-boreal spruce-fir and northern hardwoods ecosystem (Seymour and 

Hunter 1992). Average annual temperature for the region during 1970 to 1999 was 3.78" 

C and average annual precipitation was 101 cm, with 276 cm falling annually as snow 

(Garoogian 2000). Stands were dominated by balsam fir (Abies balsamea) and spruce 

(Picea spp.), and had minor components of white pine (Pinus strobus), northern white 

cedar (Thuja occidentalis), red maple (Acer rubrum), sugar maple (Acer saccharum), 

paper birch (Betula papyrifera), and trembling aspen (Populus tremuloides). 
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Figure 1 . 1 .  Location of study sites containing 8 stands where hare pellet-density 
relationships'were investigated within 4 townships in the commercially owned and 
managed forests of north-central Maine, 2000-2002. 



I selected 8 forest-stands within the study area that had been clearcut (timber harvesting 

resulting in residual basal area of acceptable growing stock trees > 1 1.43 cm dbh of < 

20.66 m2/ ha) 1974- 1983 and treated with an aerial herbicide (e.g. Glyphosate at 1.68 

kglha acid equivalent) 1983- 1988 to reduce competing deciduous vegetation; 4 of the 8 

stands had been manually thinned 2 to 13 years previously using brushsaws (Seymour et 

al. 1984). Stands were selected across a range of stand ages and with different thinning 

treatments to maximize the range of hare densities encountered because I was interested 

in developing a generalized predictive equation of hare density versus pellets across the 

range of hare densities typically encountered in northern Maine. The 8 stands were 

chosen to have flat to gently sloping topography, relatively uniform within-stand 

conditions, and area > 10 ha (range 11.6 to 66.4 ha). 

METHODS 

Pellet transects 

I established transects to measure snowshoe hare pellets and absolute densities of 

hares on 8 forest stands. The stand was considered the unit of replication because home 

ranges of individual hares in Maine average 4.8 ha for females and 7.4 ha for males 

(Litvaitis 1984), which was approximately 3,200 to 4 , 9 0 0 ~  greater than the area of 

individual pellet plots. Each replicate had 1.6 km of pellet transects placed > 50 m-from 

the stand boundary to minimize samples from hares that were not resident within the 

stand and to minimize edge-effects (Harris 1988, Fraver 1994). Within each of 7 stands I 

established 4 parallel, 400-m transects and separated transects by 65 m (Figure 1.2). In 

the remaining stand I established 3, parallel 540-m transects to conform to the long and 

narrow shape of that stand. 
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Figure 1.2. Position of 84 snowshoe hare pellet plots on 4 parallel transects and live- 
. trapping grid within each of 7 stands in northcentral Maine, USA. An eighth stand was 

surveyed with an arrangement of 3 parallel 540 m transects because the standard survey 
dimensions did not fit  within 50 m of stand boundaries. Figure not drawn to scale. 



I marked 5 m by 30 cm (1 -5 m') randomly oriented quadrats at 20-m intervals along 

transects for a total survey of 84 pellet plots (126 m2) sampled per stand. I cleared all 

pellets from plots during 18 - 25 October, 2000 and during 13 - 29 September, 2001 ; 

therefore, only pellets deposited during the leaf-off season (October - May) were counted 

in subsequent surveys. I counted and removed the pellets deposited on the plots in the 

leaf-off season during 17-23 May, 2001 and during 10-24 May, 2002; counts were 

conducted prior to leaf-out of deciduous trees (ca. 20 May - ' lo June) to represent winter 

abundance and habitat use of snowshoe hares (Litvaitis et al. 1985). I rigorously trained 

all technicians and minimized the number of individuals who counted pellets to reduce 

observer bias. 

Live-trapping 

I live-trapped hares within 4 stands during 8 May-15 June, 2001 and within the 

remaining 4 stands during 4 May-4 June, 2002. I established a 390 x 260 m trapping grid 

in each stand on the pellet transects and added a fifth, parallel transect to maximize the 

grid size and total number of captures (Figure 1.2). One stand had a 585 x 130-m grid 

because the standard survey dimensions would not fit within 50 m of thestand boundary. 

I placed 1 single-door 66 x 22 x 22 cm collapsible Tomahawk trap (Model 205) 

(Tomahawk Live Trap Co., Wisconsin, USA) at 65-m intervals, 1-2 m from the transect, 

for a total of 35 traps per stand (30 traps for the stand with a 585 x 130-m grid). Traps 

were baited with dried alfalfa cubes and covered with moss, leaves, and bark to provide 

shelter from wind and rain and cover from predators. I set traps in each stand for 13- 18 

consecutive nights and traps were checked once daily. The Institutional Animal Care and 

Use Committee at the University of Maine approved the trapping and handling protocol. 



Hares were restrained in a cloth handling-bag and were marked with numbered, 

self-piercing tags (Monel no. 1 or Monel no. 3; National Band and Tag Co., Newport, 

KY) in each ear, or behind the intercapitular ligaments of the interdigital webs of each 

hind foot (Keith et al. 1968). Hare were sexed and the right hind foot length was 

measured. Individual hares were examined for reproductive condition by noting obvious 

testes for males, and the presence or absence of swollen mammaries, large nipples, and 

matted hair around nipples to indicate lactation for females. I used live-trapping to 

estimate population sizes at the end of the leaf-off season; therefore, only adult hares 

were marked. Leverets ( c  2 months of age) were easily distinguished from adults (> 6 

months of age) during our trapping period (early May - midJune) by physical 

characteristics and were released unmarked. Hind foot measurements of hares have often 

been used to separate juveniles from adult hares (Litvaitis 1990, Rohner and Krebs 1996). 

Leverets had hind foot measurements of c 8 cm and adult hares had hind feet 2 12.0 cm. 

After handling, all hares were released at the capture site. 

Pellet density - hare density relationship 

I converted the mean number of pelletslplot for each stand into pellets/ha/month 

based on the number of days elapsed since a grid had been cleared of pellets. I attempted 

to produce population estimates using the mark-recapture data using closed models in 

Program MARK; however, the number of individual hares captured per grid and the 

capture and recapture probabilities were too small to produce meaningful or accurate 

population estimates (White and Burnham 1999). Thus, I considered the minimum 
. . 

number alive (MNA) of hares as a minimum density estimate for developing density x 

pellet relationships. First, I examined the average inter-capture distance per stand in case 



movement distances of study animals were dependent on density or habitat. Next, I 

calculated the effective trapping area as the area of the trapping grid plus a buffer whose 

dimensions were one-half the average recapture distance for that specific stand (Mean = 

104.4 m, 95% CI 96.7 to 1 12.1 m) (Litvaitis et al. 1985a). Then, I calculated minimum 

density estimates as the MNA divided by the stand-specific effective trapping area (Otis 

et al. 1978). I conducted a linear regression with pelletsha/month as the predictor 

variable and estimated density (minimum) of haresha as the response variable to evaluate 

the relationship between pellet densities and densities of snowshoe hares on my northern 

Maine study sites. I tested the assumptions of the model by examining the data for 

normal errors with a normal probability plot and Lilliefor's test, and for constant variance 

with a modified Levene's test (Neter et al. 1996). 

Next, I compared this linear regression to a similar relationship developed by 

Long (1995) adapted from data collected in eastern and western Maine, 1981-1983, by 

Litvaitis et al. (1985a); however, the regression first needed to be recalculated because 

the y-intercept was forced through the origin. Many statisticians advise against 

regression through the origin under most circumstances (Bissel 1992, Neter et al. 1996). 

Forcing the y-intercept to equal zero causes the coefficient of determination (r2) to be 

uninterpretable and examining the fit of the data to a model is more difficult. For these 

reasons, I recalculated the regression equation for predicting hare densities from pellets 

reported by Long (1995), so that it was not forced through the origin. 

I examined the strength of my model for predicting snowshoe hare densities in 

Maine to those reported for other regions in the geographic distribution of the snowshoe 

hare. Examining the information lost by applying several models to a single data set is a 
. - 



model-selection problem. I utilized an information-theoretic framework using Akaike's 
. 

Information Criteria (AIC) to examine the relative strength of evidence for each model 

when applied to my 8 stands in northern Maine. AIC is an alternative to traditional 

hypothesis testing that uses an important relationship between Kullback-Leibler 

information and maximum likelihood to rank multiple hypotheses (models), and the 

model with the lowest AIC value is considered to best balance statistical parsimony with 

goodness of fit for the empirical data (Burnham and Anderson 2001). I followed the 

guidelines of Burnharn and Anderson (2002) for the methods to compute AICs and model 

weights, and to make inferences from these values. 

I calculated AIC corrected for a small sample size to parameter ratio (AIC, ) and 

compared relative AIC values among 4 models when applied to the data that I collected 

in northern Maine. The 4 models evaluated were: a linear equation for minimum hare 

density x pellets based on my 8 stands in northern Maine, the recalculated Litvaitis-Long 

model for actual hare densities x pellets from eastern and western Maine (1995), a 

published hare x pellets density relationship reported for the Yukon Territory, Canada 

(Krebs et al. 2001b), and a published pellet-density regression for Idaho (Murray et al. 

2002). I converted my pellet data from pellets/halmonth to pelletsl0. 155m2 plotlyear as 

reported by Krebs et al. (2001b) and Murray et al. (2002) and computed AIC, for those 

models when applied to the hare density x pellet data for my 8 sites. Murray et al. (2002) 

presented both linear and exponential functions for various plot sizes and shapes used to 

predict hare density x pellets in Idaho. I fit the linear function reported for rectangular 

plots because the plot shapes were most similar to my methods and because the authors 

discussed several advantages . .  ~ of the linear regressions over the exponential versions. 



Murray et al. (2002) examined hares at low densities and added 116 to his number of 

pellets counted per 0.155 m2 plot to remove zero values. Hare densities were 

considerably higher on my study sites. Only 8.59% (inter-quartile range 0.89 to 10.12%) 

of my plots had zero values; therefore, I did not adjust those values. 

,The Krebs et al. (2001b) and the Murray et al. (2002) equations included log, 

transformations of the predictor and response variables, whereas the regressions 

developed in Maine did not require these transformations of predictor or response 

variables based on the results from the modified Levene's test. Burnham and Anderson 

(2002) warn that estimation of Kullback-Leibler information cannot be directly compared 

across a model set with both transformed and untransformed response variables. I 

resolved this difficulty by calculating the likelihood function for the lognormal 

distribution instead of the Gaussian distribution, which is normally used to calculate AIC 

values in this setting. The log,-log, models estimated AIC values using this lognormal 

distribution and can be validly compared to AIC values from the normal regression 

models (W. Halteman, University of Maine; and D. Anderson, Colorado Cooperative 

Fish and Wildlife Research Unit; pers. cornm.). 

RESULTS 

I captured 128 hares (69 M, 59 F) 308 times during May-June 2001 and 1 14 hares 

(64 M, 49 F, 1 unknown) 464 times during 2002. Average recapture distances of hares 

were similar across the range of densities sampled (Figure 1.3). Hare densities based on 

MNA ranged from 0.555 to 3.037 harestha among the 8 stands; pellet densities ranged 

from 1,934.5 to 3 1,3 14.6 pellets/ha/month. 



Observed minimum density of hare (hareha) 

Figure 1.3. Relationship between mean inter-capture distance (SE) and density of 
snowshoe hare within 8 forest stands in north-central Maine, 2001-2002 (n = number of 
hares with > 1 capture). Inter-capture distance was defined as the average distance that 
hares (per stand).traveled between successive captures. 



There was a positive relationship between pellets/hdmonth and haredha (r2 = 

0.89, n = 8, P < 0.001) on my study sites in northern Maine (Figure 1.4). Errors were 

normally distributed (Lilliefors, P = 0.225) and variance was constant (Modified 

Levene's, P = 0.7 18). The relationship between hare densities appeared to be linear for 

densities ranging from 0.555 to 3.037 haresha in Maine. The slope of the line was 

0.00008 with a standard error of 0.00001 1. The regression equation describing this 

relationship is: 

Haresha = 0.281 + 0.00008 (pellets/hdmonth). 

Recalculating the Long-Litvaitis relationship caused a small reduction of the 

slope, from 0.0001 16 (95% CI 0.000093,0.000139) to 0.00010 (95% CI 0.000061, 

0.000140); however, this relationship was still highly significant (r2 = 0.87, N = 8, P < 

0.001). The equation for this relationship is: 

Haresha = 0.145 + 0.00010 (pelletshdmonth). 

Similar to previous studies conducted in northwestern Canada (Krebs et al. 

2001b), western U.S.A. (Murray et al. 2002), and elsewhere in eastern and western Maine 

(Litvaitis et al. 1985, Long 1995), densities of hares were strongly correlated (r = 0.94) 

across a range (1,935-3 1,3 15 pelletshdmonth) of pellet densities in north-central Maine 

(Table 1.1). The model developed for northern Maine on my 8 study sites had the lowest 

AICc value (AAIC, = 0.00) and the Litvaitis-Long model also received support (AAIC, = 

2.77), but these data did not support models developed outside of Maine (AAICc > 25.00) 

(Table 1.1). Based on the Akaike weights, there was > 99% probability that the 2 



Figure 1.4. Relationships between density (haresha) of snowshoe hares and pellet 
density (pelletsha/month) using mark-recapture estimates of hare densities as reported by 
Long 1995 (adapted and recalculated from Litvaitis et al. 1985) (closed circles) and 
minimum densities based on minimum number alive (open circles) in Maine. The model 
reported by Long (1995) was recalculated to avoid forcing the relationship through the 
origin. 



Table 1.1. Reported correlation coefficients (r) and relative strength of evidence (A AIC,, wi) to support 4 area-specific predictive 
relationships of snowshoe hare densities from pellet densities based on pellet counts conducted in northern Maine, 2000-2002. The 4 
predictive relationships are from northern Maine (this study), eastern and western Maine (Litvaitis et al. 1985, Long 1995), the Yukon 
Territory, Canada (Krebs et al. 2001), and Idaho (Murray et al. 2002). 

Model Region of study Reported correlation K AICc A AICc Akaike weights (wi) 
coefficient (r) 

Homyacka Northern Maine, 0.94 3 2.78 1 0.000 0.800 
USA 

~itvaitis-bngb Eastern & Western 0.93 3 5.55 1 2.770 0.200 
Maine, USA 

Krebs et al. 200 1 aC N Yukon Territory, 0.76 3 3 1.8 1 1 29.030 0.000 
Canada 

Murray et al. 2002~ Northern Idaho, USA 0.87 3 35.570 32.789 0.000 

Model given by: hareslha = 0.28 1 + 0.00008O(pellets/hdmonth). 
%ode1 given by: haredha = 0.145 + 0.00010(pellets/hdmonth). 
'Model given by: lo&(hares/ha) = -1.203 + 0.899 lo&(mean number of pellets/plot). 
d ~ o d e l  give by: lo&(mean number of hares) = 1 S69 + 1.133 lo&(mean number of pelletslplot). 



models developed in Maine fit the data better than either of the models from the Yukon 

or Idaho. 

DISCUSSION 

Not surprisingly, the linear regression developed with the 8 data points from 

northern Maine was the strongest (AAIC, = 0.00) of the candidate model set, but the 

Litvaitis-Long model developed in Maine also described the data well. Models with a 

AAIC, of I 2  have substantial support, a AAIC, > 3 and < 7 have less support, and 

models with a AAIC, > 10 have virtually no support (Burnham and Anderson 2002). The 

Akaike weights (wi) are conditional on both the data and a priori models and describe the 

approximate probability that a model is the "best" model (Anderson et al. 2000). If all 

models were similar and explained the hare density x pellet density relationship for 

northern Maine similarly, then all models would have had small Ai values and the Akaike 

weights would have been nearly equal. However, the regression model developed from 

this study received 0.80 of the model weight, and the remaining weight (0.20) was 

attributable to the Long-Litvaitis regression. Thus, predictive relationships of hare 

densities developed outside of Maine were not appropriate to explain the observed 

variation in these data. 

The information-theoretic framework strongly advises towards biological 

significance trumping statistical significance. This approach does not rely heavily on 

arbitrary cutoffs to determine whether a model is "significant." Instead, the approach 

favors biological interpretation of results and only presents rough guidelines to gauge the 

appropriateness of a model (Burnham and Anderson 2002). Although these guidelines 

based on the relative strength of evidence and model weights (wi) suggested that the site- 



specific regression developed for these data was the strongest model, I believe that the 

modified Litvaitis-Long model developed from data in eastern and western Mame should 

be considered the most biologically meaningful model. My goal was not to find the best 

fit for my data, but to determine a predictive relationship for future researchers to 

translate pellet densities into hare densities. Because of insufficient numbers of captures 

and recaptures of hares per sampling grids during my study, I was unable to obtain actual 

density estimates from multiple mark-recapture population models. Therefore, I used the 

minimum number of hares known alive within each stand (MNA) to derive my regression 

model for predicting hare densities. In contrast, Litvaitis (1990) captured a greater 

number of hares (496 hares 1,060 times) on larger trapping grids (49 ha) and was able to 

produce closed-capture population estimates for his grids; thus the Litvaitis-Long 

regression equation was based on estimates of actual densities. Therefore, I believe that 

equations that predict estimated densities of hares are superior to my conservative 

estimates of densities based on MNA. 

Mark-recapture models take into account behavioral and temporal factors such as 

trap-happiness, trap shyness, and time dependent recapture rates to estimate the number 

of animals present in the population that were never captured (White et al. 1982). Thus, 

it is not surprising that a regression equation derived from mark-recapture population 

estimates did not receive most of the model weight when fit to observed MNA densities x 

pellet densities. However, the densities of hares estimated based on the modified 

Litvaitis-Long (1995) equation differed little from the MNA-based densities computed 

from live trapping data obtained from my 8 sites. Average hare densities predicted based 

on my regression equation averaged 2.5% lower than densities estimated based on the 



Litvaitis-Long equation. The recalculated Long-Litvaitis equation predicted densities 

0.22 (range -0.22 to 0.85) hareslha greater than observed densities calculated based on 

MNA across my 8 stands in north-central Maine. The apparent repeatability of the 

separate experiments at different times, places, using different methods, and by different 

researchers suggests that there were not great differences between the 2 functional 

relationships (Johnson 1999). Further, Long and Li tvai tis developed their linear 

regression using observed pellet densities that ranged from only 1,000-15,000 

pelletshdmonth (0.15- 1 .SO haresha). Despite the limited range of data used to develop 

the model, it reasonably predicted hare densities from 1,000 to 3 1,000 pelletshdmonth 

during my study (0.15-3.04 haresha). Therefore, I considered the modified Litvai tis- 

Long equation have greater biological relevance than the other 3 models. 

Although regression models developed outside of Maine were inferior for 

predicting hare densities on the 8 stands that I sampled, I also wished to estimate the 

effect size, or how poorly these models predicted hare densities in Maine. I used the 8 

pellet densities from stands sampled during this study and the 8 pellet densities recorded 

for stands sampled in eastern and western Maine (Litvaitis et al. 1985a) to predict hare 

densities using regression coefficients from the Yukon Territory, Canada (Krebs et al. 

2001b) and Idaho (Murray et al. 2002). I then compared these estimates with hare 

densities predicted using the most biologically relevant model developed for Maine (i.e., 

modified Litvaitis-Long equation). Hare densities for the 16 sites from eastern, western, 

and northern Maine calculated using the regression model from the Yukon (Krebs et al. 

2001 b) were substantially lower than densities predicted by the regression model 



Table 1.2. Comparison of predicted densities of snowshoe hares calculated from an equation developed in Maine with those predicted 
using reported relationships from the Yukon Territory, Canada (Krebs et al. 2001) and northern Idaho (Murray et al. 2002). 

Predicted densities Densities estimated % Difference Densities estimated % Difference Source 
( h a r e ~ h a ) ~  with Krebs et al. between with Murray et al. between predicted of pellet 

200 1 b equation predicted and 2002 and Murray et al. densities 
(haresha) Krebs et al. 2001 ( h a r e ~ h a ) ~  2002 

0.30 0.15 -49.29 0.08 -7 1.47 Litvaitis et al. 1985' 
0.4 1 0.25 -39.06 0.16 -60.76 Litvaitis et al. 1985 
0.25 0.11. -56.33 0.57 -77.34 Litvaitis et al. 1985 
0.67 0.46 -3 1.29 0.35 -48.25 Litvaitis et al. 1985 
0.92 0.65 -28.99 0.54 -4 1.50 Litvaitis et al. 1985 
0.72 0.50 -30.62 0.38 -46.65 Litvaitis et al. 1985 
1.2 1 0.87 -28.12 0.77 -36.10 Litvaitis et al. 1985 

N 1.60 1.15 -28.04 1.10 -31.18 Litvaitis et al. 1985 
0\ 2.29 1.63 -28.72 1.71 -25.38 This study 

1.49 1.08 -27.98 1.01 -32.39 This study 
0.90 0.64 -29.06 0.53 -4 1.80 This study 
3.28 2.29 -30.00 2.62 - 19.93 This study 
0.34 0.19 -44.62 0.1 1 -66.96 This study 
1.53 1.10 -28.01 1 .05 -3 1.92 This study 
2.89 2.04 -29.50 2.26 -2 1.79 This study 
2.60 1.84 -29.12 1.99 -23.43 This study 

Ware densities were predicted with recalculated Long-Litvaitis equation, given by: haresha = 0.145303 + 0.0001 (pelletshdmonth) 
Relationship reported in Krebs et al. (2001) is given by: log,(haresha) = -1.203 + 0.899 lo&(mean number of pelletdplot). Multiply final estimates by 1.567, a 

correction factor for the log-log relationship. 
Relationship reported in Murray et al. (2002) is given by: lo&(mean number of hares) = 1.569 + 1.133 lo&(mean number of pelletslplot). Multiply estimates 

by 1.41, a correction factor for the log-log relationship. Divide final estimates by 19 ha for a conservative density estimate. I did not add (116) to data as 
reported in Murray et al. (2002) because I found few zero pelletslplot. 

~ i t vk i i s  et al. (1985) estimated hares densities that were reported in Long (1995). 



g@ I + Krebs et al. (2001 b) 

$ I - -.0.. Krebs et al. (2001b) with 25% decomposition rate of pellets 
I t Murray et al. (2002) 
I -- Murray et al. (2002) with 25% decomposition of pellets 

1 2 3 

Observed hare densitieslha 

Figure 1.5. Percent difference between observed densities of snowshoe hares predicted 
using the best model from Maine (modified Litvaitis-Long equation) and densities 
predicted with models developed by Krebs et al(2001b) and Murray et al. (2002), with 
and without reducing pellet densities for decomposition. Pellet densities were based on 
16 stands surveyed in Maine during 1981-83 (n = 8) and 2000-02 (n = 8). For open 
symbols, pellet densities were reduced by a decomposition rate of 25% to account for 
field observations of Murray et al. (2002). 



developed for Maine (i.e., modified Long-Litvaitis equation, Table 1.2, Figure 1 S ) .  The 

mean difference between densities estimated from the Maine versus the Yukon model 

was -0.40 harestha (95% C1 -0.26 to -0.55). Similarly, densities predicted from 

regression coefficients for Idaho (Murray et al. 2002) were also less than predicted 

densities of hares for the 16 sites in Maine based on the modified Litvaitis-Long model 

(Table 1.2, Figure 1 S).  The estimates for the Idaho model were lower by an average of - 
. -  - 

0.42 haresfha (95% CI -0.34 to -0.50). 

Geographic variation in relationships between densities of hares and pellets may 

result from variation in the number of pellets produced by snowshoe hares over time 

(Hodges 1999), and from differences in digestibility and chemical composition of 

primary foods (Sinclair et al. 1988). Thus, regional differences in diet quality of hares 

and species composition of available browse may impair estimates of density based on 

pellet x density relationships developed in other ecoregions. For example, wild- 

caught snowshoe hares from the Yukon Territory produced a greater number of 

pelletslday than captive hares in Vancouver, British Columbia fed similar diets (Hodges 

1999). Further, cottontail rabbits (Sylvilagusfloridanus) fed similar diets had large 

variation in daily numbers of pellets produced among individuals that was not explained 

by sex or size of rabbits (Cochran and Stains 1961). Pellet production rate is inversely 

related to the quality of food eaten, so that lagomorphs eating higher quality forage 

produce fewer pellets (Arnold and Reynolds 1943, Sinclair et al. 1988, Cochran and 

Stains 1961). Available forage for hares in Maine may have higher average digestibility 

than that of northwestern Canada and northern Idaho, which might account for a smaller 

number of pellets produced per hare per unit of time. 



Diets of hares during the leaf-off season are dominated by low-quality woody 

browse and conifer needles, while in the summer, diets change dramatically to consist of 

herbaceous vegetation of with low fiber content (Wolff 1978, Larter 1999). Murray et al. 

(2002) suggested that pellets produced from higher-quality foods deposited during the 

leaf-on season may degrade more quickly than the larger and more fibrous pellets 

deposited during winter. Cochran and Stains (1961) reported that cottontail rabbit pellets 

produced from a high-quality commercial food decayed faster than pellets produced from 

low-quality diet of sumac (Rhus spp.). I noticed obvious differences in pellet size and 

color between seasons, with leaf-on pellets being smaller in size and darker in color. 

Both Krebs et al. (2001b) and Murray et al. (2002) only counted pellets once yearly 

during late spring (i.e. annual estimate of density), whereas I cleared pellets from plots in 

fall and counted pellets in spring (i.e. winter estimate of density). Persistence of pellets 

may have been greater for the larger, lighter-colored and more fibrous pellets deposited 

by hares during the leaf-off season, and annual estimates of density conducted in spring 

may have occurred after pellets from the leaf-on season had weathered and decayed. 

Failure to count some pellets deposited by hares during leaf-on season because of 

decomposition may explain discrepancies among relationships of densities of pellets and 

hares. 

Others have raised concerns about potentially large biases arising from variations 

in pellet deposition rates caused by seasonal variation in forage quality and losses of 

pellets to decomposition (Orr and Dodds 1982, Angerbjorn 1983, Murray 2002). Murray 

et al. (2002) was unable to detect a difference in persistence of snowshoe hare pellets 

between recent clearcuts and mature forest, but Angerbjorn (1983) reported that pellets 
.b 



deposited by mountain hares (Lepus tintidits) decayed more quickly in grass than other 

cover types and Cochran and Stains ( 196 1) suggested that decomposition of pellets varies 

with cover type, food quality and weather. I avoided confounding seasonal effects of 

deposition and decomposition rates by calculating the relationship of snowshoe hare 

pellets deposited during the leaf-off season (0ct.-May) to densities of adult hares 

surviving the following May-June. Average monthly temperatures in northern Maine 

during this period ranged from only -10.17 to 13.33O C (National Oceanic and 

Atmospheric Administration 2000,200 1,2002), which would slow decomposition of 

pellets. 

It is unlikely that pellets would decompose during 8-9 months of cool and 

subfreezing temperatures during the leaf-off season throughout most of the geographic 

range of hares. Pellets from cottontail rabbits decomposed quickly during the summer 

months, but most persisted through winter in Illinois (Cochran and Stains 1961). Thus, 

if decomposition did occur, weathering would most likely affect pellets deposited by 

hares during leaf-on seasons (June-September). Murray et al. (2002) reported that only 

75% of fresh pellets (n = 540 pellets) placed on plots survived an entire year in Idaho, 

suggesting that decomposition may reduce pellet densities in a year or less. To examine 

this hypothesis further, 1 compared predicted hare densities in Maine to those predicted 

by Krebs et a]. (2001b) and Murray et al. (2002) after pellet densities were reduced by the 

25% decomposition rate. Accounting for decomposition of hare pellets in Maine did not 

explain the underestimation of hare numbers by regressions outside of Maine (P < 0.001); 

in fact, a 75% persistence rate widened the gap between observed and predicted densities, 

but still in a nonlinear fashion (Figure 1. 5). These results indicate that decomposition of 



hare pellets does not explain the discrepancy between observed hare densities in Maine 

and densities predicted using regressions from the western United States and Canada. 

Although decomposition of pellets may not explain geographic variation in 

predicted hare densities, there are still biologically important reasons to survey seasonal 

pellet densities rather than annual counts. Association of leaf-off season pellet densities 

with densities of hares during early spring should be conservative because spring 

corresponds with the fewest hares. I excluded leverets in density estimates so that all 

marked individuals were > 8 months in age. Snowshoe hares select cover types based on 

understory cover in winter, but in summer occupy open habitats with more herbaceous 

vegetation (Wolff 1980, 07Donoghue 1983). Seasonal changes in habitat use by hares 

coupled with variation in pellet deposition rates caused by forage of different quality, 

may confound estimates of pellet densities based on annual counts. Further, winter is 

thought to be the limiting season for snowshoe hares (Pease et a. 1979, Pietz and Tester 

1983) and estimates of densities of adult hares surviving at the end of the critical limiting 

season may more accurately depict differences in habitat quality by incorporating aspects 

of population performance such as over-winter survival (Van Horne 1983). 

Whereas MNA densities of snowshoe hare from northern Maine were strongly 

correlated (r = 0.94) to pellet densities from the previous leaf-off season, leaf-on season 

pellet densities explained considerably less (r = 0.65) variation in numbers of hares. The 

weaker relationship between leaf-on season (June-September) pellet densities and 

number of hares residing in stands in early spring (May-June) suggests that counts of 

pellets that include the summer months, when hares are more like habitat generalists 

(Wolff 1980, 07Donoghue 1983) and forage primarily on herbaceous vegetation (Wolff 



1978, Larter 1999), produce more variable predictions of hare densities than leaf-off 

season counts. Therefore, I suggest that counts of pellets during leaf-off seasons be used 

to predict densities of hares to avoid these potential biases and produce more biologically 

meaningful estimates of hare numbers. 

Krebs et al. (2001b) and Murray et al. (2002) reported that a log,-log, relationship 

best fit their data because variances increased with the observed mean number of both 

pellets and hares. I hypothesized several explanations for why a log-log relationship was 

needed to describe pellet densities as a function of hare density for data from northern 

Canada and the western United States, but not Maine. First, variances may have 

increased with the mean in northern Canada when densities changed significantly within 

a year. It is well documented that hares undergo dramatic population cycles in northern 

Canada and densities can widely fluctuate, even within a year (Hodges 2000). Krebs et 

al. (2001b) only counted pellets once yearly and related those pellet densities to hare 

densities estimated from live trapping that began the previous year. Or, perhaps data sets 

for my model and the modified Litvaitis-Long model were too small and had little power 

to detect heteroscedasticity (Krebs et al. 2001b, n = 85; Murray et al. 2002, n = 24; Long 

1995, n = 8; this study, n = 8). To ensure that a log,-log, relationship was not a better fit 

to my data than the 4 a priori models, I computed the AICc for a model with my 8 MNA 

hare density x pellet density points from northern Maine with'the predictor and response 

variables log, transformed. This model was added after my a priori models were 

developed; therefore interpretation of this model can only be considered exploratory 

(Burnharn and ~nderson-2002). The log, - log, model developed for northern Maine (A 

AIC, = 4.704) received less support than the other models from Maine (Table 1.1). 



Further, the recalculated Akaike model weights (w,) from greatest to smallest were as 

follows: the linear model from northern Maine (w, = 0.743), the Litvaitis-Long model 

from eastern and western Maine (w, = 0.186), the log, - log, model developed for 

northern Maine (w, = 0.07 l), the Krebs et al. (2001 b) model from western Canada (wi < 

0.001), and the Murray et al. (2002) model from Idaho (w, < 0.001). The approximately 

2 . 6 ~  more weight given to the linear model from eastern and western Maine than the post 

hoc log, - log, model developed for northern Maine indicate that the hare density x pellet 

density relationship for northern Maine was better fit by a linear function than a log- 

normal function. 

CONCLUSIONS 

Although a functional relationship between pellet densities and densities of hares 

was established in the Yukon Territory, Canada, the relationship may differ for hares near 

the southern periphery of their range. Observed relationships of pellet x hare density 

during 2000-2002 in northern Maine were similar to relationships observed in 198 1- 1983 

for eastern and western Maine. Thus, the linear relationship between densities of pellets 

and hares may be stable through time and across a range of habitat types in the eastern 

spruce-fir, northern hardwood forests, and within a range of 0-3 haresha. My estimated 

relationship between MNA density and pellet density was consistent with a previously 

derived relationship for Maine; however hare densities estimated using regression 

equations developed for the Yukon Territory, Canada (Krebs et al. 2001b) and northern 

Idaho (Murray et al. 2002) underestimated predicted densities for north-central,.eastern, 

and western Maine. 



I suggest that densities of snowshoe hares in northeastern North America be 

estimated from pellet counts using the modified linear regression (i.e. not forced through 

the origin) model derived by Long (1995) which was adapted from data collected by 

Litvaitis et al. (1985) for eastern and western Maine. Previous investigators conducted 

yearly pellets counts (Krebs et al. 2001b, Murray et al. 2002); however, densities of hares 

estimated based on pellets deposited during the leaf-off season may be more biologically 

meaningful and might avoid potential biases arising from the dynamic summer-winter 

diets of hares, differential losses of pellets to decomposition during summer and winter 

months, and to seasonal shifts in habitat use by hares. 
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CHAPTER 2 

TEMPORAL EFFECTS OF PRECOMMERCIAL THINNING ON 

SNOWSHOE HARES IN MAINE 

ABSTRACT 

Snowshoe hares (Lepus americanus) are an important prey species and dominant 

herbivore across much of their North American range, and forestry practices that degrade 

habitat for hare may have community-wide effects. Further, the effects of precommercial 

thinning (PCT) on hares have been questioned in relation to indirect effects on recovery 

of the Federally threatened Canada lynx (Lynx canadensis). I examined the effects of 

PCT on snowshoe hares, from 1- 1 1 years post-treatment in the commercial forests of 

northern Maine. I established > 46 km of pellet transect across 13 unthinned, 

regenerating conifer stands, and 17 regenerating conifer stands treated with PCT. Hare 

pellets were counted and cleared along transects twice a year during 2001 and 2002, and 

stand-level vegetation characteristics previously documented as correlates with hare 

density were measured in all stands. Densities of snowshoe hares were consistently - 

lower in stands treated with PCT than in similar unthinned stands across all thinning 

classes and seasons during both years of the study (P < 0.10). Stands treated with PCT 

supported hare densities approximately !h those observed in untreated stands when 

averaged across seasons and 2 years of sampling. In general, hare density was greatest in 

stands in the 1-year thinning class when compared to 6 and 1 l-year thinning classes, but 

a statistical difference (P < 0.10) among thinning classes was evident only during leaf-off 

seasons. Several habitat characteristics previously reported to be important positive 

correlates of hare densities, such as understory stem densities and horizontal cover, were 



lower in thinned versus unthinned stands. PCT was associated with densities of 

snowshoe hare that were lower than those in similar unthinned stands; however, thinned 

stands may retain densities of hares greater than stands managed using other forest 

harvesting regimes (e.g., some types of partial harvests). 

INTRODUCTION 

In March 2000, the U.S. Fish and Wildlife Service (USFWS) listed Canada lynx 

as threatened under the Endangered Species Act (ESA) (United States Department of the 

Interior 2000). Lynx are specialized predators (O'Donoghue et al. 1998) of snowshoe 

hares and density of hares is positively and exponentially associated with stands with 

high densities of conifer saplings (Litvaitis et al. 1985a). Maine has the only verified 

population of resident lynx in the northeastern USA and the relationships among lynx, 

habitat, and forestry practices are not thoroughly understood (Aubry et al. 2000). At a 

statewide scale, large areas of regenerating conifer stands are a habitat variable that is 

positively associated with both occurrence of lynx and relative abundance of snowshoe 

hares in Maine (Hoving 2001). Thus, extensive areas of regenerating forest may promote 

persistence of the only verified population of lynx in the northeastern USA. However, 

little is known about the temporal effects of stand succession on densities of snowshoe 

hare at the southern periphery of their range, particularly after intensive management of 

vegetation. 

Thirteen environmental organizations, including Defenders of Wildlife and the 

Biodiversity Legal Foundation, legally challenged the ESA listing of lynx as threatened 

in the contiguous United States. They alleged that the listing of lynx as endangered and 

designation of critical habitat was necessary to ensure survival and recovery. If USFWS 



designates critical habitat, it is likely, because lynx are strongly tied to high densities of 

hares (O'Donoghue et al. 1998, Mowat et al. 2000), that foraging habitat will be 

designated as "critical." Because large areas of regenerating conifers are known to 

support high densities of snowshoe hares, forestry practices that degrade habitat for hares 

may be questioned under ESA. 

Precommercial thinning (PCT) is a silvicultural technique that decreases stem 

density and may reduce densities of hares relative to unthinned, regenerating stands 

(Sullivan and Sullivan 1988). Further, the biological assessment of the effects of U.S. 

National Forest land and resource management plans on Canada lynx suggested that 

forest thinning might reduce foraging habitat of lynx in the northeastern USA 

(Hickenbottom et al. 1999). During 1993 to 2001, greater than 67,000 ha (167,000 acres) 

of forest were precommercially thinned in Maine (Maine Forest Service 1994-2002). 

Because total acreage of PCT is projected to increase, forest managers will be asked to 

justify this practice based on maintaining wildlife habitat and biodiversity. 

Limited information about the effects of precommercial thinning on snowshoe 

hares has indicated that thinning reduces density of hare for 3-4 years after treatment 

(Sullivan and Sullivan 1988), but how long after treatment abundances of snowshoe hares 

continue to be lower relative to unthinned stands is unknown. It is also unknown how the 

acceleration of stand development associated with PCT affects snowshoe hares compared 

to untreated stands. Further, previous studies of hares and thinning included non- 

herbicided stands that were released with brushsaws (Sullivan and Sullivan 1988, de 

Bellefeuille et al. 2001). In Maine, stands treated with PCT are first aerially sprayed with 

herbicides (e.g., Glyphosate or Triclopyr) and later manually thinned; the combination of 



these treatments may have different effects on densities of hares than in stands treated 

solely with brushsaws. 

Investigators have consistently related high densities and relative abundances of 

snowshoe hares to mid-successional habitats with high stem densities of saplings (Wolff 

1980, O'Donoghue 1983, Pietz and Tester 1983, Litvaitis et al. 1985a, Litvaitis et al. 

1990, Koehler 1990, Fuller 1999, Hoving 2001). Thus, it would be expected that a forest 

practice that decreases the stem density of regenerating forest stands and promotes rapid 

growth of crop trees would decrease densities of snowshoe hare. Therefore, I 

hypothesized that PCT would reduce snowshoe hare densities relative to similar untreated 

stands, and that these changes would be related to reduced densities of coniferous and 

deciduous stems. 

The objectives of this study were to: 1) determine if precomrnercial thinning with 

brush-saws decreases abundances of snowshoe hare on herbicide treated clearcuts, from 

1-1 1 years post-treatment; 2) determine the magnitude of differences in hare densities 

between unthinned and PCT stands; and 3) describe the differences in vegetation 

characteristics preferred by hares between thinned and unthinned clearcut stands from 1- 

1 1 years after treatment. 

STUDY AREA 

I selected 6 townships (Hersey, T4 R 11 WELS, T 5 R 11 WELS, T4 R 12 

WELS, T1 R 13 WELS, and Spencer Bay) in the commercial forests of northern Maine 

that fall within the historical distribution of Canada lynx (Hoving 2001) as my study area 

(Figure 2.1). Hersey Township is located in Aroostook County, Maine whereas the other 
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Figure 2.1. Location of study areas within 6 townships in the commercially owned and 
managed forests of north-central Maine. 



5 townships are located in Piscataquis County, Maine. These towns range from 102 km 

east to west and from 49 km north to south. Great Northern Paper Company, 

Millinocket, Maine; Plum Creek Timber Company, Fairfield, Maine; and International 

Paper Company, Costigan, Maine managed the study areas for pulp and sawtimber 

production. 

The study areas occur within the ecotone between the northern boreal forest and 

the eastern deciduous forest that is referred to as the sub-boreal Acadian forest (Seymour 

and Hunter 1992). Balsam fir (Abies balsamea) and spruce (Picea spp.) dominate the 

study sites, but stands also have minor components of white pine (Pinus strobes), 

northern white cedar (Thuja occidentalis), larch (Larix laricina), red maple (Acer 

rubrum), sugar maple (Acer saccharum), paper birch (Betula papyrifera), and trembling 

aspen (Populus tremuloides). The annual mean temperature in this region was 3.78 "C 

and the area received an average of 101 cm of precipitation annually, with 276 cm of 

snowfall (Garoogian 2000). Stands (n = 30) surveyed on the study areas were chosen 

based on flat to gently sloping topography, and ranged from 8.5 to 74.3 ha in size 

(Median = 22.2 ha). 

METHODS 

I examined site quality, tree density, diameter breast height (dbh) of dominant 

trees, and size and spatial independence of stands before selecting them as study sites. I 

estimated site quality of stands with 4 to 6 soil cores taken throughout the stand with a 

soil auger. Stands were assigned a drainage value from 1 (highly productive) to 5 

(unproductive) according to Brigg's (1994) scale of forest tree productivity. 



Treatment stands were clearcut (timber harvesting resulting in  residual basal area 

of acceptable growing stock trees > 11.43 cm dbh of < 20.66 m2/ ha) 1968- 1982, aerially 

herbicided (e.g. Glyphosate at = 1.68 kg/ha acid equivalent) 1982-1988, and 

precommercially thinned with motor-manual brush-saws from 1989-1999. Unthinned 

stands were clearcut 1974-1982 and herbicided (e.g. Glyphosate at =: 1.68 kgha acid 

equivalent) 1982-1988 (Table 2.1). Stands were divided into blocks based on date of 

precommercial thinning. The study design included 17 treatment stands at 5-year 

intervals since thinning (1-2 year post-thinning, n = 5; 6-7 years, n = 5; 11-12 years, n = 

7) and 13 stands with management histories and site quality similar to treated stands, but 

that were not thinned (1-2 year, n = 5; 6-7 years, n =5; 11-12 years, n = 3). I allowed 

some latitude (1-2 years) in separating stands into thinning class categories based on the 

date of silvicultural treatments. When selecting study sites, I paired a treatment stand 

with an unthinned stand with a similar year of clearcut, year of herbicide, and site quality 

to avoid any large differences between treatment and unthinned stands within a thinning 

class. This was a retrospective study; therefore stands were not paired in a statistical 

sense and were analyzed as unpaired replicates. 

Pellet counts 

Fecal pellet counts can be a reliable estimate of snowshoe hare abundance (Kiebs 

et al. 1987, Long 1995, Krebs et al. 200 1, Murray et al. 2002, Chapter 1) and are more 

practical than live-trapping over large areas because indirect estimates of abundance are 

more economical and less labor intensive than typical mark-recapture techniques 

(Litvaitis et al. 1985b). I established 46.68 km of pellet transect across the 30 stands. 

The stand was considered the unit of replication because the median stands size was 3.6 x 



Table 2.1. Stand history, location, and site quality of 17 PCT and 13 unthinned stands in 
northern Maine. (T = stand treated with PCT, C = unthinned stand). Site quality ranged 
from 1 (well drained, productive) to 5 (poorly drained, unproductive) according to Briggs 
( 1994) classification guidelines. 

Site Year of Year of Year of Township Site 
number Clearcut Herbicide PCT Quality 
I-1-T 1982 1988 1999 T 4 R  1 1  4+ 

1980 1983 1999 T4R 12 
1977 1983 1999 T4R 11  
1982 1988 1999 T4R 11 
1976 1983 1999 T4 R 12 
1979 1988 1994 Hersey 
1979 1988 1994 Hersey 
1974 1982 1994 T 5 R l l  
1976 1985 1995 T 5 R  11 
1979 1982 1994 T 5 R 1 1  

T l R 1 3  
Spencer Bay 

T l R 1 3  
T l R l 3  - 

T l R 1 3  
T l R 1 3  

Spencer Bay 
T 4 R  11 
T 4 R l l  
T 4 R  11 
T 5 R 1 1  

1 -5-C 1976 1985 n/a T 4 R  11 3 - 
6-1-C 1979 1988 n/a Herse y 3+ 
6-2-C 1981 1988 d a  Herse y 3+ 
6-4-C 1974 1982 n/a T 5 R 1 1  4 
6-5-C 1974 1985 n/a T 4 R  12 .- 3 
6-6-C 1976 1983 n/a T 4 R  11 4 
11-1-C 1976 1982 n/a T 5 R 1 1  3 
1 1-3-C 1976 1982 n/a T 5 R 1 1  3+ 
1 14-C 1974 1985 n/a T 5 R 1 1  3 



greater than the average home range size of hares in Maine (Litvaitis 1984). 1 established 

1.6 km of transect in 28 stands and the remaining two stands had 1.18 km and 1.34 km of 

transect resulting from their size and irregular shape. I placed transects greater than 50 m 

from stand boundaries to minimize edge-effects (Harris 1988, Fraver 1994). When 

possible, I established 4 parallel, 400 m transects in a stand and separated transects by 65 

m. I marked 5m by 30 cm pellet plots at 20 m intervals along transects for a total of 84 

plots per stand and a total of 2,480 pellet plots for the study. I randomly oriented pellet 

plots along transects and marked them with orange wooden stakes at either end of the 

plot. 

I cleared all plots of hare pellets during October 18-25,2000 so that only pellets 

deposited after leaf-off were counted during spring 2001. Subsequently, I counted and 

cleared pellets 4 times during the remainder of the study: May 17-June 14,2001, 

September 13-29,2001, and May 10June 17,2002, and September, 13-October 13, 

2002. I averaged the number of pelletslplot for each stand and converted it to a value of 

pellets/ha/day. I divided the year into 2 seasons, leaf-off season and leaf-on season. 

Thus, spring pellet counts (May-June) were used to estimate abundance during the 

previous winter (defined as leaf-off season, October-May) whereas fall pellet counts 

(September-October) were used to estimate abundance during the previous summer 

(defined as leaf-on season, June-September). 

Live-trapping 

I live-trapped hares within the core portions of 2 thinned stands and 2 untreated 

stands during May-June, 2001 and in 2 different thinned and 2 different untreated stands 

during May-June 2002 to evaluate the relationship between pellet densities and estimated 



densities of snowshoe hares. I also evaluated whether there were any differences in sex 

ratios or lactation rates among stands treated with PCT and unthinned stands. Greater 

densities of animals in a particular cover type may not necessarily indicate higher habitat 

quality (Lidicker 1975, Van Home 1983); thus, I examined the sex ratios and lactation 

rates as additional indicators of the habitat quality for hares in thinned and unthinned 

stands. Chapter 1 provides a detailed description of methods used to trap, mark, sex, and 

determine lactation status of hares. 

Habitat sampling 

Across their geographical range, snowshoe hares respond numerically to stand 

structure and densities of hares are consistently related to a few key stand-level habitat 

characteristics, including positive associations with understory stem density 

(O'Donoghue 1983, Sullivan and Sullivan 1988, Litvaitis et al. 1985a, Monthey 1986, 

Koehler and Brittell 1990, Long 1995, Fuller 1999), woody debris (Conroy et al. 1979, 

Scott and Yanhner 1989, Ferron et al. 1998), and horizontal vegetation density (Wolfe et 

al. 1982, Pietz and Tester 1983, de Bellefeuille et al. 2001, Wirsing et al. 2002). 

Therefore, differences among stand structure between PCT and untreated stands (low 

hare-density and high hare-density stands) may explain some variation in hare numbers 

among my study sites in northern Maine. 
. . 

I selected 6 forest structural variables a priori based on previous studies of habitat 

relationships of snowshoe hares, including measures of overstory, understory, woody 

debris, and horizontal cover. I measured those stand-scale habitat characteristics on 

fixed area nested plots placed along the pellet transects. Five plots per 400 m of transect 

were established at random distances on the pellet transects for a total of 20 plots per 



stand. I measured vegetation within 25 m' plots in  thinned stands and within 10 m'plots 

in unthinned stands. Larger plots were established onthinned stands because stem 

density was reduced in these stands, and I wished to sample approximately 100 crop trees 

per stand. 

I quantified the number of coniferous trees (2 7.6 cm dbh, >1 m height, alive) 

within the plot and measured the number and type (coniferous or deciduous) of all 

understory stems (< 7.6 cm dbh, >1 m height, alive) within the plot. I quantified the 

number of stem cover units ((3 x number of understory conifer stems) + number of 

understory deciduous stems) (Litvaitis et al. 1985a) perfha. Horizontal vegetation 

structure was measured as a continuous variable using a 2.0 m cover pole with alternating 

0.1 m red and white bands (Griffith and Youtie 1988). Visual obstruction was measured 

in opposite directions from the center point following a random compass bearing. The 

distance from the center point where 2 25% of all bands were visually obstructed was 

recorded. I estimated the volume of downed logs with a modified version of the planar 

intersection method used by Payer and Harrison (2000): I established a 20-m randomly 

oriented transect with the midpoint at each sampling station and quantified. the number of 

logs that crossed the transect and were 2 1.0 m length, 2 7.6 cm diameter (at the point of 

intersection), and 145" from the ground. I considered only sound to moderately decayed 

logs, so that extremely decayed logs were excluded from sampling. I also measured 

overhead canopy cover with a spherical densiometer (Lernmon 1956) to simulate the 

cover perceived by hares during the winter on top of snowpack. Four readings in the 4 

cardinal compass directions at 1.0 m height were taken at the center of each plot and 

averaged to a single value for each plot. 



Statistical analyses 

I examined pellet densities separately during leaf-off and leaf-on seasons to avoid 

confounding effects of seasonal change in diets and shifts in habitat use that might 

contribute to variation in pellet deposition rates by hares. I conducted a repeated 

measures two-way Analysis of Variance (ANOVA) for the observed densities of pellets 

during the leaf-off season to determine if there were any differences among thinning 

classes (1,6, 11 years since treatment), treatment (stands treated with PCT, unthinned 

stands), year of sampling (2000-2001 leaf-off season, 2001-2002 leaf-off season) and any 

interactions (Zar 1999). Similarly, I conducted a repeated measures two-way ANOVA 

for the observed pellet densities during the leaf-on season to determine if there was any 

differences among thinning classes, treatments, or years of sampling. I examined 

normality of error terms with normal probability plots and Lilliefor's test. I examined the 

data for constant variance with the modified Levene's test and plots of the residuals. I 

examined any significant differences among thinning classes a posteriori with Tukey's 

Honest Significant Difference Tests (Zar 1999). 

Densities of snowshoe hare pellets were highly correlated with and linearly 

related to densities of hares on my northern Maine study sites (Chapter 1). Thus, 

observed differences in pellet densities directly correspond with differences in absolute 

densities of hares. All statistical comparisons were conducted using pellet densities; 

however, estimated densities of hares are also presented to enhance biological 

interpretations from statistical conclusions. I used the modified Litvaitis-Long model 

(haresha = 0.145303 + 0.0001 (pelletshaJmonth)) to predict hare densities from pellet 

densities (Chapter 1). 
- .  



Differences in proportions of males versus females and number of lactating 

females versus non-lactating females in PCT and unthinned stands were tested using a Z- 

test (Zar 1999). I pooled the data across years of sampling and stands within a treatment 

to maximize statistical power. 

I used the mean of each habitat variable for each stand to descriptively analyze 

differences in stand structure among thinning classes and treatments by conducting a 

Two-way ANOVA on the means of each habitat variable (averaged across 20 plots 

within each stand) with thinning class (1.6, 11 years since treatment) and treatment 

(stands treated with PCT and unthinned stands) as factors. I examined error terms for 

normality with a Lilliefor's test and probability plots and conducted a Modified Levene's 

test to examine the data for constant variance. Non-normal habitat variables were 

transformed using log, transformations (Neter et al. 1996). 

RESULTS 

Pellet densities 

Residual errors of pellet densities for the leaf-off seasons were normally 

distributed (P > 0.10) and variance was constant (P > 0. lo), suggesting that the effects of 

treatment, thinning class, and year of sampling could be appropriately evaluated using 

parametric ANOVA. Previously herbicided clearcuts treated with PCT had lower pellet 

densities relative to similar unthinned stands during the leaf-off seasons (F = 17.88 1, P c 

0.001) (Figure 2.2, Table 2.2). Unthinned stands had 1.97- and 2.01-fold greater 

densities of pellets than stands that were treated with PCT during both the 2000-2001 and 

200 1-2002 leaf-off seasons, respectively. Further, there was an effect of thinning class 

on pellet densities during the leaf-off season (F = 3.45 1, P = 0.048). In 2000-2001 



I-year I-year Cyear Cyear 11-year Il-year 
2000-01 2001-02 2000-01 2001-02 2000-01 2001-02 
n=5. n=5 n=S. n=S n=5, n=S n=S. n=S n=7. n=3 n=7. n=3 

Thinning class and year of sampling 

Figure 2.2. A comparison of mean (SE) number of snowshoe hare pelletshdday 
between PCT stands and similar unthinned stands in northern Maine during leaf-off 
seasons, 2000-2002. 

I Leaf-off season 2000-200 1 

700 T 
0 Leal-offseason 2001-2002 

Thinning class of  stands 

Slalislical significance at p < 0.10 level denoted by like lcllcrs 

Figure 2.3. Mean (SE) pelletshdday averaged across stands treated with PCT and 
unthinned stands during the leaf-off seasons, from 1 -.I I years post-treatment in northern 
Maine; 1 = treated in 1999,6 = treated in 1994, 1 1 = treated in 1989-1990. Statistical 
significance at P < 0.10 level is denoted by like letters. 
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the I -year thinning class had greater numbers of pellets than the 6-year thinning class (P 

< 0.005), but the 1-year and 1 1-year stands did not differ significantly (P < 0.10) (Figure 

2.3, Table 2.2). During 2001-2002, however, the 1-year thinning class supported greater 

(P < 0.05) densities of pellets than either the 6-year or 1 1-year thinning classes. Pooled 

across both years, the 1-year thinning class had 1.6 times greater pellet densities than the 

6-year and 1.4 times greater pellet densities than the 1 1 -year thinning class. The 2000- 

2001 leaf-off season had 1.57 x greater pellet densities than the 2001-2002 leaf-off 

season (F = 28.825, P < 0.001). 

Residual errors were not normally distributed (P = 0.01) and variance was not 

constant (P < 0.10) for pellet densities during the leaf-on season. Therefore, I log, 

transformed pellet densities to correct for these violations of the parametric assumptions 

of ANOVA. After transformation, errors were normally distributed (P > 0.10) and 

variance was constant (P > 0.10). Stands treated with PCT had lower densities of 

snowshoe hare pellets than similar unthinned stands during the leaf-on seasons (F = 

19.499, P < 0.001) (Table 2.2, Figure 2.4). Unthinned stands had 2.47 fold greater pellet 

densities than stands treated with PCT during the leaf-on season in 2001 and 1.66 fold 

greater pellet densities during leaf-on season in 2002. There was no effect of thinning 

class during the leaf-on season (F = 0.029, P = 0.97 l), however there was an effect of 

year (F = 93.346, P < 0.001) (Figure 2.5). Pellet densities during the leaf-on season were 

2.44 times greater during 2001 than 2002. Lastly, all interaction terms including year 

were significant (P 10.10) for the leaf-on season, which suggests inconsistent responses 

of hare to treatment and thinning classes during the 2 summers of study. Untreated 



T I Unthinned stands 

Thinning class and year of sampling 

Figure 2.4. A comparison of mean (SE) number of snowshoe hare pellets/ha/day 
between PCT stands and similar unthinned stands in northern Maine during leaf-on 
seasons 2001 -2002; 1 = treated in 1999,6 = treated in 1994, 1 1 = treated in 1989- 1990. 

Leaf-on season 2001 

T Leaf-on season 2002 

1 year 6-year 11-year 
n=10, n=10 n=10, n=10 n=10. n=10 

Thinning class 

Figure 2.5. Mean (SE) pellets/halday averaged across stands treated with PCT and 
unthinned stands during the leaf-on seasons, from 1 - 1 1 years post-treatment. 
No significant effect of thinning class was observed (P 2 0.842, F = 0.173). 



Table 2.3. A comparison (Two-way ANOVA) among means (SE) for 6 stand-scale habitat variables selected a priori between 
treatments (17 regenerating clearcut stands treated with PCT and 13 stands untreated) and among 3 thinning classes (1-2, 6-7, 11-12 
years post-thinning) in northern Maine. Non-transformed means and standard errors are presented for transformed variables" and P- 
values < O. 10 are depicted in bold. 

Variable 
# ~ 0 ~ > _ 7 . 6 ~  TOTUNDERz7.6' scud  CANOPY^ VEGDIST' LOGSg 

Treatment 
F-statistic 1.832 32.47 1 38.445 2.447 12.570 25.196 

P 0.188 < 0.001 <0.001 . 0.131 0.002 < 0.001 
PCT (n = 17) 1,199 (98) 3,146 (707) 6,089 (2,037) 78.2 (2.5) 10.0 (0.4) 1.6 (0.3) 

No-PCT (n = 1 3) 1,402 (1 14) 8,997 (821) 12,199 (2,367) 84.1 (2.8) 7.6 (0.5) 3.5 (0.3) 
Thinning class 

F-statistic 1.91 1 3.241 1.849 0.588 1.81 1 2.389 
P 0.170 0.057 0.179 0.563 0.185 0.1 13 

u 
o\ 1-year (n = 10) 4632 (908) 6210 (910) 15,474 (2,622) 78.8 (3.2) 8.6 (0.6) 2.9 (0.4) 

6-year (n = 10) 4778 (908) 7551 (910) 17,107 (2,622) 80.7 (3.2) 8.2 (0.6) 2.8 (0.4) 
11-year (n = 10) 3449 (991) 4453 (993) 11,351 (2,861) 83.9 (3.4) 9.7 (0.6) 2.0 (0.4) 

Treatment *Thinning class 
F-statistic 0.380 1.301 1.091 1.694 0.032 0.43 1 

P 0.688 0.29 1 0.352 0.205 0.969 0.655 
1-year PCT (n = 5) 1,176 (178) 2,840 (1,287) 6,768 (3,708) 72.1 (4.5) 9.7 (0.8) 1.8 (0.5) 
6-year PCT (n = 5) 1,084 (178) 3,892 (1,287) 5,964 (3,708) 76.9 (4.5) 9.5 (0.8) 1.8 (0.5) 
1 1 -year PCT (n = 7) 1,337 (151) 2,706 ( 1,088) 5,534 (3,134) 85.6 (3.8) 10.9 (0.7) l.l(O.4) 

: 1-year no PCT (n = 5) 1,520 (179) 9,580 (1,287) 24,180 (3,708) 85.6 (4.5) 7.5 (0.8) 4.0 (0.5) 
6-year no PCT (n = 5) 1,120 (179) 1 1,210 (1,287) 28,250 (3,708) 84.6 (4.5) 6.8 (0.8) 3.8 (0.5) 
1 1-year no PCT (n = 3) 1,557 (230) 6,200 (1,661) 17,167 (4,787) 82.1 (5.8) 8.6 ( 1  .O) 2.8 (0.6) 



Table 2.3. Continued. 

TOTUNDER, SCU, and LOGS were log, transformed prior to analysis. 
b#~0N27 .6  = number of conifer treedha (2 7.6 cm dbh, >1.0 m ht, alive). 
TOTUNDER = number conifer trees (< 7.6 cm dbh >1.0 m ht, alive) + number deciduous trees (< 7.6 cm dbh >1.0 m ht, alive) per ha. 
d~~~ = (3 x number of conifer trees < 7.6 cm dbh >1.0 m ht, alive) + (1 x number of deciduous trees < 7.6 crn dbh per ha >1.0 m ht) per ha. 
' CANOPY = average overhead canopy cover closure at 1.0 m height during summer, percent. 
'VEGDIST = average understory lateral foliage density (average distance that an entire 2.0 rn pole is obscured), rn. 
=LOGS = number of logs per ha. 



stands had greater densities of hare pellets across all thinning classes for both years of the 

study except for the 1 1 -year thinning class during 2002, which may have accounted for 

the significant interaction terms. 

Live-trapping demographics 

I captured 128 adult hares (69 M, 59 F) 308 times in 2001, and 114 adult hares 

(64 M, 49 F, 1 unknown) 464 times in 2002. Differences in the proportion of lactating 

female hares between thinned (68%, n = 28,90% C.I. 46-84%) and unthinned stands 

(58%, n = 80,90% C.I. 46-68%) were not significant (2  = 0.97, P = 0.416). Further, the , 

proportion of male and female hares was not significantly different ( 2  = 0.59, P = 0.360) 

between stands treated with PCT (58% males, n = 67,90% C.I. 45-70%) and unthinned 

stands (54% males, n = 174,90% C.I. 46-62%). 

Habitat sampling 

Measures of the density of total understory stems, stem cover units, and logs were 

lower (P 10.001) in thinned stands compared to unthinned stands (Table 2.3). Measures 

of the density of the total number of understory stems and stem cover units in treated 

stands were 113 and 3/10 the density in untreated stands, respectively. Conversely, the 

distance to obstruction by horizontal vegetation was greater (P = 0.002) in stands treated 

with PCT. Of the 6 structural variables examined, only the density of understory stems 

varied among thinning classes (P = 0.057) of thinned and unthinned stands; the 1 1-year 

thinning class had fewer understory stems (P < 0.10) than the 1-year or 6-year thinning 

classes. 



DISCUSSION 

Effects of PCT 

Previous studies of PCT and its effects on wildlife examined relatively short-term 

changes (4 years or less) in densities of hares after thinning (Sullivan and Sullivan 1988, 

de Bellefeuille et al. 2001). My results indicate that PCT reduced hare densities from 1- 

11 years post-thinning (Figure 2.5). Mean differences in hare densities between stands 

treated with PCT and unthinned stands across 2 years of sampling and 2 seasons ranged 

from -45 to -54 % for 1-year stands, -39 to -55 % for 6-year stands, and -13 to -61 % for 

1 1-year stands. Despite annual changes in hare densities, PCT reduced densities of 

snowshoe hare during both leaf-off and leaf-on seasons during both years of my study. 

Further, hare densities were greatest in stands 17 to 24 years after clearcutting (13-20 

years post-herbicide) (I-year thinning classj during the leaf-off season, which was 

consistent with previous studies that have indicated that hares reach their greatest 

abundances in mid-successional stands and avoid very young clearcuts and mature stands 

(Litvaitis et al. 1985a. Monthey 1986, Koehler 1990, Ferron et al. 1998, Hoving 2001, de 

Bellefeuille et al. 2001). 

The consistent effect of PCT on densities of hares from 1 to 11-years post- 

treatment suggests that forest understories in thinned stands likely did not regain the 

structural complexity that existed prior to treatment. Regenerating stands without PCT 

supported the greatest densities of hares for 17-24 years after clearcutting (mean = 2.30 

haresha, n = 5), whereas PCT-treated stands supported the lowest densities of hares 

(mean = 1.04 haresha, n = 7) 25-32 years after clearcutting. In contrast, radio tracked 

hares avoided all regeneration treatments on landscapes in Quebec, Canada that included 



recently thinned stands (de Bellefeuille et al. 2001). Those results were somewhat 

inconclusive because pellet counts indicated that all sites, which were 7-9 years post- 

clearcut harvest, were rarely used, regardless of whether they had been treated with PCT. 

The authors concluded that longer than 9 years were necessary for clearcuts to regenerate 

to suitable hare habitat in Quebec; my sites were clearcut 17-32 years prior to study, 

which had allowed stands to develop the structural attributes required by hares (Wolfe 

1982, Litvaitis et al. 1985a). 

My observations that hare densities were reduced by PCT by 1-year after 

treatment were inconsistent with results from British Columbia, Canada (Sullivan and 

Sullivan 1988), where hare density exhibited no short-term (1-2 year) response to 

thinning. By 3-4 years after treatment, however, densities of hare in thinned stands fell 

below unthinned stands in British Columbia. These differences in conclusions may have 

resulted from felled trees losing their needles and value as food and cover more quickly 

in Maine. During 2001, Maine received the lowest annual precipitation of the last 100 

years (National Oceanic and Atmospheric Administration 2002), which could have 

contributed to the rapid desiccation of felled trees. Additionally, hares could have 

relocated from thinned stands into nearby unthinned stands soon after treatment (Ferron 

et al. 1998). I speculate that it may be important to considerresponses in hare densities at 

the scale of the landscape in addition to the scale of the stand to account for confounding 

affects of individual movements by hares and shifts in home ranges in response to PCT. 

Hares are thought to concentrate habitat use in stands with high densities of 

saplings during winter, presumably to provide protection from predators and weather 

(O'Donoghue 1983, Litvaitis et al. 1985a, Koehler and Brittell 1990). During summer, 



hares have a weaker association with understory stem density and canopy closure because 

food is more widespread and cover is less limiting (Wolff 1980, Litvaitis et al. 1985a). 

Despite that hares exhibit a more generalist preference for habitat during summer (Wolff 

1980, O'Donoghue 1983), I observed greater densities of hares in unthinned regenerating 

clear-cut stands compared to stands treated with PCT during both leaf-off (late-fall - 

early spring) and leaf-on (late spring - early fall) seasons. Consequently, regenerating 

stands with high densities of conifer saplings are likely selected for by snowshoe hares 

year-round in my study areas. During the leaf-on seasons, there was not a detectable 

difference in hare densities among stands of various treatment classes; however, hares 
0 

were more abundant in younger stands than in older stands during the leaf-off season. 

Winter is the limiting season for snowshoe hares (Pease 1979, Pietz and Tester 1983), 

and they more strongly prefer the forest structure found in mid-successions: stands for 

thermal and escape cover during that season. 

Habitat associations of snowshoe hare have been reported to change with 

fluctuations of hare densities both in Maine at a landscape scale (Hoving 2001) and in 

Alaska at a stand scale (Wolff 1980). Even though densities of hares (across all stands) 

decreased by 33.0 % from the leaf-off season 2000-01 to leaf-off season 2001-02, and by 

49.5 % from the leaf-on season 2001 to leaf-on season 2002, a consistent and negative 

effect of PCT was still detectable (P 10.10). This indicates that, within the range of 

annual changes in hare densities that I observed, the negative effects of PCT occurred 

despite inter-annual fluctuations in densities of hare. 



Hare densities in response to alternative forest practices 

From a management perspective, the effects of PCT on reducing densities of hare 

are only relevant when compared to alternative forest practices. Maine has nearly 1 7 

million acres of commercial timberland that is likely to continue to be harvested, so if 

stands are not under a harvest plan including PCT, they likely will be managed via 

alternative silvicultural regimes. Although stands treated with PCT support lower 

densities of h&es than similar unthinned stands, they still retain greater densities of hares 

than many other forest stand types (Table 2.4). Of 7 forest-stand types studied in 

northern Maine, regenerating stands and PCT stands had the greatest hare densities. This 

pattern likely reflects hares' affinity to structure typically found in early seral stages, such 

as high stem densities and horizontal cover. Regenerating and PCT stands are early to 

mid-successional, whereas most of the other stand types are in later seral stages. 

Although PCT stands supported lower densities of hares when compared to similar 

unthinned stands, PCT stands supported more hares than mature conifer, deciduous, or 

mixed coniferous-deciduous stands, or than mature mixed stands that had been recently 

partially harvested. Forest practices other than PCT should also be considered with 

regard to potential indirect effects on carnivores because they may exert a stronger 

influence on stand-scale and landscape-scale densities of snowshoe hare than thinning. 

For example, partial harvests, which may support fewer hares than PCT stands, (Table 

2.4) composed 221,029 ha of land harvested in Maine during 2001, whereas PCT-treated 

stands composed 8,860 ha of intensively managed land for 2001 (Maine Forest Service 

2002). Further, the acres of land clearcut harvested annually, which regenerate into the 



Table 2.4. Average density" of snowshoe hares estimated in 7 overstory typesb (number 
of stands) in northern Maine during leaf-off seasons (October - May). Densities of hares 
reported for this study were averaged across 2 leaf-off seasons (2000-2001 and 200 1 - 
2002). 

Overstoryb (n)  Years since Haredha (SE)' Year of sampling Study 
regenerating event 

(range) 
REG (n = 7) 12-  20 2.43 (2.04) 1995 - 1996 Lachowski (1997) 

REG (n = 13) 

REG (n = 2) 

PCT (n = 17) 

18 -26  1.83 (0.16) 2000 - 2002 This study 

15 I .63 (0.93) 1997 - 1998 Fuller (1999) 

18 - 32 0.99 (0.09) 2000 - 2002 This study 

B K ~  (n = 2) 12-13 0.59 (0.41) 1995 - 1996 Lachowski (1997) 

MIX ( n  = 7) d a  0.29 (0.27) 1995 - 1996 Lachowski (1997) 

CON (n = 2) d a  0.23 (0.05) 1995 - 1996 Lachowski (1997) 

CON (n = 2) d a  0.23 (0.04) 1997 - 1998 Fuller (1 999) 

MIX (n = 7) d a  0.21 (0.03) 1997 - 1998 Fuller (1999) 

DEC (n = 2) d a  0.16 (0.00) 1997 - 1998 Fuller (1 999) 

DEC (n = 2) d a  0.15 e.01) 1995 - 1996 Lachowski ( 1997) 

PH (n = 7) 3-6 0.15 (0.00) 1997 - 1998 Fuller (1999) 

a Estimates of haredha were derived using the most biologically appropriate model for Maine described in 
Chapter I: haredha = 0.145303 +0.0001 (pelletdhdmonth). Densities from Fuller (1999) were recalculated 
based on the modified Litvaitis-Long equation presented in Chapter 1 

REG = regenerating forest, including unthinned stands for this study (leaf-off season densities), CON = 
coniferous, DEC = deciduous, MIX = mixed coniferous-deciduous, BK = killed by eastern budworm, PH = 
partial harvest, PCT = precommercially thinned (leaf-off season densities). 

' As hare populations may vary temporally, these differences should be viewed as relative, not absolute 
values. 

Osawa (1986) reported that budworm mortality was complete for balsam fir and nearly complete for 
spruce by 1980 in Baxter State Park, Maine. 



habitat supporting the greatest densities of hares, have declined from about 45,998 ha to 

6,102 ha harvested annually since 1986. 

PCT may also include several other methods of reducing stand density (e.g., 

mechanical spacing and herbicide spray thinning) that were not evaluated in my study. 

Further, my results were for precommercially thinned herbicide-treated clearcuts with 

crop tree spacing of 1.8 to 2.4 m (6-8 feet); in other geographic areas with different 

dominant conifers, weather, soils, and silvicultural objectives, forest managers prescribe 

thinnings with varying spacing between crop trees. In this study, all PCT stands were 

treated with an aerial herbicide several years prior to being spaced. In Quebec, deciduous 

understory stem density in non-herbicided stands increased dramatically after PCT 

(Bujold 2002), and provided cover for hares that was not present on my study sites. 

Thus, the results from my study should be used with caution when applied to other 

regions, thinning regimes, or to systems where herbicide application does not precede 

PCT. 

Vegetation changes associated with PCT 

The structural attributes that were lower in forest stands treated with PCT explain 

much of the observed differences in thinned versus unthinned stands on my study sites. 

Complex understory structure provides thermal and escape cover from predators for 

snowshoe hares, was correlated to survival of hares in other regionsof Maine (Litvaitis et 

al. 1985a), and influenced length of dispersal movements of translocated hares in Idaho 

(Wirsing et al. 2002). Woody debris may substitute for horizontal cover in geographic 

areas where understory stem densities do not approach those required by snowshoe hare 

(Conroy et al. 1979, Scott and Yahner 1989, Ferron et al. 1998); however, woody debris 



likely only provides measurable cover during the leaf-on season, when not buried by 

snow. Measures of understory density, horizontal cover, and abundance of logs were 

greater in unthinned reference stands than stands treated with PCT, indicating that these 

structural attributes were associated with higher densities of hares on my study areas; 

untreated stands with more horizontal structure (i.e. stems, cover, and logs) supported the 

greatest densities of hare. A minimum of 40-60% understory horizontal cover has been 

suggested to maximize local densities of snowshoe hare in forest stands during winter 

(Wolfe et al. 1982, Litvaitis et al. 1985). Stands treated with PCT likely were below the 

structural threshold associated with higher densities of hares during my study. Thus, 

stands treated with PCT that also maintain understory complexity may mitigate the 

negative effects of thinning on densities of hare. To maximize post-treatment densities of 

snowshoe hare, forest managers could attempt to maintain greater horizontal cover (i.e. 

greater number of stemsha) in thinned stands by reducing spacing distances between 

crop trees; however, silvicultural objectives of the thinning treatment could be 

compromised (Seymour 1993). 

CONCLUSIONS 

The stand-scale effects of PCT were incredibly consistent at reducing densities of 

snowshoe hare by nearly 50% from 1 to 11 years post-treatment during both leaf-off and 

leaf-on seasons and across 2 years of study. Although thinning appeared to reduce the 

density of snowshoe hare at the stand-scale, it may have a weaker, negative effect on hare 

numbers across the landscape than more widespread silvicultural practices that favor 

retention of overstory trees throughout the rotation, such as some forms of partial 

harvesting. Maintaining greater horizontal cover by reducing the spacing distance 



between crop trees in regenerating conifer stands treated with PCT may partially mitigate 

the negative effects of thinning on densities of snowshoe hare. However, the silvicultural 

objectives and the cost efficiencies of thinning could be compromised. Caution should be 

taken when applying these stand-scale results to indirect effects on forest carnivores 

because landscape-scale responses of hares to PCT may not directly translate into 

negative effects on foraging efficiency and density of species such as lynx, who likely 

respond to habitat at larger spatial scales. At the scale of the forested landscape, the 

effects of distribution and extent of intensive forest management, including PCT, on 

snowshoe hare are also poorly understood and might differ from the stand-scale effects 

studied here. 
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CHAPTER 3 

TEMPORAL EFFECTS OF PRECOMMERCIAL THINNING ON 

SMALL MAMMALS IN NORTHERN MAINE 

ABSTRACT 

Precommercial thinning (PCT) is being practiced increasingly throughout the 

Acadian forests of eastern North America to meet silvicultural objectives; however, the 

effects of this practice on wildlife, both immediately after treatment and several years 

later, are not well understood. Forest dependent small mammals have ecological roles as 

prey for numerous avian and mammalian predators, dispersers of seeds, fruit, and spores, 

and contribute to nutrient cycling. Researchers in the northwestern USA have suggested 

that thinning of young regenerating clearcuts may increase the abundance and diversity of 

some taxa of forest-dependent small mammals by increasing rates of forest development 

and by enhancing the ecological representation of mid-successional stands across 

managed landscapes. I examined the effects of PCT, from 1 to 16 years post-treatment, 

on abundances of mice, voles, shrews, and on within-stand structure in the commercial 

forests of northern Maine. I live-trapped small mammals on 24 herbicided clearcuts 

treated with PCT and 13 similar, unthinned stands during summers of 2000 and 2001. 

Thinning of mid-successional conifer stands resulted in increased abundances (red- 

backed voles, Clethrionomys gapperi, P = 0.008; masked shrews, Sorex cinereus, P < 

0.001) or had no detectable effect on (deer mice, Peromyscus maniculatus, P = 0.544; 

short-tailed shrews, Blarina brevicauda, P = 0.5 17) the 4 most common species of small 

mammals in northern Maine. Several within-stand habitat characteristics associated 

with stand maturity, such as larger stem diameters and a partially open canopy, occurred 



in thinned stands. Thus, PCT may accelerate development of habitat attributes typical of 

mid-successional conifer stands. At the scale of the forest stand, PCT produced within- 

stand habitat conditions favorable to small mammals, and may be an appropriate 

management tool to increase the abundances of red-backed voles and masked shrews, and 

may accelerate stand succession in intensively managed stands within the Acadian Forest. 

However, PCT will involve tradeoffs for early successional wildlife species associated 

with high stem densities, such as snowshoe hare (Lepus americanus) (Chapter 2). 

INTRODUCTION 

The Acadian forest, ranging from northern New England east through the 

maritime Canadian provinces, includes the ecological transition zone of eastern 

deciduous forest to the south and boreal forest to the north (Seymour and Hunter 1992). 

Commercial timberland is a primary economic use of this region and accounts for 86% of 

the land area of Maine (Maine Forest Service 1998), 82% of New Brunswick, 68% of 

Nova Scotia, and 35% of Quebec (Canadian Council of Forest Ministers 2002). Over the 

past 2 decades, commercial forestry in this region has evolved from extensive 

management towards more intensive silviculture. Currently, about 4% of Maine's 

commercial timberland is in high production silviculture, including precommercial 

thinning (PCT), herbicide release, and plantations (Maine Forest Service 1998). 

Similarly, the eastern Maritime Provinces in Canada have experienced increases in the 

land area under intensive management, with 1.2 to 1.5-fold increases from 1990-2000. 

One form of intensive forest management, PCT, increased from 4,352 ha to 9,950 ha in 

Maine (Maine Forest Service unpublished data, 2001), from 14,930 ha to 40,354 ha in 

New Brunswick, from 22,791 ha to 98,158 ha in Quebec, and from 3,228 ha to 8,113 ha 



in Nova Scotia (Canadian Council of Forest Ministers 2002). 1990-2000. Thus, thinning 

has affected an increasing percentage of regenerating forest habitat across the Acadian 

forest and this practice has been questioned in relation to its effects on early successional 

wildlife species such as snowshoe hare (Lepus americanus), the primary prey of the U.S. 

Federally threatened Canada lynx (Lynx candadensis) (Hickenbottom et al. 1999). 

Precomrnercial thinning reduces the density of overstocked stands to minimize 

mortality from competition and to accelerate growth of residual trees (Ker 1987, 

Seymour 1984, Brissette and Frank 1999, Brissette et al. 1999). Characteristics of forest 

overstory (Ker 1987, McCormack and Lernin 1998, Brissette and Frank 1999, Chapter 4), 

understory (Doerr and Sandburg 1986, Newton et al. 1989, Wilson and Watts 1999, 

Lindgren and Sullivan 2001, Chapter 4), and microclimate (Reynolds et al. 1997) change 

dramatically after PCT and with stand succession. By reducing competition from crop 

trees via thinning, stem diameters (Harrington and Reukema 1983, Ker 1987, 

McCormack and Lemin 1998, Brissette and Frank 1999, Brissette et al. 1999, Pothier 

2002) and crowns (McCormack and Lemin 1998, Brissette and Frank 1999, Brissette et 

al. 1999, Lindgren and Sullivan 2001, Sullivan et al. 2001) of residual crop trees increase 

rapidly, causing stands to bypass the stem exclusion stage of forest succession 

characterized by self-thinning (Smith et al. 1997). The reduction of competition among 

crop trees for nutrients, 'space, and light results in reduced mortality of residual stems 

(Ker 1987, Brissette and Frank 1999, Brissette et al. 1999); without mortality of large 

diameter trees, recruitment of CWD may be reduced (Carey and Johnson 1995, Hayes et 

al. 1997, Harrison 1999). These changes within stands could potentially influence, either 

positively or negatively, a variety of forest wildlife species (early to late seral) dependent 



on overstory, understory, structure, or coarse woody debris (CWD). Application of PCT 

to regenerating conifer stands reduces densities of snowshoe hare (Sullivan and Sullivan 

1988, Chapter 2); however, studies in the Pacific Northwest have indicated that thinning 

of second growth forests may diversify the landscape and increase richness of wildlife 

species by accelerating stand succession (Carey and Johnson 1995, Hayes et al. 1997, 

Sullivan et al. 2001). 

Forest dwelling voles (Clethrionomys spp.), mice (Peromyscus spp., Napeozapus 

spp.), and shrews (Soricidae) are relevant taxa for examining responses to PCT because 

they are consumers of invertebrates, fungi, and vegetation (Hamilton 1941) and are prey 

for many avian (Mendall 1944) and mammalian carnivores (Soutiere 1979, Dibello et al. 

1990, Cumberland et al. 2001). Additionally, small mammals may assist the revegetation 

of nonforested areas by dispersing spores of hypogeous fungi present in their feces 

(Maser et al. 1978, Kirkland 1990) and contribute to nutrient cycling (Brooks and Healy 

1988). Small mammal abundances have been reported to be positively associated with 

some attributes of forest structure, including downed and decaying dead wood (Richens 

1974, Hayes and Cross 1987, Carey and Johnson and 1995), microclimatic conditions 

associated with closed overhead cover and diverse ground structure (Miller and Getz 

1977, Yahner 1986), and with characteristics of understory vegetation (Yahner 1986, 

Bowman et al. 2001). Habitat variables describing the structural attributes of mature 

forest at both the stand scale and rnicrohabitat scale have been positively associated with 

densities of small mammals (Martell 1983b, Lachowski 1997). Thus, silvicultural 

practices that accelerate forest succession and reduce stand rotation, such as PCT, could 



accelerate the development of favorable habitat conditions for small mammals that prefer 

the overstory and understory characteristics of mature forest. 

Stand thinning is designed to minimize natural mortality resulting from intra- and 

inter-specific competition among crop trees. This could reduce recruitment of CWD 

below levels required by small mammals, and might reduce abundance, age structure, or 

reproductive performance in affected populations. However, previous studies of the 

habitat relationships of red-backed voles (Clethrionomys gapperi), deer mice 

(Peromyscus maniculatus), short-tailed shrews (Blarina brevicauda), and masked shrews 

(Sorex cinereus) in commercial forests of Maine have uncovered few unequivocal . . 
relationships between population abundance and CWD (Lachowski 1997, Fuller 1999, 

Billig in prep.). These findings suggest that woody debris usually occurs above levels 

required by small mammals across a wide range of extensively managed and unmanaged 

stands in commercial forests of Maine. Alternatively, structures (e.g. slash) created from 

logging activities might serve as functional surrogates to CWD immediately after harvest. 

These inter-relationships among intensive silviculture (e.g. PCT), CWD, and forest 

dwelling small mammals require further study in eastern North America. 

Understanding the response of small mammals to silvicultural prescriptions for 

longer than 2-3 years after treatment is necessary to evaluate the ecological effects of 

forest practices that influence long-term stand development. For example, initial changes 

in microclimate of stands directly after thinning could cause a decrease in small mammal 

populations, but populations could rebound as the growth of crop trees accelerates 

following treatment. Few studies have explored the temporal effects of PCT on small 

mammals longer than 4 years post-treatment (exception: Sullivan et al. 2001) and 



statistical replications have been limited (n 1 4 )  (Lautenschlager et al. 1997, Sullivan et 

al. 2001). 

Published effects of PCT on forest dwelling small mamnlals have involved stands 

that were clearcut and thinned, but not treated with an herbicide (Lautenschlager et al. 

1997, Sullivan et al. 2001); in the Acadian forest, PCT often occurs on stands that were 

previously herbicided (typically 3-10 years after clearcutting). Sullivan et al. (2001) 

presented results of effects of thinning on small mammals in British Columbia 

immediately after treatment and 10 years later; however, their study design did not allow 

for treatment effects to be distinguished from temporal variations in abundances of small 

mammals. Temporal effects potentially confound studies of small mammal responses to 

forest practices because densities of small mammals often exhibit significant inter-annual 

variation (Richens 1974, Krebs and Wingate 1976, Lachowski 1997, Bayne and Hobson 

1998, Fuller 1999). 

Stands previously treated with PCT in  Maine have grown at a sufficient rate to 

allow for the first economically viable commercial entry as soon as 16 years after 

thinning (ages 30-35 years). Thus, I evaluated effects of PCT on small mammals at 

intervals of 1-2,5-7, 9-12, and 14-17 years post-thinning in stands that were clearcut 17- 

33 years previously and treated with herbicides 2-19 years after harvest. My objectives 

were to retrospectively compare the relative abundances of small mammals and 

associated overstory and within-stand habitat attributes in herbicide treated clearcuts, 

with and without PCT. Generalizing the responses of wildlife to forest management 

across species of small mammals may be inappropriate because large changes in the 

densities of one or more dominant species may obscure changes in community 



composition or densities of individual spec-ies (Martell and Radvanyi 1977, Martell 

1983b). I compared species-level abundance of red-backed voles, deer mice, short-tailed 

shrews, and masked shrews among regenerating, unthinned stands and similarly aged, 

thinned stands 1-16 years post-treatment. Overstory and within-stand habitat variables 

were also compared between thinned and unthinned stands and successional patterns in 

habitat and structural (e.g. CWD) characteristics of stands were documented from 1-16 

years post-thinning. 

Densities of animal populations are not always greatest in habitat types with the 

greatest habitat quality (Van Home 1983). The proportion of individuals in a 

reproductive condition is frequently used as an indirect index of habitat quality for small 

mammals (Hobbs and Hanley 1990); therefore, I also compared lactation rates of female 

red-backed voles and deer mice between thinned and unthinned stands to evaluate effects 

of PCT on reproductive performance of these 2 dominant small mammals in the Acadian 

forest. 

STUDY AREA 

Seven townships in northern Maine (Days Academy Grant, Spencer Bay, T1 R13 

W E B ,  T4 R 12, T4 R11, T5 R11, and Hersey) composed the study area (Figure 3.1). 

Hersey Township is in Aroostook County and the other 6 townships are in Piscataquis 

County. Most of the land in these towns is managed for pulpwood and sawtimber 

production by Plum Creek Timber, Fairfield, Maine; Great Northern Paper, ~il l inocket ,  

Maine; and International Paper Company, Costigan, Maine. The study area spans 110 

km east to west and 49 km north to south. Stands were chosen so that topography was 

relatively flat (< 15O slope). 
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Northern Maine is part of the Acadian forest, known also as the sub-boreal 

spruce-fir ecosystem (Seymour and Hunter 1992). Study sites were dominated by balsam 

fir (Abies balsamea), red spruce (Picea rubens), and black spruce (Picea nigra), but also 

had minor components of white pine (Pinus strobus), larch (Larix spp.), white cedar 

(Thuja occidentalis), paper birch (Betula papyrifera), quaking aspen (Populus 

tremuloides), and red maple (Acer rubra). The climate was generally cool and moist, 

with an annual mean temperature for the region of 3.3" C and 101 cm of average annual 

precipitation (Garoogian 2000). The area received an average of 2.75 m of snowfall 

yearly (averaged from 1970 to 2000) and the ground was usually snow-covered from 

December through April. 

METHODS 

I evaluated the site quality, tree density, diameter at breast height (dbh) of 

dominant trees, size, and spatial independence of stands before selecting study sites. 

Sites were considered spatially independent when separated by > 0.40 krn or a body of 

water to minimize population exchange of small mammals (Bowman et al. 2000a). Site 

quality, which can strongly influence the rate of succession of conifer stands (Briggs and 

Lemin 1994), was estimated based on 4 to 6 soil cores sampled at 50-100 m intervals 

within the stand with a soil auger. According to Brigg's (1994) scale of forest 

productivity, site-quality ranged from 1 (highly productive) to 5 (unproductive). I 

attempted to minimize among-stand variation within a treatment x thinning class block 

by pairing treated and untreated stands based on year of initial clearcut, year of herbicide, 

time since PCT, site quality, topography and pre-thinning species composition (based on 



live trees and stumps in stands treated with PCT). Stands were paired retrospectively so 

were not treated as statistical pairs during analyses. 

Treatment stands were clearcut (timber harvesting resulting in residual basal area 

of acceptable growing stock trees > 4.5 in. dbh of < 30 ft2/acre) 1967-1983, aerially 

herbicided with Glyphosate (applied at a rate of = 1.68 kgha acid equivalent) 1977-1988, 

and precommercially thinned with motor-manual brush-saws from 1984- 1999. 

Unthinned reference stands were clearcut 1974-1982 and herbicided with Glyphosate (=: . 

1.68 kgha acid equivalent) 1982-1988 (Table 3.1). The study design included 24 

treatment stands that were surveyed for small mammal abundances at 5-year intervals 

since thinning (1-2 year post-thinning, n = 6; 5-7 years, n = 6; 9-12 years, n = 6; 14-17 

years, n = 6) and 13 similar, unthinned stands (1 year, n = 5; 6 year, n =5; 11 year, n = 3), 

whose histories were comparable with treatment stands. I allowed some latitude (1-2 

years) in separating stands into thinning classes so that I could maximize the number of 

stands studied. The study design was unbalanced; a greater number of stands were 

treated with PCT (n = 24) compared to unthinned stands (n = 13). I was unable to locate 

comparable, unthinned stands for the 16-year thinning class and located only 3 unthinned 

replicates for the 1 l-year thinning class. Nearly all stands that had been clearcut and 

herbicided prior to 1985 in my study areas had already been treated with PCT 

Small mammal trapping 

I surveyed the relative abundances of red-backed voles, deer mice, short-tailed 

shrews, and masked shrews by live-trapping within 37 stands (Table 3.1) during June- 

August 2000 and 2001. I established 70 m by 70 m trapping grids with 64 trap stations at 

10 m intervals (Figure 3.2). Grids were positioned > 50 m from edges of forest stands to 



Table 3.1. Stand history, location, and site quality for 24 precommercially thinned stands 
and 13 unthinned stands located in 7 townships, northern Maine. (T = treated with PCT, 
C = unthinned stand). Site quality ranged from 1 (well drained, productive) to 5 (poorly 
drained, unproductive) according to Briggs (1994) classification guidelines. 

Site Year of Year of Year of Township Site 
number Clearcut Herbicide PCT Quality 
1-1-T 1982 1988 1999 T 4 R 1 1  4+ 
1 -2-T 1980 1983 1999 T4 R 12 3 - 
1 -3-T 1977 1983 1999 T4 R 11 4+ 
1 -4-T 1982 1988 1999 T4 R 11 4 
1 -5-T 1976 1983 1999 T4 R 12 4 
1 -6-T 1983 1988 1999 T 4 R 1 1  3 

Hersey 
Hersey 
Hersey 

T 5 R 1 1  
T 5 R 1 1  

Spencer Bay 
T l R 1 3  
T l R 1 3  
T 1 R 13 

1 1 -6-T 1975 1984 1991 T l R 1 3  2- 
16- 1 -T 1967 1986 1985 Spencer Bay 2- 
16-2-T 1972 1980 1986 Days ~ c a d l  3 
16-3-T 1970 1977 - 1986 Days Acad. 2- 
16-4-T 1969 1981 1986 Days Acad. 3+ 
16-5-T 1970 - 198 1 1985 Days Acad. 3+ 
16-6-T 1968 1981 1984 Davs Acad. 2- 

n/a T 4 R 1 1  
n/a T 4 R  11 
n/a T 4 R  11 
n/a T 5 R 1 1  
n/a T 4 R  11 
n/a Herse y 
n/a Hersey 
n/a T 5 R 1 1  
n/a T 4 R 1 2  



Figure 3.2. Small mammals were live-trapped during June-August 2000 ant 
m by 70 m trapping grids established within PCT-treated (n = 24) and unthinned (n = 13) 
stands within 7 townships of northern Maine. 



minimize edge-effects (Harris 1988, Fraver 1994). I placed one live-trap (B. N. Bolton, 

Inc. Vernon, B. C.; use of commercial names does not imply endorsement) baited with a 

mixture of rolled oats and peanut butter within 1 m of each trap station. Bolton live traps 

have an attached nest compartment to provide shelter and protection from predators. I 

placed 5 cotton balls in the nest compartment as material for nesting and placed the traps 

with the door facing downslope so that rainfall or condensation would drain. I covered 

traps with moss, leaves, and bark to provide additional thermal and visual protection. 

I trapped each stand for 6 consecutive days and nights and tagged mice and voles 

with a unique, individually numbered ear-tag (Monel 1005-1; National Band and Tag 

Co., Newport, Kentucky). Short-tailed and masked shrews were not marked; therefore, 

only the number of captures was recorded for shrews. I recorded species, sex, age, and 

reproductive condition of each individual. I categorized small mammals as adult or 

juvenile by pelage color and relative size. I determined the reproductive condition of 

adult female mice and voles as lactating (mammaries swollen) or non-lactating 

(mammaries not swollen). Traps were checked from 0600 to 1300 hours, and after 

processing, animals were released at the trap site. The Institutional Animal Use and Care 

Committee, University of Maine, approved trapping and handling procedures. Field 

technicians took several safety precautions for hantavirus pulmonary syndrome. A 

baseline blood sample was drawn from technicians prior to handling of small mammals. 
Q-- 

Further, field technicians wore rubber gloves and full body coveralls when handling 

study animals, and traps were washed in a diluted bleach solution after each 6-day 

trapping session. Coveralls, traps, and trapping supplies were transported to and from 

study sites in an open-bed truck. 



Within-stand habitat characteristics 

I selected variables a priori that previous studies of habitat relationships of small 

mammals (Hamilton 1941, Miller and Getz 1977, Yahner 1986, Clough 1987, Hayes and 

Cross 1987, Carey and Johnson 1995, Lachowski 1997, Bowman et al. 2000b) have 

reported as important correlates or predictors of abundance. These variables included: 

total basal area, density of trees, total density of coarse woody debris, percent live ground 

cover, density of understory stems, and canopy density. 

Habitat characteristics were measured within the small-mammal grids following 

the methods of Lachowski (1997) and Fuller (1999). I randomly selected 16 of the 64 

trapping stations on the 37 trapping grids and oriented a 10-m by 2-m plot following a 

randomly selected compass direction at the center of each station. Within each plot I 

measured the diameter at breast height (dbh) of all coniferous trees and deciduous trees 

(2 7.6 cm dbh, 2 2 m height, > 45" from the ground) (DBH), and counted the number of 

herbaceous ground stems (HGSTEMS) (< 0.5 m height, < 7.6 cm dbh), number of 

deciduous and coniferous saplings (< 7.6 cm dbh, alive) at 1.5 m height 

(UNDERSTORY), the number of root masses (2 7.6 cm diameter), stumps (< 2 m height, 

2 7.6 cm diameter), logs (2 1 m length, 2 7.6 cm diameter, < 45" from ground), and snags 

(2 7.6 cm dbh, 2 2 m height, > 45" from the ground) within the plot. I termed the number 

of logsha + stumpsha + snagsha as TOTDEBRIS. I measured the basal area of 

coniferous + deciduous trees (TOTBA) using a 2 m2 / ha prism held at the center-point of 

the plot (Avery and Burkhart 2002). I measured percent canopy closure (CANOPY) at 

the 4 cardinal compass directions using a spherical densiometer held at waist height 

(Lemmon 1956). 



Analysis of small mammal abundances 

To determine if species-specific abundances met the parametric assumptions of 

Analysis of Variance (ANOVA), I examined across treatments and blocks for normality 

of residual errors using normal probability plots and Lilliefor's tests, and I examined data 

for constant variance using the modified Levene's test (Neter et al. 1996). I transformed 

data exhibiting heteroscedasticity (modified Levene's 1 0.10) or nonnormal errors 

(Lilliefor's 10.10) and then re-evaluated assumptions of normality and constant variance. 

The minimum number alive (MNA) of red-backed voles and MNA of deer mice were 

transformed using lo&. Number of captures of short-tailed shrews (from 1-1 1 years post- 

treatment) met parametric assumptions following a square root transformation; however, 

number of captures of masked shrews did not meet assumptions after transformations and 

were analyzed using nonparametric alternatives to ANOVA. 

To test whether the effects of PCT differed from effects of stand development, I 

conducted 2 separate analyses on the relative abundances (MNA and number of captures) 

of small mammals. I tested whether abundance of small mammals differed between 

stands treated with PCT and unthinned stands, from 1-1 1 years post-treatment, using a 

repeated-measures two-way ANOVA for each species (Zar 1999). I evaluated effects of 

treatment (PCT or unthinned), thinning class (1,6, 1 1 years), year of sampling (2000 or 

2001), and any interactions on the MNA index of abundance of red-backed voles, deer 

mice, and for the index of total number of captures for short-tailed shrews. I excluded the 

16-year thinning class, which did not include any similar untreated stands, to avoid 

biasing effects and interactions with the 1,6, and 1 1-year thinning classes. 



Similarly, I used non-parametric alternatives to test whether number of captures 

of masked shrews differed between PCT and unthinned stands, by thinning class of stand, 

and between the 2 years of sampling. I examined for an effect of year by conducting a 

Wilcoxon signed rank test, while ignoring grouping factors (thinning class and treatment) 

(Zar 1999). Next, I summed the number of captures of masked shrews across 2000 and 

2001 and ranked the resulting sum. I then conducted a two-way ANOVA with thinning 

class and treatment as main effects. I examined interaction terms with year in them by 

calculating the difference in number of captures between years, ranking the resulting 

data, and conducting a one-way ANOVA. 

T o  evaluate changes in relative abundances of the 4 small mammal species in the 

PCT-treated stands through time, I conducted a repeated-measures ANOVA examining 

the effects of thinning class (1-year, 6-year, 1 1-year, 16-year post-thinning), year of 

sampling (2000 or 2001), and thinning class x year interaction with stands treated with 

PCT. I conducted this analysis on the MNA for both deer mice and red-backed voles. 

Non-parametric alternatives were necessary to analyze data for short-tailed and masked 

shrews. For shrews, I conducted a Wilcoxson signed rank test to determine if a year 

effect was present, and conducted a one-way ANOVA with thinning class as the main 

effect on the ranked sum of the number of captures in 2000 + 2001. I calculated the 

difference between years, ranked the resulting data, and conducted a one-way ANOVA to 

evaluate the presence of a year x thinning class interaction. I examined significant main 

effects for voles and mice a posteriori using pairwise comparisons using Tukey's 

honestly significant difference test (Zar 1999) and Bonferroni multiple contrasts for a 

priori selected pairwise comparisons for significant interaction terms (Neter et al. 1996). 



Reproductive indices 

I tested for differences in lactation rates of adult female deer mice and red-backed 

voles among treatment and control stands using a Chi-square test for proportions (Zar 

1999). I captured few adult female small mammals during summer 2000; therefore, I 

pooled reproductive data for each species across years and stand-ages to maximize 

statistical power (the total number of adult female captures within each treatment ranged 

from 40-87). 

Within-stand habitat analyses 

The size of the trapping grid was approximately 1 .O-2.5~ the size of the average 

home range for red-backed voles and 0.3-3.0~ for deer mice (Witt and Huntly 2001); 

therefore, within-stand habitat characteristics were described at the scale of the trapping 

grid. I averaged 6 overstory, understory, and CWD variables across the 16 sampling 

locations in each of 37 stands to produce an average value of each variable for each 

stand. Modified Levene's tests, Lilliefor's tests and normal probability plots were used 

to examine data for homoscedasticity and normal errors (Neter et al. 1996). DBH and 

UNDERSTORY were log transformed and CANOPY was arcsine transformed prior to 

analysis so that variables met parametric assumptions of ANOVA. I conducted a two- 

way ANOVA on the means of each habitat variable for the 1-year, 6-year and 1 1-year 

stands to examine for effects of thinning class (1-year, 6-year, 1 1-year), treatment (PCT 

or unthinned), and treatment x thinning class interaction. Significant pairwise differences 

among stand-ages were examined a posteriori with Tukey's honestly significant 

differences test (Zar 1999). 



I tested for differences in habitat and structural variables among PCT stands of 

different (I -year, 6-year, I 1 -year, 16-year) ages since thinning by conducting a one-way 

ANOVA, with age-class as a main effect. Pairwise comparisons were conducted a 

posteriori using Tukey's honestly significant differences test (Zar 1999). 

Sample sizes of thinned and unthinned stands ranged from only 3 to 6 within each 

class since thinning; thus, the probability of type II statistical error was relatively high. I 

attempted to balance type I and type II error by using P < 0.10 as my threshold for 

statistical inference. 

RESULTS 

Abundance of small mammals 

I captured 600 red-backed voles (1,296 times), 399 short-tailed shrews, 386 

masked shrews, 347 deer mice (824 times), 51 eastern chipmunks (Tamias striatus), 15 

weasels (Mustela spp.), 1 1 red squirrels (Tamiasciurus hudsonicus), 10 woodland 

jumping mice (Napeozapus insignis), 5 smoky shrews (Sorex fumeus), 2 Southern bog 

lemmings (Synaptomys cooperi), and 1 meadow vole (Microtus pennsylvanicus) during 

2000 and 2001, combined. Species except for red-backed voles, deer mice, short-tailed 

and masked shrews were excluded from further analyses of effects of PCT and thinning 

class on abundance because capture success was too low for a meaningful or statistically 

powerful analysis. Each of the 4 species of small mammal that were statistically 

evaluated exhibited different responses to treatment and thinning classes (Figures 3.3, 

3.4, 3.5, 3.6, Table 3.2, 3.3), indicating strong effects of PCT and thinning class among 

red-backed voles, deer mice, short-tailed shrews, and masked shrews. 



Unth~nnrd stands I = 

Number of years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of sampling 

Figure 3.3. Mean minimum number alive (SE) of red-backed voles (Clethrionomys 
gapperi) in 24 stands treated with PCT and 13 unthinned stands during summer 2000 and 
2001, northern Maine. Unthinned stands had similar years of clearcut and herbicide, and 
similar site quality to comparable PCT stands. 

Unthinned stands 

Number of years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of sampling 

Figure 3.4. Mean minimum number alive (SE) of deer mice (Peromyscus maniculatus) 
in 24 stands treated with PCT and 13 similar unthinned stands during summer 2000 and 
2001, northern Maine. Unthinned stands had similar years of clearcut and herbicide, and 
similar site quality to comparable PCT stands. 



Number of  years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of sampling 

Figure 3.5. Total number of captures of short-tailed shrews (Blarina brevicauda) (SE) in 
24 stands treated with PCT and 13 unthinned stands during summers 2000 and 2001, 
northern Maine. Unthinned stands had similar years of clearcut and herbicide, and similar 
site quality to comparable PCT stands. 

Stands treated wlth PCT 
0 Unthinned stands 

I5 

Number of  years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of  sampling 

Figure 3.6. Total number of captures of masked shrews (Sorex cinereus) (SE) in 24 
stands treated with PCT and 13 unthinned stands during summers 2000 and 2001, 
northern Maine. Unthinned stands had similar years of clearcut and herbicide, and similar 
site quality to comparable PCT stands. 



Table 3.2. Comparisons of mean (SE) abundances (minimum number alive) of red-backed voles and deer mice and relative 
abundances (total number of captures) of short-tailed and masked shrewsa on precornmercially thinned stands (n = 18) and unthinned 
reference stands (n = 13) in northern Maine, 2000-2001. Data were analyzed using repeated-measures two-way Analysis of Variance; 
non-transformed means and standard errors are presented for transformed  variable^.^ 

Species of small mammalC 
Red-backed vole Deer mouse Short-tailed shrew Masked shrew 

Treatment 

F-S tatistic 8.3 16 0.377 0.43 1 n/a 
P-value 0.008 0.544 0.5 17 n/a 

Abundance in PCT stands . 9.06(1.24) 3.56 (0.66) 6.00 (1.30) 6.81 (1.18) 
Abundance in unthinned stands 3.84 (0.61) 4.42 (1.05) 4.35 (1.00) 1.19 (0.31) 

Thinning classd 

F-Statistic 0.620 3.073 2.380 n/a 
P-value 0.546 0.064 0.1 13 n/a 

\O - Abundance in 1-year stands 8.05 ( 1.96) 3.36 (0.80) 3.68 (0.95) 3.68 (1.28) 
Abundance in 6-year stands 5.23 (0.82) 3.00 (0.84) 4.77 (1.32) 3.23 (0.90) 
Abundance in 1 1-year stands 7.44 (1.15) 5.72 (1.35) 7.94 (2.16) 6.89 (1.81) 

Year of sampling 

F-Statistic 3.815 29.271 51.175 n/a 
P-value 0.062 < 0.001 < 0.001 n/a 

Abundance in 2000 6.23 (1.12) 1.13 (0.23) 1.03 (0.26) 3.42 (0.86) 
: Abundance in 200 1 7.52 (1.23) 6.71 (0.89) 9.58 (1.33) 5.48 ( 1.28) 

Treatment x Thinning class 



Table 3.2. Continued. 

Species of small mammal 
Red-backed vole Deer mouse Short-tailed shrew Masked shrew 

Treatment x Year 
F-Statistic 0.389 0.277 1.175 nla 
P-value 0.539 0.604 0.289 nla 

Thinning class x Year 
F-Statistic 1.389 0.262 4.156 nla 
P-value 0.268 0.771 0.028 nla 

Treatment x Thinning 
class x Year 

F-Statistic 2.546 1.656 0.055 nla 
P-value 0.099 0.21 1 0.947 nla 

'Number of captures of masked shrews were not distributed normally; therefore a nonparametric analyses was conducted. Results are presented in the text. 
\O b~~~ of red-backed voles and deer mice were log transformed and number of captures of short-tailed shrews were square root transformed. The non- 
h, transformed mean and SE are presented here. 

'Red-backed vole (Clethrionomys gapperi), deer mouse (Peromyscus maniculatus), short-tailed shrew (Blarina brevicauda), masked shrew (Sorex cinereus). 
d~tands in the 1-year thinning class include stands (n = 6) that were treated with PCT in 1999 and unthinned stands (n=5). Stands in the 6-year thinning class 
include stands treated with PCT (n = 6) in 1994-1995 and unthinned stands (n = 5). Stands in the 1 1-year thinning class include stands (n = 6) that were treated 
with PCT 1989-1991 and unthinned stands (II = 3). Unthinned stands had similar years of clearcut and herbicide, and similar site quality to comparable PCT 
stands. 



Table 3.3. Comparison of mean (SE) abundances (minimum number alive) of red-backed voles and deer mice and median (range) of 
number of captures of short-tailed shrews and masked shrews across 4 thinning classes of stands treated with PCT (1-year post- 
treatment, n = 6; 6-years post-treatment, n = 6; 11 years post-treatment, n = 6; 16 years post-treatment, n = 6) in northern Maine, 2000- 
2001. Means were compared using one-way ANOVA and medians were compared using nonparametric analysesa; non-transformed 
means and standard errors are for deer mice. 

Species of small mammalb 
Red-backed vole Deer mouse Short-tailed shrewa Masked shrewa 

Thinning classc 

F-statistic 1.837 3.423 1.755 1.567 
P-value 0.173 0.037 0.188 0.228 

1 -year 11.917 (3.156) 3.333 (1.032) 3 (0-18) 1.5 (0-25) 
6-years 5.583 (1.062) 3.167 (1.072) 1.5 (0-27) 5 (0- 17) 
1 1 -years 9.667 ( 1.305) 4.167 (1.359) 6 (0-28) 9.5 (1-25) 
16-years 14.500 (2.091) 8.667 (1.738) 3.5 (0-22) 9.5 (0-20) 

Year of sampling 
\d 

2001 1 1 .@I2 (1.652) 7.333 (1.135) 9.5(0-28) 5 (0-25) 
Thinning class x 

Year 

P-value 0.757 0.034 0.144 0.623 
'Presence of a yeareffect for shrews was tested for using a Wilcoxsin signed rank test. An effect of age-class was tested for using a one-way ANOVA on the 
ranked sum ofthe number of captures in 2000 + 2001 and an age-class x year interaction term was tested for with the difference in abundances between years. 
ked-backed vole (Clethrionomys gapperi), deer mouse (Peromyscus maniculatus), short-tailed shrew (Blarina brevicauda), masked shrew (Sorc~x cinereus). 
' Stands in the 1-year age-class include stands (n = 6 )  that were treated with PCT in 1999. Stands in the 6-year age-class include stands treated with PCT (n = 6) 
in 1994-1995. Stands in the 1 1 -year age-class include stands (n = 6) that were treated with PCT 1989- 1991. 



I did not detect an effect of thinning class of stands on voles (P = 0.546), but there was a 

significant treatment x thinning class interaction (P = 0.072) (Table 3.2). Although red- 

backed voles were 2 . 5 ~  more abundant in stands treated with PCT than unthinned stands 

(P = 0.008), the effect of PCT was not consistent across thinning-classes. Thinned stands 

had greater numbers of voles in the 1-year (P c 0.001) and 1 1-year age-class (P c 0.005), 

but treatments had similar abundances in the 6-year thinning class (P > 0.600). There 

was significant inter-annual variation in abundances of voles; a greater number were 

captured during 2001 (n = 233) than 2000 (n = 193) (P = 0.062). A significant year x 

thinning class x treatment interaction (P = 0.099) was observed indicating that the effects 

of PCT on voles were inconsistent across thinning classes of stands and years of 

sampling. Within solely PCT stands, from 1 to 16 years post-treatment, I did not detect 

an effect of year since thinning (thinning class, P = 0.173), year of sampling (P = 0.320), 

or a thinning class x year interaction term (P = 0.757) on the abundance of red-backed 

voles (Table 3.3). 

Differences between the MNA of deer mice in thinned and unthinned stands was 

not significant (P = 0.544) from 1 to 1 1  years post-treatment (Table 3.2). Abundances of 

deer mice were different among thinning classes (P = 0.064); however interpretations 

were confounded by a significant (P = 0.034) thinning class x year interaction. The 16- 

year thinning class had 2.1-2.7~ greater abundance of deer mice than each of the 3 

younger thinning classes (Table 3.3). Across all thinning classes, abundance of deer mice 

was nearly 4x greater in 2001 (n = 277) than in'2ObO (n = 70) (P c 0.001) (Table 3.3). 

Treatment and thinning class of stands did not have a detectable effect on the 

number of captures of short-tailed shrews from 1 to 1 1 years post-treatment (P > 0.100). 



There was, however, a marked change ( 9 . 2 ~ )  in shrew abundance between 2000 and 

2001 (P < 0.001). Additionally, there was an inconsistent effect of thinning class on 

abundance of short-tailed shrews across the 2 years sampled (thinning class x year 

interaction, P = 0.028). During 2000, the 3 thinning classes had similar abundances (P > 

0. lo), but during 2001 the 1 1-year age-class had greater numbers of shrews than the 1- 

year age-class (P < 0.01). 

Masked shrews responded strongly and positively to thinning (P < 0.001) and 

abundances were 5 . 7 ~  greater in thinned stands than in similar reference stands, from 1 to 

11 years post-treatment. I did not detect a significant effect of year of sampling or 

thinning class on masked shrews (P > 0.10); however, the treatment x thinning class 

interaction was significant (P = 0.092), indicating that there was an inconsistent effect of 

PCT across the 3 thinning classes. Pairwise comparisons indicated that stands treated 

with PCT had greater numbers of masked shrews than in unthinned stands in the 6-year 

(P < 0.001) and 1 1-year (P < 0.001) thinning classes, but not within the 1-year stands (P 

= 0.82). 

Reproductive indices 

No significant difference (2 = 0.93, P = 0.34) in the proportion of lactating adult 

female red-backed voles was observed between stands treated with PCT (41 %, n = 187, 

90 % C.I. 33 - 48 %) and unthinned reference stands (30%, n = 40,90 % C.I. 16 -46 %). 

A greater proportion of adult female deer mice were lactating (2 = 9.18, P < 0.001) on 

unthinned stands (58 %, n = 43,90 % C.I. 42 -72 %) than in thinned stands (31 %, n = 

l08,90 % C.I. 23-41 %). 



Habitat in PCT versus unthinned stands 

Of the 6 a priori selected microhabitat variables, average diameter at breast height 

of trees was 1 . 1 5 ~  greater (P = 0.003), total basal area was 1 . 3 8 ~  greater (P = 0.002), and 

understory density was 1 . 4 0 ~  greater (P = 0.022) within small mammal grids that had 

been treated with PCT, compared to grids within unthinned stands with a similar history 

of clearcutting and herbiciding (Table 3.4). Canopy closure was greater in unthinned 

stands than in stands treated with PCT up to 1 1-years post-treatment (P = 0.009). Canopy 

closure differed among thinning classes (P = 0.040); pairwise comparisons indicated that 

the I 1-year thinning class had greater canopy closure than the 1-year thinning class (P = 

0.070). Total understory density differed by thinning class, and the 6-year thinning class 

had a greater density of understory stemsha than the 1-year (P = 0.008) or 1 1-year (P = 

0.023) thinning classes. 

Temporal effects of PCT on within-stand habitat characteristics 

Average dbh, canopy closure, and total basal area generally increased with 

thinning class (Table 3.5). The I-year thinning class had a lower dbh than the 6, 11, or 

16-year thinning class (P = 0.080). Canopy closure (P = 0.01 1) and total basal area (P = 

0.076) were greater in the 16-year thinning class than the 1-year thinning class. The 16- 

year thinning class also had greater total basal area than the 6-year thinning class (P = 

0.018). Abundance of coarse woody debris was greater 1 1 years after treatment 

compared to 16 years post-thinning in PCT-treated stands (P = 0.005), but there were not 

differences in total amount of CWD between treatments (P = 0.180) or among thinning 

classes (I-year, 6-year, 1 1-year; pooled across treatments) (P = 0.23 1). Density of 

understory stems was greater 6-years post thinning than 1 -year post-thinning (P = 0.001). 



Table 3.4. Comparison of means (SE) for 6 habitat variables selected a priori between precommercially thinned stands (n = 18) and 
unthinned reference stands (n = 13) in northern Maine, 2000-2001. Differences in means by treatment for each variable were tested 
using two-way Analysis of Variance; non-transformed means and standard errors are pesented for transformed variablesr. 

Treatment 

F-Statistic 11.171 8.417 1.321 1.900 12.351 5.928 
P-value 0.003 0.009 0.261 0.180 0.002 0.022 

PCT (n = 18) 12.7 (0.4) 74.68 (2.85) 400,398 (47,545) 1,531 (132) 20.19 (0.99) 3,376 (507) 
No PCT (n = 13) 10.5 (0.2) 81.35 (2.17) 279,865 (56,379) 2,038 (172) 26.1 1 (2.09) 2,397 (676) 

' ~hinnin~-c lass~  . 

F-Statistic 2.521 3.672 0.070 1.553 1.623 9.248 
P-value 0.101 0.040 0.933 0.23 1 0.217 0.00 1 

1-year (n = 11) 10.6 (0.3) 69.87 (5.07) 323,563 (74,625) 1,946 (257) 20.49 (1.8 1) 1,642 (27 1 ) 
6-year (n = 1 1 ) 1 1.9 (0.7) 75.1 (2.4) 301,463 (42,658) 1,602 (121) 2 1.4 (2.7) 5,028 (990) 

\O 
4 

'1 1-year (n = 9) 12.0 (0.5) 82.13 (3.18) 376,191 (89,445) 2,063 (157) 24.32 (1.45) 2,125 (429) 
Treatment x 

thinning, class 
F-Statistic 6.256 0.767 0.639 1.61 1 0.587 3.619 

P-value 0.006 0.439 0.566 0.220 0.563 0.042 
'DBH and UNDERSTORY were log transformed prior to analysis. 
~ B H  = average diameter breast height (cm) of closest tree (2 7.6 cm dbh, 1 2 m height, > 45" from horizontal, alive) in each quarter. 

CANOPY = average overhead percent canopy closure during summer. 
d~~~~~~~ = number of herbaceous ground stems (< 0.5 m height, < 7.6 cm dbh, alive) per ha. 
TOTDEBRIS = number of (snags + logs + stumps + root masses) per ha. 
' TOTBA = Basal area of hardwood trees + softwood trees + snags (m2/ha). 
'UNDERSTORY = total number of understory stems (number of saplings (5 7.6 cm dbh, alive) at 1.5 m height per ha. 
h~tands in the 1-year thinning class include stands (n = 6) that were treated with PCT in 1999 and similar unthinned stands (n=5). Stands in the 6-year thinning 
class include stands treated with PCT (n = 6) in 1994-1995 and similar unthinned stands (n = 5). Stands in the 1 1-year thinning class include stands (n = 6) that 
were treated with PCT 1989-1991 and similar unthinned stands (n = 3). Unthinned stands had similar years of clearcut and herbicide, and similar site quality to 
comparable PCT stands. 



Table 3.5. Comparisons (one-way ANOVA) of mean (SE) values for 6 habitat variables across 4 thinning classes%ased on years 
since precommercial thinning within 24 herbicided, regenerating clearcut stands treated with PCT in northern Maine. Non- 

I transformed means and standard errors are presented for transformed variablesb. 
I 

I 
I 

I Factor D B H ~  cANOpyd HGSTEM~ TOTDEBRIS' TOTBA~ UNDER STORY^ 
Thinning 

1 

class 

1 aStand~ in the 1-year thinning class include stands (n = 6) treated with PCT. Stands in the 6-year thinning class include stands treated with PCT (n = 6) in 1994- 
1 1995. Stands in the 1 1-year thinning class include stands (n = 6) treated with PCT 1989-1991. Stands in the 16-year thinning class include stands (n = 6) treated 

with PCT in 1984-1986. 
DBH and UNDERSTORY were log transformed and CANOPY was arcsine transformed prior to analysis. 

C DBH = average diameter breast height (cm) of closest tree (2 7.6 cm dbh, 2 2 m height, > 45" from horizontal, alive) in each quarter. 
1 * CANOPY = average overhead percent canopy closure during summer. 

HGSTEMS = number of herbaceous ground stems (< 0.5 m height, < 7.6 cm dbh, alive) per ha. 
I 
I 

TOTDEBRIS = number of (snags + logs + stumps + root masses) per ha. 
TOTBA = Basal area of hardwood trees + softwood trees + snags (m2/ha). 

I h UNDERSTORY = total number of understory stems (number of saplings (1 7.6 cm dbh, alive) at 1.5 m height perha. 



DISCUSSION 

PCT positively affected or produced no detectable effect on abundances of the 4 

most common species of voles, mice, and shrews on my study areas. From 1- 1 1 years 

post-thinning, the abundances of red-backed voles and masked shrews were greater in 

stands treated with PCT and abundances of deer mice were not significantly affected by 

thinning. A trend of greater abundances of short-tailed shrews in stands treated with PCT 

was evident; however, high variation between stands and low abundances likely 

prevented statistical differences for that species. Short-tailed shrews, red-backed voles, 
0 

and deer mice exhibited large inter-annual variation. Despite substantial annual variation 

in densities within treatments, abundances of deer mice increased with thinning class 

within regenerating conifer stands in northern Maine. 

Reducing competition among crop trees via precommercial thinning accelerated 

stand development in regenerating clearcut stands with a prior history of gylphosate 

application. Stands treated with PCT acquired some attributes of more mature forest 

(without PCT) such as greater stem diameters, diverse understories, and a more broken 

canopy layer. The silvicultural response of forest stands treated with PCT was consistent 

with previous reports (Brissette et al. 1999, Brissette and Frank 1999, Lindgren and 

Sullivan 2001, Sullivan et al. 2001, Pothier 2002); significant increases in dbh of trees, 

canopy density, and basal area were observed from 1 to 16 years post-treatment. 

The acceleration of stand development that occurs within PCT-treated stands was 

favorable or neutral for common species of small mammals in the Acadian forest. By 

producing stands containing some characteristics of more mature forest (broken canopy, 

larger stem diameters), PCT has the potential to increase heterogeneity of forest stand 



conditions across the mid-successional dominated landscapes that presently occur 

throughout much of the Acadian forest (Maine Forest Service 1998). As forest rotations 

associated with intensive management become increasingly shorter, the acceleration of 

mature stand conditions via PCT across significant portions of the forest landscape could 

help mitigate some effects of intensive silviculture on small mammals. 

Within-stand habitat structure 

I observed larger trees, a more open canopy, and more understory stems in stands 

treated with PCT. The growth of overstory trees and temporary opening of the overstory 

layer that occurred from 1-6 years post-thinning produced within-stand habitat 

characteristics more typical of conifer stands in later seral stages, when compared to 

unthinned stands. Penetration of sunlight allowed understory stems to flourish 

temporarily from 1-6 years post-treatment, but by 1 1 -years post-PCT understory stem 

density had declined. Advanced regeneration was released initially from competition and 

shading in thinned stands; however, a delayed self-thinning response occurred from 6-1 1 

years post-thinning. 

Coarse woody debris has often been touted as an element of forested stands that is 

necessary to maintain small mammal communities. Downed and dead woody material 

has been suggested to provide subnivian access in winter, habitat for invertebrates, escape 

cover from predators, growing surface for fungi, and to mediate microclimate by 

retaining moisture (Hamilton 194 1, Hayes and Cross 1987, Hagan and Grove 1999, 

Fraver et al. 2002). The total density of logs, snags, stumps, and root masses did not 

differ between thinned and unthinned stands, or among thinning classes of stands; 

however, 16-year post-PCT stands had less CWD than 1 1 -year post-PCT stands, 



suggesting that CWD may be lost to decay but not recruited in PCT stands after I I-years 

post-thinning. Many of the highest small mammal numbers were observed in thinned 

stands, and especially in the 16-year stands, indicating that CWD may not be limiting 

from the perspective of forest-dwelling voles, mice, and shrews in regenerating clearcuts 

or in intensively managed stands. This finding is consistent with other studies in Maine, 

which have detected few strong relationships among abundances of small mammals and . 

CWD throughout a range of forest types, thinning classes, and harvesting regimes 

(Lachowski 1997, Fuller 1999, S. Billig, In prep.). 

Red-backed voles 

Red-backed voles have been reported to have ecological relevance as indicators of 

late successional forest, because their greatest densities often occur in mature or over- 

mature stands (Martell 1983b, Nordyke and Buskirk 1991). Contrary to those results, 

voles were abundant across three thinning classes of mid-successional stands in the 

Acadian forest and I observed no significant effect of thinning class on abundances. 

Greater abundances of voles were observed in stands treated with PCT; additionally, the 

proportion of female voles lactating on thinned stands was not detectably different than 

the proportion lactating on unthinned stands, indicating that habitat quality for voles may 

have been comparable between treatments. Red-backed voles were the most common 

species of small mammal within stands 14-33 years post clearcutting (13-24 years post- 

herbicide treatment). Therefore, the mesic conifer-dominated Acadian forest may 

accumulate habitat characteristics typical of mature forest more rapidly than in conifer 
. . . . .. 

stands of Ontario (Martell 1983b) and the central Rocky Mountains (Nordyke and 

Buskirk 1991). Abundance of red-backed voles in PCT stands temporarily declined at 6- 



years post-treatment, which coincided with the greatest density of understory stems 

(Table 3.4, 3.5). These results are inconsistent with findings from Wyoming, where 

understory cover was positively associated with abundance of red-backed voles in conifer 

stands of various successional stages (Nordyke and Buskirk 1991). 

Deer mice 

Deer mice are widely considered a habitat generalist and have been reported to 

respond positively to reduction of the forest overstory following clearcut harvesting 

(Martell and Radvanyi 1977, Martell 1983a, Martell 1983b, Morrison and Anthony 1988, 

Kirkland 1990, Sullivan et al. 1999). However, previous studies have indicated that deer 

mice exhibit little response to PCT of conifer stands (Lautenschlager et al. 1997, Sullivan 

et al. 2001). Consistent with previous research, I observed that abundances of deer mice 

were similar among PCT-treated and unthinned stands on my study areas. The greatest 

abundance of deer mice was observed in the 11 year thinning class, which, pooled across 

years, was 1 S6x  greater than the 6-year and 1 . 4 0 ~  greater than the l-year thinning 

classes. Further, across the 4 classes of stands treated with PCT, the 16-year post-PCT 

stands had the greatest numbers of deer mice in both 2000 and 2001. The positive effects 

of thinning class on numbers of deer mice were consistent between years of sampling 

despite a nearly 4-fold increase in total number of individuals from 2000 to 2001. These 

observations that populations of deer mice on my study area reached their greatest 

densities in older stands indicate that attributes of stand maturity may have had a greater 

influence on densities of deer mice than PCT. Previous investigations of forest-dwelling 

small mammals have also detected greater abundances of deer mice in older stands than 

in regenerating stands in the-commercial forests of Maine (Lachowski 1997, Fuller 1999). 
- .  



Although densities of adult female deer mice were sinlilar between thinned 

(averaged 2.3lgrid) and unthinned conifer (averaged 1 -7Igrid) stands, a greater proportion 

of adult female deer mice were lactating in unthinned stands compared to similar PCT- 

treated stands. Reproductive output of deer mice may have been affected by treatment; 

deer mice often have aggressive intra-specific interactions (Martell 1983a), which may 

lead to subordinate, non-reproductive individuals occupying areas with lower habitat 

quality (Van Home 1983). The observed difference in lactation rates of adult female deer 

mice between thinned and unthinned stands suggest that habitat quality could be greater 

in stands without PCT; however, additional information on survival and reproductive 

success is necessary to evaluate this hypothesis. 

Short-tailed shrews 

Short-tailed shrews did not significantly respond to thinning from 1-1 1 years post- 

treatment or to thinning class, either pooled across treatments or within only the PCT- 

treated stands from 1- 16 years after thinning. However, small numbers of individuals 

capturedlgrid in addition to large variation of abundances of short-tailed shrews between 

grids, may have precluded my detection of a positive effect of PCT. B. brevicauda are 

reported to reach their greatest densities in stands with complex understories with 

abundant herbaceous vegetation (Miller and Getz 1977, Brooks and Healy 1988, Healy 

and Brooks 1988, Kirkland 1990), which may be related to positive associations between 

insects and diversity of plant species and structure (Murdoch et al. 1972). Although 6- 

year stands had the greatest density of herbaceous vegetation, I did not detect greater 

abundances of shrews in those stands, which suggests that prey was distributed evenly 

among treatment and thinning classes, or was not limiting across all sites. Abundance of 



short-tailed shrews in my study areas was likely related to sub-stand scale attributes other 

than those that are associated with thinning. The changes in forest structure that occur 

after thinning and with stand maturation apparently do not exert a strong influence on 

relative abundance of B. brevicauda. 

Masked shrews 

PCT produced positive and long-lasting effects on the relative abundance of 

masked shrews in regenerating conifer stands in northern Maine. Number of captures 

were 4.38 and 10.2 1x greater in stands treated with PCT than similar unthinned stands up 

to 1 1-years post-treatment when data were pooled across thinning classes. In contrast to 

the greater numbers of masked shrews that I observed in thinned versus unthinned stands, 

combined densities of masked shrews and pygmy shrews (Sorex hoyi) were similar 

among herbicided stands and stands thinned with brush-saws (but not herbicided) 1-2 

years post-treatment in Ontario (Lautenschlager et al. 1997). Application of herbicide 

has substantial and long-lasting effects on composition and abundance of tree species 

within stands (Newton et al. 1989, Daggett and Wagner, In prep.); therefore, 

inconsistencies reported between this study and results reported from Ontario likely 

resulted from the application of either herbicide or PCT, but not both treatments on study 

sites in Canada. 

The positive effects of PCT on masked shrews that I observed suggests that 

microhabitat structure associated with thinning enhances abundance of masked shrews 

across a range of thinning classes, from 1 to 1 1-years post-thinning. Herbaceous 

vegetation often flourishes after PCT (Hurst et al. 1982, Bell et al. 1997, Thomas et al. 

1999, Lindgren and Sullivan 2002), because opening of the canopy allows sunlight to 



reach the forest floor. Dense herbaceous vegetation may have provided cover to shrews, 

supported greater densities of foliar-insect prey (Murdoch et al. 1972), or been associated 

with moister microclimate (Miller and Getz 1977). 

CONCLUSIONS 

Small mammals had species-specific responses to both PCT and stand 

development, which complicates prescriptions of forest management activities to increase 

densities and diversity within small mammal communities. These results indicate that 

PCT, across an 1 1-year range since treatment, positively or neutrally affects the 

abundance of the 4 most common species of small mammals (red-backed voles, deer 

mice, short-tailed shrews, masked shrews) in the commercial forests of northern Maine. 

Greater abundances of red-backed voles and masked shrews occurred in stands treated 

with PCT than in unthinned stands, from 1 to 11-years post-treatment, whereas deer mice 

and short-tailed shrews did not appear to be affected by PCT. Thinning increased or 

maintained overall abundances of forest-dwelling small mammals across a range of years 

since treatment, suggesting that PCT produces positive and long-term responses within 

the small mammal community. However, lactation rates for deer mice were lower in 

thinned stands. Additionally, several habitat attributes (e-g. basal area, dbh, canopy 

closure) that are positively associated with degree of stand maturity were greater in 

stands treated with PCT than in unthinned stands. 

Additional to attaining silvicultural and economic objectives, forest managers 

may be able to increase the abundance of small mammals a c s s  commercial forest - J 
landscape via PCT. An increase in the number of small mammals could also have 

- positive effects on other trophic levels, including forest-dependent predators, such as 



American Marten (Marres americana) (Lachowski 1997) if other structural requirements 

for denning, rest sites, escape cover (Buskirk 1984, Payer and Harrison 2000), and 

subnivian access (Sherbume and Bissonette 1994) are present. Increased rates of stand 

development associated with PCT may help compensate for the short rotations (< 60 

years) commonly applied to intensively managed stands in the Acadian forest (Seymour 

and Hunter 1992). Maintaining significant portion of the landscape in PCT, however, 

may involve trade-offs for early-successional dependent forest mammals such as 

snowshoe hare (Sullivan arid Sullivan 1988, Chapter 2) and their predators (e-g. Canada 

lynx (Lynx canadensis)). Although this study evaluated stand-scale effects of PCT, 

broader landscape-scale evaluations of PCT are needed to reconcile silvicultural 

objectives with desired balances between conflicting habitat needs of early ( e g  

snowshoe hare) and mid-successional (e.g. red-backed voles, masked shrews) wildlife 

species. 
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CHAPTER 4 

HABITAT AND STRUCTURAL DIFFERENCES BETWEEN 

PRECOMMMERCIALLY THINNED AND UNTHINNED CONIFER STANDS: 

IMPLICATIONS FOR WILDLIFE 

ABSTRACT 

Effects of precommercial thinning (PCT) in young, high-density forest stands on 

the growth and yield of crop trees has been well-studied, but effects on habitat 

characteristics, structural attributes, and wildlife populations is lacking. I examined the 

dominant changes in habitat characteristics and forest structure that occur with PCT and 

stand development in commercial spruce-fir stands within the Acadian forest of northern 

Maine. I selected 30 regenerating, herbicide-treated conifer stands (17 treated with PCT) 

of 3 thinning classes (1, 6, or 1 1 -years) in 6 townships and measured 27 variables that 

described the characteristics and structure of the understory, overstory, woody debris, or 

ground cover on 20 circular plots per stand. I conducted a two-way Analysis of Variance 

(ANOVA) on the stand-scale means of each habitat variable to examine for the effect of 

treatment (treated with PCT or unthinned) or thinning class (1,6, or 1 1-years). Variables 

with a F-statistic > 2:0 for either main effect were retained for inclusion into a principal 

components analysis (PCA). Two separate PCAs were conducted; 1 included variables 

that differed by treatment, and 1 included variables that differed among thinning classes. 

Changes in vegetation structure that occur with PCT were described by 3 principal 

components, which accounted for > 80% of the variation: near-ground cover, overstory 

cover, and understory structure. Horizontal cover, an overstory to understory contrast, 

and a gradient of herbaceous vegetation described differences in habitat and forest 
. . 



structure among thinning classes; these components described > 75% of the variation that 

occurred with development of forest stands. The application of PCT accelerated some 

c aracteristics of stand development, resulting in a reduction of understory structure and 1! 
complexity. However, PCT and the shorter rotations associated with intensively 

managed stands may reduce recruitment of logs and coarse woody debris (CWD). 

Species-specific responses of wildlife will likely be associated with the changes in forest 

structure that occur with PCT and stand development; species that are associated with 

early successional habitat, including snowshoe hare (Lepus americanus) and shrub- 

nesting songbirds, have been documented to respond negatively to thinning. Other 

forest-wildlife associated with more mature forest, however, such as red-backed voles 

(Clethrionomys gapperi), and perhaps spruce grouse (Falcipennis candadensis), may 

increase their densities following PCT. 

INTRODUCTION 

Precommercial thinning (PCT) of overstocked, regenerating conifer stands has 

been practiced increasingly in Maine and other jurisdictions within the Acadian forest of 

eastern North America (Maine Forest Service 1994-2001, Canadian Council of Forest 

Ministers 2002) to reduce competition, increase growth rates, and to shorten rotation 

length. In the late 1980's, forest landowners thinned about 2,400 hectares of densely 

stocked, regenerating clearcuts each year in Maine; by 2000 the total acres of land treated 

with PCT each year had risen to > 8,100 hectares a year, or 3.5% of the total silvicultural 

activity for the state (Maine Forest Service 2000-2002). The eastern Maritime Provinces 

of Canada have also experienced large increases in the land area treated with PCT; from 

1990 to 2000 the acreage treated with PCT each year increased by 2.5-fold in Nova 



Scotia, 2.7-fold in New Brunswick, and 4.3-fold in Quebec (Canadian Council of Forest 

Ministers 2002). Although the application of PCT to regenerating clearcuts has increased 

across the commercial forest landscape of the Acadian forest, the ecological effects of 

PCT on structural attributes of forest stands and the potential influences of structural 

changes on forest-dependent wildlife have been studied little. 

The silvicultural response of crop trees to PCT have been well-documented; 

thinning increases stem diameters (Harrington and Reukema 1983, Ker 1987, 

McCormack and Lemin 1998, Brissette and Frank 1999, Brissette et al. 1999, Pothier 

2002), increases crown size (McCormack and Lemin 1998, Brissette and Frank 1999, 

Brissette et al. 1999, Lindgren and Sullivan 2001, Sullivan et al. 2001), decreases 

mortality of crop trees (Ker 1987, Brissette and Frank 1999, Brissette et al. 1999), 

increases merchantable volume (Ker 1987), and may reduce rotation length (Sullivan et 

al. 2001). In contrast, the immediate and long-term ecological changes in habitat 

characteristics and forest structure that are associated with PCT of overstocked conifer 

stands are poorly understood. Most studies of structural and habitat changes associated 

with PCT have focused on short-term (1-3 years post-treatment) changes in understory 

and overstory characteristics and have been conducted on stands that were thinned, but 

not previously treated with herbicide (Bell et al. 1997, Sullivan and Lindgren 2001), 

which is a general practice throughout much of the Acadian forest. The application of 

herbicide several years before thinning likely has strong effects on overstory and - .  

understory responses to subsequent PCT (Dagget .. and Wagner In prep.). Understanding 

the long-term changes in forest overstory and understory structural attributes and habitat 

characteristics that occur after PCT of conifer stands is a prerequisite to evaluating 



biological consequences, to making informed forest management decisions, and to 

establishing ecological policies. 

Manipulation of stem densities in regenerating clearcut stands may have negative 

consequences for species associated with early successional habitat (Hayes et al. 1997). 

In contrast, PCT of regenerating stands may diversify second and third growth forests by 

more rapidly producing stands with characteristics of forest in later sera1 stages (Carey 

and Johnson 1995, ~ a ~ e s ' e t  al. 1997, Sullivan et al. 2001). The objectives of this study 

were to describe the biological changes across a range of intervals since treatment, in 

habitat characteristics and structural attributes between PCT and non-PCT treated 

clearcuts with a previous history of herbicide treatment in northern Maine. Instead of 

focusing on diversity of plant species after thinning (Thomas et al. 1999, Lindgren and 

Sullivan 2001), the goal of this effort was to describe structural attributes relevant to 

predicting responses of forest-dependent wildlife to PCT and to stand development in 

herbicide-treated clearcuts. 

STUDY AREA 

The study area was located within the matrix of commercial, mixed northern 

hardwoods-spruce-fir forest of northern Maine. I sampled 30 stands distributed across 6 

townships in northern Maine, which spanned 102 km east to west and 49 km north to 

south. Stands were located in the town of Hersey, T4 R 11 WELS, T 5 R 11 WELS, T4 

R 12 WELS, T1 R 13 WELS, and Spencer Bay. These townships were extensively 

clearcut-harvested during and following the spruce-budworm outbreak of the 1980's and 

many clearcuts were treated with an aerial herbicide to promote softwood regeneration. 

Great Northern Paper Company, Millinocket, Maine; Plum Creek Timber, Fairfield, 



Maine; and International Paper Company, Costigan, Maine managed those townships for 

pulpwood and timber production. The study area receives abundant precipitation (101 

cm annually), with an average of 276 cm falling annually as snowfall, and seasons 

include mild summers (July mean maximum = 25" C) and cold winters (January mean 

minimum = -1 9" C) (Garoogian 2000). 

I sampled stands that had been clearcut (timber harvesting resulting in residual 

basal area of acceptable growing stock trees > 4.5 in. dbh of c 30 ft2/acre) 1968-1982, 

treated with an aerial herbicide (e.g. Glyphosate at =: 1.68 kglha acid equivalent) 1982- 

1988, and either precommercidly thinned with brush-saws 1989-1999 (n = 17) or 

unthinned (n = 13) (Table 4.1 ). Balsam fir (Abies balsamea), red spruce (Picea rubens), 

and black spruce (Picea nigra) were the dominant tree species, but stands also had small 

components of white pine (Pinus strobus), larch (Larix spp.), white cedar (Thuja 

occidentalis), paper birch (Betula papyrifera), quaking aspen (Populus tremuloides) and 

red maple (Acer rubra). Chapter 2 contains a more detailed description of the study sites. 

METHODS 
. . 

Stands were selected based on stand history, size, spatial independence, and site 

quality. I selected stands that were > 8 ha in size (median = 22.2 ha, range 8.5-74.3 ha) 

and were separated from each other by > 0.40 krn. Site qudity was estimated based on 4 

to 6 soil cores sampled at 50-100 m intervals within each stands with a soil auger to avoid 

confounding effects of site quality affecting the rate of development (Briggs and Lemin 

1994). I assigned a site quality value to each stand ranging from 1 (highly productive) to 

5 (unproductive) based on Brigg's (1994) scale of forest productivity. 



Table 4.1. Stand history, location, and site quality for 17 precommercially thinned (PCT) 
stands and 13 unthinned stands in northern Maine that were sampled for structural 
attributes and habitat characteristics. (T = stand treated with PCT, C = untreated stand). 
Site quality ranged from 1 (well drained, productive) to 5 (poorly drained, unproductive) 
according to Briggs (1 994) classification guidelines. 

Site Year of Year of Year of Township Site 
number Clearcut Herbicide PCT Quality 

1 - 1 -T 1982 1988 1999 T 4 R  11 4+ 
1 -2-T 1980 1983 1999 T4R 12 3- 
1 -3-T 1977 1983 1999 T4R 11 4+ 
1 -4-T 1982 1988 1999 T4R 11 4 
1 -5-T 1976 1983 1999 T4 R 12 4 
6- 1 -T 1979 1988 1994 Hersey 3+ 
6-2-T 1979 1988 1994 Hersey 2- 
6-4-T 1974 1982 1994 T 5 R  11 3- 
6-5-T 1976 1985 1995 T 5 R  11 3 - 

1 1-2-T 1968 1987 1990 Spencer Bay 3 - 
1 1-3-T 1975 1983 1989 T l R 1 3  2- 
1 1 -4-T 1975 1986 1990 T l R 1 3  3 
1 1-5-T 1975 1983 1989 T l R 1 3  2 
1 1-6-T 1975 1984 1991 T l R 1 3  2- 
1 1-7-T 1975 1986 1989 Spencer Bay 2- 
1-1-C 1982 1988 n/a T 4 R  11 4 

6- 1 -C 1979 1988 n/a Hersey 3+ 
6-2-C 198 1 1988 n/a Hersey 3+ 
6-4-C 1974 1982 n/a T 5 R  11 4 
6-5-C 1974 1985 n/a T 4 R  12 3 
6-6-C 1976 - 1983 n/a T 4 R 1 1  4 



The study design included 17 PCT-treated stands that were sampled for habitat 

characteristics and structural attributes at 5 year intervals (1-2 year post thinning, n = 5; 

5-7 years, n = 5; 9-12 years, n = 7) and 13 similar unthinned stands (I year, n = 5; 6 year, 

n = 5; 1 1 year, n = 3) whose year of clearcut and herbicide treatment were comparable to 

treatment stands. I allowed 1-2 years of latitude in separating stands into thinning 

classes to maximize the number of stands studied. The ratio of PCT-treated to unthinned 

stands in the 1 1-year thinning class was unbalanced because I was unable to locate more 

than 3 unthinned stands that met my criteria of similar site quality, year of clearcut, and 

year of herbicide-treatment. Treatment stands were paired with an unthinned stands with 

similar site quality, year of clearcut and year of herbicide to avoid gross biases arising 

from temporal variation in years of treatment. Stands were not statistically paired and 

were not treated as paired during analyses. 

Habitat sampling 

Vegetation structure was measured on 20 fixed-area nested plots centered on 4, 

400 m transects separated by 65 m and located > 50 m from stand edges (Chapter 2). I 

centered 5 plots per 400 m of transect at random locations along the transects and 

distributed plots in a stratified-random design. I used 25 m2 circular plots within thinned 

stands and 10 m2 circular plots within unthinned stands to sample approximately the 

same number of crop trees, and to maximize number of sample plots across varying stand 

densities. Within each plot I measured 27 habitat variables to describe the structure of 

the overstory, understory, woody debris, or ground-level herbaceous vegetation. 

Within each plot, I counted the number of coniferous and deciduous overstory 

trees (2 7.6 cm dbh, > 1.0 m height, alive) and measured the diameter breast height (dbh), 



total height, and the height from the ground to the lowest living branch. Heights were 

measured using a telescoping height pole. I calculated the live crown ratio of overstory 

trees as the [(total height - height to crown) / total height]. I also measured the number, 

type (coniferous or deciduous), dbh, total height, and height to crown for all understory 

stems (< 7.6 cm dbh, >1 m height, alive) within the plot and calculated the average live 

crown ratio of the understory. The number of stem cover units (SCU) was computed by 

summing the number of coniferous understory stems x 3.0 plus the number of deciduous 

understory stems (Litvaitis et al. 1985). 

I counted the number and type (coniferous or deciduous) of woody, regenerating 

stems (2 0.2 m, < 1 .O m, alive) on a 1 .O-m diameter nested subplot that was centered 

within each of the 20 plotsfstand. The density of stemslha in each stands was calculated 

by summing the total number of regenerating stems, understory stems, and overstory 

stems and dividing by the number of ha sampled within each stand. The percent of 

ground covered by grass and forbs, moss, rock, vegetative litter, and other vegetation was 

also visually estimated in the 1 .O-m subplot. 

Horizontal vegetation cover was quantified with a 2.0 m cover pole with 

alternating 0.1 m red and white bands. Following a random compass bearing separated 

by 180°, the distance to horizontal cover was measured from the center point as the 

distance where 2 25 % of all red and white bands were visually obstructed. I estimated 

the number and volume of downed logs with a modified version of the planar intersection 

method used by Payer and Harrison (2000). I established a 20-m randomly oriented 

transect with the midpoint at the center of each sampling station. I quantified the number 

of logs that crossed the transect and were 2 1.0 m length, 2 7.6 cm diameter (at the point 



of intersection), and 145" from the ground. Only sound to moderately decayed logs 

were considered, so that extremely decayed logs were excluded from sampling. 

Overhead canopy cover was measured with a spherical densiometer; 4 readings in the 4 

cardinal compass directions at 1.0 m height (estimated height of mid-winter snowpack) 

were taken at the center of each plot and averaged to a single value for each plot (Lemon 

1956). 

Statistical analyses 

Analysis of variance 

I calculated an average value for each habitat variable within each stand and 

treated the stand as the unit of replication. Residual errors of each variable were 

examined for normality and homoscedasticity across stands and I transformed all non- 

normal data (modified Levene's test < 0.10 andlor Lilliefor's test < 0.10) with log,, 

square root, or cube root transformations to meet the parametric assumptions of analysis 

of variance (ANOVA) (Neter et al. 1996). Next, I conducted a two-way ANOVA on the 

means of each habitat variable with treatment (PCT or unthinned) and thinning class (1, 

6, or 1 l-years post-treatment) as the main effects. Post hoc, Tukey's honestly significant 

difference tests were used to examine pairwise differences among thinning classes of 

habitat variables with significant thinning class effects (Zar 1999). 

Principal components analysis 

I eliminated all habitat variables with a F-statistic < 2.0 for treatment (PCT or 

unthinned) or for thinning class (1'6, or 1 l-years) from further analyses; however a large 

number of variables had significant treatment or thinning class effects based on this 

initial screening procedure. High dimensionality of large and complex multivariate data 



sets causes interpretation of results to be difficult (McGarigal et al. 2000). To reduce the 

dimensionality of the habitat variables, I conducted 2 separate principal component 

analyses (PCA) to describe the variation in habitat structure between treatments and 

thinning classes: I) habitat variables that differed between thinned and unthinned stands, 

and; 2) habitat variables that differed among the 3 thinning classes of stands, regardless 

of thinning history. PCA is an ordination technique that creates new components that are 

linear combinations of original variables. These linear combinations of variables, or 

components, maximize variation among observations in ordination space to more 

simplistically explain the data with a smaller number of variables. 

I included normally distributed (e.g. transformed when necessary) habitat 

variables for each stand that were standardized by subtracting the mean and dividing by 

the standard deviation of that variable to the PCA. Standardization of variables was 

required because the scales of measurement differed among structural variables and this 

prevents dominance by variables with large variation (Pielou 1984). After computing the 

principal components, I used scree plots, relative variance criterion, and the latent root 

criterion to determine how many components to retain (McGarigal et al. 2000). For both 

analyses, I used a varimax rotation to aid in interpretation of loadings and components. I 

examined rotated factor loadings to interpret and provide biologically relevant names for 

the principal components. Variables with loadings (after rotation) of > 0.60 or < -0.60 

were considered to have strong effects on that component; these thresholds roughly 

correspond to variables that account for about 40% of the variance in the component 

(Tabachnik and Fidell 1983, McGarigal et al. 2000). Ordination diagrams using the first 



3 components from each analysis were constructed with Gaussian confidence ellipses for 

the sample (P = 0.70) (SPSS 1997). 

RESULTS 

Analysis of variance 

Fourteen of 27 habitat variables that I measured differed between thinned and 

unthinned stands (F > 2.0); however, those showing the greatest differences in magnitude 

were stem cover units, total number of understory stems, total number of stems, and the 

number of logs, which were 3.8,2.9,2.2, and 2.2 times greater in unthinned stands, 

respectively. Other variables that differed between treatment types were the understory 

height, understory height to crown, understory live crown ratio, average dbh of the 

understory, number of understory conifer stems, total number of overstory stems, log 

volume, average dbh of the overstory, canopy density, and the horizontal vegetation 

distance (Table 4.2). 

Twelve of 27 habitat variables differed among the thinning classes (F > 2.0). 

These included the average dbh of understory stems, the height of understory stems, the 

number of deciduous understory stems, the total number of understory stems, the average 

dbh of overstory stems, the height of overstory stems, the total number of overstory 

stems, the total stem density, the percent ground cover of grass and forbs, the percent 

ground cover of other herbaceous vegetation, the number of logs, and the log volume 
. . 

(Table 4.3). In general, the dbh and height of understory trees and overstory trees were 

greatest in the 1 I-year stands (P < 0.10). The greatest number of deciduous understory 

stems and total stem density occurred in the 6-year thinning class (P < 0.10). I observed 



Table 4.2. The effect of treatment (PCT vs. unthinned) on mean (SE) values of 27 habitat variables sampled within 17 
precornmercially thinned stands and 13 unthinned reference stands with a previous history of clearcutting followed by herbicide 
(Glyphosate) application in northern Maine. Non-transformed means and standard errors are presented for transformed variables. 
Comparisons yielding a calculated F-statistic 2 2.0 are depicted in bold. 

Overstory Type 
Variable Transformation F P PCT Unthinned 

Average dbh of understory stems (cm) 11.545 0.002 3.2 (0.1) 3.8 (0.1) 
Height of understory stems (m) 

Height to crown of understory stems (m) 
Live crown ration of understory stems (value from 0-1 .O) 

Number of understory conifer stems (#/ha) 
Number of understory deciduous stems (#/ha) 

Total number of understory stems (#/ha) 
Stem cover units (#/ha) 

Average dbh of overstory stems (cm) - 
14 Height of overstory stems (m) 
P Height to crown of overstory stems (m) 

Live crown ratio of overstory (value from 0-1 .O) 
Number of overstory conifer stems (#/ha) 

Number of overstory deciduous stems (#/ha) 
Total number of overstory stems (#/ha) 

Number of coniferous regenerating stems (#/ha) 
Number of deciduous regenerating stems (#/ha) 

Total number of regenerating stems (#/ha) 
Total number of stems (#/ha) 

Percent ground cover of grass and forbs (%) 
Percent ground cover of rock (9%) 
Percent ground cover of litter (%) 

Percent ground cover of other herbaceous vegetation (%) 
Horizontal vegetation distance (m) 

Number of logs (#Itransect) 
Log volume (m3/transect) 

Ln 
Ln 
Ln 
Ln 
Ln 

Ln 

Ln 
Square root 

Ln 

Ln 
Cube root 

Canopy density (%) 2.447 0.131 78.2 (2.5 j 84.1 (2.8) 



Table 4.3. The effect of thinning class (1-year, 6-year, or 1 1-year) on mean (SE) values of 27 habitat variables sampled within 17 
precornrnercially thinned stands and 13 unthinned reference stands with a previous history of clearcutting followed by herbicide 
(Glyphosate) application in northern Maine. Non-transformed means and standard errors are presented for transformed variables. 
Comparisons yielding a calculated F-statistic 2 2.0 are depicted in bold. 

Variable 
Thinning Class 

Transformation F P 1 -year 6-year 1 1-year 

Average dbh of understory stems (cm) 
 eight of understory stems (m) 

Height t i  crown of understory stems (m) 
Live crown ration of understory stems (value from 0-1.0) 

Number of understory conifer stems (#/ha) 
Number of understory deciduous stems (#/ha) 

Total number of understory stems (#/ha) 
Stem cover units (#/ha) 

Average dbh of overstory stems (cm) 
Height of overstory stems (m) 

Height to crown of overstory stems (m) 
Live crown ratio of overstory (value from 0- 1 .O) 

Number of overstory conifer stems (#/ha) 
Number of overstory deciduous stems (#/ha) 

Total number of overstory stems (#/ha) 
Number of coniferous regenerating stems (#/ha) 
Number of deciduous regenerating stems (#/ha) 

Total number of regenerating stems (#/ha) 
Total number of stems (#/ha) 

Percent ground cover of grass and forbs (%) 
Percent ground cover of rock (%) 
Percent ground cover of litter (%) 

Percent ground cover of other herbaceous vegetation (%) 
Horizontal vegetation distance (m) 

Number of logs (#Itransect) 
Log volume (m3/transect) 

Ln 
Ln 
Ln 
Ln 
Ln 

Ln 

Ln 
Square root 

Ln 

Ln 
Cube Root 

canopy density (%) 0.588 0.563 78.8 (3.2) 80.7 (3.2) 83.9 (3.4) 



the greatest total number of overstory stems in the 1 I -year stands. Measures of logs were 

greater in the I-year thinning class than the 1 I-year thinning class (P < 0.10) and 

herbaceous vegetation other than grass and forbs was greatest in 6-year stands. 

Four variables, the average dbh of understory stems, the number of deciduous 

understory stems, the live crown ration of understory stems, and the number of 

coniferous regenerating stems had significant (F-statistics > 2.0) treatment x stand- 

thinning interactions. This study was not designed with adequate sample sizes to 

describe the complex interactions between treatment and thinning class; therefore, 

variables with significant interaction terms were excluded from PCA models. 

Principal components analysis 

Three principal components described 83.2 % of the variability of the habitat data 

between thinned and unthinned stands (Table 4.4). The first Principal component (PC 1) 

in this analysis included positively loaded variables that described the density of the 

understory and downed woody structure and negatively loaded variables that were 

associated with sparse understory cover (labeled "near-ground cover"). PC2 included 

positively loaded variables (> 0.60) that described overstory structure and cover (labeled 

"overhead cover"). The third principal component (labeled "understory structure") was 

positively associated with understory height and the dbh of the understory. Principal 

components 4 - 14 had eigenvalues < 1.0 and contributed little (< 18 % of variation 

Ordination diagrams for this analysis portrayed that the greatest differences in forest 

structure between thinned and unthinned stands occurred with near-ground cover, and 

greater similarity between treatments was evident with overhead cover and understory 

structure (Figure 4.1). 



Table. 4.4. Loadings of stand-scale habitat variables that separated thinned and 
unthinned regenerating conifer stands (n = 30) into 3 principal components after varimax 
rotation. Habitat variables were sampled within 30 forest stands (17 precommercially 
thinned, 13 unthinned) in northern Maine, June - August, 2001-2002. 

Principal Components 
Habitat variable PC 1 - Near-ground PC2 - Overhead PC3 - Understory 

cover cover structure 
Stem cover units 
Understory stem density 
Total stem density 
Understory conifer density 
Vegetation distance 
LO; volumeltransect 
Logsltransect 
Dbh of overstory 
Canopy density 
LCR of understory 
Understory height to crown 
Overstory stem-density 
Dbh of understory 
Height of understory 
Eigenvalue 
% Variance exvlained 



q , ,  P , I 
,a -3 

- 2 - 1 0  1 2  3 
Sparse cover Dense cover 

Sparse cover Dense cover 
Near-ground cover 

-3  - 2  - 1  0 1  2  
Sparse cover Dense cover 

Overhead cover 

Figure 4.1. Ordination diagrams for 3 dominant (eigenvalue > 1 .O) principal components 
describing the heterogeneity of stand-scale forest structure between 17 stands treated with 
PCT (x symbol) and 13unthinned stands (* symbol). Gaussian confidence ellipses (P = 

. 0.70) are shown centered around the sample means. 



Three principal components also described the variation in habitat variables 

across the 3 thinning class intervals. The remaining 9 components cumulatively added 

25% to the total explained variance and were not included in  further discussion. Highly 

loaded variables onto the first principal component described vegetation characteristics 

associated with low-level horizontal structure (Table 4.5). PC 1 (labeled "horizontal 

cover") included strong positive loadings from total stem density, the density of 

understory stems, and 2 measures of coarse woody debris (logs and log volume). The 

principal component with the second largest eigenvalue included large positive loadings 

for the average dbh of overstory trees, the density of deciduous trees in the understory, 

and overstory height (Table 4.5). Further, PC2 had strong negative loadings with the 

average dbh and height of the understory. This component described the relationship of 

forest structure between the overstory and understory (labeled "overstory to understory 

contrast"). Lastly, the coniponent with the third largest eigenvalue described the 

presence of ground-level herbaceous vegetation (labeled "herbaceous vegetation 

gradient"). PC3 included positive associations with the density of overstory trees and 

strong negative loadings of the percent cover of other vegetation and grass and forbs. 

Ordination diagrams of the 3 principal components suggest that stands in the 1-year 

thinning class interval had more variable horizontal cover, overstory trees, and 

herbaceous vegetation than stands in the 6 or 1 1-year thinning class intervals (Figure 

4.2). In each of the 3 diagrams, the 1-year stands overlapped older thinning classes, but 

the 6 and 1 1-years stands separated more distinctly from each other based on confidence 

ellipses of ordination scores. 



Table. 4.5. Loadings of stand-scale habitat variables that separated regenerating conifer 
stands (n = 30) of 3 thinning classes (1-year, n = 10; 6-year, n = 10; 1 1-year, n = 10) into 
3 principal components after varimax rotation. Habitat variables were sampled within 30 
forest stands (17 precommercially thinned, 13 unthinned) in northern Maine, June - 
August, 200 1 -2002. 

Principal Components 
Habitat variable PC1 - PC2 - PC3 - 

Horizontal 
cover 

Total stem density 0.9533 
Understory stem density 0.9504 
Log volume/transect 0.7645 

Logsltransect 0.7580 
Dbh of overstory -0.5306 
Dbh of understory 0.0687 

Deciduous understory density 0.4824 
Height of overstory -0.28 10 
Height of understory 0.3524 

Overstory stem density 0.0428 
% Other herbaceous vegetation 0.1541 

Overstory to 
understory 

contrast 
0.0440 

Herbaceous 
vegetation 
gradient 
0.1557 

% Grass and forbs -0.2926 0.1843 -0.6023 
Eigenvalue 4.5468 2.3199 2.1465 

% Variance exdained 3 1.7032 24.7673 18.6393 



- A  -2 - 1  0 1 2 3 

Sparse cover Dense cover 
near-ground cover 
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Small 
overstory 
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Figure 4.2. Ordination diagrams for 3 dominant (eigenvalue > 1 .O) principal components 
describing the heterogeneity of stand-scale forest structure between stands of 3 thinning 
classes, including 1-year stands, n = 10 ( 0  symbol); 6-year stands, n = 10 ( A  symbol); 
and 1 1-year stands, n'= 10 (x symbol). Gaussian confidences ellipses are shown (P = 
0.70) centered around sample means. . - 



Observed minimum density of hare (hareha) 

Figure 1.3. Relationship between mean inter-capture distance (SE) and density of 
snowshoe hare within 8 forest stands in north-central Maine, 2001-2002 (n = number of 
hares with > 1 capture). Inter-capture distance was defined as the average distance that 
hares (per stand).traveled between successive captures. 



There was a positive relationship between pelletshdmonth and haresha (r2 = 

0.89, n = 8, P c 0.001) on my study sites in northern Maine (Figure 1.4). Errors were 

normally distributed (Liiliefors, P = 0.225) and variance was constant (Modified 

Levene's, P = 0.7 18). The relationship between hare densities appeared to be linear for 

densities ranging from 0.555 to 3.037 haresha in Maine. The slope of the line was 

0.00008 with a standard error of 0.00001 1. The regression equation describing this 

relationship is: 

Haresha = 0.281 + 0.00008 (pelletshdrnonth). 

Recalculating the Long-Litvaitis relationship caused a small reduction of the 

slope, from 0.0001 16 (95% CI 0.000093,0.000139) to 0.00010 (95% CI 0.000061, 

0.000140); however, this relationship was still highly significant (r2 = 0.87, N = 8, P < 

0.001). The equation for this relationship is: 

Haresha = 0.145 + 0.00010 (pelletshdmonth). 

Similar to previous studies conducted in northwestern Canada (Krebs et al. 

2001b), western U.S.A. (Murray et al. 2002), and elsewhere in eastern and western Maine 

(Litvaitis et al. 1985, Long 1995), densities of hares were strongly correlated (r = 0.94) 

across a range (1,935-3 1,3 15 pelletshdrnonth) of pellet densities in north-central Maine 

(Table 1.1). The model developed for northern Maine on my 8 study sites had the lowest 

AICc value (AAIC, = 0.00) and the Litvaitis-Long model also received support (AAIC, = 

2-77), but these data did not support models developed outside of Maine (AAIC, > 25.00) 

(Table 1.1). Based on the Akaike weights, there was > 99% probability that the 2 



Figure 1.4. Relationships between density (haresha) of snowshoe hares and pellet 
density (pelletshalmonth) using mark-recapture estimates of hare densities as reported by 
Long 1995 (adapted and recalculated from Litvaitis et al. 1985) (closed circles) and 
minimum densities based on minimum number alive (open circles) in Maine. The model 
reported by Long (1995) was recalculated to avoid forcing the relationship through the 
origin. 



Table 1.1. Reported correlation coefficients (r) and relative strength of evidence (A AICc, wi) to support 4 area-specific predictive 
rel'ationships of snowshoe hare densities from pellet densities based on pellet counts conducted in northern Maine, 2000-2002. The 4 
predictive relationships are from northern Maine (this study), eastern and western Maine (Litvaitis et al. 1985, Long 1995), the Yukon 
Territory, Canada (Krebs et al. 2001), and Idaho (Murray et al. 2002). 

Model Region of study Reported correlation K AIC, A AIC, Akaike weights (w , )  
coefficient (r) 

Homy acka Northern Maine, 0.94 3 2.78 1 0.000 0.800 
USA 

~itvaitis-  on^^ Eastern & Western 0.93 3 5.55 1 2.770 0.200 
Maine, USA 

Krebs et al. 2001 aC Yukon Territory, w 0.76 3 3 1.8 1 1 29.030 0.000 
Canada 

Murray et al. 2 ~ 2 ~  Northern Idaho, USA 0.87 3 35.570 32.789 0.000 

'Model given by: haredha = 0.281 + 0.000080(pellets/ha/month). 
%4odel given by: haresiha = 0.145 + 0.00010(pelletsiha/month). 
'Model given by: lo&(hares/ha) = -1.203 + 0.899 lo&(mean number of pelletdplot). 
d ~ o d e l  give by: log,(mean number of hares) = 1 S69 + 1.133 IogJmean number of pellets/plot). 



models developed in Maine fit the data better than either of the models from the Yukon 

or Idaho. 

DISCUSSION 

Not surprisingly, the linear regression developed with the 8 data points from 

northern Maine was the strongest (AAIC, = 0.00) of the candidate model set, but the 

Litvaitis-Long model developed in Maine also described the data well. Models with a 

AAIC, of 5 2 have substantial support, a AAIC, > 3 and < 7 have less support, and 

models with a AAIC, > 10 have virtually no support (Burnharn and Anderson 2002). The 

Akaike weights (w,) are conditional on both the data and a priori models and describe the 

approximate probability that a model is the "best" model (Anderson et al. 2000). If all 

models were similar and explained the hare density x pellet density relationship for 

northern Maine similarly, then all models would have had small Ai values and the Akaike 

weights would have been nearly equal. However, the regression model developed from 

this study received 0.80 of the model weight, and the remaining weight (0.20) was 

attributable to the Long-Litvaitis regression. Thus, predictive relationships of hare 

densities developed outside of Maine were not appropriate to explain the observed 

variation in these data. 

The information-theoretic framework strongly advises towards biological 

significance trumping statistical significance. This approach does not rely heavily on 

arbitrary cutoffs to determine whether a model is "significant." Instead, the approach 

favors biological interpretation of results and only presents rough guidelines to gauge the 

appropriateness of a model (Burnham and Anderson 2002). Although these guidelines 

based on the relative strength of evidence and model weights (w;) suggested that the site- 



specific regression developed for these data was the strongest model, I believe that the 

modified Litvaitis-Long model developed from data in eastern and western Maine should 

be considered the most biologically meaningful model. My goal was not to find the best 

f i t  for my data, but to determine a predictive relationship for future researchers to 

translate pellet densities into hare densities. Because of insufficient numbers of captures 

and recaptures of hares per sampling grids during my study, I was unable to obtain actual 

density estimates from multiple mark-recapture population models. Therefore, I used the 

minimum number of hares known alive within each stand (MNA) to derive my regression 

model for predicting hare densities. In contrast, ~ i tva i t i s  (1990) captured a greater 

number of hares (496 hares 1,060 times) on larger trapping grids (49 ha) and was able to 

produce closed-capture population estimates for his grids; thus the Litvaitis-Long 

regression equation was based on estimates of actual densities. Therefore, I believe that 

equations that predict estimated densities of hares are superior to my conservative 

estimates of densities based on MNA. 

Mark-recapture models take into account behavioral and temporal factors such as 

trap-happiness, trap shyness, and time dependent recapture rates to estimate the number 
. . 

of animals present in the population that were never captured (White et al. 1982). Thus, 

it is not surprising that a regression equation derived from mark-recapture population 

estimates did not receive most of the model weight when fit to observed MNA densities x 

pellet densities. However, the densities of hares estimated based on the modified 

Litvaitis-Long (1995) equation differed little from the MNA-based densities computed 

from live trapping data obtained from my 8 sites. Average hare densities predicted based 

on my regression equation averaged 2.5% lower than densities estimated based on the 



Litvaitis-Long equation. The recalculated Long-Litvaitis equation predicted densities 

0.22 (range -0.22 to 0.85) hareslha greater than observed densities calculated based on 

MNA across my 8 stands in north-central Maine. The apparent repeatability of the 

separate experiments at different times, places, using different methods, and by different 

researchers suggests that there were not great differences between the 2 functional 

relationships (Johnson 1999). Further, Long and Litvaitis developed their linear 

regression using observed pellet densities that ranged from only 1,000-15,000 

pelletshdmonth (0.15-1.50 haresha). Despite the limited range of data used to develop 

the model, it reasonably predicted hare densities from 1,000 to 3 1,000 pelletshdmonth 

during my study (0.15-3.04 haresha). Therefore, I considered the modified Litvaitis- 

Long equation have greater biological relevance than the other 3 models. 

Although regression models developed outside of Maine were inferior for 

predicting hare densities on the 8 stands that I sampled, I also wished to estimate the 

effect size, or how poorly these models predicted hare densities in Maine. I used the 8 

pellet densities from stands sampled during this study and the 8 pellet densities recorded 

for stands sampled in eastern and western Maine (Litvaitis et al. 1985a) to predict hare 

densities using regression coefficients from the Yukon Territory, Canada (Krebs et al. 

2001b) and Idaho (Murray et al. 2002). I then compared these estimates with hare 

densities predicted using the most biologically relevant model developed for Maine (i.e., 

modified Litvaitis-Long equation). Hare densities for the 16 sites from eastern, western, 

and northern Maine calculated using the regression model from the Yukon (Krebs et al. 

2001b) were substantially lower than densities predicted by the regression model 



Table 1.2. Comparison of predicted densities of snowshoe hares calculated from an equation developed in Maine with those predicted 
using reported relationships from the Yukon Territory, Canada (Krebs et al. 2001) and northern Idaho (Murray et al. 2002). 

Predicted densities Densities estimated % Difference Densities estimated % Difference Source 
(haredha)' with Krebs et al. between with Murray et al. between predicted of pellet 

200 1 b equation predicted and 2002 and Murray et al. densities 
(hareska) Gebs et al. 2001 (haredha)' 2002 

0.30 0.15 -49.29 0.08 -7 1.47 Litvaitis et al. 1985' 
0.4 1 0.25 -39.06 0.16 -60.76 Litvaitis et al. 1985 
0.25 0.11. -56.33 0.57 -77.34 Litvaitis et al. 1985 
0.67 0.46 -3 1.29 0.35 -48.25 Litvaitis et al. 1985 
0.92 0.65 -28.99 0.54 -41.50 Litvaitis et al. 1985 
0.72 0.50 -30.62 0.38 -46.65 Litvaitis et al. 1985 
1.21 0.87 -28.12 0.77 -36.10 Litvaitis et al. 1985 
1.60 1.15 -28.04 1.10 -31.18 Litvaitis et al. 1985 
2.29 1.63 -28.72 1.7 1 -25.38 This study 
1.49 1.08 -27.98 1.01 -32.39 This study 
0.90 0.64 -29.06 0.53 -41.80 This study 
3.28 2.29 -30.00 2.62 -19.93 This study 
0.34 0.19 -44.62 0.1 1 -66.96 This study 
1.53 1.10 -28.01 1 .05 -3 1.92 This study 
2.89 2.04 -29.50 2.26 -2 1.79 This study 
2.60 1.84 -29.12 1.99 -23.43 This study 

Ware densities were predicted with recalculated Long-Litvaitis equation, given by: haredha = 0.145303 + 0.0001 (pellets/ha/month) 
Relationship reported in Krebs et al. (2001) is given by: lo&(hares/ha) = -1.203 + 0.899 log,(mean number of pelletslplot). Multiply final estimates by 1 S67, a 

correction factor for the log-log relationship. 
Relationship reported in Murray et al. (2002) is given by: lo&(mean number of hares) = 1.569 + 1.133 lo&(mean number of pelletslplot). Multiply estimates 

by 1.41, a correction factor for the log-log relationship. Divide final estimates by 19 ha for a conservative density estimate. I did not add (116) to data as  
reported in Murray et al. (2002) because I found few zero pelletdplot. 

~itvaiiis et al. (1985) estimated hares densities that were reported in Long (1995). 



- . 0 . .  Krebs et al. (2001b) with 25% decomposition rate of pellets 
+ Murray et al. (2002) 
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Figure 1.5. Percent difference between observed densities of snowshoe hares predicted 
using the best model from Maine (modified Litvaitis-Long equation) and densities 
predicted with models developed by Krebs et al (2001b) and Murray et al. (2002), with 
and without reducing pellet densities for decomposition. Pellet densities were based on 
16 stands surveyed in Maine during 1981-83 (n = 8) and 2000-02 (n = 8). For open 
symbols, pellet densities were reduced by a decomposition rate of 25% to account for 
field observations of Murray et al. (2002). 



developed for Maine (i.e., modified Long-Litvaitis equation, Table 1.2, Figure 1 S ) .  The 

mean difference between densities estimated from the Maine versus the Yukon model 

was -0.40 haredha (95% CI -0.26 to -0.55). Similarly, densities predicted from 

regression coefficients for Idaho (Murray et al. 2002) were also less than predicted 

densities of hares for the 16 sites in Maine based on the modified Litvaitis-Long model 

(Table 1.2, Figure 1 S) .  The estimates for the Idaho model were lower by an average of - 

0.42 haresha (95% CI -0.34 to -0.50). 

Geographic variation in relationships between densities of hares and pellets may 

result from variation in the number of pellets produced by snowshoe hares over time 

(Hodges 1999), and from differences in digestibility and chemical composition of 

primary foods (Sinclair et al. 1988). Thus, regional differences in diet quality of hares 

and species composition of available browse may impair estimates of density based on 

pellet x density relationships developed in other ecoregions. For example, wild- 

caught snowshoe hares from the Yukon Territory produced a greater number of 

pelletslday than captive hares in Vancouver, British Columbia fed similar diets (Hodges 

1999). Further, cottontail rabbits (Sylvilagusfloridanus) fed similar diets had large 

variation in daily numbers of pellets produced among individuals that was not explained 

by sex or size of rabbits (Cochran and Stains 196 1). Pellet production rate is inversely 

related to the quality of food eaten, so that lagomorphs eating higher quality forage 

produce fewer pellets (Arnold and Reynolds 1943, Sinclair et al. 1988, Cochran and 

Stains 1961). Available forage for hares in Maine may have higher average digestibility 

than that of northwestern Canada and northern Idaho, which might account for a smaller 

number of pellets produced per hare per unit of time. 



Diets of hares during the leaf-off season are dominated by low-quality woody 

browse and conifer needles, while in the summer, diets change dramatically to consist of 

herbaceous vegetation of with low fiber content (Wolff 1978, Larter 1999). Murray et al. 

(2002) suggested that pellets produced from higher-quality foods deposited during the 

leaf-on season may degrade more quickly than the larger and more fibrous pellets 

deposited during winter. Cochran and Stains (1961) reported that cottontail rabbit pellets 

produced from a high-quality commercial food decayed faster than pellets produced from 

low-quality diet of sumac (Rhus spp.). I noticed obvious differences in pellet size and 

color between seasons, with leaf-on pellets being smaller in size and darker in color. 

Both Krebs et al. (2001b) and Murray et al. (2002) only counted pellets once yearly 

during late spring (i.e. annual estimate of density), whereas I cleared pellets from plots in 

fall and counted pellets in spring (i.e. winter estimate of density). Persistence of pellets 

may have been greater for the larger, lighter-colored and more fibrous pellets deposited 

by hares during the leaf-off season, and annual estimates of density conducted in spring 

may have occurred after pellets from the leaf-on season had weathered and decayed. 

Failure to count some pellets deposited by hares during leaf-on season because of 

decomposition may explain discrepancies among relationships of densities of pellets and 

hares. 

Others have raised concerns about potentially large biases arising from variations 

in pellet deposition rates caused by seasonal variation in forage quality and losses of 

pellets to decomposition (Orr and Dodds 1982, Angerbjorn 1983, Murray 2002). Murray 

et al. (2002) was unable to detect a difference in persistence of snowshoe hare pellets 

between recent clearcuts and mature forest, but Angerbjorn (1983) reported that pellets 
8 



deposited by mountain hares (Lepw timidus) decayed more quickly in grass than other 

cover types and Cochran and Stains (1961) suggested that decomposition of pellets varies 

with cover type, food quality and weather. 1 avoided confounding seasonal effects of 

deposition and decon~position rates by calculating the relationship of snowshoe hare 

pellets deposited during the leaf-off season (0ct.-May) to densities of adult hares 

surviving the following May-June. Average monthly temperatures in northern Maine 

during this period ranged from only - 10.17 to 13.33" C (National Oceanic and 

Atmospheric Administration 2000,2001,2002), which would slow decomposition of 

pellets. 

It is unlikely that pellets would decompose during 8-9 months of cool and 

subfreezing temperatures during the leaf-off season throughout most of the geographic 

range of hares. Pellets from cottontail rabbits decomposed quickly during the summer 

months, but most persisted through winter in Illinois (Cochran and Stains 1961). Thus, 

if decomposition did occur, weathering would most likely affect pellets deposited by 

hares during leaf-on seasons (June-September). Murray et al. (2002) reported that only 

75% of fresh pellets (n = 540 pellets) placed on plots survived an entire year in Idaho, 

suggesting that decomposition may reduce pellet densities in a year or less. To examine 

this hypothesis further, I compared predicted hare densities in Maine to those predicted 

by Krebs et al. (2001b) and Murray et al. (2002) after pellet densities were reduced by the 

25% decomposition rate. ~ c c o u n t i n ~  for decomposition of hare pellets in Maine did not 

explain the underestimation of hare numbers by regressions outside of Maine (P < 0.001); 

in fact, a 75% persistence rate widened the gap between observed and predicted densities, 

but still in a nonlinear fashion (Figure 1. 5). These results indicate that decomposition of 



hare pellets does not explain the discrepancy between observed hare densities in Maine 

and densities predicted using regressions from the western United States and Canada. 

Although decomposition of pellets may not explain geographic variation in 

predicted hare densities, there are still biologically important reasons to survey seasonal 

pellet densities rather than annual counts. Association of leaf-off season pellet densities 

with densities of hares during early spring should be conservative because spring 

corresponds with the fewest hares. I excluded leverets in density estimates so that all 

marked individuals were > 8 months in age. Snowshoe hares select cover types based on 

understory cover in winter, but in summer occupy open habitats with more herbaceous 

vegetation (Wolff 1980, O'Donoghue 1983). Seasonal changes in habitat use by hares 

coupled with variation in pellet deposition rates caused by forage of different quality, 

may confound estimates of pellet densities based on annual counts. Further, winter is 

thought to be the limiting season for snowshoe hares (Pease et a. 1979, Pietz and Tester 

1983) and estimates of densities of adult hares surviving at the end of the critical limiting 

season may more accurately depict differences in habitat quality by incorporating aspects 

of population performance such as over-winter survival (Van Horne 1983). 

Whereas MNA densities of snowshoe hare from northern Maine were strongly 

correlated (r = 0.94) to pellet densities from the previous leaf-off season, leaf-on season 

pellet densities explained considerably less (r = 0.65) variation in numbers of hares. The 

weaker relationship between leaf-on season (June-September) pellet densities and 

number of hares residing in stands in early spring (May-June) suggests that counts of 

pellets that include the summer months, when hares are more like habitat generalists 

(Wolff 1980, O'Donoghue 1983) and forage primarily on herbaceous vegetation (Wolff 



1978, Larter 1999), produce more variable predictions of hare densities than leaf-off 

season counts. Therefore, I suggest that counts of pellets during leaf-off seasons be used 

to predict densities of hares to avoid these potential biases and produce more biologically 

meaningful estimates of hare numbers. 

Krebs et al. (2001b) and Murray et al. (2002) reported that a log,-log, relationship 

best fit their data because variances increased with the observed mean number of both 

pellets and hares. I hypothesized several explanations for why a log-log relationship was 

needed to describe pellet densities as a function of hare density for data from northern 

Canada and the western United States, but not Maine. First, variances may have 

increased with the mean in northern Canada when densities changed significantly within 

a year. It is well documented that hares undergo dramatic population cycles in northern 

Canada and densities can widely fluctuate, even within a year (Hodges 2000). Krebs et 

al. (2001b) only counted pellets once yearly and related those pellet densities to hare 

densities estimated from live trapping that began the previous year. Or, perhaps data sets 

for my model and the modified Litvaitis-Long model were too small and had little power 

to detect heteroscedasticity (Krebs et al. 2001b, n = 85; Murray et al. 2002, n = 24; Long 

1995, n = 8; this study, n = 8). To ensure that a log,-log, relationship was not a better fit 
. . . . 

to my data than the 4 a priori models, I computed the AICc for a model with my 8 MNA 

hare density x pellet density points from northern Maine with'the predictor and response 

variables log, transformed. This model was added after my a priori models were 

developed; therefore interpretation of this model can only be considered exploratory 

(Burnharn and Anderson 2002). The log, - log, model developed for northern Maine (A 

AICc = 4.704) received less support than the other models from Maine (Table 1.1). 



Further, the recalculated Akaike model weights (w,) from greatest to smallest were as 

follows: the linear model from northern Maine (w, = 0.743), the Litvaitis-Long model 

from eastern and western Maine (w, = 0.186), the log, - log, model developed for 

northern Maine (w, = 0.07 l), the Krebs et al. (2001b) model from western Canada (w, < 

0.001), and the Murray et al. (2002) model from Idaho (w, < 0.001). The approximately 

2 . 6 ~  more weight given to the linear model from eastern and western Maine than the post 

hoc log, - log, model developed for northern Maine indicate that the hare density x pellet 

density relationship for northern Maine was better fit by a linear function than a log- 

normal function. 

CONCLUSIONS 

Although a functional relationship between pellet densities and densities of hares 

was established in the Yukon Territory, Canada, the relationship may differ for hares near 

the southern periphery of their range. Observed relationships of pellet x hare density 

during 2000-2002 in northern Maine were similar to relationships observed in 198 1- 1983 

for eastern and western Maine. Thus, the linear relationship between densities of pellets 

and hares may be stable through time and across a range of habitat types in the eastern 

spruce-fir, northern hardwood forests, and within a range of 0-3 hareslha. My estimated 

relationship between MNA density and pellet density was consistent with a previously 

derived relationship for Maine; however hare densities estimated using regression 

equations developed for the Yukon Territory, Canada (Krebs et al. 2001b) and northern 

Idaho (Murray et al. 2002) underestimated predicted densities for north-central, eastern, 

and western Maine. 



I suggest that densities of snowshoe hares in northeastern North America be 

estimated from pellet counts using the modified linear regression (i.e. not forced through 

the origin) model derived by Long (1995) which was adapted from data collected by 

Litvaitis et al. (1985) for eastern and western Maine. Previous investigators conducted 

yearly pellets counts (Krebs et al. 200 1 b, Murray et al. 2002); however, densities of hares 

estimated based on pellets deposited during the leaf-off season may be more biologically 

meaningful and might avoid potential biases arising from the dynamic summer-winter 

diets of hares, differential losses of pellets to decomposition during summer and winter 

months, and to seasonal shifts in habitat use by hares. 
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CHAPTER 2 

TEMPORAL EFFECTS OF PRECOMMERCIAL THINNING ON 

SNOWSHOE HARES IN MAINE 

ABSTRACT 

Snowshoe hares (Lepus americanus) are an important prey species and dominant 

herbivore across much of their North American range, and forestry practices that degrade 

habitat for hare may have community-wide effects. Further, the effects of precommercial 

thinning (PCT) on hares have been questioned in relation to indirect effects on recovery 

of the Federally threatened Canada lynx (Lynx canadensis). I examined the effects of 

PCT on snowshoe hares, from 1-1 1 years post-treatment in the commercial forests of 

northern Maine. I established > 46 krn of pellet transect across 13 unthinned, 

regenerating conifer stands, and 17 regenerating conifer stands treated with PCT. Hare 

pellets were counted and cleared along transects twice a year during 2001 and 2002, and 

stand-level vegetation characteristics previously documented as correlates with hare 

density were measured in all stands. Densities of snowshoe hares were consistently 

lower in stands treated with PCT than in similar unthinned stands across all thinning 

classes and seasons during both years of the study (P < 0.10). Stands treated with PCT 

supported hare densities approximately '/z those observed in untreated stands when 

averaged across seasons and 2 years of sampling. In general, hare density was greatest in 

stands in the 1-year thinning class when compared to 6 and 11-year thinning classes, but 

a statistical difference (P < 0.10) among thinning classes was evident only during leaf-off 

seasons. Several habitat characteristics previously reported to be important positive 

correlates of hare densities, such as understory stem densities and horizontal cover, were 



lower in thinned versus unthinned stands. PCT was associated with densities of 

snowshoe hare that were lower than those in similar unthinned stands; however, thinned 

stands may retain densities of hares greater than stands managed using other forest . 

harvesting regimes (e.g., some types of partial harvests). 

INTRODUCTION 

In March 2000, the U.S. Fish and Wildlife Service (USFWS) listed Canada lynx 

as threatened under the Endangered Species Act (ESA) (United States Department of the 

Interior 2000). Lynx are specialized predators (07Donoghue et al. 1998) of snowshoe 

hares and density of hares is positively and exponentially associated with stands with 

high densities of conifer saplings (Litvaitis et al. 1985a). Maine has the only verified 

population of resident lynx in the northeastern USA and the relationships among lynx, 

habitat, and forestry practices are not thoroughly understood (Aubry et al. 2000). At a 

statewide scale, large areas of regenerating conifer stands are a habitat variable that is 

positively associated with both occurrence of lynx and relative abundance of snowshoe 

hares in Maine (Hoving 2001). Thus, extensive areas of regenerating forest may promote 
* .  

persistence of the only verified population of lynx in the northeastern USA. However, 

little is known about the temporal effects of stand succession on densities of snowshoe 

hare at the southern periphery of their range, particularly after intensive management of 

vegetation. 

Thirteen environmental organizations, including Defenders of Wildlife and the 

Biodiversity Legal Foundation, legally challenged the ESA listing of lynx as threatened 

in the contiguous United States. They alleged that the listing of lynx as endangered and 

designation of critical habitat was necessary to ensure survival and recovery. If USFWS 



designates critical habitat, it is likely, because lynx are strongly tied to high densities of 

hares (O'Donoghue et al. 1998, Mowat et al. 2000), that foraging habitat will be 

designated as "critical." Because large areas of regenerating conifers are known to 

support high densities of snowshoe hares, forestry practices that degrade habitat for hares 

may be questioned under ESA. 

Precommercial thinning (PCT) is a silvicultural technique that decreases stem 

density and may reduce densities of hares relative to unthinned, regenerating stands 

(Sullivan and Sullivan 1988). Further, the biological assessment of the effects of U.S. 

National Forest land and resource management plans on Canada lynx suggested that 

forest thinning might reduce foraging habitat of lynx in the northeastern USA 

(Hickenbottom et al. 1999). During 1993 to 2001, greater than 67,000 ha (167,000 acres) 

of forest were precommercially thinned in Maine (Maine Forest Service 1994-2002). 

Because total acreage of PCT is projected to increase, forest managers will be asked to 

justify this practice based on maintaining wildlife habitat and biodiversity. 

Limited information about the effects of precommercial thinning on snowshoe 

hares has indicated that thinning reduces density of hare for 3-4 years after treatment 

(Sullivan and Sullivan 1988), but how long after treatment abundances of snowshoe hares 

continue to be lower re1ati;e to unthinned stands is unknown. It is also unknown how the 

acceleration of stand development associated with PCT affects snowshoe hares compared 

to untreated stands. Further, previous studies of hares and thinning included non- 

herbicided stands that were released with brushsaws (Sullivan and Sullivan 1988, de 

Bellefeuille et al. 2001). In Maine, stands treated with PCT are first aerially sprayed with 

herbicides (e.g., ~ l ~ ~ h o s a t e  or Triclopyr) and later manually thinned; the combination of 



these treatments may have different effects on densities of hares than in stands treated 

solely with brushsaws. 

Investigators have consistently related high densities and relative abundances of 

snowshoe hares to mid-successional habitats with high stem densities of saplings (Wolff 

1980, 07Donoghue 1983, Pietz and Tester 1983, Litvaitis et al. 1985a, Litvaitis et al. 

1990, Koehler 1990, Fuller 1999, Hoving 2001). Thus, it would be expected that a forest 

practice that decreases the stem density of regenerating forest stands and promotes rapid 

growth of crop trees would decrease densities of snowshoe hare. Therefore, I 

hypothesized that PCT would reduce snowshoe hare densities relative to similar untreated 

stands, and that these changes would be related to reduced densities of coniferous and 

deciduous stems. 

The objectives of this study were to: 1) determine if precommercial thinning with 

brush-saws decreases abundances of snowshoe hare on herbicide treated clearcuts. from 

1-1 1 years post-treatment; 2) determine the magnitude of differences in hare densities 

between unthinned and PCT stands; and 3) describe the differences in vegetation 

characteristics preferred by hares between thinned and unthinned clearcut stands from 1- 

1 1 years after treatment. 

STUDY AREA 

I selected 6 townships (Hersey, T4 R 1 1 WELS, T 5 R 11 W E B ,  T4 R 12 

WELS, T1 R 13 WELS, and Spencer Bay) in the commercial forests of northern Maine 

that fall within the historical distribution of Canada lynx (Hoving 2001) as my study area 

(Figure 2.1). Hersey Township is located in Aroostook County, Maine whereas the other 
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Figure 2.1. Location of study areas within 6 townships in the commercially owned and 
managed forests of north-central Maine. 



5 townships are located in Piscataquis County, Maine. These towns range from 102 km 

east to west and from 49 km north to south. Great Northern Paper Company, 

Millinocket, Maine; Plum Creek Timber Company, Fairfield, Maine; and International 

Paper Company, Costigan, Maine managed the study areas for pulp and sawtimber 

production. 

The study areas occur within the ecotone between the northern boreal forest and 

the eastern deciduous forest that is referred to as the sub-boreal Acadian forest (Seymour 

and Hunter 1992). Balsam fir (Abies balsamea) and spruce (Picea spp.) dominate the 

study sites, but stands also have minor components of white pine (Pinus strobes), 

northern white cedar (Thuja occidentalis), larch (Larix laricina), red maple (Acer 

rubrum), sugar maple (Acer saccharum), paper birch (Betula papyrifera), and trembling 

aspen (Populus tremuloides). The annual mean temperature in this region was 3.78 "C 

and the area received an average of 101 cm of precipitation annually, with 276 cm of 

snowfall (Garoogian 2000). Stands (n = 30) surveyed on the study areas were chosen 

based on flat to gently sloping topography, and ranged from 8.5 to 74.3 ha in size 

(Median = 22.2 ha). 

METHODS 

I examined site quality, tree density, diameter breast height (dbh) of dominant 

trees, and size and spatial independence of stands before selecting them as study sites. I 

estimated site quality of stands with 4 to 6 soil cores taken throughout the stand with a 

soil auger. Stands were assigned a drainage value from 1 (highly productive) to 5 

(unproductive) according to Brigg's (1994) scale of forest tree productivity. 



Treatment stands were clearcut (timber harvesting resulting in residual basal area 

of acceptable growing stock trees > 11.43 cm dbh of < 20.66 m21 ha) 1968-1982, aerially 

herbicided (e.g. Glyphosate at - 1.68 kglha acid equivalent) 1982-1988, and 

precommercially thinned with motor-manual brush-saws from 1989- 1999. Unthinned 

stands were clearcut 1974-1982 and herbicided (e.g. Glyphosate at = 1-68 kglha acid 

equivalent) 1982-1988 (Table 2.1). Stands were divided into blocks based on date of 

precommercial thinning. The study design included 17 treatment stands at 5-year 

intervals since thinning (1-2 year post-thinning, n = 5; 6-7 years, n = 5; 11-12 years, n = 

7) and 13 stands with management histories and site quality similar to treated stands, but 

that were not thinned (1 -2 year, n = 5; 6-7 years, n =5; 1 1-12 years, n = 3). I allowed 

some latitude (1-2 years) in separating stands into thinning class categories based on the 

date of silvicultural treatments. When selecting study sites, I paired a treatment stand 

with an unthinned stand with a similar year of clearcut, year of herbicide, and site quality 

to avoid any large differences between treatment and unthinned stands within a thinning 

class. This was a retrospective study; therefore stands were not paired in a statistical 

sense and were analyzed as unpaired replicates. 

Pellet counts 

Fecal pellet counts can be a reliable estimate of snowshoe hare abundance (Kiebs 

et al. 1987, Long 1995, Krebs et al. 2001, Murray et al. 2002, Chapter 1) and are more 

practical than live-trapping over large areas because indirect estimates of abundance are 

more economical and less labor intensive than typical mark-recapture techniques 

(Litvaitis et al. 1985b). I established 46.68 km of pellet transect across the 30 stands. 

The stand was considered the unit of replication because the median stands size was 3.6 x 



Table 2.1. Stand history, location, and site quality of 17 PCT and 13 unthinned stands in 
northern Maine. (T = stand treated with PCT, C = unthinned stand). Site quality ranged 
from 1 (well drained, productive) to 5 (poorly drained, unproductive) according to Briggs 
( 1994) classification guidelines. 

Site Year of Year of Year of Township Site 
number Clearcut Herbicide PCT Quality 
1-1-T 1982 1988 1999 T 4 R  11 4+ 
1 -2-T 1980 1983 1999 T4 R 12 3 - 
1 -3-T 1977 1983 1999 T4R 11 4+ 
1 -4-T 1982 1988 1999 T4R 11 4 
1 -5-T 1976 1983 1999 T4 R 12 4 
6- 1 -T 1979 1988 1994 Herse y 3+ 
6-2-T 1979 1988 1994 Herse y 2- 
6-4-T 1974 1982 1994 T 5 R 1 1  3- 
6-5-T 1976 1985 1995 T 5 R  11 3 - 
6-6-T 1979 1982 1994 T 5 R  11 3 - 

T l R 1 3  
Spencer Bay 

T l R 1 3  
T l R 1 3  
T l R 1 3  
T 1 R 13 

Spencer Bay 
T 4 R  11 
T 4 R  11 
T 4 R  11 
T 5 R 1 1  

1 -5-C 1976 1985 .da  T 4 R  11 3- 
6- 1 -C 1979 1988 d a  Hersey 3+ 



greater than the average home range size of hares in Maine (Litvaitis 1984). I established 

1.6 km of transect in 28 stands and the remaining two stands had 1.18 km and 1.34 km of 

transect resulting from their size and irregular shape. I placed transects greater than 50 m 

from stand boundaries to minimize edge-effects (Harris 1988, Fraver 1994). When 

possible, I established 4 parallel, 400 m transects in a stand and separated transects by 65 

m. I marked 5m by 30 cm pellet plots at 20 m intervals along transects for a total of 84 

plots per stand and a total of 2,480 pellet plots for the study. I randomly oriented pellet 

plots along transects and marked them with orange wooden stakes at either end of the 

plot. 

I cleared all plots of hare pellets during October 18-25,2000 so that only pellets 

deposited after leaf-off were counted during spring 2001. Subsequently, I counted and 

cleared pellets 4 times during the remainder of the study: May 17-June 14,2001, 

September 13-29,2001, and May 10June 17,2002, and September, 13-October 13, 

2002. I averaged the number of pelletslplot for each stand and converted it to a value of 

pelletshalday. I divided the year into 2 seasons, leaf-off season and leaf-on season. 

Thus, spring pellet counts (May-June) were used to estimate abundance during the 
. . 

previous winter (defined as leaf-off season, October-May) whereas fall pellet counts 

(September-October) were used to estimate abundance during the previous summer 

(defined as leaf-on season, June-September). 

Live-trapping 

I live-trapped hares within the core portions of 2 thinned stands and 2 untreated 

stands during May-June, 2001 and in 2 different thinned and 2 different untreated stands 

during May-June 2002 to evaluate the relationship between pellet densities and estimated 



densities of snowshoe hares. I also evaluated whether there were any differences in sex 

ratios or lactation rates among stands treated with PCT and unthinned stands. Greater 

densities of animals in a particular cover type may not necessarily indicate higher habitat 

quality (Lidicker 1975, Van Home 1983); thus, I examined the sex ratios and lactation 

rates as additional indicators of the habitat quality for hares in thinned and unthinned 

stands. Chapter 1 provides a detailed description of methods used to trap, mark, sex, and 

determine lactation status of hares. 

Habitat sampling 

Across their geographical range, snowshoe hares respond numerically to stand 

structure and densities of hares are consistently related to a few key stand-level habitat 

characteristics, including positive associations with understory stem density 

(O'Donoghue 1983, Sullivan and Sullivan 1988, Litvaitis et al.l985a, Monthey 1986, 

Koehler and Brittell 1990, Long 1995, Fuller 1999), woody debris (Conroy et al. 1979, 

Scott and Yanhner 1989, Ferron et al. 1998), and horizontal vegetation density (Wolfe et 

al. 1982, Pietz and Tester 1983, de Bellefeuille et al. 2001, Wirsing et al. 2002). 

Therefore, differences among stand structure between PCT and untreated stands (low 

hare-density and high hare-density stands) may explain some variation in hare numbers 

among my study sites in northern Maine. 

I selected 6 forest structural variables a priori based on previous studies of habitat 

relationships of snowshoe hares, including measures of overstory, understory, woody 

debris, and horizontal cover. I measured those stand-scale habitat characteristics on 

fixed area nested plots placed along the pellet transects. Five plots per 400 m of transect 

were established at random distances on the pellet transects for a total of 20 plots per 



stand. I measured vegetation within 25 m' plots in thinned stands and within 10 m' plots 

in unthinned stands. Larger plots were established onthinned stands because stem 

density was reduced in these stands, and I wished to sample approximately 100 crop trees 

per stand. 

I quantified the number of coniferous trees (2 7.6 cm dbh, >1 m height, alive) 

within the plot and measured the number and type (coniferous or deciduous) of all 

understory stems (< 7.6 cm dbh, >1 m height, alive) within the plot. I quantified the 

number of stem cover units ((3 x number of understory conifer stems) + number of 

understory deciduous stems) (Litvaitis et al. 1985a) perha. Horizontal vegetation 

structure was measured as a continuous variable using a 2.0 m cover pole with alternating 

0.1 m red and white bands (Griffith and Youtie 1988). Visual obstruction was measured 

in opposite directions from the center point following a random compass bearing. The 

distance from the center point where 2 25% of all bands were visually obstructed was 

recorded. I estimated the volume of downed logs with a modified version of the planar 

intersection method used by Payer and Harrison (2000). I established a 20-m randomly 

oriented transect with the midpoint at each sampling station and quantified the number of 

logs that crossed the transect and were 2 1.0 m length, 2 7.6 cm diameter (at the point of 

intersection), and 145"  from the ground. I considered only sound to moderately decayed 

logs, so that extremely decayed logs were excluded from sampling. I also measured 

overhead canopy cover with a spherical densiometer (lernmon 1956) to simulate the 

cover perceived by hares during the winter on top of snowpack. Four readings in the 4 

cardinal compass directions at 1.0 m height were taken at the center of each plot and 

averaged to a single value for each plot. 



Statistical analyses 

I examined pellet densities separately during leaf-off and leaf-on seasons to avoid 

confounding effects of seasonal change in diets and shifts in habitat use that might 

contribute to variation in pellet deposition rates by hares. I conducted a repeated 

measures two-way Analysis of Variance (ANOVA) for the observed densities of pellets 

during the leaf-off season to determine if there were any differences among thinning 

classes (1,6, 11 years since treatment), treatment (stands treated with PCT, unthinned 

stands), year of sampling (2000-200 1 leaf-off season, 200 1-2002 leaf-off season) and any 

interactions (Zar 1999). Similarly, I conducted a repeated measures two-way ANOVA 

for the observed pellet densities during the leaf-on season to determine if there was any 

differences among thinning classes, treatments, or years of sampling. I examined 

normality of error terms with normal probability plots and Lilliefor's test. I examined the 

data for constant variance with the modified Levene's test and plots of the residuals. I 

examined any significant differences among thinning classes a posteriori with Tukey's 

Honest Significant Difference Tests (Zar 1999). 

Densities of snowshoe hare pellets were highly correlated with and linearly 

related to densities of hares on my northern Maine study sites (Chapter 1). Thus, 

observed differences in pellet densities directly correspond with differences in absolute 

densities of hares. All statistical comparisons were conducted using pellet densities; 

however, estimated densities of hares are also presented to enhance biological 

interpretations from statistical conclusions. I used the modified Litvaitis-Long model 

(haredha = 0.145303 + 0.0001 (pellets/halmonth)) to predict hare densities from pellet 

densities (Chapter 1). 
- .  



Differences in proportions of males versus females and number of lactating 

females versus non-lactating females in PCT and unthinned stands were tested using a Z- 

test (Zar 1999). I pooled the data across years of sampling and stands within a treatment 

to maximize statistical power. 

I used the mean of each habitat variable for each stand to descriptively analyze 

differences in stand structure among thinning classes and treatments by conducting a 

Two-way ANOVA on the means of each habitat variable (averaged across 20 plots 

within each stand) with thinning class ( l ,6 ,  11 years since treatment) and treatment 

(stands treated with PCT and unthinned stands) as factors. I examined error terms for 

normality with a Lilliefor's test and probability plots and conducted a Modified Levene's 

test to examine the data for constant variance. Non-normal habitat variables were 

transformed using log, transformations (Neter et al. 1996). 

RESULTS 

Pellet densities 

Residual errors of pellet densities for the leaf-off seasons were normally 

distributed (P > 0.10) and variance was constant (P > 0. lo), suggesting that the effects of 

treatment, thinning class, and year of sampling could be appropriately evaluated using 

parametric ANOVA. Previously herbicided clearcuts treated with PCT had lower pellet 

densities relative to similar unthinned stands during the leaf-off seasons (F = 17.881, P < 

0.001) (Figure 2.2, Table 2.2). Unthinned stands had 1.97- and 2.01-fold greater 
. .. 

densities of pellets than stands that were treated with PCT during both the 2000-2001 and 

2001-2002 leaf-off seasons, respectively. Further, there was an effect of thinning class 

on pellet densities during the leaf-off season (F = 3.45 I, P = 0.048). In 2000-2001 



Thinning class and year of sampling 

Figure 2.2. A comparison of mean (SE) number of snowshoe hare pellets/ha/day 
between PCT stands and similar unthinned stands in northern Maine during leaf-off 
seasons, 2000-2002. 

1 Leaf-oll season 2000-2001 

'00 T 
0 Leal-oll season 2001 -2002 

100 1 3 

I-year 6 -year  I I -year 

a = 10. n = 10 a =  IO,a= 10 a =  1 0 , n = 1 0  

Thinning class of stands 

Slalistical significance a1 p < 0.10 level denolcd by like lelurr 

Figure 2.3. Mean (SE) pelletslhalday averaged across stands treated with PCT and 
unthinned stands during the leaf-off seasons, from 1-1 1 years post-treatment in northern 
Maine; 1 = treated in 1999,6 = treated in 1994, 1 1 = treated in 1989-1990. Statistical 
significance at P < 0.10 level is denoted by like letters. 



Table. 2.2. Effects of treatment, thinning class, and year of sampling on pellet density and estimated densitya of snowshoe hares 
within 30 stands (17 treated with PCT, 13 unthinned) and among leaf-off (October - May) and leaf-on (June-September) seasons in 
northern Maine, 2000-2002. 

Season Factor F-Statistic P-value Pelletdhafdav (SE) Hares/ha (SE) 
Leaf-off, 2000-02 Treatment 17.881 < 0.001 

PCT 
NO-PCT 

Thinning class 
1 -year 
6-year 
1 1-year 
Year 

2000-2001 
VI 
w 200 1-2002 3 12.84 (39.86) 1.08 (0.26) 

Leaf-on, 200 1-02 Treatment 21.231 < 0.001 
PCT 

NO-PCT 
Thinning class 

1 -year 
6-year 
1 1-year 
Year 
2001 

'Hare densities were estimated from pellet densities using the most appropriate regression model (Chapter 1). The equation used: Harestha = 0.145303 + 0.0001 
(pellets/ha/month). 



the I -year thinning class had greater numbers of pellets than the 6-year thinning class (P 

< 0.005), but the l-year and 1 1-year stands did not differ significantly (P < 0.10) (Figure 

2.3, Table 2.2). During 200 1-2002, however, the 1 -year thinning class supported greater 

(P < 0.05) densities of pellets than either the 6-year or 1 1-year thinning classes. Pooled 

across both years, the l-year thinning class had 1.6 times greater pellet densities than the 

6-year and 1.4 times greater pellet densities than the 1 l-year thinning class. The 2000- 

200 1 leaf-off season had 1.57 x greater pellet densities than the 200 1-2002 leaf-off 

season (F = 28.825, P < 0.001). 

Residual errors were not normally distributed (P = 0.0 1) and variance was not 

constant (P < 0.10) for pellet densities during the leaf-on season. Therefore, I log, 

transformed pellet densities to correct for these violations of the parametric assumptions 

of ANOVA. After transformation, errors were normally distributed (P > 0.10) and 

variance was constant (P > 0.10). Stands treated with PCT had lower densities of 

snowshoe hare pellets than similar unthinned stands during the leaf-on seasons (F = 

19.499, P < 0.001) (Table 2.2, Figure 2.4). Unthinned stands had 2.47 fold greater pellet 

densities than stands treated with PCT during the leaf-on season in 2001 and 1.66 fold 

greater pellet densities during leaf-on season in 2002. There was no effect of thinning 

class during the leaf-on season (F = 0.029, P = 0.97 l), however there was an effect of 

year (F = 93.346, P < 0.001) (Figure 2.5). Pellet densities during the leaf-on season were 

2.44 times greater during 2001 than 2002. Lastly, all interaction terms including year 

were significant (P 5 0.10) for the leaf-on season, which suggests inconsistent responses 

of hare to treatmentand thinning classes during the 2 summers of study. Untreated 



Stands treated w ~ t h  PCT 

T I Unlhinned stands 

]-year I-year &year dyear I I-year I I-year 
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Thinning class and year of sampling 

Figure 2.4. A comparison of mean (SE) number of snowshoe hare pelletshalday 
between PCT stands and similar unthinned stands in northern Maine during leaf-on 
seasons 2001-2002; 1 = treated in 1999,6 = treated in 1994, 1 1 = treated in 1989-1990. 

+ Leaf-on season 2001 

T -@ Leaf-on season 2002 

1 -year b y e a r  I I-year 
n=10, n=10 n=10, n=10 n=10, n=10 

Thinnine class 

Figure 2.5. Mean (SE) pelletshalday averaged across stands treated with PCT and 
unthinned stands during the leaf-on seasons, from 1- 1 1 years post-treatment. 
No significant effect of thinning class was observed (P L 0.842, F = 0.173). 



Table 2.3. A comparison (Two-way ANOVA) among means (SE) for 6 stand-scale habitat variables selected a priori between 
treatments (17 regenerating clearcut stands treated with PCT and 13 stands untreated) and among 3 thinning classes (1-2, 6-7, 11- 12 
years post-thinning) in northern Maine. Non-transformed means and standard errors are presented for transformed variables" and P- 
values C O. 10 are depicted in bold. 

Variable 
 CON>_^.^^ TOTUNDER27.6' scud CANOPY VEGDIST' LOGSg 

Treatment 
F-statistic 1.832 32.471 38.445 2.447 12.570 25.196 

P 0.188 c 0.001 c 0.001 . 0.131 0.002 c 0.001 
PCT (n = 17) 1,199 (98) 3,146 (707) 6,089 (2,037) 78.2 (2.5) 10.0 (0.4) 1.6 (0.3) 

No-PCT (n = 13) 1,402 (1 14) 8,997 (821) 12,199 (2,367) 84.1 (2.8) 7.6 (0.5) 3.5 (0.3) 
Thinning class 

F-statistic 1.91 1 3.24 1 1.849 0.588 1.81 1 2.389 
p ,  0.170 0.057 0.179 0.563 0.185 0.1 13 

Cn 
o\ 1 -year (n = 10) 4632 (908) 6210 (910) 15,474 (2,622) 78.8 (3.2) 8.6 (0.6) 2.9 (0.4) 

6-year (n = 10) 4778 (908) 7551 (910) 17,107 (2,622) 80.7 (3.2) 8.2 (0.6) 2.8 (0.4) 
1 1 -year (n = 10) 3449 (99 1) 4453 (993) 11,351 (2,861) 83.9 (3.4) 9.7 (0.6) 2.0 (0.4) 

Treatment*Thinning class 
F-statistic 0.380 1.301 1 .09 1 1.694 0.032 0.43 1 

P 0.688 0.29 1 0.352 0.205 0.969 0.655 
1-year PCT (n = 5) 1,176 (178) 2,840 (1,287) 6,768 (3,708) 72.1 (4.5) 9.7 (0.8) 1.8 (0.5) 
6-year PCT (n = 5) 1,084 (178) 3,892 (1,287) 5,964 (3,708) 76.9 (4.5) 9.5 (0.8) 1.8 (0.5) 
1 1 -year PCT (n = 7) 1,337 (15 1) 2,706 (1,088) 5,534 (3,134) 85.6 (3.8) 10.9 (0.7) I. l(0.4) 

: I -year no PCT (n = 5) 1,520 (179) 9,580 (1,287) 24,180 (3,708) 85.6 (4.5) 7.5 (0.8) 4.0 (0.5) 
6-year no PCT (n = 5) 1,120 (179) 11,210 (1,287) 28,250 (3,708) 84.6 (4.5) 6.8 (0.8) 3.8 (0.5) 
1 1 -year no PCT (n = 3) 1,557 (230) 6,200 (1,661) 17,167 (4,787) 82.1 (5.8) 8.6 (1  .O) 2.8 (0.6) 



Table 2.3. Continued. 

TOTUNDER, SCU, and LOGS were log, transformed prior to analysis. 
b # ~ ~ N ? 7 . 6  = number of conifer treesfla (2 7.6 cm dbh, >1.0 m ht, alive). 
"TOTUNDER = number conifer trees (< 7.6 cm dbh > 1.0 m ht, alive) + number deciduous trees (< 7.6 cm dbh > 1.0 m ht, alive) per ha. 
d~~~ = (3 x number of conifer trees < 7.6 cm dbh >1.0 m ht, alive) + (1 x number of deciduous trees < 7.6 cm dbh per ha >1.0 m ht) per ha. 

CANOPY = average overhead canopy cover closure at 1.0 m height during summer, percent. 
'VEGDIST = average understory lateral foliage density (average distance that an entire 2.0 m pole is obscured), m. 
gLOGS = number of logs per ha. 



stands had greater densities of hare pellets across all thinning classes for both years of the 

study except for the I 1-year thinning class during 2002, which may have accounted for 

the significant interaction terms. 

Live-trapping demographics 

I captured 128 adult hares (69 M, 59 F) 308 times in 2001, and 1 14 adult hares 

(64 M, 49 F, 1 unknown) 464 times in 2002. Differences in the proportion of lactating 

female hares between thinned (68%, n = 28,90% C.I. 46-84%) and unthinned stands 

(58%, n = 80,90% C.I. 46-68%) were not significant ( 2  = 0.97, P = 0.416). Further, the , 

proportion of male and female hares was not significantly different ( 2  = 0.59, P = 0.360) 

between stands treated with PCT (58% males, n = 67,90% C.I. 45-70%) and unthinned 

stands (54% males, n = 174,90% C.I. 46-62%). 

Habitat sampling 

Measures of the density of total understory stems, stem cover units, and logs were 

lower (P 5 0.001) in thinned stands compared to unthinned stands (Table 2.3). Measures 

of the density of the total number of understory stems and stem cover units in treated 

stands were 113 and 3/10 the density in untreated stands, respectively. Conversely, the 

distance to obstruction by horizontal vegetation was greater (P = 0.002) in stands treated 

with PCT. Of the 6 structural variables examined, only the density of understory stems 

varied among thinning classes (P = 0.057) of thinned and unthinned stands; the 1 1-year 

thinning class had fewer understory stems (P < 0.10) than the 1-year or 6-year thinning 

classes. 



DISCUSSION 

Effects of PCT 

Previous studies of PCT and its effects on wildlife examined relatively short-term 

changes (4 years or less) in densities of hares after thinning (Sullivan and Sullivan 1988, 

de Bellefeuille et al. 2001). My results indicate that PCT reduced hare densities from 1- 

11 years post-thinning (Figure 2.5). Mean differences in hare densities between stands 

treated with PCT and unthinned stands across 2 years of sampling and 2 seasons ranged 

from -45 to -54 % for 1 -year stands, -39 to -55 % for 6-year stands, and - 13 to -6 1 % for 

1 1-year stands. Despite annual changes in hare densities, PCT reduced densities of 

snowshoe hare during both leaf-off and leaf-on seasons during both years of my study. 

Further, hare densities were greatest in stands 17 to 24 years after clearcutting (13-20 

years post-herbicide) (I-year thinning classj during the leaf-off season, which was 

consistent with previous studies that have indicated that hares reach their greatest 

abundances in mid-successional stands and avoid very young clearcuts and mature stands 

(Litvaitis et al. 1985a, Monthey 1986, Koehler 1990, Ferron et al. 1998, Hoving 2001, de 

Bellefeuille et al. 200 1). 

The consistent effect of PCT on densities of hares from 1 to 11 -years post- 

treatment suggests that forest understories in thinned stands likely did not regain the 

structural complexity that existed prior to treatment. Regenerating stands without PCT 

supported the greatest densities of hares for 17-24 years after clearcutting (mean = 2.30 

hareslha, n = 5), whereas PCT-treated stands supported the lowest densities of hares 

(mean = 1.04 hareslha, n = 7) 25-32 years after clearcutting. In contrast, radio tracked 

hares avoided all regeneration treatments on landscapes in Quebec, Canada that included 



recently thinned stands (de Bellefeuille et al. 2001). Those results were somewhat 

inconclusive because pellet counts indicated that all sites, which were 7-9 years post- 

clearcut harvest, were rarely used, regardless of whether they had been treated with PCT. 

The authors concluded that longer than 9 years were necessary for clearcuts to regenerate 

to suitable hare habitat in Quebec; my sites were clearcut 17-32 years prior to study, 

which had allowed stands to develop the structural attributes required by hares (Wolfe 

1982, Litvaitis et al. 1985a). 

My observations that hare densities were reduced by PCT by 1-year after 

treatment were inconsistent with results from British Columbia, Canada (Sullivan and 

Sullivan 1988), where hare density exhibited no short-term (1-2 year) response to 

thinning. By 3-4 years after treatment, however, densities of hare in thinned stands fell 

below unthinned stands in British Columbia. These differences in conclusions may have 

resulted from felled trees losing their needles and value as food and cover more quickly 

in Maine. During 2001, Maine received the lowest annual precipitation of the last 100 

years (National Oceanic and Atmospheric Administration 2002), which could have 

contributed to the rapid desiccation of felled trees. Additionally, hares could have 

relocated from thinned stands into nearby unthinned stands soon after treatment  erron on 
et al. 1998). I speculate that it may be important to considerresponses in hare densities at 

the scale of the landscape in addition to the scale of the stand to account for confounding 

affects of individual movements by hares and shifts in home ranges in response to PCT. 

Hares are thought to concentrate habitat use in stands with high densities of 

saplings during winter, presumably to provide protection from predators and weather 

(O'Donoghue 1983, Litvaitis et al. l985a, Koehler and Brittell 1990). During summer, 



hares have a weaker association with understory stem density and canopy closure because 

food is more widespread and cover is less limiting (Wolff 1980, Litvaitis et al. 1985a). 

Despite that hares exhibit a more generalist preference for habitat during summer (Wolff 

1980, O'Donoghue 1983), I observed greater densities of hares in unthinned regenerating 

clear-cut stands compared to stands treated with PCT during both leaf-off (late-fall - 

early spring) and leaf-on (late spring - early fall) seasons. Consequently, regenerating 

stands with high densities of conifer saplings are likely selected for by snowshoe hares 

year-round in my study areas. During the leaf-on seasons, there was not a detectable 

difference in hare densities among stands of various treatment classes; however, hares 

were more abundant in younger stands than in older stands during the leaf-off season. 

Winter is the limiting season for snowshoe hares (Pease 1979, Pietz and Tester 1983), 

and they more strongly prefer the forest structure found in mid-successiond stands for 

them~al and escape cover during that season. 

Habitat associations of snowshoe hare have been reported to change with 

fluctuations of hare densities both in Maine at a landscape scale (Hoving 2001) and in 

Alaska at a stand scale (Wolff 1980). Even though densities of hares (across all stands) 

decreased by 33.0 % from the leaf-off season 2000-01 to leaf-off season 2001-02, and by 

49.5 % from the leaf-on season 2001 to leaf-on season 2002, a consistent and negative 

effect of PCT was still detectable (P 5 0.10). This indicates that, within the range of 

annual changes in hare densities that I observed, the negative effects of PCT occurred 

despite inter-annual fluctuations in densities of hare. 



Hare densities in response to alternative forest practices 

From a management perspective, the effects of PCT on reducing densities of hare 

are only relevant when compared to alternative forest practices. Maine has nearly 17 

million acres of commercial timberland that is likely to continue to be harvested, so if 

stands are not under a harvest plan including PCT, they likely will be managed via 

alternative silvicultural regimes. Although stands treated with PCT support lower 

densities of h&es than similar unthinned stands, they still retain greater densities of hares 

than many other forest stand types (Table 2.4). Of 7 forest-stand types studied in 

northern Maine, regenerating stands and PCT stands had the greatest hare densities. This 

pattern likely reflects hares' affinity to structure typically found in early seral stages, such 

as high stem densities and horizontal cover. Regenerating and PCT stands are early to 

mid-successional, whereas most of the other stand types are in later seral stages. 

Although PCT stands supported lower densities of h i e s  when compared to similar 

unthinned stands, PCT stands supported more hares than mature conifer, deciduous, or 

mixed coniferous-deciduous stands, or than mature mixed stands that had been recently 

partially harvested. Forest practices other than PCT should also be considered with 

regard to potential indirect effects on carnivores because they may exert a stronger 

influence on stand-scale and landscape-scale densities of snowshoe hare than thinning. 

For example, partial harvests, which may support fewer hares than PCT stands, (Table 

2.4) composed 221,029 ha of land harvested in Maine during 2001, whereas PCT-treated 

stands composed 8,860 ha of intensively managed land for 2001 (Maine Forest Service 

2002). Further, the acres of land clearcut harvested annually, which regenerate into the 



Table 2.4. Average density3 of snowshoe hares estimated in 7 overstory typesb (number 
of stands) in northern Maine during leaf-off seasons (October - May). Densities of hares 
reported for this study were averaged across 2 leaf-off seasons (2000-2001 and 2001- 
2002). 

Overstoryb (n) Years since Hareslha (SE)' Year of sampling Study 
regenerating event 

REG (n = 7) 12 - 20 2.43 (2.04) 1995 - 1996 Lachowski (1 997)- 

REG (n = 13) 18 -26  1.83 (0.16) 2000 - 2002 This study 

REG (n = 2) 15 1.63 (0.93) 1997 - 1998 Fuller (1999) 

PCT (n = 17) 18 -32  0.99 (0.09) 2000 - 2002 This study 

B K ~  (n = 2) 12-13 0.59 (0.41) 1995 - 1996 Lachowski (1997) 

MIX (n = 7) nla 0.29 (0.27) 1995 - 1996 Lachowski (1997) 

CON (n = 2) nla 0.23 (0.05) 1995 - 1996 Lachowski (1997) 

CON ( n  = 2) nla 0.23 (0.04) 1997 - 1998 Fuller (1 999) 

MIX (n = 7) nla 0.2 1 (0.03) 1997 - 1998 Fuller (1999) 

DEC (n = 2) nla 0.16 (0.00) 1997 - 1998 Fuller (1 999) 

DEC (n = 2) nla 0.15 0.01) 1995 - 1996 Lachowski (1997) 

PH (n = 7) 3-6 0.15 (0.00) 1997 - 1998 Fuller (1 999) 

Estimates of haredha were derived using the most biologically appropriate model for Maine described in 
Chapter I: haredha = 0.16303 +0.0001(pelletsha~month). Densities from Fuller (1999) were recalculated 
based on the modified Litvaitis-Long equation presented in Chapter I 

REG =regenerating forest, including unthinned stands for this study (leaf-off season densities), CON = 
coniferous. DEC = deciduous, MIX = mixed coniferous-deciduous, BK = killed by eastern budworm, PH = 
partial harvest, P C '  = precommercially thinned (leaf-off season densities). 

As hare populations may vary temporally, these differences should be viewed as relative, not absolute 
values. 

d Osawa (1986) reported that budworm mortality was complete for balsam fir and nearly complete for 
spruce by 1980 in Baxter State Park, Maine. 



habitat supporting the greatest densities of hares, have declined from about 45,998 ha to 

6,102 ha harvested annually since 1986. 

PCT may also include several other methods of reducing stand density (e.g., 

mechanical spacing and herbicide spray thinning) that were not evaluated in my study. 

Further, my results were for precommercially thinned herbicide-treated clearcuts with 

crop tree spacing of 1.8 to 2.4 m (6-8 feet); in other geographic areas with different 

dominant conifers, weather, soils, and silvicultural objectives, forest managers prescribe 

thinnings with varying spacing between crop trees. In this study, all PCT stands were 

treated with an aerial herbicide several years prior to being spaced. In Quebec, deciduous 

understory stem density in non-herbicided stands increased dramatically after PCT 

(Bujold 2002), and provided cover for hares that was not present on my study sites. 

Thus, the results from my study should be used with caution when applied to other 

regions, thinning regimes, or to systems where herbicide application does not precede 

PCT. 

Vegetation changes associated with PCT 

The structural attributes that were lower in forest stands treated with PCT explain 

much of the observed differences in thinned versus unthinned stands on my study sites. 

Complex understory structure provides thermal and escape cover from predators for 

snowshoe hares, was correlated to survival of hares in other regionsof Maine (Litvaitis et 

al. 1985a), and influenced length of dispersal movements of translocated hares in Idaho 

(Wirsing et al. 2002). Woody debris may substitute for horizontal cover in geographic 

areas where understory stem densities do not approach those required by snowshoe hare 

(Conroy et al. 1979, Scott and Yahner 1989, Ferron et al. 1998); however, woody debris 



likely only provides measurable cover during the leaf-on season, when not buried by 

snow. Measures of understory density, horizontal cover, and abundance of logs were 

greater in unthinned reference stands than stands treated with PCT, indicating that these 

structural attributes were associated with higher densities of hares on my study areas; 

untreated stands with more horizontal structure (i.e. stems, cover, and logs) supported the 

greatest densities of hare. A minimum of 40-60% understory horizontal cover has been 

suggested to maximize local densities of snowshoe hare in forest stands during winter 

(Wolfe et al. 1982, Litvaitis et al. 1985). Stands treated with PCT likely were below the 

structural threshold associated with higher densities of hares during my study. Thus, 

stands treated with PCT that also maintain understory complexity may mitigate the 

negative effects of thinning on densities of hare. To maximize post-treatment densities of 

snowshoe hare, forest managers could attempt to maintain greater horizontal cover (i.e. 

greater number of stemslha) in thinned stands by reducing spacing distances between 

crop trees; however, silvicultural objectives of the thinning treatment could be 

compromised (Seymour 1993). 

CONCLUSIONS 

The stand-scale effects of PCT were incredibly consistent at reducing densities of 

snowshoe hare by nearly 50% from 1 to 11 years post-treatment during both leaf-off and 

leaf-on seasons and across 2 years of study. Although thinning appeared to reduce the 

density of snowshoe hare at the stand-scale, it may have a weaker, negative effect on hare 

numbers across the landscape than more widespread silvicultural practices that favor 

retention of overstory trees throughout the rotation, such as some forms of partial 

harvesting. Maintaining greater horizontal cover by reducing the spacing distance 



between crop trees in regenerating conifer stands treated with PCT may partially mitigate 

the negative effects of thinning on densities of snowshoe hare. However, the silvicultural 

objectives and the cost efficiencies of thinning could be compromised. Caution should be 

taken when applying these stand-scale results to indirect effects on forest carnivores 

because landscape-scale responses of hares to PCT may not directly translate into 

negative effects on foraging efficiency and density of species such as lynx, who likely 

respond to habitat at larger spatial scales. At the scale of the forested landscape, the 

effects of distribution and extent of intensive forest management, including PCT, on 

snowshoe hare are also poorly understood and might differ from the stand-scale effects 

studied here. 
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CHAPTER 3 

TEMPORAL EFFECTS OF PRECOMMERCIAL THINNING ON 

SMALL MAMMALS IN NORTHERN MAINE 

ABSTRACT 

Precommercial thinning (PCT) is being practiced increasingly throughout the 

Acadian forests of eastern North America to meet silvicultural objectives; however, the 

effects of this practice on wildlife, both immediately after treatment and several years 

later, are not well understood. Forest dependent small mammals have ecological roles as 

prey for numerous avian and mammalian predators, dispersers of seeds, fruit, and spores, 

and contribute to nutrient cycling. Researchers in the northwestern USA have suggested 

that thinning of young regenerating clearcuts may increase the abundance and diversity of 

some taxa of forest-dependent small mammals by increasing rates of forest developn~ent 

and by enhancing the ecological representation of mid-successional stands across 

managed landscapes. I examined the effects of PCT, from 1 to 16 years post-treatment, 

on abundances of mice, voles, shrews, and on within-stand structure in the commercial 

forests of northern Maine. I live-trapped small mammals on 24 herbicided clearcuts 

treated with PCT and 13 similar, unthinned stands during summers of 2000 and 2001. 

Thinning of mid-successional conifer stands resulted in increased abundances (red- 

backed voles, Clethrionomys gapperi, P = 0.008; masked shrews, Sorex cinereus, P < 

0.001) or had no detectable effect on (deer mice, Peromyscus maniculatus, P = 0.544; 

short-tailed shrews, Blarina brevicauda, P = 0.517) the 4 most common species of small 

mammals in northern Maine. Several within-stand habitat characteristics associated 

with stand maturity, such as larger stem diameters and a partially open canopy, occurred 



in thinned stands. Thus, PCT may accelerate development of habitat attributes typical of 

mid-successional conifer stands. At the scale of the forest stand, PCT produced within- 

stand habitat conditions favorable to small mammals, and may be an appropriate 

management tool to increase the abundances of red-backed voles and masked shrews, and 

may accelerate stand succession in intensively managed stands within the Acadian Forest. 

However, PCT will involve tradeoffs for early successional wildlife species associated 

with high stem densities, such as snowshoe hare (Lepus americanus) (Chapter 2). 

INTRODUCTION 

The Acadian forest, ranging from northern New England east through the 

maritime Canadian provinces, includes the ecological transition zone of eastern 

deciduous forest to the south and boreal forest to the north (Seymour and Hunter 1992). 

Commercial timberland is a primary economic use of this region and accounts for 86% of 

the land area of Maine (Maine Forest Service 1998), 82% of New Brunswick, 68% of 

Nova Scotia, and 35% of Quebec (Canadian Council of Forest Ministers 2002). Over the 

past 2 decades, commercial forestry in this region has evolved from extensive 

management towards more intensive silviculture. Currently, about 4% of Maine's 

commercial timberland is in high production silviculture, including precommercial 

thinning (PCT), herbicide release, and plantations (Maine Forest Service 1998). 

Similarly, the eastern Maritime Provinces in Canada have experienced increases in the 

land area under intensive management, with 1.2 to 1 -5-fold increases from 1990-2000. 

One form of intensive forest management, PCT, increased from 4,352 ha to 9,950 ha in 

Maine (Maine Forest Service unpublished data, 2001), from 14,930 ha to 40,354 ha in 

New Brunswick, from 22,791 ha to 98,158 ha in Quebec, and from 3,228 ha to 8,113 ha 



in Nova Scotia (Canadian Council of Forest Ministers 2002), 1990-2000. Thus, thinning 

has affected an increasing percentage of regenerating-forest habitat across the Acadian 

forest and this practice has been questioned in relation to its effects on early successional 

wildlife species such as snowshoe hare (Lepus americanus), the primary prey of the US. 

Federally threatened Canada lynx (Lynx candadensis) (Hickenbottom et al. 1999). 

Precommercial thinning reduces the density of overstocked stands to minimize 

mortality from competition and to accelerate growth of residual trees (Ker 1987, 

Seymour 1984, Brissette and Frank 1999, Brissette et al. 1999). Characteristics of forest 

overstory (Ker 1987, McCormack and Lemin 1998, Brissette and Frank 1999, Chapter 4), 

understory (Doerr and Sandburg 1986, Newton et al. 1989, Wilson and Watts 1999, 

Lindgren and Sullivan 2001, Chapter 4), and microclimate (Reynolds et al. 1997) change 

dramatically after PCT and with stand succession. By reducing competition from crop 

trees via thinning, stem diameters (Harrington and Reukema 1983, Ker 1987, 

McCormack and Lemin 1998, Brissette and Frank 1999, Brissette et al. 1999, Pothier 

2002) and crowns (McCormack and Lemin 1998, Brissette and Frank 1999, Brissette et 

al. 1999, Lindgren and Sullivan 2001, Sullivan et al. 2001) of residual crop trees increase 

rapidly, causing stands to bypass the stem exclusion stage of forest succession 

characterized by self-thinning (Smith et al. 1997). The reduction of competition among 

crop trees for nutrients, space, and light results in reduced mortality of residual stems 

(Ker 1987, Brissette and Frank 1999, Brissette et al. 1999); without mortality of large 

diameter trees, recruitment of CWD may be reduced (Carey and Johnson 1995, Hayes et 

al. 1997, Harrison 1999). These changes within stands could potentially influence, either 

positively or negatively, a variety of forest wildlife species (early to late seral) dependent 



on overstory, understory, structure, or coarse woody debris (CWD). Application of PCT 

to regenerating conifer stands reduces densities of snowshoe hare (Sullivan and Sullivan 

1988, Chapter 2); however, studies in the Pacific Northwest have indicated that thinning 

of second growth forests may diversify the landscape and increase richness of wildlife 

species by accelerating stand succession (Carey and Johnson 1995, Hayes et al. 1997, 

Sullivan et al. 2001). 

Forest dwelling voles (Clethrionomys spp.), mice (Peromyscus spp., Napeozapus 

spp.), and shrews (Soricidae) are relevant taxa for examining responses to PCT because 

they are consumers of invertebrates, fungi, and vegetation (Hamilton 1941) and are prey 

for many avian (Mendall 1944) and mammalian carnivores (Soutiere 1979, Dibello et al. 

1990, Cumberland et al. 2001). Additionally, small mammals may assist the revegetation 

of nonforested areas by dispersing spores of hypogeous fungi present in their feces 

(Maser et al. 1978, Kirkland 1990) and contribute to nutrient cycling (Brooks and Healy 

1988). Small mammal abundances have been reported to be positively associated with 

some attributes of forest structure, including downed and decaying dead wood (Richens 

1974, Hayes and Cross 1987, Carey and Johnson and 1995), microclimatic conditions 

associated with closed overhead cover and diverse ground structure (Miller and Getz 

1977, Yahner 1986), and with characteristics of understory vegetation (Yahner 1986, 

Bowman et al. 2001). Habitat variables describing the structural attributes of mature 

forest at both the stand scale and microhabitat scale have been positively associated with 

densities of small mammals (Martell 1983b, Lachowski 1997). Thus, silvicultural 

practices that accelerate forest succession and reduce stand rotation, such as PCT, could 



accelerate the development of favorable habitat conditions for small mammals that prefer 

the overstory and understory characteristics of mature forest. 

Stand thinning is designed to minimize natural mortality resulting from intra- and 

inter-specific competition among crop trees. This could reduce recruitment of CWD 

below levels required by small mammals, and might reduce abundance, age structure, or 

reproductive performance in affected populations. However, previous studies of the 

habitat relationships of red-backed voles (Clethrionomys gapperi), deer mice 

(Peromyscus maniculatus), short-tailed shrews (Blarina brevicauda), and masked shrews 

(Sorex cinereus) in commercial forests of Maine have uncovered few unequivocal 
, . 

relationships between population abundance and CWD (Lachowski 1997, Fuller 1999, 

Billig in prep.). These findings suggest that woody debris usually occurs above levels 

required by small mammals across a wide range of extensively managed and unmanaged 

stands in commercial forests of Maine. Alternatively, structures (e.g. slash) created from 

logging activities might serve as functional surrogates to CWD immediately after harvest. 

These inter-relationships among intensive silviculture (e.g. PCT), CWD, and forest 

dwelling small mammals require further study in eastern North America. 

Understanding the response of small mammals to silvicultural prescriptions for 

longer than 2-3 years after treatment is necessary to evaluate the ecological effects of 

forest practices that influence long-term stand development. For example, initial changes 

in rnicroclimate of stands directly after thinning could cause a decrease in small mammal 

populations, but populations could rebound as the growth of crop trees accelerates 

following treatment. Few studies have explored the temporal effects of PCT on small 

mammals longer than 4 years post-treatment (exception: Sullivan et al. 2001) and 



statistical replications have been limited (n 1 4 )  (Lautenschlager et al. 1997, Sullivan et 

al. 2001). 

Published effects of PCT on forest dwelling small mammals have involved stands 

that were clearcut and thinned, but not treated with an herbicide (Lautenschlager et al. 

1997, Sullivan et al. 2001); in the Acadian forest, PCT often occurs on stands that were 

previously herbicided (typically 3-10 years after clearcutting). Sullivan et al. (2001) 

presented results of effects of thinning on small mammals in British Columbia 

immediately after treatment and 10 years later; however, their study design did not allow 

for treatment effects to be distinguished from temporal variations in abundances of small 

mammals. Temporal effects potentially confound studies of small mammal responses to 

forest practices because densities of small mammals often exhibit significant inter-annual 

variation (Richens 1974, Krebs and Wingate 1976, Lachowski 1997, Bayne and Hobson 

1998, Fuller 1999). 

Stands previously treated with PCT in Maine have grown at a sufficient rate to 

allow for the first economically viable commercial entry as soon as 16 years after 

thinning (ages 30-35 years). Thus, I evaluated effects of PCT on small mammals at 

intervals of 1-2,5-7,9- 12, and 14- 17 years post-thinning in stands that were clearcut 17- 

33 years previously and treated with herbicides 2-19 years after harvest. My objectives 

were to retrospectively compare the relative abundances of small mammals and 

associated overstory and within-stand habitat attributes in herbicide treated clearcuts, 

with and without PCT. Generalizing the responses of wildlife to forest management 

across species of small mammals may be inappropriate because large changes in the 

densities of one or more dominant species may obscure changes in community 



composition or densities of individual species (Martell and Radvanyi 1977, Martell 

1983b). I compared species-level abundance of red-backed voles, deer mice, short-tailed 

shrews, and masked shrews among regenerating, unthinned stands and similarly aged, 

thinned stands 1-16 years post-treatment. Overstory and within-stand habitat variables 

were also compared between thinned and unthinned stands and successional patterns in 

habitat and structural (e-g. CWD) characteristics of stands were documented from 1-16 

years post-thinning. 

Densities of animal populations are not always greatest in habitat types with the 

greatest habitat quality (Van Horne 1983). The proportion of individuals in a 

reproductive condition is frequently used as an indirect indexof habitat quality for small 

mammals (Hobbs and Hanley 1990); therefore, I also compared lactation rates of female 

red-backed voles and deer mice between thinned and unthinned stands to evaluate effects 

of PCT on reproductive performance of these 2 dominant small mammals in the Acadian 

forest. 

STUDY AREA 

Seven townships in northern Maine (Days Academy Grant, Spencer Bay, T 1 R 13 

WELS, T4 R 12, T4 R11, T5 R11, and Hersey) composed the study area (Figure 3.1). 

Hersey Township is in Aroostook County and the other 6 townships are in Piscataquis 

County. Most of the land in these towns is managed for pulpwood and sawtimber 

production by Plum Creek Timber, Fairfield, Maine; Great Northern Paper, ~i l l inocket ,  

Maine; and International Paper Company, Costigan, Maine. The study area spans 1 10 

lun east to west and 49 km north to south. Stands were chosen so that topography was 

relatively flat (< 15' slope). 



Figure 3.1. Location of study sites containing 37 stands where abundances of small 
mammals were investigated within 7 townships in the commercially owned and managed 
forests of northern Maine, 2000-2001. 



Northern Maine is part of the Acadian forest, known also as the sub-boreal 

spruce-fir ecosystem (Seymour and Hunter 1992). Study sites were dominated by balsam 

fir (Abies balsamea), red spruce (Picea ruberts), and black spruce (Picea nigra), but also 

had minor components of white pine (Pinus strobus), larch (Larix spp.), white cedar 

(Thuja occidentalis), paper birch (Betula papyrifera), quaking aspen (Populus 

tremuloides), and red maple (Acer rubra). The climate was generally cool and moist, 

with an annual mean temperature for the region of 3.3" C and 101 cm of average annual 

precipitation (Garoogian 2000). The area received an average of 2.75 m of snowfall 

yearly (averaged from 1970 to 2000) and the ground was usually snow-covered from 

December through April. 

METHODS 

I evaluated the site quality, tree density, diameter at breast height (dbh) of 

dominant trees, size, and spatial independence of stands before selecting study sites. 

Sites were considered spatially independent when separated by > 0.40 krn or a body of 

water to minimize population exchange of small mammals (Bowman et al. 2000a). Site 

quality, which can strongly influence the rate of succession of conifer stands (Briggs and 

Lemin 1994), was estimated based on 4 to 6 soil cores sampled at 50-100 m intervals 

within the stand with a soil auger. According to Brigg's (1994) scale of forest 

productivity, site-quality ranged from 1 (highly productive) to 5 (unproductive). I 

attempted to minimize among-stand variation within a treatment x thinning class block 

by pairing treated and untreated stands based on year of initial clearcut, year of herbicide, 

time since PCT, site quality, topography and pre-thinning species composition (based on 



live trees and stumps in stands treated with PCT). Stands were paired retrospectively so 

were not treated as statistical pairs during analyses. 

Treatment stands were clearcut (timber harvesting resulting in residual basal area 

of acceptable growing stock trees > 4.5 in. dbh of < 30 ft2/acre) 1967-1983, aerially 

herbicided with Glyphosate (applied at a rate of =. 1.68 kgha acid equivalent) 1977-1988, 

and precommercially thinned with motor-manual brush-saws from 1984-1999. 

Unthinned reference stands were clearcut 1974-1982 and herbicided with Glyphosate (- . 

1.68 kgha acid equivalent) 1982- 1988 (Table 3.1). The study design included 24 

treatment stands that were surveyed for small mammal abundances at 5-year intervals 

since thinning (1-2 year post-thinning, n = 6; 5-7 years, n = 6; 9-12 years, n = 6; 14-17 

years, n = 6) and 13 similar, unthinned stands (1 year, n = 5; 6 year, n =5; 11 year, n = 3), 

whose histories were comparable with treatment stands. I allowed some latitude (1-2 

years) in separating stands into thinning classes so that I could maximize the number of 

stands studied. The study design was unbalanced; a greater number of stands were 

treated with PCT (n = 24) compared to unthinned stands (n = 13). I was unable to locate 

comparable, unthinned stands for the 16-year thinning class and located only 3 unthinned 

replicates for the 1 1-year thinning class. Nearly all stands that had been clearcut and 

herbicided prior to 1985 in my study areas had already been treated with PCT. 

Small mammal trapping 

I surveyed the relative abundances of red-backed voles, deer mice, short-tailed 

shrews, and masked shrews by live-trapping within 37 stands (Table 3.1) during June- 

August 2000 and 2001. I established 70 m by 70 m trapping grids with 64 trap stations at 

10 m intervals (Figure 3.2). Grids were positioned > 50 m from edges of forest stands to 



Table 3.1. Stand history, location, and site quality for 24 precommercially thinned stands 
and 13 unthinned stands located in 7 townships, northern Maine. (T = treated with PCT, 
C = unthinned stand). Site quality ranged from 1 (well drained, productive) to 5 (poorly 
drained, unproductive) according to Briggs (1994) classification guidelines. 

Site Year of Year of Year of Township Site 
number Clearcut Herbicide PCT Quality 

1 - 1 -T 1982 1988 1999 T 4 R  11 4+ 

6- 1 -T 1979 1988 1994 Hersey 3+ 
6-2-T 1979 1988 1994 Herse y 2- 
6-3-T 1987 1988 1994 Hersey 2 
6-4-T 1974 1982 1994 T 5 R 1 1  3- 
6-5-T 1976 1985 1995 T 5 R 1 1  3 - 

1 1-2-T 1968 1987 1990 Spencer Bay 3- 
11-3-T 1975 1983 1989 T l R 1 3  2- 
1 1-4-T 1975 1986 1990 T l R 1 3  3 
11-5-T 1975 1983 1989 T l R 1 3  2 
1 1 -6-T 1975 1984 1991 T l R 1 3  2- 
16-1-T 1967 1986 1985 Spencer Bay 2- 
16-2-T 1972 1980 1986 Days  cad: 3 
16-3-T 1970 1977 - 1986 Days Acad. 2- 
16-4-T 1969 198 1 1986 Days Acad. 3+ 
16-5-T 1970 - 198 1 1985 Days Acad. 3+ 
16-6-T 1968 198 1 1984 Davs Acad. 2- 

1-5-C 1976 1985 n/a T 4 R  11 3- 
6- 1 -C 1979 1988 n/a Herse y 3+ 
6-2-C 1981 1988 n/a Herse y 3+ 
6-4-C 1974 1982 n/a T 5 R  11 4 
6-5-C 1974 1985 - n/a T 4 R  12 3 
6-6-C 1976 1983 n/a T 4 R  11 4 
11-1-C 1976 1982 n/a T 5 R  11 3 
1 1-3-C 1976 1982 n/a T 5 R 1 1  3+ 
1 1-4-C 1974 1985 n/a T 5 R 1 1  3 
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minimize edge-effects (Harris 1988, Fraver 1994). I placed one live-trap (B. N. Bolton, 

Inc. Vernon, B. C.; use of commercial names does not imply endorsement) baited with a 

mixture of rolled oats and peanut butter within 1 m of each trap station. Bolton live traps 

have an attached nest compartment to provide shelter and protection from predators. I 

placed 5 cotton balls in the nest compartment as material for nesting and placed the traps 

with the door facing downslope so that rainfall or condensation would drain. I covered 

traps with moss, leaves, and bark to provide additional thermal and visual protection. 

I trapped each stand for 6 consecutive days and nights and tagged mice and voles 

with a unique, individually numbered ear-tag (Monel 1005-1; National Band and Tag 

Co., Newport, Kentucky). Short-tailed and masked shrews were not marked; therefore, 

only the number of captures was recorded for shrews. I recorded species, sex, age, and 

reproductive condition of each individual. I categorized small mammals as adult or 

juvenile by pelage color and relative size. I determined the reproductive condition of 

adult female mice and voles as lactating (mammaries swollen) or non-lactating 

(mammaries not swollen). Traps were checked from 0600 to 1300 hours, and after 

processing, animals were released at the trap site. The Institutional Animal Use and Care 

Committee, University of Maine, approved trapping and handling procedures. Field 

technicians took several safety precautions for hantavirus pulmonary syndrome. A 

baseline blood sample was drawn from technicians prior to handling of small mammals. 
$-. 

Further, field technicians wore rubber gloves and full body coveralls when handling 

study animals, and traps were washed in a diluted bleach solution after each 6-day 

trapping session. Coveralls, traps, and trapping supplies were transported to and from 

study sites in an open-bed truck. . 



Within-stand habitat characteristics 

I selected variables a priori that previous studies of habitat relationships of small 

mammals (Hamilton 1941, Miller and Getz 1977, Yahner 1986, Clough 1987, Hayes and 

Cross 1987, Carey and Johnson 1995, Lachowski 1997, Bowman et al. 2000b) have 

reported as important correlates or predictors of abundance. These variables included: 

total basal area, density of trees, total density of coarse woody debris, percent live ground 

cover, density of understory stems, and canopy density. 

Habitat characteristics were measured within the small-mammal grids following 

the methods of Lachowski (1997) and Fuller (1999). I randomly selected 16 of the 64 

trapping stations on the 37 trapping grids and oriented a 10-m by 2-m plot following a 

randomly selected compass direction at the center of each station. Within each plot I 

measured the diameter at breast height (dbh) of all coniferous trees and deciduous trees 

(2 7.6 cm dbh, 2 2 m height, > 45" from the ground) (DBH), and counted the number of 

herbaceous ground stems (HGSTEMS) (< 0.5 m height, < 7.6 cm dbh), number of 

deciduous and coniferous saplings (c  7.6 cm dbh, alive) at 1.5 m height 

(UNDERSTORY), the number of root masses (2 7.6 cm diameter), stumps (< 2 m height, 

2 7.6 cm diameter), logs (2 1 m length, 2 7.6 cm diameter, c 45" from ground), and snags 

(2 7.6 cm dbh, 2 2 m height, > 45" from the ground) within the plot. I termed the number 

of logsha + stumpsha + snagsha as TOTDEBRIS. I measured the basal area of 

coniferous + deciduous trees (TOTBA) using a 2 m2 / ha prism held at the center-point of 

the plot (Avery and Burkhart 2002). I measured percent canopy closure (CANOPY) at 

the 4 cardinal compass directions using a spherical densiometer held at waist height 

(Lemmon 1956). 



Analysis of small mammal abundances 

To determine if species-specific abundances met the parametric assumptions of 

Analysis of Variance (ANOVA), I examined across treatments and blocks for normality 

of residual errors using normal probability plots and Lilliefor's tests, and I examined data 

for constant variance using the modified Levene's test (Neter et al. 1996). I transformed 

data exhibiting heteroscedasticity (modified Levene's 5 0.10) or nonnormal errors 

(Lilliefor's < 0.10) and then re-evaluated assumptions of normality and constant variance. 

The minimum number alive (MNA) of red-backed voles and MNA of deer mice were 

transformed using lo&. Number of captures of short-tailed shrews (from 1-1 1 years post- 

treatment) met parametric assumptions following a square root transformation; however, 

number of captures of masked shrews did not meet assumptions after transformations and 

were analyzed using nonparametric alternatives to ANOVA. 

To test whether the effects of PCT differed from effects of stand development, I 

conducted 2 separate analyses on the relative abundances (MNA and number of captures) 

of small mammals. I tested whether abundance of small mammals differed between 

stands treated with PCT and unthinned stands, from 1-1 1 years post-treatment, using a 

repeated-measures two-way ANOVA for each species (Zar 1999). I evaluated effects of 

treatment (PCT or unthinned), thinning class (1'6, 11 years), year of sampling (2000 or 

2001), and any interactions on the MNA index of abundance of red-backed voles, deer 

mice, and for the index of total number of captures for short-tailed shrews. I excluded the 

16-year thinning class, which did not include any similar untreated stands, to avoid 

biasing effects and interactions with the 1,6, and 1 1-year thinning classes. 



Similarly, I used non-parametric alternatives to test whether number of captures 

of masked shrews differed between PCT and unthinned stands, by thinning class of stand, 

and between the 2 years of sampling. I examined for an effect of year by conducting a 

Wilcoxon signed rank test, while ignoring grouping factors (thinning class and treatment) 

(Zar 1999). Next, I summed the number of captures of masked shrews across 2000 and 

2001 and ranked the resulting sum. I then conducted a two-way ANOVA with thinning 

class and treatment as main effects. I examined interaction terms with year in them by 

calculating the difference in number of captures between years, ranking the resulting 

data, and conducting a one-way ANOVA. 

To evaluate changes in relative abundances of the 4 small mammal species in the 

PCT-treated stands through time, I conducted a repeated-measures ANOVA examining 

the effects of thinning class (I-year, 6-year, 1 1-year, 16-year post-thinning), year of 

sampling (2000 or 2001), and thinning class x year interaction with stands treated with 

PCT. I conducted this analysis on the MNA for both deer mice and red-backed voles. 

Non-parametric alternatives were necessary to analyze data for short-tailed and masked 

shrews. For shrews, I conducted a Wilcoxson signed rank test to determine if a year 

effect was present, and conducted a one-way ANOVA with thinning class as the main 

effect on the ranked sum of the number of captures in 2000 + 2001. I calculated the 

difference between years, ranked the resulting data, and conducted a one-way ANOVA to 

evaluate the presence of a year x thinning class interaction. I examined significant main 

effects for voles and mice a posteriori using pairwise comparisons using Tukey's 

honestly significant difference test (Zar 1999) and Bonferroni multiple contrasts for a 

priori selected pairwise comparisons for significant interaction terms (Neter et al. 1996). 



Reproductive indices 

I tested for differences in lactation rates of adult female deer mice and red-backed 

voles among treatment and control stands using a Chi-square test for proportions (Zar 

1999). I captured few adult female small mammals during summer 2000; therefore, I 

pooled reproductive data for each species across years and stand-ages to maximize 

statistical power (the total number of adult female captures within each treatment ranged 

from 40-87). 

Within-stand habitat analyses 

The size of the trapping grid was approximately 1 .O-2.5~ the size of the average 

home range for red-backed voles and 0.3-3.0~ for deer mice (Witt and Huntly 2001); 

therefore, within-stand habitat characteristics were described at the scale of the trapping 

grid. I averaged 6 overstory, understory, and CWD variables across the 16 sampling 

locations in each of 37 stands to produce an average value of each variable for each 

stand. Modified Levene's tests, Lilliefor's tests and normal probability plots were used 

to examine data for homoscedasticity and normal errors (Neter et al. 1996). DBH and 

UNDERSTORY were log transformed and CANOPY was arcsine transformed prior to 

analysis so that variables met parametric assumptions of ANOVA. I conducted a two- 

way ANOVA on the means of each habitat variable for the I -year, 6-year and 1 1-year 

stands to examine for effects of thinning class (1-year, 6-year, 1 1-year), treatment (PCT 

or unthinned), and treatment x thinning class interaction. Significant pairwise differences 

among stand-ages were examined a posteriori with Tukey's honestly significant 

differences test (Zar 1999). 



I tested for differences in habitat and structural variables among PCT stands of 

different (I-year, 6-year, 1 I-year, 16-year) ages since thinning by conducting a one-way 

ANOVA, with age-class as a main effect. Pairwise comparisons were conducted o 

posteriori using Tukey's honestly significant differences test (Zar 1999). 

Sample sizes of thinned and unthinned stands ranged from only 3 to 6 within each 

class since thinning; thus, the probability of type I1 statistical error was relatively high. I 

attempted to balance type I and type I1 error by using P < 0.10 as my threshold for 

statistical inference. 

RESULTS 

Abundance of small mammals 

I captured 600 red-backed voles (1,296 times), 399 short-tailed shrews, 386 

masked shrews, 347 deer mice (824 times), 51 eastern chipmunks (Tamias striatus), 15 

weasels (Mustela spp.), 11 red squirrels (Tamiasciurus hudsonicus), 10 woodland 

jumping mice (Napeozapus insignis), 5 smoky shrews (Sorex fumeus), 2 Southern bog 

lemmings (Synaptomys cooperi), and 1 meadow vole (Microtus pennsylvanicus) during 

2000 and 2001, combined. Species except for red-backed voles, deer mice, short-tailed 

and masked shrews were excluded from further analyses of effects of PCT and thinning 

class on abundance because capture success was too low for a meaningful or statistically 

powerful analysis. Each of the 4 species of small mammal that were statistically 

evaluated exhibited different responses to treatment and thinning classes (Figures 3.3, 

3.4,3.5, 3.6, Table 3.2,3.3), indicating strong effects of PCT and thinning class among 

red-backed voles, deer mice, short-tailed shrews, and masked shrews. 
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Number of years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of sampling 

Figure 3.3. Mean minimum number alive (SE) of red-backed voles (Clethrionomys 
gapperi) in 24 stands treated with PCT and 13 unthinned stands during summer 2000 and 
2001, northern Maine. Unthinned stands had similar years of clearcut and herbicide, and 
similar site quality to comparable PCT stands. 

Number of years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of sampling 

Figure 3.4. Mean minimum number alive (SE) of deer mice (Peromyscus rnaniculatus) 
in 24 stands treated with PCT and 13 similar unthinned stands during summer 2000 and 
2001, northern Maine. Unthinned stands had similar years of clearcut and herbicide, and 
similar site quality to comparable PCT stands. 
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Figure 3.5. Total number of captures of short-tailed shrews (Blarina brevicauda) (SE) in 
24 stands treated with PCT and 13 unthinned stands during summers 2000 and 2001, 
northern Maine. Unthinned stands had similar years of clearcut and herbicide, and similar 
site quality to comparable PCT stands. 

0 Unhinned stands 

ear 6-year 6-year I I-year 
01 2000 2001 2000 

I 

tear 
0 I 

rear 
DO 

Number of  years since treatment (PCT stands) or years since comparable 
stands were treated (unthinned stands) and year of  sampling 

Figure 3.6. Total number of captures of masked shrews (Sorex cinereus) (SE) in 24 
stands treated with PCT and 13 unthinned stands during summers 2000 and 2001, 
northern Maine. Unthinned stands had similar years of clearcut and herbicide, and similar 
site quality to comparable PCT stands. 



Table 3.2. Comparisons of mean (SE) abundances (minimum number alive) of red-backed voles and deer mice and relative 
abundances (total number of captures) of short-tailed and masked shrewsa on precommercially thinned stands (n = 18) and unthinned 
reference stands (n = 13) in northern Maine, 2000-2001. Data were analyzed using repeated-measures two-way Analysis of Variance; 
non-transformed means and standard errors are presented for transformed  variable^.^ 

Species of small mammalc 
Red-backed vole Deer mouse Short-tailed shrew Masked shrew 

Treatment 

F-Statistic 8.316 0.377 0.43 1 d a  
P-value 0.008 0.544 0.517 d a  

Abundance in PCT stands . 9.06 (1.24) 3.56 (0.66) 6.00 (1.30) 6.81 (1.18) 
Abundance in unthinned stands 3.84 (0.61) 4.42 (1.05) 4.35 (1.00) 1.19 (0.3 1) 

Thinning classd 

F-Statistic 0.620 3.073 2.380 d a  
P-value 0.546 0.064 0.113 n/a 

a 
+ Abundance in I-year stands 8.05 (1.96) 3.36 (0.80) 3.68 (0.95) 3.68 (1.28) 

Abundance in 6-year stands 5.23 (0.82) 3.00 (0.84) 4.77 (1.32) 3.23 (0.90) 
Abundance in 1 1-year stands 7.44 (1.15) 5.72 (1.35) 7.94 (2.16) 6.89 (1.81) 

Year of sampling 

F-Statistic 
P-value 

Abundance in 2000 
' Abundance in 2001 7.52 (1.23) 6.71 (0.89) 9.58 (1.33) 5.48 (1.28) 

Treatment x Thinning class 



Table 3.2. Continued. 

Species of small mammal 
Red-backed vole Deer mouse Short-tailed shrew Masked shrew 

Treatment x Year 
F-Statistic 0.389 0.277 1.175 n/a 

P-value 0.539 0.604 0.289 n/a 
Thinning class x Year 

F-Statistic 1.389 0.262 4.156 n/a 
P-value 0.268 0.77 1 0.028 n/a 

Treatment x Thinning 
class x Year 

F-Statistic 2.546 1.656 0.055 n/a 

'Number of captures of masked shrews were not distributed normally; therefore a nonparametric analyses was conducted. Results are presented in the text. 
u, b~~~ of red-backed voles and deer mice were log transformed and number of captures of short-tailed shrews were square root transformed. The non- 

transformed mean and SE are presented here. 
'Red-backed vole (Clethrionomys gapperi), deer mouse (Peromyscus maniculatus), short-tailed shrew (Blarina brevicauda), masked shrew (Sorex cinereus). 
*stands in the 1-year thinning class include stands (n = 6) that were treated with PCT in 1999 and unthinned stands (n=5). Stands in the 6-year thinning class 
include stands treated with PCT (n = 6) in 1994-1995 and unthinned stands (n = 5). Stands in the I 1-year thinning class include stands (n = 6) that were treated 
with PCT 1989-1991 and unthinned stands (n = 3). Unthinned stands had similar years of clearcut and herbicide, and similar site quality to comparable PCT 
stands. 



Table 3.3. Comparison of mean (SE) abundances (minimum number alive) of red-backed voles and deer mice and median (range) of 
number of captures of short-tailed shrews and masked shrews across 4 thinning classes of stands treated with PCT (1-year post- 
treatment, n = 6; 6-years post-treatment, n = 6; 11 years post-treatment, n = 6; 16 years post-treatment, n = 6) in northern Maine, 2000- 
2001. Means were compared using one-way ANOVA and medians were compared using nonparametric analysesa; non-transformed 
means and standard errors are presented for deer mice. 

Species of small mammal" 
Red-backed vole Deer mouse Short-tailed shrewa Masked shrewa 

Thinning classC 

16-years 14.500 (2.091) 
Year of sampling 

\b 

2001 1 1.042 (1.652) 7.333 (1.135) 9.5(0-28) 5 (0-25) 
Thinning class x 

Year 

P-value 0.757 0.034 0.144 0.623 
'Presence of a yeareffect for shrews was tested for using a Wilcoxsin signed rank test. An effect of age-class was tested for using a one-way ANOVA on the 
ranked sum ofthe number of captures in 2000 + 2001 and an age-class x year interaction term was tested for with the difference in abundances between years. 
b~ed-backed vole (Clethrionomys gapperi), deer mouse (Perornyscus rnaniculatus), short-tailed shrew (Blarina brevicauda), masked shrew (Sorex cinereus). 
' Stands in the 1-year ageclass include stands (n = 6) that were treated with PCT in 1999. Stands in the 6-year age-class include stands treated with PCT (n = 6) 
in 1994-1995. Stands in the 1 I-year age-class include stands (n = 6) that were treated with PCT 1989-1991. 



I did not detect an effect of thinning class of stands on voles (P = 0.546), but there was a 

significant treatment x thinning class interaction (P = 0.072) (Table 3.2). Although red- 

backed voles were 2 . 5 ~  more abundant in stands treated with PCT than unthinned stands 

(P = 0.008), the effect of PCT was not consistent across thinning-classes. Thinned stands 

had greater numbers of voles in the 1 -year (P < 0.00 1) and 1 1 -year age-class (P < 0.005), 

but treatments had similar abundances in the 6-year thinning class (P > 0.600). There 

was significant inter-annual variation in abundances of voles; a greater number were 

captured during 2001 (n = 233) than 2000 (n = 193) (P = 0.062). A significant year x 

thinning class x treatment interaction (P = 0.099) was observed indicating that the effects 

of PCT on voles were inconsistent across thinning classes of stands and years of 

sampling. Within solely PCT stands, from 1 to 16 years post-treatment, I did not detect 

an effect of year since thinning (thinning class, P = 0.173), year of sampling (P = 0.320), 

or a thinning class x year interaction term (P = 0.757) on the abundance of red-backed 

voles (Table 3.3). 

Differences between the MNA of deer mice in thinned and unthinned stands was 

not significant (P = 0.544) from 1 to 1 1 years post-treatment (Table 3.2). Abundances of 

deer mice were different among thinning classes (P = 0.064); however interpretations 

were confounded by a significant (P = 0.034) thinning class x year interaction. The 16- 

year thinning class had 2.1-2.7~ greater abundance of deer mice than each of the 3 

younger thinning classes (Table 3.3). Across all thinning classes, abundance of deer mice 

was nearly 4x greater in 2001 (n = 277) than in-2000 (n = 70) (P < 0.001) (Table 3.3). 

Treatment and thinning class of stands did not have a detectable effect on the 

number of captures of short-tailed shrews from 1 to 11 years post-treatment (P > 0.100). 



There was, however, a marked change ( 9 . 2 ~ )  in shrew abundance between 2000 and 

2001 (P < 0.001). Additionally, there was an inconsistent effect of thinning class on 

abundance of short-tailed shrews across the 2 years sampled (thinning class x year 

interaction, P = 0.028). During 2000, the 3 thinning classes had similar abundances (P > 

0.10), but during 2001 the 1 1-year age-class had greater numbers of shrews than the 1- 

year age-class (P < 0.01). 

Masked shrews responded strongly and positively to thinning (P < 0.001) and 

abundances were 5 . 7 ~  greater in thinned stands than in similar reference stands, from 1 to 

11 years post-treatment. I did not detect a significant effect of year of sampling or 

thinning class on masked shrews (P > 0.10); however, the treatment x thinning class 

interaction was significant (P = 0.092), indicating that there was an inconsistent effect of 

PCT across the 3 thinning classes. Pairwise comparisons indicated that stands treated 

with PCT had greater numbers of masked shrews than in unthinned stands in the 6-year 

(P < 0.001) and 1 1 -year (P < 0.001 ) thinning classes, but not within the 1-year stands (P 

= 0.82). 

Reproductive indices 

No significant difference (2 = 0.93, P = 0.34) in the proportion of lactating adult 

female red-backed voles was observed between stands treated with PCT (4 1 %, n = 187, 

90 % C.I. 33 - 48 %) and unthinned reference stands (30%, n = 40,90 % C.I. 16 -46 %). 

A greater proportion of adult female deer mice were lactating (2 = 9.18, P < 0.001) on 

unthinned stands (58 %, n = 43,90 % C.I. 42 -72 %) than in thinned stands (3 1 %, n = 

108,90 % C.I. 23-41 %). 



Habitat in PCT versus unlhinned stands 

Of the 6 a priori selected microhabitat variables, average diameter at breast height 

of trees was 1 . 1 5 ~  greater (P = 0.003), total basal area was 1 . 3 8 ~  greater (P = 0.002). and 

understory density was 1 . 4 0 ~  greater (P = 0.022) within small mammal grids that had 

been treated with PCT, compared to grids within unthinned stands with a similar history 

of clearcutting and herbiciding (Table 3.4). Canopy closure was greater in unthinned 

stands than in stands treated with PCT up to 1 1-years post-treatment (P = 0.009). Canopy 

closure differed among thinning classes (P = 0.040); pairwise comparisons indicated that 

the 11-year thinning class had greater canopy closure than the 1-year thinning class (P = 

0.070). Total understory density differed by thinning class, and the 6-year thinning class 

had a greater density of understory stemsfha than the 1-year (P = 0.008) or 1 1-year (P = 

0.023) thinning classes. 

Temporal effects of PCT on within-stand habitat characteristics 

Average dbh, canopy closure, and total basal area generally increased with 

thinning class (Table 3.5). The 1-year thinning class had a lower dbh than the 6, 11, or 

16-year thinning class (P = 0.080). Canopy closure (P = 0.01 1) and total basal area (P = 

0.076) were greater in the 16-year thinning class than the 1-year thinning class. The 16- 

year thinning class also had greater total basal area than the 6-year thinning class (P = 

0.018). Abundance of coarse woody debris was greater 1 1 years after treatment 

compared to 16 years post-thinning in PCT-treated stands (P = 0.005), but there were not 

differences in total amount of CWD between treatments (P = 0.180) or among thinning 

classes (I-year, 6-year, 1 1-year; pooled across treatments) (P = 0.231). Density of 

understory stems was greater 6-years post thinning than 1 -year post-thinning (P = 0.001 ). 



Table 3.4. Comparison of means (SE) for 6 habitat variables selected a priori between precommercially thinned stands (n = 18) and 
unthinned reference stands (n = 13) in northern Maine, 2000-2001. Differences in means by treatment for each variable were tested 
using two-way Analysis of Variance; non-transformed means and standard errors are presented for transformed variablesa. 

D B H ~   CANOPY^ HGSTEM~ TOTDEBRIS~ TOTBA' UNDER STORY^ 
Treatment 

PCT (n = 18) 12.7 (0.4) 74.68 (2.85) 400,398 (47,545) 1.53 1 (1 32) 20.19 (0.99) 3,376 (507) 
No PCT (n = 13) 10.5 (0.2) 8 1.35 (2.17) 279,865 (56,379) 2,038 (172) 26.1 1 (2.09) 2,397 (676) 

' l'hinning-classh . 

F-Statistic 2.521 3.672 0.070 1.553 1.623 9.248 
P-value 0.101 0.040 0.933 0.23 1 0.2 17 0.00 1 

1-year (n = 11) 10.6 (0.3) 69.87 (5.07) 323,563 (74.625) 1,946 (257) 20.49 (1.8 1) 1,642 (27 1 ) 
6-year (n = 11) 1 1.9 (0.7) 75.1 (2.4) 301.463 (42.658) 1,602 (121) 2 1.4 (2.7) 5,028 (990) 

\O 
4 

1 1 -year (n = 9) 12.0 (0.5) 82.13 (3.18) 376,191 (89,445) 2,063 (157) 24.32 (1.45) 2,125 (429) 
Treatment x 
thinning class 

F-Stati'stic 6.256 0.767 0.639 1.61 1 0.587 3.619 
P-value 0.006 0.439 0.566 0.220 0.563 0.042 

'DBH and UNDERSTORY were log transformed prior to analysis. 
b~~~ = average diameter breast height (cm) of closest tree (2 7.6 cm dbh, 2 2 m height, > 45" from horizontal, alive) in each quarter. 
' CANOPY = average overhead percent canopy closure during summer. 
*HGSTEMS = number of herbaceous ground stems (< 0.5 m height, < 7.6 cm dbh, alive) per ha. 
TOTDEBRIS = number of (snags + logs + stumps + root masses) per ha. 
' TOTBA = Basal area of hardwood trees + softwood trees + snags (m2/ha). 
'UNDERSTORY = total number of understory stems (number of saplings (I 7.6 cm dbh, alive) at 1.5 m height per ha. 
h~tands in the 1-year thinning class include stands (n = 6) that were treated with PCT in 1999 and similar unthinned stands (n=5). Stands in the 6-year thinnlng 
class include stands treated with PCT (n = 6) in 1994-1995 and similar unthinned stands (n = 5). Stands in the 1 1-year thinning class include stands (n  = 6) that 
were treated with PCT 1989-1991 and similar unthinned stands (n = 3). Unthinned stands had similar years of clearcut and herbicide, and similar site quality to 
comparable PCT stands. 



Table 3.5. Comparisons (one-way ANOVA) of mean (SE) values for 6 habitat variables across 4 thinning classes" based on years 
since precommercial thinning within 24 herbicided, regenerating clearcut stands treated with PCT in northern Maine. Non- 
transformed means and standard errors are presented for transformed variablesb. 

Factor D B H ~  CANOPY' HGSTEM~ TOTDEBRIS' TOTBA~ UNDER STORY^ 
Thinning 

class 

'stands in the 1-year thinning class include stands (n = 6) treated with PCT. Stands in the 6-year thinning class include stands treated with PCT (n = 6) in 1994- 
1995. Stands in the 11-year thinning class include stands (n = 6) treated with PCT 1989-1991. Stands in the 16-year thinning class include stands ( n  = 6) treated 
with PCT in 1984-1986. 

DBH and UNDERSTORY were log transformed and CANOPY was arcsine transformed prior to analysis. 
C DBH = average diameter breast height (cm) of closest tree (2 7.6 cm dbh, 2 2 m height, > 45" from horizontal, alive) in each quarter. 

CANOPY = average overhead percent canopy closure during summer. 
e HGSTEMS = number of herbaceous ground stems (< 0.5 m height, < 7.6 cm dbh, alive) per ha. 
TOTDEBRIS = number of (snags + logs + stumps + root masses) per ha. 
TOTBA = Basal area of hardwood trees + softwood trees + snags (m2/ha). 

h UNDERSTORY = total number of understory stems (number of saplings (I 7.6 cm dbh, alive) at 1.5 m height perha. 



DISCUSSION 

PCT positively affected or produced no detectable effect on abundances of the 4 

most common species of voles, mice, and shrews on my study areas. From 1 - 1 1 years 

post-thinning, the abundances of red-backed voles and masked shrews were greater in 

stands treated with PCT and abundances of deer mice were not significantly affected by 

thinning. A trend of greater abundances of short-tailed shrews in stands treated with PCT 

was evident; however, high variation between stands and low abundances likely 

prevented statistical differences for that species. Short-tailed shrews, red-backed voles, 

and deer mice exhibited large inter-annual variation. Despite substantial annual variation 

in densities within treatments, abundances of deer mice increased with thinning class 

within regenerating conifer stands in northern Maine. 

Reducing competition among crop trees via precommercial thinning accelerated 

stand development in regenerating clearcut stands with a prior history of gylphosate 

application. Stands treated with PCT acquired some attributes of more mature forest 

(without PCT) such as greater stem diameters, diverse understories, and a more broken 

canopy layer. The silvicultural response of forest stands treated with PCT was consistent 

with previous reports (Brissette et al. 1999, Brissette and Frank 1999, Lindgren and 

Sullivan 2001, Sullivan et al. 2001, Pothier 2002); significant increases in dbh of trees, 

canopy density, and basal area were observed from 1 to 16 years post-treatment. 

The acceleration of stand development that occurs within PCT-treated stands was 

favorable or neutral for common species of small mammals in the Acadian forest. By 

producing stands containing some characteristics of more mature forest (broken canopy, 

larger stem diameters), PCT has the potential to increase heterogeneity of forest stand 



conditions across the mid-successional dominated landscapes that presently occur 

throughout much of the Acadian forest (Maine Forest Service 1998). As forest rotations 

associated with intensive management become increasingly shorter, the acceleration of 

mature stand conditions via PCT across significant portions of the forest landscape could 

help mitigate some effects of intensive silviculture on small mammals. 

Within-stand habitat structure 

I observed larger trees, a more open canopy, and more understory stems in stands 

treated with PCT. The growth of overstory trees and temporary opening of the overstory 

layer that occurred from 1-6 years post-thinning produced within-stand habitat 

characteristics more typical of conifer stands in later seral stages, when compared to 

unthinned stands. Penetration of sunlight allowed understory stems to flourish 

temporarily from 1-6 years post-treatment, but by 1 :-years post-PCT understory stem 

density had declined. Advanced regeneration was released initially from competition and 

shading in thinned stands; however, a delayed self-thinning response occurred from 6-1 1 

years post-thinning. 

Coarse woody debris has often been touted as an element of forested stands that is 

necessary to maintain small mammal communities. Downed and dead woody material 

has been suggested to provide subnivian access in winter, habitat for invertebrates, escape 

cover from predators, growing surface for fungi, and to mediate microclimate by 

retaining moisture (Hamilton 194 1, Hayes and Cross 1987, Hagan and Grove 1999, 

Fraver et al. 2002). The total density of logs, snags, stumps, and root masses did not 

differ between thinned and unthinned stands, or among thinning classes of stands; 

however, 16-year post-PCT stands had less CWD than 1 1-year post-PCT stands, 



suggesting that CWD may be lost to decay but not recruited in PCT stands after 1 1-years 

post-thinning. Many of the highest small mammal numbers were observed in thinned 

stands, and especially in the 16-year stands, indicating that CWD may not be limiting 

from the perspective of forest-dwelling voles, mice, and shrews in regenerating clearcuts 

or in intensively managed stands. This finding is consistent with other studies in Maine, 

which have detected few strong relationships among abundances of small mammals and , 

CWD throughout a range of forest types, thinning classes, and harvesting regimes 

(Lachowski 1997, Fuller 1999, S. Billig, In prep.). 

Red-backed voles 

Red-backed voles have been reported to have ecological relevance as indicators of 

late successional forest, because their greatest densities often occur in mature or over- 

mature stands (Martell 1983b, Nordyke and Buskirk 1991). Contrary to those results, 

voles were abundant across three thinning classes of mid-successional stands in the 

Acadian forest and I observed no significant effect of thinning class on abundances. 

Greater abundances of voles were observed in stands treated with PCT; additionally, the 

proportion of female voles lactating on thinned stands was not detectably different than 

the proportion lactating on unthinned stands, indicating that habitat quality for voles may 

have been comparable between treatments. Red-backed voles were the most common 

species of small mammal within stands 14-33 years post clearcutting (13-24 years post- 

herbicide treatment). Therefore, the mesic conifer-dominated Acadian forest may 

accumulate habitat characteristics typical of mature forest more rapidly than in conifer 

stands of Ontario (Martell 1983b) and the central Rocky Mountains (Nordyke and 

Buskirk 1991). Abundance of red-backed voles in PCT stands temporarily declined at 6- 



years post-treatment, which coincided with the greatest density of understory stems 

(Table 3.4, 3.5). These results are inconsistent with findings from Wyoming, where 

understory cover was positively associated with abundance of red-backed voles in conifer 

stands of various successional stages (Nordyke and Buskirk 1991). 

Deer mice 

Deer mice are widely considered a habitat generalist and have been reported to 

respond positively to reduction of the forest overstory following clearcut harvesting 

(Martell and Radvanyi 1977, Martell 1983a, Martell 1983b, Morrison and Anthony 1988, 

Kirkland 1990, Sullivan et al. 1999). However, previous studies have indicated that deer 

mice exhibit little response to PCT of conifer stands (Lautenschlager et al. 1997, Sullivan 

et al. 2001). Consistent with previous research, I observed that abundances of deer mice 

were similar among PCT-treated and unthinned stands on my study areas. The greatest 

abundance of deer mice was observed in the 11 year thinning class, which, pooled across 

years, was 1 . 5 6 ~  greater than the 6-year and 1 . 4 0 ~  greater than the I-year thinning 

classes. Further, across the 4 classes of stands treated with PCT, the 16-year post-PCT 

stands had the greatest numbers of deer mice in both 2000 and 2001. The positive effects 

of thinning class on numbers of deer mice were consistent between years of sampling 

despite a nearly 4-fold increase in total number of individuals from 2000 to 2001. These 

observations that populations of deer mice on my study area reached their greatest 

densities in older stands indicate that attributes of stand maturity may have had a greater 

influence on densities of deer mice than PCT. Previous investigations of forest-dwelling 

small mammals have also detected greater abundances of deer mice in older stands than 

in regenerating stands in the-commercial forests of Maine (Lachowski 1997, Fuller 1999). 
-. 



Although densities of adult female deer mice were similar between thinned 

(averaged 2.3lgrid) and unthinned conifer (averaged 1.7lgrid) stands, a greater proportion 

of adult female deer mice were lactating in unthinned stands compared to similar PCT- 

treated stands. Reproductive output of deer mice may have been affected by treatment; 

deer mice often have aggressive intra-specific interactions (Martell 1983a), which may 

lead to subordinate, non-reproductive individuals occupying areas with lower habitat 

quality (Van Home 1983). The observed difference in lactation rates of adult female deer 

mice between thinned and unthinned stands suggest that habitat quality could be greater 

in stands without PCT; however, additional information on survival and reproductive 

success is necessary to evaluate this hypothesis. 

Short-tailed shrews 

Short-tailed shrews did not significantly respond to thinning from 1-1 1 years post- 

treatment or to thinning class, either pooled across treatments or within only the PCT- 

treated stands from 1-16 years after thinning. However, small numbers of individuals 

capturedlgrid in addition to large variation of abundances of short-tailed shrews between 

grids, may have precluded my detection of a positive effect of PCT. B. brevicauda are 

reported to reach their greatest densities in stands with complex understories with 

abundant herbaceous vegetation (Miller and Getz 1977, Brooks and Healy 1988, Healy 

and Brooks 1988, Kirkland 1990), which may be related to positive associations between 

insects and diversity of plant species and structure (Murdoch et al. 1972). Although 6- 

year stands had the greatest density of herbaceous vegetation, I did not detect greater 

abundances of shrews in those stands, which suggests that prey was distributed evenly 

among treatment and thinning classes, or was not limiting across all sites. Abundance of 



short-tailed shrews in my study areas was likely related to sub-stand scale attributes other 

than those that are associated with thinning. The changes in forest structure that occur 

after thinning and with stand maturation apparently do not exert a strong influence on 

relative abundance of B. brevicauda. 

Masked shrews 

PCT produced positive and long-lasting effects on the relative abundance of 

masked shrews in regenerating conifer stands in northern Maine. Number of captures 

were 4.38 and 1 0 . 2 1 ~  greater in stands treated with PCT than similar unthinned stands up 

to 1 1-years post-treatment when data were pooled across thinning classes. In contrast to 

the greater numbers of masked shrews that I observed in thinned versus unthinned stands, 

combined densities of masked shrews and pygmy shrews (Sorex hoyi) were similar 

among herbicided stands and stands thinned with brush-saws (but not herbicided) 1-2 

years post-treatment in Ontario (Lautenschlager et al. 1997). Application of herbicide 

has substantial and long-lasting effects on composition and abundance of tree species 

within stands (Newton et al. 1989, Daggett and Wagner, In prep.); therefore, 

inconsistencies reported between this study and results reported from Ontario likely 

resulted from the application of either herbicide or PCT, but not both treatments on study 

sites in Canada. 

The positive effects of PCT on masked shrews that I observed suggests that 

microhabitat structure associated with thinning enhances abundance of masked shrews 

across a range of thinning classes, from 1 to 1 1-years post-thinning. Herbaceous 

vegetation often flourishes after PCT (Hurst et al. 1982, Bell et al. 1997, Thomas et al. 

1999, Lindgren and Sullivan 2002), because opening of the canopy allows sunlight to 



reach the forest floor. Dense herbaceous vegetation may have provided cover to shrews, 

supported greater densities of foliar-insect prey (Murdoch et al. 1972), or been associated 

with moistkr microclimate (Miller and Getz 1977). 

CONCLUSIONS 

Small mammals had species-specific responses to both PCT and stand 

development, which complicates prescriptions of forest management activities to increase 

densities and diversity within small mammal communities. These results indicate that 

PCT, across an 1 1-year range since treatment, positively or neutrally affects the 

abundance of the 4 most common species of small mammals (red-backed voles, deer 

mice, short-tailed shrews, masked shrews) in the commercial forests of northern Maine. 

Greater abundances of red-backed voles and masked shrews occurred in stands treated 

with PCT than in unthinned stands, from 1 to 11-years post-treatment, whereas deer mice 

and short-tailed shrews did not appear to be affected by PCT. Thinning increased or 

maintained overall abundances of forest-dwelling small mammals across a range of years 

since treatment, suggesting that PCT produces positive and long-term responses within 

the small mammal community. However, lactation rates for deer mice were lower in 

thinned stands. Additionally, several habitat attributes (e.g. basal area, dbh, canopy 

closure) that are positively associated with degree of stand maturity were greater in 

stands treated with PCT than in unthinned stands. 

Additional to attaining silvicultural and economic objectives, forest managers 

may be able to increase the abundance of small mammals acws commercial forest - 1 

landscape via PCT. An increase in the number of small mammals could also have 

. positive effects on other trophic levels, including forest-dependent predators, such as 



American Marten (Morres ornericana) (Lachowski 1997) if other structural requirements 

for denning, rest sites, escape cover (Buskirk 1984, Payer and Harrison 2000), and 

subnivian access (Sherburne and Bissonette 1994) are present. Increased rates of stand 

development associated with PCT may help compensate for the short rotations (c 60 

years) commonly applied to intensively managed stands in the Acadian forest (Seymour 

and Hunter 1992). Maintaining significant portion of the landscape in PCT, however, 

may involve trade-offs for early-successional dependent forest mammals such as 

snowshoe hare (Sullivan arid Sullivan 1988, Chapter 2) and their predators (e.g. Canada 

lynx (Lynx canadensis)). Although this study evaluated stand-scale effects of PCT, 

broader landscape-scale evaluations of PCT are needed to reconcile silvicultural 

objectives with desired balances between conflicting habitat needs of early (e-g. 

snowshoe hare) and mid-successional (e.g. red-backed voles, masked shrews) wildlife 
. .. 

species. 
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CHAPTER 4 

HABITAT AND STRUCTURAL DIFFERENCES BETWEEN 

PRECOMMMERCIALLY THINNED AND UNTHINNED CONIFER STANDS: 

IMPLICATIONS FOR WILDLIFE 

ABSTRACT 

Effects of precommercial thinning (PCT) in young, high-density forest stands on 

the growth and yield of crop trees has been well-studied, but effects on habitat 

characteristics, structural attributes, and wildlife populations is lacking. I examined the 

dominant changes in habitat characteristics and forest structure that occur with PCT and 

stand development in commercial spruce-fir stands within the Acadian forest of northern 

Maine. I selected 30  regenerating, herbicide-treated conifer stands (17 treated with PCT) 

of 3 thinning classes (1,6, or 1 1-years) in 6 townships and measured 27 variables that 

described the characteristics and structure of the understory, overstory, woody debris, or 

ground cover on 20 circular plots per stand. I conducted a two-way Analysis of Variance 

(ANOVA) on the stand-scale means of each habitat variable to examine for the effect of 

treatment (treated with PCT or unthinned) or thinning class (1,6, or 1 1-years). Variables 

with a F-statistic > 2.0 for either main effect were retained for inclusion into a principal 

components analysis (PCA). Two separate PCAs were conducted; 1 included variables 

that differed by treatment, and 1 included variables that differed among thinning classes. 

Changes in vegetation structure that occur with PCT were described by 3 principal 

components, which accounted for > 80% of the variation: near-ground cover, overstory 

cover, and understory structure. Horizontal cover, an overstory to understory contrast, 

and a gradient of herbaceous vegetation described differences in habitat and forest 
. . 



structure among thinning classes; these components described > 75% of the variation that 

occurred with development of forest stands. The application of PCT accelerated some 

c aracteristics of stand development, resulting in a reduction of understory structure and p 
complexity. However, PCT and the shorter rotations associated with intensively 

managed stands may reduce recruitment of logs and coarse woody debris (CWD). 

Species-specific responses of wildlife will likely be associated with the changes in forest 

structure that occur with PCT and stand development; species that are associated with 

early successional habitat, including snowshoe hare (Lepus americanus) and shrub- 

nesting songbirds, have been documented to respond negatively to thinning. Other 

forest-wildlife associated with more mature forest, however, such as red-backed voles 

(Clethrionomys gapperi), and perhaps spruce grouse (Falcipennis candadensis), may 

increase their densities following PCT. 

INTRODUCTION 

Precommercial thinning (PCT) of overstocked, regenerating conifer stands has 

been practiced increasingly in Maine and other jurisdictions within the Acadian forest of 

eastern North America (Maine Forest Service 1994-2001, Canadian Council of Forest 

Ministers 2002) to reduce competition, increase growth rates, and to shorten rotation 

length. In the late 1980's, forest landowners thinned about 2,400 hectares of densely 

stocked, regenerating clearcuts each year in Maine; by 2000 the total acres of land treated 

with PCT each year had risen to > 8,100 hectares a year, or 3.5% of the total silvicultural 

activity for the state (Maine Forest Service 2000-2002). The eastern Maritime Provinces 

of Canada have also experienced large increases in the land area treated with PCT; from 

1990 to 2000 the acreage treated with PCT each year increased by 2.5-fold in Nova 



Scotia, 2.7-fold in New Brunswick, and 4.3-fold in Quebec (Canadian Council of Forest 

Ministers 2002). Although the application of PCT to regenerating clearcuts has increased 

across the commercial forest landscape of the Acadian forest, the ecological effects of 

PCT on structural attributes of forest stands and the potential influences of structural 

changes on forest-dependent wildlife have been studied little. 

The silvicultural response of crop trees to PCT have been well-documented; 

thinning increases stem diameters (Harrington and Reukema 1983, Ker 1987, 

McCormack and Lemin 1998, Brissette and Frank 1999, Brissette et al. 1999, Pothier 

2002), increases crown size (McCormack and Lemin 1998, Brissette and Frank 1999, 

Brissette et al. 1999, Lindgren and Sullivan 2001, Sullivan et al. 2001), decreases 

mortality of crop trees (Ker 1987, Brissette and Frank 1999, Brissette et al. 1999), 

increases merchantable volume (Ker 1987), and may reduce rotation length (Sullivan et 

al. 2001). In contrast, the immediate and long-term ecological changes in habitat 

characteristics and forest structure that are associated with PCT of overstocked conifer 

stands are poorly understood. Most studies of structural and habitat changes associated 

with PCT have focused on short-term ( I  -3 years post-treatment) changes in understory 

and overstory characteristics and have been conducted on stands that were thinned, but 

not treated with heibicide (Bell et al. 1997, Sullivan and Lindgren 2001), 

which is a general practice throughout much of the Acadian forest. The application of 

herbicide several years before thinning likely has strong effects on overstory and . . 

understory responses to subsequent PCT (Dagget w and Wagner In prep.). Understanding 

the long-term changes in forest overstory and understory structural attributes and habitat 

characteristics that occur after PCT of conifer stands is a prerequisite to evaluating 



biological consequences, to making informed forest management decisions, and to 

establishing ecological policies. 

Manipulation of stem densities in regenerating clearcut stands may have negative 

consequences for species associated with early successional habitat (Hayes et al. 1997). 

In contrast, PCT of regenerating stands may diversify second and third growth forests by 

more rapidly producing stands with characteristics of forest in later sera1 stages (Carey 

and Johnson 1995, ~ a ~ e s ' e t  al. 1997, Sullivan et al. 2001). The objectives of this study 

were to describe the biological changes across a range of intervals since treatment, in 

habitat characteristics and structural attributes between PCT and non-PCT treated 

clearcuts with a previous history of herbicide treatment in northern Maine. Instead of 

focusing on diversity of plant species after thinning (Thomas et al. 1999, Lindgren and 

Sullivan 2001), the goal of this effort was to describe structural attributes relevant to 

predicting responses of forest-dependent wildlife to PCT and to stand development in 

herbicide-treated clearcuts. 

STUDY AREA 

The study area was located within the matrix of commercial, mixed northern 

hardwoods-spruce-fir forest of northern Maine. I sampled 30 stands distributed across 6 

townships in northern Maine, which spanned 102 km east to west and 49 km north to 

south. Stands were located in the town of Hersey, T4 R 1 1 WELS, T 5 R 1 1 WELS, T4 

R 12 WELS, T1 R 13 WELS, and Spencer Bay. These townships were extensively 

clearcut-harvested during and following the spruce-budworm outbreak of the 1980's and 

many clearcuts were treated with an aerial herbicide to promote softwood regeneration. 

Great Northern Paper Company, Millinocket, Maine; Plum Creek Timber, Fairfield, 



Maine; and International Paper Company, Costigan, Maine managed those townships for 

pulpwood and timber production. The study area receives abundant precipitation (101 

cm annually), with an average of 276 cm falling annually as snowfall, and seasons 

include mild summers (July mean maximum = 25" C) and cold winters (January mean 

minimum = - 19" C) (Garoogian 2000). 

' I sampled stands that had been clearcut (timber harvesting resulting in residual 

basal area of acceptable growing stock trees > 4.5 in. dbh of < 30 ft2/acre) 1968-1982, 

treated with an aerial herbicide (e.g. Glyphosate at =: 1.68 kg/ha acid equivalent) 1982- 

1988, and either precommercidly thinned with brush-saws 1989-1999 (n = 17) or 

unthinned (n = 13) (Table 4.1). Balsam fir (Abies balsamea), red spruce (Picea rubens), 

and black spruce (Picea nigra) were the dominant tree species, but stands also had small 

components of white pine (Pinus strobus), larch (Larix spp.), white cedar (Thuja 

occidentalis), paper birch (Betula papyrifera), quaking aspen (Populus tremuloides) and 

red maple (Acer rubra). Chapter 2 contains a more detailed description of the study sites. 

METHODS 

Stands were selected based on stand history, size, spatial independence, and site 

quality. I selected stands that were > 8 ha in size (median = 22.2 ha, range 8.5-74.3 ha) 

and were separated from each other by > 0.40 krn. Site qudity was estimated based on 4 

to 6 soil cores sampled at 50- 100 m intervals within each stands with a soil auger to avoid 

confounding effects of site quality affecting the rate of development (Briggs and k m i n  

1994). I assigned a site quality value to each stand ranging from 1 (highly productive) to 

5 (unproductive) based on Brigg7s (1994) scale of forest productivity. 



Table 4.1. Stand history, location, and site quality for 17 precommercially thinned (PCT) 
stands and 13 unthinned stands in northern Maine that were sampled for structural 
attributes and habitat characteristics. (T = stand treated with PCT, C = untreated stand). 
Site quality ranged from I (well drained, productive) to 5 (poorly drained, unproductive) 
according to Briggs (1994) classification guidelines. 

Site Year of Year of Year of Township Site 
number Clearcut Herbicide PCT Quality 
1-1-T 1982 1988 1999 T 4 R 1 1  4+ 

6- 1 -T 1979 1988 1994 Hersey 3+ 
6-2-T 1979 1988 1994 Hersey 2- 
6-4-T 1974 1982 1994 T 5 R 1 1  3 - 
6-5-T 1976 1985 1995 T 5 R 1 1  3 - 
6-6-T 1979 1982 1994 T 5 R 1 1  3 - 

T 1 R 13 
Spencer Bay 

T l R 1 3  
T l R 1 3  
T l R 1 3  
T l R 1 3  

Spencer Bay 
T 4 R  11 
T 4 R  11 
T 4 R 1 1  
T 5 R  11 

1 -5-C 1976 1985 n/a T 4 R  11 3 - 
6- 1 -C 1979 1988 n/a Hersey 3+ 
6-2-C 1981 1988 n/a Herse y 3 + 
6-4-C 1974 1982 n/a T 5 R 1 1  4 
6-5-C 1974 1985 n/a T 4 R 1 2  . '  3 
6-6-C 1976 - 1983 n/a T 4 R  11 4 



The study design included 17 PCT-treated stands that were sampled for habitat 

characteristics and structural attributes at 5 year intervals (1-2 year post thinning, n = 5;  

5-7 years, n = 5;  9-12 years, n = 7) and 13 similar unthinned stands ( 1  year, n = 5;  6 year, 

n = 5; 1 1  year, n = 3) whose year of clearcut and herbicide treatment were comparable to 

treatment stands. I allowed 1-2 years of latitude in separating stands into thinning 

classes to maximize the number of stands studied. The ratio of PCT-treated to unthinned 

stands in the 1 1-year thinning class was unbalanced because I was unable to locate more 

than 3 unthinned stands that met my criteria of similar site quality, year of clearcut, and 

year of herbicide-treatment. Treatment stands were paired with an unthinned stands with 

similar site quality, year of clearcut and year of herbicide to avoid gross biases arising 

from temporal variation in years of treatment. Stands were not statistically paired and 

were not treated as paired during analyses. 

Habitat sampling 

Vegetation structure was measured on 20 fixed-area nested plots centered on 4, 

400 m transects separated by 65 m and located > 50 m from stand edges (Chapter 2). I 

centered 5 plots per 400 m of transect at random locations along the transects and 

distributed plots in a stratified-random design. I used 25 m2 circular plots within thinned 

stands and 10 m2 circular plots within unthinned stands to sample approximately the 

same number of crop trees, and to maximize number of sample plots across varying stand 

densities. Within each plot I measured 27 habitat variables to describe the structure of 

the overstory, understory, woody debris, or ground-level herbaceous vegetation. 

Within each plot, I counted the number of coniferous and deciduous overstory 

trees (2 7.6 cm dbh, > 1.0 m height, alive) and measured the diameter breast height (dbh), 



total height, and the height from the ground to the lowest living branch. Heights were 

measured using a telescoping height pole. I calculated the live crown ratio of overstory 

trees as the [(total height - height to crown) / total height]. I also measured the number, 

type (coniferous or deciduous), dbh, total height, and height to crown for all understory 

stems (< 7.6 cm dbh, >1 m height, alive) within the plot and calculated the average live 

crown ratio of the understory. The number of stem cover units (SCU) was computed by 

summing the number of coniferous understory stems x 3.0 plus the number of deciduous 

understory stems (Litvaitis et al. 1985). 

I counted the number and type (coniferous or deciduous) of woody, regenerating 

stems (2 0.2 m, < 1 .O m, alive) on a 1 .O-m diameter nested subplot that was centered 

within each of the 20 plots/stand. The density of stemslha in each stands was calculated 

by summing the total number of regenerating stems, understory stems, and overstory 

stems and dividing by the number of ha sampled within each stand. The percent of 

ground covered by grass and forbs, moss, rock, vegetative litter, and other vegetation was 

also visually estimated in the 1 .O-m subplot. 

Horizontal vegetation cover was quantified with a 2.0 m cover pole with 

alternating 0.1 m red and white bands. Following a random compass bearing separated 

by 1 80°, the distance to horizontal cover was measured from the center point as the 

distance where 2 25 % of all red and white bands were visually obstructed. I estimated 

the number and volume of downed logs with a modified version of the planar intersection 

method used by Payer and Harrison (2000). I established a 20-m randomly oriented 

transect with the midpoint at the center of each sampling station. I quantified the number 

of logs that crossed the transect and were 2 1 .O m length, 2 7.6 cm diameter (at the point 



of intersection), and 1 4 5 "  from the ground. Only sound to moderately decayed logs 

were considered, so that extremely decayed logs were excluded from sampling. 

Overhead canopy cover was measured with a spherical densiometer; 4 readings in the 4 

cardinal compass directions at 1.0 m height (estimated height of mid-winter snowpack) 

were taken at the center of each plot and averaged to a single value for each plot (Lemon 

1956). 

Statistical analyses 

Analysis of variance 

I calculated an average value for each habitat variable within each stand and 

treated the stand as the unit of replication. Residual errors of each variable were 

examined for normality and homoscedasticity across stands and I transformed all non- 

normal data (modified Levene's test < 0.10 andlor Lilliefor's test < 0.10) with log,, 

square root, or cube root transformations to meet the parametric assumptions of analysis 

of variance (ANOVA) (Neter et al. 1996). Next, I conducted a two-way ANOVA on the 

means of each habitat variable with treatment (PCT or unthinned) and thinning class (1, 

6, or 1 1-years post-treatment) as the main effects. Post hoc, Tukey's honestly significant 

difference tests were used to examine pairwise differences among thinning classes of 

habitat variables with significant thinning class effects (Zar 1999). 

Principal comwnents analysis 

I eliminated all habitat variables with a F-statistic < 2.0 for treatment (PCT or 

unthinned) or for thinning class (1,6, or I 1-years) from further analyses; however a large 

number of variables had significant treatment or thinning class effects based on this 

initial screening procedure. High dimensionality of large and complex multivariate data 

. 



sets causes interpretation of results to be difficult (McGarigal et al. 2000). To reduce the 

dimensionality of the habitat variables, I conducted 2 separate principal component 

analyses (PCA) to describe the variation in habitat structure between treatments and 

thinning classes: 1 )  habitat variables that differed between thinned and unthinned stands, 

and; 2) habitat variables that differed among the 3 thinning classes of stands, regardless 

of thinning history. PCA is an ordination technique that creates new components that are 

linear combinations of original variables. These linear combinations of variables, or 

components, maximize variation among observations in ordination space to more 

simplistically explain the data with a smaller number of variables. 

I included normally distributed (e.g. transformed when necessary) habitat 

variables for each stand that were standardized by subtracting the mean and dividing by 

the standard deviation of that variable to the PCA. Standardization of variables was 

required because the scales of measurement differed among structural variables and this 

prevents dominance by variables with large variation (Pielou 1984). After computing the 

principal components, I used scree plots, relative variance criterion, and the latent root 

criterion to determine how many components to retain (McGarigal et al. 2000). For both 

analyses, I used a varimax rotation to aid in interpretation of loadings and components. I 

examined rotated factor loadings to interpret and provide biologically relevant names for 

the principal components. Variables with loadings (after rotation) of > 0.60 or < -0.60 

were considered to have strong effects on that component; these thresholds roughly 

correspond to variables that account for about 40% of the variance in the component 

(Tabachnik and Fidell 1983, McGarigal et al. 2000). Ordination diagrams using the first 



3 components from each analysis were constructed with Gaussian confidence ellipses for 

the sample (P = 0.70) (SPSS 1997). 

RESULTS 

Analysis of variance 

Fourteen of 27 habitat variables that I measured differed between thinned and 

unthinned stands (F > 2.0); however, those showing the greatest differences in magnitude 

were stem cover units, total number of understory stems, total number of stems, and the 

number of logs, which were 3.8, 2.9,2.2, and 2.2 times greater in unthinned stands, 

respectively. Other variables that differed between treatment types were the understory 

height, understory height to crown, understory live crown ratio, average dbh of the 

understory, number of understory conifer stems, total number of overstory stems, log 

volume, average dbh of the overstory, canopy density, and the horizontal vegetation 

distance (Table 4.2). 

Twelve of 27 habitat variables differed among the thinning classes (F > 2.0). 

These included the average dbh of understory stems, the height of understory stems, the 

number of deciduous understory stems, the total number of understory stems, the average 

dbh of overstory stems, the height of overstory stems, the total number of overstory 

stems, the total stem density, the percent ground cover of grass and forbs, the percent 

ground cover of other herbaceous vegetation, the number of logs, and the log volume 
. . 

(Table 4.3). In general, the dbh and height of understory trees and overstory trees were 

greatest in the 1 l-year stands (P < 0.10). The greatest number ofdeciduous understory 

stems and total stem density occurred in the 6-year thinning class (P < 0.10). 1 observed 



Table 4.2. The effect of treatment (PCT vs. unthinned) on mean (SE) values of 27 habitat variables sampled within 17 
precornmercially thinned stands and 13 unthinned reference stands with a previous history of clearcutting followed by herbicide 
(Glyphosate) application in northern Maine. Non-transformed means and standard errors are presented for transformed variables. 
Comparisons yielding a calculated F-statistic 2 2.0 are depicted in bold. 

Variable Transformation F P PCT Unthinned 
Average dbh of understory stems (cm) 11.545 0.002 3.2 (0.1) 3.8 (0.1) 

Height of understory stems (m) 
Height to crown of understory stems (m) 

Live crown ration of understory stems (value from 0-1 .O) 
Number of understory conifer stems (#/ha) 

Number of understory deciduous stems (#/ha) 
Total number of understory stems (#/ha) 

Stem cover units (#/ha) 
Average dbh of overstory stems (cm) 

w Height of overstory stems (m) 
P Height to crown of overstory stems (m) 

Live crown ratio of overstory (value from 0- 1 .O) 
Number of overstory conifer stems (#/ha) 

Number of overstory deciduous stems (#/ha) 
Total number of overstory stems (#/ha) 

Number of coniferous regenerating stems (#/ha) 
Number of deciduous regenerating stems (#/ha) 

Total number of regenerating stems (#/ha) 
Total number of stems (#/ha) 

Percent ground cover of grass and forbs (9%) 
Percent ground cover of rock (9%) 
Percent ground cover of litter (%) 

Percent ground cover of other herbaceous vegetation (9%) 
Horizontal vegetation distance (m) 

Number of logs (#Itransect) 
Log volume (m3/transect) 

Canopy density (9%) 

49.801 
19.567 

Ln 5.280 
Ln 34.528 
Ln 0.053 
Ln 32.471 
Ln 38.445 

7.897 
0.000 
0.700 
1.870 
1.832 
1.645 
3.064 
0.334 
0.7 10 
1.344 

Ln 36.422 
Square root 1.510 

Ln 0.137 
1.249 
0.675 
12.570 

Ln 25.1% 
Cube root 14.793 

2.447 



Table 4.3. The effect of thinning class (I-year, 6-year, or 1 1-year) on mean (SE) values of 27 habitat variables sampled within 17 
precornrnercially thinned stands and 13 unthinned reference stands with a previous history of clearcutting followed by herbicide 
(Glyphosate) application in northern Maine. Non-transformed means and standard errors are presented for transformed variables. 
Comparisons yielding a calculated F-statistic 1 2.0 are depicted in bold. 

Thinning Class 
Variable Transformation F P 1 -year 6-year 1 1 -year 

(n = 10) (n = 10) (n =lo) 
Average dbh of understory stems (cm) 11.678 < 0.001 3.9 (0.1) 3.0 (. 1) 3.6 (0.15) 

Height of understory stems (m) 
Height to crown of understory stems (m) 

Live crown ration of understory stems (value from 0-1.0) 
Number of understory conifer stems (#ha) 

Number of understory deciduous stems (#ha) 
Total number of understory stems (#ha) 

Stem cover units (#ha) 
Average dbh of overstory stems (cm) 

Height of overstory stems (m) 
Height to crown of overstory sterns (m) 

Live crown ratio of overstory (value from 0-1 .O) 
Number of overstory conifer stems (#ha) 

Number of overstory deciduous stems (#ha) 
Total number of overstory stems (#ha) 

Number of coniferous regenerating stems (#ha) 
Number of deciduous regenerating stems (#ha) 

Total number of regenerating stems (#ha) 
Total number of stems (#ha) 

Percent ground cover of grass and forbs (%) 
Percent ground cover of rock (%) 
Percent ground cover of litter (%) 

Percent ground cover of other herbaceous vegetation (%) 
Horizontal vegetation distance (m) 

Number of logs (#/transect) 
Log volume (m3/transect) 

Ln 
Ln 
Ln 
Ln 
Ln 

Ln 

Ln 
Square root 

Ln 

Ln 
Cube Root 

Canopy density (%) 0.588 0.563 78.8 (3.2j 80.7 (3.2) 83.9 (3.4) 



the greatest total number of overstory stems in the 1 I -year stands. Measures of logs were 

greater in the 1-year thinning class than the 1 1 -year thinning class (P < 0.10) and 

herbaceous vegetation other than grass and forbs was greatest in 6-year stands. 

Four variables, the average dbh of understory stems, the number of deciduous 

understory stems, the live crown ration of understory stems, and the number of 

coniferous regenerating stems had significant (F-statistics > 2.0) treatment x stand- 

thinning interactions. This study was not designed with adequate sample sizes to 

describe the complex interactions between treatment and thinning class; therefore, 

variables with significant interaction terms were excluded from PCA models. 

Principal components analysis 

Three principal components described 83.2 % of the variability of the habitat data 

between thinned and unthinned stands (Table 4.4). The first Principal component (PCl) 

in this analysis included positively loaded variables that described the density of the 

understory and downed woody structure and negatively loaded variables that were 

associated with sparse understory cover (labeled "near-ground cover"). PC2 included 

positively loaded variables (> 0.60) that described overstory structure and cover (labeled 

"overhead cover"). The third principal component (labeled "understory structure") was 

positively associated with understory height and the dbh of the understory. Principal 

components 4 - 14 had eigenvalues < 1.0 and contributed little (< 18 % of variation 

Ordination diagrams for this analysis portrayed that the greatest differences in forest 

structure between thinned and unthinned stands occurred with near-ground cover, and 

greater similarity between treatments was evident with overhead cover and understory 

structure (Figure 4.1). 



Table. 4.4. Loadings of stand-scale habitat variables that separated thinned and 
unthinned regenerating conifer stands (n = 30) into 3 principal components after varimax 
rotation. Habitat variables were sampled within 30 forest stands (17 precommercially 
thinned, 13 unthinned) in northern Maine, June - August, 2001 -2002. 

Principal Components 
Habitat variable PC1 - Near-ground PC2 - Overhead PC3 - Understory 

cover cover structure 
Stem cover units 0.950 1 0.1601 0.1341 
Understory stem density 0.9365 0.2437 -0.0484 
Total stem density 0.9038 0.3738 0.0047 
Understory conifer density 0.8590 0.1012 0.3369 
Vegetation distance -0.7927 -0.0662 -0.0240 
Log volume/transect 0.7609 0.042 1 0.1676 
Logsltransect 0.7275 -0.0308 0.4 158 
Dbh of overstory -0.6259 0.1790 -0.55 15 
Canopy density 0.0484 0.9409 -0.0022 
LCR of understory -0.3 19 1 -0.8782 0.200 1 
Understory height to crown 0.3384 0.774 1 0.4537 
Overstory stem density -0.1519 0.6624 0.537 1 
Dbh of understory 0.1007 -0.0584 0.9573 
Height of understory 0.2932 0.3010 0.8360 
Eigenvalue 6.99 16 2.53 19 2.1292 
% Variance explained 4 1.4344 21.8761 19.9227 
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Figure 4.1. Ordination diagrams for 3 dominant (eigenvalue > 1 .O) principal components 
describing the heterogeneity of stand-scale forest structure between 17 stands treated with 
PCT (x symbol) and 13unthinned stands (a symbol). Gaussian confidence ellipses (P = 

. 0.70) are shown centered around the sample means. 



Three principal components also described the variation in habitat variables 

across the 3 thinning class intervals. The remaining 9 components cumulatively added 

25% to the total explained variance and were not included in further discussion. Highly 

loaded variables onto the first principal component described vegetation characteristics 

associated with low-level horizontal structure (Table 4.5). PC1 (labeled "horizontal 

cover") included strong positive loadings from total stem density, the density of 

understory stems, and 2 measures of coarse woody debris (logs and log volume). The 

principal component with the second largest eigenvalue included large positive loadings 

for the average dbh of overstory trees, the density of deciduous trees in the understory, 

and overstory height (Table 4.5). Further, PC2 had strong negative loadings with the 

average dbh and height of the understory. This component described the relationship of 

forest structure between the overstory and understory (labeled "overstory to understory 

contrast"). Lastly, the component with the third largest eigenvalue described the 

presence of ground-level herbaceous vegetation (labeled "herbaceous vegetation 

gradient"). PC3 included positive associations with the density of overstory trees and 

strong negative loadings of the percent cover of other vegetation and grass and forbs. 

Ordination diagrams of the 3 principal components suggest that stands in the 1-year 

thinning class interval had more variable horizontal cover, overstory trees, and 

herbaceous vegetation than stands in the 6 or 1 1 -year thinning class intervals (Figure 

4.2). In each of the 3 diagrams, the 1-year stands overlapped older thinning classes, but 

the 6 and 1 1-years stands separated more distinctly from each other based on confidence 

ellipses of ordination scores. 



Table. 4.5. Loadings of stand-scale habitat variables that separated regenerating conifer 
stands (n = 30) of 3 thinning classes (I-year, n = 10; 6-year, n = 10; 1 I-year, n = 10) into 
3 principal components after varimax rotation. Habitat variables were sampled within 30 
forest stands (17 precommercially thinned, 13 unthinned) in northern Maine, June - 
August, 2001 -2002. 

Principal Components 
Habitat variable PC1 - PC2 - PC3 - 

Horizontal Overstory to Herbaceous 
cover understory vegetation 

Total stem density 0.9533 
Understory stem density 0.9504 
Log volume/transect 0.7645 

Logdtransect 0.7580 
Dbh of overstory -0.5306 

Dbh of understory 0.0687 
Deciduous understory density 0.4824 

Height of overstory -0.28 10 
Height of understory 0.3524 

Overstory stem density 0.0428 
% Other herbaceous vegetation 0.1541 

% Grass and forbs -0.2926 

contrast gradient 
0.1557 
0.0263 
-0.0142 
0.01 30 
0.1173 
0.3 173 
-0.01 52 
0.5253 
0.4960 
0.8335 
-0.7 193 
-0.6023 

Eigenvalue 4.5468 2.3 199 2.1465 
% Variance explained 3 1.7032 24.7673 18.6393 
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Figure 4.2. Ordination diagrams for 3 dominant (eigenvalue > 1 .O) principal components 
describing the heterogeneity of stand-scale forest structure between stands of 3 thinning 
classes, including 1-year stands, n = 10 ( 0  symbol); 6-year stands, n = 10 ( r  symbol); 
and 1 1 -year stands, n'= 10 (x symbol). Gaussian confidences ellipses are shown (P = 
0.70) centered around sample means. . -  



DISCUSSION 

Multivariate comparisons of habitat characteristics among thinned and unthinned 

stands at different stages of post-clearcut and herbicide succession indicated that major 

gradients in forest structure resulted from differences in horizontal structure, overstory 

structure, understory size, and ground-level herbaceous vegetation. Stand-scale habitat 

characteristics describing near-ground horizontal cover were most important for 

describing the differences between thinned and unthinned regenerating clearcuts, and 

among stands of 3 different thinning classes, indicating that reductions of cover occurred 

with both treatment with P a  and development of stands through time. Near-ground 

cover and horizontal cover described 41.3 and 3 1.7% of the variation, respectively in 

forest structure that differed by treatments and thinning classes. In contrast to reported 

increases in structural diversity after PCT of non-herbicided forest (Thomas et al. 1999, 

Lindgren and Sullivan 2001, Daggett and Wagner, In prep.), these results suggest that 

simplification of understory structure was the primary outcome of the application of PCT 

to conifer stands that had been previously aerially sprayed with herbicides. Further, a 

reduction of horizontal cover in the understory also was associated with stand 

development through time, and thinning seemed to accelerate the simplification of 

horizontal structure associated with normal stand development in herbicide-treated 

clearcuts. 

Structural differences between thinned and unthinned stands 

Among variables loaded highly (> 0.60 or < -0.60) onto the first principal 

component (near-ground cover), 4 variables described stem densities (+), 2 variables 

quantified number and volume of downed logs (+), 1 variable described horizontal visual 



obscurity (-), and 1 variable quantified the size of overstory trees (-) (Table 4.4). This 

component best illustrated the differences between thinned and unthinned forest 

structure, with unthinned stands consistently receiving higher scores (denser cover) than 

similar stands treated with PCT from I to 1 1 years post-treatment (Figure 4.1,4.3a). 

Therefore, the reduction in "near-ground cover" that is associated with stands treated 

with PCT is the primary attribute that explains the variation among thinned and 

unthinned forest in northern Maine. 

These results conflict with studies of thinning of non-herbicided conifer stands in 

Washington (Thomas et al. 1999), British Columbia (Lindgren and Sullivan 2001), 

Quebec (Bujuold 2002), and Maine (Daggett and Wagner, In prep.) that reported strong 

regrowth of deciduous understories and associated understory cover following PCT. A 

long-term study of the effects of herbicide and PCT on stand structure in Maine indicated 

that recovery of understory structure occurred by 10-years post-treatment in stands that 

were thinned with brush-saws, but not in stands that were both herbicided and thinned 

(Daggett and Wagner In prep.). My study sites in northern Maine were treated with 

aerial herbicide to kill competing deciduous vegetation 3-16 years prior to thinning, 

which accounts for the disparity of understory response to PCT among studies. 

Coniferous understory stems were 3.5 x more abundant than deciduous understory stems 

in unthinned stands, suggesting that because deciduous stems were a minor component of 

stands prior to PCT, they would have little chance for recovery after treatment. 

Herbicide treatment suppresses regrowth of deciduous saplings for up to at least 11 years 

post-thinning in Maine. 



Thinning class 

Thinning class 

Thinning class 

Figure 4.3. Mean principal component scores (SE) by treatment (treated with PCT, n = 
17; unthinned, n = 13) and thinning class (after treatment interval, 1-year, n = 10; 6-years, 
n = 10; or 1 1-years, n = 10) for principal components describing > 15 % of heterogeneity 
of vegetation structure among treatments (Figure 4.3a-c) and thinning classes (Figure 
4.3d-f) for 30 forest stands with a history of clearcut harvesting followed by herbicide 

- 

(glyphosate) treatment in northern Maine, June - August, 2001-2002. 
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The variable with the greatest loading (0.9501) onto near-ground cover was stem 

cover units, which weights the cover provided from conifer saplings 3 times greater than 

cover from deciduous saplings (Litvaitis et al. 1985). Although this relationship was 

developed to describe habitat-relationships of snowshoe hare (Lepus americanus), the 

greater value of coniferous saplings in providing horizontal visual obscurity, thermal 

protection, and overhead cover likely affects other forest-wildlife that are associated with 

high stem densities. Near-ground cover in unthinned stands was markedly greater than in 

PCT-treated stands I-year and 6-years post-thinning, but by I I-years after treatment, 

cover decreased to amounts similar to treated stands. Additionally, the high positive 

loading of variables describing downed logs with near-ground cover and the small 

component scores (sparse cover) of thinned stands, indicate that woody debris is reduced 

in stands treated with PCT. Thinning may reduce accumulation of woody debris because 

natural mortality is reduced and because snags are often removed for safety or 

operational concerns (Hayes et al. 1997, Harrison 1999). 

Overhead cover, which was the second principal component, described the 

vegetative structure provided by a developed canopy layer. Variables with the highest 

loadings included a high percentage of canopy density (+) and large density of overstory 

(dbh 2 7.6 cm, a1ive)'trees (+). Among treatments and thinning classes, the differences in 

overhead cover between thinned and unthinned stands was most pronounced in the I and 

6-year thinning class, but the treatments converged to similar component scores by 1 I- 

years post-treatment (Figure 4.3b). The short-lived disparity in overhead cover 

probably occurred because manipulation of stem densities initially reduced canopy 



closure (Wilson and Watts 1999, Lindgren and Sullivan 2001), but overstory crowns 

closed by 1 1-years post-treatment. 

Lastly, the size of the understory trees (stem diameters and height) was reflected 

by the third principal component, understory structure. Understory structure appeared 

similar between thinned and unthinned stands (Figure 4. lb, c); however, distinct patterns 

were apparent when separated by thinning class and treatment (Figure 4 .3~) .  Soon after 

PCT (I-year thinning class), both thinned and unthinned stands had similar structure of 

trees < 7.6 cm dbh, but understories followed distinctly unique successional trajectories 

to 11-years post-treatment. In thinned stands, understory trees rapidly increased stem 

diameters and heights after a reduction of competition. Trees that were < 7.6 cm dbh (the 

separation point between understory and overstory trees in this study) at 1-year post- 

treatment had graduated into the overstory (> 7.6 cm dbh) by 6 and 11 years post- 

treatment. Saplings that did not respond to thinning remained a stunted part of the 

understory. In contrast to the accelerated development and reduced understory structure 

of PCT stands, unthinned stands slowly accumulated understory structure (height and 

stem growth) to 1 1-years post-treatment. Understory stem densities were nearly 3x 

greater in unthinned stands than PCT stands, and the severe competition for space, light, 

and nutrients that result from being overstocked may have retarded the structural 

development of these trees (Brissette et al. 1999, Lindgren and Sullivan 2001). 

Stands treated with PCT were characterized as having little near-ground structure, 

an overstory that closed by 1 1-years post-treatment, and few understory stems that were 

small and short. In contrast, unthinned stands of otherwise similar characteristics initially 

had higher amounts of near-ground cover that decreased with time, a consistently 



developed overstory through time, and slowly developing understory trees resulting from 

high competition. PCT of regenerating conifer stands consi'stently reduced horizontal 

cover from 1-1 1 years post-treatment, but increased temporal and spatial heterogeneity of 

the canopy by temporarily opening the overstory layer. Within-stand structure varied less 

through time and overstory structure accumulated much slower in unthinned stands. 

Changes in forest structure with stand development 

Near-ground cover described the greatest amount of variation between thinned 

and unthinned conifer stands. Further, a similar component (horizontal cover) weighted 

by many of the same variables accounted for the greatest variation (3 1.7%) of forest 

structure among stands of 3 thinning classes (Table 4.5). Therefore, horizontal cover 

described a major portion of the changes in forest structure associated with both thinning 

and stand development through time. Unthinned stands were associated with more dense 

horizontal cover than stands treated with PCT during the l-year and 6-year thinning 

classes, but both unthinned stands converged to more similar amounts of cover by 11- 

years post treatment (Figure 4.3d). Both thinned and unthinned stands had less horizontal 

cover in the 11-year stands than in younger stands, which implies that competition- 
<. 

induced suppression of the understory and decomposition of logs occurred as both 

thinned and unthinned stands succeeded from early to mid-succession. This process 

allowed stands to succeed to a mature or overmature stage that may be necessary to 

provide sustainable numbers of logs in managed forests (Hagan and Grove 1999). 

Further, shorter rotations in intensively managed stands may lead to long-term reductions 

in near-ground structural diversity and CWD. 



The contrast between overstory and understory structure explained the second 

greatest amount of variation (24.8%) in forest structure among stand thinning classes. 

Large values of this component described stands with developed overstories and 

underdeveloped understories; likewise, small values corresponded to stands with large 

and tall understory trees and little overstory structure. Thinned stands had markedly 

greater overstory structure in the 6-year and 1 1-year thinning classes than in 1-year 

thinning classes (Figure 4.3e). Further, thinned stands also had greater overstory 

structure than similar untreated stands in the 2 older thinning classes. Unthinned stands 

gained little overstory structure from 1 to 1 I-years post-treatment, which indicates the 

application of PCT was responsible for the accelerated height and diameter growth 

(Harrington and Reukema 1983, Ker 1987, McCormack and Lemin 1998, Brissette and 

Frank 1999, Brissette et al. 1999, Pothier 2002). The increased number of large overstory 

trees in addition to the retention of small understory stems in stands treated with PCT 

suggests that stratification of canopy layers occurs by 1 1 years after thinning and that 

vertical height diversity is enhanced by subsequent growth and development after 

thinning (Figure 4.3c,e). 

The herbaceous vegetation gradient, the third principal component, described the 

inverse relationship between amounts of herbaceous vegetation and overstory cover. 

Density and diversity of ground-level herbaceous vegetation often relates to the amount 

of light able to penetrate to the forest floor, so that stands with developed overstories 

have sparse ground-level vegetation (Grelen et al. 1972, Thomas et al. 1999, Lindgren 

and Sullivan 2002). Consistent with many previous studies, thinned stands had denser 

herbaceous vegetation than unthinned stands by only 1 -year post-treatment (Hurst et al. 



1982, Bell et al. 1997, Thomas et al. 1999, Lindgren and Sullivan 2002) because 

herbaceous vegetation can respond quickly to changes in light and microclimate (Figure 

4.30. Density of herbs was even greater in thinned stands by 6-years post-treatment, but 

was sparse after closure of the canopy in the 1 1 -year PCT stands. Herbaceous vegetation 

in unthinned stands was less variable, but did exhibit the greatest values in the 6-year 

stands, possibly from increased sunlight from small canopy gaps created as trees died. 

In general, stands in the 1-year thinning class, regardless of thinning history, were 

distinguished by highly variable amounts of horizontal cover (dense cover in unthinned 

stands, sparse cover for thinned stands) and ground-level herbaceous vegetation. PCT 

reduced many variables associated with horizontal structure, and allowed the penetration 

of sunlight to the forest floor, positively influencing the amount of herbaceous vegetation. 

Moderate densities of horizontal cover, moderate sizes of overstory trees, and dense 

herbaceous vegetation characterized regenerating conifer stands in the 6-year thinning 

class. Lastly, stands in the 11-year thinning class had little horizontal cover, large 

overstory trees, and sparse ground level vegetation. Thus, the successional pathway of 

regenerating conifer stands included a reduction of horizontal cover, growth of overstory 

structure, and decreasing herbaceous vegetation as stands developed. 

Potential effects of thinning and stand development on wildlife 

The changes in vegetation structure with PCT and stand succession indicate that 

large differences in forest structure exist between thinned and unthinned stands, and that 

changes vary temporally. Wildlife species respond to changes in forest structure rather 

than stand age (Carey and Johnson 1995, Hayes et al. 1997). Therefore, thinned and 

unthinned stands of similar ages may potentially support different wildlife communities. 



Wildlife associated with the structure of dense, early-successional forest will likely be 

negatively affected by PCT, but other species that use mature forest may receive positive 

benefits. Thus, I hypothesize that wildlife will exhibit species-specific responses to 

alteration of forest structure from PCT and stand succession. 

Across their geographic range, snowshoe hare are consistently reported to reach 

their greatest densities in mid-successional, overstocked conifer stands with high levels of 

visual obscurity (Wolff 1980, O'Donoghue 1983, Pietz and Tester 1983, Litvaitis et al. 

1985, Litvaitis et al. 1990, Koehler 1990, Fuller 1999, Hoving 2001). Therefore, the 

reduction in near-ground cover associated with PCT would be expected to negatively 

affect densities of snowshoe hare. A companion study of snowshoe hare on the same 30 

forest stands measured during this study indicated that hare densities were 2 to 2.5 times 

greater on unthinned stands versus similar stands treated with PCT in leaf-off (October - 

May) and leaf-on (June - September) seasons, respectively (Chapter 2). A similar 

reduction in densities of snowshoe hare was observed by 4-years post-PCT in British 

Columbia (Sullivan and Sullivan 1988). 

Spruce grouse (Falcipennis candadensis), a conifer dependent species, have 

special conservation statuses near at the southern edge of their distribution: they are state- 

listed as endangered in New York and Vermont, classified as a non-game breeding bird 

in New Hampshire, and are not legally harvested in Maine (A. Weik, Maine Department 

of Inland Fisheries and Wildlife, pers. comrn.). Spruce grouse reportedly utilize mid- 

successional conifer forest with characteristics typical of post-PCT treated stands, 

including well-developed middle stories and tree heights of 7-14 m (Boag and Schroeder 

1992). Previous research conducted in Maine indicated that summer habitat of adult 



female spruce grouse with broods is characterized by denser ground vegetation and a 

more open canopy than during other seasons (Allan 1985). My observations of spruce 

grouse during June-August, 2001 are consistent with the literature; across the same 30 

stands sampled for forest structure in this study, I observed 19 adults (8 F, 11 M) in the 

17 stands treated with PCT and 7 adults (3 F, 4 M) in the 13 unthinned stands during 

morning visits on 6 consecutive days per stand, July-August 2001. Further, 7 of 8 

females in the PCT stands were observed with broods, whereas none of the females in 

unthinned stands were seen with young. These observations suggest that positive effects 

of PCT on summer habitat of spruce grouse may exist, and that these relationships could 

warrant further exploration. 

Numerous strong relationships have been documented between forest songbirds 

and habitat structure (MacArthur and MacArthur 1961, McShea and Rappole 2000, Kirk 

and Hobson 2001), and changes in cover and structural diversity associated with PCT and 

stand succession could influence abundance, diversity, nesting success, and community 

composition of songbirds. Species of birds that require a diverse understory for nest 

concealment, foraging, or perching would be expected to decrease in abundance after 

PCT. In Ontario, after vegetation management, the greatest decrease in bird density was 

observed in stands that were manually thinned with brush-saws, as compared among 

herbicide and thinning treatments (Woodcock et al. 1997). They reported that shrub- 

nesting birds, such as the chestnut-sided warbler (Dendroica pensylvanica) and veery 

(Catharusfuscescens), declined in abundance 1-year after thinning due to the removal of 

nesting and foraging structure. Whereas PCT may be associated with reduced abundance 

of some species, total diversity of songbirds was greater on commercially thinned 



deciduous stands in Massachusetts (DeGraaf et al. 1991) and would be predicted to be 

higher on my thinned 1 I-year stands based on greater vertical height diversity 

(MacArthur and MacArthur 196 1). If the maintenance of shrub-nesting songbird 

community is a management goal, it is unlikely to be reached if stands are treated with 

PCT. In contrast, if overall diversity of bird species was the primary objective, thinning 

may indirectly enhance songbird diversity by increasing heterogeneity of forest stands 

across landscapes that are dominated by early-successional forest. These hypotheses 

should be further evaluated using field investigations. 

Abundances of forest-dependent small mammals reportedly respond positively to 

volume of coarse woody debris (CWD) (Richens 1974, Hayes and Cross 1987, Carey and 

Johnson and 1995) and characteristics of mature forest, such as closed canopies and large 

diameter trees (Martell 1983, Nordyke and Buskirk 1991, Lachowski 1997). I observed 
. . 

that stands treated with PCT were associated with lower abundances of downed logs, but 

had larger and more developed overstory trees. Strong, unequivocal relationships 

between CWD and densities of small mammals have not been reported for Maine (Fuller 

1999, Billig In prep.), so I would not expect small mammals to be strongly affected by 
3 

reductions in CWD associated with thinning. North American studies of the effects of 

PCT have reported positive effects.(Lautenschlager et al. 1997, Chapter 3) or no 

detectable effect (Lautenschlager et al. 1997, Sullivan et al. 2001, Chapter 3) on 

abundances of forest-dwelling small mammals, but responses were species-specific. I 

observed greater numbers of red-backed voles and masked shrews in stands treated with 

PCT; however, abundances of deer mice and short-tailed shrews were not affected by 

thinning (Chapter 3). Therefore, the application of PCT to regenerating stands appears to 



be compatible with maintaining or enhancing densities of small mammals at the scale of 

the forest stand. 

CONCLUSIONS 

The consideration of ecological integrity into silvicultural programs mandates that 

forest management systems be examined for their effects on biodiversity in addition to 

reaching economic, social, or silvicultural objectives. Intensive forest management, such 

as PCT, is reported to be in disagreement with ecological forestry, which has the 

maintenance of intact ecosystems as its primary goal (Seymour and Hunter 1999). By 

definition, intensive forest management simplifies forest structure by removing or killing 

vegetation that competes with crop trees (Seymour and Hunter 1999), and 

recommendations for maintaining biodiversity generally include temporal, spatial, and 

structural heterogeneity (Brokaw and Lent 1999, Spies and Turner 1999). Although 

stands treated with PCT may be incompatible with retaining the ecological communities 

of untreated forest, the changes in forest structure that occur with PCT and stand 

succession will likely positively influence some species. 

This study was the first that I am aware of to examine the major changes in 

vegetation structure that occur after PCT of regenerating conifer stands up to 1 1-years 

post-treatment, and to relate these findings to effects on wildlife. In comparison to 

unthinned conifer stands, stands thinned with brush saws in northern Maine were 

associated with lower levels of near-ground cover, an overstory that developed 

complexity by 11-years post-treatment, and a lack of understory structure. The forest 

structure in regenerating stands treated with PCT may have negative effects on densities 

of early successional species, such as snowshoe hare and some species of shrub-nesting 



songbirds. Wildlife that use conifer stands with less dense understories and overstories 

dominated by large trees, have been or likely will be positively affected by PCT; these 

include red-backed voles and possibly, spruce grouse. 

This study was descriptive in nature and generalizations of vegetative responses 

of forest structure to other geographic areas and thinning treatments should be conducted 

cautiously. Further, the 30 stands in this study were all treated with an aerial application 

of herbicide several years prior to thinning, which suppressed regrowth of understory 

structure and deciduous vegetation for nearly 20 years post-application. Thus, the 

temporal and spatial changes in forest structure as well as the indirect effects on 

populations of wildlife that occurred during this study will likely differ from stands that 

are released with brushsaws, but without prior application of herbicide. 
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APPENDICES 



APPENDIX A. Captures of snowshoe hares in northern Maine 



Table A 1. Number of captures and recaptures of snowshoe hares live-trapped within 8 
forest stands (4 treated with PCT) in northern Maine, May-June 200 1-2002. 

..-A 

Number of initial caDtures Number of recaDtures 
Stand 
0-4-C 
0-3-C 
0- 1 -T 
5-4-T 
10-7-T 
10-1-T 
0- 1 -C 
0-2-C 

Dates trapped 
51810 1-5/2710 1 
5/l3lO 1 -5/28/O 1 
61210 1-611 510 1 
61210 1 -61 1 510 1 
5/4102-5117102 
515102-5118102 
5123102-6104102 
5123102-6104102 

Male 
24 

Female Male 
15 47 

Female 
32 



APPENDIX B. ~ensi t ies  of snowshoe hare pellets in regenerating clearcuts, with and 

without PCT, northern Maine, 2000-2002. 



Table B 1. Snowshoe hare pellet densities (pelletshalday) during leaf-off (October - April) and leaf-on (May-September) of 2000 - 
2002 among 17 PCT stands and 13 unthinned stands, from 1 - 11 years post-treatment in northern Maine. 

Year and season 
Thinning ~ rea tmen t~  Replicate Leaf-off 2000-200 1 Leaf-on 2001 Leaf-off 200 1-2002 Leaf-on 2002 



Table B 1 .  Continued. 

Year and season 
Thinning ~rea tment~  Replicate Leaf-off 2000-200 1 Leaf-on 200 1 Leaf-off 200 1-2002 Leaf-on 2002 

Thinning class, 1 = stands 1-2 years post-PCT and unthinned stands with similar management histories; 6 = stands 6-7 years post-PCT and unthinned stands 
with similar management histories, 1 1  = stands 1 1  years post-PCT and unthinned stands with similar management histories. 
Vreatment, T = stands treated with PCT, C = unthinned stands. 

e 

4 
0 



APPENDIX C. Geographic location of snowshoe hare pellet transects, northern Maine. 



Table C I .  Coordinates (Universal transverse mercators (UTMs)) (km) of the endpoints of 
snowshoe hare pellet transects located within 30 regenerating conifer stands ( I  7 treated 
with PCT) in northern Maine, 2002. UTMs are within zone 19 and using WGS - 1984 
datum. 

UTM coordinates of transect endpoints 
Stand Transect I Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 
I - l -T 5095.494 N, 5095.429 N, 5095.363 N, 5095.299 N, 

488.61 E; 488.598 E; 488.604 E; 488.592 E; 
5095.478 N, 5095.383 N, 5095.331 N, 5095.267 N, 
488.212 E 488.202 E 488.206 E 488.196 E 



Table C 1 .  Continued. 

---- 
UTM coordinates of transect endpoints 

Stand Transect I Transcct 2 Transect 3 Transect 4 Transcct 5 Transect 6 



Table C 1. Continued. 

-- 
UTM coordinates of transect endpoints 

Stand Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 



Table C 1 .  Continued. 

- - 

UTM coordinates of transect endpoints 
Stand Transect I Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 
l I-4-C 5 103.423 N, 5103.363 N, 5103.430 N, 5103.437 N, 

49 1.704 E; 49 1.735 E; 49 1.636 E; 49 1.572 E; 
5 103.634 N, 5 103.576 N, 5 103.040 N, 5 103.037 N, 
492.029 E 492.082 E 49 1.576 E 49 1 SO2 E 



APPENDIX D. Minimum number alive and number of captures of small mammals, 

northern Maine. 



Table Dl .  Number of initial captures of red-backed voles and deer mice, and total number of captures of shrews during June - 
August 2000 and 2001 within 37 trapping grids among 7 treatment- thinning class combinations in 7 townships in northern Maine. 

Year of sampling 
2000 200 1 

Thinning ~ rea tmen t~  Replicate RBVC DM* SSe MS' RBVC DM* SSe MS' - 
Class" 

1 T 1 3 0 2 4 16 2 5 14 
1 T 2 3 1 3 0 1 3 7 5 6 1 
1 T 3 10 0 4 4 9 2 4 0 
1 T 4 8 1 0 1 5 12 1 2 
1 T 5 4 1 0 0 5 6 18 1 
1 T 6 8 1 1 11 7 7 10 25 
1 C 1 0 0 1 0 3 12 1 0 
1 C 2 1 1 1 1 6 2 11 2 
1 C 3 3 2 1 0 4 1 2 6 

e 

4 1 C 4 0 1 1 0 8 9 6 5 
4 1 C 5 5 0 1 2 4 6 5 1 

6 T 1 6 0 0 5 3 8 8 0 
6 T 2 0 0 1 3 12 10 0 5 
6 T 3 4 1 0 5 4 9 4 5 
6 T 4 11 1 0 1 8 0 13 17 
6 T 5 9 2 2 10 4 1 7 5 
6 T 6 4 2 1 1 2 4 27 8 
6 C 1 1 0 0 0 2 14 6 2 
6 C 2 6 0 1 1 7 2 7 0 
6 C 4 13 0 0 0 9 3 9 3 
6 C 5 7 1 6 0 1 6 2 0 
6 C 6 1 0 4 0 1 2 7 0 
11 T 1 2 0 0 3 9 2 18 25 
11 T 2 3 0 3 17 6 1 11 14 



Table D 1. Continued. 

Year of sampling 
2000 200 1 

Thinning TreatmentC Replicate RBVC DMd SSe MS' RBV' D M ~  SSe MS' 
classb 

11 T 3 11 0 1 15 16 13 11 1 
11 T 4 11 3 0 3 10 4 9 16 
11 T 5 7 2 0 14 13 13 2 1 5 
11 T 6 16 4 0 1 12 8 28 2 
11 C 1 4 3 0 1 4 11 4 0 
11 C 3 2 4 1 1 3 15 2 1 2 
11 C 4 2 2 0 1 3 18 15 3 
16 T 1 25 3 0 0 2 1 0 4 0 - 

4 16 T 2 10 4 0 6 5 10 15 20 
0e 16 T 3 19 5 4 11 13 7 10 1 

16 T 4 10 7 0 19 23 16 3 8 
16 T 5 6 5 3 18 5 19 22 1 
16 T 6 17 11 0 12 20 17 9 14 

'Thinning class, 1 = stands 1 year since treatment or stands with sirnilar=history of clearcutting, herbiciding, and site quality that were not thinned, 6 = 6 years 
since treatment or stands with similar history of clearcutting, herbiciding, and site quality that were not thinned, 11 = 1 1 years since treatment or stands with 
similar history of clearcutting, herbiciding, and site quality that were not thinned , 16 = 16 years since treatment. 
T = treated with PCT, C = unthinned stand. 
RBV = red-backed vole. 
DM = deer mouse. 
' SS = short-tailed shrew. 
' MS = masked shrew. 



APPENDIX E. Geographic location of small mammal trapping grids within regenerating 

conifer stands, northern Maine. 



Table E I .  Township, ownership, and coordinates of the center point of small mammal 
trapping grids within 24 precommercially thinned and 13 similar, unthinned regenerating 
conifer stands in northern Maine. Universal trahsverse mercators (UTMs) are provided 
for zone 19 and WGS - 1984 datum. 

Stand Township Land owner Latitude - Longitude UTM coordinate 
I-1-T T 4 R  1 1  Great Northern Paper 46'00'45.30666"N 5095457.006 N 

1 -2-T T4 R 12 Great Northern Paper 45'59' 1 1.44249-N 5092585.166 N 
69'16'23.82878"W 478833.712 E 

1 -3-T T4R 1 1  Great Northern Paper 46'00' 19.47527-N 5094656.285 N 
69'07'33.90162"W. 490237.933 E 

1 -4-T T4R 11 Great Northern Paper 45'59'23.02101 "N 5092928.953 N 
69'09'08.42909" W 488228.301 E . . 

1 -5-T T4 R 12 Great Northern Paper 46'0 1 '06.87746"N 5096155.319 N 
69' 18'00.45932"W 476768.209 E 

1 -6-T T4R 11 Great Northern Paper 49'59'56.6641 1 "N 509395 1.7 18 N 
69'07' 17.57484-W 490588.056 E. 

6- 1 -T Hersey International Paper 46'06' 1 9.0867OUN, 5 105960.354 N 
68'20' 16.81348"W 551 162.533 E 

6-2-T Hersey International Paper 46'06'26.50177"N 5106210.414 N 
68'1 8'20.99903-W 553646.849 E 

6-3-T Hersey International Paper 46'05'32.81 159"N 5 104543.533 N 
68' 19' 13.92464"W 552524.840 E 

6-4-T T 5 R 1 1  Great Northern Paper 46'04' 1 1.2733 1 "N 
69'06'46.1 1927"W 

6-5-T T 5 R 1 1  Great Northern Paper 46'04' 1 1.27331 "N 
69'06 46.1 1927"W 

6-6-T T 5 R 1 1  Great Northern Paper 46'04'42.16172"N 
69'09'57.17069"W 

11-1-T T l R 1 3  Plum Creek Timber 45'44'49.40830"N 
69'26'00.2758 1 "W 

1 I-2-T T l R 1 3  Plum Creek Timber 45'41'1 1.75821"N 
69'3O'06.7549O" W 

l I-3-T T l R 1 3  Plum Creek Timber 45'44'08.00600"N 
69'25'29.26869"W 



Table E 1. Continued. -- 
Stand Township 
l I-4-T T I  R 13 

Land owner 
Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Plum Creek Timber 

Great Northern Paper 

Great Northern Paper 

Great Northern Paper 

Great Northern Paper 

Latitude - Longitude 
45'40'44.420 15"N 
69' 19'53.22495"W 

--- 

UTM coordinatc 
5058437.236 N 
474 186.950 E 

Spencer Bay 

Days 
Academy 

Grant 
Days 

Academy 
Grant 
Days 

Academy 
Grant 
Days 

Academy 
Grant 

Spencer Bay 

Great Northern Paper 46'01 '53.74408"N 
69'05'34.11513"W 

Hersey International Paper 46'05'59.76304"N 
68'1 8'24.56659-W 

Hersey International Paper 46'05'37.27979"N 
68'21 '39.64881 "W 

Great Northern Paper 46'03'57.30549"N 
69'10'48.17648"W 

Great Northern Paper 46 01 48.35087-N 
69 15 45.13566"W 



Table E I .  Continued. 
-. 

Stand Township Land owner Latitude - Longitude UTM coordinate -- 
6-6-C T 4 R  1 1  Grcat Northern Papcr 46'01 '04.32650"N 5096038.79 1 N 

I I-1-C T 4 R  1 1  Great Northern Paper 46'03'37.56601"N 5 100767.417 N 
69"06' 10.43538"W 492040.994 E 

1 1-3-C T 5 R 1 1  Great Northern Paper 46'03'33.1 1034"N 5 100629.040 N 
69'05'38.04697"W 492736.7 14 E 

1 1-4-C T 5  R 11 Great Northern Paper 46'05'07.38 142"N 5103539.710 N 
69'06'20.47879'' W 49 1828.888 E 



APPENDIX F. Within-stand habitat and structural characteristics throughout thinned and 

unthinned stands, northern Maine. 



Table F1. Median values (range) for overstory, understory, and coarse wood debris variables measured during the leaf-on season on 
70 m x 70 m small mammal trapping grids within 37 stands distributed among 7 treatment-thinning class stand types throughout 7 
townships in northern Maine. 

Overstory Types 
Variable 1-year PCT 1-year unthinned 6-year PCT 6-year unthinned 1 1-year PCT 1 1-year unthinned 16-year PCT 

n=6 n=5 n=6 n=5 n=6 n=3 n=6 

LOGS' 



Table F 1 .  Continued. 

Overstory Types 
Variable 1-year PCT 1-year unthinned 6-year PCT 6-year unthinned 11-year PCT 1 I-year unthinned 16-year PCT 



Table F1. Continued. 

Variable 1 -year PCT 1 -year unthinned 6-year PCT 6-year unthinned 1 1-year PCT 1 1-year unthinned 16-year PCT 

TOTBA" 18.44 23.00 , 16.69 25.50 22.44 30.25 24.56 
(10.8-24.9) (1 8-32) (13.1-20.1) (16.8-43.6) (19.1-24.3) (25.5-3 1.6) (1 8.9-29.9) 

00 
Q\ 

'LOGS = number of logs (2 1 m length, 2 7.6 cm diameter, < 45" from horizontal) per ha. 
~ O G V O L  = volume of logs (m3/ha) (2 1 m length, 2 7.6 cm diameter, < 45" from horizontal) per ha. 
'STUMPS = number of stumps (< 2 m height. 2 7.6 cm diameter). 
*STUMPVOL = volume of stumps (m3/ha) (< 2 m height. 2 7.6 cm diameter) per ha. . 

'DBH = average dbh (cm) of closest tree (2 7.6 cm dbh, 2 2 m height, > 45" from horizontal, alive) in each quarter. 
f LITTER = average litter depth (cm). 
OCANOPY = average overhead percent canopy closure during summer. 
h VVD = understory lateral foliage density (average of four measures of visual obscurity in each of four height classes (0-OSm, 0.5- 1 .O rn, 1 .O- 1.5 rn, 1.5-2.0 rn)) 
'DECIDTR = number of deciduous trees ( 2  7.6 cm dbh, 1 2 m height, > 45" from horizontal, alive) per ha. 
'CONTR = number of coniferous trees (1 7.6 cm dbh, 2 2 m height, > 45" from horizontal, alive) per ha. 
k~~~~~~ = number of herbaceous ground stems (c 0.5 m height, < 7.6 cm dbh, alive) per ha. 
'WGST = number of woody ground stems (< 0.5 m height, < 7.6 cm dbh, alive) per ha. 
rn DECST = number of deciduous saplings (I cm dbh, alive) at 1.5 m height per ha. 
"CONST = number of coniferous saplings (I cm dbh, alive) at 1.5 m height per ha. 
"HWBA = basal area (m2/ha) of deciduous trees . 
PSWBA = basal area (m2/ha) of coniferous trees. 



Table F 1. Continued. 

qSNAGBA = basal area (m2/ha) of snags (2 7.6 cm dbh, 2 2 m height, > 45" from horizontal, dead). 
W E G C  = percent live ground cover. 
'RTMSMA = number of root masses (2 7.6 cm dbh at root collar) per ha. 
'TOTDEB = number of (snags + logs + stumps + root masses) per ha. 
TOTBA = HWBA + SWBA + SNAGBA (m2/ha). 
'TOTSTEM = number of coniferous trees (1 7.6 crn dbh, 2 2 m height, > '45" from horizontal, alive) + number of deciduous trees (2 7.6 cm dbh, 2 2 m height, > 
45" from horizontal, alive) + number of coniferous saplings ( I  7.6 cm dbh, alive at 1.5 m height) + number of deciduous saplings ( I  7.6 cm dbh, alive at 1.5 rn 
height ) per ha. 



APPENDIX G.  Median and range of stand-level structural variables in thinned and 

unthinned regenerating clearcuts, from 1 - 1 1 years post-treatment. 



Table G1. Median values (range) for extensive overstory, understory, and coarse woody debris variables measured during the leaf-on 
season on 4,400-m transects within 30 stands (17 PCT stands, 13 unthinned stands) among 6 treatment-thinning class stand types in 
northern Maine. 

--- 

Overstory types 
I -year PCT 1 -year unthinned 6-year PCT 6-year unthinned 11-year PCT 1 1-year unthinned 

Variable n=5 n=5 n=5 n=5 n=7 n=3 

DBH <7.6a 



Table G 1 .  Continued. 
Overstory types 

I -year PCT I -year unthinned 6-year PCT 6-year unthinned 1 1 -year PCT 1 I -year unthinned 
Variable n=5 n=5 n=5 n=5 n=7 n=3 

DBH >7.6' 





Table G 1. Continued. 
Overstory types 

1-year PCT I -year unthinned 6- year PCT 6-year unthinned 1 I-year PCT I I-year unthinned 
Variable n=5 n=5 n=5 n=5 n=7 n=3 

8 
LOGSaa 700 1.300 540 1.400 300 1.150 

(440- 1,280) (1,000-2,300) (460- 1,140) (600-2,600) (220- 1,100) (1,100-1.250) 

CANOPY' 73.72 85.02 76.43 87.21 88.05 83.23 
(53.29-92.25) (78.61-90.9 1) (70.58-84.35) (7 1.34-92.50) (74.82-93.87) (69.24-93.8 1 ) 

%BH<7.6 = average diameter at breast height (dbh) (cm) of stems < 7.6 cm, >1.0 m ht, alive. 
b ~ ~ < 7 . 6  = average height (m) of stems < 7.6 cm, > 1.0 m ht, alive. 

- 'CROWN<7.6 = average height (m) from ground to lowest living branches of crown, of stems < 7.6 cm, r1.0 m ht, alive. 
a *WDERLCR = average ratio of length of crown to total height of stems < 7.6 cm, >I .0 m ht, alive. 
td '#CONTR<7.6 = number of conifer treedha < 7.6 cm, >1.0 m ht, alive. 

'#DEcTR<~.~ = number of deciduous treestha < 7.6 cm, >1.0 m ht, alive. 
gTOTUNDER = #CONTR<7.6 + #DECTR<7.6 per ha. 
h~~~ = (3 x #CONTR<7.6) + (1 x #DECTR<7.6) per ha. 
'DBH>7.6 = average diameter at breast height (dbh) (cm) of stems 2 7.6 cm, >1.0 m ht, alive. 
'Hlb7.6 = average height (m) of stems L 7.6 cm, >1.0 m ht, alive. 
 CROWN>^.^ = average height (m) from ground to lowest living branches of crown, of stems L 7.6 cm, >1.0 m ht, alive. 
'OVERLCR = average ratio of length of crowd to total height of stems 1 7.6 cm, >I .O m ht, alive. 
"WZONTIb7.6 = number of conifer treestha L 7.6 cm, >1.0 m ht, alive. 
"#DECTR>7.6 = number of deciduous treestha L 7.6 cm, >I .O m ht, alive. 
TOTOVER = KONTRL7.6 + #DECTR?7.6 per ha. 
PKONREGEN = number of regenerating conifer stems > 0.2 and <1.0 m height per ha. 
q#DECREGEN = number of regenerating deciduous stems > 0.2 and < 1.0 m height per ha. 
'TOTREGEN = KONREGEN + #DECREGEN 
TOTSTEM = TOTUNDER + TOTOVER + TOTREGEN 
'% G & F = percentage of the ground covered by grass and forbs. 
"%MOSS = percentage of the ground covered by mosses. 



Table G 1. Continued. 

'%GROUND = percentage of the ground that is bare ground. 
"%ROCK = percentage of the ground covered by bare rock. 
'%LITTER = percentage of the ground covered by leaf litter and twigs. 
Y%OTHER = percentage of the ground covered by other living vegetation. 
'VEGDIST = average understory lateral foliage density (average distance that an entire 2.0 rn pole is obscured) 
"LOGS = number of logs per ha. 
" L C ~ ~ V O L  = volume of logs (m3/ha) (>I m length, 2 7.6 cm diameter at point of intersection, < 45" from horizontal) 
'CANOPY = average overhead percent canopy cover closure at 1.0 rn height during summer. 



APPENDIX H. Relationship between snowshoe hare density and total stem density in 

regenerating conifer stands, northern Maine. 



Total stemslha 

Figure H 1. Relationship of snowshoe hare densities to total stem densities within 30 
regenerating conifer stands (17 treated with PCT, o symbol; 13 unthinned stands, a 
symbol), northem Maine,.2000-2002. Hare densities were predicted using pellet 
densities averaged across 2 leaf-off seasons with the modified Litvaitis-Long model 
(Chapter 1). Total stem densities were cdculated by summing the number of overstory, 
understory, and regenerating stemslha. 



BIOGRAPHY OF THE AUTHOR 

Jessica Anne Homyack was born in Reading, Pennsylvania on 25 March 1977. 

She was raised in the heart of Lancaster County in the village of Blainsport, Pennsylvania 

and graduated from Cocalico High School in 1995. Jessica attended West Virginia 

University from 1995 to 1999 and graduated magna cum laude in May 1999 with a 

Bachelor of Science in Wildlife and Fisheries Resources. At West Virginia University, 

Jessica held several elected positions in the Student Chapter of The Wildlife Society and 

was voted the Outstanding Senior in the Wildlife and Fisheries Program. 

Jessica began a graduate program in the Department of Wildlife Ecology at the 

University of Maine in April, 2000. She received the George F. Dow Award for 2003. 

Jessica is a candidate for the Master of Science degree in Wildlife Ecology from The 

University of Maine in May, 2003. 


	The University of Maine
	DigitalCommons@UMaine
	5-2003

	Effects of Precommercial Thinning on Snowshoe Hares, Small Mammals, and Forest Structure in Northern Maine
	Jessica A. Homyack
	Recommended Citation


	tmp.1327609868.pdf.iWKV8

