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Degree of Doctor of Philosophy 
(in Wildlife Ecology) 

May 2011 

 

Conservation of forest-dependent amphibians is dependent on finding a balance 

between timber management and species’ habitat requirements. Accurate predictions of 

the response of amphibian communities to disturbance rely on a good understanding of 

the scales at which ecological processes affect distribution and abundance through space 

and time. I investigated the response of 14 species to four different forestry treatments 

(partial harvest, clearcut with coarse woody debris [CWD] removed, clearcut with CWD 

retained, and uncut control) over a six-year period, using 2.1-ha experimental treatments. 

Forest amphibians showed a strong negative response to complete canopy removal at a 

broad spatial scale, but site-specific variation in the use of forestry treatments was the 

norm at a finer scale. Four forest-dependent species showed substantial declines in 

abundance beginning at 2 – 3 years post-disturbance. Avoidance of clearcuts by forest 

species and site-specific patterns of habitat use were maintained throughout the study. 
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Incipient vegetative succession and retaining CWD did not mitigate the effects of 

clearcutting; I found only a modest positive effect of succession on habitat use by 

emigrating juvenile wood frogs (Lithobates sylvaticus). I studied the permeability to 

juvenile wood frogs movements of four forestry treatments (recent clearcut, mature 

forest, 11-year-old conifers, and 20-year-old natural regeneration). I conducted 

experimental releases in 50 x 3 m terrestrial enclosures built in each treatment. Recent 

clearcuts and young coniferous stands were significant barriers to movements, and were 

three times less permeable to movement compared to the mature forest and 20-year-old 

regeneration. In addition, I found that juvenile wood frogs reared in semi-matural 

conditions did not show inherited directionality upon emergence, rely on proximate cues 

for orientation, and avoided forested wetland cues. Vegetative succession in young stands 

(5-6-year-old) mitigated the effects of clearcutting on microclimate, but juvenile wood 

frogs strongly avoided these stands. Thus, microclimate cannot be used as a sole 

parameter to predict potential habitat use by amphibians. Closed-canopy habitat was 

preferred by all terrestrial life stages of forest amphibians. A viable forest management 

strategy is to plan for spatially and temporally-structured harvests that retain canopy 

between high-quality breeding sites, and avoid clearcutting and conversion to conifer 

plantations. 
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Chapter 1 

PREDICTING THE RESPONSE OF AMPHIBIAN COMMUNITIES  

TO DISTURBANCE ACROSS MULTIPLE  

TEMPORAL AND SPATIAL SCALES 

 

Abstract 

Conservation of forest-dependent amphibians is dependent on finding a balance 

between timber management and species’ habitat requirements. Accurate predictions of 

the response of amphibian communities to disturbance rely on a good understanding of 

the scales at which ecological processes affect distribution and abundance through space 

and time. To examine the role of spatial and temporal scales in shaping amphibian 

communities, I studied the response of 14 species to four different forestry treatments 

(partial harvest, clearcut with coarse woody debris [CWD] removed, clearcut with CWD 

retained, and uncut control) over a six-year period, using 2.1-ha experimental treatments 

in central Maine, USA. Forest amphibians showed a strong negative response to complete 

canopy removal at a broad spatial scale (across experimental sites), but site-specific 

variation in the use of forestry treatments was the norm at a finer scale. Four forest-

dependent species showed substantial declines in abundance beginning at 2 – 3 years 

post-disturbance. Avoidance of clearcuts by forest species and site-specific patterns of 

habitat use were maintained throughout the study. Incipient vegetative succession and 

retaining CWD did not mitigate the effects of clearcutting; I found only a modest positive 

effect of succession on habitat use by emigrating juvenile wood frogs (Lithobates 

sylvaticus). Despite high yearly fluctuations in species richness and abundance, there was 
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a shift in species assemblage towards habitat generalists. In natural and semi-natural 

landscapes, implementing broad management prescriptions could be a viable strategy, 

while finer-scale variation has to be acknowledged when managers focus on a limited 

area especially in highly-modified landscapes. 

 

Introduction 

A key focus of applied ecology is predicting the long-term effects of habitat 

change on the spatial distribution and abundance of organisms. In order to make accurate 

predictions we need to understand the role that scale plays in determining patterns of 

habitat use, especially in fragmented landscapes (Fahrig 1992). Investigating ecological 

patterns at inappropriate spatial and temporal scales may limit our understanding of the 

responses of species to disturbance and lead to deficient conservation strategies (Doak et 

al. 1992, Ewers and Didham 2006). Contradictory results about the effects of disturbance, 

mainly stemming from investigations conducted across disparate spatial and temporal 

scales, have been recorded for a variety of taxa across multiple ecological systems (e.g., 

birds [Chalfoun et al. 2002, Stephens et al. 2004], birds and lepidopterans [Hill and 

Hamer 2004], habitat heterogeneity – species diversity relationship [Tews et al. 2004], 

dung beetles [Nichols et al. 2007]). Scale also influences the relative prevalence of 

deterministic versus stochastic processes in shaping the spatial and temporal dynamics of 

animal communities (May 1973), imposing additional constraints on our ability to 

generalize the predictions of species responses to habitat change. 

Understanding the relative importance of scale in driving patterns of occurrence is 

particularly challenging for species with complex life cycles, where different life-history 
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stages may occur in disjunct environments and function at different spatial scales.  Many 

pond-breeding amphibian species are classic examples of such taxa, with population 

dynamics driven by environmental stochasticity and demographic fluctuations manifested 

at all life stages (Sjögren 1991). Within-pond factors, such as variable hydroperiod, larval 

density-dependence, and larval predation affect the aquatic stage (Vonesh and De la Cruz 

2002, Altwegg 2003, Trenham and Shaffer 2005). These in turn affect the vital rates of 

the terrestrial stage through carryover effects (Chelgren et al. 2006). Terrestrial vital rates 

are further influenced by habitat quality, predation, and terrestrial density-dependence 

(Altwegg 2003, Harper and Semlitsch 2007). Aquatic and terrestrial factors act 

synergistically in space and time, generating multiple sources of variability that make 

species turnover common in amphibian communities (Werner et al. 2007). The net result 

of the interactions among the demographic rates of different life-history stages of 

amphibians is that predicting the effects of habitat change is extremely challenging. 

These difficulties are further exacerbated by the fact that the large degree of variation in 

life history traits of many amphibian species makes it hard to generalize about long-term 

population status and viability (Marsh 2001). 

Due to their dual life-cycle, permeable skin, and generally low vagility, 

amphibians are often assumed to respond in a deterministic manner to changes in 

environmental conditions. Strong deterministic responses are likely to prevail when 

species are habitat specialists, with a direct link to a prominent habitat attribute (Bell 

2001). Predicting such responses is critical to managers, who often rely on direct cause-

effect relationships that can be generalized. The relative importance of such predictions 

may diminish when finer-scale variability inherent to ecological systems produces 
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unexpected patterns (e.g., due to variation in individual behavior, species interactions, 

and landscape context [Campbell et al. 2010]). Although the abundance and distribution 

of organisms are shaped by processes at various spatial and temporal scales (Wiens 

1989), management of natural resources often overlooks or ignores the finer-scale 

variability as background “noise” in a mostly predictable system. Given the known 

sensitivity of many amphibian species to habitat loss and alteration (Cushman 2006), it is 

important that we understand how predictable, or unpredictable, their responses to 

disturbance remain across a wide range of spatial and temporal scales.  

In recent years, particular attention has been paid to understanding the effects of 

forestry practices on amphibian populations. This attention is likely a result of the known 

sensitivity of forest-dependent amphibian species to habitat change (Homan et al. 2004), 

and a move towards integrating timber management with the conservation of biodiversity 

(Lindenmayer 2009). Silvicultural practices such as clearcutting create extremely 

heterogeneous landscapes with profound differences in vertical and horizontal stand 

structure (Hunter and Schmiegelow 2010). In particular, clearcutting can have long-term 

negative effects on amphibian abundance, with some populations reaching pre-

disturbance levels only two to seven decades post-harvesting (Ash 1997, Homyack and 

Haas 2009). Such wide estimates of time to population recovery suggest that the 

landscape context and the temporal scale of studies will determine whether or not we are 

able to predict the response of populations to disturbance. To investigate the 

predictability of amphibian response to disturbance created by forestry practices across 

multiple spatial and temporal scales, I selected a relatively simple system (i.e., a 

temperate forest amphibian community), and experimentally investigated the response of 
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14 amphibian species to canopy removal and vegetation re-growth for six years post-

disturbance. I focused on two vernal pool-breeding species common in temperate and 

boreal North American forests: wood frog (Lithobates sylvaticus) and spotted salamander 

(Ambystoma maculatum), and gathered detailed information on habitat use during three 

distinct life stages: (1) breeding, (2) post-breeding, and (3) juvenile emigration. For non-

vernal pool-breeders (all other species) I evaluated the general pattern of habitat use 

during post-breeding and juvenile emigration. The strongest deterministic response of 

amphibians to logging disturbance is likely to occur within the first 1 – 5 years due to 

harsh microclimatic conditions associated with canopy removal and associated edge 

effects (Keenan and Kimmins 1993).  

 

Methods 

Study sites 

This research was part of the NSF project “Land-use Effects on Amphibian 

Populations” (LEAP), a collaborative investigation of amphibian community responses to 

forestry practices between the University of Maine, University of Missouri – Columbia, 

and University of Georgia (Semlitsch et al. 2009). This study uses a six-year dataset and 

data from years 1 – 3 was partly published in (Patrick et al. 2006, Patrick et al. 2008a, 

2008b)). 

Our study was conducted on the Penobscot and Dwight B. Demerrit Experimental 

Forests, Penobscot County, Maine. Four replications of four forestry treatments – partial 

cut (50% canopy removed), clearcut with coarse woody debris (CWD) retained, clearcut 

with CWD removed, and control (not harvested) – centered on a breeding pool, were 
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created between November 2003 and April 2004. The treatments extended up to164 m 

from the pool, a distance assumed to include the life zone of 95% of the local salamander 

populations (Semlitsch 1998), and thus each quadrant covered approximately 2.1 ha 

(Figure 1.1). In the clearcuts, all marketable timber was removed, and the remaining 

standing trees were felled and left on site (in the CWD retained treatment) or removed (in 

the CWD removed treatment). The volume of coarse woody debris was highest in the 

CWD-retained treatment (45.6 ± 21.6 m3/ha; Patrick et al. 2006). The orientation of 

treatments was randomly assigned among sites, and the forested treatments (partial 

harvest and control) were opposite of each other at each site. The pre-treatment 

vegetation of the experimental forests was mature mixed coniferous and deciduous forest 

(Patrick et al. 2006). The codominant tree species were balsam fir (Abies balsamea), 

eastern white pine (Pinus strobus), northern white-cedar (Thuja occidentalis), red maple 

(Acer rubrum), eastern hemlock (Tsuga canadensis), paper birch (Betula papyrifera), 

American beech (Fagus grandifolia), and bigtooth aspen (Populus grandidentata). 

Canopy cover amounted to 73.8 ± 22.7% in control and 53.0 ± 33.5% in the partial 

harvest (Patrick et al. 2006). 

The experimental pools were encircled by silt fence (70 cm tall and 30 cm buried 

in the ground) and associated pitfall traps located every 5 m on both sides along the 

fence. Upland drift fences (10-m long) were also erected at 16.6, 50, 100, and 150 m (1, 

3, 6, and 9 fences, respectively) from the experimental pool in each treatment, in a 

circular setup that allowed sampling approximately 38% of the circumference at each 

distance (Figure 1.1).  
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Figure 1.1. Experimental setup of the forest treatments centered on a breeding pool. 

 

Study species 

Fourteen species have been documented at our study sites (Patrick et al. 2006). 

These include two forest-dependent amphibians that successfully bred in the 

experimental pools– wood frog (L. sylvaticus) and spotted salamander (A. maculatum) – 

and were the most abundant at our experimental sites. Other members of the amphibian 

assemblage with sufficient captures to analyze the community dynamics included the red-

backed salamander (Plethodon cinereus), eastern red-spotted newt (Notophthalmus 

viridescens), and four ranids: green frog (L. clamitans), bullfrog (L. catesbeianus), 

northern leopard frog (L. pipiens), and pickerel frog (L. palustris). Other amphibians 

either had very low captures: blue-spotted salamander (A. laterale complex), American 

toad (Anaxyrus americanus), mink frog (L. septentrionalis), and four-toed salamander 
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(Hemidactylium scutatum), or were not suitable for pitfall trap sampling: spring peeper 

(Pseudacris crucifer) and gray tree frog (Hyla versicolor), and were not included in the 

analysis. 

 

Amphibian and habitat sampling 

I sampled amphibians using a combination of drift fences and pitfall traps 

between 2004 and 2009, during two distinct periods: breeding season and non-breeding 

season. I captured adult L. sylvaticus and A. maculatum as they entered the four 

experimental pools to breed in early spring (13 April – 4 May 2005, 2 – 20 April 2006, 

16 April – 3 May 2007, 12 – 30 April 2008, and 8 – 27 April 2009). During this period, I 

opened the traps associated with the pool fence, as well as the 16.6 and 50 m fences to 

capture the entire breeding population. Animals captured at the 16.6 and 50 m fences 

were released at the experimental pools. I did not attempt to capture breeding adults in 

2004, as the experimental pools were stocked with egg masses from surrounding pools 

during the first year. I closed the traps at the end of the breeding season, re-opened the 

entire array at each site before the emergence season of juvenile L. sylvaticus, and 

continued sampling until the fall (1 July – 27 October 2004, 24 June – 17 September 

2005, 30 June – 20 August 2006, 1 July – 12 September 2007, 30 June – 15 September 

2008, and 30 June – 28 August 2009).  

I checked the traps every other day during both the breeding and the non-breeding 

seasons. I released the animals on the opposite side of the fences so they could continue 

migrating or dispersing in their presumed direction of movement. Upon capture at the 

pool fence, juvenile L. sylvaticus emerging from the experimental pools were marked 
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using a combination of Visible Implant Elastomer (VIE, Northwest Marine Technologies, 

Shaw Island, WA, USA) and toe clip (2004), or a single toe clip (2005 – 2009). 

Individuals recaptured at terrestrial fences were remarked using VIE (2005 – 2006), or 

Visible Implant Alpha Tags (VIAT, Northwest Marine Technologies) (2007 – 2009). 

Juvenile spotted salamanders were marked at the pool fence using VIE indicating the 

treatments they entered in 2004 – 2006 (limited or no recruitment occurred during 2007 – 

2009). 

I conducted repeated habitat sampling in August 2004, 2005, 2006, and 2008. 

Sampling was based on 96 9-m2 permanent plots equally distributed among treatments 

and sites. The sampling plots were located approximately 25 m from equally-spaced 

selected drift fences (three 150-m fences, two 100-m fences and one 50-m fence in each 

treatment) in the direction of the pool. Each occasion, I sampled percent vegetation cover 

in four height classes (0 – 0.5, 0.5 – 1, 1 – 2, and >2 m) and dominant species 

composition, percent leaf litter cover and leaf litter depth, and percent canopy cover 

(using a Moosehorn densitometer, Moosehorn CoverScopes, Medford OR, USA).  

 

Predicting the responses of amphibians to canopy removal  

I assessed the effects of disturbance created by forestry practices on the spatial 

and temporal dynamics of the amphibian community using generalized linear mixed 

effects (GLME) models (Pinheiro and Bates 2000). I analyzed three groups of animals 

separately: (1) breeding adults L. sylvaticus and A. maculatum; (2) emigrating juveniles 

L. sylvaticus and A. maculatum emerging from the experimental pools (marked with VIE 

and VIAT); and (3) unmarked amphibians (all other species that used the experimental 
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sites for foraging and migration across the six years of study, including L. sylvaticus and 

A. maculatum post-breeding adults, as well as juveniles from pools outside our 

experimental setup). 

For model fitting and model selection I followed the procedure recommended by 

(Zuur et al. 2009). I started with a full fixed-effects model, fitted various random effects 

to find the optimal structure of the random component, and used AIC to compare among 

the models and select the optimal random structure. Fitted models had different fixed 

effects and the optimal random structure, and I used ANOVAs to identify the overall 

significance of the fixed effects, and likelihood ratio tests to compare between competing 

models. 

I tested our ability to predict the use of forestry treatments by amphibians across 

spatial scales as well as changes in habitat use due to vegetative succession by fitting 

three models for each event, species, and life stage. The abundance and distribution of 

amphibians as a deterministic response to disturbance was investigated by examining: (1) 

the overall (broad-scale) effect of forestry treatments (Treatment only as fixed effect), (2) 

the between-sites (local scale) spatial variability (Treatment x Site interaction as fixed 

effect), and (3) the between-years (temporal) variability (Treatment x Year interaction as 

a fixed effect). For emigrating L. sylvaticus juveniles I also included the interaction term 

Treatment x Distance from natal pool (i.e., 16, 50, 100, and 150 m) as fixed effect to 

assess within-treatment (fine scale) variability in habitat use. For all models, the optimal 

random structure (Zuur et al. 2009) was a nested random intercept (separate intercepts for 

Year and Site within Year). I used Treatment contrasts using the forested control as the 

reference treatment to investigate differences among treatments. If differences between 
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forestry treatments were found, I ran the same models using the CWD-retained as the 

reference treatment to identify the response of amphibians to retained microhabitat 

structures (CWD) in clearcuts. All analyses were conducted in R version 2.9.2 (R 

Development Core Team 2009). 

Because the spatial and temporal extent of amphibian sampling varied between 

years, each life stage that I investigated using GLME’s had a different response variable. 

For breeding adults I used the mean number of captures per trap as our dependent 

variable to account for the slightly different number of traps within each treatment and 

site. For emigrating juveniles, I assessed the initial habitat choice of newly 

metamorphosed L. sylvaticus and A. maculatum emerging from the experimental pools by 

using the mean number of captures per trap at the pool-encircling fence. I then used the 

raw number of animals recaptured at the upland terrestrial fences to investigate the 

response to forestry treatments during emigration movements. Only five juvenile A. 

maculatum were recaptured during 2007 – 2009 at all sites, and the 2004 – 2006 data was 

too sparse to fit a reliable model. For post-breeding L. sylvaticus and A. maculatum 

adults, juvenile L. sylvaticus and A. maculatum emerging from pools outside the 

experimental arrays, as well as for the other species composing the amphibian 

community that used the experimental sites for foraging or migration movements, I used 

the average number of captures per day as our predicted variable to account for the 

differences in trapping effort between seasons. I fitted different mixed effects models for 

adult and juvenile L. sylvaticus, adult and juvenile A. maculatum, juvenile L. clamitans, 

juvenile L. catesbeianus, and combined (juveniles and adults) L. pipiens, L. palustris, and 

N. viridescens. For all models assuming a Gaussian distribution, the response variable 
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was transformed via [log(X + 1)] or [sqrt(X)] transformations to achieve normality 

(assessed using the Shapiro-Wilk test). 

 

Results 

Spatial and temporal variation in the response of migrating adult amphibians  

 I captured 1 278 adult A. maculatum and 1 176 adult L. sylvaticus during the five 

trapping seasons, and there were differences among sites and years with respect to the 

number of breeding adults (Appendix A). Adults of both species entered the experimental 

pools for breeding independent of forestry treatment (Tables 1.1, 1.2), but there was 

variability among sites with respect to the use of treatments (significant Treatment x Site 

interactions, Table 1.1). There were no differences among years in the use of treatments, 

suggesting no effects of forest succession on breeding migration (Table 1.1). 

 

Spatial and temporal variation in the response of emigrating juveniles 

I captured 14 066 juvenile L. sylvaticus and 1 521 juvenile A. maculatum 

emerging from the experimental pools between 2004 and 2009 (Appendix B). Newly 

metamorphosed animals did not show a strong preference for forested or clearcut 

treatments at the fences encircling the pools. For L. sylvaticus, forestry treatment was not 

a strong predictor of habitat use, with animals showing a slight preference towards the 

partial cut (Table 1.2). However, local spatial variability was manifested in the site-

specific response to forestry treatments (significant Treatment x Site interaction, Table 

1.1).  
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Table 1.1. Amphibian responses to disturbance reflected in the use of four forestry 
treatments up to 6 years post-harvesting yielded by generalized mixed effects models. 
Best models contained the interaction Treatment x Site as fixed effects and Year and Site 

within Year as random effects, unless otherwise noted. I am presenting p-values (bold 
emphasis for significance at α = 0.05) for each species and event; Treat = Treatment; A = 
adult, J = juvenile.  
 

Event Species 
Life 

stage 

Fixed effects 

Treat* 
Treat x  
Site* 

Treat x  
Year ** 

Treat x 
Distance **  

Breeding 

migration 

L. sylvaticus A 0.0005 0.0279 0.5156  
A. maculatum A 0.2805 0.0308 0.7499  

       
Juvenile 

emergence 

L. sylvaticus J 0.0320 0.0046 0.1835  
A. maculatum J a 0.0021 0.1139 0.6877  

       
Juvenile 

dispersal 

L. sylvaticus J b <0.0001 0.0037 0.7745 0.6829 
A. maculatum J - data not analyzed (too few captures) 

    

Use for 

foraging or 

migration 

L. sylvaticus 
J b <0.0001 0.0005 0.4170  
A <0.0001 0.219 0.0390  

A. maculatum 
J b <0.0001 0.0019 0.7509  
A - data not analyzed (too few captures) 

L. clamitans J <0.0001 <0.0001 0.2471  
L. catesbeianus J c 0.0809 0.4345 0.3414  
L. pipiens +  

 L. palustris 
J+A b 0.0199 0.0003 0.3748  

P. cinereus J+A b 0.0004 0.0004 0.2775  
N. viridescens J+A b 0.0035 0.0122 0.0252  

 
* from the best model 
** from the model containing the interaction Treatment x Year or Treatment x Distance 
(for dispersing juveniles only) as fixed effects 
a the best model contained Treatment as a fixed effect only 
b model contained a variance function that allowed for modeling heteroscedastic 
variances specific to each Site 
c model only contained Year as random effect, and a variance function that allowed for 
modeling heteroscedastic variances specific to each Site 
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Table 1.2. Forestry treatment use by amphibians up to 6 years post-harvesting. 
Coefficients and p-values (italics below coefficients, with bold emphasis for significance 
at α = 0.05) are from the best mixed effects model for each event/species/life stage. For 
all models, I am comparing the mean Control value to all the other treatments (the 
coefficients show a higher (+) or lower (–) use and the p-values indicate departures from 
the mean Control value). No significant difference was found between the two clearcuts 
for any species and life stage (A = adults; J = juveniles).  

 
 

Event Species 
Life 

stage 

Forestry treatments 

Control Partial Cut 
CWD 

removed 

CWD 

retained 

Breeding 

migration  

L. sylvaticus A 
1.441 

 
– 0.022 
0.9113 

– 0.127 
0.5377 

0.158 
0.4437 

A. maculatum A - non-significant overall effect of Treatment 
    

Juvenile 

emergence  

L. sylvaticus J 3.283 
0.445 
0.0100 

– 0.014 
0.9310 

0.216 
0.1943 

A. maculatum J 1.759 
– 0.101 
0.6559 

– 0.110 
0.6277 

– 0.010 
0.9640 

       

Juvenile 

dispersal  

L. sylvaticus J 3.727 
0.526 
0.0646 

– 0.914 
0.0023 

– 1.487 
<0.0001 

A. maculatum J - data not analyzed 
    

Use for 

foraging or 

migration  

L. sylvaticus 
J 1.525 

– 0.390 
0.0006 

– 0.662 
<0.0001 

– 0.632 
<0.0001 

A 0.538 
– 0.058 
0.3917 

– 0.287 
0.0001 

– 0.268 
0.0002 

A. maculatum 
J 0.794 

– 0.303 
0.0959 

– 0.623 
0.0010 

– 0.571 
0.0023 

A - data not analyzed 

L. clamitans J 0.643 
– 0.123 
0.2938 

– 0.236 
0.0476 

– 0.139 
0.2371 

L. catesbeianus J - non-significant overall effect of Treatment 
L. pipiens +    

L. palustris 
J + 
A 

0.076 
0.025 
0.3877 

0.028 
0.3326 

– 0.017 
0.5579 

P. cinereus 
J + 
A 

0.340 
– 0.145 
0.0313 

– 0.190 
0.0054 

– 0.212 
0.0021 

N. viridescens 
J + 
A 

0.108 
– 0.017 
0.6991 

– 0.020 
0.6616 

– 0.046 
0.3205 
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Juvenile A. maculatum showed no initial directionality, but the use of treatments did not 

vary across sites (Table 1.1). I found no effect of forest succession on the choice of the 

forestry treatment for both species upon exiting the natal pools. I recaptured 1 993 L. 

sylvaticus (14.2% of the total emerging from the experimental pools) and 87 A. 

maculatum (5.8% of the total) in the upland habitat. In the upland, the frequency of L. 

sylvaticus frog recaptures was strongly biased towards the forested treatments (Table 

1.2), and did not vary temporally (non-significant Treatment x Year interaction, Table 

1.1). Across all sites, there was no difference in use between the control and partial cut, 

and the animals showed a slight preference for the CWD-removed over the CWD-

retained treatment. However, there was strong site-specific variability in the use of 

upland forestry treatments (significant Treatment x Site interaction, Table 1.1), which 

was maintained across seasons (Figure 1.2). Along with the strong preference for forested 

treatments, animals that entered each treatment maintained their direction of movement 

(non-significant Treatment x Distance interaction, Table 1.1). By examining the 

interaction plot between the mean proportion of recaptures (pooled across sites), 

treatment, and year (Figure 1.3), I found a slight trend toward an increasing proportion of 

individuals captured in clearcut treatments in later years. During the first year, the 

difference between the use of forests and clearcuts expressed as proportion of captures 

was approximately eight-fold (forest: clearcut = 0.89:0.11). This difference decreased to 

3.3-fold by the third year (0.77:0.23), and it was maintained during the fifth year post 

harvesting.  
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Figure 1.2. Site-specific difference in the use of the forested treatments (black diamond = 
control, empty square = partial cut) by emigrating juvenile L. sylvaticus emerging from 
experimental pools. Site 4 not graphed (only one year of data). 
 

 
 
Figure 1.3. Use of upland habitat by juvenile wood frogs emerging from the experimental 
pools expressed as the mean proportion (± 1 SE) captured between 2004 and 2008; solid 
diamonds = control, solid squares = partial cut, empty circles = CWD-retained, empty 
triangles = CWD-removed. In 2007 only one site produced juveniles. 
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Unmarked adults and juveniles – shift in species assemblage  

I captured 26 374 unmarked adults and juvenile amphibians (post-breeding adults, 

as well as juveniles emerging from pools outside the experimental forestry treatments) 

using the experimental arrays between 2004 and 2009. The number of species recorded 

varied between 14 in 2005 and five in 2009. Of these, 91% (24 015 individuals) were 

juveniles, and 54% of juveniles (12 884 individuals) were L. sylvaticus (Table 1.3). For 

most species, there were strong yearly and site-specific, demographic fluctuations, with 

juveniles of three forest-dependent species, L. sylvaticus, A. maculatum, and P. cinereus 

experiencing the greatest variation across the study period (Table 1.3). Despite the annual 

variation in the number of captures, the juveniles and adults of these three species 

exhibited a clear deterministic response to disturbance and vegetative succession, 

selecting for the uncut control throughout the study (Table 1.2, Figure 1.4). Overall, the 

number of captures for forest specialists (including N. viridescens) declined after the first 

2-3 years of the study across all treatments, and the decline was related to time-since-

harvest (significant effect of Year, p-value <0.0001). P. cinereus virtually disappeared 

from the clearcut treatments by the second year post-harvest and only five captures were 

recorded between 2006 and 2009 in these treatments.  

Overall, the generalist L. clamitans, L. catesbeianus, L. pipiens, and L. palustris 

did not respond to disturbance or vegetative succession, but at the site scale there were 

differences in the use of treatments by most species (Tables 1.1, 1.2, Figure 1.4). The 

proportion of juvenile L. clamitans using the forested treatments increased post-

harvesting, especially in the uncut control, which accounted for approximately 50% of 

the total captures in 2009 (Table 1.3, Figure 1.4). Juvenile L. catesbeianus and adult and 



18 
 

Table 1.3. Total number of unmarked amphibians captured between 2004 and 2009 (C = 
clearcuts; F = forested treatments). 
 

Species 

Adults 

2004 2005 2006 2007 2008 2009 

C F C F C F C F C F C F 

   Salamanders 

A. laterale 6 7 - 2 - 3 2 2 2 - - - 

A. maculatum 
a
 3 5 5 20 4 6 4 8 1 3 - - 

H. scutatum - - 1 3 - - - - - 2 - - 

N. viridescens 4 1 1 10 3 3 6 9 3 5 1 5 

P. cinereus 52 70 16 53 1 16 2 14 2 11 - - 
   Anurans 

A. americanus 2 4 3 - - - - - 1 7 - - 

H. versicolor - - - - - - - - - - - - 

L. catesbeianus 19 16 15 19 - 2 - - 2 1 - - 

L. clamitans 113 68 61 92 10 13 6 17 2 7 8 12 

L. palustris 2 6 6 1 2 - 13 11 - 4 - - 

L. pipiens 6 18 1 5 3 - - - 2 4 - - 

L. septentrionalis - - 1 6 - - - - - 1 - - 

L. sylvaticus 79 183 83 383 28 131 7 65 24 60 8 60 

P. crucifer - 2 - - - 1 - 1 - 3 1 - 

 

Juveniles 

2004 2005 2006 2007 2008 2009 

C F C F C F C F C F C F 

   Salamanders 

A. laterale 2 8 8 13 11 17 - - - 2 - - 

A. maculatum 
a
 13 199 130 741 184 404 2 32 3 23 5 55 

H. scutatum 1 - 1 - - - - - - - - - 

N. viridescens 17 58 13 39 6 9 9 14 4 18 2 3 

P. cinereus 28 39 4 23 2 19 - 4 - 2 - - 
   Anurans 

A. americanus 2 5 - 1 - - - - 4 8 - - 

H. versicolor 1 - - 1 - - - 1 - - - - 

L. catesbeianus 61 76 96 142 38 82 13 39 51 77 - - 

L. clamitans 236 346 464 696 474 1144 421 853 373 1215 36 164 

L. palustris 4 29 11 13 25 19 17 41 11 20 - - 

L. pipiens 44 88 59 83 30 106 17 31 15 31 - - 

L. septentrionalis - - - - 9 22 - - - - - - 

L. sylvaticus 1211 2887 862 2172 1261 2618 200 448 280 749 48 149 

P. crucifer 4 9 1 5 - - - - 1 11 - - 
 

a In 2004, the bulk of A. maculatum adult and juvenile captures (approx. 83%) occurred 
late in the season (between 15 September and 27 October). For comparison purposes, I 
am presenting data truncated to 15 September to match the sampling period of the rest of 
the years. 
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juvenile L. pipiens and L. palustris fluctuated least during the study, and I did not record 

any of these species in 2009. 

 

Heterogeneity of vegetative succession 

Natural succession during the study period led to rapid changes in vegetation 

structure and composition, especially in the clearcut treatments. Due to specific 

regeneration processes of early-successional tree species (root suckers versus stump 

sprouts), micro-topography, existing dormant seed banks, and retained advance 

regeneration, the emerging spatial patterns were diverse and varied within and between 

experimental arrays. Overall, there was an increasing trend in percent cover in vegetation 

strata 1 – 2 m and >2 m in height (Figure 1.5), with the latter covering approximately 

23% of the clearcuts five years post-disturbance. Low regeneration (up to 1 m) consisted 

mainly of pioneer species such as Rubus spp. (which in some cases formed continuous 

patches), and grey birch (Betula populifolia). Tall regeneration (which in some cases 

reached >4 m in 2008) was dominated by bigtooth aspen (Populus grandidentata) and 

red maple (Acer rubrum). Understory regeneration also increased following harvesting in 

the partial cut treatment, with the >2 m class reaching 19.4% (± 5.7) ground cover 

(Figure 1.5). Low woody understory cover was mostly composed of pioneer species, such 

as paper birch (B. papyrifera) and Rubus sp., while the taller class (>2 m) consisted of 

advance A. balsamea regeneration. 
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Figure 1.4. Mean proportions (± 1 SE) of unmarked amphibians captured between 2004 
and 2009; solid symbols denote forested treatments (diamond = control, square = partial 

cut); empty symbols are clearcut treatments (triangle = CWD-removed, circle = CWD-

retained). 
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Figure 1.5. Changes in vegetation cover (by height classes) following canopy removal 
(black bars = <0.5 m in height, gray = 0.5 – 1 m, white = 1 – 2 m, black dots = >2 m). 

 

Discussion 

Anthropogenic habitat disturbance such as logging is known to affect forest 

amphibians, but predicting the long-term effects is often complicated by the underlying 

stochasticity characteristic of amphibian populations. Current approaches to management, 

however, are typically based on the premise that the responses of amphibians to 

management actions are predictable and remain relatively constant. Because of this, the 

spatial and temporal variability in habitat selection and fluctuations in demography seen 

both in our study and by previous researchers present a challenge for drafting 

management guidelines. Our study clearly showed interspecific and intraspecific 

differences in the extent to which forestry treatments can explain patterns of habitat use 

and community dynamics. Our ability to predict habitat use and abundance of amphibians 
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related to the four forestry treatments was scale-dependent. Strong deterministic 

responses to clearcutting (i.e., avoidance, low abundance) were the norm for forest 

amphibians (Table 1.3, Figure 1.4). However, this overall broad-scale prediction was 

complicated by high site-specific variability in habitat use (e.g., local differences between 

forested treatments not apparent at the broader scale), likely linked to landscape context. 

Because of this, predicting the response of amphibians to habitat change at any one of our 

sites is subject to a high degree of uncertainty. 

Temporal variability in abundance and distribution of amphibians was reflected in 

the year-to-year population fluctuations during both aquatic and terrestrial stages and in 

the marked decline of forest species after 2-3 years post-disturbance (Table 1.3). I found 

only a modest and non-significant positive effect of vegetative succession on habitat use 

by forest amphibians (Figure 1.3). On a temporal scale, the six years of the study reflect 

only very young, incipient succession (typically up to 15-20 years, [Oliver and Larson 

1996]), but during this period observed changes should be more dramatic than changes 

that might occur later in succession. There was no year-to-year variation in habitat use by 

most species (Table 1.1). The less abundant members of the amphibian community, such 

as A. americanus, L. septentrionalis, and H. scutatum were also subject to natural 

fluctuations, as they appeared and disappeared from our study sites with no clear spatial 

or temporal pattern. 

The different responses of species to canopy removal reflected their affinity to 

forest (forest specialists versus generalists), as well as their sensitivity to habitat 

alteration, both seasonally and during their ontogenetic development. For example, the 

spring breeding migrations of adult L. sylvaticus and A. maculatum were not influenced 
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by clearcutting, while post-breeding adults and emigrating juveniles clearly preferred 

closed-canopy habitats over clearcuts throughout the study period, which corroborates 

findings of Todd et al. (2009) in a similar experimental setting. Contrary to our 

predictions, I did not detect a positive short-term effect of CWD on movements and 

habitat use by post-metamorphic or adult A. maculatum and L. sylvaticus. This suggests 

that CWD does not play a role in mitigating the effects of clearcutting for these species. 

The majority of migrating juveniles simply tend to avoid open habitat, irrespective of the 

existing microhabitat structures.  

 

The role of spatial scales in predicting responses to disturbance 

Deterministic processes were evident at a broad spatial scale (across all sites), and 

mainly arose from overall, relatively consistent differences in habitat use between 

forested and clearcut treatments. Clearcutting strongly affected the distribution and 

abundance of forest-dependent amphibians, while generalist species were less influenced 

by disturbance or showed an increase in abundance (Table 1.3). In contrast to the limited 

use of clearcuts by most forest amphibians, the partial harvest was characterized by high 

use, similar to the control treatment (Table 1.2, Figure 1.4).  

The broader-scale landscape context also comes into play when considering the 

spatial population structure of vernal pool-breeding amphibians. Adult L. sylvaticus and 

A. maculatum did not show a preference for a particular forestry treatment during the 

breeding season (Tables 1.1, 1.2), but responded in a deterministic manner to the creation 

of the artificial experimental pools. Pool colonization occurred rapidly (within the first 

year) and breeding populations were maintained throughout the study period, indicating 
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high plasticity in breeding site selection (Karraker and Gibbs 2009). This suggests that 

both species are abundant in the area of study, and that the degree of philopatry might be 

not as high as in other regions of the species’ ranges (Patrick et al. 2008a). Evidence from 

molecular genetic analyses in other regions of these species’ ranges revealed that A. 

maculatum might occur in metapopulations, with dispersal among population clusters 

occurring fairly frequently even in fragmented landscapes (Zamudio and Wieczorek 

2007). High gene flow between populations separated by up to 20 km is also 

characteristic of L. sylvaticus, with frequent extinction-recolonization events (Newman 

and Squire 2001). This further questions the degree of philopatry in these species, and 

emphasizes the importance of the dispersing juvenile stage in maintaining connectivity of 

regional populations.  

Spatial variability in terrestrial habitat use was manifested at the local scale 

through site-specific effects of the control and partial cut treatments on the distribution of 

forest-dependent amphibians. Notably, the observed patterns of habitat use of both adults 

and juveniles varied greatly between sites (significant Treatment x Site interactions for 

most species, life stages, Table 1.1). For example, juvenile L. sylvaticus emigrating from 

the experimental pools showed a pattern of forested treatment use that varied from site to 

site, but was maintained across years. At one site juveniles moved preferentially through 

the partial cut, another site was dominated by movements in the control, while at another 

site the number of captures was roughly equal between the two forested treatments 

(Figure 1.2). In contrast to the between-sites variation in habitat use and preferential use 

of closed-canopy upland habitat, emerging juveniles of both L. sylvaticus and A. 

maculatum exited the natal pools at random during the six years of the study. Given the 
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narrow field of perception of juvenile amphibians and reliance on proximate cues for 

orientation (Rothermel 2004, Popescu and Hunter in press), we would expect random 

orientation when environmental cues are not very strong (i.e., our treatments converged 

towards the pool, masking the transition between forest [“good”] and no-canopy [“bad”] 

habitat), but non-random habitat use when prominent habitat features, such as sharp 

forest edges, are intercepting the movement paths. Moreover, the lack of the Treatment x 

Distance interaction in our study suggests that habitat choice in emerging juvenile L. 

sylvaticus animals occurs at distances <16.6 m from the pool edge. 

 

Predictability of amphibian response to vegetative succession 

Despite the modest mitigating effect of forest succession on habitat use by L. 

sylvaticus emigrating juveniles (Figure 1.3), the general preference for closed-canopy 

forested habitat by juvenile L. sylvaticus and A. maculatum was maintained throughout 

the six years of study, suggesting that the potential positive effects of vegetative 

succession (i.e., partial mitigation of microclimate and providing refugia) were 

overridden by other factors (i.e., lack of canopy cover). This is consistent with another 

study in our landscape in which movements of juvenile L. sylvaticus were affected by 

clearcutting for up to 10 – 20 years (Popescu and Hunter in press). 

There was apparently an overall decrease in habitat quality for forest species at 

the site scale across the six years of the study, as evidenced by the continuous decline in 

abundance across the entire experimental sites, not just the clearcut portions (Table 1.3). 

Notably, the number of adult and juvenile L. sylvaticus, A. maculatum, P. cinereus and N. 

viridescens captured in the forested treatments decreased during the study period. Given 
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the life-histories of these species, the causes for the decline in captures are likely to be 

different. The declining number of captures of juvenile and adult L. sylvaticus and A. 

maculatum across all treatments and sites might be due to overall avoidance of disturbed 

habitat (both clearcuts and the area of edge effect extending into the forested treatments). 

If we conservatively consider an edge effect depth of 30 m (deMaynadier and Hunter 

1998), then almost half of the forested treatments fall outside what we might consider 

good quality habitat for forest amphibians. For example, migrating L. sylvaticus and A. 

maculatum juveniles show an active avoidance of abrupt edges, with fewer numbers 

entering and successfully migrating through habitats lacking canopy cover (Rothermel 

and Semlitsch 2002, Popescu and Hunter in press). P. cinereus is quite different from the 

other two declining forest species; it has the smallest home range, is less vagile, and does 

not migrate during summer (Jaeger et al. 1995). The rapid disappearance from clearcuts 

and the decrease in abundance in the forested treatments observed in our study 

corroborate other studies that found that plethodontid salamanders are very sensitive to 

canopy removal (Ash 1997), and have lower abundance in proximity to abrupt edges 

(deMaynadier and Hunter 1998). Despite not being affected by the forestry treatments, 

habitat use by the forest-dependent N. viridescens, which is known to be sensitive to 

fragmentation (Gibbs 1998) varied on a site-by-site and year-to-year basis, with juveniles 

showing the same site-wide decline after two years post harvesting (Table 1.3). In the 

absence of control sites with no logging at all we cannot exclude the possibility that the 

observed declines of forest specialists were due to a regional population reduction 

because of some other factor, such as disease. However, that seems unlikely given our 

observations of generalist species, which either showed an increase in abundance post-
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clearcutting (e.g., juvenile L. clamitans) or appeared to be unaffected by forestry 

treatments and vegetative succession (Tables 1.2 and 1.3). Despite annual fluctuations in 

the number of captures, the highest captures for a generalist species were for juvenile L. 

clamitans. Interestingly, the bulk of these captures occurred in the forested treatments, 

which was not expected for a habitat generalist that is known to use open habitat during 

upland movements (Birchfield and Deters 2005). 

 

Accounting for spatial and temporal variability in terrestrial habitat use when 

managing amphibian populations 

The effects of the local landscape context were evident in the abundance, 

distribution, and dynamics of habitat use of amphibians, which inevitably complicates 

managing populations and communities. Given that at the broad scale the responses to 

canopy removal were dominated by strong deterministic processes (e.g., avoidance of 

clearcuts by forest amphibians), conservation in forested landscapes that are relatively 

natural (either reserves or industrial forests that allow natural vegetative succession, 

without the threat of long-term deforestation) would likely be successful with just broad 

management prescriptions (e.g., avoid complete canopy removal, protect upland habitat 

in the proximity of breeding pools). However, because high variability in habitat use was 

prevalent at the site scale, conservation strategies for sensitive landscapes (i.e., under 

threat of intensive development) must account for this source of uncertainty. Thus, a 

multiple-scale approach to management of breeding aquatic habitat and upland habitat is 

most applicable to urbanizing landscapes (Baldwin and deMaynadier 2009). 
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Our research findings have specific implications when considering the 

conservation of the full complement of species in the amphibian community. The species 

in this study exhibit a variety of life history traits, representative for temperate amphibian 

assemblages (i.e., habitat generalists, forest specialists, pond-breeding, completely 

terrestrial), and I observed year-to-year and site-specific variability in habitat use. From a 

management perspective, instead of focusing on specific conditions to create optimal 

habitat for a particular species, general recommendations, such as maintenance of canopy 

cover and minimizing site disturbance during peak migration season would be more 

practical (Campbell et al. 2010). Similar guidelines for conservation strategies that meet 

both the habitat requirements of species breeding in or using small, isolated wetlands and 

forest management goals have been previously suggested by Calhoun and deMaynadier 

(2004). The findings of our study fully support their recommendations. 

Specifically for the conservation of forest amphibians breeding in vernal pools, I 

found detrimental effects of clearcutting, while timber harvesting practices that retained 

at least 50% canopy cover (i.e., selection harvesting) still apparently provided suitable 

habitat at least for emigration. Generally, post-harvest silvicultural practices that lead to 

changes in tree species composition and stand structure negatively affect biodiversity 

(Lindenmayer et al. 2006), especially where natural forests are converted into single-

species plantation forests (Lindenmayer and Hobbs 2004). Silvicultural alternatives to 

clearcutting that retain a certain proportion of the canopy and increase habitat 

heterogeneity appear to have a more benign effect on maintaining biodiversity 

(Rosenvald and Lõhmus 2008). This suggests that a forest management strategy for pool-

breeding amphibians should combine: (1) the retention of a minimum protective buffer 
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around breeding pools (sensu Calhoun et al. 2005) and (2) harvesting operations that are 

spatially and temporally structured to retain canopy both between highly productive pools 

and between pool and high-quality terrestrial habitat (Baldwin et al. 2006).  

In conclusion, local (spatial) and year-to-year (temporal) variability in habitat use 

plays an important role in amphibian community dynamics. Deterministic processes are 

certainly going to continue to provide the most straightforward information for drafting 

management plans, but stochasticity should not be perceived just as noise inherent to the 

system. Rather, acknowledging that variability in habitat use and stochasticity occur at a 

finer scale, would result in more flexible conservation strategies, thus allowing for wider 

margins of error during the implementation process. Acknowledging fine-scale variation 

in the responses of amphibians to habitat change may be particularly important for 

managers focusing on a single site or limited set of sites. 
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Chapter 2 

CLEAR-CUTTING AFFECTS HABITAT CONNECTIVITY  

FOR A FOREST AMPHIBIAN BY DECREASING  

PERMEABILITY TO JUVENILE MOVEMENTS 

 

Abstract 

Conservation of forest amphibians is dependent on finding the right balance 

between management for timber production and meeting species’ habitat requirements. 

For many pond-breeding amphibians, successful dispersal of the juvenile stage is 

essential for long-term population persistence. I investigated the influence of timber 

harvesting practices on the movements of juvenile wood frogs (Lithobates sylvaticus). I 

used a chronosequence of stands produced by clearcutting to evaluate how stand age 

affects habitat permeability to movements. I conducted experimental releases of juveniles 

in 2008 (n = 350) and 2009 (n = 528) in unidirectional runways in four treatments: 

mature forest, recent clearcut, 11-year-old, and 20-year-old regeneration. The runways 

were 50 x 2.5-m enclosures extending into each treatment, perpendicular to a distinct 

edge, with four tracking stations at 10, 20, 30, and 40 m from the edge. I recorded the 

number of animals reaching each tracking station, and the proportion of animals changing 

their direction of movement at each distance. I found that the mature forest was 3.1 and 

3.7 times more permeable than the 11-year-old regeneration and the recent clearcut, 

respectively. Animals actively avoided open-canopy habitats and sharp edges; 

significantly more animals returned towards the closed-canopy forest at 0 m and 10 m in 

the less permeable treatments. There were no significant differences in habitat 
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permeability between the mature forest and the 20-year-old regeneration. Our study is the 

first to directly assess habitat permeability to juvenile amphibian movement in relation to 

various forestry practices. I argue that habitat permeability at this scale is largely driven 

by the behavior of animals in relation to habitat disturbance and that caution needs to be 

used when using spatial modeling and expert-derived permeability values to assess 

connectivity of amphibian populations. The effects of clearcutting on the migratory 

success of juvenile L. sylvaticus are long-lasting. Forestry practices that involve canopy 

removal and conversion of natural forest to conifer plantations may affect regional 

population viability by hindering successful dispersal. 

 

 

Introduction 

Animals move across the landscape to gain access to various resources and thus 

understanding animal movements is often critical to conservation strategies (Semlitsch 

2002). The conversion of natural land cover types to other uses disrupts movements of 

organisms, affecting habitat selection, and causing local declines in abundance or species 

richness (Cushman 2006). Because of their biphasic life cycles and generally low vagility 

and high sensitivity to disturbance (Semlitsch 2000), movement behavior and migratory 

success of amphibians are likely to be significantly altered by land-use conversion. For 

pond-breeding amphibians, one mechanism behind observed declines relates to decreased 

connectivity between breeding ponds, and between breeding and foraging or 

overwintering habitats (Laan and Verboom 1990, Sjögren-Gulve 1994). Changes in land 

cover induced by forestry practices impact forest amphibians and the effects can be long-
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lasting (deMaynadier and Hunter 1995). In particular, clearcutting and conversion of 

natural forests to single-species plantations are known to have detrimental effects on 

amphibian occupancy due to changes in habitat quality and permeability to movements 

(Parris and Lindenmayer 2004, Semlitsch et al. 2009). Permeability can be quantified in 

terms of both the costs imposed by a habitat to movement (e.g., physiological stress, risk 

of predation) (Joly et al. 2003), and behavior (i.e., willingness to move). Thus, research 

aimed at investigating habitat permeability has to account for the individuals’ propensity 

to move through a particular habitat and the effects of habitat alteration on behavior 

(Russell et al. 2003, Semlitsch et al. 2008). Juvenile amphibians pose a particularly 

interesting challenge for quantifying movements and habitat permeability because of their 

small size and cryptic lifestyles. Moreover, juveniles are typically the dispersing life 

stage in many amphibian species, dispersal being defined here as the one-way trip from a 

natal pond to a different pond for breeding (Semlitsch 2008). Dispersers promote gene 

flow that maintains genetic variation among populations (Slatkin 1987) and contribute to 

metapopulation processes through recolonization following local extinction events 

(Marsh and Trenham 2001).  

For juvenile forest-dwelling amphibians, permeability is assumed to decrease 

following timber harvesting, but empirical data on the magnitude of the decrease, as well 

as on how habitat alteration influences movement behavior is lacking (a notable 

exception is Rothermel and Semlitsch [2002]). Hence, most investigations of how 

landscape permeability affects amphibian movements, spatial population structure, and 

gene flow have been based on computer models that relied on expert opinions of the 

permeability of various land cover types (Ray et al. 2002, Compton et al. 2007, Zellmer 
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and Knowles 2009). Despite the lack of empirical data on habitat permeability, this field 

of research is likely to become even more popular with the advent of circuit theory-based 

software that includes “isolation by resistance” parameters (McRae 2006). 

In this study, I used an experimental approach to quantifying habitat permeability 

for juvenile wood frogs (Lithobates sylvaticus) in a forested landscape. L. sylvaticus are a 

vernal pool-breeding species, widely distributed in North American temperate and boreal 

forests, and the juveniles represent the only source of dispersing individuals (Berven and 

Grudzien 1990), critical to the persistence of regional populations (Zellmer and Knowles 

2009). L. sylvaticus are highly sensitive to forest removal, and their local abundance is 

strongly affected by proximity to abrupt forest edges (deMaynadier and Hunter 1998). 

Habitat selection of post-metamorphic L. sylvaticus differs between a dispersing and a 

settling phase, with animals responding to coarse variation in habitat during the 

dispersing stage (Patrick et al. 2008). 

I studied the movements of juvenile L. sylvaticus in a forest management context 

in central Maine, USA, using a chronosequence of stands resulting from even-aged 

silviculture (i.e., clearcutting) as a time-series proxy to evaluate how stand age affects 

permeability. The specific objectives of this research are: (1) to quantify the dispersal 

success of juveniles in various-aged stands resulting from clearcutting; (2) to identify 

mechanisms that drive the movement behavior of juveniles; and (3) to evaluate the 

influence of forest edges on the movement patterns of juvenile amphibians. 
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Materials and Methods 

Study sites and experimental design 

I conducted the research in Penobscot County, Maine, USA, on the University of 

Maine Dwight B. Demeritt Experimental Forest and Henderson Forest, and on a tract in 

Milford, managed by American Forest Management, Inc. Central Maine has a long 

history of forest management, and as a result is a mosaic of various-aged mixed wood 

stands, part of the Acadian Forest region, which covers most of northeastern U.S. and the 

Canadian Maritime Provinces (Saunders and Wagner 2008). I selected four forestry 

conditions that are common in the region: control mature forest, recent clearcut (2-3 

years), 11-year-old regeneration treated with herbicides, and 20-year-old natural 

regeneration. I first identified a linear edge between a closed-canopy forest and each of 

the regeneration treatments then randomly selected the location of the experimental setup 

along the edge. The recent clearcut (hereafter clearcut) completely lacked canopy cover, 

as well as any tree regeneration, containing mostly herbaceous and low shrub (< 50 cm) 

vegetation layers. The 11-year-old regeneration stand (11-yr stand) was treated with 

herbicide 5-6 years post-clearcutting, a silvicultural treatment known as “conifer release”. 

The resulting stand resembled a dense conifer plantation, composed of white pine (Pinus 

strobus), red spruce (Picea rubens), and eastern hemlock (Tsuga canadensis), and the 

average tree height was 3.8 ± 0.4 m. The 20- year-old regeneration stand (20-yr stand) 

was left untreated post-clearcutting, and resulted in a dense, mixed stand dominated by 

white birch (Betula papyrifera) and grey birch (B. populifolia), with sparse red maple 

(Acer rubrum), white pine, balsam fir (Abies balsamea), red spruce, and quaking aspen 

(Populus tremuloides), averaging 9.2 ± 0.8 m in height. The mature forest was a 70-80 
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year-old closed-canopy mixed stand composed of hemlock, red spruce, red maple, 

quaking aspen, and American beech (Fagus grandifolia) >15 m in height, with patchy 

balsam fir regeneration, and was not harvested in the past 20 years. 

 

Experimental runways 

I tested the permeability of four forestry treatments to juvenile L. sylvaticus 

movements by building terrestrial runways using a design modified from Rothermel and 

Semlitsch (2002). Runways consisted of 50 m x 2.5 m silt fence enclosures (60 cm tall 

and buried 30 cm into the ground) oriented perpendicular to the forest edge, starting at 

approximately 3 m from the edge and extending into each treatment. The runways in the 

clearcut, 11-yr stand, and 20-yr stand were adjacent to closed-canopy mature stands. The 

runways in the mature forest were adjacent to a clearcut. I decided to place our runways 

adjacent to edges because: (1) newly metamorphosed L. sylvaticus tend to settle in good 

quality habitat and placing runways in interior closed-canopy conditions might not elicit 

movement behavior, the main focus of our experiment (Patrick et al. 2008), and (2) I 

wanted to investigate behavior in relation to harsh edges, which were found to alter 

amphibian movement (deMaynadier and Hunter 1998, Rothermel and Semlitsch 2002). I 

only selected one stand for each treatment because I could not identify other suitable 

stands that were close enough to allow us to implement the experiment, given our labor-

intensive and time-sensitive approach. In 2008, I built six runways in mature forest, 

clearcut, and 11-yr stand (two per treatment). In 2009, I built another six runways: three 

in the 20-yr stand, and one for each of the other treatments, for a total of 12 runways. For 

each treatment, the runways were spaced 30 – 50 m apart, parallel to each other. 
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In each runway, I built four tracking stations (at 10, 20, 30, and 40 m from the 

start of the runway) to evaluate the number of animals reaching each distance (Figure 

2.1). The tracking stations were constructed by cutting entrance and exit openings into 

large plastic containers with lids (45 x 65 x 20 cm). A silt fence funnel extending from 

the edge towards the middle of the runway directed the experimental animals into the 

tracking stations. Inside the trays, I placed a mix of orange fluorescent powder (DayGlo 

Color Corp., Cleveland OH) and mineral oil (RiteAid®) on waterproof paper (Rite-in-the-

Rain, J.L. Darling Corporation, Tacoma WA), next to a white sheet of plain paper. Thus, 

individuals passing through the fluorescent powder mixture self-recorded their tracks on 

the white paper. The oil allowed us to accurately count tracks even after heavy rain 

events. The mixture is harmless to amphibians and was used in other studies of 

amphibian movements (Eggert 2002). The white paper was changed daily, and was 

recoated with powder and oil as needed.  

I used pitfall traps to estimate the number of animals reaching the end of the 

runways, or returning towards the forest edge. Each runway contained 12 pitfall traps: 

two at the start and two at the end of the runway, and two at 10, 20, 30, and 40 m, in the 

sharp angle formed by the silt fence funnel and the runway wall (Figure 2.1). Animals 

that changed their direction of movement at a particular distance would be captured in 

these traps, thus indicating a change in behavior related to the conditions in the respective 

treatments. 
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Figure 2.1. Experimental setup for evaluating the permeability of four forestry treatments 
to juvenile L. sylvaticus movements; x = release location; drawing not to scale. The inset 
on the right provides the tracking station design. Picture on left: fluorescent powder 
tracks from two different individuals. 
 

Amphibian releases 

I collected egg masses in mid April 2008 and 2009 from the University of 

Maine’s Penobscot Experimental Forest, Maine, USA, and transported them to a site near 

campus where I hatched them in plastic wading pools (1 m diameter). Upon emergence, 

larvae at Gosner stages 21-23 (Gosner 1960) were added to 1500-liter cattle tanks. Two 

weeks prior to larval stocking, I added plankton collected from natural vernal pools and 

leaf litter to the cattle tanks to mimic a semi-natural rearing environment. I maintained a 

density of 70 larvae per tank. The cattle tanks were located under closed canopy cover, 

and were covered by screen lids to prevent colonization by other organisms. During the 

emergence season (July 1 – August 10 in Maine), the tanks were checked daily for 

metamorphosed L. sylvaticus (stage 42 and higher). Upon capture, I added the 
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metamorphs to large plastic bins (200 liters) with moist leaf litter for up to three days 

until they reached the final stage of their metamorphosis. At this stage, they were 

measured, marked, and randomly assigned to the experimental treatments. 

I released 350 juvenile L. sylvaticus in four batches in 2008, and 528 individuals 

in five batches in 2009. The number of animals per runway released in each batch ranged 

between 13 – 19 in 2008, and 8 – 10 in 2009, depending on availability, and it was 

consistent across runways within the same batch. The experimental animals were 

removed from the plastic bins during the day of release, measured (snout-vent length), 

marked with a single toe clip batch mark, and placed in plastic containers (one per 

runway). A subsequent batch was released only after no new tracks were recorded from 

the previous batch for at least 1 day. I released the animals 1 – 2 hours after sunset in the 

center of the runway, approximately 3 m from the starting point (i.e., approximately 6 m 

from the forest edge). I checked the runways daily between 7:00 and 11:00 AM during 9 

– 24 July 2008, and 11 July – 6 August 2009. 

 

Orientation arena 

Due to landscape setting constraints, it was not possible to build runways with 

different cardinal directions in each treatment. However, I consider this not to be a 

limitation to our study because: (1) similar studies (Rothermel and Semlitsch 2002) did 

not find differences in movement patterns of juvenile amphibians among different 

cardinal directions, and (2) the animals used in this experiment were collected as eggs 

from skidder ruts and ditches along forest roads in an area (Penobscot Experimental 

Forest, Penobscot County, Maine) where metamorphosing L. sylvaticus orient randomly 
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upon exiting the natal pools (Popescu V.D., unpublished data). However, to eliminate any 

doubt about their initial orientation biasing the outcome of the study, I tested a subsample 

of the experimental animals by releasing them in a circular arena (3 m diameter) in 

closed-canopy conditions. The circular arena was located >50 m from the forest edge, to 

minimize any potential edge effects that could potentially influence juvenile L. sylvaticus 

directionality (deMaynadier and Hunter 1998). Prior to release in the runways, I 

randomly selected three containers containing experimental animals, and released them in 

the center of the circular arena. After placing the tray in the arena, I waited for two 

minutes to overcome the effect of handling (Diego-Rasilla and Luengo 2002) then gently 

lifted the lid to release them. Using a pair of night-vision binoculars (Rigel Optics, 

DeWitt, IA), I recorded the bearing for each individual when it reached the edge of the 

arena. 

 

Microclimate and habitat variables 

Because microclimate might affect both habitat selection and survival of juvenile 

L. sylvaticus, I recorded hourly temperatures, relative humidity, and daily precipitation at 

each treatment location. I used 27 iButton data loggers (Maxim, Dallas Semiconductor, 

Dallas TX) to record hourly air, ground-level, and refuge (i.e., 5 cm below coarse woody 

debris or root channels) temperatures, as well as ground-level relative humidity, at two of 

the three runways in each treatment each year. Precipitation was measured daily using a 

rain gauge. 

I characterized the vegetation cover in each 10 x 2.5-m compartment of the 

runways in July 2008 and 2009. I collected data on percent cover for each vegetation 
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layer (herbaceous, shrub, canopy trees), percent leaf litter, ground cover, canopy closure 

(using a moosehorn densitometer, Moosehorn CoverScopes, Medford OR), canopy tree 

height (using a Recta DP10 professional prismatic clinometer), and tree density. 

 

Statistical analyses 

The runways yielded three indices that characterized amphibian movements and 

relative habitat permeability: (1) number of tracks at each tracking station distance, (2) 

proportion of individuals captured in pitfall traps, and (3) movement rate. The first two 

indices directly estimated the overall migratory success of juveniles, as well as their 

propensity to move through each forestry treatment. Besides the number of animals 

returning towards the edge, as well as reaching the end of the runways, which is a direct 

effect of habitat permeability and weather conditions, I was also interested in the number 

of individuals that changed their initial direction of movement to return towards the edge, 

as reflected in captures at 10, 20, and 30 m. The third index, rate of movement (m/day), is 

indicative of how quickly the animals moved through each forest type. 

I used generalized linear mixed effects models (GLME) to investigate whether 

treatment, release, and individual runways had an effect on the number of tracks recorded 

at 10 – 40 m from the forest edge. GLME’s have fewer assumptions than traditional 

regression (Pinheiro and Bates 2000) and provide a more flexible approach to analyzing 

non-normal data when random effects are present (Bolker et al. 2009). In GLME, fixed 

effects are factors that describe experimental treatments or are sources of systematic 

variance; random effects are associated with particular experimental units that are 

selected at random from the population of interest (Pinheiro and Bates 2000). I used 
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block random effects that apply equally to all the individuals within a group, leading to a 

single level of correlation within groups (Bolker et al. 2009). Because the dependent 

variable was the proportion of animals that reached each tracking station following a 

release (inferred from the track count), I used a binomial mixed effects regression 

implemented in R version 2.8.1 (R Development Core Team, 2008; (package lme4; Bates 

and Maechler, 2009). I only used data from batches 2 – 4 in 2008 and batches 2 – 5 in 

2009, because the first release in each year was regarded as trial and did not contain equal 

number of animals in each treatment and runway. I ran models for each tracking station 

distance (10, 20, 30, and 40 m) to avoid the autocorrelation emerging from counting the 

same individuals in successive tracking stations. For each model, I used variables 

treatment (the four forestry treatments) and runway (individual runway) as fixed effects 

and variable batch as both fixed and random effects. Due to the relatively small size of 

our dataset, and difficulty in interpreting regression coefficients for complex models, I 

only ran simple models followed by the first-order interactions of treatment x runway as 

fixed effects. I used quantile-quantile plots, residual plots, and plots of fitted versus 

observed values to assess the performance of each model, and likelihood ratio tests to 

assess the overall effect of the fixed effects. Finally, I used the Akaike Information 

Criterion (AIC) to select the model that had the greatest support for each of the four 

tracking distances (Burnham and Anderson 2002). For all four distances, the models that 

had the greatest support contained treatment as fixed effect and batch as random effect. 

The interaction term treatment x runway was not significant for any of the four distances, 

suggesting that there are no differences in the number of tracks among runways within 
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treatment, and that the microhabitat heterogeneity observed among runways was 

overridden by other factors.  

For the second index, I investigated the differences in the proportion of animals 

recaptured among treatments for each distance (0 – 50 m) and year separately. 

Specifically, I evaluated what fraction of animals that reached 10, 20, and 30 m (i.e., as 

deduced from the total number of tracks recorded at each distance) were captured in 

pitfall traps at that particular distance (i.e., total number of animals captured at 10, 20, 

and 30 m). I pooled the number of captures at 40 and 50 m in each runway because all 

four traps were located in the same runway ‘compartment’ (Figure 2.1). Thus, for both 0 

m and pooled 40 – 50 m traps, I considered the fraction of animals captured out of the 

total number of animals released, as a measure of complete avoidance and dispersal 

success, respectively. I first assessed whether or not the frequency of captures and 

distance are associated with each other, and are independent of treatment using a three-

way contingency table. If non-independence was found, I used pairwise tests for 

proportions to quantify differences in proportion of captures between treatments at each 

distance. 

I investigated whether or not there were differences in the rate of movement 

(m/day) between the four treatments using a Kruskal-Wallis non-parametric test 

implemented in R (package coin; Torsten et al., 2008). If the general test was significant, 

I performed pairwise comparisons without adjusting the significance level. For 

quantifying movement rates, I only used the data on individuals that were captured past 

the first tracking station (89 individuals in 2008, and 91 in 2009). 
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I tested whether or not our experimental animals exhibited some directionality 

that might potentially bias the outcome of the permeability experiment using omnibus 

tests for circular uniformity in R (package circular; Lund and Agostinelli, 2007). 

Omnibus tests, such as Kuiper’s and Watson’s tests, are more powerful when there is 

little knowledge concerning the alternative hypothesis (Fisher 1993). For all statistical 

tests I used a significance level of 0.05. 

 

Results 

The three indices that I used to assess habitat permeability – number of track 

counts, proportion of captures, and rates of movement – differed significantly among 

treatments. The average size of the released juvenile L. sylvaticus was 17.19 ± 1.24 mm, 

and did not differ among treatments (ANOVA; F3, 407 = 1.23, p-value = 0.298). 

 

Proportion of animals reaching tracking stations 

There were differences in the number of tracks recorded among the four 

treatments for all distances. As a general rule, the proportion of released individuals 

decreased with increasing distance from the edge in all treatments, but was consistently 

higher in the mature forest and 20-yr stand compared to the two younger stands (Figure 

2.2a, Appendix C). More specifically, a lower proportion of animals reached the 10-m 

tracking station in the clearcut compared to the 11-yr stand. A higher proportion of the 

released animals reached the 10-m tracking station in both the mature forest and 20-yr 

stand compared to the other two treatments. This pattern changed at 20 m from the forest 

edge, and remained consistent at 30 and 40 m from the edge. At these distances, there 
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were no differences between the clearcut and the 11-yr stand, while a significantly larger 

proportion of animals migrated through the mature forest and the 20-yr stand (Figure 

2.2b, c, Appendix C). The only difference between the mature forest and the 20-yr stand 

occurred at the 40-m tracking station, with a moderately lower proportion of animals 

moving through the 20-yr stand (Figure 2.2d, Appendix C). Considering the differences 

in the proportions of juvenile L. sylvaticus reaching 40 m, the mature forest was 3.1 - 3.7 

times more permeable than the clearcut and 11-yr stand, and 1.5 times more permeable 

than the 20-yr stand (although the latter is a consequence of behavior, rather than 

absolute permeability; see Discussion).  

 

Proportion of recaptures 

The pattern of pitfall captures was complementary to that of the number of tracks. 

I recaptured 179 individuals in 2008 (51% of the total released) and 240 individuals in 

2009 (45%). For both years, the proportion of captures at each distance was dependent on 

forestry treatment (2008: χ2
10 = 53.7, p-value <0.001; 2009: χ2

15 = 116.8, p-value 

<0.001). Overall, in the clearcut and 11-yr stand most of the captures were recorded at 0 

m, presumably reflecting animals trying to return towards the forest (30% and 48% in 

clearcut and 25% and 44% in 11-yr stand for 2008 and 2009, respectively; Table 2.1). 

Animals released in the mature forest were significantly less likely to return towards the 

edge, with only 19% and 18% captured at 0 m in 2008 and 2009, respectively. 

Individuals released in the 20-yr stand behaved similarly to those in the mature forest, 

with 17% captured at 0 m. In contrast, the proportion of animals traveling the entire 

length of the runways was significantly higher in the mature forest than in all the other 
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Figure 2.2. Predicted 95% confidence intervals around the mean proportions of juvenile 
L. sylvaticus reaching: (a) 10 m and (b) 20 m tracking stations (values are predicted 
proportions obtained by inverse logit-transforming the coefficients of the best binomial 
mixed effects model fitted for each distance). 
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Figure 2.2 (continued). Predicted 95% confidence intervals around the mean proportions 
of juvenile L. sylvaticus reaching: (c) 30 m and (d) 40 m tracking stations (values are 
predicted proportions obtained by inverse logit-transforming the coefficients of the best 
binomial mixed effects model fitted for each distance). 
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treatments, with 29% and 31% captured at 40 and 50 m in 2008 and 2009, respectively 

(Table 2.1).  

The proportion of captures at 10 m deserves special attention. In 2008, a 

significantly higher proportion of animals that passed through the first tracking station 

were captured in the clearcut (23%) and 11-yr stand (20%) than in the mature forest (5%) 

(Table 2.1). In 2009, the same pattern was observed (24% captures in clearcut, 18% in 

11-yr stand and 11% in mature forest), but the pairwise tests for proportions did not yield 

statistically significant results (Table 2.1). The 20-yr stand had significantly lower 

captures at 10 m than all the other treatments (2%). This result suggests that juveniles 

starting to travel in the clearcut and 11-yr stand are able to assess potentially inhospitable 

habitat, and take the decision to return towards the forest. The number of captures at 20 

and 30 m was very low (<5) for all treatments and years and not suitable for testing 

differences among treatments. Thus, once juveniles started to move away from the 

release point, and did not turn around to be captured at 10 m, they traveled the entire 

length of the runways regardless of forestry treatment. 

The majority of captures occurred during the first three days post-release (96% in 

2008 and 86% in 2009), suggesting that juveniles try to depart and move through all 

treatments relatively quickly. Only 3 and 11 animals spent >4 days in the runways in 

2008 and 2009, respectively.  

 

Movement rates and timing of movements 

There were differences among the four treatments with respect to the rates of 

movement, as well as timing of movements post-release. In all treatments, the movement 



48 
 

rates ranged between 5 and 50 m/day, but the omnibus Kruskal-Wallis test yielded 

significant differences among the four treatments (χ2
1 = 10.471, p-value = 0.0135). 

Further, the pairwise comparisons revealed that: (1) there was no difference in the 

movement rate between the clearcut (median = 20 m/day) and 11-yr stand (median = 15.5 

m/day) (χ2
1 = 2.238, p-value = 0.138); (2) there was no difference between clearcut and 

mature forest (median = 17 m/day) (χ2
1 = 0.829, p-value = 0.36), and (3) animals moved 

faster through mature forest and clearcut than through the 20-yr stand (median = 10 

m/day) (χ2
1 = 6.689, p-value = 0.008 and χ2

1 = 4.248, p-value = 0.038, respectively) 

(result of juvenile behavior, rather than habitat permeability; see Discussion). 

 

Table 2.1. Percentage of juvenile L. sylvaticus recaptured in the runways in 2008 and 
2009. The superscript letters denote similarity or dissimilarity among treatments for each 
distance and year separately (along each row) resulting from pairwise tests for 
proportions. The number of captures at 20 and 30 m was very low in all treatments and 
data were not analyzed. Values at 10, 20, and 30 m represent percentage recaptured 
relative to the number of animals that reached that particular distance. 
 

 Distance from 

edge (m) 
Clearcut 

11-yr 

stand 

20-yr 

stand 

Mature 

forest 

2008   

Total # released  112 105 - 133 

% of 
individuals 
recaptured 

0 30 B 25 AB - 19 A 
10 23 B 20 B - 5 A 
20 13 3 - 0 
30 10 8 - 1 

40 and 50 11 B 7 B - 29 A 
2009   
Total # released  118 116 115 117 

% of 
individuals 
recaptured 

0 48 B 44 B 17 A 18 A 
10 24 A 18 A 3 B 11 A 
20 5 0 2 0 
30 8 2 0 6 

40 and 50 7 B 5 B 9 B 31 A 
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The timing of movements post-release reflected the choices of individuals to 

travel through the four treatments, and helps understanding how juvenile L. sylvaticus 

perceive differences in habitat quality. Most of the movement occurred within the first 

two days post-release (Figure 2.3a, b). In the mature forest, over 40% of the released 

individuals moved quickly past the second tracking station (20 m) during the first day, 

and 50% reached the end of the runway after four days. In the clearcut and 11-yr stand 

the bulk of movement also occurred during the first day, but only past the 10-m tracking 

station, and was notably lower than in the mature forest (20% and 25%, respectively, 

Figure 2.3a). Very few animals moved through these two treatments during the third and 

fourth days post-release, and only 13% and 16% of the total released actually reached 40 

m after four days. Animals released in the 20-yr stand exhibited a different, more 

constant movement pattern. Although relatively few animals reached 10 m during the 

first day (30%), similar to the two younger treatments, substantial movements were 

recorded at 20 m during the second day and at 30 and 40 m during the third day (Figure 

2.3b, c). On average, 40% of the animals reached 30 m during the four days post-release 

in this treatment. 

 

Microhabitat and microclimate 

The differences in habitat permeability among the four forestry treatments could 

be explained by differences in vegetation, ground cover, and microclimate. The mature 

forest and 20-yr stand had high canopy cover (90% and 78%, respectively), as well as 

extensive leaf litter ground cover (>90%, Table 2.2). Bare ground and moss together 

accounted for approximately 40% of ground cover in the clearcut and 11-yr stand. The  
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Figure 2.3. Timing of movements of juvenile L. sylvaticus released in four forestry 
treatments in 2008 and 2009. Values on the Y-axis are proportions of released individuals 
moving through the tracking stations averaged across runways and batches (error bars are 
1 SE). I am showing the first 4 days post-release only, because these days accounted for 
most movement. 
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Figure 2.3 (continued). 
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herbaceous and low shrubs layers dominated the clearcut (65-70%), and to a lesser extent 

the 11-yr stand (≈25%, Table 2.2). Tree height varied from >15 m in the mature forest to 

9.2 m in the 20-yr stand and 3.8 m in the 11-yr stand.  

These differences in habitat structure were reflected in the microclimate of the 

four treatments. As I expected, the clearcut was warmer than the other treatments in both 

years (Table 2.3). The average daily maximum temperatures at ground level were higher 

(7.34 – 8.57°C in 2008, and 4.46 – 5.38°C in 2009) than in the older stands. In both 

years, the differences in average maximum temperatures between the mature forest and 

the 11 and 20-yr stands were minimal (0.9 – 1.2°C), suggesting that the shade provided 

by regeneration alleviates the microclimate near ground. The highest temperature at 

ground level was 39.1°C and was recorded on 16 July 2008 at 3:00 PM in the recent 

clearcut.  

 

Table 2.2. Habitat characteristics of the four forestry treatments (mean ± 1SE). 

Treatment 

Ground cover (%) 
Cover of vegetation layers 

(%) 
Stand 

density 

(stems 

/ha) 

Tree 

height 

(m) 
Leaf 

litter 
a
 

Moss 
Bare 

ground 

Herba-

ceous 
Shrubs 

Tree 

canopy 

cover 
b
 

Clearcut 0 14.3 ± 3 25.6 ± 4 55.0 ± 4 11 ± 3 0 0 0 
11-yr stand 37.3 ± 6 30.5 ± 3 10 ± 2 14.0 ± 7 9.5 ± 3 69.5 5440 3.8 

20-yr stand 92.6 ± 1 6.3 ± 1 0.3 ± 0 17.6 ± 5 0 77.7 9947 9.2 

Mature forest 90.0 ± 2 10.0 ± 2 0 0 0 90.0 1120 c >15 

 
a for the 11-yr stand I measured the percent ground covered with coniferous duff 
b for the 11-yr stand I measured the percent cover of conifer regeneration similar to the 
herbaceous and shrub layers rather than the canopy cover 
c canopy trees only (in addition, the Mature forest contained 3573 stems/ha of balsam fir 
(Abies balsamea) seedlings and saplings in the understory) 
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Table 2.3. Microclimate of four forestry treatments in central Maine during experimental 
amphibian releases (July 9 – July 24 2008, and July 11 – August 6 2009). Relative 
humidity was recorded at ground level only (average ± 1SE). 
 

Treatment 

Average daily maximum temperature (°C) Relative humidity (%) 

2008 2009 2008 2009 

Ground 

level 
Refugia 

Ground 

level 
Refugia 

Ground  

level 

Clearcut 31.59 23.36 26.26 22.08 62.91 ± 6.3  86.33 ± 1.8 
11-yr stand 24.26 19.79 21.79 17.81 76.14 ± 5.4 90.77 ± 1.7 
20-yr stand   21.22 17.87  96.03 ± 1.1 

Mature forest 23.02 18.65 20.88 17.02 78.70 ± 4.5 96.77 ± 0.9 

 

The recent clearcut was also drier than the other treatments; daily minimum 

relative humidity varied between 27.23 and 100% (2008) and between 62.91 and 100% 

(2009). The quantity of precipitation that fell during the experimental releases was high 

(66 mm in 2008 and 76 mm in 2009), which places both study years above the long-term 

normal by 20% and 64%, respectively (www.ncdc.noaa.gov). However, in 2008, one rain 

event accounted for two thirds of the total rainfall (45 mm on 21 July). 

 

Orientation of juveniles pre-release 

I used a total of 87 juvenile L. sylvaticus to test the possibility that innate 

directionality might influence their propensity to move through the runways. I did not 

detect any departure from circular uniformity (Kuiper V = 1.338, p-value >0.15; Watson 

U
2 = 0.073, p-value >0.10), suggesting that the juveniles oriented randomly when 

released at night under closed canopy at >50 m from a forest edge (Figure 2.4). Hence, 

the direction of movement in the runways was apparently influenced by the juveniles’ 

perception of experimental treatments only. 
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Figure 2.4. Orientation of juvenile L. sylvaticus (n = 89) prior to release in experimental 
dispersal runways in 2009. Bars represent number of animals reaching the edge of the 
circular arena. Scale is given by numbered concentric dotted circles. 

 

Discussion 

In this study I investigated the permeability to amphibian movements of a 

chronosequence of stands generated by even-aged silviculture. The greatest challenge in 

studying the movements of small organisms is being able to successfully track and detect 

them, while interfering as little as possible with their movements. For example, mark-

recapture studies employing drift fences and pitfall traps are generally used for 

quantifying movements, but trapping interrupts animal movements and does not provide 

information on fine-scale behaviors. Fluorescent powder tracking is useful for small 

amphibians, but its effectiveness is highly dependent on weather conditions and substrate 

(Roe and Grayson 2008). In this respect, I consider that our “self-tracking” approach that 

combines the two techniques is preferable to other methods, because it allowed an in-
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depth exploration of juvenile amphibian movement ecology with minimal disturbance to 

their fine-scale movements.  

Our study suggests that clearcuts are significant barriers, altering the movements 

of emigrating juveniles, and that the effects are long-lasting. The clearcut and 11-yr stand 

had lower permeability to movement than the older treatments. In the absence of 

subsequent silvicultural intervention (e.g., thinning, use of herbicides), the 20-yr stand 

was mature enough to provide good migratory or settling habitat for juvenile L. 

sylvaticus. While the low permeability of clearcuts or other open-canopy habitats to 

juvenile amphibian movement has been previously demonstrated (Rothermel and 

Semlitsch 2002, Rothermel 2004), our findings for the 11-yr stand deserve further 

discussion. 

During both years of the study, the 11-yr stand had the same low permeability to 

movements as the clearcut (approximately 3.1 – 3.7 times less permeable than mature 

forest). Overall, a larger proportion of animals reached the 10-m tracking station 

compared to the clearcut, indicating that the 11-yr stand facilitated initial movements. 

However, the proportion of animals reaching >20 m from the forest edge dropped to a 

level similar to that of the clearcut. This is surprising given this treatment’s microclimatic 

similarities to the mature forest and 20-yr stand. Despite microclimate similarities, there 

were striking differences in vegetation cover between this and the two older habitats, 

pertaining mainly to the presence of canopy cover and percentage leaf litter (<30% versus 

>90% in older habitats, Table 2.2).  In southern Quebec, Canada, Aubin et al. (2008) 

characterized young coniferous plantation stands (of similar age and structure to our 11-

yr stand)  as open-canopy habitats, with understory physical and biological attributes 
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radically different from natural regeneration stands. Although vegetative succession 

mitigates for microclimate, our results suggest that other physical factors, such as canopy 

cover (and the correlated percent leaf litter) exert a larger influence on the movement 

behavior of juveniles than favorable microclimate. Hence, actions aimed at microclimate 

mitigation in harvested stands (i.e., by providing refugia such as burrows and coarse 

woody debris) might not be successful if juveniles actively avoid such sites based on the 

lack of canopy cover (Patrick et al. 2006, Popescu V.D., unpublished data).  

The forestry conditions studied here resulted from even-aged management. The 

trajectory of stand development for even-aged stands (i.e., spatial pattern, tree species 

mixing, and tree size differentiation) is quite predictable and yields comparable stand 

structures across the Acadian Forest region (Saunders and Wagner 2008). Our study sites 

were in stand initiation (clearcut), stem exclusion (11-yr and 20-yr stands), or understory 

reinitiation (mature forest) stages (sensu Oliver and Larson 1996). While there is natural 

site-to-site variation, these stand-level processes and disturbance regimes lead to a clear 

differentiation between naturally-regenerated stands treated and not treated with 

herbicides, and conifer plantations (Newton et al. 1992, Aubin et al. 2008). Studies 

quantifying differences in physical and biological attributes of stands resulting from 

even-aged management found vegetation structure comparable to our 11-yr and 20-yr 

stands throughout the Acadian Forest region (Newton et al. 1992, Ross-Davis and Frego 

2002, Ramovs and Roberts 2003). Additionally, because I studied silvicultural practices 

that are common throughout North America (i.e., clearcutting) our results may be 

applicable elsewhere within the species’ range, outside the Acadian Forest. 
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Abrupt changes in habitat resulting from even-aged silviculture negatively 

influence the abundance of amphibians, and the negative impacts of altered microclimate 

and microhabitat extend well into the unharvested forest (deMaynadier and Hunter 1998). 

The rates of movements and proportion of captures were strongly influenced by both 

habitat quality and proximity to edge. In the clearcut and 11-yr stand, the juveniles that 

chose to move away from the forest edge moved quickly, presumably in response to 

being exposed to poor-quality habitat, consistent with the evacuation hypothesis 

(Semlitsch et al. 2008). Furthermore, the difference in timing of movements between the 

20-yr stand and mature forest might be due to adjacency to different quality habitats: (1) 

animals in the mature forest moved quickly away from the mature forest/clearcut edge, 

showing an active avoidance of clearcuts and edges (deMaynadier and Hunter 1998, 

Gibbs 1998), and (2) animals in the 20-yr stand moved away from the 20-yr stand/mature 

forest edge relatively slowly and tended to settle (Patrick et al. 2008). Thus, the 

differences in the proportion of animals captured at 40-50 m (i.e., successful dispersers) 

between these two treatments are probably not due to permeability per se, but to edge-

related movement decisions. Settling behavior was also observed in the mature forest 

(lower number of individuals passing through the 40 m compared to the 20 and 30 m 

tracking stations). No settling behavior was observed in the clearcut and 11-yr stand. 

Released animals that were not recaptured either settled in the mature forest and the 20-yr 

stand or died due to predation or desiccation. Predation is likely to be higher in the open-

canopy habitats, and I recorded garter snakes (Thamnophis sirtalis) in runways in both 

the clearcut and 11-yr stand. Notably, some juvenile L. sylvaticus traveled 50 m per night 

through all four treatments, sometimes in no-rain conditions, suggesting that the 
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vegetation and substrate of our experimental treatments did not represent physical 

resistance to locomotion. 

Permeability of clearcuts to amphibian movements has been found to be highly 

dependent on climate parameters such as rainfall or high temperatures (Chan-McLeod 

2003, Graeter et al. 2008, Veysey et al. 2009). During our study, the maximum 

temperatures at ground level did not reach the critical thermal maximum for L. sylvaticus 

of 34.8°C (Brattstrom 1963) in any treatment, and the existing refugia provided a cool, 

moist microclimate throughout the study period (Table 2.3). However, I found that the 

study clearcut and 11-year-old coniferous regeneration have limited permeability to 

juvenile L. sylvaticus even in wet conditions. In both years, I released animals in both 

“wet” (rain during the first two days post release) and “dry” conditions, but the rainfall 

did not have a large impact on the movement patterns. For example, in 2009, the third 

release (22 July) coincided with two heavy rain events (≥30 mm on 22 July and 25 July), 

but juveniles in the clearcut and 11-yr stand did not show a higher propensity to move in 

these treatments compared to the other releases. Only two animals (7%) reached 40 m in 

the 11-yr stand and three (10%) in the clearcut during this release, which was similar to 

batches that completely lacked rain: four (13%) and two (7%) animals, respectively, 

during the fifth release (2 August).  

Dispersal plays a critical role in the ecology and biology of many species of 

amphibians. Dispersers are able to colonize new breeding habitats, recolonize pools 

following extinction, and affect gene flow. For L. sylvaticus, contemporary 

metapopulation processes drive population dynamics and maintain high genetic diversity 

in fragmented landscapes (Zellmer and Knowles 2009). Predicting the process of animal 
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movement and its implications for population or metapopulation dynamics cannot rely 

solely on assessing habitat cover and landscape configuration (Winfree et al. 2005), 

although this overly simplified approach has been applied in previous studies of 

amphibians (see for example, Stevens et al. 2005). Dispersal in heterogeneous landscapes 

involves an interaction between habitat structure and configuration (such as various aged 

clearcuts in an industrial forest landscape), and behavioral responses of individuals to 

these structures (Ricketts 2001). Our results suggest that decision behavior (in our case, 

willingness to travel and avoidance of clearcuts, which dispersers perceive as 

inhospitable habitat), is more important than the effect of the physical structure on 

locomotion. 

Pond-breeding amphibians are able to recognize and preferentially use suitable 

habitat, and avoid less optimal habitat at all life-stages. In large-scale experiments on the 

effects of forestry practices on amphibian communities, adult ambystomatid salamanders 

(Ambystoma maculatum, A. opacum), frogs (Lithobates spp., Pseudacris ornata, 

Scaphiopus holbrooki), and southern toads (Anaxyrus terrestris) preferentially used 

closed-canopy habitats (uncut forest and light partial cuts) during their post-breeding 

migrations (Patrick et al. 2006, Todd et al. 2009, Semlitsch et al. 2009). Similarly, adult 

European common frogs (Rana temporaria) actively avoided agricultural lands and 

moved preferentially through hedgerows and meadows (Vos et al. 2007). Juveniles of 

spotted salamanders (A. maculatum) and American toads (Anaxyrus americanus), are 

able to recognize and preferentially use suitable habitat, and avoid less optimal old-field 

habitat (Rothermel and Semlitsch 2002). Our observations on the behavioral response of 

juvenile L. sylvaticus add to this body of evidence. Almost 30% of the juveniles released 
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in the clearcut and 11-yr stand in 2008, and 50% in 2009 actively avoided these habitats 

by immediately returning towards the adjacent forest. Moreover, of the individuals that 

decided to move away from the forest in these two treatments, a large proportion was 

captured at 10 m from the release point (20 – 25%). However, this pattern was not 

observed at 20 and 30 m from the release point, suggesting that juveniles that decided to 

move traveled the entire length of the runway. Juvenile amphibians are likely to use 

proximate orientation cues, such as olfactory or visual cues, and presumably have a 

limited range of perception given the interaction between understory vegetation and 

weather conditions (i.e., rainy nights) that usually characterize amphibian migrations 

(Semlitsch 1985). Support for this idea comes from the study of Rothermel (2004) who 

found that juvenile salamanders and anurans failed to orient towards the nearest forest 

when placed 50 m from the forest edge in an open field.  

The concept of habitat permeability offers a practical way to predict population 

dynamics and set conservation priorities across broad spatial scales using Geographic 

Information Systems (Compton et al. 2007, Baldwin and deMaynadier 2009). In a recent 

study, Janin et al. (2009) introduced a new method for assessing landscape permeability 

for the natterjack toad (Bufo calamita) using a calibration/validation method that yielded 

improved permeability measures that did not require much biological data (compared to 

the expert-based values). While such exercises have the potential to offer valuable results 

for conservation planning, our simple forestry-oriented experiment suggests a cautious 

approach to assigning expert-based permeability (resistance) values to various habitat 

types. Differing silvicultural management practices lead to different outcomes in terms of 

vegetative succession, which may affect habitat permeability in the long term. This poses 
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problems for modeling exercises that rely on land cover or habitat maps derived from 

aerial or satellite imagery. First, the identification of forest successional stages using 

satellite imagery is difficult (Liu et al. 2008). Second, given the dynamic nature of forest 

succession, it is necessary to minimize the time lag between acquisition of spatial data 

and its analysis (Popescu and Gibbs 2009). Moreover, the type of management 

subsequent to harvesting cannot be extracted from land cover or habitat maps. Without 

such information, the permeability values assigned to forests are likely to be 

overestimated. 

Our research was limited by the fact that I had no stands with natural regeneration 

of intermediate age (the 11-yr stand had been sprayed with herbicides to favor conifers 

and resembled a coniferous plantation). I do have evidence that the avoidance behavior 

observed in the clearcut and 11-yr stand persisted up to six years post-clearcutting, even 

when natural vegetative succession was allowed (Popescu V.D., unpublished data). The 

second limitation is the scale at which I conducted the study. Given that animals reached 

the end of the runways in one night, I underestimated the true dispersal abilities of 

juvenile L. sylvaticus by constraining their maximum movements to 50 m. Also, 

permeability of clearcuts might be slightly overestimated due to the shade provided by 

the enclosure walls (Patrick et al. 2008).  

Our finding of active avoidance of open-canopy habitat, as well as habitats where 

the successional vegetation mitigates for microclimate effects, but lacks canopy closure, 

suggest that silvicultural practices that retain greater canopy cover (i.e., partial harvests) 

are less likely to inhibit juvenile dispersal than clearcutting. Evidence from large-scale 

experiments on the effects of various forestry practices on amphibian movements, 
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replicated across three ecoregions support this finding, and partial harvests that retain at 

least 50% of canopy cover are as permeable to migrating amphibians as uncut forests 

(Semlitsch et al. 2009). Coniferous plantations have been found to negatively affect 

amphibian abundance and species richness (Pough et al. 1987, Waldick et al. 1999, Parris 

and Lindenmayer 2004) and the strong avoidance of the 11-yr coniferous stand during 

two successive years in our study corroborates these results. Whether or not amphibians 

exhibit metapopulation dynamics (Smith and Green 2005), extinction and recolonization 

are landscape-level processes common to many amphibians. Because recolonization of a 

breeding site is in part the realization of dispersal processes, highly fragmented habitats 

that have low permeability to movements may hinder recolonization success (Richter-

Boix et al. 2007). 

The lack of directionality and the preference for closed-canopy habitats observed 

in this study suggest that in heavily forested landscapes activities that lead to habitat 

alteration or loss (e.g., timber harvesting, development) need to pay attention to the 

spatial arrangement of potential breeding sites. Thus, movements of dispersing 

amphibians might be directed by retaining a certain level of canopy cover between 

identified high-quality breeding sites (Baldwin and deMaynadier 2009). This 

management strategy would also be beneficial for the local populations that generally 

require high-quality habitat for foraging and overwintering in the immediate vicinity of 

the breeding pool. 

Movement ecology of amphibians is taxon-specific owing to differences in 

vagility, vulnerability to desiccation, and habitat preferences. Thus, empirical 

investigations of habitat permeability for other forest-associated species are warranted. 



63 
 

Focusing on the dispersal life stage of various species is likely to give a better 

understanding of regional population or metapopulation dynamics (Smith and Green 

2005). Investigations on the amount of canopy cover retained during partial cuts that will 

allow for successful amphibian dispersal could also be fruitful. Because I only used 

recently metamorphosed animals for our experiments, I am uncertain how movement 

behavior might change during ontogenetic development, and testing habitat permeability 

for older/larger individuals should be a priority. Furthermore, a better grasp on the cues 

that dispersing amphibians rely on for orienting in natural forested landscapes would aid 

our understanding of movement behavior in fragmented urbanizing landscapes and better 

inform land-use planning. 
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Chapter 3 

USE OF OLFACTORY CUES BY NEWLY METAMORPHOSED WOOD FROGS 

(LITHOBATES SYLVATICUS) DURING EMIGRATION 

 

Abstract 

 Juvenile amphibians are capable of long-distance upland movements, yet cues 

used for orientation during upland movements are poorly understood. We used newly 

metamorphosed wood frogs (Lithobates sylvaticus) to investigate: (1) the existence of 

innate (i.e., inherited) directionality, and (2) the use of chemical olfactory cues, 

specifically forested wetland and natal pond cues during emigration. In a circular arena 

experiment, animals with assumed innate directionality did not show a departure from 

randomness when deprived of visual and olfactory cues, suggesting that juveniles from 

two different landscape settings in Maine (USA) most likely rely on proximate cues for 

orientation. Juvenile wood frogs reared in semi-natural conditions (1500-l cattle tanks) 

showed a strong avoidance of forested wetland cues in two different experimental 

settings, although they had not been previously exposed to such cues. This finding is 

contrary to known habitat use by adult wood frogs during summer. Juvenile wood frogs 

were indifferent to the chemical signature of natal pond (cattle tank) water. Our findings 

suggest that management strategies for forest amphibians should consider key habitat 

features that potentially influence the orientation of juveniles during emigration 

movements, as well as adult behavior. 
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Introduction 

Understanding the movements of migrants and dispersers and identifying habitats 

selected during the movements to and from breeding ponds is critical for identifying 

conservation strategies for pond-breeding amphibians Semlitsch (2008). Orientation and 

navigation play an important role in guiding amphibian movements in both the aquatic 

and terrestrial environments (see reviews by Sinsch 1991, 2006, Rozhok 2008). 

Amphibians rely on a multisensory orientation system (Ferguson 1971) that uses a wide 

variety of mechanisms, including path integration, beaconing, pilotage, compass 

orientation, and true navigation (Papi 2006). Orientation during the transition between the 

aquatic and terrestrial stages (i.e., immediately post-metamorphosis) raises particularly 

interesting questions because of the change in locomotion, the availability of cues, as 

well as the potential carryover of sources of information between the larval and juvenile 

life stages (Hepper and Waldman 1992). For example, orientation information acquired 

during the larval stage was found to influence movements during the onset of emigration 

in the terrestrial environment (Goodyear and Altig 1971). 

Migratory movements of adult amphibians towards breeding ponds and 

overwintering sites are well understood and have been shown to rely on a multitude of 

cues that are used in a hierarchical manner depending on the relative availability of cues 

(Sinsch 1990, Dall'antonia and Sinsch 2001). Olfaction plays an important part in adult 

orientation, with odors being used as directional cues for both short-distance orientation 

towards mates and long-distance homeward orientation (Tracy and Dole 1969, McGregor 

and Teska 1989). Adult breeding migrations were found to be guided by the chemical 

signature of the breeding ponds in both anurans (Grubb 1973, Forester and Wisnieski 
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1991, Sanuy and Joly 2009) and urodeles (Hershey and Forester 1980, Joly and Miaud 

1993).  

In contrast to the adult life stage, juvenile movements and orientation remain 

largely unstudied, despite their long-distance emigration and dispersal abilities (Cushman 

2006). Migrating juveniles are hypothesized to have a narrow perception range and 

consequently rely on proximate cues for orientation in the upland habitat (Rothermel 

2004, Popescu and Hunter in press). Because natal experience is linked to habitat 

selection at later life stages (Davis and Stamps 2004), the ability to recognize the 

chemical signature of the natal pond is thought to play an prominent role for juvenile 

orientation during emigration movements (Hepper and Waldman 1992, Ogurtsov 2004). 

The behavioral responses to natal pond odors are species-specific (i.e., reflect the species’ 

affinity to aquatic or terrestrial environments), change during the ontogenetic 

development, and exhibit high individual variability (Bastakov 1986, Reshetnikov 1996, 

Shakhparonov and Ogurtsov 2003, Arhipova et al. 2005). The imprinting of specific 

odors in anurans can occur during the embryonic stage, as well as during two distinct 

stages of larval development (Gosner 19 – 21 and 31 – 41, Gosner 1960), and the 

discrimination between imprinted and novel odors during the aquatic stage is maintained 

during the early terrestrial stage (Hepper and Waldman 1992, Ogurtsov and Bastakov 

2001).  

Despite the strong evidence for the use of breeding/natal pond odors for 

orientation, little is known about the use of other olfactory cues during movements in the 

terrestrial environment. For the juvenile stage of our study organism, the vernal pool-

breeding wood frog (Lithobates sylvaticus), previous research conducted in Maine, USA 
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found evidence that forested wetlands attracted a substantial segment of the local juvenile 

cohort, and that directionality during emigration movements might be genetically 

inherited (Vasconcelos and Calhoun 2004, Patrick et al. 2007). The attraction to forested 

wetlands has conservation implications because forested wetlands are a scarce resource in 

some landscapes. Also, anthropogenic changes in land use have the potential to affect 

populations in which directionality of emigration movements is inherited by attracting 

migrants into ecological traps (sensu Schlaepfer et al. 2002). However, in other 

landscapes, the emigration of juvenile L. sylvaticus amphibians was either completely 

random (V. D. Popescu, unpublished data), or random across seasons and sites, but with 

evidence of local directionality that shifted on a seasonal basis (Timm et al. 2007, Homan 

et al. 2010). The initial orientation at pond edge does not necessarily reflect directionality 

farther in upland habitat (Miaud et al. 2003, Jenkins et al. 2006, Roznik and Johnson 

2009); that is, it might be wrong to assume that habitat selected during upland emigration 

movements is consistent with orientation at the pond edge.  

Given the conflicting body of evidence on the orientation of post-metamorphic L. 

sylvaticus and the need to better understand the orientation behaviors during the transition 

between the aquatic and terrestrial environments, the objectives of this study were: (1) to 

investigate whether or not newly metamorphosed L. sylvaticus possess innate 

directionality, and (2) to evaluate the use of olfactory cues during emigration movements. 

For the first objective, I hypothesized that if animals posses innate directionality, 

unrelated to the landscape context, then eliminating potential cues, such as visual (i.e., 

celestial, landmarks), and chemical cues (i.e., olfactory), would not affect their preferred 

direction of movement. For the second objective, I examined the role of forested wetland 
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and natal pond odors. Based on current literature, our hypotheses were: (1) juveniles 

would be attracted to forested wetland olfactory cues, and (2) juveniles would be able to 

recognize their natal pond odor.  

 

Materials and methods 

Amphibian collection 

I collected egg masses from roadside ditches and other small, ephemeral pools 

located on the University of Maine forests in central Maine, USA (44°54’16” lat N; 

68°41’55” long W). L. sylvaticus larvae were hatched in plastic wading pools, and reared 

to metamorphosis in 1500-liter self-sustaining mesocosms (cattle tanks), stocked with 1 

kg of dried leaf litter, and plankton from nearby vernal pools (Kiesecker and Skelly 

2001). The tanks were covered with shade cloth to prevent colonization of other aquatic 

organisms and placed under closed canopy; water level was maintained naturally by 

precipitation (Popescu and Hunter in press). For the experiment pertaining to the second 

objective, I also collected early stage tadpoles (Gosner 25-30, Gosner 1960) from two 

artificial pools on Sears Island, Maine (44°26’36” lat N; 68°53’20” long W) 

(Vasconcelos and Calhoun 2004), where innate directionality upon emergence was found 

to occur in juveniles L. sylvaticus (Patrick et al. 2007). Tadpoles were also added and 

reared to metamorphosis in cattle tanks. When the animals reached the final stage of 

metamorphosis (Gosner stage 46), they were transferred to plastic containers with moist 

leaf litter (in 2009) or moist paper towels (in 2010) for two days prior to the beginning of 

the experiments. Animal were returned to the site of the egg mass collection at the end of 

the experiments. 
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Circular arena design  

This experimental setup was used to investigate whether or not juveniles posses 

innate directionality, as well as to obtain preliminary data on the use of olfactory cues 

during emigration. The experimental site was located on the University of Maine forests, 

in a 100 x 50 m clearing, where I erected a large canvas tent (6 x 4 m and 2.8 m in 

height). All sides of the tent were opened during the day to ensure air flow. I performed 

the experiment at night (starting at 21:30 EST) between 14 July and 3 August 2009. The 

tent eliminated the potential use of visual cues, such as celestial [Diego-Rasilla and 

Luengo 2002], and landmarks (i.e., forest edges [Gibbs 1998, Rothermel 2004, Popescu 

and Hunter in press]), and prevented the inflow of external airborne chemical cues. The 

test arena was a circular plastic container 1.8 m in diameter and 20 cm tall. Inside the 

arena, I marked a 1.5 m diameter circle at 10° intervals, which I used as the threshold for 

recording the direction of movement. I placed each animal under an opaque plastic 

container in the middle of the arena; I lifted the container after a 2-minute 

accommodation period using a pulley system and recorded the bearing (departure from 

magnetic North) of where it crossed the 1.5 m circle for each individual. Because I 

conducted the experiment in complete darkness and did not want to influence frog 

behavior I used night-vision binoculars (Rigel Optics, DeWitt, Iowa) from approximately 

3 m outside the arena (Popescu and Hunter in press). The floor of the arena was wiped 

with paper towels and distilled water and allowed to dry between each trial in order to 

eliminate interference from odor trails left by previous animals (Adler 1980, Diego-

Rasilla and Luengo 2002). 
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Circular arena experimental releases 

First, I tested whether or not newly metamorphosed L. sylvaticus show innate 

directionality at emergence. I contrasted animals with assumed innate directionality from 

restored ponds on Sears Island (Patrick et al. 2007) and animals from University of 

Maine forests where they are known to be exiting without evidence of directionality (V. 

D. Popescu, unpublished data). The animals with innate directionality were hypothesized 

to orient towards the northeast (approximately 41 – 71° departure from magnetic North), 

in the direction of a forested wetland. Second, I conducted a preliminary test of the use of 

olfactory cues by juvenile wood frogs, specifically forested wetland cues, using animals 

from the second (random orientation) set of pools only. Previous research suggested that 

juvenile amphibians are attracted by forested wetlands (Vasconcelos and Calhoun 2004, 

Patrick et al. 2007), so the chemical signature would act as an attractant. The protocol 

was similar to the previous experiment, but I added a small tub (40 x 25 x 20 cm) filled 

with forested wetland organic soil adjacent to the circular arena, at a random bearing 

(220°). I then repeated the experiment with the tub located at 130° and 40° (a 90° and 

180° shift from the initial location). 

 

Y-maze experimental design 

Following the preliminary investigation of the use of olfactory cues, I performed 

an olfactory dichotomous choice experiment. I built a Y-maze from clear acrylic tubing 

(5.7 cm in diameter), and a 3-way PVC connector (120° between each connection), with 

each arm 30 cm long (Figure 3.1). To avoid mixing of the cues before the main 
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(releasing) arm of the olfactometer, I inserted a 5-cm long separating wall inside the 

connector (D in Figure 3.1) between the two arms receiving the cues.  

 

 
 
Figure 3.1. Design of the Y-maze used to test the use of olfactory cues by juvenile wood 
frogs (L. sylvaticus): (A) activated carbon filter, (B) bubbling flasks containing the 
olfactory cues to be tested, (C) flowmeter, (D) PVC connector, and (E) restraining wire 
mesh cage at the end of the arm receiving the cue airflow, used to acclimate animals prior 
to release; arrows indicate the direction of airflow. 

 

I used two olfactory cues: (1) forested wetland organic soil, and (2) natal pool 

(cattle tank) water. I tested these cues against distilled water, a control neutral cue. I 

pumped ambient air into 150 ml glass bubble flasks which contained either 100 ml of 

testing cue or distilled water. The forested wetland cue was prepared by mixing 60 ml of 

saturated organic soil with 40 ml of distilled water to bring it to a consistency that 

allowed bubbling. The natal pool cue was cattle tank water collected 1 hour prior to the 

beginning of the experiment. Because I used ambient air, I attached an activated carbon 
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filter (clear PVC pipe, 25 cm in length and 5 cm in diameter filled with 4-6 mm activated 

carbon pellets) to remove impurities and eliminate ambient odors (Figure 3.1). Air flow 

was maintained constant at 4 l/minute, measured with a Dwyer VFA-22 flowmeter 

(Dwyer Instruments, Inc., Michigan City, Indiana). The Y-maze was rinsed with distilled 

water and dried between the trials to eliminate both odors from previous animals and 

traces of cue (Forester and Wisnieski 1991). I randomly switched the treatment cue and 

the control between the left and right arms of the Y-maze to eliminate potential 

directional bias induced by the experimental setup itself. I also replaced the cues for 

every other trial in order to maintain a fresh source of odors.  

 

Y-maze experimental releases 

I conducted the experiment in low, diffuse overhead red light oriented away from 

the setup, during 21 – 26 July 2010, between 8:00 AM and 12:00 PM EST. After a 2-

minute acclimation period, I lifted a wire mesh gate (E in Figure 3.1), and animals were 

allowed to move freely. An animal was considered to exhibit a preference once it moved 

more than halfway into one of the cue arms (Forester and Wisnieski 1991). Based on our 

experience with the circular arena experiment, animals that did not reach the end of one 

of the arms in <10 minutes (n = 6) were not counted as successful trials and were 

discarded from the analysis. I conducted the experiment at constant temperature (22°C) 

and relative humidity (80%). For all experiments, each animal was used only once. 
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Statistical analyses 

For the circular arena trials, I used circular statistics (Batschelet 1981) to 

investigate whether or not juveniles exhibit innate directionality. I used Oriana 3.13 

(Kovach Computing Services, Anglesey, Wales, UK) to run separate Rayleigh tests for 

uniformity for animals with and without hypothesized innate directionality to test 

whether or not there is significant departure from randomness. I also examined the 

circular variance for each treatment as a measure of spread of individual bearings. The 

circular variance takes value between 0 (clustered around a mean angle) and 1 (dispersed 

with respect the mean angle) (Batschelet 1981).  

For the preliminary investigation of the use of olfactory cues in the circular arena, 

I chose not to use circular statistics, because two of the possible outcomes of the 

experiment -- attraction and avoidance -- are not symmetrical processes (Haila et al. 

1996). Attraction, revealed by concentration of animals around the cue, is a strongly 

deterministic process (Haila et al. 1996) for which the use of circular statistics would be 

warranted. However, avoidance is likely to lead to a random distribution (i.e., not 

necessarily concentrated in the opposite direction of the cue) because avoidance is not a 

deterministic process and leaves a large margin of variation (Haila et al. 1996). 

Therefore, I used the bearing departure from the location of the cue (clockwise and 

counterclockwise), which ranged between 0° (exact location of cue) and 180° (opposite 

location of cue) to assess the concentration of animals within ±30, 45, 60, and 90° from 

the cue location. I then used a G-test for goodness of fit to test whether or not the number 

of individuals observed within 60, 90, 120 and 180° arcs centered on the cue, 
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respectively, was significantly different than expected under the assumption of 

randomness. I pooled the bearing-departure-from-cue data for all three cue locations. 

For the Y-maze experiment, I used a G-test of goodness of fit, under the 

assumption of equal preference of treatment cues and control. I ran separate tests for (1) 

forested wetland organic soil cue vs. distilled water, and (2) natal pool vs. distilled water. 

For all tests, I used a significance level of alpha = 0.05. 

 

Results 

Circular arena experiments 

In the innate directionality experiment, both groups of juvenile wood frogs 

oriented at random and did not show a departure from circular uniformity; for frogs that 

originated from the pools where innate directionality was assumed (Patrick et al. 2007), n 

= 40, Rayleigh test; Z = 1.465, p-value = 0.232; for animals from the control, non-

directional pools, n = 57, Rayleigh test; Z = 0.267, p-value = 0.766 (Figure 3.2). Because 

the orientation of both groups of animals was random, I was not able to test whether or 

not they shared a mean direction. The spread of bearings with regard to the mean 

direction was large for both trials, as expressed by the high values of the circular 

variance: 0.809 for animals with assumed innate directionality, 0.932 for control animals. 

In the same experimental setup, the forested wetland olfactory cues acted as a 

deterrent, rather than as an attractant for juvenile L. sylvaticus. For all three locations of 

the wetland cue: 220° (n = 29), 130° (n = 24), and 40° (n = 28), animals tended to move 

away from the forested wetland cue although this pattern was statistically significant only 

for 220° (Figure 3.3).  When all three locations were pooled, significantly fewer 
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individuals than expected reached the edge of the arena within 60° (n = 5; G = 4.056, 1 

d.f., p-value = 0.044), 90° (n = 7; G = 6.724, p-value = 0.009), and 120° arcs (n = 11; G = 

6.952, p-value = 0.008) centered on the cue (Figure 3.4). A smaller than expected number 

of animals also reached the edge of the orientation arena in the half-circle centered on the 

cue (180° arc), but the results were not significant at α = 0.05 (n = 26; G = 3.187, p-value 

= 0.074). In addition, I observed 12 individuals that initially started moving in the general 

direction of the forested wetland cue, but switched direction when they were 

approximately 50 cm from the cue, thus appearing to show active avoidance.  
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Figure 3.2. Orientation of juveniles (a) without, and (b) with assumed innate 
directionality (northeast [41 – 71°], Patrick et al. 2007). 
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Figure 3.3. Orientation of juvenile wood frogs exposed to forested wetland olfactory cues 
in three circular arena trials with different locations of the cue source: (a) 130°, (b) 40°, 
(c) 220°, and d) all trials combined and standardized to cue = 0° bearing. Trial (c) showed 
the only significant departure from randomness, in the direction opposite to the cue 
location. (X = location of cue). 
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Figure 3.4. Cumulative percentage of juvenile wood frogs (n = 81) orienting with respect 
to forested wetland cues in a circular arena during three trials. The circular axis shows the 
departure from cue location (angles 0 – 180°, where 180° represents the opposite side of 
cue location), and the linear axes show the cumulative percentage of animals (0 – 100%); 
(i.e., approx. 10% of animals were within 45° of cue; 40% within 90°, etc.).  Perfect 
attraction would be represented by a horizontal line from origin to cue; perfect avoidance 
would be represented by a horizontal line from origin to 180°. 

 

Y-maze experiment 

The Y-maze experiment also yielded evidence for avoidance of forested wetland 

cues. In 38 successful tests, 73.7% of the animals (n = 28) chose the distilled water over 

the forested wetland cue (G-test, G = 8.878, 1 d.f., p-value = 0.003). Frogs did not exhibit 

preference or avoidance of natal pool water; in 37 successful tests 40.5% (n = 15) chose 

the distilled water (G-test, G = 1.332, 1 d.f., p-value = 0.248). 

 

Discussion 

Innate directionality during emigration movements 

I did not find evidence for innate directionality, as both control animals and those 

with assumed inherited directionality oriented randomly when visual and olfactory cues 

were removed. However, this finding does not exclude the possibility that even if 
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directionality per se is not inherited, information on the strongest cues used for 

orientation might be transferred between successive generations. Moreover, most 

previous experimental evidence points at proximate cues as the main source of 

orientation immediately post-metamorphosis. For example, directionality of emergence in 

bullfrogs (L. catesbeianus) was found to be established during the late stages of 

metamorphosis, and it was influenced by the variation in the surrounding environment, 

both aquatic (e.g., shallow water) and terrestrial (e.g., presence of shade from adjacent 

trees) (Goodyear and Altig 1971). This line of evidence might explain the results of 

Vasconcelos and Calhoun (2004) and Walston and Mullin (2008), who found that 

juvenile emergence was directed towards tracts of closed-canopy forest. These studies 

were conducted in landscape settings where contiguous tracts of forests were 

concentrated in specific directions, which coincided with the direction of emigration 

movements.  

In contrast, Miaud et al. (2003) present direct evidence for genetic control of 

directionality in newly metamorphosed common frogs (R. temporaria). Juveniles from 

two populations located on the edge of a large lake showed non-random directionality 

towards patches of suitable forest habitat and away from the lake. This directionality was 

maintained when tested in experimental arenas. Juveniles resulting from the crossing of 

male and females from the two populations oriented at random, suggesting that 

directionality is partly inherited across generations. However, juveniles emerging from 

another pond partly surrounded by suitable habitat (i.e., forest), but located away from a 

prominent unsuitable landscape feature (i.e., lake), showed random orientation upon 

emergence, ultimately orienting towards a patch of forest. Thus, animals used proximate 
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visual cues for orientation towards suitable habitat. Overall, the findings of Miaud et al. 

(2003) suggests that location of suitable upland habitat alone did not select for 

directionality, but rather the combination of suitable habitat location and a potentially 

inherited cue that signaled the unsuitable habitat (e.g., water) produced the observed 

directionality.  

For L. sylvaticus, research has shown high phenotypic plasticity and rapid 

evolutionary changes in the larval form (Skelly et al. 2002, Skelly 2004), so it is not 

improbable that inherited directionality based on some prominent cue can be easily 

acquired, but also lost, if the local conditions change. This hypothesis is also supported 

by Miaud et al. (2003) who concluded that the observed local adaptation for directionality 

of migrations in R. temporaria probably occurred in <100 frog generations, a period 

coinciding with major land cover changes in their study area.  

The possibility of innate directionality also comes into play when thinking about 

wetland mitigation. Building artificial isolated wetlands (i.e., breeding pools mimicking 

the hydroperiod of natural pools) has been used as a mitigation strategy in the 

northeastern United States (Korfel et al. 2010). If consistent directionality due to some 

prominent habitat feature unavailable in all directions occurs across seasons and is 

inherited across generations, then populations from older pools should show consistent 

directionality compared to populations from newly created pools. However, evidence 

from field studies in forested landscapes with both new artificial (Patrick et al. 2006) and 

natural breeding pools (Jenkins et al. 2006, Timm et al. 2007, Homan et al. 2010) showed 

that juvenile vernal pool amphibians exhibit non-directional orientation at emergence 

across many seasons, but directional orientation might be the norm in a given year in 
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some settings (Jenkins et al. 2006, Homan et al. 2010). A switch in directionality across 

years for the same breeding pool refutes the role of innate directionality toward a stable 

patch of upland habitat. Instead it suggests that temporally and spatially-variable 

environmental cues influence the orientation upon emergence. The lack of directionality 

exhibited in our study by both groups of juvenile wood frogs when potential orientation 

cues were removed fully supports this assertion. In addition, juvenile upland movements 

and habitat use during emigration do not always match the direction of emergence, as 

inferred from captures at pond edge (Miaud et al. 2003), and there is no evidence of 

potential movement corridors that remain consistent across multiple seasons (Jenkins et 

al. 2006, Roznik et al. 2009). These two lines of evidence reflect high spatial and 

temporal variability in upland habitat use by vernal pool-breeding amphibians and 

question the idea that juveniles might disperse into ecological traps (Patrick et al. 2007, 

Homan et al. 2010). 

 

Role of olfaction during emigration movements 

Our research suggests that olfactory cues are used by juvenile wood frogs during 

emigration from the natal pool into the upland. Contrary to our hypothesis, based on 

existing literature (notably Vasconcelos and Calhoun 2004, and Patrick et al. 2007), 

juveniles tended to avoid forested wetland cues, and they did so in two different 

experimental setups. Although attraction, rather than avoidance of forested wetlands, was 

expected due to juveniles’ low tolerance to desiccation (Schmid 1965), our research 

suggests that factors not driven by physiological requirements may play a more 

prominent role in habitat selection post-metamorphosis. The avoidance of forested 
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wetland olfactory cues by animals raised in cattle tanks and not previously exposed to 

such odors prior to the experiment, and the discordance between our findings and 

previous studies raises two main questions: (1) what is the relative importance of cues 

used for orientation during migrations, and (2) what are the mechanisms inducing the 

avoidance of forested wetland cues?  

For the first question, the species-specific multisensory orientation system of 

amphibians (Ferguson 1971) suggests that the use of potential cues is hierarchical, 

optimizing the use of information depending on the habitat (Sinsch 1990, 2006). For 

example, the attraction of newly metamorphosed L. sylvaticus to forested wetlands 

suggested by Vasconcelos and Calhoun (2004) might have occurred as a result of 

stronger cues (i.e., lack of canopy cover in the opposite direction of the forested wetland), 

overriding less strong cues, such as chemical signature of forested wetlands. Moreover, 

the relative importance of cues used for orientation may differ between individuals from 

the same population or cohort (Dall'antonia and Sinsch 2001, Shakhparonov and 

Ogurtsov 2003). Given such variability in individual behavior and the narrow perception 

range of juvenile amphibians (Rothermel 2004, Popescu and Hunter in press), it is likely 

that olfaction comes into play only when chemical signatures used for orientation 

override other cues.  

For the second question, one straightforward explanation for the avoidance of 

forested wetlands could be the affinity of L. sylvaticus for upland terrestrial habitat 

immediately post-metamorphosis. Newly metamorphosed L. sylvaticus quickly emigrate 

and settle in upland habitat up to 150 m from the natal pool (Patrick et al. 2008a). 

Because juveniles feed on invertebrates within the leaf litter layer, forested uplands might 
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provide a better food resource for these animals compared to forested wetlands. Another 

explanation for the avoidance of forested wetland olfactory cues is that juveniles may 

associate this odor with that of the natal pool, given that in our landscape, vernal pools 

often occur in forested wetland complexes (Calhoun and deMaynadier 2007). Thus, 

avoidance of forested wetlands could be equivalent to avoiding the proximity of natal 

pools where juveniles might experience both higher predation risk and higher 

competition for food from individuals in the same cohort.  

Previous research suggests that the natal pool experience plays an important role 

in orientation during initial emergence, and orientation in metamorphosing amphibians 

changes during ontogenetic development (Goodyear and Altig 1971, Ogurtsov 2004). For 

example, Bastakov (1986, 1992) found that juveniles of the highly aquatic pool frog 

(Rana lessonae) were attracted by the odor of their natal pool, while common toad 

juveniles (Bufo bufo), a semi-aquatic species, tended to avoid the odor of their natal pool. 

Juvenile L. sylvaticus and R. temporaria were able to discriminate between odors 

imprinted upon during embryonic development and novel odors, and preferentially 

oriented towards the known stimuli (Hepper and Waldman 1992). However, 

Shakhparonov and Ogurtsov (2003) and Arhipova et al. (2005) found that the behavior of 

juveniles of two anuran species was plastic in response to the natal pool odor and 

changed over a short period of time after metamorphosis. Juveniles of the semi-aquatic 

green toad (Bufo viridis) and terrestrial European common frogs (R. temporaria) were 

attracted by the natal pool odor before the onset of emigration, while during emigration 

movements they either avoided or were indifferent to the same cues. The fact that I did 

not find evidence of preference or avoidance of the natal pool cue in our experiment is 
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consistent with these findings. The juvenile stage of L. sylvaticus is exclusively 

terrestrial, and emigration movements start immediately upon the completion of 

metamorphosis. In addition, Arhipova et al.( 2005) found that the response of juvenile B. 

viridis and R. temporaria to natal pool odors was dependent on whether animals were 

held in laboratory setting (i.e., 9 – 12 days) or were collected from the wild prior to the 

experiment. That is, natal pool olfactory cues continued to elicit an attraction behavior 

from animals held in the laboratory, while animals caught in natural conditions were 

indifferent to such cues. In this context, experiments that minimize laboratory holding 

period (such as used in our experiment) and use animals raised in natural or semi-natural 

conditions (e.g., mesocosms compared to laboratory rearing) are more likely to identify 

real-world behaviors (Šamajová and Gvoždík 2010). 

Orientation behaviors are deterministic responses to a hierarchy of environmental 

cues ranging from strongest to weakest. In our experiment, juvenile L. sylvaticus showed 

a clear response to olfactory cues, and the strong avoidance of forested wetland chemical 

signature potentially reflects upland habitat selection during emigration movements. The 

indifference to natal pond odors adds to the evidence that natal ponds do not elicit a 

behavioral response for juveniles of terrestrial and semi-terrestrial anurans after the onset 

of emigration movements.  

However, we are still far from understanding the relative use of direct cues for 

orientation during juvenile upland movements and the importance of inherited 

directionality during the transition between the aquatic and terrestrial stages. Research 

aiming at differentiating between genetic variation and phenotypic variation (i.e., 

environmentally-driven) in orientation behavior is needed (Via and Lande 1985). Such 
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research might be accomplished by accounting for sources of spatial and temporal 

variability and availability of cues, testing a hierarchy of potential cues, as well as using 

transplants and common garden experiments and genetic manipulations (i.e., hybrids 

from populations with different observed directional traits) (Mousseau et al. 2000). This 

would potentially lead to a better understanding of habitat selection by juvenile 

amphibians, a critical and data-deficient life stage. 
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Chapter 4 

INTEGRATING MICROCLIMATE AND LOCOMOTOR PERFORMANCE  

OF JUVENILE AMPHIBIANS: WHY ARE CLEARCUTS 

 NOT CONDUCIVE TO MOVEMENTS? 

 

Abstract 

Amphibian locomotor performance is dependent on the tradeoff between 

thermoregulation and water conservation, thus microclimates shape the patterns of habitat 

use by amphibians. Disturbances, such as forestry practices that completely remove the 

canopy, can affect the distribution and abundance of forest amphibians by creating 

physiologically limiting microclimates. It is hypothesized that vegetation regrowth 

mitigates the effects of canopy removal on microclimates, but evidence suggests that 

young regenerated habitats are avoided by forest amphibians. I investigated the 

relationship between available microclimates and locomotor performance of newly 

metamorphosed wood frogs (Lithobates sylvaticus) using a two-prong approach. First, I 

recorded hourly temperature and relative humidity in young regenerated stands (5-6 years 

old) during the emergence and emigration season (July and August). Concomitantly, I 

investigated the use of clearcuts and adjacent forests by juvenile wood frogs emigrating 

from experimental pools. Microhabitats lacking shade (i.e., with herbaceous vegetation 

only) were consistently warmer and drier than shrubs, saplings and forests. Low shade 

from shrubs and saplings mitigated the temperature above ground within 3°C of closed-

canopy forests during afternoon hours, and created similar moisture conditions. 

Potentially lethal temperatures (>30°C) were rarely recorded in the forest, shrub, and 



86 
 

sapling microhabitats. Despite the mitigation of microclimate by vegetation regrowth, 

juvenile wood frogs avoided clearcuts and preferred forested treatments during 

emigration. Second, I tested the locomotor performance of newly metamorphosed wood 

frogs in relation to temperatures likely to be experienced in the field (15-30°C) using 

jumping trials. Performance, expressed as the ratio between mean jump and snout-vent 

length, was highest at 25 and 30°C. Our results suggest that juvenile wood frogs are not 

limited by microclimate in well regenerated clearcuts, suggesting that such habitats are 

avoided for reasons other than physiological requirements. As a consequence, 

microclimate cannot effectively be used as a sole parameter to predict potential habitat 

use by amphibians. 

 

Introduction 

Spatial distribution, habitat use, and performance of amphibians are highly 

dependent on available microclimate conditions (Halverson et al. 2003). Many 

physiological systems of ectotherms (growth, locomotor ability, and reproduction) are 

directly regulated by their thermal environment (Huey and Stevenson 1979). Most 

terrestrial amphibians face a tradeoff between attaining the preferred body temperature 

and water conservation (Moore and Gatten 1989, Preest and Pough 1989). While 

behavioral thermoregulation is achieved through posture and location changes to achieve 

an optimal body temperature (Lillywhite 1970), this is at the cost of moisture availability 

(Tracy 1976, Malvin and Wood 1991, Seebacher and Alford 2002). As a consequence, 

understanding the mechanisms behind amphibian habitat use requires investigating the 

interplay between available microclimates, performance, and behavior simultaneously. 
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The spatial distribution and abundance of forest-dependent amphibians is affected 

by habitat attributes that directly control the availability of the thermal and moisture 

environment (Graeter et al. 2008, Blomquist and Hunter 2010). Forestry practices 

involving substantial canopy removal (e.g., clearcutting) create harsh microclimate 

conditions for many amphibians species (Keenan and Kimmins 1993). Microclimate 

effects of clearcutting can extend up to 240 m into the adjacent stands (Chen et al. 1999). 

Such impacts have a detrimental effect on amphibian populations, affecting abundance 

and species richness (deMaynadier and Hunter 1995, Semlitsch et al. 2009). It is 

hypothesized that over time, vegetation re-growth moderates the microclimate by 

maintaining high humidity and reducing temperatures near the ground (Weng et al. 2007, 

Brooks and Kyker-Snowman 2008). Coarse woody debris (CWD) left in harvested stands 

(Swanson and Franklin 1992) may also provide moist and cool refugia for amphibians. 

Silvicultural regeneration methods involving complete canopy removal (clearcutting) 

have longer lasting effects on microclimate, with harsher conditions compared to those 

using partial harvests (Chen et al. 1993, Carlson and Groot 1997, Zheng et al. 2000, Xu et 

al. 2002). For example, forest floor temperature and relative humidity in partially cut 

stands 1 – 12-years-old were similar to those of adjacent, unharvested stands (Brooks and 

Kyker-Snowman 2008).  

Evidence from a large-scale forestry experiment replicated across three 

ecoregions in the United States, and looking at the immediate effects of vegetative 

succession post-canopy removal showed that emigrating juvenile wood frogs (Lithobates 

sylvaticus) actively avoided clearcuts (Patrick et al. 2006, Semlitsch et al. 2009, Todd et 

al. 2009). Specifically, experiments conducted in central Maine, USA, found that strong 
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avoidance behavior was maintained for at least three years post-harvesting, with 3.3-fold 

more animals captured in the forest compared to clearcuts during the third year post-

disturbance, despite substantial vegetation regrowth (Patrick et al. 2008). In addition, 

emigrating juvenile amphibians did not differentiate between stands with CWD-retained 

and stands with CWD-removed (Patrick et al. 2006). One hypothesis behind the observed 

avoidance of clearcuts is that harsh microclimate conditions hinder movements of 

juvenile amphibians, which are prone to desiccation and have a low tolerance to high 

temperatures. At the same time, juvenile L. sylvaticus show an active avoidance of 

regenerated stands that lack complete canopy cover, but have similar microclimates, 

suggesting that behavior also plays a critical role in determining habitat use (Popescu and 

Hunter in press). For stands undergoing complete canopy removal, the timeframe over 

which microclimate would recover to pre-harvest conditions, and whether such regrowth 

mitigates microclimate in a biologically meaningful way to amphibians are still largely 

unknown.  

Despite the wealth of research addressing questions related to the survival of 

amphibians in various forest management settings (e.g. Rothermel and Luhring 2005, 

Rothermel and Semlitsch 2006, Rittenhouse et al. 2008, Roznik and Johnson 2009), only 

a few studies have directly linked the available field microclimate conditions to 

amphibian performance as a means to understand physiological and behavioral 

mechanisms behind observed distribution patterns (e.g., Walton 1988, Šamajová and 

Gvoždík 2010). To address the biological significance of microclimate variability for 

habitat use by emigrating L. sylvaticus juveniles, I used a combined 

observational/experimental approach that integrated three aspects deemed critical in 
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understanding the physiological and behavioral consequences of habitat selection (Huey 

1991): (1) measuring available field microclimates in relation to canopy removal and 

vegetative succession, (2) quantifying the effects of body temperature on performance, 

and (3) assessing microhabitat suitability by integrating the environmental and 

physiological data. For the second aspect, I chose to look at locomotor performance with 

respect to temperature for two reasons: (1) locomotor performance is critical for the 

survival and growth of newly metamorphosed amphibians (Watkins 2001), and (2) our 

study was conducted in central Maine, USA, a heavily forested region, with cool and 

generally moist summers, where moisture availability is arguably less important than in 

other parts of the species range. 

When clearcut stands undergo natural vegetative succession, there can be a high 

degree of variability with respect to the spatial distribution, species composition, and 

density and height of woody regeneration (Oliver and Larson 1996). I hypothesized that 

the inherent patchiness of vegetative succession would create microhabitats with different 

thermal and moisture characteristics. Within the same experimental sites where Patrick et 

al. (2008) found strong avoidance of clearcuts up to three years post-clearcutting, I 

investigated patterns of habitat use by juvenile L. sylvaticus and examined microclimates 

of 5 – 6-year-old regenerated clearcuts and adjacent closed-canopy forests, both on the 

ground surface and under refugia provided by CWD. I also undertook a locomotor 

performance experiment to investigate whether or not field temperatures are a limiting 

factor for habitat use by juvenile L. sylvaticus.  

Given this combined approach, the overarching goal was to infer physiological 

and behavioral mechanisms through which clearcutting influences the spatial distribution 
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of amphibians, ultimately aiming at providing management recommendations for 

conserving forest-dependent amphibians. Specifically, this study addressed the following 

questions: (1) are emigrating juveniles thermally limited by high temperatures recorded 

in regenerated clearcuts, compared to mature forests? (2) does CWD mitigate the effects 

of clearcutting by providing refugia?, (3) does the locomotor performance of juvenile 

wood frogs decrease as temperatures reach their critical thermal maximum (CTM) and 

(4) do differences in thermal environment translate into differences in suitability between 

closed-canopy forest and regenerated clearcuts? 

 

Study area and methods 

Study area, vegetation, and weather 

This research was conducted on the University of Maine Demerritt and Penobscot 

Experimental Forests in Penobscot County, Maine, where four experimental breeding 

pools were created in 2004. Concomitantly, four silvicultural treatments (clearcut with 

CWD retained, clearcut with CWD removed, partial harvest, and uncut control) were 

implemented adjacent to the experimental pool. These treatments extended up to 164 m 

from the edge of the pool, each treatment covering 2.1 ha and representing a quarter of 

the 164-m radius circle (the two clearcuts were opposite of each other). Drift fences (10 

m long, 60 cm tall, and buried 30 cm in the ground) and associated pitfall traps were 

erected at four distances from the experimental pools: 16.6, 50, 100, and 150 m (1, 3, 6, 

and 9 fences, respectively in each treatment). Drift fences were placed in a circular 

manner around the breeding pools, and covered 38% of the circumference at each 
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distance. In addition, the experimental pools were 100% encircled by drift fence (see 

Patrick et al. 2006 for more details on the experimental design).   

This study was conducted in 2008 and 2009, representing 5 and 6 years post-

harvesting, respectively. I monitored the drift fences by checking them every other day 

during the emergence and emigration season of juvenile L. sylvaticus: 30 June – 15 

September 2008, and 30 June – 28 August 2009. Animals captured at the pool fence were 

marked with a single toe-clip representing the day of emergence. Animals recaptured in 

the upland at distances 16.6 – 150 m were tagged using 2.5 x 1 mm Visible Implant 

Alpha Tags (Northwest Marine Technologies, Shaw Island, WA), and released on the 

other side of the fence. I was able to mark the entire cohort of juvenile L. sylvaticus 

emerging from the pools, and individual marks of recaptured animals allowed us 

avoiding double-counting, and correctly assess the choice of silvicultural treatment 

during emigration. In addition, I captured juvenile L. sylvaticus that emerged from pools 

outside the experimental sites, and used the silvicultural treatments during their 

emigration movements. 

I characterized the microclimate of three clearcut microhabitat treatments based 

on the presence and height of woody regeneration: (1) herbaceous, (2) shrub (<1 m in 

height), and (3) sapling (1 – 4 m in height), as well as a closed-canopy forest, used as a 

control. I described tree species composition and quantified stem density for all stems 

>25 cm in height and up to 5 cm diameter at breast height (DBH) in the sapling and shrub 

treatments using 10-m2 plots. I characterized species composition and stem density, 

percent canopy cover, and tree height in the forested treatment using 250-m2 plots. 

Percent canopy cover was measured using a densiometer (Moosehorn CoverScopes, 
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Medford OR). I took five sightings at 2-m intervals on four transects radiating from the 

center of the plot for a total of 40 measurements at each location in the forested 

treatment. For the herbaceous treatment, I estimated the percent ground cover of 

vegetation (herbaceous and woody stems <25 cm in height) to the nearest 5% on 10-m2 

plots. 

The vegetation in the herbaceous treatment was dominated by Poaceae and 

bracken fern (Pteridium aquilinum) but also included various low shrubs such as 

blueberry (Vaccinium angustifolium) and bristly sarsaparilla (Aralia hispida). The shrub 

plots were dominated by gray birch (Betula populifolia) and Rubus spp., while the 

sapling plots were dominated by big-tooth aspen (Populus grandidentata) and red maple 

(Acer rubrum). The closed-canopy forest was 60-80 years old, and the vegetation 

composition included mainly balsam fir (Abies balsamea), eastern white pine (Pinus 

strobus), northern white-cedar (Thuja occidentalis), red maple (Acer rubrum), and 

eastern hemlock (Tsuga canadensis). All forested locations had >90% canopy cover 

(Table 4.1), and no regeneration >4 m in height was present in the herbaceous, shrub, and 

sapling microhabitats. 

 
Table 4.1. Vegetation and habitat structure of four microhabitats sampled in 2008 and 
2009. 
 

Treatment 

Total stem 

density 

(stems/ha) 

Density of 

stems >2.54 

cm diameter 

(stems/ha) 

Tree 

height 

(m) 

Canopy 

cover 

(%) 

Ground cover (%) 

Moss Herbaceous 

Forest 4693 4693 >15 90.6 10.7 0 
Sapling 30750 5370 <4 0 3.8 18.1 
Shrub 46500 0 <1 0 32.5 20.2 

Herbaceous 0 0 0 0 12.5 77.6 
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The three microhabitat treatments were represented in different proportions at the 

experimental sites. I quantified the extent of each microhabitat using 2007 and 2009 1-m 

resolution aerial imagery (U.S. Department of Agriculture – National Agricultural 

Inventory Project, www.fsa.usda.gov) in ArcGIS 9.3 (ESRI, Redlands, CA). Due to 

substantial vegetation regrowth , the herbaceous microhabitat had the smallest extent, 

covering approximately 10% of the study sites (range = 6 – 18%)  The shrub microhabitat 

covered the most area, amounting to 53% (range = 46 – 63%), while the sapling 

treatment comprised the remaining 37% (range = 28 – 47%) of the regenerated clearcuts. 

The two sampling seasons were different in their weather patterns, with the 2009 

season cooler and wetter overall (Appendix D, www.ncdc.noaa.gov). The average July 

temperature was higher in 2008 (1.8°C above normal) compared to 2009 (3.8°C below 

normal). August temperatures showed an inverse relation, with a lower average in 2008 

(2.8°C below normal) compared to 2009 (0.9°C above normal). Maximum daily 

temperatures >30°C were recorded for 3 and 5 days of the sampling 2008 and 2009 

seasons, respectively (the highest temperature was 33.3°C on 18 August 2009, Appendix 

D). Precipitation was consistently higher during July in both 2008 and 2009 (30.2 mm 

and 60.2 mm above normal, respectively) compared with August (26.7 mm and 7.6 mm 

below normal, respectively). 

 

Microclimate measurements 

During both study years, I placed temperature and humidity data loggers (iButton, 

Maxim Integrated Products, Sunnyvale CA) in the three clearcut microhabitats and the 

forested control. All sampling locations were located >30 m away from forest edges to 
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minimize edge effects on microclimate (Murcia 1995). In each microhabitat at each of the 

four experimental sites I randomly placed paired data loggers at soil level (within the leaf 

litter layer, above ground – AG) and at refugia (under coarse woody debris – CWD). 

Then, using a random direction and distance (within 15 m) from the first location, I 

placed another pair, in similar habitat conditions, for a total of 32 survey locations (4 

study sites x 4 microhabitats x 2 locations) and 64 data loggers. Because Brooks and 

Kyker-Snowman (2008) found that relative humidity at refugia locations (similar to our 

CWD treatment) was always approximately 100%, I decided to measure only temperature 

at all CWD locations using Thermochron® data loggers. I measured both temperature and 

relative humidity at half of the AG locations (16 Hygrochron® data loggers) and 

temperature only at the other half. Hourly data were recorded between 28 June and 31 

August 2008 (65 days) and 26 June and 31 August 2009 (67 days), encompassing the 

emergence and emigration season of newly metamorphosed L. sylvaticus. 

 

Locomotor performance experiment 

In 2009, I collected egg masses from roadside ditches located on the University of 

Maine forests. Animals were hatched in plastic wading pools, and reared to 

metamorphosis in 1500-l cattle tank mesocosms stocked with plankton from natural 

vernal pools, and dry leaflitter (Kiesecker and Skelly 2001). The tanks were covered with 

shade cloth and placed in closed-canopy conditions to prevent high water temperatures. 

Water level was maintained by rainfall, which was above the long-term normal for the 

period of the study. I measured water temperature by placing data loggers in cattle tanks, 

halfway in the water column. The water temperature steadily increased from 8°C on 4 
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May (when animals were added to mesocosm) to a maximum of 22.5°C on 30 July (the 

last week of emergence), and were subject to diel and seasonal variations (Appendix E). 

When the animals reached the final metamorphosing stage (46 Gosner, Gosner 1960), I 

added them to terrariums with moist leaf litter (for two days prior to the beginning of the 

experiment) located in an outdoor shed under closed-canopy. 

I chose to use animals reared outdoors in semi-natural conditions, subject to 

seasonal and diel fluctuations in water temperature, rather than laboratory-rearing at 

constant temperatures for the following reasons: (1) the locomotor capacity on land is 

more likely to be influenced by fluctuating conditions, which “prepare” animals for more 

extreme temperatures than the ones experienced in the aquatic stage (Huey et al. 1999); 

(2) constant experimental temperatures tend to yield misleading conclusions about the 

occurrence of acclimatory performance responses (Šamajová and Gvoždík 2010); and (3) 

I wanted to integrate locomotor performance with field temperatures, which can be 

subject to extreme fluctuations during the emigration season (summer). 

I investigated the locomotor performance of newly metamorphosed L. sylvaticus 

at four temperatures within the thermal tolerance of ranid frogs (Rome et al. 1992), which 

were likely to be experienced in the field during emergence and emigration: 15, 20, 25, 

and 30°C. I performed the experiment on 4 August (n = 17 animals) and 6 August 2009 

(n = 19 animals) between 10:00 and 16:00 EST. I removed the animals from terrariums 

two hours prior to the beginning of the experiment, and transported them to an indoor 

experimental facility at the University of Maine. Animals achieved the desired body 

temperature by transferring them to a cylindrical plastic vial (5.5 cm tall and 3.5 cm in 

diameter) with holes to ensure water mixing and lids to prevent escaping, and immersing 
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the lower ¾ of the vial in 10-l water baths. I prepared one water bath for each of the four 

experimental temperatures and monitored temperature using a MicroTherma 2 type-T 

thermocouple (ThermoWorks, Lindon UT) by inserting the tip of the probe (accuracy = 

±0.1°C) in selected vials every 5-10 minutes. 

I built two 300 x 70 cm rectangular experimental arenas using 1.5 cm-thick 

corrugated cardboard with 40 cm tall side walls. Experimental animals were placed at one 

end of the arena and allowed to jump five times (Alvarez and Nicieza 2002). Each jump 

was marked on the cardboard arena using an erasable pen; if animals did not move, I 

gently tapped their urostyle with a pen (Tejedo et al. 2000). I assessed the locomotor 

performance using two measures: (1) average length of the five consecutive jumps, and 

(2) maximum jump length (Alvarez and Nicieza 2002). Because differences in body size 

affect jumping ability (i.e., larger frogs jump farther than smaller frogs), I rescaled the 

two jumping measures by body size (snout-vent length, SVL). Thus, I expressed the 

jumping ability in body lengths jumped (BL index), rather than absolute jump lengths. 

Each animal was used in five successive trials; the first and last were conducted at 

20°C to test whether or not the multiple trials affected the locomotor performance (Huey 

and Stevenson 1979). After the first trial, I haphazardly assigned the animals to the other 

treatments. The duration of each trial was <10 seconds, and animals were allowed to rest 

for 1 hour between trials. I conducted the trials in two separate rooms in order to 

minimize the change in frog body temperature by exposure to ambient air temperature: 

(1) trials for 15, 20 and 25°C treatments were conducted at 20.5°C air temperature and 

(2) trials for and 30°C were conducted at 27°C air temperature. To determine the change 

in frog body temperature during trials, I measured the cloacal temperature of randomly 



97 
 

selected animals (n = 10 for each treatment) before and after the trial, using a 1-cm blunt-

tip needle thermocouple microprobe (accuracy = ±0.1°C, ThermoWorks, Lindon UT). I 

measured the snout-vent length (SVL) and hind limb length for all animals using a dial 

caliper (accuracy = 0.1 mm). 

 

Performance of juvenile wood frogs relative to field temperatures 

I built a performance curve for juvenile wood frogs using the BL index derived 

from the mean jump lengths recorded in the locomotion experiment. I averaged the BL 

index across all experimental animals for each of the four temperatures, and calculated a 

performance index (PI) for each temperature (15, 20, 25, and 30°C) by dividing the mean 

BL index for that respective temperature by the maximum of four mean values. I 

obtained a performance curve for juvenile wood frogs in the temperature range 15 – 30°C 

by fitting a second-order polynomial model (Equation 1) to the PI data. 

PI = –0.0013*Temperature
2
 + 0.063*Temperature + 0.049 (Eq. 1) 

 

I then calculated PI values for the hourly temperatures recorded in the field (at 

AG locations only) to assess whether or not juvenile wood frogs operate at their optimal 

performance in the four microhabitats, and whether or not the differences in temperatures 

recorded in the field translate into differences in performance during the emigration 

season. Because some of the recorded field temperatures were higher than the maximum 

temperature at which frogs were tested for locomotor performance, I allocated a PI value 

of zero to any recorded AG field temperatures >30°C. Assuming that the frogs were 

incapacitated at temperatures >30°C is more defensible than extrapolating Eq. 1 for two 
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reasons: (1) prior knowledge on the critical thermal maximum (CTM) for L. sylvaticus 

(34.8°C, Brattstrom 1963), which was close to the highest experimental temperature, and 

(2) some of our experimental animals showed a lower performance (i.e., shorter jumps) 

when exposed to 30°C, compared to 25°C. 

 

Statistical analyses 

Habitat use by emigrating juveniles. I tested the differences in silvicultural 

treatment use by L. sylvaticus emerging from the experimental polls and emigrating into 

the upland in 2008 using a ANOVA with the number of recaptures as the dependent 

variable and treatment and site as factors. Due to recruitment failure, only one pool 

produced animals in the subsequent year, and I was not able to analyze the 2009 data. I 

transformed the response variable using a [log(x+1)] transformation to achieve normality. 

For juveniles that emerged from pools outside the experimental sites and used the 

silvicultural treatments during emigration movements, I adopted a different approach. 

Because the location of the natal pools was unknown, and this might bias the observed 

use of the silvicultural treatments (e.g., by chance alone one particular treatment would 

be used more because the natal pool was located in the immediate vicinity of that 

treatment), I contrasted the use of the forested and clearcut treatments by pooling together 

the captures across sites. I then used a G-test for goodness of fit to test whether or not the 

forests were used more than the clearcuts, under the assumption of equal use. 

Locomotor performance. I tested for differences in locomotor performance 

between the four treatments using a one-way repeated measures ANOVA. If the test 

yielded significant differences, I performed post-hoc pairwise comparisons between 
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treatments. I examined whether or not the duration of the experiment affected locomotor 

performance comparing the mean jump length for the first and last trials conducted at 

20°C using a paired t-test. Significance level was α = 0.05 for all tests. 

Influence of field temperatures on performance. I investigated the overall 

differences in (1) thermal environment, (2) moisture availability and (3) temperature-

related performance of juvenile L. sylvaticus between microhabitat treatments using 

generalized linear mixed effects (GLME) models in program R version 2.11.0 (R 

Development Core Team 2010). This allowed us to include a temporal autocorrelation 

structure that dealt with time series data, as well as a variance function to model data 

heterodasticity (Pinheiro and Bates 2000). I divided each day into four time-of-day 

periods: night (12:01 – 6 AM), morning (6:01 AM – 12 PM), afternoon (12:01 – 6 PM), 

and evening (6:01 PM – 12 AM), and averaged the hourly observations data for 

temperature, relative humidity, and PI values (computed using Equation 1) across each 

period for each individual data logger to parse out diel variations (Yang et al. 2007). To 

test for differences in microclimate and wood frog performance between the four 

microhabitat treatments, I used the interaction of microhabitat treatment and time-of-day 

as a fixed effect, and the nested time-of-day within day as a random effect (intercept). 

The autocorrelation structure consisted of a simple autoregressive function of time-of-day 

within day that expressed each observation as a linear function of previous observations 

(Pinheiro and Bates 2000). The variance was modeled using a function with different 

variances for each level of microhabitat treatment. 

For field temperatures I ran models for each location (AG and CWD) and year 

separately; for the relative humidity and temperature-related performance index I ran 
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different models for each year. Because the temperature data averaged across six hours 

did not reflect extreme changes in microclimate that could potentially adversely affect 

wood frog performance, I investigated the percent of the emigration season that AG 

temperatures reached above 25, 30, and 34.8°C, based on the hourly temperature 

recordings. 

 

Results 

A total of 3133 juvenile L. sylvaticus emerged from three experimental pools in 

2008, of which 392 were recaptured into the upland habitat (n = 294 in the forested 

treatments; n = 98 in the clearcuts). The four silvicultural treatments differed significantly 

in the number of recaptures in 2008 (F3,36 = 12.935, p-value <0.001). Post hoc 

comparisons revealed significantly more captures in the forested treatments (partial cut 

and control) compared to the clearcuts (p-value <0.001). There was no difference 

between the control and the partial cut, as well as between the two clearcut treatments (p-

value >0.25). Only 95 animals emerged from one pool in 2009, of which seven were 

recaptured in the forested and only one in the clearcut treatments. 

Juvenile L. sylvaticus that emerged from pools outside the experimental sites and 

were captured in the silvicultural treatments showed a significantly higher use of the 

forests compared to the clearcuts (2008: 749 captures in forest and 280 in clearcuts; 2009: 

149 captures in forest and 48 in clearcuts; G-test, p-value <0.001 for both years). 
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Locomotor performance 

Temperature affected the locomotor performance of juvenile L. sylvaticus (one-

way repeated measures ANOVA, F3,33 = 27.072, p-value < 0.001). The body length index 

(BLI) representing the ratio between jump length and SVL was greatest at 25°C and 30°C 

(Figure 4.1). Performance at these temperatures was significantly higher than in the 20°C 

treatment (p-value = 0.008). Locomotor performance of juvenile wood frogs was lowest 

at 15°C, with a significantly smaller BLI compared to the 20°C treatment (p-value 

<0.001) (Figure 4.1). BLI derived from the maximum jump length followed the same 

pattern as the mean jump length (15°C < 20°C < 25°C = 30°C). There was no difference 

in the BLI between the first and last trial conducted at 20°C (paired t-test, p-value = 

0.317), suggesting that the duration of the experiment did not affect the locomotor 

performance of juveniles.  

The average body size was 18.1 ± 0.2 cm and it was strongly correlated with hind 

limb length (29.7 ± 0.3 cm) (Pearson r = 0.934). Mean and maximum jump length were 

correlated with hind leg length and body size for all temperatures (Pearson r = 0.48 – 

0.74, p-value <0.01 for all pairwise correlations). I found only a small change in body 

temperature towards the room temperature of experimental animals during the trials. The 

largest change occurred for animals in the 30°C treatment (mean = 0.17°C) and the 

smallest for the 20°C treatment (mean = 0.05°C). 
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Figure 4.1. Jumping performance of juvenile wood frogs exposed to four temperatures. 
Body Length Index represents the ratio between mean (squares) and maximum (circles) 
jump length and body length (SVL) (error bars are 95% CI). 

 

Microclimate of forest and regenerated clearcuts during emigration season 

I found significant differences in the thermal characteristics of the forested and 

the clearcut microhabitat treatments, as well as between herbaceous and young woody 

regeneration (shrub and sapling), manifested mainly during afternoon hours. Mean 

afternoon AG temperatures in the forest were lower than each of the other treatments in 

both years, but these differences were larger in 2008 compared to 2009 (Figure 4.2). In 

2008, the herbaceous treatment was in average 7.2°C warmer than the forest and 2.3 – 

2.7°C warmer than the sapling and shrub treatments, respectively, during afternoon hours 
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(Figure 4.2a). In 2009, these differences amounted to only 3.3, 1.7, and 0.7°C, 

respectively (Figure 4.2b). There was no difference in temperature between the shrubs 

and saplings at any time of day during both years. Night temperatures in the four 

treatments were within 1°C in both years. 

Potentially lethal temperatures were recorded at AG locations in all treatments 

during both years, but temperatures >30°C were relatively common only in the 

herbaceous microhabitat (11.3% of the time in 2008, Table 4.2). Above-ground 

temperatures rarely reached the CTM for wood frogs during the 2009 emigration season 

(0.3 – 1.8% of the season). 

Coarse woody debris mitigated the effects of clearcutting on microclimate. There 

were still differences between the herbaceous and the forested treatments during 

afternoon hours – 4.1°C in 2008 and 2.9°C in 2009 – but at a lower overall temperature 

(Figure 4.2). Nighttime temperatures at CWD locations were slightly higher than the AG 

locations in the clearcut microhabitats. 

Differences in moisture availability between the four microhabitats, expressed by 

relative humidity measurements, were evident during afternoon hours, but only in 2008. 

The herbaceous treatment had the lowest average relative humidity (Figure 4.3a), while 

the forested, shrub and sapling microhabitats had similar, high average moisture 

availability during both years (>90%, Figure 4.3a, b). 
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a)  

 

b)  

Figure 4.2. Average predicted afternoon (squares) and night (diamonds) field 
temperatures at above ground (solid symbols) and under CWD (empty symbols) 
locations; error bars are 95% confidence intervals; note the difference in Y-axis scale 
between 2008 and 2009. 
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a)  

 

b)  

 

Figure 4.3. Average predicted afternoon (squares) and night (diamonds) field relative 
humidity at above ground locations in 2008 and 2009; error bars are 95% confidence 
intervals. 



106 
 

Table 4.2. Mean percent (± 1 SE) of juvenile wood frog emigration season in 2008 (28 
June – 31 August) and 2009 (26 June – 31 August) above three temperature thresholds 
recorded at above-ground level in forest and clearcut stands. (34.8°C is the critical 
thermal maximum [CTM] for L. sylvaticus). 
 

Habitat 
Percent of season 

>25°C >30°C >34.8°C 

     2008    

Forest 3.3 ± 1.1 0.4 ± 0.3 0.1 ± 0.0 
Sapling 10.2 ± 1.3 1.2 ± 0.3 0.1 ± 0.1 
Shrub 10.8 ± 1.8 1.8 ± 0.4 0.2 ± 1.1 
Herbaceous 25.1 ± 1.7 11.3 ± 1.5 5.0 ± 0.9 
    
     2009    
Forest 2.1 ± 2.5 0.3 ± 0.3 0.1 ± 0.1 
Sapling 4.7 ± 1.5 0.4 ± 0.3 0.1 ± 0.0 
Shrub 7.2 ± 3.2 1.8 ± 1.4 0.4 ± 0.4 
Herbaceous 8.6 ± 2.7 1.4 ± 1.0 0.4 ± 0.4 

 

Microhabitat suitability - integrating field temperatures and performance 

The average performance (PI) of juvenile wood frogs at the lowest experimental 

temperature (15°C) was 0.75 of the maximum performance (recorded at 30°C); within 

this temperature range, the trend was non-linear (Figure 4.4). Microhabitat suitability was 

highest (PI >0.9) in the shrub and sapling microhabitats during afternoon hours, but 

differences between microhabitats were generally small (∆PI <0.1 for each time of day 

separately) (Figure 4.5). The only significant difference in suitability occurred during 

2008, when the herbaceous treatment had a potentially negative effect on overall juvenile 

performance (Figure 4.5a), mainly as a result of high afternoon temperatures at ground 

level (Table 4.2). For each time of day, suitability was similar across microhabitats in 

2009 (Figure 4.5b). The smaller differences between microhabitats (∆PI <0.03) were 

recorded during evening and night, as a result of similar microclimate conditions across 

the experimental sites (Figure 4.5). 
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Figure 4.4. Performance index of juvenile wood frogs at temperatures between 15 and 
30°C derived from the locomotion experiment. 
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a)  

b)  

 

Figure 4.5. Predicted suitability of four microhabitat treatments based on the average 
performance of juvenile wood frogs during the emigration season (end June – end 
August) in 2008 and 2009. Symbols: diamond = forest; circle = herbaceous; square = 
shrubs <1 m; triangle = saplings 1-4 m. 
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Discussion 

Our study aimed to explain the avoidance of regenerated clearcut habitats by 

emigrating juvenile L. sylvaticus by relating available microclimates to physiological 

mechanisms. Despite differences in thermal and moisture conditions between the forest 

and clearcut microhabitats during afternoon hours, I found no clear evidence that 

avoidance of clearcuts is primarily a result of physiology (i.e., high temperatures and low 

moisture conditions limiting the presence of juvenile wood frogs in clearcuts). The 

presence of low shade and retained CWD in clearcuts effectively moderated temperature 

and relative humidity such that shrub, sapling, and CWD microhabitats were as suitable 

as the closed-canopy forest. 

The locomotor performance experiment showed that juvenile L. sylvaticus 

performed best at the highest temperatures tested: 25 and 30°C. Temperatures above 

30°C (which might be debilitating given the CTM for L. sylvaticus, 34.8°C) were rarely 

recorded in the closed-canopy forest and amounted to a very small proportion of the 

emigration season in the shrub and sapling microhabitats with low shade present (Table 

4.2). As a consequence, despite the differences in microclimate, habitat suitability based 

on the locomotor performance index was similar across years and microhabitat treatments 

(Figure 4.5). The only exception was the herbaceous treatment in 2008, which was 

overall less suitable during afternoon (25% of the season). Moisture availability was 

similar across all microhabitats, except for the herbaceous treatment, which was 

consistently drier during daytime, but only in 2008 (Figure 4.3). 

The afternoon ground-level temperatures in the regenerated microhabitats (shrubs 

and saplings) were alleviated by the presence of low shade. These treatments were only 
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approximately 3°C warmer than the closed-canopy forest (Figure 4.2), and covered 

approximately 80% of the studied clearcuts. Higher ground-level temperatures were 

recorded in both years in the herbaceous treatment during afternoon hours, and these 

differences were more substantial in 2008 than in 2009 (Figure 4.2). The 2009 season in 

particular was characterized by cool temperatures and consistent rainfall. Despite the 

small average differences in the thermal and moisture characteristics (0.7 – 3.3°C [Figure 

4.2], and <5%, relative humidity [Figure 4.3], respectively) of our treatments in 2009, the 

observed patterns of habitat use by juvenile L. sylvaticus in relation to clearcuts did not 

reflect habitat selection based on performance. Emigrating L. sylvaticus selected for 

forested habitat over clearcuts during both years of study. This supports our hypothesis 

that temperatures are not likely to be a limiting factor in our study area, unlike in 

drier/warmer parts of the species range (Rittenhouse et al. 2008). In fact, the similarity of 

PI in the forested and clearcut microhabitats (except herbaceous in 2008, Figure 4.5) and 

the discrepancy between the field temperatures and PI values suggests that in our system 

wood frogs might be “heat-starved”, and rarely attain their optimal body temperature. 

This finding has implications for conservation strategies based on the mitigation of 

microclimate by vegetative succession.  

Our results suggest that emigrating juvenile wood frogs do not tend to select 

habitats primarily due to their microclimatic characteristics. Other factors, such as 

structural attributes of the vegetation, risk of predation, and food availability are likely to 

influence the distribution of juvenile wood frogs in relation to disturbance. For example, 

in a parallel study (Popescu and Hunter in press) found that  L. sylvaticus emigrating 

juveniles preferred and settled in a 20-year-old stand (>90% canopy cover and an average 
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height of 9.2 m), but actively avoided a 11-year-old stand (averaging 3.8 m in height and 

lacking continuous canopy cover) even though they had similar microclimates. One 

explanation for the avoidance of younger stands might also involve the physical 

resistance of vegetation to movements. Vegetation was dense in all regeneration 

treatments (Table 4.1) and a study of habitat permeability to movements of various land 

cover types showed that juvenile wood frogs moved less frequently and over shorter 

distances in hayfields that were not mowed (with dense and >0.5 m tall grasses) 

compared to mowed hayfields and lawns (B.B. Cline, unpublished data).  Furthermore, 

potential predators, such as garter snakes (Thamnophis sirtalis), were common in the 

clearcuts, and predation per se or avoidance due to predation pressure could contribute to 

low wood frog abundance in clearcut habitats. Another potential factor influencing 

avoidance of young regenerated clearcuts is food availability. Because wood frog 

juveniles feed on invertebrates within the leaf litter layer, and leaf litter cover in young 

regenerating stands is generally sparse owing to rapid decomposition and limited input 

(Oliver and Larson 1996), animals might be food-limited in these stands. 

A study of habitat selection by adult L. sylvaticus conducted at the same 

experimental sites as our study found that individuals selected for warmer microhabitats 

in the forested treatments (Blomquist and Hunter 2010). The same study found that some 

adult wood frogs did not show avoidance of clearcuts and established home ranges in 1-2 

year-old clearcuts, selecting microhabitats based on moisture availability. These two lines 

of evidence suggest that: (1) animals are not physiologically stressed and seek to enhance 

their overall performance by selecting warmer microhabitats in forested conditions, and 

(2) suitable clearcut microhabitats are available at our experimental sites during summer. 
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Higher use of open habitats by L. sylvaticus was also observed in other northern locations 

of the species range (e.g., central Alberta, Canada, C.A. Paszkowski, personal 

communication). Such findings might be explained by the genetic adaptation of thermal 

sensitivity to varied thermal environments, observed for other species with large 

geographic distributions (Wilson 2001). For example, juvenile striped marsh frogs 

(Limnodynastes peronii) from cooler-temperate environments jumped farther at lower 

temperatures, compared to animals from warmer-tropical parts of the range (Wilson 

2001). 

The herbaceous microhabitat was the only treatment that consistently differed 

from the forested and regenerated treatments in both temperature and moisture 

availability, but only during afternoon hours. High temperatures and lower moisture 

conditions during daytime substantially lowered the suitability of this treatment to wood 

frog movements and settling (sensu (Patrick et al. 2008)). These conditions are likely to 

be characteristic of the microclimate in clearcuts immediately post-harvesting (1 – 2 

years), before woody regeneration becomes reestablished. However, the herbaceous 

treatment was poorly represented at our sites after 5 – 6 years of natural vegetative 

succession. These conditions should have provided good quality habitat for movements, 

especially when considering the abundant CWD retained in our treatments (Patrick et al. 

2006), which provided moist cool conditions during daytime (Figure 4.2). Nighttime 

humidity and temperature conditions were similar across all treatments (Figures 4.2, 4.3) 

and given that emigration movements of juvenile amphibians occur during nighttime and 

are usually associated with rain events (Semlitsch 1985), extreme daytime microclimate 

alone cannot explain the avoidance of regenerated clearcuts. Furthermore, despite 
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mitigation of microclimate by vegetative succession, the effects of clearcutting on 

amphibian distribution and abundance are long-lasting ((Petranka et al. 1993, Ash 1997, 

Karraker and Welsh 2006, Homyack and Haas 2009), but see (Chazal and Niewiarowski 

1998)).  

One of the limitations of our study is that I did not account for the effects of 

dehydration, as I tested only fully hydrated animals. Moisture and temperature interact to 

determine performance in terrestrial anurans (Preest and Pough 1989). Although highly 

sensitive to desiccation (Schmid 1965), anurans are able to tolerate certain levels of water 

loss (e.g., 20% of body mass (Gatten and Clark 1989, Moore and Gatten 1989)). 

Experimental evidence suggests that the risk of dehydration is considerably greater in 

clearcut habitats and dry forests compared to moist forest conditions (Rothermel and 

Semlitsch 2002, Rothermel and Luhring 2005, Rittenhouse et al. 2008). However, these 

experiments were conducted using terrestrial enclosures, and did not account for the 

behavioral avoidance of open canopy habitats (Popescu and Hunter in press), as well as 

for microhabitat selection based on thermal characteristics and moisture availability 

(Lillywhite 1970, Tracy et al. 1993). For example, cane toads (Bufo marinus) and 

American toads (A. americanus) have been found to select for lower temperatures given 

low moisture conditions and for higher temperatures in humid environments, a process 

known as behavioral hypothermia (Malvin and Wood 1991, Tracy et al. 1993). Because 

moisture availability during the emigration season was not an issue in our study 

(especially in 2009), avoidance of clearcuts cannot be explained by behavioral 

hypothermia. 
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In conclusion, our study showed that microclimate cannot be used as a sole 

parameter to predict potential habitat use by amphibians. Microclimate measurements 

should be complemented by studies investigating amphibian behavior in relation to 

structural attributes of the vegetation (e.g., stand age, edges (Popescu and Hunter in 

press)), risk of predation, and food availability. Furthermore, studies aimed at identifying 

mechanisms and cues used by amphibians for orientation during movements would 

provide useful information for amphibian conservation. From a forest management 

standpoint, it is clear that practices involving complete canopy removal are not conducive 

to juvenile movements. Given that juveniles in our landscape might be heat-starved, 

partial canopy removal might actually provide better habitat and enhance juvenile 

performance by improving the microclimate conditions.  However, it is unclear what 

minimum amount of canopy cover must be retained, and thus further investigations on 

habitat use and behavior of juvenile amphibians in relation to various amounts of canopy 

cover are warranted. 

 



115 
 

REFERENCES 

 

Adler, K. 1980. Individuality in the use of orientation cues by green frogs. Animal 
Behaviour 28:413-425.  

Altwegg, R. 2003. Multistage density dependence in an amphibian. Oecologia 136:46-50. 

Alvarez, D. and A. G. Nicieza. 2002. Effects of induced variation in anuran larval 
development on postmetamorphic energy reserves and locomotion. Oecologia 
131:186-195. 

Arhipova, K. A., V. V. Borisov, V. Yuanvan, G. Danian, A. S. Kazakov, E. S. Mehova, 
K. V. Minin, O. V. Nilmaer, T. A. Skvortsov, J. A. Tretiakova, S. S. Ukolova, V. 
V. Shakhparonov, and S. V. Ogurtsov. 2005. Parameters determining the type of 
reaction to the native pond odour in juveniles of the common grass frog (Rana 

temporaria) and of the green toad (Bufo viridis). Pages 131-141  Flora and Fauna 
of the Western Part of Moscow Region. Moscow State University, Moscow. 

Ash, A. N. 1997. Disappearance and return of plethodontid salamanders to clearcut plots 
in the Southern Blue Ridge Mountains. Conservation Biology 11:983-989. 

Aubin, I., C. Messier, and A. Bouchard. 2008. Can plantations develop understory 
biological and physical attributes of naturally regenerated forests? Biological 
Conservation 141:2461-2476. 

Baldwin, R. F., A. J. K. Calhoun, and P. G. deMaynadier. 2006. Conservation planning 
for amphibian species with complex habitat requirements: a case study using 
movements and habitat selection of the wood frog Rana sylvatica. Journal of 
Herpetology 40:442-453. 

Baldwin, R. F., and P. G. deMaynadier. 2009. Assessing threats to pool-breeding 
amphibian habitat in an urbanizing landscape. Biological Conservation 142:1628-
1638. 

Bastakov, V. A. 1986. Preference by youngs-of-the-year of the edible frog (Rana 

esculenta complex) for their own reservoir ground smell. Zoologichesky Zhurnal 
65:1864 – 1868. 

Bastakov, V. A. 1992. Experimental study of the memorizing of pond odor during larval 
development of two anuran species. Zoologichesky Zhurnal 71:123 - 127. 

Bates, D. and M. Maechler. 2009. lme4: Linear mixed-effects models using S4 classes. R 
package version 0.999375-32. http://CRAN.R-project.org/package=lme4 

Batschelet, E. 1981. Circular statistics in biology. Academic Press, London. 



116 
 

Bell, G. 2001. Neutral macroecology. Science 293:2413-2418. 

Berven, K. A., and T. A. Grudzien. 1990. Dispersal in the wood frog (Rana sylvatica): 
implications for genetic population structure. Evolution 44:2047-2056. 

Birchfield, G. L., and J. E. Deters. 2005. Movement paths of displaced northern green 
frogs (Rana clamitans melanota). Southeastern Naturalist 4:63-76. 

Blomquist, S. M., and M. L. Hunter. 2010. A multi-scale assessment of amphibian habitat 
selection: wood frog response to timber harvesting. Ecoscience 17:251-264. 

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, 
and J.-S. S. White. 2009. Generalized linear mixed models: a practical guide for 
ecology and evolution. Trends in Ecology & Evolution 24:127-135. 

Brattstrom, B. H. 1963. A preliminary review of the thermal requirements of amphibians. 
Ecology 44:238-255. 

Brooks, R. T., and T. D. Kyker-Snowman. 2008. Forest floor temperature and relative 
humidity following timber harvesting in southern New England, USA. Forest 
Ecology and Management 254:65-73. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multi-model inference. 
2nd edition. Springer, Berlin. 

Calhoun, A. J. K., and P. G. deMaynadier. 2004. Forestry habitat management guidelines 
for vernal pool wildlife. Metropolitan Conservation Alliance, Wildlife 
Conservation Society, Bronx, New York. 

Calhoun, A. J. K. and P. G. deMaynadier. 2007. Science and conservation of vernal 
pools. CRC Press, Boca Raton. 

Calhoun, A. J. K., N. A. Miller, and M. W. Klemens. 2005. Conserving pool-breeding 
amphibians in human-dominated landscapes through local implementation of Best 
Development Practices. Wetlands Ecology and Management 13:291-304. 

Campbell, S. P., J. W. Witham, and M. L. Hunter. 2010. Stochasticity as an alternative to 
deterministic explanations for patterns of habitat use by birds. Ecological 
Monographs 80:287-302. 

Carlson, D. W. and A. Groot. 1997. Microclimate of clear-cut, forest interior, and small 
openings in trembling aspen forest. Agricultural and Forest Meteorology 87:313-
329. 

Chan-McLeod, A. C. A. 2003. Factors affecting the permeability of clearcuts to red-
legged frogs. Journal of Wildlife Management 67:663-671. 



117 
 

Chazal, A. C., and P. H. Niewiarowski. 1998. Responses of mole salamanders to 
clearcutting: using field experiments in forest management. Ecological 
Applications 8:1133-1143. 

Chelgren, N. D., D. K. Rosenberg, S. S. Heppell, and A. I. Gitelman. 2006. Carryover 
aquatic effects on survival of metamorphic frogs during pond emigration. 
Ecological Applications 16:250-261. 

Chen, J., J. F. Franklin, and T. A. Spies. 1993. Contrasting microclimates among clearcut, 
edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest 
Meteorology 63:219-237. 

Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. 
Brookshire, and J. F. Franklin. 1999. Microclimate in forest ecosystem and 
landscape ecology. BioScience 49:288-297. 

Compton, B. W., K. McGarigal, S. A. Cushman, and L. R. Gamble. 2007. A resistant-
kernel model of connectivity for amphibians that breed in vernal pools. 
Conservation Biology 21:788-799. 

Cushman, S. A. 2006. Effects of habitat loss and fragmentation on amphibians: A review 
and prospectus. Biological Conservation 128:231-240. 

Dall'antonia, P., and U. Sinsch. 2001. In search of water: orientation behaviour of 
dehydrated natterjack toads, Bufo calamita. Animal Behaviour 61:617-629. 

Davis, J. M., and J. A. Stamps. 2004. The effect of natal experience on habitat 
preferences. Trends in Ecology & Evolution 19:411-416. 

deMaynadier, P. G. and M. L. Hunter. 1995. The relationship between forest 
management and amphibian ecology: a review of the North American literature. 
Environmental Reviews 3:230-261. 

deMaynadier, P.G., and M. L. Hunter. 1998. Effects of silvicultural edges on the 
distribution and abundance of amphibians in Maine. Conservation Biology 
12:340-352. 

Diego-Rasilla, J. and R. Luengo. 2002. Celestial orientation in the marbled newt 
(Triturus marmoratus). Journal of Ethology 20:137-141. 

Doak, D. F., P. C. Marino, and P. M. Kareiva. 1992. Spatial scale mediates the influence 
of habitat fragmentation on dispersal success: Implications for conservation. 
Theoretical Population Biology 41:315-336. 

Eggert, C. 2002. Use of fluorescent pigments and implantable transmitters to track a 
fossorial toad (Pelobates fuscus). Herpetological Journal 12:69-74. 



118 
 

Ewers, R. M., and R. K. Didham. 2006. Confounding factors in the detection of species 
responses to habitat fragmentation. Biological Reviews 81:117-142. 

Fahrig, L. 1992. Relative importance of spatial and temporal scales in a patchy 
environment. Theoretical Population Biology 41:300-314. 

Ferguson, D. E. 1971. The sensory basis of orientation in amphibians. Annals of the New 
York Academy of Sciences 188:30-36. 

Fisher, N. I. 1993. Statistical analysis of circular data. Cambridge University Press, New 
York. 

Forester, D. C. and A. Wisnieski. 1991. The significance of airborne olfactory cues to the 
recognition of home area by the dart-poison frog Dendrobates pumilio. Journal of 
Herpetology 25:502-504. 

Gatten, R. E., Jr. and R. M. Clark. 1989. Locomotor performance of hydrated and 
dehydrated frogs: recovery following exhaustive exercise. Copeia 1989:451-455. 

Gibbs, J. P. 1998. Amphibian movements in response to forest edges, roads, and 
streambeds in Southern New England. The Journal of Wildlife Management 
62:584-589. 

Goodyear, C. P. and R. Altig. 1971. Orientation of bullfrogs (Rana catesbeiana) during 
metamorphosis. Copeia 1971:362-364. 

Gosner, K. L. 1960. A simplified key for staging anuran embryos and larvae with notes 
on identification. Herpetologica 16 183-190. 

Graeter, G. J., B. B. Rothermel, and J. W. Gibbons. 2008. Habitat selection and 
movement of pond-breeding amphibians in experimentally fragmented pine 
forests. Journal of Wildlife Management 72:473-482. 

Grubb, J. C. 1973. Olfactory orientation in Bufo woodhousei fowleri, Pseudacris clarki 
and Pseudacris streckeri. Animal Behaviour 21:726-732. 

Haila, Y., A. O. Nicholls, I. K. Hanski, and S. Raivio. 1996. Stochasticity in bird habitat 
selection: year-to-year changes in territory locations in a boreal forest bird 
assemblage. Oikos 76:536-552. 

Halverson, M. A., D. K. Skelly, J. M. Kiesecker, and L. K. Freidenburg. 2003. Forest 
mediated light regime linked to amphibian distribution and performance. 
Oecologia 134:360-364. 

Harper, E. B., and R. D. Semlitsch. 2007. Density dependence in the terrestrial life 
history stage of two anurans. Oecologia 153:879-889.  



119 
 

Hepper, P. G. and B. Waldman. 1992. Embryonic olfactory learning in frogs. The 
Quarterly Journal of Experimental Psychology Section B: Comparative and 
Physiological Psychology 44:179 - 197. 

Hershey, J. L. and D. C. Forester. 1980. Sensory orientation in Notophthalmus v. 

viridescens (Amphibia: Salamandridae). Canadian Journal of Zoology 58:266–
276. 

Hill, J. K., and K.C. Hamer. 2004. Determining impacts of habitat modification on 
diversity of tropical forest fauna: the importance of spatial scale. Journal of 
Applied Ecology 41:744-754. 

Homan, R. N., B. S. Windmiller, and J. M. Reed. 2004. Critical thresholds associated 
with habitat loss for two vernal pool-breeding amphibians. Ecological 
Applications 14:1547-1553. 

Homan, R. N., M. A. Atwood, A. J. Dunkle, and S. B. Karr. 2010. Movement orientation 
by adult and juvenile wood frogs (Rana sylvatica) and american toads (Bufo 

americanus) over multiple years. Herpetological Conservation and Biology 5:64-
72. 

Homyack, J. A. and C. A. Haas. 2009. Long-term effects of experimental forest 
harvesting on abundance and reproductive demography of terrestrial salamanders. 
Biological Conservation 142:110-121. 

Huey, R. B. 1991. Physiological consequences of habitat selection. The American 
Naturalist 137:S91-S115. 

Huey, R. B., D. Berrigan, G. W. Gilchrist, and J. C. Herron. 1999. Testing the adaptive 
significance of acclimation: A strong inference approach. American Zoologist 
39:323-336. 

Huey, R. B., and R. D. Stevenson. 1979. Integrating thermal physiology and ecology of 
ectotherms: a discussion of approaches. American Zoologist 19:357-366. 

Hunter, M. L., and F. A. Schmiegelow. 2010. Wildlife, forests and forestry: Principles of 
managing forests for biological diversity, Second edn. Prentice Hall, New Jersey. 

Jaeger, R. G., J. A. Wicknick, M. R. Griffis, and C. D. Anthony. 1995. Socioecology of a 
terrestrial calamander: juveniles enter adult territories during stressful foraging 
periods. Ecology 76:533-543. 

Janin, A., J.-P. Léna, N. Ray, Delacourt, P. Allemand, and P. Joly. 2009. Assessing 
landscape connectivity with calibrated cost-distance modelling: predicting 
common toad distribution in a context of spreading agriculture. Journal of 
Applied Ecology 46:833-841. 



120 
 

Jenkins, C. L., K. McGarigal, and B. C. Timm. 2006. Orientation of movements and 
habitat selection in a spatially structured population of Marbled Salamanders 
(Ambystoma opacum). Journal of Herpetology 40:240-248. 

Joly, P. and C. Miaud. 1993. How does a newt find its pond? The role of chemical cues in 
migrating newts (Triturus alpestris). Ethology, Ecology and Evolution 5:447-455. 

Joly, P., M. Claire, and A. Cohas. 2003. Habitat fragmentation and amphibian 
conservation: building a tool for assessing landscape matrix connectivity. 
Comptes rendus Biologies 326:132-139. 

Karraker, N. E., and H. H. J. Welsh. 2006. Long-term impacts of even-aged timber 
management on abundance and body condition of terrestrial amphibians in 
Northwestern California. Biological Conservation 131:132-140. 

Karraker, N. E., and J. P. Gibbs. 2009. Amphibian production in forested landscapes in 
relation to wetland hydroperiod: A case study of vernal pools and beaver ponds. 
Biological Conservation 142:2293–2302. 

Keenan, R. J., and J. P. Kimmins. 1993. The ecological effects of clear-cutting. 
Environmental Reviews 1:121-144. 

Kiesecker, J. M., and D. K. Skelly. 2001. Effects of disease and pond drying on gray tree 
frog growth, development, and survival. Ecology 82:1956-1963. 

Korfel, C. A., W. J. Mitsch, T. E. Hetherington, and J. J. Mack. 2010. Hydrology, 
physiochemistry, and amphibians in natural and created vernal pool wetlands. 
Restoration Ecology 18:843-854. 

Laan, R., and B. Verboom. 1990. Effects of pool size and isolation of amphibian 
communities. Biological Conservation 54:251-262. 

Lillywhite, H. B. 1970. Behavioral temperature regulation in the bullfrog, Rana 

catesbeiana. Copeia 1970:158-168. 

Lindenmayer, D. B. 2009. Forest wildlife management and conservation. Annals of the 
New York Academy of Sciences 1162:284-310. 

Lindenmayer, D. B., J. F. Franklin, and J. Fischer. 2006. General management principles 
and a checklist of strategies to guide forest biodiversity conservation. Biological 
Conservation 131:433-445. 

Lindenmayer, D. B., and R. J. Hobbs. 2004. Fauna conservation in Australian plantation 
forests – a review. Biological Conservation 119:151-168. 

Liu, W., C. Song, T. A. Schroeder, and W. B. Cohen. 2008. Predicting forest successional 
stages using multitemporal Landsat imagery with forest inventory and analysis 
data. International Journal of Remote Sensing 29:3855-3872. 



121 
 

Lund, U. and C. Agostinelli. 2007. circular: Circular Statistics. R package version 0.3-8. 

Malvin, G. M., and S. C. Wood. 1991. Behavioral thermoregulation of the toad, Bufo 

marinus: effects of air humidity. Journal of Experimental Zoology 258:322-326. 

Marsh, D. M. 2001. Fluctuations in amphibian populations: a meta-analysis. Biological 
Conservation 101:327-335. 

Marsh, D. M., and P. C. Trenham. 2001. Metapopulation dynamics and amphibian 
conservation. Conservation Biology 15:40-49. 

May, R. M. 1973. Stability in randomly fluctuating versus deterministic environments. 
The American Naturalist 107:621-650. 

McGregor, J. H. and W. R. Teska. 1989. Olfaction as an orientation mechanism in 
migrating Ambystoma maculatum. Copeia 1989:779-781. 

McRae, B. H. 2006. Isolation by resistance. Evolution 60:1551-1561. 

Miaud, C., J. Sérandour, R. Martin, and N. Pidancier. 2003. Preliminary results on the 
genetic control of dispersal in common frog Rana temporaria froglets. Pages 193-
197 in Herpetologia Petropolitana: Proceedings of the 12th Ordinary Meeting of 
Societas Europaea Herpetologica. Russian Journal of Herpetology, St. Petersburg. 

Moore, F. R. and R. E. Gatten. 1989. Locomotor performance of hydrated, dehydrated, 
and osmotically stressed anuran amphibians. Herpetologica 45:101-110. 

Mousseau, T. A., B. Sinervo, and J. Endler. 2000. Adaptative genetic variation in the 
wild. Oxford University Press, Oxford, USA. 

Murcia, C. 1995. Edge effects in fragmented forests: implications for conservation. 
Trends in Ecology & Evolution 10:58-62. 

Newman, R.A., and T. Squire. 2001. Microsatellite variation and fine-scale population 
structure in the wood frog (Rana sylvatica). Molecular Ecology 10:1087-1100. 

Newton, M., E. C. Cole, D. E. White, and M. L. McCormack. 1992. Young spruce-fir 
forests released by herbicides I. Response of hardwoods and shrubs. Northern 
Journal of Applied Forestry 9:126-130. 

Nichols, E., T. Larsen, S. Spector, A. L. Davis, F. Escobar, M. Favila, and K. Vulinec. 
2007. Global dung beetle response to tropical forest modification and 
fragmentation: A quantitative literature review and meta-analysis. Biological 
Conservation 137:1-19. 

Ogurtsov, S. V. 2004. Olfactory orientation in anuran amphibians. Russian Journal of 
Herpetology 11:35-40. 



122 
 

Ogurtsov, S. V. and V. A. Bastakov. 2001. Imprinting on native pond odour in the pool 
frog, Rana lessonae. Pages 433-438 in A. Marchlewska-Koj, J. J. Lepri, and D. 
Müller-Schwarze, editors. Chemical signals in vertebrates 9. Springer-Verlag, 
New York. 

Oliver, C. D. and B. C. Larson. 1996. Forest stand dynamics. Update edition. John Wiley 
& Sons, New York. 

Papi, F. 2006. Navigation of marine, freshwater and coastal animals: concepts and current 
problems. Marine and Freshwater Behaviour and Physiology 39:3-12. 

Parris, K. M., and D. B. Lindenmayer. 2004. Evidence that creation of a Pinus radiata 
plantation in south-eastern Australia has reduced habitat for frogs. Acta 
Oecologica 25:93-101. 

Patrick, D. A., A. J. K. Calhoun, and M. L. Hunter. 2007. Orientation of juvenile wood 
frogs, Rana sylvatica, leaving experimental ponds. Journal of Herpetology 
41:158-163. 

Patrick, D. A., E. B. Harper, M. L. Hunter, and A. J. K. Calhoun. 2008a. Terrestrial 
habitat selection and strong density-dependent mortality in recently 
metamorphosed amphibians. Ecology 89:2563-2574.  

Patrick, D. A., A. J. K.Calhoun, and M. L. Hunter. 2008b. The importance of 
understanding spatial population structure when evaluating the effects of 
silviculture on spotted salamanders (Ambystoma maculatum). Biological 
Conservation 141:807-814. 

Patrick, D. A., M. L. Hunter, and A. J. K. Calhoun. 2006. Effects of experimental forestry 
treatments on a Maine amphibian community. Forest Ecology and Management 
234:323-332. 

Petranka, J. W., M. E. Eldridge, and K. E. Haley. 1993. Effects of timber harvesting on 
Southern Appalachian salamanders. Conservation Biology 7:363-370. 

Pinheiro, J. C. and D. M. Bates. 2000. Mixed effects models in S and S-Plus. Springer-
Verlag, New York. 

Popescu, V. D., and J. P. Gibbs. 2009. Landscape ecology and GIS methods. Pages 339-
360 in K. C. Dodd, Jr., editor. Amphibian ecology and conservation. Oxford 
University Press, New York. 

Popescu, V. D., and M. L. Hunter. in press. Clearcutting affects habitat connectivity for a 
forest amphibian by decreasing permeability to juvenile movements. Ecological 
Applications. 



123 
 

Pough, F. H., E. M. Smith, D. H. Rhodes, and A. Collazo. 1987. The abundance of 
salamanders in forest stands with different histories of disturbance. Forest 
Ecology and Management 20:1-9. 

Preest, M. R. and F. H. Pough. 1989. Interaction of temperature and hydration on 
locomotion of toads. Functional Ecology 3:693-699. 

R Development Core Team. 2009. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, http://www.R-project.org. 

Ramovs, B. V., and M. R. Roberts. 2003. Understory vegetation and environment 
responses to tillage, forest harvesting, and conifer plantation development. 
Ecological Applications 13:1682-1700. 

Ray, N., A. Lehmann, and P. Joly. 2002. Modeling spatial distribution of amphibian 
populations: a GIS approach based on habitat matrix permeability. Biodiversity 
and Conservation 11:2143-2165. 

Reshetnikov, A. N. 1996. Hygrotactic and olfactory orientation in juvenile common toads 
(Bufo bufo) during the postmetamorphic period. Advances in Amphibian 
Research in the Former Soviet Union 1:181-190. 

Richter-Boix, A., G. A. Llorente, and A. Montori. 2007. Structure and dynamics of an 
amphibian metacommunity in two regions. Journal of Animal Ecology 76:607-
618. 

Ricketts, T. H. 2001. The matrix matters: effective isolation in fragmented landscapes. 
The American Naturalist 158:87-99. 

Rittenhouse, T. A. G., E. B. Harper, L. R. Rehard, and R. D. Semlitsch. 2008. The role of 
microhabitats in the desiccation and survival of anurans in recently harvested oak-
hickory forest. Copeia:807-814. 

Roe, A. W., and K. L. Grayson. 2008. Terrestrial movements and habitat use of juvenile 
and emigrating adult Eastern Red-Spotted Newts, Notophthalmus viridescens. 
Journal of Herpetology 42:22-30. 

Rome, L. L., E. D. Stevens, and H. B. John-Alder. 1992. The influence of temperature 
and thermal acclimation on physiological function. Pages 183-205 in M. E. Feder 
and W. W. Burggren, editors. Environmental Physiology of the Amphibians. 
University of Chicago Press, Chicago. 

Rosenvald, R., and  A. Lõhmus. 2008. For what, when, and where is green-tree retention 
better than clear-cutting? A review of the biodiversity aspects. Forest Ecology and 
Management 255:1-15. 



124 
 

Ross-Davis, A. L., and K. A. Frego. 2002. Comparison of plantations and naturally 
regenerated clearcuts in the Acadian Forest: forest floor bryophyte community 
and habitat features. Canadian Journal of Botany 80:21-33. 

Rothermel, B. B. 2004. Migratory success of juveniles: a potential constraint on 
connectivity for pond-breeding amphibians. Ecological Applications 14:1535-
1546. 

Rothermel, B. B. and T. M. Luhring. 2005. Burrow availability and desiccation risk of 
mole salamanders (Ambystoma talpoideum) in harvested versus unharvested 
forest stands. Journal of Herpetology 39:619-626. 

Rothermel, B. B. and R. D. Semlitsch. 2002. An experimental investigation of landscape 
resistance of forest versus old-field habitats to emigrating juvenile amphibians. 
Conservation Biology 16:1324-1332. 

Rothermel, B. B. and R. D. Semlitsch. 2006. Consequences of forest fragmentation for 
juvenile survival in spotted (Ambystoma maculatum) and marbled (Ambystoma 

opacum) salamanders. Canadian Journal of Zoology 84:797-807. 

Rozhok, A. 2008. Orientation and navigation in vertebrates. Springer-Verlag, Berlin. 

Roznik, E. A. and S. A. Johnson. 2009a. Burrow use and survival of newly 
metamorphosed gopher frogs (Rana capito). Journal of Herpetology 43:431-437. 

Roznik, E. A. and S. A. Johnson. 2009b. Canopy closure and emigration by juvenile 
gopher frogs. Journal of Wildlife Management 73:260-268. 

Roznik, E. A., S. A. Johnson, C. H. Greenberg, and G. W. Tanner. 2009. Terrestrial 
movements and habitat use of gopher frogs in longleaf pine forests: A 
comparative study of juveniles and adults. Forest Ecology and Management 
259:187-194. 

Russell, R. E., R. K. Swihart, and Z. Feng. 2003. Population consequences of movement 
decisions in a patchy landscape. Oikos 103:142-152. 

Šamajová, P. and L. Gvoždík. 2010. Inaccurate or disparate temperature cues? Seasonal 
acclimation of terrestrial and aquatic locomotor capacity in newts. Functional 
Ecology 24:1023-1030. 

Sanuy, D. and P. Joly. 2009. Olfactory cues and breeding habitat selection in the 
natterjack toad, Bufo calamita. Amphibia-Reptilia 30:555-559. 

Saunders, M. and R. Wagner. 2008. Long-term spatial and structural dynamics in 
Acadian mixedwood stands managed under various silvicultural systems. 
Canadian Journal of Forest Research 38:498-517. 



125 
 

Schlaepfer, M. A., M. C. Runge, and P. W. Sherman. 2002. Ecological and evolutionary 
traps. Trends in Ecology and Evolution 17:474-480. 

Schmid, W. D. 1965. Some aspects of the water economies of nine species of 
amphibians. Ecology 46:261-269. 

Seebacher, F. and R. A. Alford. 2002. Shelter microhabitats determine body temperature 
and dehydration rates of a terrestrial amphibian (Bufo marinus). Journal of 
Herpetology 36:69-75. 

Semlitsch, R. D. 1985. Analysis of climatic factors influencing migrations of the 
salamander Ambystoma talpoideum. Copeia 1985:477-489. 

Semlitsch, R.D. 1998. Biological delineation of terrestrial buffer zones for pond-breeding 
salamanders. Conservation Biology 12:1113-1119. 

Semlitsch, R. D. 2000. Principles for management of aquatic-breeding amphibians. 
Journal of Wildlife Management 64:615-631. 

Semlitsch, R. D. 2002. Critical elements for biologically based recovery plans of aquatic-
breeding amphibians. Conservation Biology 16:619-629. 

Semlitsch, R. D. 2008. Differentiating migration and dispersal processes for pond-
breeding amphibians. Journal of Wildlife Management 72:260-267. 

Semlitsch, R. D., C. A. Conner, D. J. Hocking, T. A. G. Rittenhouse, and E. B. Harper. 
2008. Effects of timber harvesting on pond-breeding amphibian persistence: 
testing the evacuation hypothesis. Ecological Applications 18:283-289. 

Semlitsch, R. D., B. D. Todd, S. M. Blomquist, A. J. K. Calhoun, J. W. Gibbons, J. P. 
Gibbs, G. J. Graeter, E. B. Harper, D. J. Hocking, M. L. Hunter, D. A. Patrick, T. 
A. G. Rittenhouse, and B. B. Rothermel. 2009. Effects of timber harvest on 
amphibian populations: understanding mechanisms from forest experiments. 
BioScience 59:853-862. 

Shakhparonov, V. V. and S. V. Ogurtsov. 2003. The role of native pond odor in 
orientation of the green toad (Bufo viridis Laur.) youngs-of-the-year. Pages 209 – 
212 in Herpetologia Petropolitana: Proceedings of the 12th Ordinary Meeting of 
Societas Europaea Herpetologica. Russian Journal of Herpetology, St. Petersburg. 

Sinsch, U. 1990. Migration and orientation in anuran amphibians. Ethology, Ecology and 
Evolution 2:65-79. 

Sinsch, U. 1991. Mini-review: the orientation behaviour of amphibians. Herpetological 
Journal 1:541-544. 

Sinsch, U. 2006. Orientation and navigation in Amphibia. Marine & Freshwater 
Behaviour & Physiology 39:65-71. 



126 
 

Sjögren, P. 1991. Extinction and isolation gradients in metapopulations: the case of the 
pool frog (Rana lessonae). Biological Journal of the Linnean Society 42:135-147. 

Sjögren-Gulve, P. 1994. Distribution and extinction patterns within a northern 
metapopulation of the pool frog, Rana lessonae. Ecology 75:1357-1367. 

Skelly, D. K. 2004. Microgeographic countergradient variation in the wood frog, Rana 

sylvatica. Evolution 58:160-165. 

Skelly, D. K., L. K. Freidenburg, and J. M. Kiesecker. 2002. Forest canopy and the 
performance of larval amphibians. Ecology 83:983-992. 

Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 
236:787-792. 

Smith, A. M., and D. M. Green. 2005. Dispersal and the metapopulation paradigm in 
amphibian ecology and conservation: are all amphibian populations 
metapopulations? Ecography 28:110-128. 

Stephens, S. E., D. N. Koons, J. J. Rotella, D. W. Willey. 2004. Effects of habitat 
fragmentation on avian nesting success: a review of the evidence at multiple 
spatial scales. Biological Conservation 115:101-110. 

Stevens, V., E. Polus, R. Wesselingh, N. Schtickzelle, and M. Baguette. 2005. 
Quantifying functional connectivity: Experimental evidence for patch-specific 
resistance in the Natterjack toad (Bufo calamita). Landscape Ecology 19:829-842. 

Swanson, F. J. and J. F. Franklin. 1992. New forestry principles from ecosystem analysis 
of Pacific Northwest forests. Ecological Applications 2:262-274. 

Tejedo, M., R. D. Semlitsch, and H. Hotz. 2000. Differential morphology and jumping 
performance of newly metamorphosed frogs of the hybridogenetic Rana esculenta 
complex. Journal of Herpetology 34:201-210. 

Tews, J., U. Brose, V. Grimm, K.Tielbörger, M. C.,Wichmann, M. Schwager, and F. 
Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity/diversity: 
the importance of keystone structures. Journal of Biogeography 31:79-92. 

Timm, B. C., K. McGarigal, and C. L. Jenkins. 2007. Emigration orientation of juvenile 
pond-breeding amphibians in western Massachusetts. Copeia:685-698. 

Todd, B. D., T. M. Luhring, B. B. Rothermel, and J. W. Gibbons. 2009. Effects of forest 
removal on amphibian migrations: implications for habitat and landscape 
connectivity. Journal of Applied Ecology 46:554-561. 

Torsten H., K. Hornik, M. A. van de Wiel, A. Zeileis. 2008. Implementing a Class of 
Permutation Tests: The coin Package. Journal of Statistical Software 28(8), 1-23. 
URL http://www.jstatsoft.org/v28/i08/. 



127 
 

Tracy, C. R. 1976. A model of the dynamic exchanges of water and energy between a 
terrestrial amphibian and its environment. Ecological Monographs 46:293-326. 

Tracy, C. R., K. A. Christian, M. P. O'Connor, and C. R. Tracy. 1993. Behavioral 
thermoregulation by Bufo americanus: The Importance of the hydric environment. 
Herpetologica 49:375-382. 

Tracy, C. R. and J. W. Dole. 1969. Orientation of displaced California toads, Bufo 

boreas, to their breeding sites. Copeia 1969:693-700. 

Trenham, P.C. and H. B. Shaffer. 2005. Amphibian upland habitat use and its 
consequences for population viability. Ecological Applications 15:1158-1168. 

Vasconcelos, D. and A. J. K. Calhoun. 2004. Movement patterns of adult and juvenile 
Rana sylvatica (LeConte) and Ambystoma maculatum (Shaw) in three restored 
seasonal pools in Maine. Journal of Herpetology 38:551-561. 

Veysey, J. S., K. J. Babbitt, and A. Cooper. 2009. An experimental assessment of buffer 
width: Implications for salamander migratory behavior. Biological Conservation 
142:2227-2239. 

Via, S. and R. Lande. 1985. Genotype-environment interaction and the evolution of 
phenotypic plasticity. Evolution 39:505-522. 

Vonesh, J. and O. De la Cruz. 2002. Complex life cycles and density dependence: 
assessing the contribution of egg mortality to amphibian declines. Oecologia 
133:325-333. 

Vos, C. C., P. W. Goedhart, D. R. Lammertsma, and A. M. Spitzen-Van der Sluijs. 2007. 
Matrix permeability of agricultural landscapes: an analysis of movements of the 
common frog (Rana temporaria). Herpetological Journal 17:174-182. 

Waldick, R. C., B. Freedman, and R. J. Wassersug. 1999. The consequences for 
amphibians of the conversion of natural, mixed-species forests to conifer 
plantations in southern New Brunswick. Canadian Field-Naturalist 113:408-418. 

Walston, L. J., and S. J. Mullin. 2008. Variation in amount of surrounding forest habitat 
influences the initial orientation of juvenile amphibians emigrating from breeding 
ponds. Canadian Journal of Zoology 86:141-146. 

Walton, M. 1988. Relationships among metabolic, locomotory, and field measures of 
organismal performance in the Fowler's toad (Bufo woodhousei fowleri). 
Physiological Zoology 61:107-118. 

Watkins, T. B. 2001. A quantitative genetic test of adaptive decoupling across 
metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla 

regilla. Evolution 55:1668-1677. 



128 
 

Weng, S.-H., S.-R. Kuo, B. T. Guan, T.-Y. Chang, H.-W. Hsu, and C.-W. Shen. 2007. 
Microclimatic responses to different thinning intensities in a Japanese cedar 
plantation of northern Taiwan. Forest Ecology and Management 241:91-100. 

Werner, E. E., K. L. Yurewicz, D. K. Skelly, and R. A. Relyea. 2007. Turnover in an 
amphibian metacommunity: the role of local and regional factors. Oikos 
116:1713-1725. 

Wiens, J.A. 1989. Spatial scaling in ecology. Functional Ecology 3:385-397. 

Wilson, R. S. 2001. Geographic variation in thermal sensitivity of jumping performance 
in the frog Limnodynastes peronii. Journal of Experimental Biology 204:4227-
4236. 

Winfree, R., J. Dushoff, Elizabeth E. Crone, Cheryl B. Schultz, Robert V. Budny, 
Neal M. Williams, and C. Kremen. 2005. Testing simple indices of habitat 
proximity. The American Naturalist 165:707-717. 

Xu, M., J. Chen, and Y. Qi. 2002. Growing-season temperature and soil moisture along a 
10 km transect across a forested landscape. Climate Research 22:57-72. 

Yang, J., Y. Wang, and D. R. Miller. 2007. Estimating air temperature profiles in forest 
canopy using empirical models and Landsat data. Forest Science 53:93-99. 

Zamudio, K. R., and A. M.Wieczorek. 2007. Fine-scale spatial genetic structure and 
dispersal among spotted salamander (Ambystoma maculatum) breeding 
populations. Molecular Ecology 16:257-274. 

Zellmer, A. J., and L. L. Knowles. 2009. Disentangling the effects of historic vs. 
contemporary landscape structure on population genetic divergence. Molecular 
Ecology 18:3593-3602. 

Zheng, D., J. Chen, B. Song, M. Xu, P. Sneed, and R. Jensen. 2000. Effects of 
silvicultural treatments on summer forest microclimate in southeastern Missouri 
Ozarks. Climate Research 15:45-59.  

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev and G. M. Smith. 2009. Mixed 
effects models and extensions in ecology with R. Springer, New York. 

 



129 
 

APPENDIX A 

 

Sex ratios of breeding adults at experimental sites 

 

Table A.1. Sex ratios of L. sylvaticus and A. maculatum breeding in four experimental 
pools (Pools = number of pools sampled each year).  
 

Year 
L. sylvaticus   A. maculatum  

Pools 
Female Male F:M  Female Male F:M 

2005 158 191 0.8:1  275 64 4.3:1 4 
2006 37 92 0.4:1  187 113 1.65:1 3 
2007 86 155 0.5:1  73 64 0.9:1 2 
2008 103 183 0.6:1  192 129 1.5:1 4 
2009 86 85 1:1  93 88 1.05:1 3 
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APPENDIX B 

 

Captures of juvenile amphibians at experimental sites 

 

Table B.1. Number of newly metamorphosed L. sylvaticus and A. maculatum emerging 
from experimental pools and recaptured in the upland habitat (n = number of pools that 
produced animals). 
 

Year 

Total emerged from 

experimental pools 

Total recaptured in upland 

habitat 

L. sylvaticus A. maculatum L. sylvaticus A. maculatum 

2004 2342 (n=4) 272 (n=4) 81 32 
2005 6085 (n=4) 589 (n=3) 1061 35 
2006 2083 (n=4) 319 (n=4) 410 14 
2007 328 (n=1) 211 (n=4) 41 4 
2008 3133 (n=3) 122 (n=3) 392 2 
2009 95 (n=1) 8 (n=1) 8 0 
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APPENDIX C 

 

Habitat permeability to juvenile wood frog movements 

 

Table C.1. Proportion of released juvenile L. sylvaticus reaching 10, 20, 30, and 40 m 
distance from the forest edge in four forestry treatments in 2008 and 2009. 
 
 
 
 
 
 

 

 

 

 
 

 

 

 

 

 

* Observed proportions of released animals reaching each tracking station 
** Untransformed logit coefficients ± 1SE are those of the fixed effects from the best 
(lowest AIC) mixed effects binomial models fitted for each tracking station distance for 
2008 and 2009. 
*** 95% confidence intervals for the predicted logit coefficients 
 

Distance 

from 

edge 

 

Treatment  

Clearcut 11-yr stand 20-yr stand 
Mature 

forest 

10 m 
mean ± SE* 

2008 0.32 ± 0.08 0.56 ± 0.06  - 0.74 ± 0.08 

2009 0.29 ± 0.03 0.32 ± 0.07  0.60 ± 0.05 0.59 ± 0.04 

Coefficient ± SE ** -0.87 ± 0.21 -0.30 ± 0.20 0.61 ± 0.25 0.62 ± 0.21 
Predicted 95% CI *** (-1.30, -0.45) (-0.71, 0.10) (0.12, 1.11) (0.21, 1.04) 

 

20 m  
mean ± SE 

2008 0.28 ± 0.06 0.30 ± 0.05  - 0.61 ± 0.11 

2009 0.17 ± 0.03 0.16 ± 0.03  0.54 ± 0.06 0.60 ± 0.04 

Coefficient ± SE -1.26 ± 0.22 -1.27 ± 0.22 0.29 ± 0.24 0.41 ± 0.20 
Predicted 95% CI (-1.69, -0.83) (-1.71, -0.83) (-0.19, 0.77) (0.015, 0.81) 

 

30 m  
mean ± SE 

2008 0.27 ± 0.06 0.28 ± 0.04  - 0.56 ± 0.10 

2009 0.11 ± 0.03 0.13 ± 0.03  0.40 ± 0.07 0.51 ± 0.04  

Coefficient ± SE -1.55 ± 0.24 -1.50 ± 0.24 -0.19 ± 0.26 0.11 ± 0.22 
Predicted 95% CI (-2.04, -1.06) (-1.99, -1.02) (-0.72, 0.32) (-0.32, 0.50) 

 

40 m 
mean ± SE 

2008 0.25 ± 0.05 0.26 ± 0.06  - 0.55 ± 0.11 

2009 0.07 ± 0.2 0.11 ± 0.03  0.25 ± 0.05 0.45 ± 0.05  

Coefficient ± SE -1.83 ± 0.30 -1.68 ± 0.29 -0.81 ± 0.32 -0.04 ± 0.27 
Predicted 95% CI (-2.43, -1.24) (-2.26, -1.10) (-1.40, -0.17) (-0.56, 0.48) 
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APPENDIX D 

 

Weather patterns during the 2008 and 2009 juvenile emigration seasons 

 

Figure D.1. Maximum daily temperatures (black line) and total daily precipitation (gray 
bars) recorded during the 2008 (a) and 2009 (b) sampling seasons (data from 
www.ncdc.noaa.gov for Bangor International Airport, located 15-20 km from the 
experimental sites). 
 

a)  

 

b)  
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APPENDIX E 

 

Water temperature in wood frog larvae-rearing mesocosms 

 

Figure E.1. Average water temperature of mesocosms (1500-l cattle tanks) used to rear 
wood frog larvae during the emergence season of experimental animals in 2009 (dotted 
lines represent 95% confidence intervals). 
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