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Wood particulate composites are inhomogeneous, short fiber materials. The behavior of

such materials depends on the properties of the constituent elements (wood particles,

fibers, and adhesives) and the manner in which they are organized (the microstructure).

Research on the microstructure of these composites has been carried out for several

decades. However, due to the complexity of the engineered structures, most existing works

are either over-simplified or lacking in general representations. While experimental

approaches to improve material performance are necessary, this thesis presents another

approach for better depictions of such complex systems. In this research project, digital

surrogates of the composite structures are created and tested in a virtual laboratory - the

computer. Each structure is constructed by packing digital particulate elements. The elec-

tronic versions of wood fibers, strands or flakes are generated based on the known proper-

ties of their real-world counterparts, including stochastic descriptions of their geometries,

and some physical and mechanical properties. More importantly, a certain level of intelli-

gence built-in to the elements enables them to adjust their geometries on the basis of the

interaction with other elements. As it is based on the very fundamental rules, this simula-



tion methodology guarantees much more realistic descriptions of the microstructures com-

pared with other models. This method allows controlled and repeatable experiments with

virtually zero experimental and material costs. Since the structures of the virtual compos-

ites are digitized, it is fairly easy to obtain the information which may be impossible or hard

to obtain from the real composites, such as the morphology of particle-to-particle bonds

and the quantities of inter/intra-particle  voids. It lays a more reliable foundation for further

research on performance prediction and manufacturing optimization of the wood particu-

late composites.
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1 INTRODUCTION

1.1. Background

Wood based particulate composites, such as medium density fiber board (MDF), flake

board and oriented strand board (OSB), are manufactured with wood components (e.g.

flakes, particles or fibers) partly coated with resin. The wood components are dispersed

randomly or partially oriented on a plane, packed into a mat, then compressed into a den-

sified  board. The particles are bonded together into a three dimensional web by the added

adhesive. Paper products can also be viewed as a particulate composite, with the connec-

tion between fibers primarily consisting of hydrogen bonds with starches or other materi-

als, at times used as a binder. Particulate composites cannot be analyzed using the rules

developed for continuous or discontinuous particulate composites in which the particles or

fibers are distributed in a continuous-phase matrix for the purpose of mechanical reinforce-

ment (Chou, 1992). Voids and bonds are two features of high importance for wood partic-

ulate composites. The performance of wood composite products is determined by many

factors which can be classified into three types:

l material factors, including properties of wood and adhesive,

l structural factors, including the geometry of the composite elements and their organi-

zation in the composite, and



l manufacturingfactors such as press time, temperature and pressure applied during the

pressing. All these factors interact to determine the final properties of the composites.

Bonds, either adhesive or hydrogen, serve to transfer load between the constituent ele-

ments. Stress can be caused in a composite by moisture, as well as applied loads. Due to

the hygroscopic  nature of wood, changes in environmental temperature and humidity

affect the equilibrium moisture content of the wood elements. The water absorbed or des-

orbed in response to the changes causes swelling or shrinkage of the wood elements, which

in turn puts stresses on the bonds. The quality and quantity of the bonds are believed to

strongly depend on the properties and organization of the wood elements (Alexander and

Mat-ton, 1968a,  1968b,  Leopold and Thorpe, 1968, Kallmes and Corte, 1960, Laufenburg,

1984).

Voids serve as substance transportation channels in the composites. The morphological

characteristics of the void structure, which also depend on the geometry and organization

of the wood elements, are important for understanding some physical properties of the

composites, such as the permeability and optical properties.

Wood is an anisotropic material with a large variance in its mechanical and physical prop-

erties. Wood particles and fibers for making wood composites inherit these special charac-

ters, in conjunction with the irregular geometry due to the natural and manufacturing

conditions. The microstructure formed by randomly organizing these particles or fibers is

definitely inhomogeneous and analytically indescribable. Several models have been estab-

lished theoretically or experimentally to describe these kinds of systems (Kallmes, etc.
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196 1,  Dai and Steiner, 1994a,  1994b,  Shaler, et al. 1996). The preponderance of models in

the literature treat the microstructure as two-dimensional (2D). Such models typically

describe the materials as layer-packed assemblies. In other words, the elements in panels

or paper are assumed parallel to the horizontal plane and the thickness or diameter of the

elements is zero. Some three-dimensional (3D) models have been proposed (Niskanen and

Alava,  1994, Wang and Shaler, 1998, Stahl and Cramer, 1998, Nilsen,  etc. 1998). These

models are either imbued with unrealistic features or are limited to the structures with rel-

atively small vertical dimensions or fairly low density structures. In a mat of wood com-

posite, the voids and vertical (a planar perpendicular to the predominant plane of the

products) orientation angle of the elements may be reduced by the densification and the

deformation or damage of the elements during the consolidation, but some will always

remain. In addition, there is some spring-back after the consolidation because of the vis-

coelasticity of wood materials. Obviously, the geometric complexity of the structure is far

beyond the reach of two-dimensional models. The 3D orientation of each element affects

3D panel performance due to the inherent anisotropy properties of wood such as mechan-

ical response and hygroscopic  expansion and contraction. A comprehensive and effective

prediction of mechanical and physical behaviors of the wood composites can only be

accomplished through a 3D microstructural model.

The limitations of existing models was historically due in part to insufficient computa-

tional power to deal with such complex systems. The development of high-speed proces-

sors and large-capacity storage has increased the complexity of solvable problems.



Consequently, it makes it possible to build a more sophisticated microstructural model of

the wood particulate composites.

1.2. Objectives

The specific objectives of this research were to:

l Construct 3D microstructural models which can reasonably represent the real wood

particulate composites,

l Characterize some important microstructural phenomena based on properties of com-

posite elements and their organizations.

Original computer software was developed in the current research. The simulation proce-

dure was based on the methodology by which a surrogate world is created to explain a

high-level phenomenon by appealing to interactions among lower-level agents (Casti,

1997). The program simulated the emergent, the microstructure of wood particulate com-

posites by describing the behavior of each agent, the wood fiber or particle, and the inter-

actions among them in the packing and consolidation processes. With the software, virtual

composite structures can be produced according to stochastic characterization of ele-

ments’s geometry, as well as some physical, mechanical properties and manufacturing

conditions.

The simulation process may not only supply reasonable references or partial substitute to

experiment procedures for the research of composite properties, but also help researchers

to obtain certain information that is difficult or impossible to obtain through analytical or

experimental methods, such as the bonding area and voids.

4



2 LITERATURE REVIEW

2.1. Microstructure of Wood Particulate Composites

2.1.1. Properties of Elements and Effects

Wood fiber based composites consist predominantly of ligno-cellulose fibers, with the

addition of up to 10% adhesive by weight. Fiber characteristics are variable due to biolog-

ical factors including species, geographic conditions and location within a tree as well as

processing procedures such as chemical pulping, thermal mechanical pulping, etc. Other

wood particulate composites are manufactured from different types of wood particles. The

particle size and shape can range from large wood chips or flakes down to fines such as

sander dust. Particle geometry is one of the basic factors governing the properties and char-

acteristics of the composite panels along with wood species, type and amount of binder and

other additives, and manufacturing conditions, e.g. mat forming and pressing conditions

(Malony, 1977). Malony (1977) presented a detailed summary after reviewing the research

on the effects of particle geometry. All the studies (Talbott and Maloney, 1957, Maloney,

1958, Post, 1958; Heebink and Harm,  1959, Klauditz and Buro, 1962, Gatchell, Heebink

and Hefty, 1966, and Mottet, 1967) reviewed related the particle geometries to the mechan-

ical and physical performances of the wood composite panels instead of the microstructure.



2.1.1.1. Length

Wood fibers are essentially cylindrical with lengths from a few millimeters down to fibrous

debris or tines and the diameters ranging from several to 80 microns (Panshin  and

Dezeeuw, 1970, Deng and Dodson, 1994). Fiber length distributions typically skew

towards longer fiber lengths and can be modeled by lognormal distributions (Dodson,

1992, Deng and Dodson, 1994). In addition, the variance of the length distribution

decreases as the mean fiber length is reduced by refining. Dodson (1992) derived a paper

sheet model which indicated that the coefficient of variation of mass density of a paper

sheet made from fibers with a lognormal distributed length was a few percent lower than

that of a sheet made from fibers with uniform length.

Seth (1995) tested wet webs made of 30% solids from softwood kraft pulps and found that

the tensile strength was proportional to the fiber length. Karenlampi et al. (1996) proposed

that the in-plane tearing work, which was modeled as the total energy dissipated during the

test, was a linear function of fiber length and it increased while fiber length increased.

2.1.1.2. Cross-Sectional Geometries

Descriptions of the cross-sectional geometries depend on the types of the particulates.  For

flake type composites, the cross section of the elements can be easily described as rectan-

gles with certain widths and thicknesses. For fibrous composites, the cross section of fibers

can be viewed as circles with certain diameters and cell wall thicknesses. As may be seen

later, usually widths and thicknesses are used instead to describe cross-sectional deformed

or flatterned  fibers.

6



secondary wall
t

about 74% of cell wall thickness

Figure 2-  1. Schematic of structure of woody cell walls.

The physical and mechanical properties of wood fibers are dominated by the properties and

organization of the microfibrils in the S2 layer of the secondary-wall. This is due to the fact

that the S2 layer constitutes about 74% of the total volume of the cell wall and the

microfibrils are nearly parallelly aligned, with about 10 to 30 degree orientation angle from

the cell axis (Panshin  and Dezeeuw, 1970). The diameters of fibers in wood have distribu-

tions that are approximately normal, with the standard deviations in the region of 10% of

the mean (Deng and Dodson, 1994).

Several articles have been written about the impact of paper forming process on the cell

wall structure (Alexander and Mar-ton 1968 a, 1968 b, Leopold and Thorpe, 1968 and Kim,

et al., 1975). Drying stress may strengthen fibers both by reducing the fibril angle and by

aligning the fibrils in the dislocated regions which are formed during defibering,  refining

and other mechanical treatments. However, this may only happen if the matrix between the

fibrils can flow in shear under the applied stress. Thus, fibers with high hemicellulose con-

tent, the matrix of which flows readily in the water swollen state, may be strengthened

during the drying. For predried kraft fibers or alkali-extracted holocellulose, strengthening

may not occur since the matrix is well bonded and insufficiently swollen (Kim et al., 1975).

7



Although it is generally believed that the pycnometric value of cell-wall density of wood

fiber is about 1.5 g/cm3 (Panshin  and deZeeuw, 1970),  Yiannos’  (1964) research showed

that it was about unity (Table 2-l) because of the voids in the cell wall.

Table 2-l. Coarseness and cell-wall density of pulp fibers (Yiannos, 1964).

Pulp Coarseness (mg/ Cross-sectional Cell-wall density
100m)  _ area (pm2)

(g/cm21

Bleached southern softwood kraft 30.1 286 1.06

Bleached West  Coast  sof twood sulf i te 24.1 230 1.05

Bleached northeastern softwood sulf i te 16.8 175 0.96

Unbleached special Parana pine pulp 46.3 425 1.08

Unbleached kraft pulpspruce 18.4 210 0.88

Unbleached special bisulfite pulpspruce 20.5 230 0.88

Fiber coarseness, which is defined as the weight per unit length, has been used to describe

fiber properties. Since it is assumed that the density of cell wall substance is a constant, the

coarseness must be dependent on the cell wall structure. Seth (1995) found that fiber

coarseness for softwood was nearly proportional to fiber cell wall thickness when the fiber

width did not change. It was also reported that the tensile strength of wet webs, made of

30% solids from softwood kraft pulps for fibers of a given length, decreased rapidly with

an increase in fiber coarseness. The wet-web tensile strength at a given fiber length was

almost inversely proportional to the square of fiber coarseness (Seth, 1995).

2.1.1.3. Flexibility

Since many properties of paper are functions of fiber-to-fiber bonded area and the bonded

area is a function of the fiber flexibility (or conformability, deformability), flexibility is



generally accepted as one of the most important controlling factors of paper properties

(Lossada, 1998).

According to Tam Doo and Kerekes (1982),  the fiber flexibility, F, is defined as

FJ=L
S I-E (2-l)

where S, I and E are the stiffness, moment of inertia and Young’s modulus in the axial

direction of the fiber, respectively. The moment of inertia is a consequence of the fiber’s

cross-sectional dimensions. The Young’s modulus is a strong function of the ultra-struc-

tural organization or the microfibrillar orientation of the fiber (Page et al., 1977 and Da

Silva, 1983). Page et al. (1977) measured microfibril angle and found that the individual

wood fibers were strongest when their microlibril  angle in the S2 layer was closest to zero.

The ultimate tensile stress and related moduli decreased with increasing microfibril angle.

The elastic modulus versus fibril  angle relation is shown in Figure 2-2.

Paavilainen (1993) further reiterated that the moment of inertia depended on cell wall

thickness and width of the fiber. The cell wall elasticity was determined by the chemical

composition, tibril  angle and size of tibrils  on a fiber’s S2 layer. Paavilainen’s research

showed that fiber flexibility was affected by manufacturing procedures. Pulping, bleach-

ing, beating and drying all influenced the flexibility by removing and modifying lignin as

well as by changing the cell wall microstructure and cross-sectional dimensions. Increased

levels of pulping, bleaching and beating would increase flexibility while drying process

decreased fiber flexibility (Paavilainen, 1993).
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Figure 2-2. Variation in elastic moduli with fibril angle for spruce holocellulose
fibers (Page, et al. 1977).

Paavilainen (1993) found that the tensile strength and apparent sheet density of paper made

of softwood fibers was controlled by wet fiber flexibility since the paper sheet became

more consolidated and thus the number and area of fiber-to-fiber bonds increased if fibers

were more flexible. It was found that the tensile strength and apparent sheet density

increased linearly as fiber flexibility increased.

There are two ways of measuring wet fiber flexibility. One was developed by Steadman

and Young (1978). The other was developed by Tam Doo and Kerekes (1982). Both meth-

ods involved beam theories. Steadman’s method uses a cantilever beam configuration

while in Tam Doo and Kerekes’ method two ends of the tested fiber are simply supported.

Tam Doo and Kerekes also found that chemical pulps were typically 20 to 30 times more

flexible than mechanical pulps from the same wood species. Decreasing the yield of a

1 0



chemical pulp from 85 to 50% led to a fourfold increase in fiber flexibility. Different wood

species pulped under common conditions differed greatly in flexibility. Additionally, they

found a correlation between fiber stiffness and breaking length for some British Columbian

pulps, (e.g., the breaking length decreased with increasing fiber stiffness.) (Tam Doo and

Kerekes, 1980).

2.1.1.4. Collapsibility

Fiber collapsibility depends on the transverse elasticity of the cell wall (Page, 1967 and

Hartler and Nyren, 1970) and the cross-sectional dimensional properties (Paavilainen,

1993). In Paavilainen’s experiment, the degree of collapse was determined as a function of

the aspect ratio which was the ratio of major to minor axes of the fiber cross-section. To a

certain extent the flexibility and collapsibility of fibers are related to each other because

both of them depend upon the elasticity of the cell wall and the cross-sectional properties

(Paavilainen, 1993). Paavilainen found similar effects of the forming process on the fiber

collapsibility as on flexibility. In addition, increased fiber collapse was correlated with

improved paper sheet properties.

Mataki (1972) discussed the cross-sectional deformation of fibers in fiberboard and the

relations to the fiber properties and load. The wood fibers were considered as tubular cyl-

inders which were free from lateral restraint. The increase in diameter of the fiber, LAX,  due

to the forming pressure in the direction perpendicular to the pressure and the major axis of

the fiber (x-direction) was given by:
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2Ax = (2-2)

in which P  is the compressive load, E is the modulus of elasticity of the fiber cell wall, b

is the width of the fiber in the x direction, e is the fiber wall thickness, and r is the fiber

radius to the center of fiber wall. The ratio of fiber cross-sectional dimensions, which was

the dimension of the fiber in the x-direction divided by the dimension in the direction of

pressure (z-direction), was used to describe the cross-sectional deformation of fibers

(Mataki, 1972).

2.1.1.5. Curl

The curl of fiber was determined by Kallmes and Corte (1960) as the ratio between the

measurement of the actual fiber length and the distance between the two fiber ends. Jang-

malm and Ostlund (1995) investigated effect of fiber curl on the mechanical properties of

paper. In their research, the curl factor was defined as the ratio of the distance between the

fiber ends and the total length of the fiber which is the reciprocal of the value defined by

Kallmes and Corte (1960). Experimental results of their research showed that the tensile

stiffness index increased linearly with the increase of curl factor.

It was claimed that the wet interlaminar tensile strength of cement-silica sheet was

improved by fiber curl, which was deliberately induced in unbleached P. radiata kraft pulp

fibers by mechanical treatment. However it had little effect on the values modulus of rup-

ture and fracture toughness of the sheet (Michell  and Freischmidt, 1990).
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2.1.1.6. Orientation

Harris (1977) set up a model to predict the mechanical properties of oriented particle

boards. In the model, both the von Mises distribution function and a truncated gaussian-

type distribution function were employed to describe the angular data of particle align-

ment. The appropriateness of these two functions relies on their finite range which fits the

property of angular data.

The von Mises distribution was also used by Shaler (199 1) to characterize the orientation

of flake layers on a plane. The probability density function of flake angle, 0 (0 5 8 5 ?t) ,

was expressed as:

v-3)

where p is the mean orientation angle of flakes, k is the concentration parameter, and

I,(k) is the modified Bessel function of the first kind and order zero.

Dodson and Fekih (199 1) developed a model of paper structure which predicted that the

variance of mass density of paper would linearly increase with the increase of ‘eccentric-

ity’ of fiber axis orientation distribution. It was further indicated that the variance increased

30% as the orientation increased from 1: 1 to 2: 1. Correspondingly, the coefficient of vari-

ation of mass density increased about 14%. A one-parameter angular intensity distribution

function was used to characterize the orientation of fiber axes
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dp(e)  = p
(

1 +ecos28 &I
7c: 1

(z-4)

where e is the eccentricity of orientation (0 I e < 1 /n ). When e = 0, fibers have no orien-

tation preference. When e + 1 /rr , fraction of fibers oriented in direction 8 = frc/2

tends to zero (Dodson and Fekih, 199 1).

Lu and Carlsson (1996), in their simulation of formation and microstructure of paper, used

warped Cauchy  distribution to define the orientation of fibers:

f(e)= $1  -I)/(1  + h2-2hcos28)] Q-5)

The simulation result showed that, at a given density, the orientation and dimensions of

fibers had little effect on the volume fractions of bonds and fiber segments.

2.1.1.7. Relative Bonded Area

Bonding area, a special feature of the microstructure rather than a property of the compos-

ite elements, is the most important factor affecting the performance of paper and other

wood fiber and particle composites since bonds serve to transferring load between com-

posite elements. More bonding area at certain density level could mean stronger structure

and better mechanical performance.

Relative bonded area (RBA) is the fraction of the external fibrous surface area bonded

(Kallmes and Eckert, 1964). RBA is very difficult to measure experimentally. Kallmes and
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Eckert (1964) discussed two major techniques for indirect measurement of RBA, i.e. nitro-

gen adsorption and light scattering. The two techniques are based on two characteristics

unique to the unbonded surface of fibers, its ability to adsorb gas and scatter light. Sophis-

ticated instruments are needed to perform the measurement. Since both methods can not

take into account the contribution of the uncollapsed part of lumens, generally low RBA

values are measured.

2.1.2. Simulation and Modeling of Paper Structures

Significant research on the structure of wood composite materials started as early as the

1950’s with the description of the structure of paper. Before that, some effort had been

made into the calculation of the number of fiber-to-fiber contacts and the bonded area due

to the structural importance of the bonds. Van Wyk, in 1946, derived a model to calculate

the average distance between contact points in a random assembly of uniform cylindrical

fibers (Van Wyk, 1946). His formula is:

62X
xld Q-6)

where b is the average distance between contact points, I is the total length of the fibers

contained in a assembly with volume v, and d is the diameter of fibers.

During the more than five decades following this work, the structure of paper has been

studied extensively. Kallmes, Bernier and Corte (Kallmes et al., 1960, Kallmes, Corte and

Bernier, 1961,  Kallmes and Bernier, 1963) were the first to describe the fiber geometric

network statistically. In their work, the paper structure was defined to be the geometric
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arrangement of the fibers and inter-fiber spaces or pores. Because of its complexity, they

approached the problem by considering paper to be made of a pile of ultra-thin or 2D sheets

of which the grammage was 2.5 g/m2 and the geometric elements were plainly visible. This

allowed the simplified ideal paper to be simulated with uniform straight line segments

placed at a random location and a random planar angle. The structure of the 2D sheets was

described in terms of the means and distributions of several geometric properties. These

properties were thought to be closely related to the mechanical, optical, and porous prop-

erties of paper. The equations were derived from probability theory and can be evaluated

in terms of the number of fibers in a sheet and their dimensions. Their overall modeling

process considered a total of Nf fibers deposited randomly onto a plane of area, A. The

Poisson distribution was used to characterize the number of fiber segments per unit area

(2-7)

in which r is the number of fiber segments per unit area, nf’ is the mean number of fiber

segments per unit area, which equals % (Kallmes, and Corte, 1960).

The distribution of the free fiber length, If,  was given by a negative exponential equation

V-8)

in which pr is the mean value of the free fiber length.
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Based on these two equations, several other distribution functions were derived, which

include:

1. The distribution of the length of fibrous material per unit area of the sheet

2. The distribution of the number of crossings per unit area of the sheet

3. The distribution of the number of crossings per fiber

4. The distribution of the number of free fiber lengths per fiber

5. The distribution of the areas of polygons.

A model for a multi-planar sheet was also developed (Kallmes et al., 1961). In the model,

many of the geometric properties of interest to the papermaker were derived from the total

number of fiber-to-fiber contacts (crossings) in the sheet. The number of crossings in a

multi-planar sheet was the sum of the number of crossings within the two dimensional (2D)

layers and the number of crossings between the layers. It was claimed that although the

organization of fibers in a multi-planar sheet differed from that in normally formed paper

in several ways, i.e. no Z-direction orientation and no interweaving among the layers, such

phenomena were of minor importance in paper and that there were only small differences

between the properties of a multi-planar model and the equivalent sheets (Kallmes et al.,

1961).

Page and Seth (1980) derived a comprehensive equation which related the in-plane elastic

modulus of well-bonded paper sheet made of straight fibers to most of properties of the

fibers
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(2-9)

where Ep is the in-plane elastic modulus of paper, Efis the elastic modulus of fiber in axial

direction, Gfis the shear modulus of fiber for deformation in the plane of fiber length and

width, L is the length of fiber, w is the width of fiber, and RBA is the relative bonded area

of fiber. It was implied from the equation that for long fibers of high values of RBA the

elastic modulus of paper was one third of the elastic modulus of it component fibers.

Gorres et al. (1989) developed an interactive multi-planar model (IMPM) which extends

the multi-planar model by Kallmes et al. (1961) to account for the interaction between

layers due to the effect of fiber flexibility. The analytical expressions describing the

number of crossings between two layers and fraction of bonded fibers between two layers

were presented. Gorres and Luner (1992) later derived a model of paper density from the

IMPM. The model used the mean values of fiber coarseness, width, thickness, length and

flexibility as well as the tines content of pulps to predict sheet density. Prediction errors of

up to 27% were reported. A combination model of IMPM and fiber orientation function

was then developed and it predicted that apparent sheet density increased with an increase

in fiber orientation (Amiri et al. 1994).

Komori and Makishima (1977) estimated the number of fiber-to-fiber contacts in fiber

assemblies with arbitrary distributions of orientation and fiber length as:

5” = DL;I,
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where ii, is the average number of contacts per unit volume of an assembly, D is the diam-

eter of the cross section of the fiber, L, is the total length of fiber per unit volume and I is

calculated with

in which fi is the density function of orientation, 8,  cp  and 8’)  <p’ are respective polar

angles characterizing the orientation of two fibers being brought into contact with each

other.

Van den Akker’s method (Van den Akker, 1962) was for calculating total bonded area. All

the methods were based on mathematical derivation according to the average dimension of

fibers and the volume of fiber assemblies. Deng and Dodson presented detailed methodol-

ogies and reviews of paper structure research in their book (1994),  most of which were

related to 2D networks.

Dodson (199 1) described a 3D mathematical model characterizing the coefficient of vari-

ation of the local volume density. In his analytical derivation, paper was viewed as a 3D

stochastic fibrous network. The network was subdivided into unit cells. The coefficient of

variation of the local volume density was:

cv(jq = d7(CV(  b))’  + (“) . 1 (2-l 1)
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where 7 is the local volume density, i is the local basis weight, h is the mean fiber length,

6 is the mean fiber mass per unit length, x is the length and width of the unit cells, t is the

thickness of the unit cells, and 7 is the mean density of the network.

A Poisson distribution was used to describe the vertical fiber disposition. In addition, it was

stated that a compound Poisson process could be used to model vertical contagion, a com-

ponent of vertical interaction.

Lu and Carlsson (1996) performed a statistical analysis on paper structure which employed

a Monte Carlo simulation method to generate the position and orientation of individual

fibers in a 2D planar sheet. The position coordinates of the fiber centers were uniformly

distributed and the orientation was defined by the warped Cauchy  distribution. The result

of the model was the prediction of volume fractions of bonds and fiber segments in relation

with the apparent sheet density.

Niskanen and Alava  (1994) presented a computer simulation study of planar random fiber

networks. In the simulation, fibers with unit width and thickness were initially straight and

parallel to the substrate. Each fiber was laid down independently on a 2D square lattice of

linear size. The fiber would deform or bend after it contacted the underlying network. A

bending flexibility factor, T3  was defined as the largest allowed vertical deflection of the

fibers from one lattice cell to the next (Figure 2-2). The relationship between Tfand  the wet

fiber flexibility was
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(2-12)

where C is the constant depending on experimental details, wfis the width of fibers and F

is the wet fiber flexibility.

Figure 2-3. Fiber bending in Niskanen and Alava’s simulation (1994).

It was found that roughness of the free surface decreased with the increasing of fiber flex-

ibility. It was claimed that the model provides a connection between the properties of real

planar fiber networks and ideal 2D networks. Later in 1998, Nilsen  et al. later developed a

simulation program, KCL-PAKKA, based on the same methodology. The input of the pro-

gram included fiber dimensions (length, width and thickness), coarseness, flexibility and

certain optical parameters, such as the refractive index. The paper-making pulps were mod-

eled with three or four fiber fractions instead of continuous distributions of the fiber dimen-

sions. For example, fibers had long, medium and short lengths (Nilsen  et al., 1998).

Based on the finding that the mean number of sides per polygon is four and the distances

between two adjacent crossings in a planar network of random lines are negative exponen-
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Figure 2-4. Surface contour of simulated paper structure (Niskanen and Alava,
1994)

tially distributed, Corte and Lloyd estimated the pore size distribution as the product of two

negative exponential distributions (Corte and Lloyd, 1966). Since a negative exponential

distribution is a special case of a gamma distribution (when the order of gamma distribu-

tion equals l), Dodson and Sampson generalized free-fiber-length distribution with the

gamma distribution and extended Corte and Lloyd’s model into a product of two Gamma

distributions (Dodson and Sampson, 1997). In their model, the free-fiber-length distribu-

tion is governed by

bk
f(4  = r(k>x k-‘e-bx (2-13)

and the probability density function for equivalent pore radii is
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r(k)2  *
(2-14)

where b is the parameter representing the state of flocculation, k is the order of Gamma dis-

tribution, and K,(x) is the 0 order modified Bessel function of the second kind.

The mean and variance of the pore size distribution are respectively given by

-
’ - b& T ( k ) ’

VarQ.)  = j2

(2-15)

(2-16)

It was found that the variables k and b were linearly dependent on each other, increased

with grammage and decreased with flocculation so that the coefficients of variation of free-

fiber-length and pore radius both increased with flocculation but decreased with increasing

grammage (Dodson and Sampson, 1996).

Several other approaches have been reported for simulation of flocculated structures (Deng

and Dodson, 1994, Farnood et al. 1995). In the method developed by Farnood, the distri-

bution of local grammage in paper samples was modeled by the random deposition of low-

grammage disks representing loose floes (Figure 2-5). The diameter of disks was charac-

terized with different distributions, uni-size, uniform and lognormal. Analytical expres-
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sions for the variance of random structures of disks as a function of disk properties were

derived. It was found that a lognormal distribution of disk diameters outperformed the

other two diameter distributions in terms of predicting the variance of commercial paper

samples.

D - disk diameter
ad  - disk grammage

Figure 2-5. Partitioning a random structure of disks into square inspection zones of
side x (Farnood et al., 1995)

Farnood et al. (1997) further developed this method with construction of images (Figure 2-

6) of random disk structures by a computer simulation software. The input to the software

included the mean and standard deviation of a lognormal distribution and disk grammage.

2.2. Models of Wood Particulate Composites Structure

In the area of forest products, some efforts have been made in modeling the mechanical

properties of wood composite materials. Suchsland (1959) is generally acknowledged as

the first to investigate the horizontal density variation of particleboard in the plane of the

board: a Binomial distribution was used to describe the organization of the flake mat. Har-
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Figure 2-6. Gray level plots of the distribution of local grammage (Farnood et al.,
1997).

less et al. (1987) introduced a model to predict the vertical density profiles of particleboard.

The model simulated the physical and mechanical processes occurring in the press and mat

system. Several researchers investigated the horizontal density distribution. Another struc-

tural model developed by Suchsland and Xu (Suchsland and Xu, 1989) consisted of narrow

veneer strips arranged in mutually perpendicular layers. The number of veneer overlaps

within the matrix represented the variation of the amount of wood material, and concomi-

tantly the density variation. Xu and Steiner (1994) studied the variation of the horizontal

density distribution of waferboard by relating the standard deviation of the horizontal den-

sity to the specimen size. They indicated that the variation decreased as the specimen size

increased.

The most comprehensive microstructural model for wood composites was developed by

Dai and Steiner (1994a,  1994b).  Similar to the method used by Kallmes, Bernier and Corte

(196 l), the model was based on the assumption that the thickness of wood elements (flake)
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was zero so that all flakes lay parallel to the horizontal plane. The structural properties of

the flake network were treated as random variables characterized by Poisson and exponen-

tial distributions. The monolayer model predicted distribution of: 1) flake centers; 2) flake

area coverage; 3) free flake length and 4) void size over the flake layer network. A Monte

Carlo simulation method was used to generate the uniform random variables for the simu-

lation of flake deposition process. A descriptive model of multi-layered random flake mat

was modeled as a summation of a series of two-dimensional randomly arranged flake

layers (Dai and Steiner, 1994a,  1994b).

Another work for characterizing the spatial structure of wood strand mats was done by

Lang and Wolcott (1996). A Monte Carlo simulation method was employed to generate

random variables including the number of strands in the centroids of imaginary strand col-

umns of finite size, the vertical distances between the adjacent strands (or void height) and

the location of the column centroid relative to the constant length of each strand. They

found that the Poisson distribution with a normally distributed mean was more suitable to

describe the number of overlap strands. This was different from Dai and Steiner’s assump-

tion that the strand deposition in randomly formed mat follows the Poisson Distribution

with a fitted mean. The parameters for the normal distribution were determined for manu-

ally formed strand mats. It was also found that both the void height and the location of the

strand column centroid relative to the constant length of each strand were lognormally dis-

tributed.

Stahl et al. (Stahl et al. 1997, Stahl and Cramer, 1998) described a modeling procedure that

generates and analyzes a 3D finite element model of the network microstructure in a small

2 6



volume of low density fibrous composite. In this research work, the composite elements

were cement coated wood strands. The position of each strand was defined by a random

point in the volume, which might be the position of the centroid, and three orientation

angles of the central line. The orientation angle in the plane of the panel was either random

or from certain nonuniform distributions if a preferred direction was required. The out of

plane angles of the central lines were generated from normal distributions with zero mean

and small variance. Bonds formed when two strands’ volumes intersected or overlapped.

A model based on stochastic principles was developed to simulate the 3D geometric micro-

structures of wood fiber composites (Wang and Shaler, 1998). This model assumed ideal

rigid and cylindrical fibers. The input variables included the parameters for the distribution

functions which were used to characterize the dimensions and spatial  organizations of

fibers in the model. Local void fraction, density, number of fiber segment and fiber bond-

ing area could be obtained from the output structures of the model. Since rigid fibers were

assumed, unrealistic fiber-to-fiber interferences existed in the simulated structures.

Figure 2-7 shows a simulated 3D microstructure.

2.3. Experimental Measures of 3D Microstructures

Image processing techniques has been increasingly applied in the study of wood composite

structure. Hasuike, Kawasaki and Murakami (1992) developed a technique of evaluating

the 3D geometric arrangement of fibers in a paper sheet based on the measurement of the

locations of fibrous segments in the serial cross-sections of the sheet. It is of interest to note
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Figure 2-7. Simulated 3D microstructure of a wood fiber composite.

that the technique offered a means to visualize and analyze directly the extent of layering

in papers of different types. Their method could be generally stated as

l prepare a series of vertical cross-sections;

l recording the relative coordinate positions of fiber peripheries in the sections by a dig-

itizing system attached to a computer; analyzing the 3D geometric arrangement of

fibrous segments with the aid of a computer graphics technique;

l reveal the entanglement and interconnection of fibers in 3D image and estimating the

orientation of the segments in the Z-direction.

Jang et al. (199 1) reported a method for rapidly producing cross-sectional images of wood

pulp fibers. In the report, an unbleached softwood kraft pulp fiber was measured with 177

pm2  of cross-sectional area, 103 pm of the center-line perimeter and average 1.72 pm of

cell wall thickness.
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Recent work at University of Maine determined the ratio of interfiber  void within MDF

(medium density fiberboard) panels with image analysis techniques. The void space was

determined using microtome sections and a light microscope interfaced with an image

analysis system. Three dimensional microstructural models of panel were constructed

based on sequential 2D images (Ramli, 1995). More recently, microtomography has been

used to obtain and “stack” slices of MDF to create a reconstruction of the 3D structure. The

3D void fraction of the microstructure can be analyzed by manipulating the 3D voxel

image with the aid of image analysis software (Shaler et al., 1998). These methods supplied

a effective tool for the verification of 3D microstructural simulations.

2.4. Microstructure of Other Composites

The materials discussed in this section are different from wood fiber or particle composites

in that most of them are composed of particles or fibers and solid matrix materials, and

some are porous solids. The physical and mechanical properties of these materials also

depend on the arrangement of features in 3D microstructural space. For some unidirec-

tional composite materials, 2D models on the cross sectional properties would suffice.

Some models use the homogenization method for reflecting the influence of material

microstructure on the macroscopic behavior while the others try to characterize micro-

scopic heterogneities with certain stochastic simulations. For example, Pyrz (1993) carried

out a statistical analysis of fiber distribution by introducing a second-order intensity func-

tion and the Dirichlet tessellation to create a micro-mechanical model illustrating the influ-

ence of distribution statistics on the calculated stress field. In a 2D automatic mesh

generator developed by Ghosh and Mukhopadayay (199 1) for finite element analysis of

2 9



random composites, random distribution of unidirectional fiber axes were assumed and the

position of each axis was decided with two coordinates on the cross section generated by

a random number generator.

Simulation of the random close packing of spheres has been used widely. A distribution of

pore polyhedra in the random close packing of equal-sized spheres was obtained using

computer simulation by Nolan and Kavanagh (1995). The method was also used in simu-

lation of hard pigment particles and deformable latex particles in acrylic latex paint sys-

tems. The program input the particle size distribution of the pigment and the latex, the

deformation or softness of the latex, and output the packing density (Nolan and Kavanagh,

1997).

Statistical simulation of multi-phase random media has been extensively studied. This

class of composite is usually composed of two or more separately homogeneous materials.

For example, in a two-phase composite, one of the phases may be in the form of discrete

inclusions or particles which are distributed throughout the other phase, a continuously

connected matrix (maybe fluid or void) according to some probability density functions.

Different forms of the n-point probability function, which gives the probability of finding

a certain subset of n points in the matrix phase and the remainder in the particle phase, were

employed to characterize the microstructure of two-phase random media and impenetrable

spheres were used to simulate the particles (Torquato and Stell, 1982, 1984). A model pro-

posed by Quintanilla and Toquato (1996) for statistically inhomogeneous two-phase

random media, including functionally graded materials, consists of fully penetrable Pois-

son distributed spheres.
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A computer simulation model was reported by Louis and Gokhale (1995) to represent the

3D microstructure of a two-phase particulate composite, in which particles may be in con-

tact with one another but do not overlap significantly. The program first generated freely

overlapped and uniformly distributed spherical particles one by one and then analyzed the

overlap and pulled the overlapping particles from one another according to a repulsion law.

The model was used to quantify the connectedness of the particulate phase of a polymer

matrix composite containing hollow carbon particles in a dielectric polymer resin matrix

(Louis and Gokhale, 1995).

Roberts et al. (Roberts and Knackstedt, 1996,1997, Roberts, 1997, Roberts and Garboczi,

1999) introduced several microstructural models which represent the complex morphology

observed in a range of two-phase disordered material. Most of these models are based on

the level-cut of Gaussian random field. It seems that the models are limited to isotropic

materials. Figure 2-8 shows a gallery of simulated microstructures.

Figure 2-8. Three-dimensional realization of model microstructures.

(a) 2-level cut GRF model of composite media (Roberts and Knackstedt, 1996). (b) poly-
meric aerogel model (Roberts, 1997). (c) simulated silver phase of tungsten-silver com-
posite (Roberts and Garboczi, 1999)
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A particle-level simulation method was employed by Ross and Klingenberg (1997) to

study the dynamic of flowing suspensions of rigid and flexible fibers. In the method fibers

are modeled as chains of prolate spheroids connected through ball and socket joints

(Figure 2-9). Flexibility or rigidity of fibers is modeled by varying the resistance in the

joints. The motion of a fiber is determined by solving the translational and rotational equa-

tions of motion for each constituent spheroid.

Figure 2-9. Linked rigid body model for a flexible fiber (Ross and Klingenberg, 1997).

a and b are the spheroid major and minor axis lengths, respectively; E is the separation
between spheroids.
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3 COMPUTER SIMULATION

To make composites in a laboratory, one needs to obtain the proper materials and the nec-

essary equipment. Similarly, a computer also needs these necessities to build virtual wood

composites. The ‘materials’ are virtual composite elements, either simulated fibers, flakes

or strands, which are computerized data sets. The ‘equipment’ for making the composites

is a software or a group of programs developed to generate and manipulate the data. This

chapter describes how these two main components were designed and implemented.

3.1. Theories and Concepts

The construction of virtual composites is based on a stochastic simulation of composite

elements within the composites. Since the research questions concerning the virtual com-

posites in this research are mainly about the microstructural characterization, the simula-

tion of the elements focuses on the description of their geometric character to serve as a

basis for derived physical, mechanical and optical properties.

3.1.1. Random Numbers

Random number generation is essential for all stochastic simulation. Since truly random

numbers are impossible to obtain in computer programming, algorithms must be employed

to produce sequences of numbers that are statistically independent and uniformly distrib-
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uted or so called pseudorarzdom numbers. The simplest and most frequently introduced

random number generator (RNG) is probably the one shown below, which is a linear con-

gruential generator (Ross, 1997 and Press, et al., 1990).

X ,*  + l = (ax,  + c) modzdo  m, rz 2 0 (3-l)

By specifying positive integers a, c and m and an initial value X0,  the generator will recur-

sively computes Xl,  X2..  . and X,. Each value is in the range of the series 0, 1 ,...,  m - 1. The

quantity of X,/m  is then taken as an approximation to a uniform (0, 1) random variable.

The maximum period of this RGN is the value of m. In most computer systems m is the

largest representable positive value of type int. The UNIX system on which the simulation

software was developed, supplied two RNG’s, rand ( ) and random ( ) . Both functions

are parts of the standard C library. Function rand ( ) uses a multiplicative congruent

random-number generator with period 232, which returns successive positive integers

between 0 and the largest positive short integer, 32767. Function random ( ) , according

to the manual pages, is a non-linear, additive feedback generator with a very large period,

approximately 16 x ( 232 - 1) . It returns successive pseudo-random numbers in the range

(0, 2”’ - 1). Although the period of rand ( ) seems large enough for this particular simu-

lation as will be shown later, the weakness of the linear congruential method (Press, et al.,

1990) prevents it from being reliably used without pre-modification. Therefore, ran-

dom ( ) was chosen to carry out the random number generation for the stochastic simula-

tion. To obtain desired random variables in the range (0, l), one may just take the values

of random ( ) /RAND-MAX.  In the C library, RAND-MAX is defined as 32767, which is
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suitable for rand ( ) . If random ( ) is used instead, the maximum random variable has to

be redefined as 23’  - 1 for random variables in the range (0, l] or 2”’ for the range (0, 1).

3.1.2. Simulation of Probabilistic Deviates

3.1.2.1. Uniform Deviates

To simulate uniform deviates between a certain range a and b, the algorithm is designed as:

Step I: Generate random variables U, U = random ( ) /RAND-MAX.

Step2:SetX  = a+(a+b).U.

The variables X generated are uniform deviates in the range (a, b).

3.1.2.2. Normal and Lognormal Deviates

The normal deviates are generated with two basic Monte Carlo Methods, the Inverse and

Rejection methods (Ross, 1997). The algorithm is shown below.

Step I: Generate U1,  U1  being uniform on (0, 1).

Step 2: Set Y, = -Zog( U,) . YI is an exponential random variable with rate 1

(Inverse method),

(3-ag(x) = eex.

Step 3: Generate U,,  U,  being uniform on (0, 1).

Step 4: If U2  I exp[-(Y,  - 1)“/2], set Y,  = Y, and go to Step 5. Otherwise go to

Step 1. Y, is a random variable with probability density function
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f(x) = gxp(-x7/2).

Step 5: Generate U3,  U3  being uniform on (0, 1). Set 2 = Y,  if U, 5 0.5. Other-

wise, set Z = -Y,  . Z is a standard normal variable.

Step 6: Set X = lt + OZ  , in which ~1  and CJ  are given parameters for the simulation.

The random variables X are normal deviates with probability density function

N(x) = &exp[-i(y)21 (3-4)

According to the definition of lognormal distributions, if ZogX  (X 2 0) has a normal dis-

tribution, variable X has a lognormal distribution. Therefore, lognormal deviates can be

obtained by adjusting the algorithm for generation of normal deviates. After Step 6 above,

let X’ = ex . Then X’ is a lognormal random variable with probability density function

L(x) = +&exp[-;(“ogs- p)2] (3-5)

In this equation, the parameters ~1  and CJ are just the mean and standard deviation respec-

tively of the normal deviates ZogX  . The mean, l.t’, and standard deviation, 0“)  of the log-

normal deviates are functions of lt and 0.

0’ = exp(p+$tjpxl?o
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3.1.2.3. von Mises Deviates

The von Mises distribution is employed to simulate the orientation of individual compos-

ite elements. The von Mises distribution is a distribution function designed for data with

finite ranges. Angles are typical examples of this type of data. The construction of the von

Mises function ensures that the angular variables lie on the range of 0 - 27~.  The original

probability density function of the von Mises distribution is (Mardia, 1972):

f(W7  w = 2n;(k) exp[kcos(0  - O)], 0 < 8 527~
0

(34)

where 0 is the primary orientation angle and 0 I 0 < 2~) k is the concentration parameter

with k > 0,  and Z,(k) is the modified Bessel function of the first kind and order zero.

The concentration parameter k is analogous to the variance of other continuous distribu-

tions. For example, if k = 0, the angular variables, 0,  are uniformly distributed over the

range (0, 2~).  While the k is very large (k + -),  all angles equal 0. If simulated objects

have no directional properties, in other words, if the orientation @  appears no different from

orientation 71 + Q  , the distribution may be characterized with the axial form of von Mises

distribution (Harris, 1977 and Shaler, 1991):

fW3 k) = 2nz1(k)
0

exp[kcos2(0  - 0)], -g  < 8 I 5 (3-9)

If the primary orientation of the elements in the composite is set as O-degree, the function

can be further simplified as:
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f(e) = l2%(k) exp[kcos(28)] (3-10)

To generate variables with the above probability density function, the algorithm may be

designed as:

Step I: Generate U1  being a uniform random variable in the range (0, ek
2~4dk)

).

Step 2: Generate U2 being a uniform random variable in the range (-i  , 5 ).

Step3: If U,  2 ’-exp[kcos(2U2)],  set X = U, . Otherwise, go to Step 1.
2GW

The variables X are the desired von Mises deviates.

3.1.3. Programming

There are two important methodologies for designing solutions to complex problems: top-

down design (or structured design) and object-oriented design (OOD). The processes of

implementing these two design paradigms are structured programming and object-oriented

programming (OOP), respectively. Structured computer code design divides a problem

into modules, the solutions of which create a solution to the overall problem (Dale, et al.,

1996). A top-down designed program is a collection of interacting functions. In structured

design and structured programming, data are passive quantities to be acted upon by func-

tions. In OOD, a problem is decomposed into objects. Each object represents an instance

of an abstracted data type (ADT) which has an internal state (the current values of its pri-

vate data) and a set of methods. An object’s state can only be inspected or modified through
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methods invoked by another object. Objects within a program communicate with one

another by message passing. In OOD and OOP, data play leading roles and the primary

contribution of algorithms is to implement the operations on objects.

Top-down design yields an inflexible structure. Any modification on the top-level algo-

rithm may force many lower level algorithms to be changed as well. In addition, the code

developed with the technique is not easily reused. These are two major limitations for

building large software systems. In contrast, OOD leads to programs that are more flexible

and conducive to code reuse.

C++ is one of several programming languages supporting OOD and OOP. It provides a

built-in structured type known as a class which is specifically designed for implementing

objects. Generally, a class consists of private data members and public member functions.

Within a program, the relationship between classes can occur in three typical ways:

1. Independent of each other,

2. Inheritance, and

3. Composition.

In the first case, two classes are independent of each other and have nothing in common.

Inheritance is the mechanism by which one class acquires the properties - the data and

operations of another class. Composition (or containment) is the relationship in which the

internal data of one class includes an object of another class (Dale, et al., 1996).
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3.2. Simulation Methodology

3.2.1. Scenario to be Simulated

forming box
final structure

pJ3jTq  1
k, , ,“SY,, 1

trimmed edge 1 / c o m p o s i t e

Figure 3- 1. Forming Process of particulate composites

To make a wood composites, MDF for example, the wood which the fibers are made from

has to be identified. This leads to the collection of the fiber properties. Further analysis may

be carried out to obtain information about the fiber morphology. Besides the knowledge on

fibers, the dimensions and target density of the composite must be set. Then, the total

amount of fibers needed can be determined. Although resin plays a very important role in

the mechanical and physical performance of most wood composites, the volumetric per-

centage is so small comparing that of the wood components that the geometric effect on

the microstructure is negligible. Resin sprayed fibers are then dispersed on a plate that

forms a horizontal plane. For pre-defining the edge of the composite mat, a rigid rectangu-

lar frame, named Forming Box in the current research, is usually placed on the plate
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(Figure 3-l) and all fibers are deposited in the area surrounded by the Fomzing  Box. In

order to eliminate the possible edge effect on the composite sample, the four edges have to

be trimmed off from the final panel. Therefore, the Forming Box is always larger than the

desired composite panel. Finally, the mat is delivered into a press. The process in the sce-

nario is not a standard procedure. Round forming frames may be used in making paper

hand-sheet. In industrial practice, the forming of wood fiber or particle composites are usu-

ally continuous processes so that the edges are ‘lose’, which is another type of edge effect.

The effect can be eliminated by trimming off certain width of edges.

If the fibers are assumed free of contact with each other during the journey into the Forming

Box, and if the time interval is small enough, it will be clear that the forming process of the

composite described in the previous paragraph is a sequential process in which fibers are

dropped into Forming Box one by one. If an identification is applied to each fiber, e.g.

Fiber I for the first fiber dropped in, and Fiber 2 for the second and so on, the whole pro-

cess will be

dropping Fiber i into a Forming Box (i = 1, 2, . . . . n).

The number n will be the total number of fibers needed to make a composite sample with

required dimension and target density. Based on this scenario, if ith fiber’s behavior in the

composite can be described, the entire structure can be simulated by extending the descrip-

tion procedure to Fiber i+l,  Fiber i+2,...,  and Fiber n.
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3.2.2. Simulation Environment

Based on the scenario described in the previous section, several entities should be defined

in the simulation of virtual composite structures (Figure 3-2). A Sample Space is the space

where a virtual structure locates. It is in Octant I of a right-hand Cartesian coordinate sys-

tem, with three sides on x, y and z axes respectively. The x-y plane is parallel to the hori-

zontal plane. The length of a virtual structure, X, is on the x-direction. The width, Y, is on

the y-direction. The height or thickness, Z, is on the z-direction. A Sample Area is the area

on the x-y plane covered by the structure. The four edges of a Sample Area form a Sample

Edge. The area covered by the four trimmed edges is termed Edge Zorze. The four trimmed

edges are assumed to be the same width. Therefore, the size of an Edge Zone  can be deter-

mined by a single parameter, Width of Edge Zone, e, in conjunction with the known struc-

ture dimensions. The combination of a Sample Area and an Edge Zone is the Forming Area

which is the area surrounded by a Forming Box.

e

e-

Y

Y

Edge Zone

Figure 3-2. Environment for building a particulate composite structure.
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The 3D Sample Space in the real world is a continuous system which consists of virtually

an infinite number of points. In the digital computer, the system must be converted into a

discrete system. The conversion is accomplished through the parameter Resolution ofSim-

ulation  (ROS). All the parameters and variables related to the dimensional properties of

elements and the virtual structure must be converted with the following equation,

6 = (int)
( 1

%+0.5 (3-l1)

where p is the ROS, 6 is the modified dimension, A is the real value of a dimension, and

(int) is the integer type casting procedure in C++.

For example, if an X long and Y wide real-world composite sample is simulated, in the

program, the length and width of Sample Area are defined as respectively,

xsize = (int)  (X/ROS  + 0.5);
ysize = (int)(Y/ROS + 0.5);.

After conversion, the area consists of (xsize+l ) * (ys ize+l ) points. The distance

between two orthogonally adjacent points equals the value of the resolution (p or ROS in

source code ) (Figure 3-3).

In the later sections, the dimensional variables, if not mentioned specifically, are all inte-

gral values modified with Equation 3-11.
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Figure 3-3. Discretization of Sample Area.

ROS

ize)

3.2.3. Characterization of An Individual Element

3.2.3.1. Basic Geometry of an Element

Wood fibers free of deformation are generally tubular. The cross sections may be partly or

totally collapsed due to the mechanical or chemical treatment in the pulping process. Wood

flakes used in OSB or other wood composites are generally rectangular in shape. For sim-

plification, it is reasonable to simulate a fiber before being packed into a composite as a

hollow cylinder with uniform wall thickness and certain level of flatness on its cross sec-

tion. An undeformed flake can be simulated as a cuboid.

As shown in Figure 3-4, a data structure which includes the following parameters is suffi-

cient to represent a hollow cylindric element

l diameter (II),

l length (I,),

l wall thickness to radius ratio (o),  and

l vertical deformation ratio (6).
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z

6 = u/b
ci) = 22/D

(a> (b)

Figure 3-4. Cross sections of (a) a cylindrical element and (b) its conversion due to
flattening.

The vertical deformation ratio represents the ratio of the vertical dimension to the horizon-

tal dimension of the inner circle on the cross section. The ratio ranges from 0 to 00.  How-

ever, if load is only in vertical direction, the range of 6 would be 0 5 6 I 1 . When 6 = 1,

the cross section of the cylinder is a perfect circle. When 6 = 0, the cylinder is totally flat-

tened. If width, W, and thickness, T, are used to describe a flattened cylinder,

ED-nDo
w= 87c+2-2s+Do

T = &CD-~XDCO+~~
6x+2-26

Only the following parameters are needed to describe a cuboid

l width (IV),

l length (L),  and

l thickness (7’).

(3-12)

(3-13)
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It is assumed that the area of the cross section and the total volume of the element does not

change during the deformation.

The dimensional values of elements in most composites are variables. Certain distribution

functions may be employed to statistically characterize these variables. For example,

normal distributions were used to simulate the diameter and lognormal distributions for the

length of wood fibers (Deng and Dodson, 1994).

3.2.3.2. Morphology of an Element in Composites

Further deformation on the composite elements may occur during the forming and com-

pression of the composite. Geometrical irregularities result due to the interaction among

the elements. The parameters listed in the previous subsection are not enough to represent

such a complex morphology. More sophisticated data structures have to be created.

To make the situation mathematically describable, the following assumptions are made:

1. The elements are initially straight,

2. There is no further horizontal deformation on elements,

3. If a load besides gravity is applied, it affects all the elements equally, and

4. No load is transferred between elements.

The first and second assumptions imply that the horizontal projection of any element is

rectangular and does not change. The third and fourth assumptions eliminate the effect of

any element to previously allocated elements, which also means that the morphology of an

element depends on its own property, universal load, and the morphology of elements in
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contact from underneath its body only. Therefore, to determine the morphology of Element

i, the behavior of Element I, Element 2,..., and Element i-l has to be determined. Every

element introduced in the Forming Box changes the status of the top surface of the assem-

bly. The surface status will affect the behavior of the next coming element.

In the following part of this section, Element i will be used to elaborate the algorithm and

methodology used for characterization of each individual element in the composite.

3.2.3.3. Definitions and Implementations

The objects identified for characterization of Element i, based on the physical entities

involved in the real world, includes (Figure 3-5):

Objects
1. PXS

2. PRJ

3. SFE

4. BDE

Figure 3-5. Objects contained in an element.

l horizontal projection of the element’s major axis (PXS),

l horizontal projection of the element (PRJ),

l a specific surface in the element (SFE), and

l 3D body of the element (BDE).
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The four objects listed above form a hierachy  system (Figure 3-6). They are related by

composition or containment, a mechanism in C++,  by which the internal data of one class

includes an object of another class.

@

S PRJ PXS

BDE
0

Figure 3-6. Structure of an element.

The top surface of the simulated composite structure (SFS) formed by Element 1  to Ele-

ment i-1  does not belong to any element but relates to them.

Obiect 1. Surface of Samde  (SFS)

SFS is a passive data structure. Information recorded in SFS includes the identification,

id, of the elements at the top, the height of the virtual structure at any horizontal loca-

tion within the Sample Area, and the local coverage, which defines the number of ele-

ments above the location. The status of SFS is updated by each element introduced into the

composite structure. The surface is simulated as a two-dimensional dynamic array of

nodes. Each node corresponds to a point in Sample Area. Node(i, j) has the same horizontal

position with point(i, j) in Sample Area. Each node is a C++ record data type.

struct SFSNodeType
i

int id;

48



int height;
unsigned short coverage;

The two dimensions of the array are respectively xs i z e and ys i z e.

The advantage of using a dynamic array is that one dimension of the array can be specified

dynamically or at execution time. In this case, the array of nodes is defined as:

SFSNodeType  (*SFS)[MAX-SZ];

The MAX-SZ is the maximum array size in the program. It is determined based on the stack

size limit of the compiler and the operating system. It represents the maximum possible

width of SFS, as well as the simulated structure. The value has to be fixed at the time of

compiling. For example, if the size of an array is xs i z e *ys i z e units, the total memory

allocated for this array must be xs i z e *MAX-sz units and ys i z e has to be less than or

equal to MAX-SZ.  Consider one unit as being defined as the memory size for one element

of the array, e.g. for SFS, it would be 10 bytes. The wasted amount of memory could be

xs i ze * (MAX-SZ -ys  i ze ) units. If a static array was used instead, the definition would

be:

SFSNodeType  SFS[MAX-SZ][MAX-SZ];

The memory allocated for it would be MAX-SZ *MAX-SZ.  The wasted amount of memory

couldbe  (MAX-SZ*MAX-SZ-xsize*ysize)  units.Here  xsize hadtobelessthan

or equal to MAX-SZ, too. Therefore, by using a dynamic array, potentially,

MAX-SZ* (MAX-SZ-xsize) units of memory could be saved if xsize is less than or

equal to MAX-SZ . For example, if MAX-SZ is set up as 4000, and let xs i z e and ys i z e

be 2000 and 3000, respectively, when a dynamic array is chosen to implement SFS, the
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wasted memory will be 2000 x (4000 - 3000) = 2000000 units. If a static array was used

instead, the wasted memory would be 4000 x 4000 - 2000 x 3000 = 10000000 units.

Object 2. The Horizontal Projection of Element’s Axis (PXS)

Figure 3-7. Design of Horizontal Projection of an Element’s Axis (PXS).

The basic structure of PXS is shown in Figure 3-7. Since no horizontal deformation of an

elements is assumed, the horizontal projection of the axis is a straight line on the x-y plane.

As such, only two pairs of x-y coordinates are needed to build the object, specifically, the

end-positions of the line. Two rules must be applied to these two pairs of coordinates.

1. They are related to each other by the length of the element who owns the axis.

2. Both of them should be within the area surrounded by Forming Box.

One of the member functions, Locate ( ) , determines the location of PXS. Locate ( )

is a five-step process diagramed in Figure 3-8.

Step I. Generate the mid-point of PXS.
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Step 5

Figure 3-8. Effect of Forming Box on PXS.

Step 2. Generate the horizontal orientation of PXS.

Step 3. Calculate PXS’ end coordinates.

Step 4. Adjust the end coordinates by Forming Box.

Step 5. Adjust the end coordinates by Sample Edge.

At Step 1, elements are distributed in either a random or even manner. In the case of ran-

dom, the coordinates of a mid-point (x0, y0 ) are uniform distribution deviates. The

ranges of the two distributions are (-e, xsize+e) and (-e,  ysize+e)  , respec-

tively, in which the parameter e represents the Equation 3-l1 modified width of the edges

to be trimmed off. The ranges also define the location of simulated Forming Box which is

represented by function FormingBox  ( ) . If the even manner is desired, Forming Area

will be evenly divided into n sub-areas, in which n is the total number of elements or pre-

dicted total number of elements based on the dimensional means of the elements and

volume of the virtual structure, i.e.
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4XYZn =
w&&-N2 + 0)

(for cylindrical elements) (3-14)

“’ (for cuboid elements)n=-

l-wL,P,
(3-15)

where X, Y, Z are the dimensions of the simulated structure, and p/,  pd,  p,+,,  pL,  are the mean

values of length of elements, diameters of cylindrical elements, width and thickness of

cuboid elements, respectively, o is the mean wall thickness to radius ratio of the cylindrical

elements.

MyMy

tt
22
II
12-12-

Forming BoxForming Box

Figure 3-9. Even distribution of PXS’s  mid-point.

The division into sub-areas is determined by solving the the following function group:

n = n,ny

n, x (3-16)-=-
nY

Y
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where X and Y are the length and width of the structure, respectively, n,, n,, are the numbers

of sub-areas along x and y directions, respectively, and n is defined from Equation 3-14 or

Equation 3-15 as appropriate. Each center of a sub-area will hold one mid-point of an axis

(Figure 3-9).

At Step 2, the angle between PXS and the x-axis, denoted as a (-71/2  < a I n/2), is gen-

erated. The generation is governed by a von Mises distribution. At Step 3, based on the ele-

ment’s horizontal orientation and length, the position of PXS can be decided, which is

represented by the x-y coordinates of the two ends (xl , yl ) and (x2 , ~2 ) .

xl=(int)(xO-L*cos(alpha)/2+0.5);
yl=(int)(yO-L*sin(alpha)/2+0.5);

x2=(int)(xO+L*cos(alpha)/2+0.5);
y2=(int)(yO+L*sin(alpha)/2+0.5);

in which L is the length of the element modified with Equation 3-l1, and alpha repre-

sents the angle a in programs.

It is worth noting that the length of PXS actually should be the length of an element mod-

ified by the possible vertical orientation and deformation. However, at this point in the sim-

ulation process, since it is impossible to obtain the information, the length of the element

has to be used. At Step 4, function FormingBox  ( ) is called to check whether one or both

of the ends are outside the range ( -e  Ix I xsize + e and -e  5 y I ysize + e ).  If so,

FormingBox  ( ) will adjust the positions by rotating PXS along the mid-point. This rota-

tion mimics the restraining effect of a physical side boundary.
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For some area a mid-point can never be located due to geometrical confines (Figure 3-10).

For these situations, the mid-points will be regenerated.

Hpxs

Forming Box

Figure 3-10. Possible position of PXS’s  mid-point (unshaded area).

At the final step, the parts of PXS outside the range 0 I x I X and 0 I y 5 Y are truncated

by function SampleEdge  ( ) . The coordinates of the end outside an edge is replaced by

the coordinates of the intersection between PXS and the edge (Figure 3-8).

Obiect 3. Horizontal Projection of an Element (PRJ)

PRJ Class

EndAdjust  )

Private:
Nodes locat ion;
length (1);
width (w);

Figure 3-l1. Design of Horizontal Projection of an element (PRJ).
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The projection of a cylinder on a plane will be a rectangle if the major axis is parallel to

the plane. The projection of a cuboid on a plane will also be a rectangle if one of its edges

is parallel to the plane. At this point in the simulation, it is assumed that the element is free

of deformation and parallel to the horizontal plane so that its horizontal projection is rect-

angular. With this assumption, if the length and width of the projection are 1 and w, respec-

tively, a reasonable design of PRJ should be a two-dimensional (w+l rows and 1+1

columns) array of points (Figure 3-11). The data structures of PRJ include the lower level

object, PXS, a two-dimensional dynamic array of nodes and the sizes (length and width)

of the array (Figure 3-12). Each node is a C++ record data structure which records the x

and y coordinates of the node.

struct PRJNodeType
{

int x;
int y;

1;

The definition of PRJ is:

class PRJ
L

public:
void Locate(...);
. . .

private:
PRJNodeType  (*prj) [MAX-SZ];
int w;
int 1;
PXS axis;

1;

The maximum possible length of the projections in the structure is determined as the value

of MAX-sz since usually the virtual structure should be large enough to contain a whole

body of a simulated element in both x and y directions.
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X

surface of virtual structure

projection area

projection node

Figure 3-12. The Projection of an element is designed as a 2D array of nodes.

The main operation on PRJ is to locate all the nodes on the surface of structure (SFS) cov-

ered by the projection. It is performed by a member function Locate ( ) . Locate ( )

decides the length (1 or Z) and width (w or w)  of the projection first. The length is calcu-

lated according to the coordinates of PXS. The width is calculated from the width of an

element, adjusted by the orientation of the PXS (Figure 3-13):

if(alpha>0.25*pi
{
w=(int) (w/abs
l=abs(y2-yl);

>
else

{

1 alpha<-0.25*pi)

sin(alpha)+0.5);

w=(int) (W/abs(sin(alpha)+O.5);
l=abs(x2-xl);

>
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where pi represents the value of n: in the program, W is the width of the element (modified

with Equation 3-ll),  and abs ( ) is a C function which returns absolute value of an input

variable.

Figure 3-13. Defining sizes of a PRJ.

After these two sizes are decided, a parallelogram is drawn first. A function, EndAd-

j us t ( ) , is then called to modify the parallelogram into a rectangle by adjusting the ends

(Figure 3-14). It seemed that this process could be done more easily by transforming a rect-

angular array of nodes. However, by doing that, some nodes on the projection would not

coincide with the nodes on the surface of the virtual structure due to rounding in the trans-

formation process. In the parallelogram to rectangle process, EndAd j us t ( ) translates

the node on parallelogram projection outside the range between two end lines (shaded area

in Figure 3-14) with the following distances in x and y directions:
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Xt=(+/-)(x1-x2);
Yt=(+/-) (yl-y2);

where Xt  and Yt are the translation in x and y directions, respectively, xl, yl and x2,

y2  are the coordinates of PXS, and signs represent the directions of translation.

Figure 3-14. Process on adjusting the ends of the Projection.

After translation, the nodes on the projection have to be reordered. For example, consider

a node whose positions are (i, j) on the projection (i = 0, 1,2, . . . . w and j = 0, 1,2,  . . . . 1)  and

(x,  y) in the Building Area, which can also be termed as local coordinates and global coor-

dinates respectively. After translation, the global coordinates (x’, y ‘) may be expressed in

terms of the original coordinates as:

i

x’ = x+x,
y’ = y + Y,

(3-17)
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The local coordinates have not been changed. This would result in a structural disconnec-

tion in later processes. Since all the nodal translations are along the longitudinal axis of the

element, only parameterj should be reordered. The algorithm for reordering point (i, j) is:

Step 1. Calculating two end edges of the rectangle.

Step 2. If on row i, the point on an end edge is (i, j,), for each point in this row, if

j+j,>Z,setj’  =  j+je-Z;ifj+je<O,setj  =  j+j,+Z.

The reordered local position is (i, j’).

Obiect 4. Surface of an Element

Physically, SFE on a cuboid element could be either the top or the bottom surface. For a

hollow cylindrical element, SFE is defined as the virtual surface between the top and

bottom halves, which goes through the major axis of the element (Figure 3-15).

Figure 3-15. A SFE on a cylindrical element.

The data structures of SFE include the lower level object, PPJ, a two-dimensional dynamic

array of nodes and the sizes (length and width) of the array (Figure 3-16). Each node is a

record data structure of the form:
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struct SFENodeType
1

int x;
int y;
int z;
int touch;

I;

SFE Class

Figure 3-16. Design of a Sq&zce  in an element (SFE).

The variables, x, y, and z, define the location of a node in the 3D space. The variable

touch records the identification of the element underneath the node, which would be con-

tacted by the current element. This value is already recorded on SFS.

The definition of SFE is:

class SFE
1

public:
void Locatet...);
void Smootht...);
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. . .
private:

SFENodeType  (*node)[MAX-SZ];
int w;
int 1;
PRJ projection;

Since PRJ is also the projection of SFE, the horizontal position of each node on SFE are

the same as the position of the correspondent node on PRJ. The vertical position of each

node is temporarily set as the height of the node on SFS at the same horizontal position:

node[i] [j] .x = projection.node[i]  [j] .x;
node[i] [jl .y = projection.node[il  [jl.y;
node[i]  [j].z = SFS[I]  [J].height;
node[i] [j] .touch  = SFS[Il  [Jl .id;

in which I = node [ i ] [ j ] .x and J = node [ i] [ j ] . y. The above process is carried

out by the member function Locate ( ) in the class.

The vertical position of each node must be adjusted according to the flexibility or stiffness

of the element and the possible load. The flexibility of an element is represented by a geo-

metric value, i.e. the minimum radius of curvature of the element in vertical direction. The

adjustment is performed by another member function in this class, Smooth ( ) . Function

Smooth ( ) adjusts the curvature on every YOW  and every column of the SFE nodes. Each

TOW  or column is idealized as an elastic beam. Hence, the SFE contains w+l beams in the

length direction and Z+l beams in the width direction.

Every three successive nodes, e.g. Node i, Node j and Node k, may form a triangle on a

vertical plane if their heights are different (Figure 3-17).
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i j k

Concave

Figure 3-17. Calculate the curvature of a beam in the simulation,

The radius of the circumscribed circle of the triangle is defined as the radius of curvature

Y for the section of the beam between Node i and Node k. Smooth ( ) compares Y with the

minimum radius of curvature of the beam, R, which is determined with:

R=EI
M (3-18)

where E is the Young’s Modules of the material, I is the moment of inertia of the beam,

and M is the bending moment applied on the beam. If r < R , one or two nodes must be

raised up until Y  = R (Figure 3-18).

The limitation for applying this method is p I R because if ROS is greater than R, the

radius of a circumscribed circle for any three successive nodes will also be greater than R.

The moment of inertia, I, depends on the geometry of the cross section, Generally,
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Convex

i j k
Concave

Figure 3-18. Adjusting curvature of SFE according to the minimum radius of
curvature.

I = z*dAI (3-19)

where A is the cross-sectional area of the beam, and z is the distance from any point on the

cross section to the principal axis of the cross section, which is always parallel to the x-y

plane (horizontal plane).

For a cylindrical element, the values of moment of inertia in longitudinal and transverse

directions (Figure 3-19) can be derived respectively as

I
1

= 7c[T4-(T-6JD)4]+(W-T)(T3-(T-coD)3)
6 4 1 2

(3-20)

I
2

= L’T3-L’(T-oD)”
1 2

(3-21)
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where W is the width of the element calculated with Equation 3-12, T is the height of the

element calculated with Equation 3-13, and L’ is the length of the element after truncated

bySampleEdge().

IX.(Y)

Figure 3-19. Cross sections of a cylindrical element in longitudinal and transverse
directions.

For a cuboid element, the values of moment of inertia in longitudinal and transverse direc-

tions are, respectively

I, = g (3-22)

I, = Lg (3-23)

where W is the width, T is the height, and L’  is the length of the cuboid element after trun-

catedby SampleEdge  0.

Therefore, the moment of inertia of a beam in the direction of length and the moment of

inertia of a beam in the direction of width could be respectively calculated as
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(3-24)11I’, = -
w + l

12s2 = -
Z+l

(3-25)

where w and 1 are the width and length of the PRJ, respectively.

Since the elastic modulus and the moment of inertia are constant, the radius of curvature

of a beam is purely a function of the moment applied. Based on the assumptions, the load

on an element is always uniformly distributed. Therefore, any of the beams in an element

can be modeled as shown in Figure 3-20.

Z P

t
X

I -

Figure 3-20. Modeled loading and supporting on a beam.

The beam is simply supported. The number and location of the supports, which determine

the value of the moment along the beam, depend upon how the element to which the beam

belongs interacts with other elements underneath its body. Since at this point in the simu-

lation process, the element has not settled down, the number and location of supports are

unknown. To solve this problem, the maximum possible moment can be used instead,

which corresponds to the minimum radius of curvature. The maximum moment occurs

when the beam is simply supported at its two ends (Figure 3-21), which is calculated as:
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M PL’=-nzax 8
(3-26)

where L is the length of the beam (If the beam is parallel to the major axis of the element,

L = I,  and if the beam is perpendicular to the major axis, L = w  . ), and p is the load on a

node calculated based on the applied load to the composite, P and the gravity of the ele-

ment, G,

P G
' = (xsize + l)(ysize + 1) + (I +  l)(w + 1) ’

P
L

t
X llllllllllllllllllllllllllll~ .<

(3-27)

Figure 3-21. Maximum moment occurs when a beam is simply supported at the
two ends.

If a node is adjusted by Smooth ( ) , it will lose the contact with the elements underneath.

The variable touch has to be modified,

node[il[jl.touch  = 0;
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Obiect 5. 3D Body of an Element (BDE)

The data in the top level object include the information required for morphological descrip-

tion of an element in a 3D space. It includes the lower level object, SFE, a two-dimensional

dynamic array of nodes and the sizes (length and width) of the array (Figure 3-22). Each

node is a record data structure. The contents of node data are different between a cylindri-

cal element and a cuboid element.

For a cylindrical element, each node is

struct CylinderNodeType
1

int x;
int y;
int z;
int touch;
int o-s;
int i-s;

I;

in which x, y and z are the coordinates of the node, touch is the identification of the ele-

ment contacted. The o-s  and i-s represent respectively the outer and inner surface

boundary on half the cross section of a hollow cylinder. These can be calculated according

to the diameter, wall thickness and vertical deformation ratio of the element (Figure 3-23).

The definition of a cylindrical BDE is

class CylinderBDE
{ -
pubkic:

void Locate(...);
void Store(...);
. . .

private:
int id;
CylinderNodeType  (*node) [MAX-SZ];
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BDE Class

LocateFStore

Private data:
Posit ion of  Nodes

width

length

thickness

Figure 3-22. Design of 3D Body of an Element (BDE).

int w;
int 1;
i n t  h ;
SFE surface;

1;

in which h represents half of the maximum height (thickness) of the element (Figure 3-23).

id is the identification of the element; 1, w are respectively the length and width of the

element.

Figure 3-23. Parameters for describing the half cross section of a cylindrical
element.
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For a cuboid element, the node is

struct CuboidNodeType
{

int x;
int y;
int z;
touch;

1; *

The definition of the BDE is

class CuboidBDE
{

public:
void Locate(...);
void Store(...);
. . .

private:
int id;
CuboidNodeType (*node) [MAX-SZI;
int w;
int 1;
int t;
SFE surface;

I;

in which id is the identification of the element; 1, w and t are respectively the length,

width and thickness of the element.

The member function Locate ( ) in the class determines the variables on each node. The

horizontal position (x and y) and contact information (touch) of a node can be copied

directly from the correspondent node on SFE. The vertical position (z) is calculated based

on the vertical distance between the node and SFE (Figure 3-24).

The operation by function Store ( ) is to write all the information about the element into

a file that represents the entire simulated structure. The format of the file is shown in
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S F E

Prior to adjustment

Post adjustment

Figure 3-24. Describing deformed cross section of a cylindrical element.

Figure 3-25. The format is specially designed for a graphical software, Tecplot, which is

used to visualize the virtual composite structures.

Another operation performed by Store ( ) is to update SFS with the upper surface of the

element:

SFS[I][J] .height  = SFS[I][J]  .height+node[i][j].o_s;
SFS[I]  [J] .id = node[i]  [j].id;

inwhich = node[i][j].x and J= nodeLi [j].y (Figure 3-26).
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ZONE Td’FIBER 86”

I=lO, 5=98, K&%OINT
+

b
DT=(SINGLE  SINGLE SJNGLE SINGLE)
19731300 b
198 313 0 0

I9931300
20031300

r..

207223277
208 223 2 77
209 223 2 77
210223 2 77
201222276

202 222 3 0
. . .
ZONE T=“FBER 87”

I= IO,  5=96, K=4, F=POINT

DT=(SINGLE  SINGLE SINGLE SINGLE)
215218277
215217277

216217277
21721720
. . .

Element Identification
1, w, 2h

x, Y, z, touch

(id)

Figure 3-25. Sample data file for storing elements.

Section View

Figure 3-26. Deformed cross section of a cylindrical element.
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3.2.4. Simulation Tool - VComp

Similar to laboratory procedures of manufacture and evaluation of composite specimens,

the simulation process includes two major functions, to Build a virtual composite structure

and then Test the simulated structure. The correspondent components are designed and

implemented in VComp, the software for the simulation process (Figure 3-27).

Figure 3-27. The main panel of VComp.

3.2.4.1. Building Process

VComp is designed to Build two types of composite structures according to different

geometries of composite elements, specifically with cylindrical elements, which can be

used to simulate fiber based composites, such as fiberboard, MDF and paper, and cuboid

elements, which is suitable for simulation of flakeboard, OSB, etc.

The Building process consists of three major objects, Control Panel, Generator and

Depositor. The relationship among these three objects are shown in Figure 3-28.
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Figure 3-28. Program to Build composite structures.

Obiect 1. Control Panel

Control Panel allows users set up simulation conditions and input necessary parameters

(Figure 3-29 and Figure 3-30). All the input parameters shown on the two panels are either

self-explained or have been expained in the previous sections.

The operations involved are mainly Graphic User Interface (GUI) functions which will not

be listed here. The ViewKit,  a GUI library, and RapidApp, a GUI building tool, supplied

by Silicon Graphics, were employed in the programming.

Obiect 2. Generator

The Generator outputs the basic geometrical properties described in Section 3.2.3.1 for

each element, specifically, the length, diameter and cell wall thickness for a hollow cylin-

der or the length, width and thickness for a cuboid. Each of these properties is a random

variable within certain probabilistic distributions. The input information for Generator

includes the parameters of these distributions (means and standard deviations). The major
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Figure 3-29. The control panel of Building process with cylindric elements.

activity of the object is to generate random variables. Normal or lognormal deviates are

output based on Monte Carlo simulation (Section 3.1.2).
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Figure 3-30. Part of the control panel of Building process with rectangular
elements.

Obiect 3. Denositor

The Depositor determines the morphology of the element. All the parameters shown on

Control Panels, except for the Element Properties, are included in the input information to

Depositor. The output of Generator is part of the input to Depositor. The main operation of

Depositor has already been elaborated through the evolution of an element in

Section 3.2.3.2.

Generator

Continue

( Recording 1

Figure 3-31. Processing line of Building a virtual composite structure
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The processing line of Building a virtual composite structure is diagrammed in Figure 3-

31. Generator sequentially produces elements with random dimensional properties. The

elements are then transferred to Depositor. Depositor drops the elements into Sample

Space and also identifies the morphology of the elements and stores the information in a

data file. The weight of each element is measured. If Weight Control is chosen on the Con-

trol Panel, after each element is generated and deposited, the total weight of the structure

assembly is compared with the final desired weight. If the value is greater than the desired

value, Generator and Depositor will stop the operations. If Number Control is chosen, Gen-

erator and Depositor will quit when the total number of elements generated reaches the

desired number. The input information, total number of elements in the structure, maxi-

mum height of the structure will be recorded in a file. The final status of the top surface of

structure (SFS) will also be dumped into a data file.

3.2.4.2. Testing Process

In the Testing Process, the composite structure produced in the Building Process is divided

into smaller specimens. The void fraction of each specimen is calculated and the coverage,

which represents the number of elements at a horizontal point within the composite struc-

ture, is counted at one corner of each specimen. In addition, virtual slices may be produced

in the process. Two major objects are involved in this process, Control Panel and Tester.

Obiect 1. Control Panel

The Control Panel allows users to choose a simulated composite structure to test by input-

ting the identification, file name, and set up test conditions which include the location of
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the specimens in the original structure and the dimensions of the specimens. By inputting

the data file name, the properties of a simulated composite structure can be retrieved and

displayed on the Control Panel (Figure 3-32).

Figure 3-32. The control panel of testing process.
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Obiect 2. Tester

According to the testing conditions set up through Control Panel, Tester takes the follow-

ing steps to test a virtual structure.

Step 1. Load the elements and reconstruct the volumetric structure.

Step 2. Load the surface of structure.

Step 3. Divide the reconstructed structure into specimens.

Step 4. Divide the surface into specimen-size units.

Step 5. Calculate and output material volume and bonded area in each specimen.

Step 6. Output coverage and height of each unit surface.

Step 7. Produce slices (optional).

At Step 1. Tester reads the morphological data of each element from the file generated in

the Building process. The data are then used to reconstruct the volumetric structure. The

reconstruction is necessary because in the data file each element is recorded according to

its local coordinate system position. After reconstruction, all elements are merged into one

3D buffer. The 3D buffer is designed as a stack of slices (SLC). Each slice is a 2D dynamic

array. Each element of the array is a node that records the material status of the virtual

structure at this location.

struct SLCNodeType
1
unsigned short id;
unsigned short touch;

I;

struct SLCType
t
SLCNodeType  (*node) [MAX-SZ];
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A dynamic array of pointers is declared during the execution time.

SLCType *slice;

Each pointer points to one slice. By doing this, the 3D buffer has two adjustable dimen-

sions, the length and height, so that the limit of stack size and wasted memory are mini-

mized. The buffer is initialized with nested for loops,

slice=new  SLCType[zsize];
for(k=O;  kczsize; k++)
{

slice[k]  .node  = new SLCNodeType[xsize] [MAX-SZ];
for(i=O;  i<xsize;  i++)

for(j=O;  jcysize;  j++)
1

slice[kl.node[i][j].id=O;
slice[k].node[i]  [j].touch=O;

1

in which i, j and k are loop counters.

The reconstruction is implemented with the following two lines,

slice[z].node[x][yl.id=ID;
slice[z].node[x]  [y].touch=TOUCH;

in which x, y and z are the coordinates of each node within a BDE, which are read from

the first three columns of the data file, ID is the identification of the BDE, and TOUCH is

identification of the BDE contacted, which is the fourth column in the data file (Figure 3-

25).

At Step 2, the SFS data structure is used. At Step 3 and Step 4, both the stack of slices and

SFS are divided horizontally according to the input horizontal size of the specimens

(Figure 3-33).
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At Step 5, the number of nodes with the property

slice[z].node[x][y].id!=O;

and the number of nodes with the property

slice[z].node[x][y].touch!=O;

are recorded for each specimen. If these two numbers are denoted as Ns and Nb  respec-

tively, the material volume, V,,  of a specimen will be

V,y  = N,$  . p3

and the bonded area, p,  in the specimen will be

p = N, . p2

where p is the resolution of simulation (ROS).

The void fraction, GJ, can be estimated as

N - N ,a=-
N

in which N is the total number of nodes in a specimen.

(3-28)

(3-29)

(3-30)

Coverage on any point within SFS can be obtained directly from the SFS data file. How-

ever, for convenience of later model evaluation experiments, Tester divides the SFS into

rectangular units and records the value at one corner as the coverage (e.g. circled position
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in Figure 3-33) at Step 6. Therefore each unit has one coverage value. The height of a unit

surface is calculated as the arithmetic mean of heights of all the points on the surface.

specimen

Unit

S F S

virtual composite structure

Figure 3-33. Operations in Testing Process.

Step 7 is optional. If Produce Slices is chosen on the Control Panel, Tester will sequentially

dump slices into sequentially named files. On each slice, 0 represents void area and 1 (or

255 for S-bit color, or value of each element’s identification) can be used to represent ele-

ment occupied area. These files can be loaded by other software as input data for further

simulation, analysis or visualization.
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4 EXPERIMENTAL VERIFICATION

The reliability and reasonability of the simulation methodology rely on whether VComp

can produce the digital or virtual microstructures similar to those of the real wood partic-

ulate composite materials. To verify that, two experiments were conducted, which are elab-

orated in the following sections. Both experiments were based on the hypothesis that

similar elements and manufacturing conditions would result in similar structures. The sim-

ilarity was judged based upon the statistical comparison of the microstructural features of

the virtual composites generated with VComp and those of the structures made from real

materials.

4.1. Verification with Hand-made Composite Structures

To evaluate the performance of VComp, the ideal way would consist of the following

steps:

Step 1. Obtain the properties of the constituent elements, wood fibers or flakes.

Step 2. Produce the wood composite samples under precisely measured and con-

trolled conditions,

Step 3. Generate the virtual composite structures with the input parameters repre-

senting the properties of real wood fibers or flakes, and the manufacturing condi-

tions.
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Step 4. Statistically compare the simulated microstructural features with those of

the real wood composite samples.

Obviously, commercial composite products are not suitable because information about the

elements and the manufacture is usually unknown. Making wood composites in this ideal

way is impractical since the process, especially for wood fibrous composites, involves

complicated equipment, instrument and technology and also consumes labor and time

resources. Furthermore, the procedure is unnecessary, too. VComp is not restricted to

wood materials. According to its design, any long, thin, cylindrical or rectangular and flex-

ible particles can be simulated. This makes it possible to simplify the verification experi-

ment.

Therefore, the following three major steps were taken in the experiment:

Step 1. Construct and test composite structures made with real (non-digital), easy-

handling and easy-measuring material.

Step 2. Generate and test virtual composite structures under same conditions.

Step 3. Statistically analyze the testing results from hand-made structures and vir-

tual structures.

4.1.1. Hand-making Composite Structures

4.1.1.1. Materials

Double sided mounting foam tape was chosen to substitute for wood fibers or wood flakes.

The tape was made of polyurethane foam and originally came in rolls with the dimension
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144” x 1” x 0.125”. Non-drying instant (unknown) adhesive covers both of the 1” wide

surfaces. The adhesive bond between two pieces of tape was strong enough to prevent the

relative movement. The density of the tape was measured as 0.0108 Zb./inch3.  The tape was

flexible. The modulus of elasticity (MOE) was estimated as 33.5 psi through a tensile test.

The base material (excluding the adhesive surface) was assumed homogeneous. A similar

experiment was conducted by Dodson (Deng and Dodson, 1994),  in which rubber bands

were used as the elements. Extra rubber cement had to be applied, which made the process

less controllable.

For observing the possible influence of the element dimensions and testing the generality

of the simulation procedure, three types of composite elements were prepared employing

different widths as shown in Table 4-1.

Table 4-1. Dimensions of elements for hand-made composite structures

(unit: inch)

Dimension Type 1 Type II Type III

length 5 (Qa 5 (0) 5 (0)

width 1.0 (0) 0.5003 (0.0262) 0.3387 (0.0223)

thickness 0.125 (0) 0.125 (0) 0.125 (0)

a. Numbers outside and inside the parentheses are the values of the mean
and standard deviation,  respectively

The length was assumed constant since the error of the measured length of elements

(a0.012”) was small relative to the length. The width of Type I composite elements was

the original width of the tape, 1 ‘I.  Elements for Type II and Type III composites were hand-

cut from the 1”  wide tape. To account for the effect of variance, 50 randomly selected ele-
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ments from each of the two types were measured. Descriptive statistical analysis was car-

ried out on the two sets of width data first. Two-sided Kolmogorov Goodness of Fit Tests

were then conducted respectively against the hypothesized normal distribution functions

with the means and standard deviations obtained from the descriptive statistical analysis.

The test statistics were 0.080 and 0.177, while the 0.9, 0.95 and 0.99 quantiles of statistic

for sample size 50 were 0.172,O.  192 and 0.23, respectively. Hence, hypothesized distribu-

tion functions were accepted as the appropriate descriptions of the element width. The test

results are plotted in Figure 4-1.

4.1.1.2. Building

To keep the target density constant, the number of elements in each type of structure was

calculated according to the dimensions of the elements. The formats of the structures were

shown in Table 4-2.

During the forming process, elements were dispersed on a paperboard surrounded by a

Forming Box ( 16” x 16”) (Figure 4-2). Elements bonded together instantly into a final

structure due to contact forces. Extra pressure was not necessary. A total of 15 structures

were built, five for each type.

4.1.1.3. Testing

Each structure was then horizontally divided with a razor blade into 64 2” x 2” specimens

(Figure 4-3). Each specimen was then weighed. The volume of material in each specimen

was calculated based on the weight and the density of tape. The number of elements at one
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Figure 4-  1. Distributions of widths of elements.

(a) Type II, (b) Type III.
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Table 4-2. Properties of hand-made composite structures

(unit: inch).

Property Type 1

length 16

Type II

16

Type III

16

1 total No. elements 1 58 1116 1 174 I

Type I Type III

Figure 4-2. Hand-made composite structures.

comer (shaded) (see in Figure 4-3) of each specimen was counted and used to define the

values of coverage for that specimen. Comers of specimens located on the periphery of the

structure (unshaded) (see in Figure 4-3) were not evaluated due to edge effects. Thus the

coverage for each structure was measured at 49 locations. The bonded area and the height

of the specimens were not measured due to lacking of efficient measuring method. There-

fore, these two properties of simulated structures were not evaluated.
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It-::“4
a (b)

Figure 4-3. (a) Procedure for dividing the composite structure into specimens and
(b) one specimen cut from a Type II model.

4.1.2. Making and Testing Virtual Composite Structures

Based on the same conditions shown in Table 4-2 and the material properties stated in

Section 4.1.1,  five evenly-distributed and five randomly-distributed virtual composite

structures were generated for each type. The Resolution of Simulation (ROS) for these

structures was 0.02 inch. The virtual structures were then tested with VComp  under the

same condition as for testing the hand-made structures, which means that the virtual struc-

tures were also divided into 2” x 2” specimens and the values of substance volume and

coverage were calculated and recorded for each specimen, Figure 4-4 shows a three-

dimensional view of a virtual composite structure. All types of virtual composite structures

are presented in Figure 4-5.
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Magnified View

Figure 4-4. A Type II virtual composite structures.

4.1.3. Statistical Comparison

Testing results of the local material volume and local coverage from both the virtual com-

posite structures and hand-made composite structures within each type of formats were sta-

tistically compared with one another. A non-parametric statistical method, the Smirnov

test, was used since the properties of these data sets were unknown. Based on the difference

of the formats and building methods, the composite structures were categorized into nine

groups: three types of format in which each type contained structures built in three ways,

hand-making, simulation (evenly-distributed) and simulation (randomly distributed)

(Table 4-3).

4.1.3.1. Intra-group Comparison

The comparisons were first conducted, respectively, among the five samples of volume

data and five samples of coverage data of each group of composite. The two-sided five-

sample Smirnov test method was used. The statistics shown in Table 4-3 were all smaller
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Figure 4-5. Top view of virtual structures simulated by VComp.

(a) Type I - even (b) Type I - random (c) Type II - even (d) Type II - random (e) Type III -
even (f) Type III - random. The horizontal dimensions of all structures are 800 x 800,
with ROS = 0.02”.
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Table 4-3. Smimov test statistics from the tests on comparison of different types of
composite samples.a

a. The 0.90, 0.95 and 0.99 quantiles of statistic for samples with equal size 64 are 0.19, 0.216
and 0.269, respectively. The 0.90, 0.95 and 0.99 quantiles of statistic for samples with equal
size 49 are 0.224, 0.265 and 0.327, respectively.

than the correspondent 0.95 quantiles, which means that the structures within each group

were identical. The results indicated that all the sample making methods and procedures

were consistent. Figure 4-6 illustrates the consistency of the hand-making method for the

Type II composite structures. Figure 4-7 shows the consistency of the simulated Type I

composite with randomly distributed elements.

-+- sample 1

--x+ sample 2

+ sample 3

0 0.5 1 1 . 5
LOCAL VCILUME

Figure 4-6. Intra-group comparison of volume distributions of hand-made Type II
composites.
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Figure 4-7. Intra-group comparison of local coverage distributions on simulated
Type I (randomly  distributed) composites.

4.1.3.2. Inter-group Comparison

After the consistencies of both the hand-making and the simulation procedures were con-

firmed, The virtual composite structures were then compared with the hand-made compos-

ite structures. The five volume data sets in each group were consolidated into one set with

sample size 320, while the five coverage data sets were consolidated into one set with

sample size 245. Volume and coverage data sets from hand-made composite structures,

evenly-distributed and randomly-distributed virtual composites structures were compared

with one another. The null hypothesis was that the three volume populations and three cov-

erage populations had identical distribution functions, separately. Table 4-4 shows the

resultant test statistics of two-sided two-sample Smimov tests.
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Table 4-4. Smirnov test statistics from the tests on the comparisons between hand-made
models and virtual composites.a

!Iand-made  vs. Virtual Hand-made vs. Virtual Virtual (even) vs. Virtual

Type II 0.109 0.041 0.100 0.057 0.153 0.061

Type III 0.109 0.045 0.153 0.139 0.144 0.094
I 1

a. The 0.90, 0.95 and 0.99 quantiles of statistic for samples with equal size 320 are 0.096,
0.107 and 0.128, respectively. The 0.90,0.95  and 0.99 quantiles of statistic for samples with
equal size 245 are 0.11, 0.122 and 0.147, respectively.

The results showed that the simulated structures of Type I and Type II virtual composites

with randomly distributed elements and the correspondent hand-made structures could be

considered identical since the tests on both volume data and coverage data did not reject

the null hypothesis at 0.05 significance level. The properties of the evenly-distributed Type

III virtual composite were fairly close to those of the hand-made composite as the statistic

from the test on the volume data was smaller than the 0.99 quantile and the statistic from

the test on the coverage data was smaller than the 0.90 quantile. The evenly-distributed

structures were different from the randomly-distributed structures since the statistics from

the test on the volume were all larger than the 0.99 quantile. By analyzing the plots of

empirical distribution functions of these data samples, one may see that the properties of

the hand-made structures are generally between those of evenly-distributed structures and

randomly-distributed structures as being shown in Figure 4-8, Figure 4-9 and Figure 4-10.

The discrepancies are reasonable since the property distributions largely depend on how

randomly or how uniformly the element were deposited on the Sample Area and it was

impossible to obtain either the absolute uniformity or the total randomness with the hand-
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Figure 4-8. Inter-group comparison of Type I composites.

(a) volume (b) coverage.
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making procedure. This is why robots were used to form composite panels in some exper-

iments (Wang and Lam, 1997).

4.2. Comparison with Kallmes and Corte’s 2D Sheet

Kallmes and Corte (1960) made three paper sheets to verify their statistical simulation of

paper structures. The published experimental results from sheet No. 1 and sheet No.3 (The

independent fiber and sheet properties of sheet No. 2 was identical to those of sheet No. 1.)

were used in current research to compare with two simulated structures, respectively. The

sheets were portions of 2.5 g/m2  handsheets made from an unbeaten spruce sulfite pulp.

The properties of the fibers and the sheet are listed in Table 4-5.

Table 4-5. Properties of 2D sheets (Kallmes and Corte, 1960).

1 Property I Sheet No. 1 1 Sheet No. 3

M e a n Fiber Length (cm) 0.292 0.227

M e a n Fiber Width (cm) 0.003 1 0.003 1

Mean Curl Ratio

Area of Sheet (cm2)

Total No. of Fibers

Among several distributions considered in Kallmes and Corte’s experiment, the distribu-

tion of the number of crossings per sq. mm over the sheet for both sheets and distribution

of number of fiber segments per sq. mm for sheet No.3 were chosen as references. Since

VComp  is unable to handle 200 cm2  dimension with a reasonable resolution value, which

will be discussed in next chapter, smaller dimensions (2 x 2 cm2)  were used for in the sim-

ulation. Fifty specimens were produced for each sheet with the input information shown in

Table 4-6.
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Table 4-6. Input parameters for simulation of Kallmes and Corte’s sheets (1960).

Input Parameter Sheet  No.  1

ROS (mm) 0.002

Sheet  No.  3

0.002

Element Length (mm) 2.92 (0.3)a 2.27 (0.3)

Element Width (mm) 0.03 1 (0.003) 0.03 1 (0.003)

Sample Size (mm*)

Width of Edge Zone (mm) 9.5 9.5

Number of Elements 1640 2080

a. Numbers outside and inside the parentheses are the values of the
mean and standard deviation,  respectively.

Since the values of the standard deviation were not reported in Kallmes and Corte’s pub-

lishing, estimated values were used in the simulation. Two simulated specimens that

respectively represent two extreme cases, most crossings and least elements, are shown in

Figure 4-11.

(a>

Figure 4-  11. Two simulated sheets

1 Number: 123 4 1

09

(a) 30 elements , 27 crossings (b) 13 elements , 1 1 cross ings . Sample dimensions : 2.0 x 2.0

mm2, ROS: 2.0 urn.  Z: thickness, Number: coverage.
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The number of crossings in each simulated specimen was recorded. The distributions of

number of crossings per sq. mm in simulated structures and the comparisons with Kamlles

and Corte’s results are shown in Figure 4-12, which indicate that the simulated structures

had compatible means but much less variances in terms of number of crossings per sq. mm,

comparing with the 2D handsheets. It may imply that the real paper structures were much

less uniform than the simulated structures due to the flocculation. The significant variances

of the handsheets could also be due to the fiber curl. Kallmes and Corte’s results have

shown that the distribution of number of crossings skew towards larger number of cross-

ings. Two straight fibers can only cross each other once but a curled fiber may cross

another fiber once, twice or more times. The curl ratio of the fibers for making the hand-

sheets was 1.1 (average). If a curled fiber formed a segment of a circle, the height of the

arc would be

hEO.4331 1-L
d C2

(4-l)

in which C is the fiber curl ratio, and 1 is the fiber length. Hence, in Kallmes and Corte’s

experiment, when C was 1.1 and I was 2.5 mm, h would be 0.06 mm, which was about

double that of the mean fiber width. This might increase the chances of crossing.

The predicted distribution of number of fiber segments per sq. mm was also tested against

Kallmes and Corte’s data. The comparison is shown in Figure 4-13. Only the result of shee t

No. 3 was reported in the publishing. The mean number of fiber segments per sq. mm was

14.3 in sheet No. 3, while in the simulated sheets, the value was 23. It is obvious that the
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simulated structure was denser than the handsheet according to the data. Intuitively, one

may think that the more fiber segments appear in a area, the more crossings will form in

that area. This trend has been observed in the simulated structures (Figure 4-14). The con-

tradiction lies on that Kallmes and Corte’s handsheet had less fiber segments and more

crossings per unit area while VComp simulated samples had more fiber segments and less

crossing per unit area.
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Figure 4-  12. Distributions of number of fiber crossings.

(a) comparing with Kallmes & Corte’s sheet No. 1 (b) comparing with Kallmes & Corte’s
sheet No. 3. Kallmes and Corte’s curves were estimated from the published graphs in the
published article (Kallmes and Corte, 1960).
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Figure 4-  14. Linear relationship between number of fiber segments and number
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5 EVALUATION OF SIMULATION

In this chapter, the distributional properties of the virtual composite structures and poten-

tial effects of the input parameters on the properties are discussed. The purpose of this is

to further evaluate the reliability, and also the capability and limitations of the simulation

procedure. Several simulations were performed. The physical and mechanical properties,

such as the density and modulus of elasticity, of the foam tape used in the verification

experiment were used in most of the simulation processes since the correspondent simula-

tion conditions for the material had been experimentally tested. Although it is only a spe-

cial case, it may represent a large variety of materials and particle geometries. A broader

range of simulation will be possible once the relevant properties of wood fibers, flakes and

other particles have been elucidated. All virtual structures were randomly-distributed

structures since this was more realistic. English units were used where necessary in all the

simulations.

5.1. Statistical Description of Microstructural Properties

Statistical descriptions were based on the evaluation of the properties of a virtual compos-

ite structure, which included the distributions of local material volume, coverage, volume

density and the relative bonded area (RBA). The data sets about the properties were tested

against the hypothesized probability functions with the two-sided Kolmogorov goodness
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of fit test method. The input parameters for the simulation are listed in Table 5-l. The

dimensions of the elements were constant. Therefore, the input standard deviations were

all zero. Each virtual structure was horizontally divided into 36 testing specimens. The

coverage, average height (or thickness), material volume and bonded area were recorded

for each specimen, Therefore, four data samples, each with sample size of 36, were

obtained.

Table 5-l. Simulation conditions of the virtual structures for describing distributional
properties of microstructure.

Parameter Value

ROS 0.02

Element Length I 5.0

Element Width I 0.2

Element Thickness

Orientat ion Concentrat ion

Dimensions of Testing Specimen 1 5x5

5.1.1. Local Coverage

The local coverage was tested against a Poisson distribution function, with the rate deter-

mined based on a descriptive statistical analysis on the data. The cumulative frequency of

the coverage and the cumulative probability density function (cdf)  are plotted in Figure 5-

1. The statistic of the Kolmogorov goodness of tit test was 0.173. This did not exceed the

0.80, 0.90 and 0.95 quantiles for a two-sided test which were 0.174, 0.199 and 0.22 1,

respectively (Conover, 1971). It indicated that the local coverage could be described with

the Poisson distribution.

104



1 . 2

0 I
I , I I I

0 2 4 6 8 10
COVERAGE

Figure 5- 1. Distributions of local coverage of the virtual structure.

51.2.  Local Material Volume

A test similar to the one on the coverage data was perform on the local material volume

data. A normal distribution was predicted. The test result did not reject the hypothesized

distribution function since the statistic of the test was 0.094, far below the quantiles. The

cumulative frequency of local material volume and the predicted cdf are shown in

Figure 5-2.

5.1.3. Local Volume Density

Local volume density is not part of the output of VComp. It can be calculated based on the

material volume and the dimensions of each specimen:

a’=L
xyz

1 0 5

(5-l)



4 5 6 7 8 9 IO 1 1
LOCAL VOLUME

Figure 5-2. Distribution of local material volume of the virtual structure.

where d is the volume density of a specimen, V  is the material volume, x and y are the hor-

izontal dimensions of the specimen, which are included in the input parameters, and Z is

the average height of the specimen, which is part of the output of VComp.

The Kolmogorov test statistic yielded from the test on the local volume density data and a

predicted normal distribution function was 0.097. Hence the normal distribution function

could reasonably represent the volume density distribution of the virtual structure. The

comparison of the simulated property and the predicted function are shown in Figure 5-3.

51.4. Local Relative Bonded Area (RBA)

Kallmes and Eckert (1964) defined RBA as the fraction of the external fibrous surface area

bonded to other fibers. Based on the data of bonded area in each specimen, which is part
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Figure 5-3. Distributions of local volume density of the virtual structure.

of the output of VComp, for cuboid elements, RESA  can be estimated with the following

equation

pP
vs

( 17;
(5-2)

in which 5 is the relative bonded area @ISA),  l3 is the total bonded area of elements in a

specimen, V, is the material volume of the specimen, and T is the thickness (or mean thick-

ness when the dimension is not constant) of elements. The value of V/T would be the esti-

mation of the total bottom surface (or top surface) of elements in the specimen. It is worth

noting that only the bonded area at the bottom surface of each element is counted in the

simulation procedure.

107



The Kolmogorov test showed that the distribution of RBA could be described by a normal

distribution function (Figure 5-4) since the test statistic, 0.109, did not exceed the quan-

tiles.

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
RBA

Figure 5-4. Distributions of local RBA of the virtual structure.

5.2. Parametric Analysis

5.2.1. Resolution of Simulation

Resolution of simulation (ROS) plays a critical role in current simulation method. It gov-

erns the discretization of the 3D sample space and the body of each element. If one of the

dimensions of a feature to be simulated is less than the value of the resolution, it will be

shown as zero in the simulated structure so that the feature will be invisible. Smaller reso-

lution means finer virtual structures, more visible features and simulated structures that

better represent the continuous system. However, when resolution is increased, more nodes
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are needed to represent an element and consequently the virtual structure. This will lead to

more computational resource usage, which is limited by the capacity of the computer on

which the simulation is performed. If the usage exceeds the capacity, the program will

crash. The trade-off for higher resolution is the smaller dimensions of the virtual structures.

To demonstrate the influence of resolution to the simulated microstructures, as an example,

three ROS values were chosen for the simulation of the Type II tape composites described

in Chapter 4. This test was performed before the experimental verification in order to

decide an appropriate ROS. Figure 5-5 shows the effect of ROS on distributions of local

material volume and local coverage of the simulated microstructures. Comparisons

between the properties of the simulated structures and hand-made model structures are also

shown in the figure. The results indicated that the resolution had a significant impact on

the distribution of the local material volume, but little impact on the coverage. Both the

mean and variance of local volume increased with the increase of ROS. These trends are

more directly presented in Figure 5-6. The different reactions of the local material volume

and local coverage to the effect of ROS are due to the difference between continuous data

and discrete data. The data of the local material volume consists of continuous variables

while the coverage data consists of discrete variables. The function of ROS is to convert

the continuous system into discrete system. The smaller the value of ROS is, the less

rounding error will be. The local coverage represents the number of elements above a cer-

tain location in the Sample Area. The impact of ROS can be observed only when the status

of visibility of the elements at that location is changed by the conversion process.
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Figure 5-5.  Effect of resolution on the properties of virtual structures.

(a) distribution of local material volume (b) distribution of local coverage.
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Figure 5-6. Effect of ROS on the distribution of local material volume.

5.2.2. Dimension of Virtual Structures

The dimension of a virtual structure is restricted by the capacity of the computer on which

the simulation is performed. More specifically, it is restricted by the memory size and the

capacity of the hard drive. With the limitation, it is desirable to simulate virtual structures

which are small in dimensions but can represent the properties of larger structures. Several

tests were carried out to investigate the impact of simulation dimensions. First, a large vir-

tual structure (named BG) was constructed under the condition shown in Table 5-2.

The structure was then divided into 36 specimens with dimensions 5.0 x 5.0. The cover-

age, thickness, material volume and bonded area of each specimen were recorded during

the division process. Another two sets of structures (named SML- 1 and SML-2) were then

constructed under the conditions also shown in Table 5-2. Thirty six SML-1 structures
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Table 5-2. Input parameters of the simulation processes for testing of sample dimension.

ROS

Element Length

Element Width

Element Thickness

Dimensions of Structure

Width of Edge Zone

Number of Elements

BG I SML-1 I SML-2
I I

0.02 0.02 0.02
I I

5.0 5.0 5.0

0.2 I 0.2 I 0.2

0.1 0.1 0.1

30 x 30 5.0 x 5.0 10x IO

10 I 22.5 I 20

6000 I 6000 I 6000

were constructed. No division was performed on the structures. Nine SML-2 structures

were built. Each was divided into four specimens. As was the case for the BG structure,

the coverage, thickness, material volume and bonded area on these two types of structures

were recorded. In addition, RBA and volume density of each specimen were calculated.

Output properties of SML- 1 and SML-2 were compared with the correspondent properties

of BG. The two-sample two-sided Smimov test method was employed. The results showed

that all the properties but the bonded area and RBA of SML-1 structure were identical to

the properties of BG structure. The SML-1 structures had significantly more bonded area

and higher RBA. All the properties of the SML-2 structures were identical to the properties

of the BG structure. Based on the scrutiny into the simulation algorithm, it was concluded

that the discrepancies on the bonded area and RBA were due to an edge effect, a different

type from the edge effect which the Edge Zone was designed for. The effect is illustrated

in Figure 5-7. The SML-1 structure had more bonded area since each specimen was a

whole simulated structure. Therefore, all the edges of a specimen were exposed to the edge

effect. SML-2 specimens had only two affected edges. To confirm the conclusion, Another

set of 36 structures were generated under the same conditions as those for the SML- 1 struc-
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within structure I

edge edge edge edge

Figure 5-7. Lacking of support on one end of an element results in more bonded
area .

tures, except for the larger dimensions, 6.0 x 6.0, and different width of Edge Zone, 22.

Only the space with dimensions 5.0 x 5.0 in the center of each structure was then tested.

The properties of the structures were same as those of the BG structures. This result has

indicated that it is possible to overcome the limitation of the simulation environment with

only the trade-off of more operation time.

5.2.3. Width of Edge Zone

The Edge Zone is the area between the Sample Area and the Forming Box. The function of

the Forming Box is to control the amount (number and volume) of elements in the simula-

tion process. Forming Box causes the change of the orientation of the elements which con-

tact its sides. This change may consequently affect the properties of the structure adjacent

to the Forming Box. Edge Zone is designed to eliminate this effect. From Figure 5-8, it can

be seen that if the length of an element is less than the width of Edge Zone, the rotation

around the centroid of the element will not make its body appear within the Sample Area.

Therefore, the width of Edge Zone should be at least as large as the maximum length of all

the elements:
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Edge Zone

before rotation

Figure 5-8. The width of Edge Zone is determined based on the maximum length
of elements.

(5-3)

where e is the width of Edge Zone, and L,, is the maximum length of the elements. To be

more conservative, the width of Edge Zone could be even larger. However, with larger

Edge Zone, more processing time would be needed to simulate a structure with certain

dimensions because longer time would have to be spent to process the elements within the

Edge Zone, no matter whether they affect the final simulated structure or not.

If the length of the elements is normally distributed, the maximum length can be estimated

as

L max = I+ 3s, (5-4)
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where 1 is the mean length of the elements, .sL  is the standard deviation since about 99%

of the values of element length will be included in the range of L + 3s,.  If the length is

governed by a lognormal distribution, the maximum length will be modified to

where 1 and sL  are the mean and standard deviation of the lognormal distribution, respec-

tively.

5.2.4. Length of Elements

To evaluate the influence of element length on the structure of composites, five types of

virtual structures were generated with part of conditions shown in Table 5-3.

Table 5-3. Formats of virtual composite structures for testing effect of element length.

‘We  A

Type B

Length of Elements Total No. of Elements

1.0 6000

2.0 3000

TfleC  1 3.0 I 2000

Type D I 4.0 I 1500

Type E I 5.0 I 1200

The width and thickness of all the elements were 0.2 and 0.1, respectively. Sample sizes

were 30 x 30. The widths of Edge Zone were 5. Three replicate structures were generated

for each type. Each virtual structures was divided into 36 specimens with dimensions of
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5.0 x 5.0. Two-sided Smirnov tests on the local coverage, material volume, RE3A and local

volume density indicated that the properties of the composite samples were consistent

within each type when the statistics were compared with the 0.95 quantile (Conover,

197 1). Three data sets within each type of the virtual structures were then consolidated into

one set with sample size of 108 for each properties. The five data samples of the five com-

posite types were then under two-sided five-sample Smirnov test. The test results rejected

the hypothesis that all the properties were identical among the different types. This implied

that length of the elements did influence the virtual structures. Further analysis on the

output of the Smirnov tests showed that the local coverage was fairly consistent except for

one extreme case which brought the test statistic up to 0.185, while the 0.90,0.95  and 0.99

quantiles are 0.146, 0.166 and 0.206, respectively.

Significant influence of element length was found on the distribution of local material vol-

ume. Figure 5-9 shows that the variance of the local volume decreases but the mean value

remains little changed when the length of elements is reduced. The phenomenon is reason-

able since more elements have to be generated for the structures made of shorter elements,

as shown in Table 5-3, in order to keep the total material volume of structures identical.

This causes the structure to be more uniform. A nonlinear relationship between element

length and the standard deviation of the local material volume distribution was derived,

which is plotted in Figure 5-10.

The length of element impacted the distribution of local volume density on both its mean

and variance (Figure 5-11). The mean of the local volume density linearly increased along
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Figure 5-9. Effect of element length on the distribution of local volume.
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Figure 5-  10. The variation (standard deviation, yylFtd)  of the local material volume
increases with the increase of the element length (L).
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with the increasing of element length (Figure 5-12). A nonlinear relationship existed

between the standard deviation of the volume density distribution and the element length

(Figure 5-13).

-+-TypeA

TYPO B
-&Type C

Type  D
-x-Type  E

0.5 0.7

DENSITY

0.8

Figure 5-  11. Distributions of local volume density of the structures with different
element length.

5.2.5. Width and Thickness of Elements

The width and thickness of an element determines the moment of inertia of the cross sec-

tion area of an element. The moment of inertia consequently determines the flexure of the

element under any load applied to the composite structure. To determine how the width and

thickness of elements affect virtual structures, 16 structures with the combination of four

different width and four different thickness levels were generated. Each type of structures

was made of elements with certain width and thickness. The number of elements varied

with the width and thickness of elements so that the total material volume of the structures

118



0.72

0.71

0.63

0.67

+

/
dlllefln = 8.7 x 10p3L + 0.67

/4

4

I I I I I I I

0 1 2 3 4 5 6

LENGTH

Figure 5-12. Effect of element length on the mean of local density distribution.
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Figure 5-13. Effect of element length on the standard deviation of the local volume
density distribution.
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was constant for all structures. The length of all elements was 5.0. The other conditions

were same as those for testing the effect of element length in Section 5.2.4. Table 5-4 lists

the formats of the virtual structures.

Table 5-4. Formats of composite samples for testing effect of element width and
thickness.

IAthic e s width 1 0.2 0.4 0.6 0.8
I _

---a 750 500 375

b 600 400 300

500 333 250
I

I 857 429 286 214
I

a. The numbers are the total number of elements simulated.

Local coverage, material volume, density and RBA of each sample were compared to one

another through two-sided Smirnov tests. Statistically, the distributions of local coverage

were identical at the 0.05 significance level. Only two structures were found with signifi-

cantly different distributions of the local material volume, which made the statistics (0.361,

0.333 and 0.306) exceed the quantile, 0.305, at the 0.05 significance level (Conover, 1971).

It seemed that the width and thickness of elements did not have significant impact on the

distributions of local coverage and local material volume. However, the distribution of

RBA varied with both the width and thickness of elements. From Figure 5-14, it can be

observed that both the mean and the variance of the distribution of RBA are influenced by

the width of elements. Figure 5-15 shows the change of the distribution with the thickness

of the elements. Results of regression analysis showed that mean value of RBA related to

the width and thickness of elements in the following way:
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5 = -0.035-o.o19w+ In w7 + 0.0062T (5-6)

where 5 is the mean of RBA, Wand Tare the width and thickness of the elements respec-

tively (0.986 I y2 I 0.999 and 137 I F  I 22023 ). The combined influence is shown in

Figure 5-16. It indicates that structures with thicker elements have lower RBA. This can

be explained as that larger thickness causes higher moment of inertia and consequently

lower flexibility of elements. Stiffer elements may result in less bonded area as shown in

Figure 5-17. Increase of the element width will also make the element stiffer, but the effect

may be much less significant than that of the thickness according to Equation 3-22.

Besides, wider elements will have more available area for bonding. Apparently, the

increase of the bonded area overcame the loss due to the decrease of flexibility in the vir-

tual structures. Therefore, the RBA increased a little while the width of elements increased.

- w =  0 . 2
-t-w= 0.4

A w =  Q.6
W= 0.8

0.1 0.2 0.3

REA

Figure 5-14. Effect of element width on the distribution of RBA.

(Thickness of elements: T=O.  1).
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0 0.05 0 . 1 II.15 0.2 0.25

RBA

Figure 5-l5. Effect of element thickness on the distribution of RBA.

(Width of elements: W=  0.4)

1

0.8

0.6
RBA

a . 4

THICKNESS “I4 0.18 T

3TH

Figure 5- 16. Relationship between mean of RE3A  distribution and the width and
thickness of elements.
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more bonds

Figure 5-17. Stiffer elements result in less bonded area.

Significant positive linear relationships between the standard deviation of the RBA and the

width of elements were found at all element thickness levels (0.914 I r* I 0.997 and

21 I F  I 667 ).  Comparatively, the element thickness had less impact on the variance of

the RBA (0.550 I r* I 0.934 and 2.44 I F  I 28.5 ). These effects are illustrated in

Figure 5-18 and Figure 5-19. The distributions considered were the horizontal descriptions

of the properties. The variance of any distribution discussed was on the horizontal direc-

tion. Less elements resulted in higher variation. Although an increase of thickness and

width of elements could both cause less elements in a structure, since width of elements

was in the horizontal direction, it had stronger impact on the horizontal properties.

5.2.6. Elasticity of Elements

In the literature, fiber flexibility refers to the combination of the Young’s Modulus of wood

fibers and the moment of inertia of the cross sections (Tam Doo and Kerekes, 1982). In

current research, these two properties were considered separately for more detailed evalu-

ation. The factor of moment of inertia has been discussed in the previous section with the

width and thickness of elements. The relationship between RBA and the elasticity (MOE)
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Figure 5-l8. Effect of element width on the standard deviation of RBA
distribution.
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Figure 5-19. Effect of element thickness on the standard deviation of RBA
distribution.
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of the elements was investigated by the simulation of virtual structures composed of ele-

ment with different MOE levels. Eight levels of MOE were chosen based on the knowledge

of MOE of the foam tape. All input parameters but the material property, MOE, were the

same as those used for the Type II foam tape structure in the experimental verification.

Extra pressure, 1 .O pound, was applied to enhance the significance of RBA. The density

change of the foam tape due to the pressure was not considered. The relationship between

RBA in the structures and the correspondent MOE level is shown in Figure 5-20. As

shown, RBA decreased when MOE of the elements increased. Linear regression analysis

on RBA versus the natural logarithm of MOE yielded an ? = 0.98 and F  = 276. This phe-

nomenon may also be explained with Figure 5-17.

0 IO 20 30 40 50
MOE (psi)

Figure 5-20. Effect of MOE of element on mean value of RBA.
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5.2.7. Orientation

The effect of element orientation preference was tested with virtual composite structures.

The parameters for the simulation are listed in Table 5-5.

Table 5-5. Input parameters of simulation for testing effect of orientation.

Input Parameter Value

Element Length (inch) 5.0

Element Width (inch) 0.5

1 Element Thickness (inch) I 0.125

Target Density of Sample (lb./inch3)

Sample Size (inch3)

3.6 x 1O-3

30 x 30 x 0.25

1 Width of Edge Zone (inch) I 5.0

I ROS (inch) I 0.02

Five orientation concentration levels defined by the concentration parameter, k, of a von

Mises distribution, 0,0.4,  1 .O,  2.0, and 3.0, were tested. The change of the virtual structures

and the orientation distribution according to the concentration parameter is illustrated by

Figure 5-21 and Figure 5-22.

Figure 5-21. Change of the simulated structures with the change of the element
concentration parameter, k.

(a) k = 0, (b) k = 1.0, (c) k =  3.0.
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--a-- k=l .o
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- 2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ANGLE

Figure 5-22. Distributions of element orientation at different concentration levels.

At each concentration level, four replicate structures were made. Each virtual structure was

divided into specimens with horizontal dimensions of 5.0 x 5.0. The average thickness of

each specimen, the material volume and the bonding area in the specimen were recorded.

Descriptive statistical analysis was conducted on the data. Figure 5-23 shows the mean and

standard deviation of the local material volume versus the orientation concentration level.

It can be seen from the figure, that the mean and the standard deviation of the local material

volume distribution does not change significantly with the concentration parameter.

Results of a regression analysis had shown ? values of 0.0028 and 8.48 x 1O-5  for the

mean and standard deviation, respectively. This further indicated that orientation concen-

tration did not influence the volume distribution significantly.
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std.
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Figure 5-23. Effect of orientation concentration on distribution of volume.

The local volume density distribution was also checked against the orientation concentra-

tion. The results of a regression analysis showed that the volume density was a exponential

function of the orientation concentration level. The relationship between the mean volume

density and the concentration level was:

d = 0.066

2k
+ 0.852, (v”  = 0.96). (5-7)

where d is the volume density and k is the concentration parameter of von Mises distribu-

tion. Figure 5-24 shows the relationship. Similar trend was predicted by Amiri, et al.

(1994) with a combination of an interactive multi-planar model and a fiber orientation

function.
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Figure 5-24. The relationship between the mean of local volume density
distribution and the orientation concentration parameter.

The variance of volume density was not influenced by the orientation concentration

(Y*  = 6.44 x 1 o-6  and F  = 1.16 x 1 Od  ).  This result was contradictory to Dodson and

Fekih’s prediction (Dodson and Fekih, 199 1) which said that the variance of mass density

of paper linearly increased with the increase of the eccentricity of the fiber axis orientation

distribution.

While material volume distribution remained unchanged, the bonded area in the structure

did change along with the concentration level (Figure 5-25). The mean of the distribution

of RESA  was a positive linear function of the concentration parameter. Results of regression

analysis showed that the ? value was 0.83 with F  = 141.09. The standard deviation of the

distribution of RBA was not strongly related to the concentration level since the 9 value
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was only 0.567 with F  = 39.24. The trends were different from what Lu and Carlsson pre-

dicted, which stated that the volume fraction of bonds at a given apparent sheet density was

affected very little by fiber orientation (Lu and Carlsson, 1996).

+ mean

q std.

t

q

+ - -+ - - -
m i

0 ! I I I I I I

0 0.5 1 1 . 5 2 2 . 5 3
K

Figure 5-25. Effect of orientation concentration on distribution of bonded area.

The influence of element orientation is a complicated phenomenon which can not be

explained with simple analytical models. Contradictory model predictions will require

experimental verification to validate or modify prediction schemes.

130



6 CONCLUSIONS AND
RECOMMENDATIONS

6.1. Conclusions

A computer simulation software has been developed. This software, based on stochastic

principles and simulation of the properties of individual composite elements and the inter-

actions among elements, can be used to produce and test virtual composite structures. The

simulation process was implemented by imitating the scenario of laboratory procedures for

making wood composites. Users are allowed to specify element properties and some basic

manufacturing conditions. Information contained in the virtual structures includes the mor-

phological description of each individual element in the virtual structure and the surface

contour of the virtual structure. Distributional properties of local material volume, cover-

age and bonded area can be obtained through the testing process of the software.

Since it is based on very fundamental rules, this simulation methodology guarantees much

more realistic descriptions of the microstructures as compared with other models identified

in the literature. The reliability of the model was verified by comparing the properties of

virtual composite structures with hand-made composite structures. The comparison of the

distribution of material volume and coverage indicate that the virtual structures can reason-

ably represent their real world counterparts. Although the verification was not performed
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with real wood materials, the capability and reliability of the simulation procedure could

be extended to wider range of materials and element geometries.

Some microstructural features were statistically characterized based on the output of the

simulation process. The effects of several input parameters were also analyzed. Some find-

ings are listed below. Although these phenomenon were observed in the simulation of the

special composite, they certainly supplied qualitative descriptions about the mechanism of

the change on the microstructures and possible effects from the element geometry and

manufacturing conditions.

The distributions of local coverage are Poisson distributions. The local material volume,

volume density and relative bonded area (RBA) are all normally distributed.

The resolution of the simulation turned out to be the most important factor affecting the

simulated structures. It has a strong impact on the continuous data describing element

geometry. The choice of resolution level is restricted by the capacity of the computer on

which the simulation is performed. The smaller dimensions of the virtual structures are a

trade-off for higher resolution. At certain resolution levels, larger virtual structures may be

simulated by substituting a number of smaller structures.

The length of elements influences the variance but not the mean of the local material vol-

ume. It also affects the mean and variance of the volume density distribution. The distribu-

tions of coverage and bonded area are not changed by the length of elements. Structures
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constructed with longer elements show larger variation on local material volume and

volume density. The average volume density increases linearly with the length of elements.

The width and thickness of elements significantly changes the amount of bonded area and

its variation. Both the mean and variance of the local bonded area increase with the element

width. The mean RBA decreases while the variance increases as the element thickness is

increased.

Relative bonded area (RBA) is a function of the elasticity of element. Increasing the MOE

will cause less bonded area in the composites.

Orientation of elements does not change the distributional manner of local material vol-

ume. However, structures with more oriented elements may have more bonded area and

larger variation on RBA. The mean of volume density also increases with more concen-

trated element orientation, but the variance of volume density remains constant.

The superiority of the current simulation procedure can be clearly seen from the output

information. The output of the virtual composite structures includes direct descriptions of

some important features, such as the void structure and bonded area. Other existing models

can only describe the distributions of number of crossings or free fiber lengths, which are

only meaningful in pure two-dimensional structures and are only rough estimators for the

voids and bonded area even in the two-dimensional structures. The superiority also lies in

the intuitive reasonability of all the predictions on the effects of element properties and

manufacturing conditions, which can not be always seen from other models. The three-
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dimensional visualization of the virtual composite structures also gives researchers a basis

for judging the reasonability of the simulation processes.

6.2. Recommendations

There are a few limitations on the current simulation program.

The simulation program may supply suggestions for experiments on wood particulate

composites. However, since the bottom-up simulation relies upon the knowledge of the

elements and their interactions with each other, and the properties of wood materials vary

significantly, the advantage of using the software may be decreased by the difficulty of

implementing the verifying experimental work.

The current program is not able to simulate the large variations due to flocculation, fines,

or fiber bundles in the real paper or other composites. This feature may be added by intro-

ducing a multiple-step stochastic simulation of the element geometries and locations.

It is almost impossible to control the thickness of virtual structures since pressure transfer-

ring through element-to-element contacts has not been implemented. The implementation

of this would require the inclusion of horizontal deformation and densification of elements.

In addition, the bending-beam assumption in the simulation may have to be modified.

In paper or wood fiber composite, fibers may have various level of initial curl. It is possible

to introduce certain curve functions into the fiber generation procedures.
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APPENDIX: SOURCE CODE
(partial)

A-l cyl2rt.h - Definition of Cylinder Generator

#ifndef CYL-GRT-H
#define CYL-GRT-H

#ifndef M-PI
#define M-PI 3.14159265358979323846
#endif

class CylinderType
{

public:
CylinderTypeO;
-CylinderType();
float Generate(float, float, float, float, float, float, float);
float length: //length of cylinder
float width; //width of flattern  cylinder cross section
float thick; //height of flattern  cylinder cross section
float w-w-ratio; //wallthick  to width ratio

I;
#endif

A-2 cyl2rt.C - Implementation of Cylinder Generator

#include I1 ../MyLib/ran-num.hl'
#include llcyl-grt.htv
CylinderType::CylinderType()
{

length=O;
width=O;
thick=O;

1

CylinderType: :-CylinderType
I
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float CyiinderType: :Generate(float  lmean, float  Iv,
float dmean, float dv,
float wmean, float wv,
float aspect)

{
float vlm;
float diameter:
float wallthick;
float crossarea;
length=O;
diameter=O;
wallthick=O;
// generate cylinder length with lognormal distribution function
while(length<=O)

length=LogNormal(lmean,  Iv);
// generate cylinder width with normal distribution function
while(diameter<=O)

diameter=Normal(dmean, dv);
wallthick=0.5*diameter*Normal(wmean,  WV);
width=M~PI*(diameter-2.O*wallthick)/(aspect*M~PI+2.O-

2.0*aspect)+2.0*wallthick;
crossarea=M-PI*wallthick*(diameter-wallthick);  // cross section area

vlm=crossarea*length;
w_w_ratio=wallthick/width;
return vlm;

A-3 cbd2rt.h - Denfinition of Cuboid Generator

#ifndef CBD-GRT-H
#define CBD-GRT-H

class CuboidType
I

(float, float, f

L

public:
CuboidTypeO  ;
-CuboidType();
float Generate
float length;
float width;
float thick;

I;
#endif

loat, float, f loat, f loat);

A-4 cbd2rt.C - Implementation of Cuboid Generator

#include II ../MyLib/ran-num.h"
#include "cbd-grt.h"
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CuboidType: :CuboidType()
I

length=O;
width=O;
thick=O;

I

CuboidType: :-CuboidTypeO
I
1

float CuboidType: :Generate(float lmean, float Iv, float wmean, float WV,
float tmean, float tv)

{
length=O;
width=O;
thick=O;
// generate cuboid length with lognormal distribution function
while(length<=O)

length=Normal(lmean,  Iv);
// generate cuboid width with normal distribution function
while(width<=O)

width=Normal(wmean,  wv) ;
while(thick<=O)

thick=Normal(tmean, tv):
return(length*width*thick);

1

A-5 xs-op.h - Definition of Horizontal Projection of Element’s Axis (PXS)

#ifndef XS-OPH
#define XS-OP-H
class ElmntXs
{

public:
ElmntXs();
void Locate(float, f lOat);
void Release(intL21  [21);

private:
int line [21 [21;

I;
#endif

A-6 xs-op.C - Implementation of Horizontal Projection of Element’s Axis (PXS)

#include llxs-op.hV1
#include II ../MyLib/ran-num.h"
#include <Xll/Intrinsic.h>
#include <math.h>
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#include <iostream.h>

Boolean FormingBox(int  x0, int y0, float  L, int line[21 [21,
int xl, int xr, int yb, int yf)

I
float x, y;
float 12=L*L;
if(line[O]  [l]<=line  El1  [ll  1

l
if(line[Ol  [Ol<xl)

{
line[l] [Ol=line[ll [Ol- (xl-lineLO [Ol) ;
line[O] [O] =x1;
y=sqrt(l2-line[l]  [Ol*line[ll [Ol) ;
line[O] [l]=(int) (yO-O.S*y+O.5);
line[l] [l]=(int) (yO+O.5*y+O.5);

I
else if (line[ll [Ol>xr)

C
line[O] [Ol=line[Ol [Ol+(line[ll  [Ol-xr);
line[l] [O] =xr;
y=sqrt(l2-  (xr-line[O] [Ol)*(xr-lineLO  [Ol) I ;
line[Ol [ll=(int)
line [ll [ll=  (int)

3
else if(line[Ol  [ll<yb )

I
line[l] [ll=line[ 1
lineLO [ll=yb;

yo-0.5*y+o.5):
yO+O.5*y+O.5);

1 [ll- (yb-1 inerO [II) ;

x=sqrt(l2-line[l]  [ll*line[l
line[O] [O]=(int) (X0-0.5*X+0
line[l] [O]=(int) (x0+0.5*x+0

1 [ll);
-5):
.5);

1
else if(line[ll  [ll>yf)

{
line[O] [l]=line[Ol [ll+(line[ll  Ill-Yf);
line [ll [ll=yf;
x=sqrt(12-(yf-liner01  [ll)*(yf-line[Ol  [ll));
line[O] [O]=(int) (x0-0.5*x+0.5);
line[l] [O]=(int) (x0+0.5*X+0.5);

I
else;

else

if(line[Ol  [Ol<xl)
i

line[l] [O]=line[l] [O] - (xl-line[Ol  [Ol);
liner01 [01=x1;
y=sqrt(l2-line[l]  [Ol*line[ll [Ol) ;
line[O] [l]=(int) (yO+O.5*y+O.5);
line[l] [l]=(int) (YO-0.5*y+O.5):
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e lse  i f  ( l ine  [ll  [Ol>xr)
{

line  [0] [0] =line  [Ol [Ol+ (line [II  [Ol -xr) ;
line [ll  LO1  =xr;
y=sqrt (12- (xr-line[Ol  [Ol)  * (xr-line[Ol  [Ol))  ;
line [0] [l]  = lint)  (yO+O.  5*y+O.  5) :
line[l] [l]=(int) (YO-0.5*y+O.5):

else if (line [II  [II  <yb)
I

line[O]  [I]  =line[Ol  [ll  - (yb-line111  [II  ) ;
line [ll [ll  =yb;
x=sqrt(l2-lineLO  [ll*line  LOI  [ll)  ;
line[O] [O]=(int) (X0-0.5*x+0.5);
line[l] [O]=(int) (X0+0.5*x+0.5);

I
else if (lineLO  [ll>Yf)

l
line[l] [l]=line[ll [ll+(line  LOI  [II-Yf);
line [Ol [ll=yf;
x=sqrt(l2-(yf-line[l]  [ll)*(yf-lineElI  [ll)):
line[O] [O]=(int) (x0-0.5*x+0.5);
line[l] [O]=(int) (X0+0.5*x+0.5);

I
else:

t
if(line[O]  [O]>=xl&&line[O]  [O]<=xr&&line[ll  [Ol~=xl&&line[ll  [Ol<=xr&&

line[O] [l]>=yb&&line[O]  [l]<=yf&&line[ll  [ll>=yb&&line[ll  [ll<=yf)
return TRUE;

else
return FALSE;

I

Boolean SampleEdge(int liner21 [2], int xl, int xr, int yb, int yf)
{

int A=line[l]  [O] -line[O] [O];
int B=line[l]  [l] -line[O] [l] ;
int C=line[l]  [l] *liner01 [O] -line[O] [l] *line[l] [O] ;
if(!  (line[O] [O]<xl&&line[l]  [O]<xl)&&! (line[O] [O]>xr&&line[l]  [O]>xr))

i
if(line[Ol  [O]<xl&&(line[l]  [O]<xr&&line[l]  [O]>xl))

i
line[O] [l]=(B*xl-C)/A;
line[O] [01=x1;

1
else if((line  [Ol [Ol >xl&&line  LO1  [Ol<xr)  &&line [ll  [Ol>xr)

1
liner11 [l]=(B*xr-C)/A;
line[l] [O]=xr;

I
else if(line[O]  [O]<xl&&line[l]  [O]>xr)

I
line[O] [l]=(B*xl-C)/A;
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line [ll [ll = (B*xr-C) /A:
line101 [01=X1;
line[ll 101 =xr;

else

if {! (line [0] [l] <yb&&line  111  [ll<yb) &&
! (line [01 [ll >yf&&line  [ll [ll>yf)  1

I
if ( (line [0] [l] >yb&&line  [Ol [ll <yf)  &&line  [II [II <yb)

I
line[l] [O]=(A*yb+C)/B;
line[l] [ll =yb;
return TRUE;

else if ( (line [l] [l] >yb&&line  [ll [ll <yf)  &&line LO1 [ll <yb)
{

line[O]
line[O]
return

1

[O]=(A*yb+C)  /B;
[ll=yb;
TRUE;

else if (line [I] [I] >yf&&  (line [Ol [ll<yf&&line  LO] [ll’yb)  )
I

line[ll [Ol=(A*yf+C)/B;
line[l] [ll =yf;
return TRUE:

I
else if (line LO1 [ll >yf&&  (line [ll [l l<yf&& line [l 1 [ll’yb))

line[Ol [O]=(A*yf+C)/B;
line[O] [ll=yf;
return TRUE;

else if (line 101 [ll >yf&&line  [ll [II <yb)
{

line[Ol [Ol=(A*yf+C)/B:
lineill [Ol=(A*yb+C)/B;
line[O] [ll =yf;
line[l] [ll=yb;
return TRUE;

1
else if (line [ll [ll >yf&&line  LO1 [II <yb)

I
line[Ol [Ol=(A*yb+C)/B;
line [ll LO1 = (A*yf+C) /B;
line[O] [ll=yb;
line[l] [ll =yf;
return TRUE:

I
else

return TRUE;

return FALSE;

147



ElmntXs: :ElmntXs()
I

lineLO [Ol=O;
line[Ol [ll =O;
liner11 [Ol=O;
line[ll [ll=O;

1

loat w, float 1)void ElmntXs::Locate(f
{

extern int xsize, ysize;
extern float edge;
extern float lmean;
extern float rsl;
extern float concentrate:
extern int idnum, n;
extern int num, v-num;
extern char dist-type;
int x-n, y-n;
float xd, yd;
float x2-ratio;
int x0, y0;
float angle;
int box-l, box-r, box-b, box-f;
int sample-l, sample-r, sample-b, sample-f;
float tl, t2;
box-l=(int)  (-edge/rsl+0.5*w+0.5);
box-r=(int)  (xsize+edge/rsl-0.5*w+O.5);
box-b=(int)  (-edge/rsl+0.5*w+0.5);
box-f=(int)  (ysize+edge/rsl-0.5*w+O.5);
sample-l=(int)  (-0.5*w-0.5);
sample-r=(int) (xsize+0.5*w+0.5);
sample-b=(int) (-0.5*w-0.5);
sample-f=(int)(ysize+0.5*w+0.5);
// generate cuboid orientation with von Mises distribution function
angle=von-Mises(O.0,  concentrate, Bessel(concentrate));
do

{
if(dist_type=='2')

{
x_y_ratio=(float)  (xsize-0.5*lmean/rsl)

/(float) (ysize-0.5*lmean/rsl);
if(num==O)

x-n=(int)sqrt(v-num*x_y_ratio)  ;
else

x-n=(int)sqrt(num*xJ-ratio);
y-n=(int)  (x-n/x_y_ratio);
xd=(float)  (xsize-0.5*lmean/rsl)/(float)  (x-n-1);
yd=(float)  (ysize-0.5*lmean/rsl)/(float)  (Y-n-l);
xO=(int)  ((0.25*lmean/rsl)+(idnum%x_n)*xd);
yO=(int)((0.25*lmean/rsl)+(int)  (idnum/x-n)*yd);
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I
e l se

{
xO=(int)  (Uniform((float)  (-edge/rsl+0.5*w+0.5),

(float) (xsize+2*edge/rsl+w+O.5))+0.5);
yO=(int)  (Uniform((float)  (-edge/rsl+0.5*w+0.5),

(float) (ysize+2*edge/rsl+w+O.5))+0.5):
I

tl=cos(angle);
t2=sin(angle);
line[O] [O]=xO- (int) (0.5*1*t1+0.5);
line[l] [O]=xO+(int)  (0.5*1*t1+0.5);
line[O] [l]=yO- (int) (0.5*1*t2+0.5);
line[l] [l]=yO+(int)  (0.5*1*t2+0.5);
while(!FormingBox(xO,  y0, 1, line, box-l, box-r, box-b, box-f))

{
xO=(int)(Uniform((float)  (-edge/rsl+0.5*w+0.5),

(float)(xsize+2*edge/rsl+w+O.5))+0.5);
yO=(int) (Uniform((float)  (-edge/rsl+0.5*w+0.5),

(float) (ysize+2*edge/rsl+w+O.5))+0.5):
tl=cos(angle);
t2=sin(angle);
line[O] [01=x0- (int) (0.5*1*t1+0.5);
line[l] [Ol=xO+(int)  (0.5*l*t1+0.5);
line[O] [l]=yO- (int) (0.5*1*t2+0.5);
line[l] [l]=yO+(int)  (0.5*1*t2+0.5);

1
n++;

]while(!SampleEdge(line,  sample-l, sample-r, sample-b, sample-f));
idnum++;
return:

void ElmntXs::Re lease(in

axis[O] [O]=line
axis [O] [l] =line
axis[l] [O]=line
axis [l] [l]=line
return;

1

[Ol [Ol :
LO1  [II ;
El1  LOI :
[ll [ll  ;

I)t axis[2] [2

A-7 prj-op.h  - Definition of Horizontal Projection of Element (PRJ)

#ifndef PRJ-OP-H
#define PRJ-OP-H
#include M1global-var.hll
#include lUxs-op.hll

struct  PrjNdType
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int x;
int y;

I;

class ElmntPrj
I

public:
ElmntPrj  ();
void Locate(float, float);
void Size(int&,  int&);
void SetOffNd(int  &x, int &y, int j, int k) ;
void CleanupO;

private:
PrjNdType  (*prj)  [MAX-SZI  ;
int w;
int 1;
ElmntXs  xs;

1;
#endif

A-S prj-op.C  - Implementation of Horizontal Projection of Element (PRJ)

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include qVprj-op.hlU
#include 'I ../MyLib/transform.h"

void EndAdjust(int ptl[], int pt2[], int pt[]  , int &n, float g)
{

float fpt[2];
int testyl, testy2;
PlaneLineType  linel, line2;
linel.gradient=-1.0/g;
linel.yintercept=ptl[l]-linel.gradient*ptl[Ol  ;
line2.gradient=linel.gradient;
line2.yintercept=pt2[l]-line2.gradient*pt2[01  ;
fpt LO1  =pt [Ol:
fpt El1 =pt 111:
if (g>O)

I
testyl=(int)(linel.gradient*pt[O]+linel.yintercept+O.5);
testy2=(int)(line2.gradient*pt[O]+line2.yintercept+0.5);
if (testyl>pt[l]  )

I
PTranslate(pt2 LOI -ptl [Ol, pt2 [ll  -ptl [ll, fpt);
n++;

I
if(testy2<pt[l]

i
PTranslate

)

(Pt 1 [Ol -pt2  [Ol,  ptl [II -pt2 [
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n--;

J

if(g<O)
{

testyl=(int) (linel.gradient*pt [Ol +linel.yintercePt+O.5)  :
testy2=(int)(line2.gradient*pt[Ol  +line2 .yintercePt+O.5)  ;
if(testyl<pt  ElII

1
PTranslate(pt2 [O] -ptl [Ol, Pt2 El1 -Ptl [IIt fPt) ;
n++;

I
if(testy2>pt  [ll)

{
PTranslate(ptl[O
n--;

1 -pt2[0 1 ,  ptl[lI-pt2 [ll, fpt);

I
I

pt[Ol=(int)  (fpt[01+0.5);
pt[ll=(int)  (fpt[ll+0.5);
return;

ElmntPrj ::ElmntPrj  ()
:xs 0

I
w=l;
l=l;
prj=new PrjNdType[w]  [MAX-SZ] ;

1

void ElmntPrj ::Locate(float wd, float lng)

PrjNdType (*tmp) [MAX-SZ];
int j, k;
int axis[2] [2] ; // axis
float gradient: // gradient of projection on X-Y plane
int *edline; // end line of a projection
int (*ctline) [2]; // axis line of a projection
int (*scline) [2]; // line for scanning a projection
xs.Locate(wd, lng);
xs.Release(axis);
if(axis[l]  [O] !=axis[O] [O])

gradient=(float)  (axis[l] [l] -axis[O] [l] ) / (float) (axis [ll LO1
-axis[O] [O] ) ;

if(abs(axis[l]  [0] -axis [O] [O] )>=abs(axis  [l] [l] -axis LO1 [ll))
I

l=abs (axis [ll LOI -axis LOI [Ol 1 ;
w=(int)(l.O/cos(atan(gradient))*wd+O.5):
edline=new  int[w] ; // initialize end line
ctline=new int [ll [21; // initialize central line
scline=new int [wl [21; // initialize scanning line
tmp=new PrjNdType [WI  [MAX-SZI  ;
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for(j=O;  j<w; j++)
edline[j]=O;

for(k=O;  k<l; k++)
f

ctline[k]  [O]=axis LO1  101 +k;
if(gradient>=O)

ctline[kl  [ll=axis LO1 [ll  +(int)
else

(k*gradient+O.5);

ctline[k]  [ll=axis [Ol [ll +(int)
for(j=O;  j<w; j++)

I

(k*gradient-0.5);

scline[j]  [O]=ctline  [kl  [Ol;

gradient);

scline[j]  [l]=(int) (ctline[kl [II-w/2+j+O.5);
if(gradient!=O)

EndAdjust(axis[O],  axis[l],  SCline[j],  edline[jl,

tmp[j] [k].x=scline[jl  [Ol;
tmp[j] [kl .y=scline[jl  [ll;

1
I

else if(axis[l]  [O]==axis  LO1 [Ol)
I

l=abs(axis[l]  [ll -axis[Ol [ll) ;
w=(int)  (wd+0.5);
edline=new int[w] ; // initialize end line
ctline=new int[l] [2] ; // initialize central line
scline=new  int[w] [2]; // initialize scanning line
tmp=new PrjNdTypeLwl  [MAX-SZ]  ;
for(j=O;  j<w; j++)

edline[j]=O;
for(k=O;  k<l; k++)

I
if(axis  [O] [l]<axis [l] [l])

i
ctline[k]  [O]=axis [O] [O] ;
ctline[k]  [l]=axis[O] [l]+k;

I
else

I
ctline[k]  [O]=axis[O] [O] ;
ctline[k]  [l]=axis[O] [l] -k;

1
for(j=O;  j<w; j++)

L

scline[jl  [Ol=(int) (ctline[k] [O]-w/2+j+O.5);
scline[j]  [l]=ctline[k]  [l] ;
tmp[j] [k] .x=scline[j]  [O];
tmp[j] [k] .y=scline[j]  [l];

I
1

else
I
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scline[j]  [l]=ctline[k]  [l] ;
EndAdjust(axis[Ol,  axis [ll ,

dient) ;
tmp[j] [k] .x=scline[j]  LO];
tmp[j] [k] .y=scline[j]  [l] ;

I
1

I
prj=new PrjNdTypeLwl  [MAX-SZ] ;
for(k=O;  k<l; k++)

for(j=O;  j<w; j++)
{

int i;
i=k+edline[j];
if(i>=l)

i=i-1;
if(i<O)

i=i+l;
prj [jl [kl .x=tmp [jl Li1.x;
prj [j 3 &I .y=tmp [j 1 [il .Y;

delete[l  tmp;
delete[l  edline;
delete[J  scline;
delete[]  ctline;
return:

I

vo
I

id ElmntPrj::S

l=abs(axis  [l] [ll -axis LO1 [ll ) ;
w=(int) (l.O/fabs(sin(atan(gradient)))*wd+0.5);
edline=new int[wl;
ctline=new int[ll [21;
scline=new  int[wl 121;
tmp=new PrjNdTypeLwl  [MAX-SZ]  ;
for(j=O; j<w; j++)

edline[j]=O;
for(k=O;  k<l; k++)

I
if(axis [O] [l]<axis [ll [ll)

I
ctline[k]  [Ol=axis[Ol [Ol+(int) (k/gradient+0.5);
ctline[k]  [l]=axis LO1 [ll+k;

1
else

{
ctline[k] [O]=axis[O] [Ol+(int) (-k/gradient+0.5);
ctline[k]  [l]=axis LO1 [II -k;

I
for(j=O; j<w;  j++)

1
scline[j]  [O]=(int) (ctline[kl [Ol-w/2+j+O.5):

scline[jl,  edline[jl,  gra

ize(int &srfcw,  int &srfc-1 )
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srfcw=w;
srfc-l=l;
return;

I

void ElmntPrj ::SetOffNd(int &x, int &y, int j, int k)
I

x=prj [j] [k] .x;
y=prj [jl [kl .Y;
return;

I

void ElmntPrj::Cleanup()
I

delete[l  prj;
return:

1

A-9 srfc-op.h  - Definition of Surface of Element (SFE)

#ifndef SRFC-OPH
#define SRFC-OPH
#include <Xll/Intrinsic.h>
#include UUglobal-var.h18
#include lUprj-op.hlU

// definition of a node on the surface
struct  SrfcNdType
I

int x;
int y;
int z;
int touch; //recording the ID of the element being contacted

1;

class ElmntSrfc
{

public:
ElmntSrfcO;
void Locate(float  wd, float lng, float Z);
void Smooth(float El, float Et, float vh, float p);
void Size(int&,  int&)  ;
void SetOffNd(int  &x, int &y, int &z, int &touch, int j, int k);
void CleanupO;

private:
SrfcNdType  (*srfc)  [MAX-SZI;
int w;
int 1;
ElmntPrj  prj;

I;
#endif
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A-10 srfc-op.C - Implementation of Surface of Element (SFE)

#include <iostream.h>
#include <math.h>
#include <stdlib.h>
#include <Xll/Intrinsic.h>
#include "srfc-0p.h"

float PlaneDst(int xl, int yl, int x2, int ~2)
I

float d=sqrt((xl-x2)*(xl-x2)+(yl-y2)*(yl-y2));
return d;

I
void ConvexAdjust(int &hl,  int &h2,  int &h3,  int &tl,  int &t2,  int &t3,

float dst, float R, Boolean &lift)
{

float x;
float r-sq, x-sq, d-sq;
int sl, s2;
int a, b;
int e;
if(R<dst)

R=dst;
a=(int)((R-sqrt(R*R-dst*dst))+O.5);
b=(int)  (sqrt(R*R-  (R-dst)*(R-dst))+O.5);
if(hl-h2>bl  lh2-h3>b)

{
if(hl-h2>b)

{
h2=hl-b;
t2=0;
lift=FALSE;

1
if(h2-h3>b)

h3=h2-b;
t3=0;
lift=FALSE;

else

sl=h2-hl;
s2=h3-h2;
if(sl>s2)

{
float zl, 22;
float A;
if(sl<=O&&s2<0)
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d-sq=dst*dst+(hl-h2)*  (hl-h2);
A=O.25*d-sq;
if(R*R>A)

I
r-sq=R*R-0.25*d-sq;
x-sq=((hl-h2)*(hl-h2)/d-sq)*r-sq;
x=sqrt(x-sq);
if(R>x+l.5*dst)

i.
zl=sqrt(R*R-(x+0.5*dst)*(x+O.5*dst));
z2=sqrt(R*R-(x+l.5*dst)*(x+l.5*dst));
e=(int) ((zl-z2)+0.5);
if((h2-h3)>e)

i
h3=h2-e;
t3=0;
lift=FALSE;

I
else if(sl>O&&s2<0)

L

if(h2-hl<=a&&h2-h3>a)

d-sq=dst*dst+(hl-h2)  * (hl-h2);
A=O.25*d-sq;
~~(R*R>A)

I
r-sq=R*R-0.25*d-sq;
x-sq=((hl-h2)*(hl-h2)/d_sq)*R*R;
x=sqrt(x-sq);
if(R>x+l.5*dst)

1

zl=sqrt(R*R-x-sq);
z2=sqrt(R*R-  (x+dst)*(x+dst));
e=(int) ((zl-z2)+0.5);
if((h2-h3)>e)

i
h3=h2-e;
t3=0;
lift=FALSE;

I
1

I
1

else if(h2-hl>a&&h2-h3>a)
I

h3=h2-a;
t3=0;
lift=FALSE;

1
else;
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I
return;

I

void ConcaveAdjust(int &hl,  int &h2,  int &h3,
int &tl,  int &t2,  int &t3,
float dst, float R, Boolean  &lift)

I
float x;
float r-sq, x-sq, d-sq;
int sl, s2;
int b;
int e;
if(R<dst)

R=dst;
b=(int) (sqrt(R*R-(R-dst)*(R-dst))+O.5):
if(hl-h2>bl  Jh3-h2>b)

I
if(hl-h2>b)

h2=hl-b;
t2=0;
lift=FALSE;

if(h3-h2>b)
I

h2=h3-b;
t2=0;
lift=FALSE;

I
1

else

sl=h2-hl;
s2=h3-h2;
if(sl<s2)

{
float zl, 22;
d-sq=4*dst*dst+(hl-h3)*(hl-h3);
r-sq=R*R-0.25*d-sq;
x-sq=(hl-h3)*(hl-h3)*ysq/d_sq;
x=sqrt(x-sq);
if(hl>=h3)

zl=sqrt(R*R-  (x+dst)*(x+dst));
z2=sqrt(R*R-x*x);
e=(int) (z2-z1+0.5);
if((hl-h2)>e)

h2=hl-e;
t2=0;
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lift=FALSE;

zl=sqrt(R*R-(x+dst)*(x+dst));
z2=sqrt(R*R-x*x);
e=(int)(z2-~1+0.5);
if((h3-h2)>e)

I
h2=h3-e;
t2=0;
lift=FALSE;

J

return:

ElmntSrfc::ElmntSrfc()
: prj 0

{
w=l;
l=l;
srfc=new SrfcNdType[w]  [MAX-SZ] ;

1

void ElmntSrfc::Locate(float  wd, float lng,  float Z)
L

extern GlbSrfcNdType  (*surface) [MAX-SZ];
extern int xsize, ysize;
int j, k;
int X, Y;
prj.Locate(wd, lng);
prj.Size(w, 1) ;
srfc=new SrfcNdType[wl  [MAX-SZ];
for(k=O;  k<l; k++)

for(j=O;  j<w; j++)
{

prj.SetOffNd(srfc[jl  [kl.x,  srfc[jl [kl.y,  j, k);
srfc[j] [k].z=(int) (Z+O.5);
srfc[j] [k].touch=O;
X=srfc[j]  [k] .x;
Y=srfc[j]  [kl .y;
if((X<xsize&&X>=O)&&(Y<ysize&&Y>=O))

I
if(surface[X]  [Y] .height==O)

srfc[j] [k].z=srfc[jl  [kl .z+surface[Xl  [Yl .height;
else

srfc[j] [k].z=srfc[jl  [kl .z+surface[Xl  [Yl .height-1;
srfc[j] [kl .touch=surface[Xl  [Yl .id;

1
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1
prj.Cleanup();
return;

1

void ElmntSrfc::Smooth(float  R 1, float Rt, float vh, f loat p)

int j, k;
float a;
Boolean L, 11, 12, 13, 14;

L=FALSE;
while(L==FALSE)

{
ll=TRUE;
12=TRUE;
13=TRUE;
14=TRUE;
for(k=O;  k<l; k++)

for(j=O;  j<w-2; j++)
{

a=0.5*vh*PlaneDst(srfc[j]  [k]  .x,  srfc[jl[kl.y,
srfc [ j+2] [kl  .x, srfc [ j+21  tkl  .y) ;

ConcaveAdjust(srfc[j]  [kl.z,  srfc[j+ll[kl.z,
srfc[j+2]  [k].z, srfc[j] [k]  .touch,
srfc[j+l]  [k]  .touch,  srfc[j+21  [kl  .touch,
a, Rt*vh, 11);

1
for(k=O; k<l; k++)

for(j=w-1;  j>=2; j--)
1

a=0.5*vh*PlaneDst(srfc[j]  [kl.x, srfc[jl[kl.y,
srfc[j-21  [kl  .x,  srfc[j-21  [kl  .y);

ConcaveAdjust(srfc[j]  [k] .z,  srfc[j-ll[kl.z,
srfc[j-21 [kl  .z, srfc[j] [k]  .touch,
srfc[j-l][k].touch, srfc[j-21  [kl.touch,
a, Rt*vh, 12);

1
for(k=O; k<l; k++)

for(j=O;  j<w-2; j++)
{

a=0.5*vh*PlaneDst(srfc[j]  [kl.x, srfc[jl[kl.y,
srfc[j+2]  [kl  .x,  srfc[j+21 [kl  .y);

ConvexAdjust(srfc[j]  [kl.z,  srfc[j+ll[kl.z,
srfc[j+2]  [kl.z, srfc[j] [kl  .touch,
srfc[j+l]  [k]  .touch,  srfc[j+21  [kl  .touch,
a, Rt*vh, 13);

I
for(k=O; k<l; k++)

for(j=w-1;  j>=2; j--J
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{
a=0.5*vh*PlaneDst(srfc[j][kl.x,  srfc[jl[kl.y,

srfc[j-21 [kl.x, srfc[j-2][kl.y);

ConvexAdjust(srfc[jl  [kl.z,  srfc[j-ll[kl.z,
srfc[j-21  [kl.z, srfc[j] [kl.touch,
srfc[j-l][k].touch, srfc[j-2l[kl.touch,
a, Rt*vh, 14);

1
L=11&&12&&13&&14;

I
L=FALSE;
while(L==FALSE)

{
ll=TRUE;
12=TRUE;
13=TRUE;
14=TRUE;
for(j=O;  j<w;  j++)

for(k=O;  k<l-2; k++)
{

a=0.5*vh*PlaneDst(srfc[jl  [kl.x,  srfc[jl]kl.y,
srfc[j][k+2l.x,  srfctjl[k+2l.y);

ConcaveAdjust(srfc[j][kl.z,  srfc[jlIk+ll.z,
srfc[jl [k+2l.z, srfc[j][kl.touch,
srfc[j][k+l].touch, srfc[jl [k+2l.touch,
a, Rl*vh, 11);

1
for(j=O;  j<w;  j++)

for(k=l-1;  k>=2; k--)
{

a=0.5*vh*PlaneDst(srfc[jl  [kl  .x,  srfc[jltkl  .y,
srfc[j][k-21.x,  srfctjl[k-21-y);

ConcaveAdjust(srfc[jl  [kl.z,  srfc[jl[k-11-z,
srfc[j][k-2l.z, srfc[j][kl.touch,
srfc[j][k-l].touch,  srfc[jl  [k-2l.touch,
a, Rl*vh, 12);

I
for(j=O;  j<w;  j++)

for(k=O;  k<l-2; k++)
{

a=0.5*vh*PlaneDst(srfc[j]  [kl.x,  srfc[jl[kl.y,
srfc[j][k+2l.x,  srfc[jl[k+2l.y);

ConvexAdjust(srfc[jl  [k].z,  srfc[jl [k+ll.z,
srfc[jl[k+2l.z, srfc[jl [kl.touch,
srfc[j][k+l].touch,  srfc[j][k+2].touch,
a, Rl*vh, 13);

I
for(j=O;  j<w;  j++)

for(k=l-1; k>=2; k--)
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{
a=0.5*vh*PlaneDst(srfc[j]  [kl.x,  srfc]jlIkl.y,

srfc[j][k-21.x,  srfcIjl]k-21.~);

ConvexAdjust(srfc[j]  [kl.z,  srfc]jl[k-11.2,
srfc[jl [k-2l.z, srfc[j] [k].touch,
srfc[j][k-l]  .touch,  srfc[jl [k-2l.touch,
a, Rl*vh, 14);

1
L=11&&12&&13&&14;

1
return;

I

void ElmntSrfc::Size(int  &bd-w, int &bd-1)
1

bd-w=w;
bd-l=l;
return;

>

void ElmntSrfc::SetOffNd(int &x, int &y, int &z, int &touch, int j, int
k)
{

x=srfc[j][k].x;
y=srfc[j][k].y;
z=srfc[j][k].z;
touch=srfc[j][k].touch;
return;

1

void ElmntSrfc::Cleanup()
{

delete[]  srfc;
return;

>

A-11 cyl-op.h  - Definition of 3D Body of Cylindrical Element (BDE)

#ifndef CYL-OP-H
#define CYL-OP-H
#include "global-var.h"
#include "srfc-op.h"
#include <fstream.h>

struct  CylNdType
{

int x;
int y;
int z;
int touch;
int 0s;
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int is;
I;

loat, f

class CylBd
I

public:
CylBdO;
void Locate(int,  float, float, float, float, f

float);
void TrimEdge(int,  int, int, int);
void Store(ofstream&,  float);
void CleanupO;

private:
int cylID;
CylNdType  (*cyl)  [MAX-SZI;
int w; // width
int 1; // length
int hthk; // half thickness
ElmntSrfc  srfc;

I;
#endif

loat, float,

A-12 cyl-op.C - Implementation of 3D Body of Cylindrical Element (BDE)

#include <fstream.h>
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include "cylbd-op.h"
#include <Xll/Intrinsic.h>
#include " ../MyLib/transform.hl'

#ifndef M-PI
#define M-PI 3.14159265358979323846
#endif

void HalfCrossSection(int  w, int t, int wall, float h[] [2])
L

int i;
int p, q, u, v;
p=int(t/2+0.5);
q=w-p;
u=wall;
v=w-wall;
for(i=O;  i<=u; i++)

i
h[i]  101 =sqrt(p*p- (p-i)*(p-i));
h[i]  [ll=O;

I
for(i=u+l;  i<=p; i++)

I
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h[i] [O]=sqrt(p*p- (p-i)*(p-i)):
h[i] [l]=sqrt((p-u)*(p-u)  - (p-i)*(p-i));

I
for(i=p+l;  i<q;  i++)

I ~
h[i]  [0]=0.5*t;
h[i][l]=0.5*t-wall;

1
for(i=q;  i<v; i++)

{
h[i]  [O]=sqrt((w-q)*(w-q)-(i-q+l)*(i-q+l));
h[i]  [l]=sqrt((v-q)*(v-q)-(i-q+l)*(i-q+l));

I
for(i=v;  i<w;  i++)

f
h[i]  [O]=sqrt((w-q)*(w-q)-(i-q+l)*(i-q+l));
h[i]  [l]=O;

1
return;

CylBd::CylBd()
: srfc()

t
cylID=O;
w=l;
1=1;
hthk=l;
cyl=new  CylNdType[w]  [MAX-SZ];

1

void CylBd::Locate(int  id, float width, float length, float thick,
float w-ratio, float vh, float fix-1, float fix-t,
float p)

I
) [MALSZextern GlbSrfcNdType  (*surface

extern int xsize, ysize;
int j, k;
int X, Y;
int thk, wthk;
float (*ht) [21; // cross
cylID=id;
thk=(int)  (thick+0.5)  ;
hthk=thk/2;

1 ;

section

srfc.Locate(width, length, hthk*vh /*,
srfc.Smooth(flx-1,  fix-t, vh, p);
srfc.Size(w,  1);
wthk=(int) (w-ratio*w+0.5);
cyl=new  CylNdType  [WI [MAX-SZI;
ht=new float [WI [21;
HalfCrossSection(w,  thk, wthk, ht);
for(k=O; k<l; k++)

for(j=O;  j<w; j++)

outline

surface*/);

163



srfc.SetOffNd(cyl[jl  [kl.x,  cyl[j] [kl.y,  cyl[jl [kl.z,
cyl[jl [kl .touch, j, k);

cyl[j][k].os=(int)  (ht[jl [01+0.5);
cyl[j] [k] .is=(int) (ht[jl  [11+0.5);

I
for(k=O;  k<l; k++)

for(j=O;  j<w; j++)

X=cyl[jl  [kl .x;
Y=cyl  [jl rk1.y;
if((X<xsize&&X>=O)&&(Y<ysize&&Y>=O))

I
suface[X]  [Y] .height=cyl[jl  [kl .z+(int) (cyl[jl  [kl .os*vh);
surface[X]  [Y] .num++;
surface[Xl  [Yl .id=cylID;

I
I

delete [I ht;
srfc.Cleanup();
return:

I

void CylBd: :TrimEdge(int  left,
{

int j, k;
for(j=O;  j<w; j++)

I
for(k=l;  k<l; k++)

{

int righ t, int back, int front)

if(cyl[jl  [kl.x>right-1  11 cyl[j] [kl.x<left  11
cyl[jl [kl.y>front-1  I I cyl[j] [kl.y<back)
{

cyl[jl [kl .x =cyl[j] [k-11.x;
cyl [jl [kl  .Y =cyl
cyl[jl rk1.z  =cyl
cyl[jl [k] .os=cyl
cyl[jl [k].is=cyl

jl [k-l1  .y;
jl [k-11.~;
jl [k-11.0s;
jl [k-ll.is;

for(k=l-2; k>=O; k--)
i

if(cyl[jl  [kl.x>right-1  I I cyl[j] [kl.x<left  I I
cYI[jl [kl.y>front-1  I I cyl[jl [kl.y<back)
{

cyl [jl ik1.x =cyl[jl [k+ll  .x;
cyl [jl Lk1.y =cyl[jl [k+ll .y;
cyl[jl  rk1.z  =cyl[jl [k+ll.z;
cyl [jl [kl .os=cyl[jl [k+ll  .os;
cyl[jl [kl.is=cyl[j]  [k+l].is;

I
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for(k=O;  k<l; k++)
{

for(j=l;  j<w; j++)

if(cyl  [jl [kl .x>right-1  ]I cyl[j] [k] .x<left  I]
cYl[jl [kl.y>front-1  I I cyl[j] [kl.y<back)
1

cyl[jl [k] .x =cyl[j -11  [k] .x;
cyl [jl rk1.y =cyl[j -11 rk1.y;
cyl [jl [k] .z =cyl[j -11  [k] .z;
cyl[jl [kl .os=cyl[j -11 [kl .os;
cyl [jl [kl .is=cyl[j -11  [k] .is;

J
1

for(j=w-2; j>=O; j--)
I

if(cyl[j]  [k] .x>right-1  I I cyl[j] [k] .x<left  I I
cyl[j] [k].y>front-1  I I cyl[j] [k] .y<back)
{

cyl[j] [k] .x =cyl[j+l]  [kl .x;
cyl[jl Lk1.y =cyl [j+ll Lk1.y;
cyl[j] [k] .z =cyl[j+l]  [k] .z;
cyl[j] [k] .os=cyl[j+l]  [k] .os;
cyl[j] [k] .is=cyl[j+l]  [k] .is;

I
return:

void CylBd: :Store(ofstream  &OF,  float vh)
I

int i, j, k;
// output cylinder volume
if(w>l&&l>l)

oF<-calZONE  T=ul<<ll\ltCYLINDER  n<<cylID<<ll\ll"<<endl;
oF<<"I="<<2*w<<" I "<<"J="<<1

<<'I, II<<IIK="<<hthk+l<<"  , "<<llF=POINT1l<<endl ;

oF<<"DT=(SINGLE  SINGLE SINGLE SINGLE SINGLE)"<<endl;
for(i=O;  i<=hthk;  i++)

for(k=O;  k<l; k++)
{

// output top half
for(j=O;  j<w; j++)

I
int h;
if(i<cyl[j]  [k] .is)

h=cyl[jl  [k] .is;
else if(i>cyl[jl  [kl .os)

h=cyl[j]  [k] .os;
else

h=i;
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oF<<cyl[j]  [k] .x<<'  '<<cyl [jl Lk1.y
<<' '<<(int) (cyl[jl  [kl .z/vh)+h
<<' '<<cylID<<' '<<~~O~~<<endl;

3
// output bottom half
for(j=w-1; j>=O; j--)

i
int h;
if(i<cyl[j]  [kl .is)

h=cyl[j]  [k] .is;
else if(iXyl[jl [kl .os)

h=cyl[j]  [k] .os;
else

h=i;
OF<<Cyl[jl  [kl .x<<'  '<<cyl[j] [k] .y

<<' '<<lint) (cyl[j]  [kl .z/vh)-h
<<' '<<cylID<<'  ';

if(i==hthk)
oF<<cyl[jl  [kl .touch<<endl;

else
OF<<"O"<<endl- I

I
I

I
return;

I

void CylBd::Cleanup()
t

delete [I cyl;
return:

I

A-13 cbd-op.h  - Definition of 3D Body of Cuboid Element (BDE)

#ifndef CBD-OP-H
#define CBD-OPH
#include llglobal-var.h'l
#include "srfc-op.hl'
#include <fstream.h>

struct  CbdNdType
I

int x;
int y;
int z;
int touch;

I;

class CbdBd
I
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loat. f

public:
CbdBdO;
void Locate(int, float, float, float, float, float, f
void TrimEdge(int,  int, int, int);
void Store(ofstream&, float);
void CleanupO;

private:
int cbdID;
CbdNdType  (*cbd)  [MAX-SZI;
int w; // width
int 1; // length
int thk; // thickness
ElmntSrfc  srfc;

I;
#endif

A-14 cbd-op.C  - Implementation of 3D Body of Cuboid Element (BDE)

#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include "cbd-0p.h"
#include <Xll/Intrinsic.h>
#include I' ../MyLib/transform.hl'

#ifndef M-PI
#define M-PI 3.14159265358979323846
#endif

CbdBd::CbdBd()
: srfc()

I
cbdID=O;
w=l;
l=l;
thk=l;
cbd=new CbdNdType[wl  [MAX-SZI;

I

void CbdBd::Locate(int id, float width, float length, float thick,
float vh, float El, float Et, float p)

I
extern GlbSrfcNdType  (*surface) [MAX-SZ];
extern int xsize, ysize;
int j, k;
int X, Y;
cbdID=id;
srfc.Locate(width, length, 0);
srfc.Smooth(flx-1,  fix-t, vh, p);
srfc.Size(w,  1);
thk=(int)(thick+0.5);

loat);
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cbd=new CbdNdTypeLwl  [MAX-SZl;
for(k=O;  k<l; k++)

for(j=O;  j<w; j++)
srfc.SetOffNd(cbd[jl  [kl .x,  cbd[jl [kl .y,  cbdIj1 [kl .z,

cbd[jl [kl.touch, j, k);
for(k=O;  k<l; k++)

for(j=O;  j<w; j++)
I

X=cbd[jl  [kl .x;
Y=cbd[jl  [kl .y;
if((X<xsize&&X>=O)&&(Y<ysize&&Y>=O))

{
surface[X]  [Y] .height=cbd[jl  [kl .z+(int) (thk*vh);
surface[Xl  [Yl.num++;
surface[X]  [Yl .id=cbdID;

1
I

srfc.CleanupO;
return:

void CbdBd::TrimEdge(int left, int right, int back, int front)
{

int j, k;
for(j=O;  j<w; j++)

{
for(k=l;  k<l; k++)

I
if(cbd[j]  [k].x>right-1  11 cbd[jl [kl .x<left  11

cbd[j] [k] .y>front-1  I I cbd[jl [kl .y<back)
I

cbd[j] [kl.x =cbd[jl [k-11.x;
cbd[j] [k].y =cbd[j] [k-11.~;
cbd[jl [kl .z =cbd[jl [k-l] .z;

for(k=l-2; k>=O; k--)
I

if(cbd[j]  [k].x>right-1  I I cbd[jl [kl.x<left  I I
cbd[j] [k] .y>front-1  I I cbd[jl [kl .y<back)

cbd[j] [kl .x =cbd[jl [k+ll.x;
cbd[jl Lk1.y =cbd[jl [k+ll .y;
cbd[j] [k] .z =cbd[jl [k+ll.z;

I
1

I
for(k=O; k<l; k++)

{
for(j=l;  j<w; j++)

I
if(cbd[j]  [kl.x>right-1  I I cbd[jl [kl.x<left  I I

cbd[j] [kl.y>front-1  I I cbd[jl [kl.y<back)
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I
cbd[j] [kl .x =cbd
cbd[j] [kl .y =cbd
cbd[jl [kl.z  =cbd

I
I

for(j=w-2; j>=O; j--J
{

[j -11 Ek1.x;
[j-11 Ek1.y;
[j-11 Ek1.z;

if(cbd[j]  [kl .x>right-1  11 cbd[jl [kl .x<left  11
cbd[j] [kl.y>front-1  I I cbd[jl [kl .y<back)

{
cbd[jl [kl .x =cbd[j+ll  Lk1.x;
cbd[jl [kl .y =cbd[j+ll  [kl .y;
cbd[jl [kl .z =cbd[j+ll  [kl .z;

I

return;

void CbdBd*.:Store(ofstream &OF,  float vh)

int i, j, k;
if(w>l&&l>l)

I
OF<<I~ZONE T=~~~-c<~~\~~CUBOID  “<<cbdID<<“\““<<endl;
oF<<“I=“<<w<<” “<<”  J=“<<l<<”

“<<“F=P~INT”<<endl;
, “<<“K=“<<thk+l

<<‘I,
oF<<l'DT=(SINGLE  SINGLE SINGLE SINGLE SINGLE)"<<endl;
for(i=O;  i<=thk; i++)

for(k=O; k<l; k++)
for(j=O;  j<w; j++)

{
oF<<cbd[jl  [k] .x<<'  '<<cbd[j] [kl .y

<<' '<<(int) (cbd[jl  [kl .z/vh)+i
<<' '<<&dID<<' ';

if (i==O)
oF<<cbd[jl  [k] .touch<<endl;

else
~F<<~~O~~<<endl- I

I
I

return;
1

void CbdBd::CleanupO
i:

deletei]  cbd;
return;
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