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The present state of the West Antarctic ice sheet (WAIS) is a prime concern of 

science, but its large size and remote location have limited the amount of reliable data 

that are available for mass balance calculations. The spatial pattern of mass balance for a 

100-km2 portion of the WAIS is estimated by calculating the residual flux of ice through 

1-km grid cells organized into a geographical information system (GIs). The input data 

used for this estimate include continent-scale compilations of ice thickness and snow 

accumulation rate measurements, and ground-based measurements of snow accumulation 

rate and ice velocity. The calculation was performed using different combinations of 

input data so that error sources could be identified. The largest sources of error were 

associated with the continent-scale compilations of accumulation rate and ice thickness. 

These errors are greatly reduced when using snow accumulation rates derived from 

ground-penetrating radar (GPR) surveys. The best results, which agree with two previous 

estimates, suggest that this area is nearly in balance. Results also indicate that the mass 

balance varies within this 100-km2 grid. In some portions of the grid, local variations in 

mass balance correspond with measured changes in ice velocity and snow accumulation 



rate. In other parts of the grid, the apparent spatial variability is attributed to errors in the 

ice thickness data. 

The results show that the demonstrated accuracy and spatial resolution of this 

high-resolution sampling approach are needed to understand the response of the entire 

West Antarctic ice sheet to recent changes in climate. However, the accuracy of the data 

compilations discussed above are examined using continuous, simultaneously recorded, 

ground-based measurements of ice-sheet surface topography, ice thickness, and snow 

accumulation rate that extend for hundreds of km beyond the grid at Byrd Station. 

Results from these analyses suggest that each of the compilations have larger errors than 

previously reported and therefore need to be improved before they are incorporated into 

estimates of WAIS mass balance. 
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Chapter 1 

INTRODUCTION 

Ice sheets play an important role in Earth's climate system and water budget. Ice 

sheets influence and respond to changes in climate by modification of atmospheric 

circulation and through albedo dynamics. Sea level is modulated in part by the storage 

and release of water from ice sheets. The most recent report from the Intergovernmental 

Panel on Climate Change (IPCC; Church et al., 2001) shows that globally averaged 

atmospheric temperatures on Earth are increasing and in response, sea level is rising at a 

rate of 1 to 2 mm a". This is due primarily to expansion of sea water, which may account 

for half of the current rate of sea level rise (s.l.r.), and melting of glaciers, ice caps, and 

ice sheets, whose contributions are still inadequately understood (Church et al., 2001). 

The response of an ice sheet to climate changes and its contribution to the current rate of 

global sea level rise can be assessed by determining whether the ice sheet is gaining or 

losing mass. 

Approaches used to calculate the net mass balance of an ice mass, defined as the 

rate at which the volume of that mass is changing, range from direct measurements using 

submergence velocity (SV) stations (Hamilton et al., 1998) and repeat altimeter surveys 

(e.g. Wingharn el al., 1998; Spikes et al., 2003a,b), to regional-scale mass flux 

calculations based on ground (e.g. Whillans, 1977; Whillans and Bindschadler, 1988; 

Bindschadler et al., 1993), airborne (e.g. Joughin et al., 1999; Shabtaie and Bentley, 

1987), and satellite (e.g. Joughln and Tulaczyk, 2002; Rignot and Thomas, 2002) 



measurements. The uncertainty associated with each of these approaches varies according 

the quality of the input data. SV stations rely on precise ground-based measurements and 

therefore provide results with small uncertainties that can be unambiguously interpreted 

as long-term changes, but these are point measurements and are limited in spatial extent 

(Hamilton et al., 1998). Repeat altimeter measurements of surface elevation over large 

regions can provide reliable results of short-term changes (Krabill et al., 2000), but 

spatial and temporal accumulation variability complicates their interpretation (McConnell 

et al., 2000; Spikes et al., 2003a). Mass flux calculations provide spatially extensive 

estimates of mass balance (Shabtaie and Bentley, 1987; Joughin and Tulaczyk, 2002; 

Rignot and Thomas, 2002), but these studies incorporate continent-scale compilations of 

ice thickness (e.g. Lythe et al., 2000) and accumulation rate (e.g.Vaughan et al., 1999a; 

Giovinetto and Zwally, 2000), which can contribute large uncertainties. 

According to recent estimates, the ice sheets in Greenland and Antarctica are both 

slowly losing mass. The estimates for Greenland (Krabill et al., 1999; Krabill et al., 

2000) were derived from repeat altimeter measurements of surface elevations and showed 

that the ice sheet margins are thinning while the central portion is in balance. Overall, the 

Greenland ice sheet was reported to be contributing -0.13 rnm a-I or 7 - 13% of the 

current rate of sea level rise (Krabill et al., 2000). A re-analysis by McConnell et al. 

(2000) has since shown that much of the observed change in Greenland can be attributed 

to short-term (-1 0 years) changes in snowfall rates. Estimates for the grounded portion of 

the Antarctic ice sheet also suggest rapid thinning near the margins, which is balanced to 

some degree by thickening in the ice sheet interior. Repeat altimeter studies have shown 

that the entire ice sheet is slowly thinning (<0.01 m a-l) (Wingham et al., 1998), while 



fast-moving outlet glaciers and ice streams are rapidly thinning (>1 m 6') (Shepherd et 

al., 2002; Spikes et al, 2003a). Results from basin-wide flux calculations based largely on 

ice velocities measured using synthetic aperture radar (SAR) interferometry, suggest 

thickening in the west (Joughin and Tulaczyk, 2002) and possibly slow thinning overall 

@ g o t  and Thomas, 2002). Although there is general agreement among these estimates, 

the data used to calculate each of these results were collected over short time intervals. 

Therefore, these results may represent changes that do not indicate long-term responses 

to changes in climate (Kostecka and Whillans, 1988; Van der Veen, 1993; Van der Veen 

and Bolzan, 1999; Wingham et al., 1998; Wingham, 2000; McConnell et al., 2000; 

Cuffey, 200 1). 

In recent decades, a large amount of interest has been focused on the West 

Antarctic ice sheet (WAIS). A key concern is that a large percentage of the grounded ice 

mass is already below sea level, making it especially sensitive to small increases in ocean 

heights (Thomas, 1979). Two recent studies by Bindschadler et al. (2003) and 

Anandakrishnan et al. (2003) suggest that oceanic tidal oscillations control the daily ice 

motions of several West Antarctic ice streams. These results appear to confirm that this 

ice sheet is inherently unstable and could respond catastrophically if sea level continues 

to rise. If this ice sheet were to completely disintegrate, global sea level would rise by 5 

to 6 m (Alley and Bindschadler, 2001). It is therefore important to understand the current 

configuration and mass balance changes underway in West Antarctica. The mass balance 

of the WAIS is the focus of this dissertation. 

The objective of this thesis is to show that local sampling of mass balance based 

on intensive ground-based measurements produces only a small uncertainty, reveals 



larger uncertainties in more spatially extensive approaches, and is therefore a viable way 

to approach the mass balance of West Antarctica. The approach requires the calculation 

of the residual flux through columns of ice that extend from the surface to the bed, and 

which are commonly referenced to a stationary grid. The coordinates and spacing of the 

stationary grid define a geographical information system (GIs). The necessary variables 

of ice thickness, ice velocity, and snow accumulation rate are directly measured to 

determine residual flux. A fourth characteristic that is important for interpretations of 

mass balance results is ice-sheet surface topography. Each of these boundary conditions 

is evaluated in this dissertation. 

Each of these mass balance characteristics is known to vary spatially, which can 

contribute large uncertainties to mass balance estimates using the GIs approach. With the 

exception of ice velocity, continent-scale compilations of each of these characteristics are 

currently available for Antarctica. However, the ability of these compilations to 

accurately portray the spatial variability of each of these characteristics is unclear. For 

this reason, much of this dissertation is devoted to the presentation and discussion of 

ground-based measurements of each of these variables recorded throughout West 

Antarctica. The global positioning system (GPS) was used to map ice-sheet surface 

topography, high-frequency ground-penetrating radar (GPR) was used to track 

stratigraphic layers which are coupled with ice core density and depth-age profiles to 

calculate historical snow accumulation rates, and 3-MHz radar soundings were used to 

measure ice thickness. In addition, submergence velocity stations were installed at each 

of the ice core sites to provide ice velocities and direct estimates of mass balance. 

Overall, these data cover -5000 krn (linear distance) of the WAIS. 



These ground-based data are used to characterize the spatial variability of surface 

elevations, ice thicknesses, and snow accumulation rates, and they are used to determine 

the accuracy and spatial resolution of the leading continent-scale compilations of ice 

surface topography (Liu et al., 1999), ice thickness (Lythe et al., 2000), and snow 

accumulation rate (Vaughan et al., 1999a). The results of these analyses reveal a high 

degree of spatial variability in each of the measured variables, and that this variability is 

not present in the compilations. As a result, each of these compilations was found to have 

large uncertainties. Therefore, the GIs approach is not applied to all of West Antarctica. 

Instead, it is tested and applied to a small portion of this ice sheet where sufficiently 

accurate data are available. 

This dissertation is presented in the following order. Chapter 2 reviews 

different approaches for calculating ice sheet mass balance and summarizes recent 

results. Chapter 3 describes the GIs approach to estimating mass balance used in this 

dissertation. In Chapter 4, each GIs layer is described in detail. In Chapter 5, the GIs 

approach is tested on a 100-krn2 grid centered on Byrd Station, West Antarctica using the 

new data presented in Chapter 4. The conclusions and a summary of results are presented 

in Chapter 6. 



Chapter 2 

REVIEW OF METHODS FOR ESTIMATING 

ICE SHEET MASS BALANCE 

There are several techniques for estimating the mass balance of ice sheets. The 

most commonly used methods are described in detail in this chapter. Recent results from 

each of these methods are also discussed. 

2.1 Submergence Velocity Stations 

Submergence velocity (SV) stations provide point estimates of mass balance that 

have small uncertainties and can be unambiguously interpreted as long-term changes (e.g. 

Hulbe and Whillans, 1994; Hamilton et al., 1998). For mass balance, the downward 

motion of the ice sheet is balanced by snow accumulation at the surface. The technique 

entails comparison of the vertical component of ice velocity, derived from repeat GPS 

surveys of markers, with the local long term accumulation rate, derived from ice core 

stratigraphy. Small adjustments are made for firn compaction beneath the markers, using 

density profiles derived from ice cores, and along-slope flow, using surface topography 

from differential kinematic GPS surveys. Results from SV stations are reported as the 

water equivalent (w.e.) net thickness change per year. 

While SV stations provide the most reliable mass balance estimates on ice sheets, 

their results are spatially limited and logistical constraints limit the number of sites where 

the technique can be applied. To date, 35 SV stations have been installed on the Antarctic 



ice sheet (Figure 2. I), although many of these stations have not yet been resurveyed. The 

mass balance results presented in Table 2.1 are from SV stations in West Antarctica, with 

the exception of South Pole, which is in East Antarctica. 

Figure 2.1 Shaded-relief map of Antarctica (5-km version; Liu et al., 1999) showing the 
locations where accurate estimates of mass balance are available. The white box indicates 
the portions of Antarctica considered in this dissertation. Red circles indicate SV stations 
(Hamilton et al., 1998; Spikes et al., 2003a). Results from numbered SV stations are 
presented in Table 2.1 Blue lines indicate airborne laser altimeter surveys over Whillans 
(WIS) and Kamb (KIS) Ice Streams (Spikes et al., 2003a,b) (Chapter 2.2). Green 
rectangles indicate GLAS CV sites (Spikes and Hamilton, 2003) (Chapters 2.2 and 4.2.3). 
Yellow line indicates the Byrd surface strain network (BSSN) (Whlllans, 1977, 1979) 
(Chapters 2.3 and 4.5.1). 



Table 2.1 Mass balance results from the numbered SV stations shown in Figure 2.1. 
Subscripts indicate the source of information as follows: 'unpublished data from G.S. 
Hamilton; 2~arnilton, 2002; 3~amilton et al., 1998; 4~pikes et al., 2003a. 

Location 
(SV station name) reference 

1. South Pole (sP)' , T 

Accumulation 
Rate (m a-' w.e.) 

0.08 
2. South Pole (sB)' 
3 .  south Pole (~arfield)' 
4. Siple Dome (A)' 
5. Siple Dome ( c ) ~  
6. Siple Dome (E)' 
7. Siple Dome ( F ) ~  
8. Siple Dome (H)' 
9. Byrd Station (Byrd13 
lo. Kamb IS (Up-cl4 
1 1. Whillans IS (catchment-B)~ 
12. Whillans IS (uv-B)~ 

Ice Velocity 
(m a-') 
10.14 

0.10 
0.09 
0.16 
0.14 
0.12 
0.12 

13. Unicorn  ragon on)^ 
14. Engelhard IR (snake)' 

2.2 Repeat Altimeter Measurements 

Repeat radar and laser altimeter measurements from satellites or aircraft can be 

used to track time changes in the elevation of ice sheet surfaces (e.g. Garvin and 

Williams, 1993; Krabill et al., 1995; Csatho et al., 1996; Wingham et al., 1998; Krabill et 

al., 1999, 2000; Christensen et al., 2000; Zwally et al., 2002; Spikes et al., 2003a). 

Advantages of this remote sensing approach are spatial continuity and relatively small 

errors. A key issue with repeat altimetry is placing measurements of surface elevation 

change made over short timescales (-5 years) in the context of longer-term geophysical 

ice sheet behavior. Ice-sheet surface elevations change according to several processes: ice 

velocity changes (e.g. Whillans and Bindschadler, 1988; Joughin et al., 1999; Price et al., 

Mass Balance 
(m a-' w.e.) 

+0.018 * 0.02 
9.69 1 +0.021 * 0.018 

0.09 
0.11 
0.09 
0.11 
0.08 

15. Engelhard IR (BBC)' 

9.58 
8.25 
1.34 
0.38 
0.05 

0.06 
0.08 

+0.032 * 0.024 
-0.047 * 0.026 
-0.021 + 0.033 
-0.014 * 0.023 
-0.016 * 0.023 

1.48 
11.83 
13.14 
11.32 

416.13 
1.98 1 -0.096 * 0.044 
12.7 1 -0.189 0.024 

0.08 

-0.023 * 0.024 
-0.004 * 0.022 
0.559 + 0.019 
0.019 + 0.021 
-1.316 f 0.085 

12.24 1 -0.164 * 0.024 



2001); spatial and temporal variations in the rate of snowfall and fun densification (e.g. 

Kostecka and Whillans, 1988; Van der Veen, 1993; Wingham et al., 1998; Van der Veen 

and Bolzan, 1999; McConnell et al., 2000; Wingham, 2000; Cuffey, 2001); and vertical 

bedrock motions (e.g. James and Ivins, 1998). While the effects of bedrock motions and 

firn compaction are negligible in most cases (< 0.01 m a-' each; James and Ivins, 1998; 

Wingham, 2000; Spikes et al., 2003a), the effects of short-term changes of accumulation 

rate and velocity may contribute large uncertainties to mass balance estimates based on 

repeat radar and laser altimeter measurements (e.g. Van der Veen, 1993; Wingham et al., 

1998; Van der Veen and Bolzan, 1999; McComell et al., 2000; Cuffey, 2001; Spikes et 

al., 2003a). 

In West Antarctica, radar and laser altimeters have been used to measure 

elevation changes (Wingham et al., 1998; Spikes el al., 2003a). Usiig repeat satellite 

radar altimeter measurements, Wingham et al. (1998) found that the elevation of the 

West Antarctic ice sheet fell at an average rate of 0.035 * 0.05 m 6' during the period 

from 1992 to 1996, although much of this change was attributed to a possible decrease in 

snow accumulation over the past century. Shepherd et al. (2002) used satellite radar 

altimetry coupled with interferometry to show that the major drainage features feeding 

into the Amundsen Sea are thinning at an average rate of 0.09 + 0.02 m a-'. Elevation 

changes measured with airborne laser altimetry demonstrated that portions of two 

Whillans Ice Stream (WIS was formerly known as Ice Stream B) tributaries (Figure 2.1) 

were thinning at average rates of 0.57 m 6' (Whillans-1) and 0.64 m a-' (Wh~llans-2) and 

Kamb Ice Stream (KIS was formerly known as Ice Stream C) was thickening at an 

average rate of 0.12 m 6' over the period from 1997 to 1999 (Spikes et al., 2003a). 



The Geoscience Laser Altimeter System (GLAS), which is part of the National 

Aeronautics and Space Administration (NASA) Ice Cloud and Land Elevation Satellite 

(ICESat), is expected to provide a high-spatial resolution (70-m footprint) dataset of ice 

sheet surface elevations with unrivaled accuracy and spatial coverage (Zwally et al., 

2002). Over a 3-5 year period the satellite is also expected to measure changes in 

elevation that will be used to determine the mass balance of the Antarctic ice sheet. One 

of the goals of the research described here is to determine the accuracy of GLAS 

measurements using ground-based measurements of ice sheet surface topography, snow 

accumulation rates, and mass balance. ICESat was successfully launched on January 12, 

2003, and elevation data will be released to the science community in late 2003 (Jay 

Zwally, pers. comm.) 

2.3 Flux Calculations Along Flow Lines 

The concept of mass continuity has been applied in many ice sheet studies (e.g. 

Thomas, 1976; Whillans, 1977; Kostecka and Whillans, 1988). The equation of 

continuity states that the time-rate of change of a volume element is balanced by a net 

movement into or out of the element (Paterson, 1994). For areas where ice velocity 

measurements are lacking but surface mass balance measurements are available, this 

concept can be used to calculate steady-state balance velocities. In areas where ice 

velocity and surface mass balance measurements are available, continuity can be used to 

calculate the rate of ice thickness change. Rates of ice thickness change are obtained by 

comparing measured surface velocities with calculated balance velocities along a flow 

line. Whillans (1977) used this approach to determine that the ice sheet at Byrd Station 



was slowly thinning at a rate of 0.03 m 6'. The Whillans (1977) study included 

measurements of surface velocity and accumulation data collected along the 162-km 

Byrd surface strain network (BSSN) (Figure 2.1) that started at the ice divide and ended 

at Byrd Station. Results from the Byrd SV station (Table 2.1) (Hamilton et al., 1998) 

confirmed that this region is slowly thinning. 

2.4 Flux Calculations for Drainage Basins 

A widely used approach for calculating the mass balance of the WAIS involves 

flux calculations for entire drainage basins (Shabtaie and Bentley, 1987; Whillans and 

Bindschadler, 1988; Jacobs, 1992; Joughin and Tulaczyk, 2002; Rignot and Thomas, 

2002). This approach compares mass input integrated throughout a catchment with the 

mass flux through a defined gate. The calculation requires estimates of accumulation rate, 

ice thickness, ice velocity, and catchment boundaries. A number of factors simplify this 

approach, including the use of an average accumulation rate for the entire catchment, 

assumption of zero flux through regions where there is no gate, and that ice thickness and 

ice velocity measurements are only necessary for points in the immediate vicinity of 

gates. To hrther simplify this calculation, fast-moving ice streams and outlet glaciers are 

typically used as gates, because at these locations ice flow is perpendicular to the gate 

and the depth-averaged velocity is approximately equal to the surface velocity. A limiting 

factor of this approach is that the spatial resolution is very low. For example, a basin that 

is in balance may be thickening at the divide and thinning at the margin, but this 

approach does not provide an opportunity to distinguish between these spatial contrasts. 



Shabtaie and Bentley (1987) applied this calculation to the entire Ross Ice Stream 

region in West Antarctica. They found that the region was losing mass at a rate of 20 Gt 

a-' (360 Gt of water -1 rnrn s.1.r). Using improved estimates of ice thickness, ice velocity, 

accumulation rate, and updated catchment boundaries, Joughn and Tulaczyk (2002) 

reevaluated the mass balance of this region, and found that it is gaining mass at an 

average rate of 26 Gt a-'. A third study by Rignot and Thomas (2002) used the same 

technique to determine that other portions of West Antarctica were thinning rapidly. 

When combined, the Joughln and Tulaczyk (2002) and Rignot and Thomas (2002) results 

suggest that the WAIS is slowly losing mass at a rate of -44 Gt a-'. 

2.5 Flux Calculations for Grid Cells 

An alternative to catchment-scale studies is to calculate mass balance for small (l- 

5 km) grid cells (Bindschadler et al., 1993; Joughin et al., 1999). This high-resolution 

approach can reveal the spatial distribution of mass balance changes throughout a region 

and can be tuned to account for changes in flow style as well as convergence and 

divergence. The net mass balance for each grid cell is equal to the residual fluxes through 

each of the four vertical faces divided by the surface area (top) of each cell, plus the 

residual rate of accumulation/ablation for each grid cell. A drawback of this approach is 

that it is very sensitive to the quality of the input data because the relative changes in 

mass for each cell are small (typically on the order of 10' kg 6') compared to flux of 

material that is passing through each cell (typically on the order of 10" kg 6'). The 

required input data are ice thickness, ice velocity, net surface mass balance, and the rate 

of basal meltinglaccretion. 



Using this approach, Bindschadler et al. (1993) and Jou* et al. (1999) 

estimated the mass balance of two different portions of the Siple Coast Ice Stream region. 

To derive an average thickening rate of 0.13 * 0.05 m a-' for the Whillans Ice Plain, 

Bindschadler et al. (1993) relied on widely spaced measurements of ice thickness, ice 

surface velocity, and accumulation rate and assumed that there was no change in velocity 

with depth and no flux through the icehed interface. The standard error for each of their 

grid cells is 6.7 m a-', which is roughly 15 times the average rate of change for each grid 

cell. Bindschadler et al. (1993) reduced the standard error of their grid cells to 0.22 m a-' 

by applying a 3 1 km x 3 1 km running-average filter to their mass balance results. 

Joughin et al. (1999) used the same approach, but incorporated regularly spaced 

measurements of ice thickness from airborne radar soundings and ice velocity from 

satellite-based synthetic aperture radar (SAR) interferometry. This study covered nearly 

the same area of KIS that was surveyed using airborne laser altimetry (Spikes et al., 

2003a), but misses the SV station on KIS (Table 2.1). Joughln et al. (1999) report a 

spatially-variable pattern of thickness change ranging from 0.0 to 0.7 m a-', which is 

significantly less than the -0.6 to 2.0 m a-' range found using laser altimetry (Spikes et 

al., 2003a). Also, the Joughin et al. (1999) average thickening rate of 0.49 m a-' is four 

times higher than the 0.12 m a-' average reported in Spikes et al. (2003a). The 

uncertainties (0.36 to 0.67 m 6') associated with the Joughm et al. (1999) study may be 

attributed to a few key assumptions. One is the assumption that remotely-sensed ice 

surface velocities are equal to depth-averaged velocities. This assumption may be valid 

for ice streams with well-lubricated beds (e.g. Whillans and Van der Veen, 1993; 

Whillans and Bindschadler, 1988), but KIS stopped streaming -150 years ago due to a 



loss of till dilatency (Retzlaff and Bentley, 1993). As a result, basal fiction should have 

increased the amount of vertical shearing so that depth-averaged velocities are somewhat 

less than surface velocities. Second, they used a uniform accumulation rate (0.09 m a-') 

for the entire KIS region. The issue of spatial variation of accumulation rates is discussed 

in detail in Chapter 4.4.2. 

2.6 Choosing a Mass Balance Approach 

The ideal approach for determining the mass balance of the WAIS involves 

complete coverage with repeat airborne andlor spaceborne laser altimeter surveys and a 

good distribution of SV stations for validation. Given the distribution of SV stations 

already in place in West Antarctica and the successful launch of ICESat, the glaciological 

community appears to be on the verge of resolving the mass balance of the WAIS. 

However, as of this writing results from GLAS have not been verified and it will take 

several years to calibrate the instrument, validate measurements, and interpret changes 

(Zwally et al., 2002). In addition, accumulation variability is expected to introduce large 

uncertainties so there will need to be independent verification of GLAS results in regions 

where SV stations are lacking. Furthermore, the mission lifetime of GLAS is projected to 

be -3 years, which may not be long enough to unambiguously detect changes in all 

regions. 

The above discussion indicates that an alternative approach will provide both 

interim results and be useful for interpreting ICESat data when it becomes available. The 

flux-through-a-cell approach is used here because it is capable of revealing spatial 

patterns of change and it can be applied to small areas where reliable data are available. 



Chapter 3 

THE GIs APPROACH 

3.1 The Geographical Information System 

A GIs is made up of different input datasets that are all referenced to a common 

geographic grid. Each of these datasets comprises a "layer" in the GIs. New layers are 

either introduced as gridded datasets or created by comparing existing layers using 

mathematical functions. For this particular GIs, each layer corresponds with a variable in 

mass balance calculations. Each layer consists of evenly spaced grid cells whose center 

points are defined according to their x- and y- coordinates. A schematic diagram of a cell 

in a GIs system is presented in Figure 3.1. The coordinates used in this dissertation are 

based on a polar stereographic projection with an Earth radius of 6378.137 km, a central 

meridian of 0°, a standard parallel of 71" S, and an eccentricity of 0.08 18 188 1066. The 

grid spacing, W, used here is 1 km in both the x- and y- directions. 

Figure 3.1. Schematic of the flux, Q, through a GIs grid cell at grid point (x,y). 
Neighboring grid points are 1-km apart. Figure adapted from Bindschadler et al. (1993). 



3.2 The Residual Flux Calculation 

The equations used to calculate the net mass balance of each grid cell are adapted 

from those used in Bindschadler et al. (1993) and Joughin et al. (1999). The net mass 

balance, N, for any grid cell is computed as: 

where p is the mean ice density (91 1.7 kg ma; Whillans, 1977), Q,(x * %, y * %) is the 

normal component of mass flux across each of the four vertical faces, and Q, and Qb are 

the two horizontal surfaces that correspond with the ice surface (subscript s) and the bed 

(subscript b) (Figure 3.1). The net mass balance is therefore equal to the residual flux 

within each grid cell. The flux through each vertical face is a product of ice thickness and 

horizontal depth-averaged velocity. Figure 3.2 illustrates how ice velocities, and therefore 

mass flux, can change through the ice column. The flux through the top of each cell is 

equal to the mass equivalent accumulation rate, b, ,  multiplied by the surface area of 

each cube (W, - Wy ). The flux through the bed would involve basal melting or accretion, 

but in this study it is assumed to be zero. 

To account for along-flow changes in ice thickness and velocity between adjacent 

cells, midpoint approximations are used to calculate the mass flux through each of the 

vertical faces: 

~ ~ ( ~ ~ f , ~ ) = 3 f [ ~ ( x f l , ~ ) + ~ ( x , ~ ) ] ~ [ ~ ~ ( x + 1 , ~ ) + ~ ~ ( x , ~ ) ] ~ ~ ~  3.2 



where H is ice thickness, and U,, and U, are the components of velocity in the x- and y- 

directions. The positive x-axis is aligned with 90°E meridian, the positive y-axis is 

aligned with the 180" meridian, and the z-axis is positive upwards (away from the center 

of the earth). The components of velocity in the x- and y-directions are therefore 

calculated as: 

u, (x7 Y) = 10(x7 Y)( sin [W7 Y) + p(x7 Y)] 3.4 

where 0 is the velocity vector, 0 is the azimuth, and p is the longitude of grid point (x,y). 

The net change in mass balance is reported throughout this dissertation as the rate 

of ice-equivalent thickness change, H ,  which is not to be confbsed with the water 

equivalent (w.e.) values used in this dissertation for other variables such as snow 

accumulation rates. Quantities of H are calculated by: 

Equations 3.1 through 3.3 are substituted into Equation 3.6 to give: 

3.7 

which incorporates the gradients in flux in two orthogonal directions plus the net flux 

through the surface and the bed. 

Each of the above equations are exact, and therefore do not introduce error. 

However, errors associated with the input data will propagate through each of these 



equations. To estimate how these errors propagate through Equation 3.7, the law of 

propagation of variances can be used, so that: 

2 o2 H = p - 2 - ( p 2 - ( 4 - ~ Q N  -% ' - ~ ~ ~ ) + N ~ - o : ) + N ' . p ~ - a :  3.8 

where a is the standard deviation of measurements. Equations 3.7 and 3.8 are used 

extensively in Chapter 5 to calculate the mass balance of grid cells and the associated 

uncertainties. 

Figure 3.2 Diagram of a column through the ice thickness showing how mass flux can 
change with depth. For simplicity, the figure shows strain (in the form of longitudinal 
extension) in the along-flow (x-) diuection, but does not show diverging or converging 
flow. Variables are defined in the text. This figure was adapted from Whillans (1977). 



Chapter 4 

LAYERS IN THE GIs 

4.1 Introduction 

Data necessary for estimating mass balance of the WAIS are presented in this 

chapter. These data include ice-sheet surface topography from the Radarsat Antarctic 

Mapping Project (RAMP) Digital Elevation Model (DEM) (Liu et al., 1999), ice-sheet 

thickness from the BEDMAP compilation (Lythe et al., 2000), and snow accumulation 

rates from the Vaughan et al. (1999a) compilation. Newly acquired ground-based 

measurements of ice-sheet surface elevation (Hamilton and Spikes, 2003; Spikes and 

Hamilton, 2003), ice-sheet thickness (Welch and Jacobel, 2003), and snow accumulation 

rate (Spikes et al., 2003c) are also presented. In addition, measurements of ice surface 

(Bindschadler et al., 1993) and depth-averaged (Whillans, 1979) velocity are described. 

Most of the ground-based data presented in this chapter were collected during the 

United States contribution to the International Trans Antarctic Scientific Expedition (US 

ITASE). ITASE is a multi-national, multi-disciplinary program to understand the past 

-200 years of environmental change in Antarctica (Mayewski, 2003). The U.S. 

component comprises four traverses, mainly in West Antarctica but also extending into 

East Antarctica (Figure 4.1). During the traverses -5000 km of continuous ground 

penetrating radar (GPR) and global positioning system (GPS) data were recorded while 

traveling between sites where ice cores were collected and SV stations were installed. 



Figure 4.1 Map of US ITASE traverse routes superimposed on surface contours created 
using a 1-km version of the RAMP DEM (Liu et al., 1999). Elevations are based on the 
WGS 84 ellipsoid. Red limes indicate 1999-2000 traverses. Blue lines indicate 2000-200 1 
traverses. Green lines indicate 2001-2002 traverses. Brown limes indicate 2002-2003 
traverses. The dashed lines labeled "Segment 1, 2, 3, or 4" indicate profiles used to test 
the RAMP DEM (see Chapter 4.2.4). Yellow arrows indicate approximated ice flow 
directions derived from surface slopes. Each arrow corresponds with a US ITASE site 
where ice cores were collected and SV stations were installed. 



Each dataset presented in this chapter is incorporated as an individual layer into 

the GIs described in Chapter 3.1. However, only the thickness, velocity, and 

accumulation data are required for residual flux calculations (Equation 3.7). Layers of 

surface and bed elevation are included in the GIs because they are used to interpret 

spatial variations in accumulation rate, ice flow (speed and direction), and mass balance. 

The views provided for each of the GIs layers include two-dimensional profiles 

across portions of West Antarctica, three-dimensional maps covering all of West 

Antarctica (e.g. Figure 4.1), and three-dimensional maps covering a 100-km2 grid 

centered on Byrd Station. The layers for the grid centered on Byrd Station are used in 

Chapter 5 to calculate the net mass balance of that region using the approach (summed up 

in Equation 3.7) discussed in Chapter 3. 

The sections of this chapter are organized according to surface topography 

(Chapter 4.2), ice thickness (Chapter 4.3), accumulation rate (Chapter 4.4), and ice flow 

(Chapter 4.5). Chapter 4.2 begins with a description of the methods used to collect and 

process GPS data and is followed by a discussion of elevation models for the grid 

centered on Byrd Station. The GPS measurements are then used to evaluate the vertical 

accuracy and resolution of the RAMP DEM over different portions of the WAIS. In 

Chapter 4.3, the GPS data are coupled with ground-based measurements of ice thickness 

data collected by US ITASE colleagues (Brian Welch and Robert Jacobel, St. Olaf 

College, Northfield, MN) using low-frequency radar. These data are used to evaluate the 

BEDMAP compilation (Welch and Jacobel, 2003). In Chapter 4.4, GPS data are coupled 

with high-frequency radar and ice core data to determine historical snowfall rates along 

survey lines. The methods used to calculate accumulation rates from radar profiles are 



presented in detail and analyses of the spatial and temporal variations in the continuous 

accumulation records are discussed. These GPR-derived accumulation rates are used to 

evaluate the Vaughan et al. (1999a) accumulation rate compilation. The ice velocity data 

presented in Chapter 4.5 were retrieved fiom several sources, including strain grids 

(Whillans, 1977; Bindschadler et al., 1998), borehole tilting measurements (Whillans, 

1979), an SV station (Hamilton et al., 1998), and base station GPS surveys. Separate 

conclusions are drawn for each of these sections. Each section concludes with a summary 

of key points. 

4.2 Ice Sheet Surface Topography 

Surface elevation is important for many types of mass balance studies, including 

the SV technique (e.g. Hamilton et al., 1998), repeat altimetry (e.g. Krabill et al., 2000; 

Spikes et al., 2003a), flux calculations along flowlines (e.g. Whillans, 1977), and in flux 

calculations of drainage basins (e.g. Joughln and Tulaczyk, 2002; Rignot and Thomas, 

2002). The surface topography of the WAIS is discussed in detail here, because it is 

closely related to mass balance variables that are included in Equation 3.7. For example, 

spatial variations in ice flow can be identified based on subtle changes in surface slope, 

such as longitudinal streamlines in regions of enhanced ice sheet flow (Casassa and 

Whillans, 1994) or surface flattening where ice crosses the grounding line (Fricker et al., 

2000). Surface topography controls the katabatic wind field (Parish and Bromwich, 1987; 

Tzengo et al., 1993), which in turn influences local snow accumulation rate gradients 

(Gow and Rowland, 1965; Whillans, 1975; Kreutz et al., 1999, 2000). The surface 

topography of an ice sheet is a filtered representation of subglacial morphology, so that 



with reasonable assumptions of ice flow and viscosity it is theoretically possible to invert 

surface shape to derive bedrock topography (Budd, 1970; Fastook et al., 1995). Because 

of its relationship with each of these variables, surface topography is important in this 

study for interpreting mass balance results. 

The global positioning system (GPS) was used to collect surface elevation data 

along the US ITASE traverse routes (Figure 4.1). The data were collected along 

continuous profiles up to 1500 km in length using kinematic surveying techniques. These 

data are used to provide an independent test of the leading Antarctic digital elevation 

model (DEM). These data are also used in support of other US ITASE programs, 

including radar profiling of firn stratigraphy (Chapter 4.4; Arcone et al., 2003; Spikes et 

al., 2003c) and bedrock topography (Chapter 4.3; Welch and Jacobel, 2003). 

Dual-frequency phase-tracking GPS receivers were used throughout this study. 

One receiver operated for the duration of each field season as a reference station. A 

second receiver was mounted on one of the traverse sleds and operated in kinematic 

mode as the expedition moved across the ice sheet. Differential post-processing of the 

data yielded latitude, longitude and elevation for the moving receiver. 

4.2.1 Static Positioning of GPS Reference Station 

The reference station consisted of an unattended geodetic-quality Trirnble 

4000SSi receiver at Byrd Station, which served as the base of operations for all four US 

ITASE traverses (Figure 4.1) (80°00'51 "S, 119'33 '39"W). A compact L1L2 antenna 

was mounted approximately 2 m above the snow surface on an aluminum pole. The 

antenna pole was inserted -1 m in the firn and stabilized using goy wires. As a further 



precaution, the antenna ground plane was removed to minimize wind-induced motion. 

The antenna was mounted high enough that multipath effects from surrounding camp 

structures and the snow surface were likely to be insimcant. The receiver was housed 

inside a tent and powered by a bank of 12-volt batteries charged by a photovoltaic array. 

There were no power or data loss events during any of the 21-55 day field seasons. 

Data were collected at 30-second intervals and saved to the receiver memory as 

individual day-of-year files. These data were post-processed using the GIPSY-OASIS I1 

software package (Zumberge et al., 1997), which incorporates Earth orientation, precise 

satellite orbit and clock solutions derived from NASA Jet Propulsion Laboratory's 

independent analysis of global fiducial stations, to yield daily precise point positions for 

the Byrd reference station. Formal 1-0 (ms)  uncertainties for the daily solutions are 

typically better than 0.01 m for each of the three components of position. The daily 

solutions are referenced to the ITRF96 global reference frame using the WGS84 

ellipsoidal model. 

Two positional trends are observed in the time series of daily solutions for 

surveys covering all four seasons. One trend results from the location of the Byrd 

reference station on the moving ice sheet. The horizontal trend in the daily solutions 

gives an ice velocity of 11.49 m 6' at an azimuth of 220" (2002-2003 season) which is 

consistent with an earlier determination of ice velocity of 1 1.83 m 6' at an azimuth of 

221" (Hamilton et al., 1998) at a nearby (-3 km) site derived from repeat GPS surveys. A 

second, vertical trend results from firn compaction beneath the antenna mount (Figure 

4.2), with a very small vertical contribution due to down-slope flow. The antenna mount 

is anchored in snow reworked by station activities and therefore does not represent a 
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Figure 4.2 Example of the daily trend in the vertical coordinate for the Byrd base station 
during the 2002-2003 field season. Trends for other seasons are s i i a r .  



natural firn compaction time series. However, the trend in vertical position indicates a 

steady lowering of the near-surface fim during each austral summer field season. A linear 

regression for the daily solutions (Figure 4.2) was used to provide a position for the Byrd 

reference because it removes a small amount of scatter in the vertical component of the 

reference station (Figure 4.2). 

4.2.2 Kinematic Positioning Along Survey Lines 

Kinematic GPS data were collected by a second receiver (Trimble 4000SSi) and 

antenna carried on one of the traverse vehicles. The antenna (a compact LllL2 antenna 

with ground plane removed) was mounted on a short pole attached securely to the roof of 

a sled structure. Multipath effects are considered to be negligible because the structure 

was fabricated predominantly from wood and also because the antenna was mounted 

higher than any surrounding objects (3.8 m above the snow surface). Data were collected 

at a 30 s rate, corresponding to an approximate along track distance between points of 

60-90 m based on typical traverse speeds (-2-3 m s-'). Each kinematic survey was 

typically 100-200 km in length. 

The kinematic survey data are processed differentially to the reference station at 

Byrd. The baseline processing engine in Trimble's GPSurvey@ s o h a r e  suite and precise 

ephemeris products obtained from the International GPS Service for Geodynamics 

(http://igscb.jpl.nasa.gov/) were used to calculate static and kinematic solutions for each 

data file. This same processing procedure was used successfblly to obtain kinematic 

solutions over baselines of several hundred krn during airborne survey work in West 

Antarctica (Spikes et al., 2003b). 



Baseline lengths used in this study range fiom 0-1 100 km. Each kinematic GPS 

survey began and ended with long-duration static occupations. Static initializations lasted 

a minimum of 8 hr, but were usually 18 - 24 hr for distant baselines. The use of two 

static occupations (beginning and end) allowed for forward and backward processing of 

the kinematic data in the event of problems. Fixed-integer, ionospherically-corrected 

kinematic solutions were obtained for > 90% of the data. For a few cases (not used in the 

present study), fixed-integer solutions were not possible because of "loss-of-lock" events 

due to excessive antenna motions during travel (instantaneous accelerations) or poor 

dilution of precision (DOP) of the satellite constellation during short survey periods. In 

these cases, positions were recovered using float solutions or CIA code data. 

Uncertainties in the kinematic solutions are very acceptable given the long 

distances from the reference station at Byrd. Maximum uncertainties in the vertical 

component of position never exceed 0.2 m (rms). Horizontal position uncertainties are 

considerably smaller. These results show that it is possible to reliably determine position 

and elevation data using kinematic GPS techniques with large separation distances fiom a 

reference station. This technique offers the potential for detailed mapping of other remote 

locations in Antarctica and elsewhere using ground-based and airborne surveys. 

4.2.3 High-resolution Mapping of Three-dimensional Grids 

Kinematic GPS surveys were used to produce local topographic maps for each of 

the twenty-two locations where the US ITASE stopped to collect ice cores and install SV 

stations. The sampling rate of these surveys was increased to 5 s to accommodate the 

faster travel speed of the snowmobile used to carry the GPS equipment, resulting in an 



along-track spacing of -25 m between consecutive measurements. These surveys 

generally consist of concentric rings or crossing patterns that cover an area that is -15 

km2. These maps serve several purposes. Derived surface slopes are required for mass 

balance calculations using SV stations (Hulbe and Whillans, 1994; Hamilton el al., 

1998). The maps are also coupled with ice flow rates and used to interpret the effects of 

topography and ice flow on accumulation rates derived fiom ice cores (Kaspari el al., 

2003) and GPR surveys (Spikes et al., 2003~). 

More extensive mapping in three-dimensional grids was performed at two sites, 

Byrd Station and 02-3 (Figures 4.3 and 4.4). The sites will be used to determine the 

ranging accuracy of GLAS (discussed in Chapter 2.2) on board ICESat. The map for 

Byrd Station is also used to evaluate the RAMP DEM (see Chapter 4.2.4). The grid at 

Byrd Station is 10 x 10 km and the grid at 02-3 is 5 x 5 km (Figure 4.3). 

Figure 4.3 Tracks of GPS surveys around Byrd Station (a) and 02-3 (b). Stars locate the 
GPS base stations. Note that each map has a diierent scale bar. 



Figure 4.4 Interpolated contours of ice sheet surface topography around Byrd Station (a) 
and 02-3 (b). Stars locate the GPS base stations. Note that each map has a different scale 
bar. 

Using a combination of pre-planned routes and semi-random surveys an even 

distribution of measurements was obtained within each grid (Figure 4.3). The overall 

spacing between measurements varies from <I m to -1 km. Topographic maps of each 

site were produced by kriging (e.g. Isaaks and Srivastava, 1989) the data to 100-m grid 

spacing (Figure 4.4). 

There are a number of points within each grid where nearly coincident (<2 m 

separation distance) measurements occurred. These points are used to estimate 

uncertainties in measured elevations related to GPS errors and surface roughness (Figure 

4.5), although no attempt is made here to separate these two components. Analyses of 

these points revealed average uncertainties in elevation of 0.030-0.1 1 m for 02-3 and 

Byrd Station, respectively. The small uncertainties at 02-3 are attributed to the minimal 



separation distance (53.5 km) between the roving and base station receivers. The 

relatively large errors at Byrd Station are attributed to the larger separation distance 

between receivers (17 km), and to the greater number of independent surveys used to 

map this site (6 surveys at Byrd Station versus 2 surveys at 02-3). 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 
Elevation difference (m) Elevation difference (m) 

Figure 4.5 Distribution of uncertainties in the elevation component of GPS positions 
around Byrd Station and 02-3. Uncertainties are based on the elevation difference 
between nearly coincident survey (<2 m separation distance) points. 

4.2.4 Evaluation of the RAMP DEM 

The RAMP DEM represents the best available compilation of Antarctic surface 

topography (Liu et al., 1999; Jezek el al., 1999). This DEM was constructed to guide the 

geometric rectification and continental mosaicking of radar imagery collected by 

Radarsat (Liu et al., 1999; Jezek, 1999). The foundation for the DEM is ERS-1 altimeter 

data collected in the mid-1990s, augmented where available with other mapping and 



survey information. This DEM represents an improvement over older terrain models by 

incorporating ancillary mapping information from ground-based and photogrammetric 

surveys, as well as rigorous GIs based interpolation and error detection techniques. The 

RAMP DEM, available from the National Snow and Ice Data Center (NSIDC), is being 

widely used in a variety of glaciological studies. 

Because of well-documented uncertainties in the way that altimeter waveforms 

interact with the surface layers of an ice sheet (e.g., Davis and Moore, 1993)' as well the 

performance of altimeter re-tracking algorithms over regions of relatively steep slopes 

(Bamber, 1994), there is the potential for errors to be introduced into the RAMP DEM. 

During the initial compilation of the DEM, Liu et al. (1999) conducted validation 

exercises using existing terrestrial survey data. However, the spatial resolution of most of 

those surveys was not optimized for studying the fine-scale (< 10 km) morphology of 

Antarctica. Therefore it is desirable for additional independent tests to assess how well 

the DEM describes the detailed surface topography of the ice sheet. These tests can also 

provide quantitative estimates of the DEM's resolution. 

Here, GPS data collected continuously along several profiles 150-320 km long in 

West and East Antarctica are used to independently evaluate how well the RAMP DEM 

(Version 2 with 1-km grid spacing) describes the shape of the ice sheet surface. 

Kinematic GPS techniques have been used in validation tests of other, regional-scale 

satellite altimeter-derived Antarctic DEMs (e.g. Phillips et al., 1997). For the purposes of 

the present analysis, four segments (Figure 4.1) have been selected that are typical of 

different ice sheet regimes contained in the RAMP DEM. Segment 1 covers characteristic 

undulating topography in the ice sheet interior, Segment 2 crosses a major West Antarctic 



flow and drainage divide, Segment 3 approximately follows a flow line to an onset region 

of enhanced flow, and Segment 4 represents an interior ice sheet profile across a region 

where the RAMP DEM is poorly constrained by altimeter data. In addition, the 100-km2 

grid centered on Byrd Station (Figures 4.1 and 4.4) is used to assess the detailed three- 

dimensional topography in the RAMP DEM. Because these data were collected after the 

release of the RAMP DEM and were not used in its compilation, they constitute a 

valuable independent test of the DEM's performance. Ellipsoidal elevations in both 

datasets are used in the following comparisons, so errors in geopotential heights are not 

important. 

Segment 1 is located in the upper drainage basin of Thwaites Glacier (Figure 4.1). 

The profile extends 150 km down glacier from a point close to the ice divide. There is a 

500 m elevation decrease along the profile. The ice sheet surface in this region is 

relatively smooth (Figure 4.6a). The GPS and DEM profiles agree very well over the 

relatively smooth sections of Segment 1 (Figure 4.6a). The rms of elevation differences 

between the two profiles is less than 5 m in these regions. The largest differences in 

elevation occur in rugged sections of the GPS profile. Horizontal smoothing (using a 

running average) of the GPS profile, which dampens the amplitude of the undulations, 

reduces the elevation differences. The rrns of the elevation differences between profiles 

reaches a minimum if an 8 km horizontal smoothing is used for the GPS profile (Figure 

4.6a), implying that the true horizontal resolution of the DEM is coarser than the original 

estimate of 5 km (Liu eta]., 1999). 

Segment 2 is a 320 km long profile that crosses two local ice divides before 

climbing to the crest of the major ice divide in central West Antarctica (Figure 4.1). The 
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Figure 4.6 Differences between GPS and RAMP DEM along two-dimensional profiles. 
A) Segment 1 - traverse from 01-1 to 01-2. B) Segment 2 - traverse from 00-2 to 00-5. 
C) Segment 3 - traverse from Byrd Station to 99-2. D) Segment 4 - traverse from 02-5 to 
South Pole. For all segments, the black line is the GPS data smoothed to a 1 krn 
horizontal resolution, the gray line is the DEM surface, and the dashed line is the GPS 
data smoothed to 8 krn horizontal resolution. The locations of each segment are shown on 
Figure 4.1. 



total elevation gain along the profile is slightly less than 200 m (Figure 4.6b). The profile 

derived from the DEM captures nearly all these large-scale features, although most of the 

smaller-scale roughness in the GPS profile is missing. Overall, the rms of elevation 

differences between the two profiles is reasonable, although this agreement is partly due 

to the small amplitude of the features not captured by the DEM surface. There was no 

substantial improvement between the two profiles, as defined by a reduction in the rms of 

elevation differences, when the GPS data were smoothed to an 8 km horizontal resolution 

(Figure 4.6b). 

Segment 3 was collected along an approximate flow line leading from Byrd 

Surface Camp to the onset region of streaming flow in the upper portion of Bindschadler 

Ice Stream (formerly Ice Stream D) (Figure 4.1). There is an almost monotonic decrease 

in elevation of 550 m along the 177 km profile (Figure 4 .6~) .  A comparison of the GPS 

and DEM surface profiles shows good agreement in relatively smooth sections of the 

segment (Figure 4 .6~) .  However, the DEM profile does not capture the series of 

undulations in the ice stream onset region. In this section of the segment, elevation 

differences between the two profiles are as large as 50 m (Figure 4 .6~) .  The agreement 

between the two profiles is improved substantially by smoothing the GPS profile with an 

8 krn horizontal spacing. There is no significant improvement if the smoothing distance is 

increased beyond 8 km. The implication of this smoothing analysis is that the horizontal 

resolution of the DEM is on the order of 8 km, which is substantially coarser than the 5 

km estimated by Liu et al. (1999). This coarser estimate of spatial resolution is 

noteworthy if the DEM is being used to map features characteristic of enhanced ice flow. 

Segment 4 is located on the interior East Antarctic Ice Sheet close to South Pole 



(Figure 4.1). In this region of the continent, the RAMP DEM is poorly constrained by 

mapping data (Liu et al., 1999). Because satellite altimeter measurements do not extend 

south of 82"S, the DEM in the central portion of Antarctica is constructed from isolated 

airborne survey data. Therefore large errors might be expected in the way the DEM 

describes ice sheet topography in this region. Differences in elevation between the two 

profiles along this segment are relatively large (31 m rms). The rms of elevation 

differences does not improve when a relatively long smoothing distance of 10 krn is used 

for the GPS profile (Figure 4.6d). This result is not unexpected, because the smoothed 

GPS surface maintains the broad morphology of the finer-resolution profile, including an 

upland plateau that is missing in the DEM (Figure 4.6d). The spacing of survey flight 

lines in this region was probably coarser than the dimensions of the plateau, explaining 

why it is absent in the DEM data. Liu et al. (1999) estimate the resolution of the DEM in 

this region to be about 10 km, but this analysis suggests that the horizontal resolution is 

probably closer to 50 km. 

The segments described above are one-dimensional profiles across the ice sheet 

surface. It is also important to understand how well the RAMP DEM describes three- 

dimensional topography at the scale of typical ice sheet surface features (about 2-1 0 km), 

because these features exert strong local control on snow accumulation. The detailed map 

of the surface topography around Byrd Station is used to investigate this issue (Chapter 

4.2.3; Figure 4.4). This grid is located within the region of the DEM that is well 

constrained by satellite altimeter data. The GPS-derived topography displays three facets. 

A steep sloping section dominates the grid west portion of the map (Figure 4.4). The 

central region is relatively flat and the grid east portion displays a gentle slope. Byrd 



Surface Camp is located on a small but prominent -10 m high bump (Figure 4.4) formed 

by sustained preferential accumulation of snow around the station structures. The surface 

topography constructed fiom the RAMP DEM does not contain the same amount of 

detail as the GPS-derived map (Figure 4.7a). There are no distinct facets and the DEM 

omits the bump at Byrd Surface Camp. There is an elongated, wide, flat ridge on the grid 

west section of the map, but otherwise the slope decreases evenly from grid west to grid 

east across the map. A plot of the elevation offsets between the two maps shows a zone of 

maximum differences just to the grid west of Byrd Surface Camp, on the relatively steep 

section of the GPS map (Figure 4.7b). 

Figure 4.7 Differences between GPS and RAMP DEM in the vicinity of Byrd Station. 
Crosses indicate GPS base at Byrd Station. a) Topography fiom RAMP DEM. b) 
Elevation differences between GPS measurements (see Figure 4.4) and the RAMP DEM. 
GPS survey tracks are shown in Figure 4.3a. 



4.2.5 Discussion 

According to Liu et at. (1999), the horizontal resolution of this DEM is 5 km in 

the ice sheet interior, where satellite altimeter data were used in the compilation, and -10 

km in the central portion where altimeter data are not available (Liu et at., 1999). Based 

on the present analysis, the horizontal resolution is found to be closer to 8 km in the 

better-constrained regions of the DEM and substantially coarser than 10 km (probably 

close to 50 km) in the data-sparse central portion. This means that the RAMP DEM 

performs very well at describing the first order topography of the Antarctic Ice Sheet. 

North of 82"S, the DEM correctly describes the principal surface slopes and drainage 

divides (although beyond this latitudinal limit there are large errors in the ice sheet 

surface shape and important topographic maxima are missing). The most noticeable 

difference between the GPS and DEM profiles is the way in which small-scale (2-10 krn) 

surface roughness is characterized. Surface roughness in the DEM is either absent, 

attenuated, or offset in location relative to the GPS profiles. Therefore the rms differences 

in elevation between the GPS and DEM profiles (-10 m for the regions north of 82"s) are 

biased by large discrepancies in areas of rugged topography not captured by the DEM. If 

these sections are excluded, rms differences are closer to 2 m. This level of agreement is 

acceptable, considering uncertainties in GPS vertical positioning and a potential, but 

unknown, depth of penetration of the altimeter signal into the surface firn (e.g. Davis and 

Moore, 1993). 

It is unlikely that these differences are the result of the two datasets being 

compiled at different times. The RAMP DEM is based primarily on ERS-1 satellite 

altimeter data collected in the early 1990s whereas the GPS data were collected between 



1999 and 2003. Bumps and undulations on an ice sheet evolve through processes of 

infilling by snow and upglacier migration (Budd, 1970), although on short timescales 

these features can be assumed to be time-invariant. These two processes therefore should 

not have any detectable effect on the comparison of profiles collected only a few years 

apart. 

4.2.6 Conclusions 

The horizontal resolution of the leading Antarctic DEM has important 

implications for several glaciological studies. Because most of the 2-10 km scale surface 

roughness is omitted, the DEM is limited in its ability to characterize local variability in 

snow accumulation rates resulting from changes in surface gradient (Chapter 4.4.2.2). 

The use of the DEM to identifjr features based on a topographic signature, such as flat 

surfaces indicative of subglacial lakes, or streamlines indicating regions of enhanced 

flow, will be limited to features substantially larger than the 8 km horizontal resolution of 

the data. In the central portion of the DEM (south of 82" S), the positions of drainage 

divides might be wrongly located which will affect mass balance calculations. Finally, 

experiments aimed at inverting the ice surface topography contained in the DEM to 

obtain maps of subglacial bedrock will result in missing valleys and mountains ranges. 

4.3 Ice Thickness 

Ice thickness is a key variable in calculations of depth-averaged horizontal ice 

velocity and mass balance. Also, ice thicknesses are subtracted from surface elevations to 

produce bedrock elevations. Unlike surface topography which has been measured using a 



variety of ground-based, airborne, and satellite techniques (Chapter 4.2), ice thickness 

measurements are considerably more limited. Low frequency radio-echo sounding (RES) 

is the most common and the most reliable approach to measuring ice thickness. These 

surveys can be conducted from ground-based (e.g. Welch and Jacobel, 2003) and 

airborne (e.g. RetzlafY et al., 1993; Blankenship et al., 2001) platforms. Ground-based 

seismic reflection surveys have also been used to map ice thickness and bedrock 

topography (e.g. Lythe et al., 2000). 

4.3.1 Maps of Bedrock Topography and Ice Thickness 

The only continent-scale dataset of Antarctic ice thickness is the BEDMAP 

compilation of ground-based and airborne radio-echo sounding (RES) surveys (Lythe et 

al., 2000). Bedrock elevations included in this compilation are a product of RAMP 

surface elevations minus BEDMAP ice thickness values. A 5-km gridded version of this 

compilation is available from the British Antarctic Survey (http://www.antarctica.ac.uk 

/aedc/bedmap/). The errors associated with this dataset are highly variable, because there 

are large areas of Antarctica that have not been surveyed (Lythe et al., 2000). In these 

areas, interpolation is used to estimate bedrock elevations. 

Kriging was used to generate an interpolated grid (e.g. Isaaks and Srivastava, 

1989) of BEDMAP ice thickness data covering West Antarctica and the South Pole 

region (Figure 4.8). A bedrock elevation map (Figure 4.9) was created by subtracting the 

BEDMAP ice thickness values in Figure 4.8 from the RAMP ice surface elevations in 

Figure 4.1 using a GIs approach. The map of bedrock elevations (Figure 4.9) shows that 

most of West Antarctica is below sea level. 



Figure 4.8 Map of ice sheet thickness for West Antarctica and the South Pole region 
(Lythe et a/., 2000). The dashed red limes are the US ITASE traverse routes. The white 
line locates the profile used to test the accuracy of BEDMAP (Figure 4.1 1). 



Figure 4.9 Map of bedrock topography for West Antarctica and portions of East 
Antarctica (Lythe et al., 2000). Elevations are based on the WGS 84 ellipsoid. The 
dashed red lines are the US ITASE traverse routes. The white line locates the profile used 
to test the accuracy of BEDMAP (Figure 4.1 1). 



Using the same approach, local maps of bedrock topography and ice thickness 

centered on Byrd Station were created (Figure 4.10). The bedrock map (Figure 4.10a) 

shows a steep gradient fiom left to right across this area, which corresponds with a 

subglacial peak that has been observed in several studies (e.g. WhilIans, 1979; Welch and 

Jacobel; 2003). 

Figure 4.10 Maps of bedrock topography and ice thickness for the 1 00-km2 grid centered 
on Byrd Station. Profile a' - a" corresponds with the Welch and Jacobel (2003) survey 
presented in Figure 4.1 1. 

4.3.2 Evaluation of BEDMAP 

Along the US ITASE traverse routes, ice thickness was measured using a 3-MHz 

short-pulse transient type radar (Welch and Jacobel, 2003). The 3-MHz measurements 

are geolocated using simultaneously recorded GPS data (Chapter 4.2.2). Results from 



GPS and 3-MHz radar surveys along a 737-km linear cross-section of the WAIS 

stretching f?om Byrd Station to 01-5 (Figure 4.8) are shown in Figure 4.1 1. Welch and 

Jacobel (2003) used these data to determine the range of errors contained in the 

BEDMAP compilation (Figure 4.11). They found that ice thickness errors in the 

B E D W  compilation along this profile vary from 0 to 1200 m (avg. deviation is -15% 

of ice thickness) (Figure 4.1 la). A portion of the data presented in Figure 4.11 was 

recorded along line a' - a" in Figure 4.10. This short profile shows that the average error 

in the BEDMAP compilation is -70 m in the vicinity of Byrd Station (Figure 4.12). 

4.3.3 Conclusions 

The BEDMAP compilation of ice thickness measurements can be a source of 

uncertainty when incorporated into glaciological studies. A standard error of *15% 

translates to a mean error of 240 m, given the mean thickness of the WAIS is -1600 m 

(Lythe et al., 2000). This has important implications for calculations of driving stress, 

balance velocity, and basal stresses (normal and shear). Here, ice thickness is 

incorporated into estimates of ice flux through I-km grid cells. The typical errors 

observed in the BEDMAP compilation (Figure 4.11) exceed the typical bedrock gradients 

observed in the US ITASE 3-MHz radar (avg. gradient = 40 m km") and BEDMAP (avg. 

gradient = 10 m km-') profiles by a factor of 6 and 24, respectively. These gradients 

indicate that the difference in ice thickness between adjacent 1-km grid cells is typically 

smaller than the error associated with each BEDMAP ice thickness value. 
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Figure 4.1 1 WAIS cross-section between Byrd Station and 01-5 (see Figure 4.8). Black 
lines indicate ground-based measurements fiom US ITASE. Blue lines indicate data fiom 
continent-scale data compilations. Red lines correspond with profile a' - a" in Figures 
4.10 and 4.12 (a" is on the far right). a) Difference between US ITASE and BEDMAP 
ice thickness values. b) Ice thickness fiom US ITASE 3-MHz radar surveys and the 
BEDMAP compilation. c) Ice surface topography (based on the WGS 84 ellipsoid) from 
US ITASE GPS surveys and the RAMP DEM. d) Bedrock topography fiom US ITASE 
3-MHz radar surveys and the BEDMAP compilation. 
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Figure 4.12 WAIS cross-section along profile a' - a" in Figures 4.10 and 4.1 1 .  Black 
lines indicate ground-based measurements fiom US ITASE traverses. Blue lines indicate 
data from continent-scale data compilations. a) Difference between US ITASE and 
BEDMAP ice thickness values. b) Ice thickness fi-om US ITASE 3-MHz radar surveys 
and the BEDMAP compilation. c) Ice surface topography from US ITASE GPS surveys 
and the RAMP DEM. d) Bedrock topography fiom US ITASE 3-MHz radar surveys and 
the BEDMAP compilation. 



4.4 Snow Accumulation Rates 

Snow accumulation rates on the Antarctic ice sheet are known to be highly 

variable over short distances (e.g. Black and Budd, 1964; Gow and Rowland, 1965; 

Whillans, 1975, Richardson et al., 1997; Kreutz et al., 1999, 2000; Richardson and 

Holmlund, 1999; Vaughan et al., 1999b) and over short time intervals (e.g. Moseley- 

Thompson et al., 1999, Kaspari et al., 2003). However, accumulation rates in Antarctica 

are not well characterized, because they have generally been assessed using compilations 

of widely spaced point measurements and low-resolution (-25 krn) passive microwave 

data (e.g. Vaughan et al., 1999a; Giovinetto and Zwally, 2000), neither of which capture 

the full range of accumulation variability, and may not produce an accurate spatial mean 

(e.g. Richardson et al., 1997; Richardson and Holmlund, 1999). This observation has 

important implications for studies of ice sheet mass balance and sea level rise, because 

accumulation of snow is a key quantity for mass balance calculations (e.g. Shabtaie and 

Bentley, 1987; Hamilton et al., 1998; Wingham et al., 1998; Joughln and Tulaczyk, 

2002; Rignot and Thomas, 2002). 

Preservation of snowf-all on ice sheets provides a stratigraphic record that can be 

used to determine how rates of snow accumulation have changed over time. These 

records can be interrupted by wind erosion and melt events, and they can also be distorted 

by ice flow. Ice cores provide chemical and isotopic records that can be used to 

determine depth to age relationships in the ice and identi6 gaps in the record. However, 

ice cores recovered even a few kilometers apart can give very different values as a result 

of changes in ice flow and topographic influences on snow accumulation. Over larger 

distances (>50krn) differing climatic regimes tend to dominate the accumulation record. 



To parameterize spatial variability in accumulation, ground-penetrating radar (GPR) was 

used to fill in the gaps between distant ice cores. 

Continuous horizons can be traced in radar profiles for hundreds of kilometers 

along US ITASE routes (Arcone et al., 2003). The confirmation that these horizons are 

isochronal (Chaper 4.4.1; Spikes et al., 2003c) makes it possible to fill in the gaps 

between US ITASE ice cores and quantitatively determine how snow deposition changes 

spatially as well as temporally for large areas of West Antarctica. 

4.4.1 Isochronal Nature of Continuous Radar Reflections 

Internal layers in ice sheets, tracked as radar horizons, are assumed to represent 

isochronal events (e.g. Kohler et al., 1997; Richardson et al., 1997; Richardson and 

Holrnlund, 1999; Vaughan et al., 1999b; Eisen et al., 2003a; Kanagaratnarn et al., 2001). 

This assumption does not distinguish between events that occurred over a period of days 

(melt events, storms, etc.) or a few years (volcanic eruptions). Several studies show 

evidence that continuous radar reflections in firn are caused by dielectric permittivity 

fluctuations related to density (Arcone et al., 2003), and not by dielectric or conductivity 

variations related to chemistry (Eisen et al., 2003b; Fujita et al., 1999). It seems plausible 

that the same synoptic-scale weather systems that control ion deposition over large 

regions of Antarctica (Kreutz and Mayewski, 1999) could also control the density 

fluctuations that cause isochronal radar reflections in firn. Regardless of the cause, the 

key issue is the accuracy of tracking the spatial continuity of a single isochrone and, 

therefore, the accuracy to which these horizons can be used to understand the historical 

records preserved within the stratigraphy of ice sheets. Despite their use in previous 



studies of accumulation rate variability (e.g. Kohler ef  al., 1997; Richardson et al., 1997; 

Richardson and Holmlund, 1999; Vaughan et al., 1999b), radar layers have never been 

dated at multiple locations over long distances to reliably determine their isochronal 

accuracy. Here, data are presented from a 100-km transect in West Antarctica (Figure 

4.13). Along this profile, continuous horizons consisting of single, 35 cm resolution 

pulses are tracked between dated ice cores collected at sites 00-4 and 00-5. The 

isochronal accuracy for this particular pulse is <1 year. 

4.4.1.1 Simplifjing the Radar Pulse 

The radar pulse (Figure 4.14a) is a transient, 1.5 cycle waveform lasting about 3.8 

ns with a dominant spectral frequency near 400 MHz. In fim of dielectric constant E = 2.4 

(typical average value for dry polar firn) this pulse duration provides a layer interface 

separation resolution of approximately 35 cm. This spacing is generally greater than the 

separation of annual layers at depth in polar firn. The radar profile discussed here reveals 

numerous events represented by pulse shapes similar to that in Figure 4.14% which are 

most likely responses to one or more closely-spaced thin layers spanning a thickness of 

10 cm or less (Arcone et al., 2003). To simplify the appearance of the profile horizons 

and improve their resolution, the profile was deconvolved (spiked) before applying a 

Hilbert magnitude transform, as shown in Figure 4.14a. The consistency of the phase 

structure of this pulse shape before Hilbert transformation of the profile in Figure 4.14b 

provides evidence that the leading edge of an isochronal event or series of events has 

been tracked. 



Figure 4.13. Location maps and ice core data. a) Continent-scale map of Antarctica. b) 
Portion of West Antarctica (boxed region in a) showing some of the US ITASE traverse 
routes (white lines). Red circles indicate where ice cores were collected. The solid white 
line represents the transect along which the radar profile was collected between 00-4 and 
00-5. The white arrow indicates the direction of travel during data acquisition. The 
shaded relief map was generated from a digital elevation model (Liu et al., 1999), which 
was also used to estimate ice flow directions at 00-4 and 00-5 (black arrows). c) Ice core 
density and chemistry ( n s s ~ 0 ~ ~ ~ )  profiles for 00-4 (blue) and 00-5 (red). 



4.4.1.2 Defining the Depth-Age Relationship 

Ice cores collected at 00-4 and 00-5, analyzed for soluble major ion content 

(Dixon et al., 2003) and density, were used to determine the relationship between depth 

and age at each end of the radar profile. High resolution chemical analysis (30-50 

measurements per meter) was used to define each core-chemistry year on the basis of a 

winter-spring peak in Na", C1-, Ca", M ~ ~ "  and K", and combined with a spring-summer 

peak in both NOs- and excess non sea salt (nss) ~04~-(Whitlow et al., 1992; Legrand and 

Mayewski, 1997). Extreme events, such as the 1815 A.D. Tambora volcanic eruption 

provide absolute age constraints within each core that are easily identified in n s s ~ 0 4 ~ -  

profiles (Figure 4.13~). The dimensions and mass of individual core sections (-1 m) were 

measured in the field to develop a density profile for each site (Figure 4.13~). 

The round-trip travel time of each returned radar pulse (maximum of 741 ns) was 

converted to depth using the density profiles and the well-known relationship between 

firn density and the real part of the dielectric constant, E', which determines the radio 

wave velocity, c, through polar fim (e.g. Richardson and Holrnlund, 1999). This 

relationship can be expressed with the empirical equation (Kovacs et al., 1999, 

E'= (1 + 0 . 8 4 5 ~ ~ ) ~  4.1 

where p, represents the specific gravity (i.e. density relative to that of water). The 

quantity c is then calculated from: 

c = c o / G  4.2 

where c, is the electromagnetic wave speed through a vacuum. These procedures allow us 

to plot the depth and age of each ice core sample against its corresponding radar horizon 

(e.g. Figure 4.14b). 
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Figure 4.14 Radar data collected between US ITASE sites 00-4 and 00-5. a) 400-MHz 
pulse shape as reflected by a high-density layer in fk (black line). The pulse was 
deconvolved with a spiking routine (blue line) before perfbrming a Hilbert magnitude 
transform (red line). b) Radar profile after deconvolution and Hilbert transformation. The 
darkened horizons are tracked (black lines) to illustrate isochronal continuity between 
core sites. The deepest visible horizon at Site 00-4 has been tracked the entire distance 
(-550 km along-track) to Byrd Station. Signal fading related to surface undulations is 
apparent beyond 60 km. Round trip travel time (ns) shown on the vertical axes, is also 
given in meters of depth and was determined fiom the core density profiles. 



4.4.1.3 Tests of Isochronal Accuracy 

Five horizons were selected on the basis of their prominence and relative spacing 

from one another, and have been darkened to show their continuity (Figure 4.14b). Each 

of these horizons was tested for isochronal accuracy by tracking their leading edge from 

one dated core to the other. The maximum age diierence found for all the horizons tested 

is <1 year, including the deepest horizon that dates to 1815 A.D. This high degree of 

isochronal accuracy suggests that there is little or no error induced by layer variations, 

which is attributed to the trace acquisition rate (-1 tracdl5 m), traverse speed (-3 mls), 

and stacking rate during data collection. Each of the traces in the final profile represents a 

stack of approximately 150 traces so that layer variations are well averaged. 

It is unlikely that the procedure used for depth calibration introduces any 

significant error, despite the l-m core lengths used for density calculations. For example, 

if the average density of a 1-m core section is 600 kg m-3, the round-trip delay of the 

radar signal is 10.051 ns. Assuming an exaggerated inhomogeneity of 550 kg mV3 for the 

top half and 650 kg m-3 for the bottom half of the core, the error in time delay through 

each meter of core is only -0.002 ns. The cumulative error at 60 m depth would be 0.12 

ns (-1 cm) within the >600 ns record. In addition, it is assumed that the top two meters 

are at the same density as the third meter (-400 kg m-3) because the density profiles 

generally begin at a depth of 2 m. An actual density of 300 kg m-3 for the top two meters 

would give a time delay error of 1.1 ns (-10 cm), which corresponds to less than one year 

at a depth of 50 m. 

A more likely source of error is related to difliculties in tracking some of the 

deeper layers in regions where the ice sheet surface undulations are more pronounced. 



The continuity of the horizons is most evident within 60 km of site 00-4 (Figure 4.14b), 

where the ice sheet surface is relatively smooth (Figure 4.15, top right). Beyond 60 km, 

surface undulations affect the local accumulation rate, as noted in previous studies (Black 

and Budd, 1964; Gow and Rowland, 1965; Whillans, 1975; Mosley-Thompson et al., 

1995; Venteris and Whillans, 1998; Vaughan et al., 1999b). The folded appearance of the 

radar horizons indicates that more snow accumulates in depressions than on hills. As the 

apparent folding becomes amplified with depth, the incidence angle (stratigraphic dip) 

between radar pulses and stratigraphic layers increases. An incidence angle of only 0.4 

degrees, which is typical for this profile, provides a round-trip phase delay of almost half 

a wavelength between consecutively recorded traces. Therefore, such a delay reduces 

return strengths by causing destructive interference which, in turn, makes it more difficult 

to track an individual horizon. Given this effect, the discernable leading edges that are 

tracked may represent one of a few closely spaced historical events. 

4.4.2 Accumulation Rates from GPR Profiling 

The isochronal accuracy of tracking the 400-MHz horizons enables the 

determination of historical accumulation rates at any point along the profile. Each of the 

darkened radar horizons in Figure 4.14b was digitized according to trace number (1- 

6641) and round-trip travel time (0-741 ns). Each trace was post-processed for position 

and elevation using simultaneously recorded GPS data (Hamilton and Spikes, 2003) that 

were recorded as the expedition moved across the ice sheet at -3 m s-l. Maximum 

uncertainties in the GPS positions never exceed 0.2 m (Hamilton and Spikes, 2003). 

Based on the time when GPR data collection began (obtained from the kinematic GPS 



receiver) and the trace acquisition rate, we estimated the time when each trace was 

acquired and then we interpolated the GPS data to each of these times. Density profiles 

for all 6641 traces between the two core sites were estimated using linear interpolation, 

which is appropriate because the density profiles for each site are similar. 

Accumulation rates for each trace were calculated as follows. The interpolated 

density profiles and round-trip travel times were used to calculate the water equivalent 

(w.e.) depth to each horizon, which is divided by the age of the horizon in years to yield 

the time-averaged yearly accumulation rate since that layer was deposited. This 

calculation was performed for all 6641 traces that make up each of the five horizons 

(Figure 4.14b) to produce the along-track accumulation rate for each horizon at each 

trace. A long-term accumulation rate is calculated using the deepest digitized horizon, 

which corresponds to an age of 1815 A.D. The same calculation scheme is used to 

calculate accumulation rates for the intervals between consecutive horizons. 

The uncertainties associated with each calculated accumulation rate vary with 

depth. Estimated uncertainties are based on three components: layer thinning due to ice 

advection (0 at surface, 1 cm at 60 m firn depth), the cumulative uncertainty introduced 

by our procedure for depth calibration (10 cm at 2 m firn depth, 11 cm at 60 m firn 

depth), and the isochronal accuracy of each horizon (1 year for all depths). All possible 

combinations of these uncertainties were used in sensitivity tests to determine how 

calculated accumulation rates vary with depth. Results indicate that uncertainties at a firn 

depth of 10 m are -3.8% of the calculated accumulation rate. The uncertainties decrease 

to -0.5% at a firn depth of 60 m. Spatially averaging the calculated accumulation rates 

hrther reduces the associated uncertainties. 



4.4.2.1 Continuous Versus Point Measurements 

Accumulation rates derived from each of the digitized horizons (Figure 4.14) are 

presented in Figure 4.15 (center right). The maximum spatial variability of long-term 

accumulation rates along this 100-km transect is 32% (std. dev. = 18%), when comparing 

- 
the range of d, (0.098 to 0.195 m 6' w.e.) to the profile average of 0.144 m a-' w.e. 

(Figure 4.15, center right). The standard deviation of accumulation rates from the linear 

fit in Figure 4.15 (center right) is 9%. The radar-derived accumulation rates agree 

perfectly with the core-derived accumulation rates at core sites 00-4 (0.192 m a-' w.e.) 

and 00-5 (0.145 m a-' w.e.) (Figure 4.15, lefi), because the ice cores are used to calibrate 

the radar technique. However, the average accumulation rate of 0.169 m am' w.e., based 

on the two ice cores, is 17% higher than the radar-derived average for the 100-km 

transect. These results are consistent with Richardson et al. (1997) and Richardson and 

Holrnlund (1999), who indicate that widely spaced point measurements do not capture 

the wide range of spatial variability in accumulation rate, nor do they produce an accurate 

spatial mean. 

4.4.2.2 Topographic Influence 

The largest component of the spatial variability in accumulation rate (Figure 4.15, 

center right) appears to be related to ice sheet surface topography. The large-scale trend 

of decreasing accumulation rate (linear fit = -0.07 cm am' km-') may be an orographic 

effect due to the steady 140 m rise in elevation fi-om 00-4 to 00-5 (gradient = 1.4 m km-') 

(Figure 4.19, but it could also be related to geographic differences between the two sites. 

For example, 00-4 is located on a relatively flat portion of the ice sheet that is within 
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Figure 4.15 Spatial variability of accumulation rates from ice cores and GPR profiling. 
Lefi: Core-derived annual accumulation rates for 00-4 (orange) and 00-5 (gray). Top 
right: Surface topography. Center right: Calculated accumulation rates for each digitized 
horizon shown in Figure 4.14b (see legend). The sloping black line (short dashes) is the 
fit through the long-term accumulation rates based on the 1815 horizon. The sloping 
purple line is based on the Vaughan et al, (1999) compilation. The mean accumulation 
rates derived fiom ice cores (dashed orange line), radar (dashed black line), and the 
Vaughan et al. (1999) compilation (dashed purple line) are labeled accordingly. Bottom 
right: Gradients along the elevation profile (black line) (top right) and the 1966-2000 
accumulation rate profile (blue line) (center right). 



20 km of an ice divide, and 00-5 is situated on the leeward flank of an ice ridge that could 

partially block the supply of moisture from the ocean. Superimposed on the regional 

trend are local variations in accumulation rate that are related to surface undulations (e.g. 

Black and Budd, 1964; Gow and Rowland, 1965; Whillans, 1975, Richardson et al., 

1997; Richardson and Holmlund, 1999; Vaughan et al., 1999b), which is supported by 

the observation that local accumulation rates are highest in basins and lowest on peaks 

(Figure 4.15, top and center right). 

In Figure 4.15 (bottom right), the gradients along the accumulation rate curve, kb, 

indicate that accumulation varies by up to 3 cm 6' km-' (std. dev. = 0.55 cm 6' km-') 

while gradients along the elevation curve, kel, have a maximum of 11 m km-' (std. dev. = 

2 m km-'1. These gradients were calculated according to changes in each variable 

measured over a distance of -1 50 m (h 5 traces). Both kb and kel are presented as absolute 

values in Figure 4.15 (bottom right) to demonstrate the strong correlation between these 

two variables. The sign of the correlation coefficients in Table 4.1 show that 

accumulation rate and surface undulations are out of phase when both positive and 

negative gradients are considered. The kb curve based on the most recent interval (1966- 

2000) is presented in Figure 4.15 (bottom right), because it has the best correlation with 

kel (Table 4.1). 

The strength of the correlations in Table 4.1 could depend upon the orientation of 

the radar profile with regard to dominant wind direction. For example, Black and Budd 

(1964) suggest that the highest accumulation rate should occur on the windward flanks of 

surface undulations, but their study was nearly parallel with the dominant wind direction. 

In contrast, our profile is nearly perpendicular to the dominant wind direction, and we 



observe the highest accumulation rates near the middle of basins (e.g. Whillans, 1975). 

However, the orientation of the profile does not explain the reduction in correlation 

between kb and k,l with increasing interval age (Table 4. I), which is likely related to ice 

advection, because the older layers were deposited farther up-glacier of the radar transect 

where the topographic influences are presumably different. 

Table 4.1 Correlation between along-track gradients in accumulation rate and surface 
slope (Figure 4.15, bottom right). Negative correlations indicate that large accumulation 
rates are typically associated with topographic depressions and small accumulation rates 
are associated with crestslflanks. The correlations are best for the youngest strata, 
because these have been least affected by advection through a series of undulations. 

4.4.2.3 Resolving Climatic Influence 

The accumulation rate data in Figure 4.16 reveal that the largest amount of 

variability is observed on annual time-scales. Because accumulation rates in this region 

are less than the vertical resolution of our radar system, annual variability must be 

addressed using the high-resolution ice cores (e.g. Kaspari et al., 2003). The annual 

accumulation rate at core sites ranges from 5% to 65% (std. dev. = 22%) when calculated 
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Figure 4.16 Temporal variability in accumulation rates fiom ice cores and GPR profiling. 
Left: Percent difference fiom the core-derived average accumulation rates for 00-4 
(orange) and 00-5 (gray). Top right: Calculated accumulation rates for each interval (see 
legend). The thick black line represents the long-term accumulation rate (1 8 1 5-2000). 
Center right: Percent difference fiom the long-term accumulation rates for each horizon 
(see legend). Bottom right: Accumulation rate profiles (center right) after being 
smoothed. The 10-krn smoothing clips the ends fiom each profile (see legend). 



as the percent difference from each core-derived average (Figure 4.16, left). This high 

degree of variability is regarded as significant because it often exceeds 16%, which is the 

estimated uncertainty introduced by sastrugi (Whlllans, 1978; Venteris and Whillans, 

1998). Longer-term trends (on the order of decades to centuries) in the annual 

accumulation rate records related to topography and ice advection have also been 

considered (Kaspari et al., 2003). These high-resolution records show that annual 

snowfall rates in this region have decreased since 1970. 

Accumulation variability on multi-decadal time-scales (25 to 48 years) is 

determined for intervals between consecutive radar horizons (Figure 4.16, top right). 

Standard deviations for each of these intervals vary between 14.1 and 21.1 % (Table 4.2), 

and the maximum deviation is 29% (Figure 4.16, center right). Percent changes in 

accumulation rate for each point along-track are determined using the long-term 

accumulation rate (1815-2000) as a reference interval (Figure 4.16, center right). Much 

of the variability in Figure 4.16 (center right) is related to surface undulations and ice 

flow, which complicates the search for climate signals within each accumulation record. 

Table 4.2 Multi-decadal accumulation rates expressed as the 100-krn mean for each 
interval, the percent difference between the interval mean and the long-term regional 
mean (0.144 m a-I). Each of these means comprises 6641 measurements, which greatly 
reduces the 20 uncertainties. The final column is the standard deviation of accumulation 
rates for each interval, which is calculated relative to the long-term regional mean. 

Interval 
(Years A. D.) 
1966-2000 
1941-1966 
1893-1941 
1848-1893 
1815-1848 

Avg. accumulation Percent Standard 
rate (m a-' w. e.) d#erence (99) deviation (%) 
0.141 * 0.0016 -2.2 * 1.2 15.6 
0.151*0.0008 5.1 * 0.6 19.1 
0.151 * 0.0004 5.1 * 0.34 14.1 
0.137 * 0.0003 -4.8 * .2 16.8 
0.142 * 0.0002 -1.7 * 0.16 21.1 



A clearer picture of changes related to climate emerges when the short-scale 

spatial variations are smoothed to length-scales that are comparable to surface 

undulations, which are generally less than 10 km. Using a 10-km running average, multi- 

decadal variability identified near 00-4 is found to be consistent over distances of -50 km 

(Fig 4, bottom right). The smoothed profiles also suggest more variable climate 

conditions beyond the 50-km mark (Fig 4, bottom right), although a portion of the 

remaining variability may be related to larger-scale topographic, orographic, and 

geographic effects. 

Further isolation of a climate signal may be achieved by calculating the mean 

accumulation rate for each interval, which also reduces the uncertainties to <2 rnm a-' 

w.e. for all intervals (Table 4.2). Table 4.2 shows that typical changes between the means 

of adjacent intervals are on the order of -5% (-0.007 m a-' w.e.) of the regional mean. 

The largest increase was 9.9% (-0.014 m a-' w.e.) of the regional mean, which occurred 

between the 1848-1 893 (45-years) and 1893-194 1 (48-years) intervals. The largest 

decrease was 7.8% (-0.0 1 1 m 6' w.e.) of the regional mean, which occurred between the 

194 1 - 1966 (25-years) and 1966-2000 (34-years) intervals. This result is consistent with 

results from the analyses of annual accumulation records (Kaspari et al., 2003), which 

show that this region has experienced a 2 - 9% (00-4 and 00-5, respectively) decrease in 

accumulation rate since 1970. 

4.4.2.4 Accumulation Rates Near Byrd Station 

To determine the spatial distribution of snowfall around Byrd Station, GPR data 

were collected along three-dimensional survey lines. The parallel lines are separated by 



-2 km (Figure 4.17). These GPR data were collected during one of the GPS surveys used 

to create the high-resolution topographic map of Byrd Station (Figure 4.4). 

The continuous GPR profile (Figure 4.18) begins and ends at the same ice core 

site (Figure 4.17). Each of the traces in this profile represents a stack of approximately 75 

traces. The RIDS-C ice core (Kreutz and Mayewski, 1999) provided the depth-age 

profiles for Figure 4.18. This core was collected in 1995 while the US ITASE GPR 

survey was conducted in 2002. For the age-depth calibration, the ages fiom the RIDS-C 

ice core have been shifted to account for the 7-year difference in the survey times. For 

example, what used to be the 1995 horizon in the RIDS-C core is now 2002 in Figure 

4.18. Errors associated with this shift should not exceed & 2 years. 

Figure 4.17 Geophysical surveys conducted within the 100-km2 grid centered on Byrd 
Station. Symbols are used to indicate the GPS base station (star), RIDS-C ice core (solid 
circle), and the Byrd SV station (triangle; Table 2.1). Gray lines indicate GPS surveys. 
Black lines indicate simultaneous GPS and GPR surveys. Black arrowheads indicate the 
direction of travel during data collection. 
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Two horizons in Figure 4.18 have been traced to illustrate their isochronal 

continuity. The age of each horizon is exactly the same at both ends of the radar profile. 

This agreement indicates that the horizons are continuous and isochronal despite any 

error in the absolute age of each horizon. 

The accumulation rates presented in Figure 4.19 are based on the horizons in 

Figure 4.18 dating to 1957 and 1863 A.D. These horizons were digitized and coupled 

with GPS and ice core data using the same approach discussed in Chapter 4.4.2. Based on 

the radar data, accumulation rates near Byrd Station vary between 0.08 - 0.18 m 6' w.e. 

(Figure 4.19). The mean accumulation rates for the time intervals examined here are 

0.1 16 m (1 863-2003 m 6' w.e.), 0.127 m a-' w.e. (1957-2003), and 0.1 1 m a-' w.e. (1957- 

1863). The average for the most recent 46-year interval is -15% higher than the previous 

94-year interval (using 0.1 16 m 6' w.e. as a median value). 

The map of accumulation rates presented in Figure 4.20 is based on the shallowest 

horizon in Figure 4.18, which dates to 1957 A.D. Local gradients in snow accumulation 

can be observed in Figure 4.20a. In other studies (Black and Budd, 1964; Gow and 

Rowland, 1965; Whillans, 1979, accumulation variability over short distances has been 

attributed to the interaction of katabatic winds and surface topography. This effect can be 

seen in Figure 4.20b where the dominant wind direction, and the surface elevation 

contours have been superimposed over measured accumulation rates. The dominant wind 

direction and velocity (6.8 m s-') are the means of measurements recorded every 3-hours 

over a 5-month period in 1999 by a University of Wisconsin weather station 

(http://uwarnrc.ssec.wisc.edu/aws). 
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Figure 4.19 Snow accumulation rates fiom three-dimensional GPR profiling around Byrd 
Station. Top: Surface topography derived from GPS surveys. Middle: Accumulation rates 
derived fiom the upper two horizons in Figure 4.18. Bortom: Changes in accumulation 
rate through time expressed as the deviation of each interval from a reference interval, 
which in this case is 1863-2003 A.D. 
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Figure 4.20 Map of accumulation rates for the 100-krn2 grid centered on Byrd Station. 
Symbols are used to indicate the GPS base station (star), RIDS-C ice core (solid circle), 
and the SV station (triangle). a) Gridded version of the accumulation rates presented in 
Figure 4.19. b) Topography (black contours) from GPS surveys (Figure 4.4) 
superimposed on map of accumulation rates. The dominant wind direction (green arrow) 
is based on data from the University of Wisconsin weather station 
(http://uwamrc.ssec.wisc.edu~aws). The yellow arrows are ice velocity vectors (Whillans, 
1977; Bindschadler et al., 1997; Hamilton et al, 1998). Accumulation rates are lowest on 
peaks and down-wind slopes and are highest in valleys and on up-wind slopes. 



4.4.3 Tests of a Widely Used Compilation of Antarctic Accumulation Rates 

The two most commonly used compilations of Antarctic snow accumulation rates 

are the Vaughan et al. (1999a) (Figure 4.21) and Giovinetto and Zwally (2000) datasets. 

Each compilation has been used to estimate mass balance for portions of the WAIS (e.g. 

Joughin and Tulaczyk, 2002; Rignot and Thomas, 2002). Both compilations incorporate 

low-resolution (-25 km) passive microwave radiometer data, which has been calibrated 

using -1,800 point measurements distributed throughout Antarctica. The point 

measurements are comprised of annual and decadal averages from ice cores and snow 

pits spanning the 1950s to the 1990s. The resolution of these compilations is too coarse to 

capture the spatial variations of accumulation rates caused by surface undulations 

(Richardson et al., 1997; Richardson and Holmlund, 1999), which suggests that these 

compilations may not be accurate over larger regions. Uncertainties in both compilations 

are estimated to be +5% of the reported values (Vaughan et al., 1999a; Giovinetto and 

Zwally, 2000). Because the two compilations give similar results, only the Vaughan et al. 

(1999a) compilation is evaluated in detail here 

Accumulation rates measured with GPR along the traverse from 00-4 to 00-5 

(Figure 4.21) and within the 100-krn2 grid centered on Byrd Station are used for the 

comparison. The average long-term accumulation rate from the continuous measurements 

(1815-2001, 0.144 m 6' w.e., Table 4.2) compares favorably with the Vaughan et al. 

(1999a) average (0.137 m a-' w.e.) along the 00-4 to 00-5 profile (Figure 4.15, center 

right). The difference between these measurements is -5%. If the average radar-derived 

accumulation rate from the most recent interval (1966-2003, 0.141 m a-' w.e., Table 4.2) 
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Figure 4.21 West Antarctic accumulation rates fiom the Vaughan et al. (1999a) 
compilation. Accumulation rates along the transect between 00-4 and 00-5 (thick red 
line) and at Byrd Station were compared to GPR-derived accumulation rates. 



is used, the agreement is slightly better (-3%). At Byrd Station, the Vaughan et al. 

1999a) compilation gives an accumulation rate of 0.162 m a-I w.e. (Figure 4.22a), which 

is -40% higher than the long-term average from the continuous measurements (1863- 

2003, 0.116 m 6' w.e., Figure 4.19). If the average from the more recent time interval 

(1 957-2003, 0.127 m a-' w.e., Figure 4.19) is used, the average difference between the 

two datasets is 0.035 m 6' w.e. or -28% (Figure 4.22b). It is likely that the agreement 

between these datasets improves when the more recent time interval is used, because the 

Vaughan et al. (1999a) compilation is comprised of data spanning a similar time period. 

Figure 4.22 Test of the Vaughan et al. (1999a) compilation near Byrd Station. a) 
Accumulation rates at Byrd Station from the Vaughan et al. (1999a) compilation. b) 
Difference between radar-derived accumulation rates at Byrd Station (Figure 4.20a) and 
the Vaughan et al. (1 999a) compilation. 



4.4.4 Conclusions 

Continuous radar profiling along a 100-km transect reveals that accumulation 

rates on the West Antarctic plateau can vary by up to 3 cm 6' over a distance of 1 km, 

although they typically vary at a rate of 0.55 cm a-' km-'. Wind redistribution of snow 

around surface undulations is the leading cause of this variability, which is consistent 

with other studies (e.g. Black and Budd, 1964; Gow and Rowland, 1965; Whillans, 1975; 

Richardson et al., 1997; Richardson and Holmlund, 1999; Vaughan et al., 1999b). 

Further characterization of the spatial distribution of snow accumulation on the Antarctic 

plateau will require additional continuous measurements of the kind presented here. 

The three-dimensional map of snow accumulation surrounding Byrd Station 

provides a usefil lesson for those interpreting accumulation rate records from ice cores. 

This map clearly shows that surface features affect snow deposition rates. Therefore ice 

that flows through surface features contains both the climatic and ice dynamic 

accumulation histories of the flow line leading to the drill site. Depending on local ice 

speeds and the length of the accumulation record, an ice core site might have flowed 

through one or more surface undulations. Therefore, ice dynamic effects need to be 

deconvolved from the accumulation rate record before accurate climate interpretations 

can be made. Measurements of ice flow and topography around drill sites are part of 

some ice core field programs, but there are numerous archival records that are not 

accompanied by these field data. 

It is evident from these analyses that continent-scale compilations (e.g. Vaughan 

et al., 1999a) based on widely-space point measurements and satellite remote sensing 

data do not capture the spatial variability of accumulation rates related to surface 



undulations. Over a large distance (100 km), the Vaughan et al. (1999a) compilation 

performed well, producing differences as low as -3%. Within a small grid (100-km2) the 

compilation was found to have much larger errors (128%). These mixed results indicate 

that the accuracy of this compilation is spatially variable. 

These results have different implications for the various approaches to estimating 

mass balance. For point measurements using the submergence velocity technique, the 

spatially representative long-term average accumulation rate is required, so topographic 

influences on core-derived estimates need to be taken into account (Hamilton et al., 

1998). For studies that track elevation changes through time using radar or laser 

altimetry, the effects of short-term temporal (few years) and medium-scale spatial (<20 

km) variability in snowfall can introduce large uncertainties, and therefore must be 

considered when converting measured elevation changes to estimates of ice equivalent 

thickness change (e.g. Spikes et al., 2003b). For large-scale flux calculations, small errors 

in basin-wide average accumulation rates contribute large uncertainties, and therefore the 

full range of accumulation variability within the study region needs to be understood or 

the error estimates must be scaled accordingly. For the GIs approach used here, the 

effects of temporal variability may introduce uncertainties when trying to put the 

calculated changes into a long-term perspective, but spatial variability in snowfall will 

only introduce error if omitted from the input data. 

4.5 Ice Velocity 

Ice flow is the remaining key variable in studies of ice sheet mass balance. Ice 

velocity is used directly in the residual flux calculation (Equation 3.7). The term for the 



velocity vector, 0, represents the depth-averaged velocity, meaning it takes into account 

any changes in horizontal ice velocity with depth. Equations for calculating the depth- 

averaged velocity can be found in Hooke (1998) and Paterson (1994). Calculating 0 is 

difficult however, because horizontal velocity decreases with depth as a result of many 

factors. These factors include surface slope, ice thickness, ice temperature, crystal 

orientation, and basal friction. Different combinations of these variables produce different 

horizontal velocity profiles, and therefore different depth-averaged velocities. The 

simplest case is when ice velocity at the bed, Ub, is equal to the velocity at the surface, 

Us. This situation is commonly observed in areas where there is a lack of basal fiction 

due to the presence of basal water (e.g. Alley et al, 1986; Alley et al, 1987; Engelhardt et 

al, 1990; Ridley et al., 1993; Engelhardt and Kamb, 1997). The opposite case is when the 

ice sheet is frozen to the bed, which makes Ub = 0. 

In this study, depth-averaged velocities are presented for the 100-kd grid 

centered on Byrd Station. These velocities are estimated using the borehole tilting studies 

(Garfield and Ueda, 1976; Gow and Williamson, 1976; Whillans, 1979) and surface 

velocities measured using static GPS surveys (Bindschadler et al., 1997; Hamilton et al. 

1998). 

4.5.1 Surface Velocities at Byrd Station 

Ice surface velocities can be measured using various geophysical approaches 

including traditional surveying techniques (e.g. Whillans, 1977), static GPS positioning 

(e.g. Bindschadler et al., 1993; Hamilton et al., 1998), and remote sensing techniques 

such as feature tracking (e.g. Scambos et al., 1992) and SAR interferometry (e.g. Joughin 



et al., 1999; Joughm and Tulaczyk, 2002, Rignot and Thomas, 2002). The largest 

collection of measured ice velocities available for Antarctica is the VELMAP 

compilation distributed by the NSIDC (http://www-nsidc.colorado.edu/data~velmap/~. 

Unlike the surface topography, ice thickness, and snow accumulation compilations 

discussed earlier, VELMAP is largely restricted to specific sites in West Antarctica. 

Byrd Station is covered in the VELMAP compilation. The data covering Byrd 

Station consist of ice flow vectors obtained from repeat GPS surveys. These vectors are 

part of a large strain grid used by Bindschadler et al. (1997) to extend the BSSN 

(Whillans, 1977, 1979) into the tributaries of the Bindschadler Ice Stream (formerly Ice 

Stream D). Results from both of these strain grids show that ice in this region is 

longitudinally extensive. However, the measured velocities along the BSSN reach a 

maximum of 12.7 m a-' at Byrd Station (Whillans, 1977), which is -1.5 m a-' faster than 

velocities from the Bindschadler et al. (1997) strain grid and the GPS base station 

(Chapter 4.2.1) for approximately the same location. The ice flow direction is consistent 

for all the surveys. The discrepancy in measured velocities may be related to a decrease 

in ice velocity for this region since the BSSN was surveyed in the 1970s, or it could be 

error associated with the pre-GPS surveying techniques used to determine ice velocities 

along the BSSN. 

The contoured map of ice surface velocities presented in Figure 4.23 was created 

using velocities from Bindschadler et ai.(1997), the SV station at Byrd (Hamilton et al., 

1998), and the US ITASE GPS base station. Velocities from the BSSN are not included 

in this compilation because of the large uncertainties associated with those 

measurements. Several Bindschadler et a/. (1 997) velocity vectors located just outside of 



Figure 4.23. Contoured map of ice surface speed for the 100-km2 grid centered on Byrd 
Station. The vectors (blue arrows) are derived from GPS surveys of markers installed on 
the ice sheet surface (Bindschadler et al., 1997; Hamilton et al., 1998; Hamilton and 
Spikes, 2003) 



the region shown in Figure 4.23 were also considered when producing these contours. 

Errors for each of these velocity measurements range from 0.01 m a-' (Hamilton et al., 

1998; Hamilton and Spikes, 2003) to 0.1 m a-' (Bindschadler et al., 1997). The errors 

introduced by the interpolation routine are estimated to be <0.2 m am'. 

The contours and vectors in Figure 4.23 show that ice velocities increase steadily 

fiom grid-west to grid-east, although the variable spacing of the contour lines suggest that 

strain rates within this grid are variable. The most complicated pattern of contours is 

present in the upper left quadrant of Figure 4.23. In this quadrant, ice velocities increase 

rapidly for -3 km, then remain steady for a few km, and eventually return to lower rate of 

extension. This pattern of velocity change is indicative of ice flow over a bedrock 

obstacle (e.g. Budd, 1970). The 3-MHz short-pulse radar survey presented in Figure 4.12 

shows that there is a bedrock obstacle at precisely this location. The directional 

components of the vectors presented in Figure 4.23 show that the ice turns toward grid- 

east at a rate of -0.5O km-' as it moves through this grid. 

4.5.2 Depth-Averaged Velocities at Byrd Station 

Whillans (1979) calculated how the horizontal velocity, U, at Byrd Station 

changes with depth, z, based on borehole deformation studies by Garfield and Ueda 

(1976) and Gow and Williamson (1976), so that: 

uz= Us-(u,. lyl 4.3 

where y is a shape factor ( y  = 8 x 1 oe8 2) based on a linear fit through the borehole tilting 

measurements. 



The velocity profile for each cell in the Byrd Station grid has been calculated 

using Equation 4.3. The mean of each profile equals the depth-averaged velocity, 0. An 

example of one of these profiles is shown in Figure 4.24. This profile shows that the ice 

sheet is sliding along its bed at a rate of -7 m a-' in this region. In Figure 4.24, 0 is -10 

m a-', which is -1.5 m a-' slower than Us. Whillans (1977, 1979) attributes this internal 

deformation to the strongly oriented crystal fabric described by Gow and Williamson 

(1 976). 

This approach has been used to calculate d for each 1 km x 1 km cell in the Byrd 

Station grid. These results are presented in Figure 4.25. The general patterns of surface 

(Figure 4.23), bed (Figure 4.25a), and depth-averaged (Figure 4.25b) velocities are 

similar in that the fastest velocities are always observed in the upper right of each figure 

and the slowest velocities are observed in the lower right of each figure. However, the 

flow field in Figures 4.23 and 4.25 becomes more simplified with depth, suggesting that 

most of the adjustment in ice velocity is made within the ice column rather than at the 

bed. 
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Figure 4.24 The horizontal velocity profile at Byrd Station. The profile shown 
corresponds with a central grid cell (star in Figure 4.23) where the surface velocity is 
11.5 m a-' and the ice thickness is 2184 m. The blue lime is the horizontal ice velocity in 
the principal flow direction at depth z. This curve is a linear fit based on borehole tilting 
data presented in Whillans (1 979). 



Figure 4.25. Contoured maps of bed (a) and depth-averaged (b) velocities for the 100- 
km2 grid centered on Byrd Station. 



Chapter 5 

ESTIMATING ICE SHEET MASS BALANCE 

FOR THE BYRD STATION GRID 

5.1 Results 

Sufficient data are available to apply the GIs approach to calculate the mass 

balance of the 100-km2 grid centered on Byrd Station using the residual flux calculation 

(Equation 3.7) and interpret the results. The GIs layers available for this calculation 

include ice thickness (Figure 4.10b), depth-averaged velocity (Figure 4.25b), and snow 

accumulation rates fiom two sources (Figures 4.20a and 4.22a). This calculation is 

performed twice, once for each set of accumulation rates. 

Results fiom these calculations are illustrated in Figure 5.1. The results obtained 

using the accumulation rates derived fiom GPR profiling are shown in Figure 5.la. The 

mean value of H in Figure 5.la is +0.009 m 6'. The results produced when using the 

Vaughan et al. (1999a) accumulation rates are presented in Figure 5.lb. The mean value 

of H in Figure 5.lb is +0.045 m a-'. The difference between these mean values is 0.036 

m a-'. This result is not surprising, because it directly reflects the measured differences 

between the accumulation rates derived fiom GPR profiling and the Vaughan et al 

(1 999a) compilation (Figure 4.22b). 

The residual flux calculation was selected for this study because it is capable of 

resolving the spatial variability of mass balance. Bindschadler et al. (1993) describe net 

thinning of an ice sheet as the result of along-flow increases of ice thickness and velocity, 



Figure 5.1 Calculated mass balance of the 100-km2 grid centered on Byrd Station. a) 
Mass balance results using the accumulation rates derived fiom GPR profiling (Figure 
4.20a). b) Mass balance results using the accumulation rates fiom the Vaughan et al. 
(1999a) compilation (Figure 4.22a). Contour interval of H in both figures is 0.05 m a-' 
of ice equivalent thickness change. Dashed white l i e  indicates locations where H = 0. 



decreases of accumulation rate, or flow divergence. Net thickening could be the result of 

any of the opposite effects. Net ablation at the icebed interface is assumed to have a 

negligible effect. The results presented in Figure 5.1 show that there is spatial variability 

in mass balance over short distances. Potential causes of this variability are discussed in 

Chapter 5.3. 

5.2 Error Estimates 

The formal errors associated with the mass balance results presented in Figure 5.1 

are calculated according to law of propagation of variances (Equation 3.8), which 

requires error estimates for each variable. The following error estimates are provided for 

the grid centered on Byrd Station. The average error associated with BEDMAP ice 

thickness data is * 74 m (Chapter 4.3.2). The average error of the accumulation rates in 

the Vaughan et al. (1999a) compilation is 0.035 m 6' (Chapter 4.4.3). The errors for 

individual ice velocity measurements are <0.1 m am' (Hamilton et al., 1998; Bindschadler 

et al., 1997; Hamilton and Spikes, 2003), but because these data have been interpolated 

throughout the grid, this estimate is doubled to 0.2 m 6'. Given the estimated accuracy of 

the core-derived depth-age scale (* 2 years; Chapter 4.4.2.5) and the small errors 

contributed by variations in the density profile (<1 year; Chapter 4.4.1.3), the maximum 

errors in the radar-derived accumulation rates are approximately -0.005 m 6'. And 

finally, the error of the mean density value (9 1 1.7 km m") is expected to be ~ 0 . 0 0  1 kg 

m-3, because this quantity is based on density measurements recorded through the entire 

ice thickness (Gow and Williamson, 1976; Whillans, 1977). Based on these individual 

error components, the standard error for each grid cell is -4 m 6'. Because the errors 



associated with the ice thickness data are so large and dominant, this formal error is 

approximately the same for all grid cells, regardless of which accumulation rate is used 

for the calculation. This formal error estimate represents the overall precision of the 

calculated results, which provides a usehl estimate of the associated uncertainties, but it 

does not necessarily describe the accuracy of the results presented in Figure 5.1. 

One advantage of applying this approach at Byrd Station is that this region is 

known to be in balance or slowly thinning from previous studies. The continuity study 

along the Byrd surface strain network (Chapter 2.3) indicated a thinning rate of 0.03 m a-' 

(Whdlans, 1977). The Byrd SV station gives a point mass balance estimate of -0.004 * 
0.022 m 6' (Hamilton et al., 1998). Therefore, the results presented in Figure 5.1 are 

consistent with the previous estimates of mass balance for this region. 

The calculated mean thickness change agrees very well with the SV station when 

using the accumulation rates derived from GPR profiling (Figure 5. la). However, the 

results produced using the Vaughan et al. (1999a) accumulation rates are biased towards 

thickening, because the compilation overestimates thickness in this region. All of the 

mass balance results discussed here show less thinning than the continuity study, but this 

discrepancy may be attributed to the fact that the Whillans (1977) study ends at Byrd 

Station and therefore represents changes that are occurring upglacier. 

The SV station also provides the opportunity to check the accuracy of mass 

balance results for individual grid cells. In Figure 5.2, the location of the SV station 

corresponds with a grid cell that is thinning at a rate of -0.05 m a-'. Considering the 

amount of variability in the calculated mass balance results, this comparison confirms 

that the approach used here accurately portrays the spatial variability of mass balance. 
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Figure 5.2 Mass balance variables used to interpret thickness change estimates within the 
100-km2 grid centered on Byrd Station. Ice surface elevation contours (black lines), ice 
velocity vectors (yellow), a wind vector, and the locations of various points of interest 
including the Byrd SV station (red triangle) are superimposed on calculated rates of ice 
sheet thickness change. Dashed white line indicates locations where H = 0. The black 
line corresponds with the 3-MHz radar profile a' - a" in Figure 4.12, and is included 
here for reference. 



5.3 Discussion 

Each of the anomalies in Figure 5.2 can be attributed to either along-flow changes 

in ice velocity, accumulation rate, changes in ice thickness, or errors in ice thickness. 

Conveniently, all of these effects can be observed along 3-MHz radar profile a' - a" 

(Figures 4.10, 4.1 1, and 4.12). According to measured bedrock elevations (Figure 4.12), 

ice thickness along this profile increases rapidly in the along-flow direction. This sudden 

change in ice thickness forces the ice to speed up (Figure 4.23), which increases the rate 

of extension and leads to thinning. As it reaches the plateau in the bedrock topography 

(Figure 4.12), it slows down (Figure 4.23), which reduces the rate of extension and 

causes the ice to thicken. These changes in ice thickness and ice velocity also have an 

effect on local surface topography (Figure 5.2), which in turn has an effect on snow 

accumulation rates (Figure 4.20b). 

A comparison between the spatial pattern of accumulation rates along profile a' - 

a" (Figure 4.20b) with the spatial pattern of mass balance show that where the ice is 

thinning most rapidly, the accumulation rates are relatively low, and in areas where the 

ice is rapidly thickening, accumulation rates are relatively high. However, because the 

changes in accumulation rate along this profile are relatively small, this effect is 

somewhat overshadowed by the other effects, including errors in ice thickness estimates. 

The effect of ice thickness errors on calculated H along profile a' - a" is 

remarkable. Near a' the ice thickness estimate fiom BEDMAP reaches a maximum 

(Figure 4.12), which corresponds to the cell with the fastest rate of ice sheet thinning 

(Figure 5.2). Likewise, near a" errors in ice thickness estimates fiom BEDMAP are also 

large (Figure 4.12). However, at the approximate midpoint along profile a' - a", ice 



thickness estimates from BEDMAP and the US ITASE 3-MHz radar survey are nearly 

the same (Figure 4.12). Now consider how the calculated thickness changes correspond 

with these errors. Near a' ice thickness is underestimated by BEDMAP (Figure 4.12), so 

there is not enough ice being advected into each grid cell to compensate for the increase 

in ice velocity (Figure 5.2). Near a" ice thickness is overestimated by BEDMAP (Figure 

4.12), so there is too much ice being advected into each grid cell, considering the 

decrease in ice velocity at that point (Figure 5.2). And finally, close to the point where 

the BEDMAP compilation and the 3-MHz radar profile agree (Figure 4.12), the ice sheet 

appears to be in balance (Figure 5.2). 

5.4  Applying the Uncertainties to the West Antarctic Ice Sheet 

Although there are currently not enough ice velocity measurements to perform the 

calculation, it is worthwhile examining how the errors in mass balance reported above 

might propagate if the residual flux calculation were applied to the entire WAIS. Using 

the average (-240 m) and maximum (>I200 m) uncertainties identified in the BEDMAP 

compilation (Chapter 4.3.2; Welch and Jacobel, 2003), the formal uncertainties of 

calculated H increase to 31 and 738 m, respectively. These enormous uncertainties 

reinforce the conclusion that ice thickness compilations need to be improved before they 

are used in calculations of mass balance using flux-type computation schemes. 

It is also usefid to extrapolate the uncertainties identified in the Vaughan et al. 

(1999a) compilation beyond the grid at Byrd Station to determine how they might affect 

other estimates of mass balance. Byrd Station resides within the boundaries of the 

drainage basin for the Bindschadler Ice Stream. The results described by Joughin and 



Tulaczyk (2002) and Rignot and Thomas (2002), which incorporate data from Vaughan 

et aZ. (1999a), suggest that this entire basin is thickening at a rate of 0.029 m 6'. Given 

that uncertainties observed in the Vaughan et al. (1999a) compilation within the grid at 

Byrd Station are 0.035 m a-', and that biases in accumulation rate are transferred directly 

into mass balance results (Chapter 5.2), this entire basin could actually be thinning. This 

analysis demonstrates the need for caution in interpreting mass balance results. 
I 



Chapter 6 

CONCLUSIONS 

Several of the measurement techniques presented in this dissertation represent 

advances in the way ice sheets are studied. One advance is the use of long-baselines for 

kinematic GPS positioning, which offers the potential for detailed mapping of other 

remote locations using large separation distances fiom a reference station. The use of 

GPR profiling to extend historical accumulation records fiom ice cores for hundreds of 

krn is a major advance, because other techniques do not reveal how snowfall varies over 

short distances. The final advance is the simultaneous collection of GPS, GPR, and 3- 

MHz radar data, which is usehl for interpreting how surface topography, snow 

accumulation, and ice thickness are influenced by one another. 

This study is significant because Byrd Station is the only site in Antarctica where 

detailed measurements of surface elevation and snow accumulation rate have been 

coupled with measurements of ice velocity, ice thickness, density, and wind direction to 

calculate and interpret changes in mass balance. The detail in the maps covering Byrd 

Station make it possible to infer how wind redistributes snow around surface undulations. 

When interpreting mass balance results, the abundance of data at this site also make it 

possible to distinguish between the effects of changes in ice velocity and accumulation 

rate fiom errors in ice thickness. The results provided valuable insight for issues relating 

to spatial variability of ice sheet mass balance, and the measurement thereof 



There are many ways to improve the current estimates of WAIS mass balance, but 

all of them involve additional measurements of the key quantities discussed in this 

dissertation. Further improvements can be made to the RAMP DEM by incorporating 

more ground, airborne, and satellite-based measurements of surface elevation, although 

this might be unnecessary because a higher-resolution, more accurate DEM will be 

compiled using laser altimeter data from ICESat (Zwally et al., 2002). The most reliable 

way to improve the BEDMAP compilation is to incorporate more measurements like the 

US ITASE 3-MHz radar data (Welch and Jacobel, 2003). However, a new method 

involving the inversion of surface topography derived from a satellite derived digital 

elevation model (DEM) could potentially be used to improve the BEDMAP compilation. 

This technique, first discussed in Budd (1970), was used by Fastook et al. (1995) to 

calculate the locations of bedrock peaks and valleys in regions of the fast-flowing 

Jakobshavns Isbrae, Greenland without any prior knowledge of bedrock topography. The 

most reliable way to improve continent-scale compilations of accumulation rate is to 

incorporate continuous measurements from GPR profiling, such as the data presented 

here. The current compilation of Antarctic ice velocities can be significantly improved by 

incorporating data derived from satellite-based SAR interferometry and feature tracking. 

This approach has already been used estimate velocities over large portions of West 

Antarctica (e.g. Scambos et al., 1992; Joughln et al., 1999; Joughin and Tulaczyk, 2002; 

Rignot and Thomas, 2002). 

The data introduced here are only a small portion of the US ITASE mass balance 

dataset. Ongoing ice core analyses will produce additional depth-age profiles that can be 

used to calculate accumulation rates from the remaining GPR profiles. It may take a year 



or more to complete this process. When completed, the entire dataset will be incorporated 

into a new continent-scale compilation of Antarctic accumulation rates. By that time, a 

more accurate Antarctic surface DEM should have been compiled using GLAS data 

(Zwally et al., 2002), the ice velocity measurements from interferometric studies (e.g. 

Joughin et al., 1999; Joughin and Tulaczyk, 2002; Rignot and Thomas, 2002) will be 

available, and BEDMAP (Lythe et al., 2000) will have been updated with at least the US 

ITASE 3-MHz radar surveys (Welch and Jacobel, 2003). These improved compilations 

can then be used to calculate the mass balance of the WAIS with much greater 

confidence than is currently possible. 
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