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Protistan bacterivory can influence the size distribution, cell structure and 

composition of natural bacterial communities and is of significant concern for design of 

bioremediation efforts, yet adequate methods for observation and modeling are lacking. 

In this investigation, fluorescent protein expression and flow cytometry were used to 

study protistan grazing on genetically modified strains of several bacterial species that 

have been considered for use in bioremediation. Broad-host-range plasmids were 

constructed and used to introduce genes encoding GFP (green fluorescent protein) or RFP 

(red fluorescent protein) to prey species. A heterotrophic flagellate Paraphysomonas 

imperforata (Hflag) served as a model predator. Predator-prey interactions were observed 

and quantified using particle counts and individual optical signals recorded by FACScan 

flow cytometry. Result files were parsed by Windows Multiple-Document flow 

cytometry Interface (WinMDI v2.8) and analyzed by GR, a Per1 (Practical Extraction and 



Report Language) program described herein. Grazing preference of Hflag was influenced 

by prey type, size and predator culturing conditions. Hflag showed strong preference for 

bacterial cells over algal cells of a similar size, as well as for bacterial cells of different 

dimensions. However, size preferences were observed among cells within individual 

bacterial prey species. Significant preference was also observed for cells labeled by GFP 

and for unstained cells as compared to cells stained by a traditional DTAF-staining (5-  

(4,6-Dichloro-Triazin-2-y1)-Amino Fluorescein hydrochloride) method. No difference 

was observed between cells labeled by GFP and unstained cells. These results show that 

the methods described here provide a viable approach to observing protistan bacterivory 

that is superior in some respects to currently used methods. 



TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................ iv 

LIST OF FIGURES ....................................................................................................... v 

Chapter 

I . INTRODUCTION ....................................................................................................... 1 

I1 . VECTOR CONSTRUCTION AND BACTERIA TRANSFORMATION ................... 6 

Abstract ........................................................................................................... 6 

Introduction ............................................................................................................ 6 

Materials and Methods ............................................................................................ 8 

Results ...................................................................................................... 13 

Discussion ..................................................................................................... 20 

I11 . FLOW CYTOMETRY BACTERIVORY ASSAY ................................................. 27 

Abstract ......................................................................................................... 27 

Introduction .................................................................................................... 27 

Materials and Methods ....................................................................................... 30 

Results .......................................................................................................... 33 

Discussion ..................................................................................................... 38 

IV . INFORMATION PROCESSING USING PERL ....................................................... 47 

File Types Used By GR ........................................................................................ 47 

Instructions for Using GR ................................................................................... 51 

Command Line Arguments and Environmental Variables .................................. 56 

REFERENCES ........................................................................................... 58 



APPENDIX: Source Code of GR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 63 

BIOGRAPHY OF THE AUTHOR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................... 94 



LIST OF TABLES 

Table 1. Filter sets installed for epifluorescence microscopy of GFPIRFP 

expressing bacteria.. .......................................................................... 12 

Table 2. Transformation of bioremediative bacteria species using various 

GFP and RFP plasmids ........................................................................................ 17 

Table 3. Composition of microcosms for flow cytometetric bacterivory 

experiments. ................................................................................ 32 

Table 4. Grazing rates calculated from various bacterivory experiments.. ................. 36 



LIST OF FIGURES 

Figure 1 . Construction of broad-host-range expression plasmids with GFP (A) 

or RFP (B) ................................................................................... 14 

Figure 2 . Electrophoresis band patterns of NotI/BaI digested pBBRGFP (A) and 

HindIII/EcoRI digested pBBRRFP (B) ................................................ 16 

Figure 3 . GFPRFP labeled EcR, EaG and PpG showed high fluorescent 

intensity and significant size differences .............................................. 17 

Figure 4 . After ingesting RFPIGFP expressing bacteria. red and green fluorescent 

signals can be detected in protist food vacuole ......................................... 19 

Figure 5 . Protists feeding on Ea. EaG and EaR showed similar rate of growth ................. 20 

Figure 6 . Flow cytometry data scatter gram generated by FACScan and displayed 

by WinMDI flow cytometry application program ..................................... 34 

Figure 7 . Densities of EaG and EcR under Hflag grazing along a time series ................. 35 

Figure 8 . Time-curve of protist food vacuole fluorescence ....................................... 37 

Figure 9 . Time kinetics histograms of PpG and EaG forward scatter signals ................. 38 

Figure 10 . Experiment files can be created within WFI histogram window ................... 49 

Figure 1 1  . GR internal organization of flow cytometry sample readout data ................. 52 



I. INTRODUCTION 

Bioremediation, the use of naturally occurring or introduced organisms as a 

means to reduce the harmful effects of environmental contaminants, has been studied 

widely and applied with some success in field trials. For example, genetically modified 

bacteria have been used to transfornl or immobilize toxic chemicals such as polyaromatic 

hydrocarbons (PAH), chlorinated hydrocarbon, trildi-chloroethene (TCEIDCE), and 

heavy metal ions (Ellis et al., 2001; Arai et al., 1999; Tan et al., 1999; Tso and Taghon, 

1997; Focht et al., 1996; EPA 1995; Daubaras et al., 1992). Success of such 

bioremediation efforts is dependent on growth of bacteria involved, and so is influenced 

by bacterivorous protists - indigenous predators of bacteria. 

Protists are known to graze selectively on different types of bacteria and so may 

strongly influence bacterial community composition, physiology and metabolism. ( Hahn 

and Hofle, 1998; Klaus et al., 1999; Kinner et al., 1998; Simek et al., 1997). Factors 

proposed to influence prey selection include predator and prey specific factors such as 

predator digestive capacity, prey type, nutrient content (C:N ratio), motility and cell size; 

the latter being the most frequently studied (Hahn and Hofle, 1999; Klaus et al., 1999; 

Kinner et al., 1998; Simek and Chrzanowski, 1992, Verity, 199 1). Protistan bacterivory 

may have both positive and negative impacts on bacterial populations. Selective grazing 

may reduce the population size of some bacteria while increasing that of others due to 

removal of competitors or by recycling nutrients in nutrient-limited environments (Hahn 

and Hofle, 1999; Tso and Taghon, 1997; Sherr et al., 1986; Sherr et al., 1982). Therefore, 

quantitative observation of protistan bacterivorous activity is crucial to achieving a 



complete understanding of chemical and energetic transformations within ecosystems and 

so will be essential to the design of successfid in situ bioremediation protocols. 

To assess the potential effects of protistan bacterivory on bacterial populations, it 

will be necessary to develop methods to observe predator prey relationship realiably. A 

key question has been whether grazing rates, preferences and behaviors are altered by the 

methods that are used to observe and quantify them. Labeling methods for prey cells 

have employed fluorescent dyes, e.g. A 0  (Acridine Orange), CTC (cyanoditolyl 

tetrazolium chloride), immunofluorescence, and even radio-labeled bacteria 

(Christoffersen et al., 1997; Epstein and Rossel, 1995; Nagaard and Hessen, 1990; Sherr 

et al., 1987). The most commonly used method utilizes DTAF (5-(4,6-Dichloro-Triazin- 

2-y1)-Amino Fluorescein hydrochloride, 492 nm excitation maximum and 513 nm 

emission maximum) to label bacterial cells (Sherr et al., 1987). Advantages of the DTAF 

staining method include its ability to stain a wide variety of cell types, and that 

preparations can be made from collected natural bacterial assemblages. However, the 

method results in prey cell death and chemical alteration of prey cell surfaces. Therefore, 

it is possible that DTAF staining may influence grazing by protistan predators. It was 

proposed that DTAF staining does not affect predator grazing rates based on the 

observation that a ubiquitous marine ciliate Uronema marina and a mixed culture of 

flagellates both grew at the same rate whether feeding on DTAF-stained FLB 

(Fluorescence-Labeled Bacteria) or on unstained natural bacteria (Sherr et al., 1987). 

However, in these experiments grazing was observed on stained and unstained cells in 

separate experiments thus predator preference was not assessed. Moreover, observations 

were made only at a single prey concentration. Therefore, it could not be determined 



whether predator growth was limited by prey availability or prey suitability. It remains to 

be determined whether chemical staining methods alter grazing by predators and thus 

may contribute to incorrect estimations of protistan bacterivory (see Chapter 111). 

The use of traditional microscopic methods has also placed some limitations on 

bacterivory studies. Traditional microscopy utilizes fixation steps that may skew 

estimation of bacterivory by altering behavior of the grazing organisms. For example, it 

has been shown that the rate of food vacuole egestion may be influenced by various 

fixation methods (Sieracki et al., 1987). Also, manual cell enumeration using 

epifluorescence microscopy is a time-consuming and error-prone process that is not 

amenable to generation of large data sets suitable for statistical analyses. 

In order to better measure protistan bacterivory, we have genetically modified 

prey bacteria to express fluorescent proteins in vivo and have used flow cytometry to 

automate detection and enumeration of predator and prey cells in microcosm studies. 

Using this approach, hereafter referred to as LIVE (Labeling by In Vivo Expression) Flow 

Cytometry, it is possible to observe grazing on live prey that have not been chemically- 

stained or fixed and it is possible to generate large numbers of observations in real time. 

Two fluorescent proteins were used: Aequoria victoria Green Fluorescence 

Protein (GFP) and Discosoma spp. Red Fluorescence Protein (RFP). GFP is a 27 kDal 

protein with an encircled Ser-Tyr-Gly tripeptide fluorophore (wild type characteristics are 

a 395 nm excitation and a 509 nm emission maximum). Its compact molecular structure 

confers GFP chemical stability and high quantum yield (Yang et al., 1996). GFP 

fluorescence is strongly correlated with host viability, which makes it superior to DTAF- 

staining for monitoring metabolically active and viable bacteria within populations. For 



example, Lowder et al. (2000) used the chromosomally GFP-tagged P. j7uorescens 

treated under different conditions to show that starved cells and VBNC (Viable But Non- 

Culturable) cells remain fluorescent in contrast to UV or heat-killed cells, most of which 

had lost GFP fluorescence, probably due to membrane breakdown. RFP (558 nm 

excitation and 583 nm emission) from the commercial plasmid pDsRed (Clontech, Palo 

Alto, CA) has been used in conjunction with GFP for multiple-color imaging (Bloemberg 

et al., 2000). Due to the high similarity in the amino acid sequence to GFP, RFP has 

been assumed to have a similar f3-can structure (Frandkov et al., 2000; Geoffrey et al., 

2000; Yang et al., 1996). By introducing genes encoding either red or green fluorescent 

proteins, it is possible to monitor two prey types simultaneously and determine grazing 

preference directly (see Chapter 11). 

A disadvantage of GFP labeling is that oxygen is required for development of the 

GFP fluorophore. Therefore GFP is not suitable for application in strictly anaerobic 

bacteria (Yang et al., 1996). Oxygen suppression can lead to GFP bleeding through to 

longer emission wavelengths and crosstalk with the RFP signal (Elowitz 1997). The 

major drawbacks for RFP are its long maturation half-time (ca. 27 h) and the fact that the 

premature form fluoresces weakly in the green region of the spectrum (475 nrn excitation 

and 499 nm emission) due to slow post-translational tetramerization (Geoffrey et al., 

2000; Gross et al., 2000; Ahmed et al., 2000). 

A great advantage of live cell GFP/RFP labeling is that it is compatible with the 

application of automated real-time flow cytometry. Flow cytometers allow particles in a 

liquid suspension to traverse a laser beam, one at a time, to generate light signals for 

various PMT (Photo Multiplier Tubes) detectors. These signals include: forward scattered 



light (FSC, related to particle size), side scatter light (SSC, related to surface granularity) 

and fluorescence intensity (FL, which may be observed in several wavelength ranges, 

FLl/FL2/FL3) (Shapiro, 1994). These signals can be used to distinguish predator and 

prey cells from other cells and inanimate particles. 

Protist cells are generally larger than bacteria, therefore giving higher FSC 

signals. Labeled bacterial prey cells can be separated from other species or inanimate 

debris particles according to their fluorescent signals. After recording cell densities and 

detector signals of different particle groups along a time series, grazing rates can be 

calculated from the loss of prey densities divided by predator density and elapsed time 

(see Chapter 111). 

In order to steamline the tedious and repetitive data analysis of flow cytometry 

bacterivory experiments, a Perl program, entitled GR (Grazing Rates) was created to 

handle the large quantities of data generated by WinMDI. Perl programming has 

markedly accelerated analysis of flow cytometry grazing data with its excellent 

performance in text pattern matching and data structure management on different 

operating systems (Wall, 1996). The functions of GR include organization of sample 

parameters, management of data modification, time-related analysis, and statistical 

comparison between samples or sample sets. GR produces formatted results of grazing 

rates and calculates signal kinetics by comparing prey composition at different time 

points. Taken together, fluorescent protein labeling, flow cytometry and in silico 

information processing provide a promising tool kit for examination of protistan 

bacterivory . 



11. VECTOR CONSTRUCTION AND BACTERIA TRANSFORMATION 

Abstract 

To induce in vivo expression of fluorescence in experimental prey cells for flow 

cytometric analyses of protistan bacterivory, genes encoding green fluorescent protein 

(GFP) and red fluorescent protein (RFP) were introduced on broad-host-range plasmids 

to a variety of bacteria. Plasmids were constructed based on broad-host-range expression 

vectors pBMMB67EH and pBBR122. Bacteria expressing these fluorescent proteins can 

easily be detected using either epifluorescence microscopy or flow cytometry. 

Introduction 

Several species of bacteria that have been proposed for use in bioremediation 

were chosen for use as model prey for assessing vulnerability of bioremediative bacteria 

to protistan grazing. These bacteria, which are capable of aerobic growth and are 

relatively easy to grow in pure culture, include Pseudomonas putida, Rhodobacter 

sphaeroides, Klebsiella pneumoniae and Enterobacter aerogenes. P. putida can oxidize 

catechol to dicarboxylic acid and eventually acetyl-CoA (Dayna, 1992; EPA Air Toxics 

Website: http://www.epa.gov/ttn~atw/hlthei7pyrocate.html). R. sphaeroides can reduce 

DMSO (Dimethyl Sulfoxide), a paper mill waste chemical, to hydrogen sulfide. (Temple, 

2001; Ellis et al., 2001). K. pneumoniae and E. aerogenes can both dechlorinate DDT 

(1,1,1 -Trichloro-2,2-bis-(4'-chloropheny1)ethane) to DDE (1,l -Dichloro-2,2-bis(4'- 

chloropheny1)ethylene) by either aerobic or anaerobic degradation (Ellis et al., 2001; 

Mendel and Walton, 1966). In addition, Escherichia coli was used for the ease with 

which it can be manipulated genetically. Each of these species can be cultivated in LB 



(Luria-Bertani) medium at 37 "C or 30 "C, and none have significant autofluorescence 

overlapping with GFP or RFP spectra. 

Exogenous genes can be introduced into bacteria either by integration into the 

chromosome or as autonomously replicating plasmids. In these experiments fluorescent 

protein genes were maintained in experimental prey cells on plasmids. Though less stable 

than chromosome labeling, plasmids achieve higher copy number, potentially increasing 

expression and improving detectability of the fluorescence signal. Plasmid-encoded 

genes are believed to account for the majority of biodegradation pathways (Tan, 1999; 

Dayna, 1992; Eberhard, 1990). Therefore, GFPIRFP plasmid labeling is a strategy that 

parallels many bioremediation-related genetic modifications. By taking advantage of 

established codon usage information, transformation protocols and protein expression 

conditions, GFPIRFP plasmid labeling can better mimic bioremediative bacteria 

populations under protistan grazing. 

Commercial GFP and RFP plasmids (pQBIT7GFP and pDsRed, see materials and 

methods section) cannot be used to transform most species of bacteria directly, because 

they lack appropriate replication and expression machinery for many hosts (see Chapter 

I1 discussion). For example, pQBIT7GFP is a GFP encoding plasmid in which expression 

is controlled under a T7 promoter. Thus the presence of a T7 polymerase gene in the host 

genome is required. Unfortunately, the T7 polymerase gene is rare in naturally occuring 

wild type strains. Both pQBIT7GFP and pDsRed lack proper replication origin sequences 

and genes required for plasmid maintenance in many hosts. Furthermore, E. coli 

transformation procedures, including CaClz-heat shock and routine electroporation are 

not suitable for many bacterial species. Therefore, it was essential to construct broad- 



host-range expression vectors and to establish transformation methods for each prey 

species. 

Materials and Methods 

Luria-Bertani (LB, powder from Fisher Scientific, Pittsburgh, PA) liquid medium 

was prepared and sterilized (1 5 min, 121 "C, 15 pounds per square inch) according to the 

manufacturers recommended protocol. SOC broth (2% Tryptone, 0.5% yeast extract, 10 

mM NaCl, 2.5 mM KC1,lO mM MgC12, 10 mM MgS04 and 20 mM glucose) and CaC12 

(0.1 M) solutions were prepared according to Sambrook et al. (1989) and sterilized as 

above. Rhodobacter sphaeroides transformation buffers (0.2 M CaC12 - 0.1 M Tris, pH 

7.2 and 40% PEG6000 (polyethylene glycol) - 0.1 M Tris, pH 7.2) were made by first 

preparing 10 ml Tris buffer (0.1 M, pH 7.2) then dissolving 4 g PEG6000 (Polyethylene 

glycol, Sigma, St. Louis, MO) or 0.22 g CaC12 in the Tris followed by filter-sterilization 

(0.2 -m). All restriction endonucleases, T4 DNA ligase and enzyme buffers were 

purchased from New England Biolabs (Beverly, MA) except that XbaI and its buffer 

were purchased from Life Technologies Gibco BRL (now Invitrogen, Carlsbad, CA). L1 

and fl2 mineral medium was prepared according to Guillard et al. (1993). Organic protist 

media was prepared by mixing 5 parts filtered seawater and 2 parts dH20 and adding 

yeast extract to a final concentration of 0.01 % (wlv) before sterilization. 

GFP plasmid pQBIT7GFP (catalog number AFP2242) was obtained from 

Quantum Biotechnologies Inc. (now QBiogene, Carlsbad, CA). RFP plasmid pDsRed 

was from Clontech (catalog number 6923-1). Broad-host-range vector pMMB67EH 

(ATCC# 37622) and pBBR122 (order number PBBROI) were from the American Type 



Culture Collection (ATCC, Manassas, VA) and MoBiTec (Goettingen, Germany) 

respectively (Furste, 1986). 

All bacterial species were obtained from ATCC unless indicated ot 

herwise. Stock cultures of Escherichia coli BL2 1DE3 (Cat No. 69450, Novagen, 

Madison, WI), Enterobacter aerogenes NCDC 8 19-56, Klebsiella pneumoniae subsp. 

pneumoniae (Schroeter) (ATCC number 2 1 I), Pseudomonas putida KT2442, P. putida 

SM1396 (from Dr. Ssren Molin's Lab at Technical University of Denmark) and 

Rhodobacter sphaeroides ATH2.4.1 cells were inoculated from frozen stocks (-80°C) 

into 2 ml liquid LB medium and were grown with shaking (250rpm) for 12 h at 37OC (E. 

coli, E. aerogenes and Kpneumoniae) or at 30°C (P. putida and R .sphaeroides) prior to 

use in transformation experiments detailed below. Transformed strains are hereafter 

referred to by three letter acronyms, the first two characters of which refer to the first 

letter of the genus and species names respectively, followed by the letters G or R 

indicating transformation with a GFP or RFP encoding plasmid (e.g. EcG = E. coli 

transformed with a GFP encoding plasmid, see Table 2). Transformed bacteria were 

cultivated in the presence of appropriate antibiotics (50 pg/ml ampicillin for EcG and 

EaG, or 10 pg/ml kanamycin for EcR, EaR, PpR, KaG and RsG. Culturing PpG required 

250 pg/ml (5x) ampicillin plus IPTG (lpg/ml) in the medium and overnight growth on 

LB ampicillin agar plate at 37 "C solid medium to achieve homogeneous size and 

fluorescence distribution. EcR also required extended (48 h) shaking at 37 "C and a 24-h 

incubation at 4 "C to enhance fluorescence development. 

Molecular recombination procedures were according to Sambrook et al. (1989). 

Restriction digestions were done in 50 p1 volumes with 0.5 unit of enzyme (37 "C for 2 



h). Ligation was performed overnight with an insert to vector ratio of 3:l in a 20yl 

mixture containing 2U of T4 DNA ligase (16 "C for sticky-ends and room temperature 

for blunt-ends). Digested fragments were separated by electrophoresis (70V for 45 min) 

and recovered using QIAquick gel extraction kit according to product protocols. The GFP 

coding sequence on pQBIT7GFP (from position 30 to 1082, numbered relative to the 

start of its multiple cloning site) was excised using HindIIIIXbaI digestion yielding a 

fragment of 1052 bps which was then inserted using the HindIII/XbaI sites of 

pMMB67EH broad-host-range expression plasmid (at positions 8804 and 8828) to 

construct pMMBGFP. The lacIq fragment was disrupted by PvuII digestion (cut at 

pMMB67EH positions 7357 and 7450 bp) to give pMMBGFPf3. The GFP coding 

sequence together with its Ptac promoter on pMMBGFP was amplified by a PCR 

reaction of 30 cycles with a left primer: ATCCGGGCTTATCGACTG; and a right 

primer: GCTGTAGGCATAGGCTTGG; Cycling conditions are: 94 "C for 45 sec (5 min 

for the first round), 52 "C for 1 min and 70 "C for 2 min (8 min at final cycle). The 

amplified fragment was then inserted into pBBR122 (Antoine and Locht 1992) to 

partially replace a portion of its chloramphenicol resistance gene between two DraI sites 

at 4361 and 4699 bp to construct pBBRGFP. The RFP coding sequence from pDsRed 

plasmid was blunt-end excised by PvuII/StuI digestion (cut at 55 and 1041 bp) and the 

resulting 986 bp fragment was inserted to pBBR122 as done with GFP. The orientation of 

insertion or presencelabsence of sequences was verified by diagnostic restriction 

digestions followed by electrophoresis (see result section). See Figure 1 & 2. 

E. coli (Ec) was transformed by calcium heat shock as described by Sambrook et 

al. (1989). Briefly, competent cells were prepared by washing early-log phase LB culture 



(optical density, O.D., 0.4-0.6 at 600 nm) twice with 1/5 volume of ice-cold 0.1 M CaC12 

and resuspending cells in 0.1 M CaC12 to 1/10 the original volume. After overnight 

incubation on ice, 0.1 ml competent cells were mixed with 0.5 pg plasmid DNA, heated- 

shocked at 42 "C for 90 sec then mixed with 0.9 ml SOC medium. After a 1-h incubation 

at 37°C with shaking (250 rpm) the transformed cells were spread on LB plates amended 

with the appropriate antibiotic. 

E. aerogenes (Ea) was transformed by inoculating wild-type Ea into 5 ml LB 

liquid medium with 1 mM MgC12 and incubating at 30 "C with shaking (250 rpm) until 

mid-log phase (O.D. -0.6). Cells were then pelleted by 8000xg centrifugation for 10 min 

at 4 "C. The cell pellet was then washed twice with 1 ml of ice-cold 0.01 M CaCl2 and 

resuspended in 0.5 ml cold CaC12 and allowed to incubate on ice for 2 h. Cells were 

pelleted again (5000xg for 3 min at 4°C) and washed twice with 1 ml ice-cold 10% 

glycerol. After resuspension in 1 ml ice-cold 10% glycerol, 0.1 ml competent cells were 

mixed with 1 -g plasmid. After a 10-min incubation on ice, the transformation mixture 

was frozen at -80 "C for 5 min then thawed on ice and transferred to an electroporation 

cuvette. The transformation mixture was electroporated (15 kV, 200 GI resistance and 25 

yF capacitance t - 4.6) using a Gene Pulser electroporation device (Biorad, Hercules, 

CA). Following electroporation, cells were gently transferred to a culture tube and 

allowed to stand on ice for 1 min followed by a 3-min incubation at 37 "C. SOC medium 

(0.9 ml) was then added and the cells were incubated at 30°C for 1 h. Cells were then 

spread on LB agar plates amended with the appropriate antibiotic. 

Rs transformation: Cells were grown in 20 ml LB liquid culture until reaching 1 o8 celVml 

(O.D. -0.5) and centrifuged at 6000xg for 5 min at 4 "C. The pellet was washed with 10 



12 

ml ice-cold 0.5 M Tris twice and resuspended in 1.2 ml Tris-0.2 M CaC12. Plasmid DNA 

was added to 0.2 ml competent cells. An equal volume of ice-cold 40% PEG6000 in 100 

mM pH 7.2 Tris was added to the transformation mixture, gently shaken to mix and 

incubated on ice for 10 min. Cells were heat-shocked at 35 "C for 2 min, added to 1 ml 

LB with 1 mM MgC12, incubated at 35 "C for 6.5 h and plated on agar. 

The remaining species were transformed by routine electroporation (Dower, 

1988). Briefly, LB-cultured cells were washed and resuspended in ice-cold 10% glycerol. 

Cells (0.1 ml) were mixed with DNA and electroporated at 12.5 Kvlcm, 200 Q and 25 

pF. Outgrowth and plating procedures were as described previously for heat shock 

methods. 

FP-expressing bacteria were mounted to a Nikon Labophot-2 epifluorescence 

microscope and observed under both fluorescence and transmitted light with a 2 . 5 ~  

eyepiece and a lOOx oil object lens (Plan Fluor 10011.30 ph4 DLL 160/0.17), resulting in 

the total magnification of 250. Transformed and wild type bacteria cells were measured 

with a stage micrometer (Spencer Lens Co., Buffalo, NY) and enumerated with a 

hemacytometer (Fisher Scientific). The following filter sets were used for microscopy: 

Filter set 

Exciter 

Dichroic Mirror 

Barrier 

bacteria. 

Texas Red 

540-580 nm 

Manufacturer 

595 

600-660 

TRITCBITC 

450-490 

Table 1. Filter sets installed for epifluorescence microscopy of GFPIRFP expressing 

Nikon 

GFP 

450150 

505 

520 

Q48OLP 

5 10150 

Nikon Chroma Corp. 



Protistan bacterivory was started by adding bacteria prey to protist cultures (2 

week-old L1 mineral medium culture) in 100 ml tissue culture flasks to a starting 

concentration of 10' preylml and -lo4 predatorslml. The flasks were kept at room 

tempearture in the dark without shaking. To monitor fluorescence in food vacuoles of 

predators, protist cells in a grazing sample were first immobilized using 0.5% NiS04, 

then 5 p1 of sample was applied onto a glass slide, covered with 25 mm x 25 mm x0.17 

mm coverslip, and the numbers of bacteria cells in the protist food vacuole were counted 

manually. Fluorescent images were taken with a SPOT-2 charge-coupled digital camera 

(Diagnostic Instrument Inc, Sterling Heights, MI). Density of predators was monitored by 

applying 20 pl grazing media onto a hemacytometer and manually counting the number 

of protists under the microscope for a time series of 0,4,8,  12,20 and 28 h. 

Results 

Three GFP and two RFP broad-host-range expression plasmids were constructed 

(Figure 1). GFP expression on both pMMBGFP, pMMBGFPP and pBBRGFP was 

controlled by the Ptac promoter from pMMB67EH and RFP expression on pBBRRFP(-) 

controlled by Plac from pDsRed. PCR-amplified Ptac-GFP DNA was inserted into 

pBBR122 in a single direction while PvuII/Stul-excised RFP fragment was ligated in 

both directions, giving pBBRRFP and pBBRRFP-. 



4000 PCR DraI digestion 

mB ternlmtw 



Figure 1. Construction of broad-host-range expression plasmids with GFP (A) or 
RFP (B). The GFP coding sequence without the T7 promoter was excised from 
pQBIT7GFP by XbaILHindIII combined digestion and ligated downstream to the 
Ptac promoter of PMMB67EH. The resulting pMMBGFP was used as the template 
for PCR-amplification of Ptac-GFP. The amplified Ptac-GFP was blunt-ended by 
Klenow treatment and ligated with DraI-linearized pBBR122. @BBR122a, which 
derived from pBBR122 with most of its chloramphenicol resistance gene removed 
by a single DraI digestion, was also obtained in this step). The RFP coding sequence 
with the Plac promoter of pDsRed was excised by PvuIVSuI digestion and ligated to 
DraI-digested pBBR122, giving pBBRRFP or pBBRRFP- depending on the 
orientation of the insertion. 



Orientation of GFP coding sequence in pBBRGFP was examined by NotI/BaI 

digestion (Figure 1 and 2), which generated two bands of 4.4 and 1.8 kb for all clones. If 

GFP was inserted in the same orientation as CAT is trancribed, the two bands should 

have been 5.4 and 0.8 kb, respectively. HindIII/EcoRI digestion was used to analyze 

pBBRRFP clones. Two different patterns were observed (3.2 kb + 2.6 kb and 3.0 kb + 2.8 

kb), which were consistent with the two orientations of RFP insertions into pBBR122. 

A B 
Figure 2. Electrophoresis band patterns of NotI/BaI-digested pBBRGFP (A) and 
HindIII/EcoRI-digested pBBRRFP (B). Lanes in panel A: 1 and 10, BstEII-digested 
A-DNA ladder; 3-8, NotI/BaI -digested pBBRGFP clone 1-6, sequentially; 2 and 9, 
XbaI -digested pBBRGFP clone 1 and 6, respectively. Panel B: 1 and 7, lkb  DNA 
ladder: 2-6. HindIII/EcoRZ -digested DBBRRFPG) clone 1-5. 

Five species of bacteria were labeled successfully with GFP plasmids, 3 of them 

also were transformed with RFP plasmids (Table 2). P. putida KT2442 was successfully 

transformed with pMMBGFP, but transfornlation of P. putida SM1396 with pQBIT7GFP 

failed. 

Transfornled E. aerogenes, E. coli and P. putida cells cultivated in LB liquid are 

rods, of 0.6 x 1.2 pm, 0.9 x 2.4 pm, 1.3 x 4.2 pm, respectively (average of 100 cells). 

The size differences among these bacterial species are clearly evident in Figure 3. 



Fluorescent signals produced by transformed bacteria were sufficiently intense to 

Species / 
Plasmids 
pQBIT7GFP 
pMMBGFP 

pBBRGFP 

pDsRed, 
pBBRRFP 

allow direct observation by epifluorescence microscopy, especially for larger cells like 

PpG. No significant photobleaching or crosstalk between GFP and RFP was observed 

Table 2. Transformation of bioremediative bacteria species using various GFP and 
RFP plasmids. '+' indicates expression of GFP or RFP fluorescence, '-' indicates 
failure to express fluorescence. Acronyms for transformed strains used in this 
investigation appear in parentheses. 

during normal observations, although the Texas-Red filter sets used are not optimized for 

P. putida 

-- 
+ 

(PpG) 
-- 

-- 
+ 

(PpR) 

E. coli 

+ 
+ 

(EcG) 
+ 

+ 
+ 

(EcR) 

RFP detection. However, when PpG and KpG cells were intensely illuminated by the 

blue light, photoactivation-induced bleed-through to the RFP channel was observed when 

E. aerogenes 

-- 
+ 

(EaG) 
+ 

-- 
+ 

(EaR) 

switching wavelength from GFP to RFP excitation wavelengths (Elowitz et al., 1997). 

A: a mixture of EcR and EaG. 

R. sphaeroides 

-- 
-- 

+ 
(RsG) -- 

-- 

B: a mixture of EcR and PpG. 

K .pneumoniae 

-- 
-- 

+ 
(KpG) 

-- 
-- 

Figure 3. GFPIRFP labeled EcR, EaG and PpG showed high fluorescent intensity 
and significant size differences. Scale bars represent 10 pm. 



Predation by Hflag on GFP/RFP transformed bacteria could be observed directly 

by epifluorescence microscopy. When Hflag was exposed to bacteria expressing GFP or 

RFP, individually or in combination, accumulation of green andlor red fluorescent signal 

was observed in the food vacuoles (Figure 3). Fluorescence could be detected in food 

vacuoles within 1 min after mixing of prey and predators. For example in Figure 4 at 

least 6 bacterial cells can be distinguished in a single Hflag cell. Here Hflag cells were 

presented with EcR and EaG. Bacteria visible in the upper part of the cell appear to be 

undergoing cell lysis and digestion by the grazer. These cells are in vacuoles that appear 

overlapped in the image but that may or may not be coalescent. Four bacterial cells are 

visible in the lower portion of the cell, two of which exhibit red and two of which exhibit 

green fluoresence. The alternating positions of red and green labeled prey cells indicate 

grazing on both EcR and EaG. 

In long-term predation experiments statistically indistinguishable growth of 

Hflag populations was observed when Hflag was exposed to wild type Ea cells as 

compared to GFP or RFP expressing transformants EaG and EaR (Figure 5). Hflag 

densities recorded at 0,4, 8, 12,20 and 28 h (Figure 5) showed no significant difference 

whether feeding on Ea, EaG or EaR. ANOVA (Aanalysis of Variation) for log-phase 

growth rates for Hflag of the same starting densities presented with Ea, EaG and EaR, 

and for the plateau densities both produced pB0.5. 



Figure 4. After ingesting EcR and EaG, fluorescent signals in red and green color 
can be detected in protist food vacuoles. Images were taken 3 minutes after mixing 
protist and bacteria culture. The flagellum of the Hflag is out of the plane of focus 
and cannot be seen in this image. A: Epifluorescent image with Texas-Red filter set; 
B: Epifluorescent image with GFP frlter set; C: Transmistted light, phase contrast 
image; D: A+B+C. Scale bar: 10 pm. 



Hflag density long-term time serie 

-+ - Ctrl 

-+ Ea 
--+ - EaG 
4 - EaR 

Figure 5. Protists (Hflag) feeding on Ea, EaG and EaR showed similar rate of growth. 
Error bars were not presented to avoid mixups 

Discussion 

A critical step toward the application of GFP and RFP fluorescence as biomarkers 

for monitoring bacterivory is the successful introduction and expression of genes 

encoding these fluorescent proteins to wild type prey species. This requires construction 

of broad-host-range fluorescent protein expression vectors. To construct a GFP 

expression vector, the GFP coding sequence fiom pQBIT7GFP was inserted downstream 

of the Ptac promoter of a broad-host-range vector pMMB67EH, by taking advantage of 

the presene of HindIII and XbaI sites in its directional multiple cloning sites. Ptac is a 

hybrid of the -35 box of Ptrp and the -10 box of the PlacUV5, and has shown strong 

expression in various bacteria with IPTG induction (Amman et al. 1983). The resulting 

pMMBGFP was introduced into E.coli, E. aerogenes and P. putida by electroporation 

and GFP fluorescence was detected by epifluorescence microscopy. Surprisingly, 

expression was observed without IPTG induction despite the presence of a complete 

LacIq gene on pMMBGFP. In principle a functional lacIq gene should have suppressed 



GFP expression by producing an inhibitor protein, and Ptac has been known to be tight in 

expression control (Furste et al, 1986). Therefore, although IPTG induction did increase 

fluorescence intensity it is not a prerequisite for GFP expression. Whether this is due to 

Ptac promoter leakage in the stains of bacteria used in this study, or to alteration of 

LacIq/LacO interaction caused by recombination procedures, needs further investigation. 

IPTG-independent GFP expression is desirable for the labeling and monitoring of 

bioremediative bacteria, since the requirement for unnecessary additional chemicals, like 

IPTG, that lack bioremediative functions, would be impractical in a large scale 

application in natural environments. To investigate whether it is possible to achieve a 

satisfactory level of IPTG-independent expression of GFP in this system, attempts were 

made to disrupt the function of the lacIq gene, thereby Grther increasing baseline 

expression of GFP without IPTG. PvuII digestion was used to remove a 93 bp fragment 

of laclq. However, the resulting pMMBGFPf3 did not show significantly higher 

constitutive GFP expression. An IPTG induction effect was still evident by comparing 

induced and uninduced EaG with epifluorescence microscopy, indicating that the absence 

of the 94bp did not inactivate IacIq completely. Additional efforts to excise a BstEII 

fragment of 879bp (from 7037 to 7916bp) from the lacIq gene (7286 to 8492 bp, see 

Figure 1) was also unsuccessful due to the failure of the construct to produce 

transformants. This may have been due to removal of 56bp from the terminus of the 

RepAC operon, which is required for plasmid replication (RepAC is located from 541 6 to 

7093 bp, the 3' end of which overlaps with the BstEII fragment). BstEII digestion was 

used to confirm the absence of the 93 bp fragment on pMMBGFPf3, which gives a band 

of 786 bp compared to an 879 bp fragment from BstEII-digested pMMBGFP. 



While electroporation with pMMBGFP was successful in producing flourescent 

derivatives of E.coli, E aerogenes, and P. putida, no transformants of K. pneumoniae and 

R. sphaeroides were observed after electroporation with this plasmid These species were 

not transformed with pMMB67EH by electroporation. As an alternative, a second GFP 

expression plasmid was constructed based on pBBR122 (a broad-host-range vector with a 

smaller size (213) and a lower copy number compared to pMMB67EH). This vector has 

been used successfully in more than 20 species including R. sphaeroides. 

(http://www.mobitec-germany.com/products/vectorsys/pbbr 122.htrnl). To construct this 

plasmid, here referred to as pBBRGFP, the GFP coding sequence and the associated Ptac 

promoter were PCR-amplified from pMMBGFP and inserted into the chloramphenicol 

acetyl transferase (CAT, or chlR in Figure 1) gene of pBBR122. Two DraI sites (at 4361 

and 4699bp) in CAT were used to reduce vector size, to disable CAT for reverse 

selection and to provide blunt ends for ligation with PCR products. 

It is interesting to note that this PCR fragment inserted to pBBR122 in only one 

orientation, opposite to that of CAT transcription. This may have been due to the 

expression of a toxic chimera of reverse-sense GFP and residual CAT. In contrast, the 

StuI/PvuII blunt-end restriction fragment containing the RFP coding sequence and its 

promoter was incorporated into pBBR122 in both orientations, producing pBBRRFP and 

pBBRRFP-, each with similar fluorescent strength. Though the copy number of 

pBBRRFP is lower than that of pDsRed, red fluorescence developed more quickly and 

cells displayed greater homogeneity with regard to fluorescence in pBBRRFP- 

transformed E. coli. Further investigation will be required to determine whether this is 



due to differences in plasmid copy number, in expression efficiency, or in choice of 

antibiotic resistance. 

Contrasting results were obtained for bacteria transformation with pQBIT7GFP 

and pMMBGFP, proving the necessity of constructing broad-host-range GFP expression 

vectors. P. putida SM1396 was derived from P. putida KT2442 by inserting a T7 

polymease gene into the genome (Christensen et al., 1996; Nieto et al., 1990). Therefore 

if pQBIT7GFP could be introduced into P. putida SM1396, GFP should be transcribed 

by T7 polymerase. But transformation of P. putida SM1396 with pQBIT7GFP was 

unsuccessful. In contrast, P. putida KT2442 was transformed with pMMBGFP to 

produce green fluorescence. These results indicated that pMMB67EH-derived construct 

is necessary and sufficient for expressing GFP in P. putida. 

Many wild type bacteria are not easily transformed by standard protocols used 

successfully for laboratory strains. In many cases additional and often more extreme 

manipulations are required to achieve reasonable transformation efficiencies. In these 

investigations E. aerogenes and R. sphaeroides proved to be the most difficult species to 

transform. The observed transformation efficiencies were on the order of l d  CFUIpg 

DNA for EaR and lo3 for RsG, compared to lo9 for E. coli electroporation. Improved 

transformation efficiency was obtained for Ea with pMMBGFP by adding a -80°C pre- 

chilling incubation before and a heat-shock step after electroporation (see methods). 

Profound temperature changes can cause altered distribution of membrane lipid, which 

may improve uptake of plasmid DNA. Post-electroporation heat shock may help to 

inhibit host restriction modification systems (Van der Rest et al., 1999; Farinha and 

Kropinski, 1990). Improved transformation efficiency was observed for R. sphaeroides 



by adding PEG6000 to coprecipitate DNA (Fornari and Kaplan, 1982) during CaCl2-heat 

shock procedures. It is noteworthy that pMMBGFP is mobilizable, due to the presence of 

MobABC genes on pMMB67EH (Furste, 1986). Therefore, more bioremediative 

bacterial species may be transformed in the future by conjugation instead of 

electroporation. 

A second critical concern in measuring protistan bacterivory is whether the 

biomarkers used to label bacterial prey cells alter the suitability of those organisms as 

food for the grazing protists. In a previous investigation Sherr et al. (1 987) compared 

growth rates of protistan predators fed on a diet of DTAF labeled vs. unlabeled prey cells 

(Sherr et al, 1987). Similar growth rates were interpreted to indicate equivalent suitability 

of different prey categories as food for the grazing protists. In this investigation, long- 

term monitoring of changes in predator density demonstrated that, at least at the predator 

and prey densities observed, fluorescent protein expression labeled EaG and EaR 

supported growth rates for Hflag that were statistically indistinguishable from those 

produced by wild type Ea (Figure 5). While this type of experiment demonstrates that 

labeled and unlabeled prey are equally suitable food sources under the given conditions, 

it does not directly measure prey preference or factors that may be related to predator and 

prey density. For example, when prey density is growth limiting or when prey are 

available in large excess, differences in prey suitability or predator preference on predator 

growth rates may be masked. Measurement of clearance rates of prey cells at various 

levels of dilution provides a more direct and comprehensive approach to assessing prey 

preference and suitability for grazing protists. 



In this investigation we have attempted to address these issues by using multiple- 

color in vivo labeling of prey species combined with real-time monitoring of prey 

clearance rates at various prey densities. This allows simultaneous monitoring of 

differently labeled prey cells of the same species, giving direct estimates of the effect of 

labeling on prey suitability and predator preference. The same methods can be used to 

assess differences in predator preferences for differently labeled prey of different species. 

Reciprocal labeling experiments, e.g. comparison of the labeled prey combinations such 

as EaG + EcR vs. EcG + EaR, can also help to reduce artifacts resulting from differences 

in detection efficiency of differently labeled prey types. To our knowledge, only two 

species have been reported previously to express RFP (E. coli and P. fluorescens). 

The LIVE methods developed here may have broad applications including 

bacteria dispersion control, community composition analysis, symbiosis studies and 

many other tracking purposes aside from monitoring the effects of predation on 

bioremediative bacteria. For instance, Bloemberg et al. (2000) used chromosome labeling 

to express GFP, RFP, YFP (Yellow Fluorescent Protein) and BFP (Blue Fluorescent 

Protein) in P. fluorescens for multi-color imaging to monitor movement of bacteria of 

different origins along tomato seedling roots (Bloemberg et al., 2000). 

BFP and YFP are potentially useful for study protistan bacterivory by microscopy 

in addition to GFP and RFP. However, it is noteworthy that BFP requires W excitation, 

which is not the common wavelength range for single-laser flow cytometers. The spectral 

separation between GFP and YFP is less than that between GFP and RFP; therefore more 

signal crosstalk should be expected for flow cytometry. 



LIVE method may be used in the future to link directly monitoring of the fate and 

effectiveness of bioremediation bacteria. As more pathways of biodegradation become 

known, the genes and regulatory pathways linked with bioremediation will be 

determined. Fluorescent protein expression can be engineered to reflect regulation or 

expression of bioremediative pathways. For example GFP coding sequences could be 

inserted downstream from the promoter that is specifically activated during 

bioremediation, or fused with enzymes responsible for a given reaction. In this way it 

may be possible to monitor protistan grazing and biodegradative metabolism 

simultaneously, providing a better understanding of the fate of bioremediative bacteria in 

the environment. 



In.  FLOW CYTOMETRY BACTERIVORY ASSAY 

Abstract 

To evaluate these methods, ten grazing trials were conducted using Hflag as a 

model predator in microcosm experiments in which predator and prey cells were 

introduced in known quantities and monitored by flow cytometry over time courses 

ranging from 0-180 min. Various bacterial and eukaryotic prey types were added 

individually or in combination. These included both unlabeled cells of several prey 

species and prey cells that were fluorescence-labeled either by a traditional chemical 

method (DTAF) or by LIVE GFP or RFP plasmids. Clearance rates and size distribution 

were estimated for prey cells and cell density and accumulation of fluorescence in food 

vacuoles was monitored by optical properties observed using flow cytometry. 

Hflag was found to prefer LIVE-labeled bacteria to Micromonas pusilla prey and 

the preference is not due to difference in prey cell size. Grazing preference within a 

single prey species is size-related, as the shift in size distribution suggested. Comparisons 

of protistan grazing on DTAF-stained bacteria, LIVE-labeled bacteria and unstained wild 

type bacteria suggested that Hflag select against DTAF-stained bacteria. 

Introduction 

LIVE-FCM (Labeling by In Vivo Expression and Flow Cytometry) has numerous 

applications for studies of microbial ecology and modeling of protistan bacterivory. 

However, the applications developed and described here have been limited by the narrow 

range of excitation wavelengths that can be generated and emission wavelengths that can 

be detected by the available flow cytometer. The argon laser employed by the FACScan 



(488 nm blue laser) can only modestly excite wild-type GFP (Lybarger et al., 1999). 

However, the GFP gene on pQBIT7GFP (sgAFP) is a red-shifted variant (474 nm 

excitation maximum and 509 nm emission), which is efficiently excited by the 488 nm 

blue laser. In addition, sgAFP is claimed to be the brightest available GFP variant and the 

only red-shifted variant with a Stoke's shift greater than 30 nm - the minimum separation 

of emission from excitation wavelength recommended for easy visualization (QBiogene 

product online literature, available at http://www.qbiogene.comlliterature/maps/pdflmap- 

pQBI-T7-GFP.pdf). Finally, GFP emission (509 nm) matches the FACScan FL1 channel 

(510-525 nm). Therefore, the spectral properties of GFP are suitable for flow cytometry 

detection. For example, it has been demonstrated that GFP-labeled Pseudomonas 

Jluorescence A506 cells can be detected using flow cytometry (Tombolini et al., 1997). 

The FACScan is less well suited for detection of RFP. Strong RFP fluorescence 

can be picked up by flow cytometer channel FL2 (585121 nm) but its excitation 

maximum of 558 nm is distant from the 488 nm blue laser of FACScan. An alternative 

light source such as a green laser would better excite the RFP fluorophore resulting in 

more sensitive detection. This is especially necessary for species with lower RFP 

expression levels and species in which fluorophore development is slow. 

Flow cytometry analysis and data processing can be easily automated. Compared 

with microscopy, the power of flow cytometry analysis comes from its capability to 

measure multiple parameters simultaneously and from the high operating speed of flow 

cytometers for particle analysis. The FACScan is capable of detecting lo3 particIes/sec 

and rapidly generates data files, which may be analyzed later with computer programs 

available for different operating systems. For example, WinMDI can be used on a PC for 



batch processing of the large amount of data with features such as colored 2D regions for 

easier gate specification, log normal statistics, file name increment, and plain text output 

of collective statistical data for each sample (http://facs.scrivps.edu/software.html). 

Various parameters of protistan bacterivory can be calculated based on flow 

cytometry data. The dominant hypothesis currently used to describe bacterivory states 

that the frequency of prey encounters is the speed-limiting factor for protistan grazing on 

bacteria, i.e., the extent and magnitude of bacterivory'by a single predator depends 

directly on prey density at a given moment. Prey density time curves, therefore, should be 

simulated to the kinetics of first-order reactions (Vazquez-Dominguez et al., 1999; 

Kinner et al., 1998; Sherr 1986). In this investigation the grazing rate (GR) was 

calculated according to the following formula: 

GR=ln(No/NT)/MT 

where N is density of prey cells, M is density of predator cells and T is elapsed time. For 

prey species that display rapid production or high mortality it is necessary to subtract 

background prey growth and non-grazing death from the apparent clearance rates to 

obtain accurate estimates of clearance due to bacterivory. These values can be estimated 

from prey densities in control flasks lacking predator cells. 

The heterotrophic flagellate Paraphysomonas imperforata (Hflag) was selected as 

the model predator in the grazing experiments because Hflag cultures can be easily 

maintained in the lab and the size of Hflag cells make them easily distinguishable from 

prey cells. Choice of prey was based on several factors. K. pneumoniae and E. aerogenes 

are commonly used in laboratory settings as food organisms for protists like Hflag. 

(O'Kelly, personal communication). Micromonas pusilla (abbreviated Mp hereafter) was 



chosen to represent a non-bacteria prey since previous experiments showed that Hflag 

preferred M. pusilla to 2 other species (Synechococcus spp. and Pycnococcus provasolii) 

and fluorescent microspheres (Sieracki and Cucci, unpublished). 

Materials and Methods 

Filtered Sea Water (FSW) was obtained from the Center for Culture of Marine 

Phytoplankton in Boothbay Harbor, Maine. Phosphate Buffered Saline (PBS) was 

prepared as follows: 8.0 g NaCl, 0.2 g KCl, 1.44 g Na2P04 and 0.24 g KH2P04 were 

dissolved in 800 ml distilled H20; and adjusted to pH to 7.4 with HCl. The volume was 

adjusted to 1 L with distilled H20 followed by sterilization. Carbonate-bicarbonate buffer 

(0.1 M, pH 9.5) was prepared by dissolving 2.93 g NaHC03 1.59 g Na2C03 in 1000 ml 

dH20, adjusting pH to 9.5 followed by sterilization. 

A FACScanTM flow cytometer (Becton Dickinson Inc., Franklin Lakes, NJ) 

equipped with a 15mW argon laser at 488 nm and three-color fluorescence (510-525 nm; 

560-590 nm; >650 nm emissions) is driven by CellQuest software installed on a Power 

Macintosh 8500. 

Micromonas pusilla IB4 was maintained in f/2 mineral media at 21°C with 12 h 

light-dark cycling. Hflag was maintained either in L1 mineral media or organic media at 

21°C in the dark. Cultures were transferred to new media and fed with E. aerogenes 

every 30 days. Ten-day old protist cultures were used in bacterivory experiments. 

DTAF staining was preformed according to Vazquez-Dominguez et al. (1999). 

Bacterial cells in mid-log phase culture (O.D. -0.6) were harvested by centrifugation at 

6000xg for 3 min, and washed twice by a pipetting basic phosphate buffered saline (0.05 

M Na2HP04-0.85% NaCl adjusted to pH 9.0) of equal volume. Cells were then resuspend 



in PBS at lo9 cells/ml, added with DTAF to the final concentration of 200pg/ml, and 

incubated in 60°C water bath for 2 h. Stained cells were washed by centrifugation at 

3600xg for 3 min and resuspension with 0.1 M pH 9.5 carbonate-bicarbonate buffer for 6 

times. Cell clumping was minimized by vigorous vortexing. 

Bacterial cells in mid-log phase culture (O.D. -0.6) were harvested and washed 

twice (by centrifugation at 6000xg for 3 min and pipetting filtered seawater (FSW) of 

equal volume), and diluted to 1:1000 with FSW. One milliliter diluted bacterial cells 

were mixed with 50 ~ 1 3 7 %  paraformaldehyde, kept in a 1 Sml eppendorf centrifuge tube 

at 4 "C in the dark for 30 min, then mixed with 10 p1 Pico Green stock solution 

(Molecular Probes, Inc, Eugene, OR) and stained in the dark at room temperature for 15 

min. 

Before grazing analysis, bacteria density was determined and detector settings 

were optimized for each bacterial strain in pure culture using the FACScan. Briefly, 

cultured bacteria were washed twice with PBS and twice with FSW by centrifugation at 

6000xg for 3 min, resuspended into FSW of equal volume, transferred to lOml glass 

tubes which were then mounted onto FACScan. For all the following experiments, the 

threshold was set to SSC at 150. The voltages (amp gain) were set to EOO for FL1 (1.0), 

300 for SSC (1.0), 550 for FLl, 520 for FL2, and 550 for FL3. Sample flow rate was 10 

pYsec. 

Bacterivory assays were performed in 25 ml filtered seawater in 100 ml tissue culture 

flasks with the following steps: 



1. One milliliter 10-days old Hflag culture was pipetted to a 1 Om1 FACScan sample tube 

and the density of Hflag was counted on FSC-SSC scattergrams. Dilutions for treatment 

flasks were calculated to reach lo5 Hflaglml in experimental flasks. 

2. Prey cells were washed with FSW for 5 times (by centrifugation at 5000xg for 3 min 

followed by resuspension), diluted with FSW (1:100 for Pico green stained bacteria, 

1:100000 for LIVE-labeled bacteria, and 1:10000 for DTAF-stained bacteria) and 

counted on FL1-FSC scattergrams. Dilution rates were calculated to reach -lo6 prey 

cells/ml in experimental flasks. 

3. Flask setup (in order): 

4. Each experiment was done in at least triplicate. Bacteria prey cells were added to the 

Treatment 
Experimental flask 
No prey control 
No predator control 

experimental flasks at time 0. The mixture was incubated in the dark at room temperature 

for time intervals specified in individual experiments. At each sampling time point the 

Table 3. Composition of microcosms for flow cytometetric bacterivory experiments. 

FSW 
+ 
+ 
+ 

flask was mixed thoroughly and aliquots of 0.5 ml were transferred from each flask to a 

10 ml FACScan sample tube. Tubes were weighed before and after mounting onto 

Hflag 
+ 
+ 
-- 

FACScan to determine the flow-through volume. Each tube was sampled was for 3 min 

Prey 
+ 
-- 
+ 

to record light scatter and fluorescence signals for particles in the sample. 

Flow cytometry data were saved as FCS2.0 list mode files by CellQuest, 

transferred to a PC and read by WinMDI Flow cytometry Interface (Joseph Trotter of the 

Scripps Research Institute, unpublished). Numbers of all cell population at each sampling 

time was exported to Excel files and plotted with the charter tools therein. Prey and 



predator regions were specified on scattergrams and used to gate histograms to produce 

plain text readouts. WinMDI output was analyzed by GR to calculate grazing rates and 

signal kinetics (see Chapter IV). ANOVA was used to calculate probability (P) value for 

statistically significant difference in grazing rates in dilution experiments, and Student's 

t-test (paired) was used for non-dilution experiments if there were more than one prey 

species. 

Results 

The GFP signals for all green transformants tested were easily detected by the 

FACScan flow cytometer using the FL1 channel. However, of the three RFP 

transformants confirmed by epifluorescence microscopy (EaR, EcR, and PpR), only EcR 

produced sufficiently strong signal to be distinguished from background noise in FL2 

channel. 

Among experimental prey types tested, those that produced detectable fluorescent 

signal could be distinguished from other, differently labeled prey types and from predator 

cells by analysis of scattergrams comparing fluorescence, forward scattered and side 

scattered light signals. For example, Figure 6 demonstrates resolution of a mixed 

population of Hflag, EcR and EaG. The Hflag population could be distinguished from the 

bacteria prey populations by examination of the FSCISSC signals. This reflects the 

significant difference in sizes and surface properties observed between predator and prey 

cells. Prey cell types could also be distinguished from one another. EcR has higher light 

scatter signals than EaG, in accordance with its larger size. However, these two 

populations overlapped in size distribution and so could not be distinguished by FSCISSC 
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separation alone. However, they were easily distinguished by their different fluorescence 

signals. 
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Figure 6. Flow cytometry data scatter gram generated by FACScan and displayed 
by WinMDI flow cytometry interface. Three populations of microbes in the same 
sample were labeled H for Hflag, R for EcR and G for EaG 

The prey cell density counts of EaG and EcR were shown in Figure 7. Densities 

of the prey species were plotted against grazing time. The control densities in flasks 

without Hflag remained stable (less than 5% variation from initial values) during the 

experiment time course. In contrast, the density of EcR and EaG showed exponential 

decay over time with grazing by Hflag. For the experiment represented by Figure 7, the 

grazing rates for EaG and EaR were 0.203 and 0.271 n l - ~ f l a ~ " - h " ,  respectively (see 

Table 4). 
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Figure 7. Relative densities of EaG and EcR under Hflag grazing for a time series. 

Various experiments were performed to examine grazing by Hflag on different 

prey species (discussed in detail in the next section). In all experiments significant 

grazing effects were observed. Grazing rates were calculated according to the 

aforementioned formula for each flask and time interval. Grazing rates remained 

consistent within individual experiments, i.e., within a given sample, grazing rates 

remained statistically unchanged for all time intervals examined up to 180 min. The 

average grazing rates and standard deviations are listed in the following table: 



Table 4. Grazing rates calculated from various bacterivory experiments. The 
numbers in brackets are stand deviations. Experiments labeled with an asterisk 
were dilution experiments. For dilution experiments, each column showed the 
dilutions of tracer prey species used for different flasks. For all other (non-dilution) 
experiments each row showed the prey species present in the same grazing flasks. P 
stands for probabilities of prey indiscrimination. Abbreviations for prey species are 
the same as mentioned in Chapter I, in addition, 10%G stands for EaG diluted to 
10:100 with wild type E. aerogenes; 1%G, EaG diluted to 1:100 with wild type E. 
aerogenes; EcRD, DTAF-stained EcR; EaD, DTAF-stained wild type E. aerogenes; 
10%D, EaD diluted to 10:100 with by wild type E. aerogenes; 1%D, EaD diluted to 
1:100 with wild type E. aerogenes. 

The change in fluorescent intensity from an average protist food vacuole during 

experiment time courses was examined (Figure 8). EaD, PpG and EcR fluorescence 

showed significant accumulation during the time series. DTAF-fluorescence continued to 

increase during grazing for 135 min, while the signals from samples with GFP and RFP 

appeared to reach an asymptote by about 90 min. EaG, EcG and Mp fluorescence from 

Hflag food vacuoles did not show such an increasing trend, probably due to low GFP 

expression levels and small cell volumes. 
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Figure 8. Time-curve of protist food vacuole fluorescence. Normalized FL signals 
(FL1 for EaD and PpG, FL2 for EcR, each using 135 min readings as 100% for each 
fluorophore) were plotted against time. 

Effects of protistan grazing on size distribution prey populations in real-time were 

significant. An example is illustrated in Figure 9 in which the effect of grazing by Hflag 

on prey size disribution for two prey species was examined. Changes in average prey cell 

size could be inferred for the remaining prey population after grazing as reflected by 

changes in FSC over given time intervals. For PpG a significant shift toward larger cell 

sizes was observed in the surviving prey population during each grazing interval. The 

mean size for consumed prey cells as inferred by the shift in FSC signals were 

significantly smaller than the mean size of remaining prey cells for all intervals. And 

consumed prey for the first two intervals (0-45min and 45-90 min) was significantly 

smaller than that for the third interval (90-135 min). No significant changes in inferred 

size distribution were observed after grazing by Hflag on E. aerogenes or other prey 

species. 
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Figure 9. Time kinetics histograms of PpG and EaG forward scatter signals. Left 
panels showed mean FSC signals of prey population for a time series with (green 
bars) or without (blue) Hflag grazing. Red bars in the right panels showed the 
inferred mean FSC signals of prey cleared by Hflag between time points. 

Discussion 

In order to obtain accurate estimates of protistan bacterivory on bioremediative 

bacteria, it must be demonstrated that 1) predators successfully consume labeled prey, 2) 

labeled prey can be distinguished from unlabeled cells, differently labeled cells, 

inanimate particles and non-prey cells, 3) changes in predator and prey populations can 

be determined quantitatively and in real time, and 4) labeled prey are viable and no 

comparative preference is observed for labeled vs. unlabeled (wild-type) prey cells. 



Furthermore, to realistically model predator-prey relationships, such as prey preference, it 

must be possible to differentially label prey types and to obtain simultaneous 

determinations predator and prey densities and other parameters in controlled microcosm 

experiments containing predators and mixed prey types. LIVE-FCM was used to perform 

grazing trials (Table 4) in attempt to more closely satism these ideal requirements for a 

bacterivory assay system. 

The conclusions of the trials were discussed briefly here in the order of their 

appearance in Table 4, and explained in rest of discussion in the order of their importance 

regarding the Hflag grazing study. Trial 1 and 2 demonstrated that it is possible to 

measure grazing by Hflag on two type of prey cells, bacteria genetically modified to 

express GFP in vivo (EaG) and a eucaryotic prey species that expresses a detectable 

endogenous red fluoresence due to the presence of naturally occurring pigments (Mp), 

quantitatively and in real time using LIVE-FCM. Trial 3 showed that grazing on these 

two prey types can be introduced in combination to be measured simultaneously and that 

the predator Hflag demonstrates significant preference for the bacterial prey over the 

eucayotic prey cells of similar size. Trial 4 and 5 demonstrated preference for a bacterial 

prey species over the eukaryotic prey regardless of the fact that the average size 

distribution of the bacterial prey is larger than the preferential prey size for this predator, 

which caused a significant shift in overall size distribution of prey cells. Trial 6 indicates 

that GFP and RFP LIVE plasmids can be used to distinguish bacterial species and to 

determine grazing rates for each in mixed prey microcosms. Trial 7 showed that no 

difference is observed in grazing rates of Hflag for a single bacterial species (E.coli) 

whether LIVE-labeled with GFP or RFP. Trial 8 and 9 suggested that a commonly used 



chemical labeling method (DTAF) results in decreased grazing rates when compared to 

either LIVE-labeled or unlabeled wild-type prey cells of the same species. Last but not 

least, Trial 10 indicated that no difference is observed between protistan grazing rates for 

GFP LIVE-labeled prey cells and unlabeled wild-type prey cells of the the same species. 

Information obtained from these trials can be classified into the following aspects 

that elucidate important features of Hflag bacterivory: 

1) LIVE vs. DTAF labeling 

Trial 10 was designed to examine whether GFP labeled EaG could be ingested as 

fast as wild type E. aerogenes prey. In the set of dilution experiments, the portion of 

fluorescently-labeled bacteria prey varied from 1% to 100% of total. Because grazing 

rates are equivalent to the volume of medium a single protist cell clears within a unit of 

time, the dilution experiments should give similar results for different ratios of labeled 

prey, if there is no preference for or against it. EaG dilution experiments confirmed that 

Hflag does not differentiate between Ea and EaG, since the grazing rates for loo%, lo%, 

I % tracer experiments were the similar (0.594+/-0.15, O.592+/-0.26 1 and 0.609+/-0.285, 

respectively, ANOVA P=0.99). 

However, EaD dilution experiments (Trial 9) showed that Hflag prefers Ea to 

EaD (DTAF-stained E. aerogenes) with apparently higher grazing rates for lower tracer 

proportion. The following is the relevant GR output (each dilution treatment is presented 

in-the following format: number of replicates * mean grazing rates +/- c.v.): 

1% : 6 * 1.55 +/- 0.542 vs. 100% : 6 * 0.841 +/- 0.291 Student's t-test P=O.O19 

10% : 5 * 1.33 +/- 0.405 vs. 100% : 6 * 0.841 +/- 0.291 Student's t-test P=0.045 

ANOVA : FP=0.03549 



This result suggested that Hflag selected against DTAF-stained E. aerogenes, which may 

cause underestimation of protistan bacterivoxy. 

More evidence for Hflag selection against DTAF-stained bacteria comes from the 

direct comparison of grazing rates in Trial 8 (Table 4). The dilution experiments were 

designed because there is no efficient flow cytometry method to enumerate wild type 

bacteria cells in real time within a dense background of non-living particles. If all the 

prey species are fluorescent, they can be separated, counted and compared against each 

other directly. Pairwise t-test used in such experiments is more powerful than pooled t- 

test comparison and ANOVA used in dilution experiments. For example, comparison 

between EcR and EcG (Trial 7, p=0.48), and between EcR and EaG (Trial 6, p=0.15) in 

the same grazing systems gave no significant difference in grazing rates. However, when 

EcR and EcRD (DTAF-stained EcR, Trial 8) were mixed as prey, Hflag again showed 

clear preference of the former (p=0.007). We chose EcR for simultaneous comparison of 

grazing on FP-labeled and DTAF-labeled tracer, because active EcR cells have a strong 

FL2 signal, while DTAF-stained EcR (DTAF-EcR) fluoresce in green but a majority of 

the cells were killed by heat-treatment and maintained weakened red fluorescence. This 

pair provided prey of exactly the same strain with different spectrum. 

Sherr et al. (1987) showed that DTAF-stained FLB could support predator's 

growth similar to unstained bacteria. This is from the grazer's point of view, however. 

There is no guarantee that chemically stained and unstained bacteria are consumed at the 

same rates, which is a more important issue concerning the effect of bioremediation. 

Unfortunately, in several cases artifacts of chemical staining have been observed. 

Christoffersen et al. (1997) examined protist food vacuoles with immunofluorescence 



labeling after bacteria ingestion and found ingestion rates were substantially higher for 

living bacteria than for FLB. This is in accordance with the hypothesis that selective 

grazing of the more actively growing cells helps explain the ability of slow-growing cells 

to persist in bacterioplankton assemblages (Sherr et al., 1992). Therefore, observation of 

bacteria in predator food vacuole and bacteria at large suggest that DTAF-staining 

increases the proportion of inactive prey cells and artificially lowers overall bacterivory 

measurement. Moreover, compared to DTAF-stained FLB, bacterivorous ciliates showed 

significantly higher grazing rates on bacteria stained with CTC, which stains vital 

bacteria at room temperature (Epstein and Rossel, 1995). Combined CTC-DTAF staining 

also proved that DTAF-staining heat-kills most bacteria (Vishvesh et al., 1999). These 

observations, as well as our results, make the use of DTAF in bacterivory experiments 

questionable when bioremediation is involved, which depends on the growth and active 

metabolism of bioremediative bacteria. 

There are several possible explanations for the lowered grazing rates of DTAF- 

stained bacteria. DTAF can stain dead bacteria but GFPIRFP expression is restricted in 

living-cells, which were more motile and more frequently grazed upon (Verity, 1991). 

DTAF-staining procedure may also chemically alterred prey cells to the extent that 

affected Hflag physiologically to cause selection against DTAF-stained prey. DTAF- 

staining may boost the nutrient value of prey cells and fulfill protists' need for digestible 

elements. Further investigation is needed to examine these possibilities. 

Figure 8 showed that DTAF, as a covalently bound chemical stain; accumulates 

faster and stayed fluorescence longer than fluorescent proteins. Apparently, fluorescence 

from in vivo-expressed proteins is affected by protist digestion. And digestion capacity 



does contribute to grazing preference, such as differentiation in environmental 

elimination of enteric bacteria (Iriberri et al., 1994). RFP is more resistant to 

photobleaching, and more stable in a low pH environment (Frandkov et al., 2000; 

Geoffrey et al., 2000; Yang et al., 1996). This is consistent with our observation that RFP 

fluoresced longer than GFP-labeled prey in Hflag food vacuoles. Though less suitable for 

long time experiments without sample fixation, fluorescent proteins are less likely to 

cause adversary effects for grazers than chemical stains that is not as readily digested. 

2) Prey type vs. prey cell size 

Analysis of how prey cell size affect protistan bacterivory was based on FSC 

signals, which is proportional to particle size and can be used to infer comparative 

differences in cell sizes for prey cell populations. By correlating the FSC signal with the 

fluorescence signal for each particle counted, it is possible to determine size distributions 

for each differently labeled prey types in a mixed prey population. Changes in prey size 

distribution over a time series can then be used to infer the mean size of the cells that 

were consumed during a given time interval. 

In order to use LIVE-FCM to distinguish between effects of prey type and prey 

size on grazing preference it is important to determine that this labeling method does not 

alter prey size. In these experiments no difference was observed between GFPIRFP- 

expressing bacteria and wild type bacterial cells of the same species. This is in agreement 

with the results of Tombolini et a1 (1997), who expressed GFP in Pseudomonas 

fluoresces A506 and found no change in its size and surface granularity as indicated by 

FSC and SSC signals, respectively. 



Prey size and shape have been considered to be the primary determinants for 

protistan grazing preference (Hahn and Hofle, 1999; Kinner et al., 1998; Simek and 

Chrzanowski ,1992). Two different roles of prey cell size concerning protistan grazing 

preference between prey species and within prey species were evident in Trial 3 and 5. 

The results indicated that, at least for Hflag, prey type may supercede prey size as 

a criterion for determing prey preference. Both EaG, which is similar in size to M. 

pusilla, and PpG, which is larger than M. pusilla, are consumed preferentially to M. 

pusilla. Hflag grazing on M. pusilla was suppressed by coexistance with either EaG or 

PpG, as indicated by the weakly significant difference in Mp grazing rates between Trial 

2 and 3 (P=O. 10). On the other hand, no significant difference existed for Hflag grazing 

on EaG (P=0.825) and PpG (P=0.263) in the presence or absence of M. pusilla. 

Flow cytometry bacterivory experiments recorded detector signals along a time 

series, therefore it's possible to subtract information obtained at one time point from 

another, producing time kinetics of the corresponding property. In grazing trials 4 and 5, 

analysis of changes in prey cell size distribution over a time series demonstrated that PpG 

cells consumed by Hflag were significantly smaller than the average for the total PpG 

population. Therefore, the mean size of consumed cells and the average size of the PpG 

cell population remaining after predation increased significantly over the time course of 

the grazing experiment. No significant size preferences were observed for the smaller 

prey species Ea and Ec, suggesting that the size range of PpG included cells larger than 

the prefered size range for Hflag thus smaller PpG cells were preferentially removed by 

grazing pressure. 



3) Predator conditions 

Grazing rates by Hflag on EaR showed great amount of variance between 

different batches and culturing media. Hflag batch 1 & 2 in table 4 are cultured with 

organic media, which gave much lower grazing rates than Hflag cultured on mineral 

media (comparing Trial 1 vs 10, and 6 vs 7). Variations in Hflag grazing may also be 

attributed to possible nutrient and antibiotic carry-over from prey enriching media or 

staining buffer to the grazing system. Heteronanoflagellates are sensitive to various 

antibioitics such as penicillin and chloramphenicol (Sherr 1986). Therefore it's important 

to wash cultured bacteria exhaustively before mixing them with grazers. Sufficient 

washing also helps reduce nutrient carry-over to the oligotrophic grazing system 

(Vazquez-Dominguez et al., 1996). Considering the potential effect of pollutants and the 

procedures of bioremediation on protists, the variables influencing bacterivory on the part 

of protists need to be studied in the future as thoroughly as those of prey bacteria. 

Overall, bioremediation-related bacterivory experiments by LIVE labeling and 

flow cytometry showed several advantages over previous methods. First of all, a flow 

cytometer sample takes at most 3 min to run through, much faster than any microscopic 

or imaging analysis. Second, a flow cytometer detects and correlate scattered light signals 

and fluorescence and multiple wavelength simultaneously. Third, no sample fixation or 

addition of secondary reagent is required for GFPIRFP flow cytometry, allowing real 

time examination of live prey. Furthermore, information processing for flow cytometry 

results is much more easily automated (Chapter IV). Therefore, LIVE-FCM method is 



promising for extensive protistan bacterivory analysis, including factors rarely studied 

such as temperature, light intensity, liquid flow, etc. 

There are certain pitfalls in application of flow cytometry for bacterivory analysis. 

Flow cytometry methods are not applicable for measuring consumption rates of attached 

bacteria. And it is noteworthy that in some cases attached bacteria or biofilms are 

selected for bioremediation purposes (Holman et al., 2002; Campell et al., 2001). 

Another limiting factor is that prey and predator must be be of sufficiently different size 

(FSCISSC signals), if they don't have distinct fluorescence properties. The light sources 

of flow cytometers are of limited ranges of wavelength, impeding detection of RFP in our 

experiments, as well as GFP variants of other colors that may be used in the future. 



IV. INFORMATION PROCESSING USING PERL 

After discussing the results of data analysis the GR program provided, this 

chapter will concentrate on the functional features of the program itself. GR was 

originally created with Perl 5.0 on Solaris. Since Perl interpreters for many operating 

systems are available, GR can be easily ported to other platforms such as Linux, 

windows', Macintosh, etc. The purpose of GR is to manipulate statistics data created by 

flow cytometry software (see Appendix I for program source code). 

File Types Used by GR 

Two types of files are required to use GR: 

1. An experiment file (.exp suffix is optional) is an original statistics file created by flow 

cytometry software. At this time the preferred way to create such a file is through a 

histogram window within WFI (Figure 10). WFI has the powerful feature of filename 

incrementldecrement that allow easy scanning through data series for the same 

experiment and combining the statistic output. In order to keep the original experiment 

readouts, experiment files should be set read-only and not modified after scanning 

through the file series. The following is an example of the plain text read-outs: 

Multiple Document Interface for Flow Cytometry 

WinMDI Version 2.8 - Windows 3.95lDOS 7.10 

I There are two problems with GR running on a Windows PC: 1). Perl programs conflicts with McAfee on 

a PC with a floppy drive. The first GR user input triggers visiting of the floppy drive and returns hardware 

failure messages. Therefore McAfee should be terminated before starting GR; 2). System complains with 

"Bad command or file name" but GR functions normally when PATH environment variable does not cover 

all system command directories. 



Mon Oct 01 15:45:43 2001 

Gates: R1 

Project: Experiment: 

File: Expt 1 Bin.OO 1 Sample: Control#l T=Omin 

Date: 18-Oct-0 Parameters: 5 

Total Events 14880 Gated Events 7 0.05% 

System: Log Parameter Means: Arithmetic 

Param name Events %Total %Gated Median Mean CV Peak,Value 

FSC- 7 0.05 100.00 259.46 293.18 122.45 1,582.942 

SSC- 7 0.05 100.00 203.51 359.21 83.03 1,991 .046 

FLl- 7 0.05 100.00 1.19 1.26 2728.38 2,l 

FL2- 7 0.05 100.00 1.10 1.32 3093.35 1,1.91095 

FL3- 7 0.05 100.00 1.8 1 4.10 3920.1 1 1,9.64662 

2. A Volume file (.vol suffix is mandatory) is a read-only file recording volume of the 

sample used in the flow cytometry run-through. Volume files are necessary for flow 

cytometers that cannot measure sample liquid volume automatically. Lines in the file 

should include a sample name and its volume data separated by a blank space. 
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Figure 10. Experiment files were created within WFI histogram window. 

Four types of files can be generated by GR: 

1. GR Data file (.grd) is saved during a GR session if modifications on the data need to be 

kept permanently (since the original experiment files are read-only). Both modified 

experiment sample readouts statistics and volume data can be saved in data files that are 

rewritable. The format is similar to that of an experiment file without excessive 

headlines. A user can open a data file in a text editor and add comment lines starting with 

an l l # ' l .  

2. Log file (grlog) is generated during the first use of GR and appended every time GR is 

used. Grlog is used to record data modifications and program output, which should not be 

tampered by users. In some cases grlog format is modified from actual GR to 



accommodate text cut-and-paste from grlog. Handling of grlog is operating system 

specific in order to keep grlog read-only. 

3. GR rate file (.grr) contains the results of grazing rates calculation and can be reloaded 

to GR for further statistical comparison. Rate files can also be generated manually. Each 

line contains a calculation condition (before a colon) and a grazing rate , as shown by the 

following example: 

4. GR macro file (grmacro) records all user input in a GR session, which can be or 

slightly modified and used for input redirection for repeated data analysis. For example, 

the following is the macro used to calculate grazing rates in Trial 8 in Table 4: 

Y 
q 
4 
5 
Ida 
ldbt 
ldc 
ldd 
lde 
0-90 
3 
ldbactcontrola 
ldbactcontrolb 
ldbactcontrolc 



ecr 
d ta f  

Instructions for Using GR 

GR provides context-sensitive help information. By typing '!' at a user input 

prompt, GR will give specific directions. Typing 'gr -h' will print the content of this 

chapter as the general help information. 

GR is started by typing "gr" on the command line (see next section for optional 

arguments). The first time GR is used, it tries to determine what operating system it is 

running on and what choices the user might have to run GR (whether running a pre- 

compiled version or using Per1 interpreter). Then GR enters the normal main function 

loop by showing the following menu: 

Select: 

1 to load flow cytometry readout or grazing rates data; 

2 to annotatelanalyze loaded data; 

3 to do statistic and time kinetic analysis; 

4 to calculate grazing rates; 

5 to compare pre-computed grazing rates; 

6 to quit. 

The term "session" is used hereafter to indicate the interval between starting GR 

and terminating it (by choosing '6' on the main menu, pressing "Ctrl-C", or issuing Unix 

'kill' commands). After starting a GR session, the first step a user should always take is to 

choose 1 from the menu to load data files. If extension names are omitted, files are 



matched in the following order: GR data files (.grd), experiment files (.exp), volume files 

(.vol) and GR rate files (.grr). Volume files should be loaded after the corresponding 

sample readout files (.exp or .grd). Using Per1 associative array, GR stores sample data 

into a hierarchy of Sample => Gate (including 'VOLUME') => Parameter (detector 

channels) => Statistics term (Figure 11). To confirm data loading and avoid redundancy, 

GR will report how many samplelgate combinations or sample volumes it reads from 

loaded files. The bacterivory assay is based on a time-series of samples, therefore GR 

requires the sample names to be suffixed with a time label "T=xxxMIN", such as 

"EAGMPT=45MINW (grazing sample for EaG and M. pusilla at 45 min). Non-time- 

labeled sample names will generate warnings, but still read into memory during loading 

step. 

GR data tree 

Sample 

Figure 11. GR internal organization of flow cytometry sample readout data. 



The user can now restructure data by choosing 2 from the main menu, which will 

give a data submenu: 

Select again: 

A: alias samplelgate; 

B: browselmidifj data; 

D: delete data; 

L: list sample names; 

S: save modified data; 

U: undo modifications; 

Q: quit to upper level. 

These menu items are self-explanatory. If the user does not yet have an overall 

picture of data quality, helshe can choose 'B' to browse data. GR will prompt for sample 

name pattern, gate name pattern, parameter name and statistical term to match data 

item(s) be displayed. A full sample name allows GR to determine and display all of its 

available gates. Alternatively, partial sample pattern even Per1 Regular Expression 

(RegExp) can be used to indicate a pool of samples (Wall et al., 1996). For example, 

using I.' to match all available samples. A prompt for a gate pattern can be similarly 

handled with the caution that RegExp control characters such as "+" and "*" should be 

escaped by prepending a backslash ('9"). Parameter names and statistical terms must be 

exact matches. If only one data item matches user specification, GR will give the option 

to change the value of that item. Data modifications are necessary only when volume is 



not properly recorded with data, or as a result of WFI malfunction in rare cases, therefore 

GR does not allows massive data modification. 

To use more intuitive terms, the user may also choose to alias certain sample or 

gate name(s). The original samplelgate patterns and new patterns specification can use 

RegExp. After aliasing the original data can be deleted by choosing 'Dl from data 

submenu to reduce the size of GR data files. GR keeps tracks of all data modifications for 

the current session. All modified or deleted data can be recovered using the undo function 

before this GR session is terminated. 

Comparison of flow cytometry signals between samples of different treatment or 

different time points can reveal important features of protistan grazing. Designed for such 

comparisons, GR main menu item '3' will generate the statistics submenu: 

Select again: 

M: detector signal comparison; 

T: time kinetic analysis; 

Q: quit to upper level. 

Choose 'MI to compare the mean values of a parameter (detector) between 

samples, which should be specified in the same way as data browsing steps ('2'->'B') 

mentioned above, except that the statistic term is fixed to be 'MEAN'. Two-tailed 

Student's t-test and ANOVA (Analysis of Variation) are used to detect significant 

difference. Comparisons are done at two levels: first a sample mean comparison is 

performed between each pair of samples, and then user-defined sample sets are compared 

to each other. The degree of freedom is determined by 'EVENTS' terms of the 



corresponding samples for sample mean comparison, and by the number of samples in 

each set for sample set comparison. Detector signal time kinetics is calculated by 

choosing 'T' in the sub menu, for which GR will ask for sample pattern, gate pattern and 

time ranges. This calculation uses 'MEAN' and 'EVENTS' terms for samples at different 

time points to find shifting in signal distributions as a result of protistan grazing during 

the interval. 

After data reorganization and statistical analysis, the user can start rates 

calculation by choosing '4' on the main menu. GR will prompt for number of treatment 

replicate, treatment sample time-series names (i.e., name without time labels shared by all 

samples of the same time series) and time ranges to be used for rates calculation. Next 

GR asked for specification of prey control flasks in the same manner, if the user specifies 

that the number of prey control replicates is larger than 0. Then the user is asked to 

designate calculation model, predator gate and prey gate names. These names are either 

exact matches, or set to default "exponential", "PREDATOR" and "PREY", respectively, 

if they are omitted by pressing enter. If all time ranges are accepted, GR will handle 

deleted outlier time point samples by extending rate calculation according to availability 

of the time points before and after the deleted time point. 

The grazing rates are displayed in a table format and can be saved to a GR rate 

file. Average values and stand deviations of each row and column are appended, such as 

the following example: 



Preygate PREY 

AG 100%A AG 1 OO%B AG 1 OO%C 

0--5OMin 0.7 14 0.67 1 > 

50--103Min 0.504 0.423 0.613 

103--156Min 0.414 0.567 0.849 

TIME AVE. 0.544 0.554 0.73 1 

+/-S.D. 0.154 0.125 0.167 

SAMPLE - AVE+/-S.D. 

---> 0.692+/-0.030 1 

---> 0.5 13+/-0.0957 

---> 0.61+/-0.221 

---> 0.594+/-0.15 

By choosing '5' on the main menu, the user can compare rates either loaded 

previously or calculated during the current session. The grouping and statistical methods 

used are similar to sample mean statistics mentioned above. 

Command Line Arguments and Environmental Variables 

GR can take the following command line arguments: 

1 <file> immediately load the file after starting GR, the next word being the file name; 

p<os> specify current Operating System, must be the last argument in the first word; 

v perform per1 detection and display execution recommendations; 

w print warning information during data loading and manipulation operations; 

h print help information 

m write user input to m a c r o  for later user redirection. 

s<decimal> use a statisticly-significant probability level other than 0.05. 

GR gathers information from these optional environment variables: 

USER used only on Microsoft operating systems for logging purpose; 



GROS operating system specification, may be overwritten by command line 

option p; 

PATH used as the last resort to discern current operating system; 
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APPENDIX: Source code of GR 
#!/usr/local/bin/perl 
use POSIX qw(f1oor log10 atan); 
@options=@ARGV; 
undef @ARGV; 
#Some pecularities occurred during user input if @ARGV persists because 
Perl considers arguments to be filenames by default. 
if ($options [0] =-/h/i) {&help ( )  ; } 
$os="Unknown"; 
if (Soptions [O] =-/p ( [ "\s] +) $ / )  
~$os=$l;$options[Ol=-s/p$os//;) 
if ( ! -f 'grlog') 
{if ($options [O] ! -/c/i) {$options [O]="c".$options [0] ; ) 
if($options[O]!-/v/i) {$options[O]="v".$options[0];) 
1 

if ($options [O] =-/v/i) 
{$perlver='perl -v'; 
if (Sperlver eq I )  

{print "Perl interpreter detection failed. You have to use this 
compiled GR program.\nW; 

1 
else 
{$perlver=-/This is perl, ([version\ \d\.\ - ]+)built for 

( ["\nl +) /;$os=$2; 
print "You have Perl$1($2) installed. GR recommends you to get the 

source code and interpret it by Perl for better performance and maximal 
flexibility.\nV; 

1 
if (Soptions [OI ! -/c/i) {exit; ) 
1 

if ($os eq 'Unknown' ) 
{$perlver='perl -v'; 
if($perlver=-/This is perl, ([version\ \d\.\-]+)built for 

( ["\nl+) / )  {Sos=$2; 1 
1 

if($os eq 'Unknown' & &  $ENV{'GROS')!=") {$os=$ENV{'GROS');) 
if ($os eq 'Unknown' ) 
{Spath=$ENV{'PATH1); 
if ($path=-/\\/) {$os="MSWinl'; } 
else {$os="Unix";) 
1 

#Four ways to determine operating system with their priority order: 
option p; perl -v output; GROS environment variable; PATH variable 
format. OS determination is important for proper file privilege 
settings. 
@grtime=localtime (time) ; 
$grtime[5]+=1900; 
Sgrtime [4]+=l; 
if (Sgrtime [2] <lo) {Sgrtime [2] ="Ow. $grtime [2] ; ) 
if (Sgrtime [l]<lO) {$grtime[l]="O".$grtime [1] ; } 
if ($grtime[Ol <lo) {$grtime[O]="O".$grtime [O] ; ) 
if ($grtime[8]) {$DST="DST";) 
$fdlogtemp="LOGGED AT $grtime[2]".":".$grtime[l].":".$grtime[O]." $DST 
ON ".$grtime[4] ."/".$grtime[3] ."/".$grtime[5] . "\nW; 
if ($os=-/MSWin/) 
{if (-f "grlog") {system ("attrib -r grlog") ; ) 



$gruser=$ENV{'USER1}; 
if($gruser ne " )  {$gruser=" BY $gruserW;}; 
$grpath='cd';chomp Sgrpath; 
if($grpath ne " )  {$grpath=" IN Sgrpath";}; 
$fdlogtemp.="$gruser$grpath"; 
1 

else 
{if(-f "grlog") {system("chmod u+w grlog");} 
$gruser='who am i';$gruser=-s/[\ \t]{l,}/\ /g; 
chomp Sgruser; 
$grpath='pwd'; 
$fdlogtemp.="BY Sgruser IN Sgrpath"; 
1 

if($options[O] ne "){$fdlogtemp.=" WITH OPTIONS: @optionsw;} 
$fdlogtemp.="\n"; 
if(!open(fdlog,">>grlog")) {print "Unable to open logfile!\nW;exit;} 
else {print fdlog Sfdlogtemp;} 
#Writing a session head to grlog. 
if($options[O]=-/l/i) {$select='L';} 
print "\'GR -h\' for general help information. ' ! I  for context- 
sensitive help.\nW; 
if ($options [O] =-/rn/i) 
{if(! open(fdmacr0, ">grmacro") 
{printoutput("Unable to write to grmacro!\nW); 
$macro=O ; 
1 

else {$macro=l;} 
1 

while (1) 
{if($select ne 'L') 
{printoutput("\nSelect:\ 

1 to load flow cytometry readout or grazing rates data;\ 
2 to annotate/analyze loaded data;\ 
3 to do statistic and time kinetic analysis;\ 
4 to calculate grazing rates;\ 
5 to compare pre-computed grazing rates;\ 
6 to quit.\n:"); 
$select=<>; 
print fdlog $select; 
printoutput ("\nW) ; 
if($macro) {print fdmacro $select}; 
1 

if($select==l I I $select eq "L") {&load();$select=l;} 
if ($select==2) (&data ( )  ; } 
if ($select==3) (&anal ( )  ; } 
if ($select==4) ( &calc ( )  ; } 
if($select==5) (%comparestatdata=%ratestatdata;&comp();} 
if ($select==6) 
{print fdlog "\nn; 
close fdlog; 
if ($macro) {close fdmacro; } 
if($os=-/~sWin/) (system('attrib +r grlog');} 
else {system('chmod a-w grlog');} 

#Keeping GRlog protected since users are not supposed to manually edit 
it. 
exit; 
1 



sub load0 
{ 
if ($select ne 'L' ) 
{printoutput ("Input file name ( .grd, .exp, .vol or .grr) : " )  ; 
$filename=<>; 
while (Sf ilename=-/\! / )  

{print "Enter a name of your GR data file, experiment file, volume 
data file or precomputed rate file. If you omit the extension name, GR 
will try to match it in the above order. Volume data take effect only 
for samples already loaded. Wildcards are not supported.\nW; 
print "Input file name (.grd, .exp, .vol or .grr) :"; 
$filename=<>; 
I 

print fdlog $filename; 
if($macro) {print fdmacro $filename;} 
I 

else {$filename=$options[l];} 
chomp $filename; 
printoutput ("\nW) ; 
if ($filename eq ") {return;} 
if ( !  -f $filename) 
Iif($filename!-/\.grd/ & &  -f $filename.".grdW) {$filename.=".grdW;} 
if($filename!-/\.exp/ & &  -f $filename.".exp") {$filename.=".exp";} 
if($filename!-/\.vol/ & &  -f $filename.".vol") {$filename.=".vol";} 
if($filename!-/\.grr/ & &  -f $f~lename.".grr") {$filename.=".grr";} 
1 

#GR tries to match extension names in order when they are omitted. 
if (!open(fdl, "<" .Sf ilename) ) 
{printoutput("Unable to open $filename!\nn); return; 
1 

if($filename=-/\.vol/) {&loadvolume();return;) 
if ($filename=-/\ .grr/) { &loadrate ( )  ;return; ) 
#Two variables to resolve statistic terms in an experiment file. This 
allows GR to adapt to different statfile.txt format. 
undef Sstatcount; 
undef %loadstat; 
$samplegatenum=O; 
$newsamplegatenum=O; 
$replacedsamplegatenum=O; 
$linenum=O; 
$paramindex=O; 
$newsamplenum=O; 
$paramnum=100; 
#Initializing various counters and data storage variables. 
while (<fdl>) 
{Slinenumtt; 
chomp; 
if(/"Volume\ of\ Sample\ (\St) \ : ( [\d\. It) / )  
{$volumesample=$l; 
${"Sample~".$volumesample}{1VOLUME')=$2; 
next; 
1 

if (/&Gates: \st (\St) / )  {$gate=$l;$gate=-tr/a-z/A- 
Z/;$gate=-s/\s//g;next;} 
if (/Parameters : \ (\dt) / )  { $paramnum=$l; $paramindex=O; next; } 



if (/Sample:\ ( . + ) / )  

~$~amp~e=$l;$samp~e=-s/\s+//g;$sample=-tr/a-z/~-~/;$samplegatenum++; 
if ($sample! -/T=\~+\s*MIN/ & &  $options [Ol =-/w/) 
{printoutput("\nWarning: Sample-$sample:Gate-$gate is not time- 

labled! " ) ; 
1 

#Sample names need to be time-labeled for kinetic analysis. 
if ( ! defined %{"Sample-". $sample. lllGate-vl. $gate} ) 
{$newsamplegatenum++;} 
else 
{if ($options [Ol =-/w/) 
{printoutput("\nWarning: Sample-".$sample.":Gate-".$gate." is 

replaced. 'I) ; 
1 

$replacedsamplegatenum++; 
1 

#Optional prompt for replicated samp1e:gate combinations. 
next; 
1 

if (/"Param name\s+ ["\s\, 1 + [\s\, I + / )  
{if(defined $statcount){next;} 
s/\%/PC/g;s/\,/ /g;tr/a-z/A-Z/; 
do 
{s/ (PARAM NAME\s+) ( LA\s1 +)  /$I/; 
$statcount++; 
$loadstat{$statcount)=$2; 
if($loadstat{$statcount) eq "GMEAN"){$loadstat{$statc~unt}=~~MEAN~~;} 
)while (/"PARAM NAME\s+ ["\sI + / )  ; 

next ; 
1 

#Resolving statistics terms such as percent total, mean, cv etc. 
if(Sstatc0unt & &  /A(\w~3~)\-*[\s\,l+[\d\.l+[\s\ll+[\d\.l+/~ 
{$paramindex++; 
$paramname=$l; 
s/\, / /; 
s/$paramname\-*//; 
$paramname=-tr/a-z/A-Z/;$paramname=-s/\s//g; 
for($statindex=l;$statindex<=$statcount;$statindex++) 
{s/\s+ ( [\d\. I +)  //; 

${"Sample-".$sample." - Gate-".$gate}{$paramname)=\%{"Sample - ".$sample." - 
Gate-".$gate."-Param-ll.$paramname}; 

if($paramindex==$paramnum) 
{${"Sample-".$sample}{$gate}=\%{"Sample - ".$sample."-Gate-".$gate}; 
$paramnum=100; 
if ( !  defined $samples{$sample}) 
{$~amples{$sample}=\%{~~Sample - "'.$sample); 
$newsamplenum++; 
1 

1 
next; 
1 

if($linenum!=l & &  (/Multiple/[ l eof fdll & &  !$paramindex) 



{${"Sample-". Ssample. "_Gate-".$gate} {qlvoid'v}=l; 
${"Sample-".$sample}{~void")=l; 
if($options[O]=-/w/) {printoutput("\nWarning: Sample-$sample:Gate- 

Sgate have void parameters!");} 
#Handling empty samp1e:gate combination. 

1 
if(/^\#/ I I /"Multiple\ Document\ Interface\ for\ Flow\ Cytometry/ 

I l/"WinM~1\ Version/ I I /^\w{3)\ \w{3)\ \d{2}\ \d{2}:\d{2):\d{2}\ 
\d{4}/ I I  /^Project:/ ( 1  /^Total\ Events/ I I /^System:/) {next;} 
else {printoutput("Unresolved data at line Slinenum: ".$-."\n");} 
1 

printoutput("\nRead Slinenum lines from $filename including\ 
Ssamplegatenum sample:gates\nof\ 
Snewsamplenum new samples\nand\ 
Snewsamplegatenum new sample:gates\nand\ 
Sreplacedsamplegatenum modified sample:gates.\n"); 
close fdl; 
1 

sub loadvolume ( ) 
{Slinenum=O; 
while (<fdl>) 
{Slinenumtt; 
chomp; 
if ( / ^  ( ["\tl +I \st ( [\d\. I / I  
{$volumesamplename=$1; 
$volume=$2; 
$volumesamplename=-tr/a-z/A-Z/; 
$volumesamplename=-s/\s+//g; 
if(! defined Ssamples{Svolumesamplename}) 
{printoutput("Svolumesamplename $volume is invalid at this 

time! \nu) ; 
next; 
1 

Ssamples~$volumesamplename}{~VOLUME'}=$volume; 
#Volume data should not precede its FCM data loading. 

1 
else 
{if ( / " \ # / I  {next; 1 
else{printoutput("Unresolved volume data at line Slinenum: 

". S-. "\n") ; 1 
1 

1 
printoutput("Read Slinenum lines from Sfilename.\nW); 
close fdl; 
1 

sub loadrate ( )  
{$linenum=O; 
while (<fdl>) 
{$linenurn++; 
chomp; 
if(/(SAMPLE-.+? - PREY - .+? - PREDATOR - .+?-FROM-\dt-TO-\d+-MIN):([ \-  
\d\ .el + )  / I  

{if(defined Sratestatdata{$l)) 
{printoutput("Rate data for $1 ignored.\nW); 
next; 



1 
#Replicated rate data discarded. 

else{$ratestatdata{$l}=$2;} 
1 

else 
{if ( / A \ # / )  {next; 1 
else{printoutput("Unresolved grazing rate data at li 

" . $-. "\nW ) ; } 
1 

1 
printoutput("Read Slinenum lines from $filename.\nW); 
close fdl; 
1 

sub data 0 
{while (1) 
{printoutput("\nSelect again:\ 

A: alias sample/gate;\ 
B: browse/modify data;\ 
D: delete data;\ 
L: list sample names;\ 
S: save modified data;\ 
U: undo modifications;\ 
Q: quit to upper level.\n:"); 
$select=<>; 
while($select=-/\!/) 
{print "You can list existent sample names, choose a sample to list 

available gates, then browse or modify specific data. You might want to 
alias sample patterns for easy identification, and gate names to 
default gates such as \"prey\" or \"predator\". You can also restore 
any changes with the 'U' option to selected data before quitting GR or 
further modifying them.\nYour choice:"; 
$select=<>; 
1 

#Context-sensitive help loop. 
print fdlog $select; 
if($macro) {print fdmacro Sselect;} 
chomp $select;$select=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
if ($select eq 'L') 
{printoutput("Sample name pattern:"); 
$samplepattern=<>; 
while ($samplepattern=-/\! / )  

t &help1 ( 1  ; 
print "Sample name pattern:"; 
$samplepattern=<>; 
1 

print fdlog Ssamplepattern; 
if($macro){print fdmacro Ssamplepattern;} 
chomp Ssamplepattern; 
printoutput ("\nV1) ; 

#User input should be free of white spaces. 
if($samplepattern eq "){next;} 
foreach Ssamplename (sort keys %samples) 
{if($samplename=-/$samplepattern/i) 
{print $samplename."\t"; 
print fdlog $samplename."\n"; 



1 
#Two different formats for display and storage output. GR tries to 
contain display to one screen and facilitate block copy of sample names 
from grlog. 

1 
printoutput ("\nW) ; 
1 

if ($select eq 'A') {&aliasing ( )  ; } 

if($select eq 'B') {&browsemodifyitem();} 
if($select eq 'Dl) {&delete();} 
if ($select eq 'S' ) {&save 0 ; 1 
if($select eq 'U') {&undoO;} 
if ($select eq 'Q' ) { return; 1 
1 

1 

sub browsemodifyitem() 
{&samplegatepattern(); 
if ($sgmatch==O) {return; } 
if ($gatepattern! -/VOL/i) 

{ printoutput ("Parameter name: (FSC, SSC, FL1, FL2, FL3, Tim) : " )  ; 
$param=<>; 
while($param=-/\!/ I I $param ne "\nW & &  $param!-/\w{3}/) 
{print "Parameter name must be an exact full match. Press enter to 

abort.\nm; 
print "Parameter name: (FSC, SSC, FL1, FL2, FL3, Tim) : "; 
$param=<>; 
1 

print fdlog Sparam; 
if($macro){print fdmacro Sparam;} 
chomp $param;$param=-tr/a-z/A-Z/;$param=-s/\s//g; 
printoutput ("\nW) ; 
if($param eq " )  {return;} 
printoutput("Parameter statistics 
(events, percenttotal,percentgated,median, mean, cv, peak, value) : 'I) ; 
$stat=<>; 
while($stat=-/\!/ I I $stat ne "\nW & &  $stat!-/\w+/) 
{print "Statistics term name must be an exact full match. If you 

specified mutiple mean data, you can perform statistics analysis on 
them. Press enter to abort.\nW; 
print "Parameter statistics 

(events,percenttotal,percentgated,median,mean, cv, peak, value) : "; 
$stat=<>; 
1 

if($macro){print fdmacro $stat;} 
print fdlog $stat; 
chomp $stat; 
printoutput ("\nW) ; 
$stat=-tr/a-z/A-Z/;$stat=-s/\s//g; 
if ($stat eq " ) {return; 1 
foreach $samplename (sort keys %samples) 
{if($samplename=-/$samplepattern/i) 
{foreach $gatename (sort keys %{$samples{$samplename}}) 
{if ($gatename=-/$gatepattern/i & &  defined 

$samples{$samplename}{$gatename}{$param}{$stat} ) 



Iprintoutput("$samplename:$gatename:$param:$stat=$samples{$samplename~ ( 
$gatename~{Sparam)($stat)\n"); 

1 
1 

1 
1 

I 
else 
{foreach Ssamplename (keys %samples) 
{if($samplename=-/$samplepattern/i) 
if ( ! defined $samples { Ssamplename} { $gatepattern) ) 
(printoutput("$samplename:$gatepattern is not present.\nW); 
return; 
1 

else 
~printoutput("$samplename:Volume=$samples{$samplename){~VOLUME')\n");) 

1 
1 

1 
if($sgmatch==l) 
{printoutput("Enter a new value if desired:"); 
$newvalue=<>; 
while($newvalue=-/\!/ I I Snewvalue ne "\nW & &  $newvalue!-/[\d\.]+/) 
{print "This value can only contain digits or a decimal dot. Press 

enter to skip.\nW; 
print "Enter a new value if desired:"; 
$newvalue=<>; 
1 

if($macro) {print fdmacro $newvalue;) 
print fdlog $newvalue; 
chomp Snewvalue; 
printoutput ("\nu) ; 
if ($newvalue=-/LA\d\.l/ I I Snewvalue eq " 1  
{printoutput("Original status retained\nn); 
return; 
1 

else 
{if($gatepattern!-/VOL/i) 

{$modified( 'Sample~'.Ssamplenametemp.~~Gate~'.$gatenametemp.~~Param~~.$ 
param.'~Stat~'.$stat)=Ssamples~$samplenametemp}{$gatenametemp){$param){ 
$stat ) ; 

$samples { Ssamplenametemp) { $gatenametemp) { $param) { $stat )=$newvalue; 
1 

else 

~$modified~'Sample~'.Ssamplenametemp.~~Gate~VOLUME')=$samples{$samplena 
metemp) {'VOLUME' ) ;  

$samples{$samplenametemp){'VOLUME')=Snewvalue; 
1 

1 
1 

#Modification is limited to one datum per operation. 
1 

sub aliasing0 



(&samplegatepattern(); 
if ($smatch==O) (return; ) 
printoutput("Samp1e name pattern aliased as:"); 
$aliassamplepattern=<>; 
while($aliassamplepattern=-/\!/) 
{&help1 0 ; 
print "Sample name pattern aliased as:"; 
$aliassamplepattern=<>; 
1 

print fdlog Saliassamplepattern; 
if($macro) (print fdrnacro $aliassamplepattern;) 
chomp Saliassamplepattern; 
printoutput ( "\nW) ; 
$aliassamplepattern=-tr/a-z/A-Z/; 
$aliassamplepattern=-s/\s+//; 
if (Sgatepattern ne ' ) 
(printoutput("Gate pattern aliased as:"); 
$aliasgatepattern=<>; 
while($aliasgatepattern=-/\!/) 
t &help2 0 ; 
print "Gate pattern aliased as:"; 
$aliasgatepattern=<>; 
1 
print fdlog Saliasgatepattern; 
if($macro) {print fdmacro Saliasgatepattern;) 
chomp Saliasgatepattern; 
printoutput ("\nW) ; 
$aliasgatepattern=-tr/a-z/~-~/;$aliasgatepattern=-s/\s+//; 
1 

#If gatepattern input is omitted, the user must want to alias certain 
sample names only. 
foreach Ssamplename (keys %samples) 
(if($samplename=-/$samplepattern/i) 
{$samplenametemp=$samplename; 
if(Saliassamp1epattern ne " )  

(if($aliassamplepattern=-/\$l/) 
{$patterntempl=$'; 
$patterntemp2=$'; 
$samplenametemp=-s/$samplepattern/$patterntempl$l$patterntemp2/ig; 
1 

#Per1 cannot properly handle "$1" within a variable. May extend to 
other RegExp predefinitions. 

else ($samplenametemp=-s/$samplepattern/$aliassamplepattern/ig;~ 
if(Sselect2 ne 'A') 
{printoutput("Alias Ssamplename as Ssamplenametemp ?(y for yes, a 

for 
all, any other key for no) : " I  ; 

$select2=<>; 
if ($macro) (print fdmacro Sselect2; ) 
print fdlog Sselect2; 
chomp $select2;$select2=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
1 

if(Sselect2 eq 'Y' I I $select2 eq 'A') 
{if(defined $samples($samplenametemp)) 
(printoutput("This sample name $samplenametemp already exist!\nM); 
next; 



1 
$modified{'Sample-'.$samplenametemp}='NULL'; 

#Save modification information for possible recovery. 
$samples { $samplenametemp}=$samples { $samplename } ; 
1 

1 
if($gatepattern ne " & &  Saliasgatepattern ne ' I )  

{foreach $gatename (keys %{$samples{$samplenametemp}}) 
{if($gatename=-/$gatepattern/i) 
{$gatenametemp=$gatename; 
$gatetnametemp=-s/$gatepattern/$aliasgatepattern/ig; 

#Gate pattern input must be RegExp-escaped! 
if ($select2 ne 'A') 
{printoutput("Alias $samplenametemp:$gatename as 

$samplenametemp:$gatenametemp ? (y for yes, a for all, any other key for 
no) : " I  ; 

$select2=<>; 
if($macro){print fdmacro Sselect2;) 
print fdlog Sselect2; 
chomp $select2;$select2=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
1 

if(Sselect2 eq 'Y' I I  $select2 eq ' A ' )  
{if(defined $samples~$samplenametemp){$gatenametemp)) 
{printoutput("This sample gate $samplenametemp:$gatenametemp 

already exist!\nW); 
next; 
1 

$samples { $samplenametemp} {$gatenaametemp) =$samples { $samplenametemp { $ga 
tename ) ; 

1 
1 

1 
undef Sselect2; 
1 

sub delete() 
{&samplegatepatternO; 
if(Ssamp1epattern eq " I I$smatch==O){return;) 
foreach $samplename (keys %samples) 
{if($samplename=-/$samplepattern/i) 
{if($gatepattern eq " 1  
{if($select3 ne 'A' & &  Sgatepattern eq " )  
{printoutput("Delete sample $samplename?(y for yes, a for all, any 

other key for no):"); 
$select3=<>; 
if($macro){print fdmacro Sselect3;) 
print fdlog Sselect3; 
chomp $select3;$select3=-tr/a-z/A-Z/; 
printoutput ( "\nW) ; 



if(Sselect3 eq 'Y' I I $select3 eq 'A') 
~$modifiedt'Sample~'.Ssamplename)=$samples{$samplename}; 
delete $samples{$samplename}; 
1 

1 
else 
{foreach $gatename (keys %{$samples{$samplename}}) 
tif($gatename=-/$gatepattern/i) 
{if ($select3 ne 'A') 
{printoutput("Delete $samplename:$gatename?(y for yes, a for all, 

any other key for no) : " )  ; 
$select3=<>; 
if($macro) {print fdmacro $select3;} 
print fdlog Sselect3; 
chomp $select3;$select3=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
1 

if ($select3 eq 'Y' I I $select3 eq 'A') 

{$modified{ 'Samp1e~'.Ssamp1ename.''~Gate~''.$gatename}=$samp1es{$samp1ena 
me } {$gatename} ; 

delete $samples{$samplename}{$gatename}; 
1 

1 
1 

1 
1 

1 
undef Sselect3; 
1 

sub undo ( )  
{if(! defined %modified) {return;} 
printoutput("~re you sure you want to undo the following changes?\nW); 
foreach Smodifieditem (keys %modified) 
{if ($select4 ne 'A') 
{$modifiedtemp=$modifieditem; 
$modifiedtemp=-s/ Gate-1-Param-I-Stat-/\:/g; 
$modif iedtemp=-s/Sample //; 
printoutput ("Restore $modif iedtemp=$modif ied($modif ieditem} ? (y for 

yes, a for all, any other key for no) : " )  ; 
$select4=<>; 
if($macro)(print fdmacro $select4;} 
print fdlog Sselect4; 
chomp $select4;$select4=-tr/a-~/~-Z/; 
printoutput ("\nV') ; 
1 

if(Sselect4 eq 'Y' I I $select4 eq 'A') 
{$restorevalue=$modified{$modifieditem}; 
if ($modifieditem=-/ ( .  +?)-Gate-( .+?)-Param-( .+?)-Stat-(. t) / )  
{$restoretemp=$samples{$1){$2}{$3}($4}; 
$samples{$1~t$2){$3}t$4}=$re~t0reva1ue; 
if($restorevalue eq 'NULL') (delete $samples{$l){$2}($3){$4);) 
1 

else 
{if ($modif ieditem=-/ ( .+?)-Gate-(. t) / )  

{$restoretemp=$samples{$1){$2); 



$samples { $1 } {$2} =$restorevalue; 
if(Srestoreva1ue eq 'NULL') {delete $samples{$1}{$2};} 
1 

else 
~$restoretemp=$samples~$modifieditem}; 
$~amples{Smodifieditem}=$re~toreva1ue; 
if ($restorevalue eq 'NULL' ) {delete $samples {Smodif ieditem) ; } 
1 

1 
$modified{$modifieditem}=$restoretemp; 
) 

) 
1 
#Recovery is carried out according to different hierarchy of involved 
data items. 

sub samplegatepattern0 
{printoutput("Sample name pattern:"); 
$samplepattern=<>; 
while($samplepattern=-/\!/) 

{ &help1 ( 1  ; 
print "Sample name pattern:"; 
$samplepattern=<>; 
1 

if($macro) {print fdmacro Ssamplepattern;} 
print fdlog Ssamplepattern; 
chomp Ssamplepattern; 
printoutput ("\nW) ; 
if($samplepattern eq ' I )  {return;} 
$smatch=O;$sgmatch=O; 
for Ssamplename (keys %samples) 
{if ($samplename=-/$samplepattern/i) 
{if ($options [O] =-/w/i) {printoutput ("Matching $samplename\tW) ; } 
$smatch++;$samplenametemp=$~amplename; 
1 

) 
if($smatch==O) {printoutput("Unmatched sample pattern!\nW);return;} 
if ($smatch==l) 
{printoutput ("Gate pattern ( " )  ; 
foreach $gatename (keys %{$samples{$samplenametemp~ 1 )  
{if ($gatename ne "void" & &  Sgatename ne 'VOLUME') 
{printoutput($gatename." " ) ;  

1 
1 

printoutput ( " )  " )  ; 
if(defined $samples{$samplenametemp}{'VOLUME'}) {printoutput or 'vol' 

for volume data : " )  ; } 
else {print ":";print fdlog " : " ; I  
1 

#List gates if only one sample name matches. 
if($smatch>l){printoutput("Gate pattern('volt for volume data if 
applicable) : "1 ; } 
$gatepattern=<>; 
while($gatepattern=-/\!/) 

{ &help2 ( 1  ; 



print "If your sample and gate names match only one present 
combination, you may be given the choice to alter it. However GR will 

one time.\nW; not allow massive modification of loaded data at 
print "Gate pattern :"; 
$gatepattern=<>; 
1 

if ($macro) {print fdmacro Sgatepattern; ) 
print fdlog Sgatepattern; 
chomp Sgatepattern; 
printoutput ("\nl') ; 
if($gatepattern=-/VOL/i) {$gatepattern='VOLUME'; 
foreach Ssamplename (sort keys %samples) 
{if($samplename=-/$samplepattern/i) 

{ foreach Sgatename (sort keys % { $samples { Ssamplename} } ) 
{if ($gatename=-/$gatepattern/i & &  $gatename ne 'VOLUME' I I 

Sgatename eq 'VOLUME' & &  Sgatepattern eq 'VOLUME') 
{if ($options [O]=-/w/i) 
{print "Matching $samplename:$gatename\t"; 
print "Matching $samplename:$gatename\t"; 
1 

$sgmat~h++;$gatenametemp=$gatename; 
1 

1 
1 

1 
1 

sub getparam ( ) 
{&samplegatepattern(); 
if($sgmatch<21 Isgatepattern=-/VOL/i) 
{printoutput("Designated patterns must match at least 2 

sample/gates!\n"); 
return; 
1 

printoutput ("Parameter name: (FSC, SSC, FL1, FL2, F L ~ ,  Tim) : " )  ; 
$param=<>; 
while($param=-/\!/ I I Sparam ne "\n" & &  $param!-/\w{3}/) 
{print "Parameter name must be an exact full match. Press enter to 

abort.\nW; 
print "Parameter name: (FSC,SSC,FLl,FL2,FL3,Tim):"; 
$param=<>; 
1 

print fdlog Sparam; 
if ($macro) {print fdmacro Sparam; } 
chomp $param;$param=-tr/a-z/A-Z/;$param=-s/\s/\s//g; 
printoutput ("\nu) ; 
if($param eq ' I )  {$sgmatch=O;} 
1 

sub anal ( )  
{while (1) 
{printoutput("\nSelect again:\ 

M: detector signal comparison;\ 
T: time kinetic analysis;\ 
Q: quit to upper level.\n:"); 
$select=<>; 
while($select=-/\!/) 



{print "Choose M to compare parameter readouts statisticly between 
certain sample/gate. Choose T to calculate changes between two time 
points in the same sample-time series by subtration. Both are based on 
mean, cv and events readout for different sample/gate 
cornbinations.\n:"; 
$select=<>; 
1 

print fdlog $select; 
if($macro){print fdrnacro $select;) 
chomp $select;$select=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
if ($select eq 'MI ) { &meancomparison ( 1  ; 1 
if($select eq IT') {&timekinetics();) 
if ($select eq 'Q' ) {return; } 
1 

1 

sub meancomparison ( )  

{ &getparam ( ) ; 
if($~gmatch<21I$gatepattern=-/vOL/i) {return;} 
undef %statdata; 
$stat='MEANV; 
foreach Ssamplename (sort keys %samples) 
{if($samplename=-/$samplepattern/i) 
{foreach Sgatename (sort keys %{$samples{$samplename}}) 
{if ($gatename=-/$gatepattern/i & &  defined 

$samples { Ssamplename 1 { $gatename } { $param} { $stat } ) 

$statdata~"$samplename:$gatename:$param:~$stat"}=$samples{$samplename){$ 
gatename}{$param}{$stat); 

1 
1 

} 
1 

cave ( )  ; 
printoutput("\nAveraget/-S.D.: %-6.2ft/-%-6.2f\nN,$ave,$sd); 
printoutput("\nIndividual T-test:\nW); 
&ttest ( )  ; 
printoutput ("\nANOVA: " )  ; 
&vtest ( )  ; 
%comparestatdata=%statdata; 
&comp ( 1  ; 
undef %statdata;undef %comparestatdata; 
1 

sub timekinetics ( )  
{ &getparam ( )  ; 
if($sgmatch<2ll$gatepattern=-/VOL/i){return;) 
$tkparam=$param; 
printoutput("Timepoints (<tl> <t2> ... ) : " ) ;  
$tp=<>; 
while($tp!-/\dt\s+\dt/ll$tp=-/\!/I 



{print "Use the numbers in the sample name time labels.\nTimepoints 
(<tl> <t2> . . . ) : "; 
$tp=o; 
1 

print fdlog $tp; 
if ($macro) {print fdmacro $tp; I 
chomp $tp; 
printoutput ("\n1I) ; 
@tp=split ( / \  /, Stp) ; 
printoutput ("Time\tV ; 
for($i=O;$i<=$#tp;$i++) {print "$tp[$il\t\tW;} 
printoutput ("\nW) ; 
undef %tk;undef etkstartsamp1e;undef @tkmean; undef etkinterval; 
foreach Ssamplename (keys %samples) 
{if($samplename=-/$samplepattern/i) 
{$samplenametemp=$samplename; 
$samplenametemp=-s/~=(\d+)~~~//;$t~temp=$l; 
for($i=O;$i<=$#tp&&$tp[$il!=$tptemp;$i++){}; 
if ($i>$#tp) {next; } 
if(defined $tk{$samplenametemp)) {next;} 
$tksamplename=$samplenametemp; 
if($samplenametemp=-/.(.{7))$/){$tksamplename=$l;} 
$tkgatematch=O; 
foreach $gatename (keys %{$samples{$samplename}}) 
{if($gatename=-/$gatepattern/i) 
{$tkgatematch++; 
printoutput("\n$tksamplename\t"); 
for ($i=O; $i<=$#tp;$i++) 

{ Stksample [$il =$samplenametemp. "T=I1. $tp [$i] . "M1N1'; 
if(! defined $samples{$tksample[$i]}{$gatename}{$tkparam}{'~E~~1)) 
{printoutput ("N/A\t\tI1) ;next; 
I 

$tkmean=$samples~$tksample[$il}{$gatename}{$tkparam){~MEAN'}; 
$tkmean[$i].="$tkmean "; 
printoutput ("$tkmean\t\t") ; 
1 

printoutput("\nEvents\t"); 
for ($i=O; $i<=$#tp; $i++) 
{if ( !  defined 

$samples{ Stksample [$i] ) { $gatename} {$tkparam) { 'EVENTS' 1 )  
{printoutput ("N/A\t\tl') ;next; 
1 

printoutput("$samples~$tksample[$il~{$gatename}{$tkparam}{~EVENTS'}\t\t 
" 1 ;  

1 
printoutput("\nInterval\t"); 
for($i=O;$i<$#tp;$i++) 
{$tkinterval="~ULL"; 
if ( !  defined 

$samples{$tksample[$il }{$gatename) {$tkparam { EVENTS } I I !  defined 
$samples{$tksample[$i+ll}{$gatename}{$tkparam}{'~~~~~s~}) 

{printoutput("%-6s\t\tW,"N/A"); 
next; 
I 



_~e~{$tksample[$i+ll}{$~atename){$tk~aram}{'MEAN' 
1 ) *$samples{$tksample [$i+l] } {$gatename) {$tkparam} { 'EVENTS' } /$samples{$t 
k ~ a m p l e [ $ i + l ] } { ' ~ ~ ~ ~ ~ ~ ' } -  
~ ~ ~ ( ~ s a m p l e s ~ $ t k ~ a m p l e [ $ i l } { $ ~ a t e n a m e } { $ t k p a r a m } { ~ M E ~ ~ ~ } ) * $ s a m p ~ e s { $ t k ~  
ample[$il ~ ~ $ g a t e n a m e ~ ~ $ t k p a r a m ~ ~ ' ~ ~ ~ ~ ~ ~ ' } / $ s a m ~ l e s { $ t k s a m p l e [ $ i ] } { ~ v o L u  
M E ' ~ ) / ( ~ s a m p l e s ~ $ t k s a m p l e [ $ i + l l ~ ~ $ g a t e n a m e } { $ t k p a r a m } { ' ~ ~ ~ ~ ~ S ~ } / $ s a m p ~ e  
s { $ t k ~ a m p l e [ $ i + l ] } { ' ~ ~ ~ ~ ~ ~ ' } -  
$samples{ Stksample [$il 1 { $gatename} { stkparam} { 'EVENTS' }/$samples {$tksamp 
le[$il }{'VOLUME')); 

$tkinterval=exp($tkinterval); 

$tkintervalratio= ($samples{ stksample [$i+l] } {$gatename} { stkparam) { 'MEAN' 
l+$samples{$tksample[$il}{$gatename}{$tkparam}{'~~~~'})/2/$tkinterval; 

if($tkintervalratio<0.5 I I 
$tkintervalratio>5) {$tkinterval="NULL1';} 
#artificial thresholds for outliers 

else {printoutput("%6.4g",$tkinterval);} 
1 
printoutput("\t\tW); 
$tkinterval[$i].="$tkinterval "; 

1 
printoutput ("\nW) ; 
1 

1 
if(Stkgatematch1 {$tk{$samplenametemp}++;} 
1 

1 
printoutput("\nAverage for 
$samplepattern:$gatepattern:$tkparam\nTime\t"); 
for($i=O;$i<=$#tp;$i++) {print "$tp[$i]\t\tW;} 
printoutput("\nMean\t"); 
for ($i=O; $i<=$#tp; $i++) 
{undef %statdata;undef %tkmean; 
@tktemp=split ( / \  /, Stkmean [$i] ) ; 
for($j=O;$j<=$#tktemp;$j++) 
{$tkmean{$j}=$tktemp[$j]; 
1 

%statdata=%tkmean; 
Lave ( )  ; 

printoutput ("%-6,4g\t\t",$ave) ; 
1 

printoutput ("\n+/-S. D. \t") ; 
for($i=O;$i<=$#tp;$i++) 
{undef %statdata;undef %tkmean; 
@tktemp=split(/\ /,$tkmean[$i]); 
for ($j=O;$j<=$#tktemp;$j++) 
{$tkmean{$j }=$tktemp[$j]; 
1 

%statdata=%tkmean; 
Lave ( 1  ; 
printoutput ("%-4. 2g\t\t1', $sd) ; 
1 

printoutput ("\nInterval\t") ; 



for ($i=O; $i<$#tp; $it+) 
Iundef %statdata;undef %tkinterval; 
@tktemp=split(/\ /,$tkinterval[$i]); 
for($j=O;$j<=$#tktemp;$j++)(if($tktemp[$j] ne 'NULL' ) 
I$tkinterval{$j)=$tktemp[$j];)) 
%statdata=%tkinterval; 
&ave ( )  ; 
printoutput ( " % - 6 .  4g\t\t1', Save) ; 
1 

printoutput("\n+/-S.D.\t\t"l; 
for ($i=O; $i<$#tp; $i++) 
Iundef %statdata;undef %tkinterval; 
@tktemp=split ( / \  /, Stkinterval [$i] ; 
for ($j=O;$j<=$#tktemp;$j++) {if ($tktemp[$j] ne 'NULL' ) 
{Stkintervalt $ j )=$tktemp [ $  j ] ; ) ) 
%statdata=%tkinterval; 
&ave ( )  ; 
printoutput("%-4,2g\t\t",Ssd); 
1 

printoutput ("\nW) ; 
1 

sub save ( )  

{printoutput ("Save to data file (.grd) : " I  ; 
$f ilename=<>; 
while($filename=-/\!/) 

{print "You may omit the .grd extension. In Unix you can also skip 
the file name and save it to a hidden file.\nW; 
print "Save to data file (.grd) : "; 
$filename=<>; 
1 

if($macro){print fdmacro $filename;) 
print fdlog $filename; 
chomp $filename; 
printoutput ("\nW) ; 
if($filename!-/\.grd/i) {$filename.=".grdn;) 
if (!open (fdl, ">$filename") ) 
tprintoutput("Unab1e to write to $filename!\nW); 
return; 
1 

undef %entries; undef @entriesnt; 
foreach $samplename (keys %samples) 
Iif(defined $samples{$samplename}) 
Iif($samplename=-/T=\d+MIN$/) 

{ $samplename=-s/T= (\d+) MIN$//; 
$entries{$samplename).="$l "; 
1 

else {push(@entriesnt,$samplename);) 
1 

1 
undef @orderlist; 
foreach Sentryname (sort keys %entries) 
I@entrytime=sort I$a<=>$b) split(/\ /,$entries{$entryname)); 

foreach Sentrytp (@entrytime) 
{push (@orderlist, $entryname."T=". sentrytp. "MINv') ; ) 

1 
push (@orderlist, @entriesnt) ; 



#Make ordered sample name list to facilite future examination of GR 
data files. 
foreach Ssampleentry (@orderlist) 
{if (Ssampleentry eq 'void') (next;} 
foreach Sgateentry (keys %{$samples { Ssampleentry} } ) 
{if (Sgateentry eq 'void' I I ! defined 

$samples{ Ssampleentry} { $gateentry} ) {next; } 
if (Sgateentry! -/voL/~) 
{print fdl "Gates: $gateentry\nW; 
1 

else 
tprint fdl "Volume of Sample Ssampleentry 

:$samples{Ssampleentry}{~vo~~~~'}\n~'; 
next; 
1 

#Corresponding to statements in load() 
print fdl "Sample: $sampleentry\nW; 
Sparamnum=O; 
foreach (keys %{$samples{$sampleentry}{$gateentry}}) {$paramnum++;} 
print fdl "Parameters: $paramnum\nV; 
print fdl "Param name \tW; 
foreach Sstatentry (keys 

% ($samples{ Ssampleentry} {$gateentry} { 'FSC1 } 1 )  
(print fdl $statentry."\tW; 
1 

print fdl "\nW; 
foreach Sparamentry (sort keys %~Ssamples~Ssampleentry}{$gateentry}}) 
tprint fdl Sparamentry."-\t\tW; 
foreach Sstatentry (keys 

%~Ssamples~Ssampleentry}~$gateentry~~$paramentry}}) 
{print fdl 

$samples { Ssampleentry} { Sgateentry} { Sparamentry} { Sstatentry}. "\t"; 
1 

print fdl "\nW; 
1 

1 
1 

1 

sub talc() 
{foreach Sflask (",'PREY-CONTROL') 
{printoutput ("Number of Sf lask replicates : " )  ; 
$replicatetemp=<>; 
while(Sreplicatetemp=-/\!/ I I Sreplicatetemp ne "\nW & &  Sreplicatetemp 

! -/\d+/) 
{print "Please enter an integer. Or press enter to abort:"; 
$replicatetemp=<>; 
1 

if(Smacro){print fdrnacro Sreplicatetemp;} 
print fdlog Sreplicatetemp; 
chomp Sreplicatetemp; 
printoutput ("\nW) ; 
${Sflask.'replicate')=Sreplicatetemp; 

#Control replicate input can be omitted for uncontrolled grazing 
experiment 
if(Srep1icatetemp ne " & &  Sreplicatetemp !=O I [$flask eq ' I )  

t 



there: for($i=l;$i<=$replicatetemp;$i++) 
{if(! $flask) {printoutput("Replicate $i sample name pattern:");) 
else{printoutput("$flask Replicate $i sample name pattern:");) 
$samplepattern=<>; 
while($samplepattern=-/\!/) 
{&helpl0;printwMake sure this pattern matches only one sample name 

deprived of time label.\nW; 
print "$flask Replicate $i sample name pattern:"; 
$samplepattern=<>; 
1 

if($macro) {print fdmacro Ssamplepattern;) 
print fdlog Ssamplepattern; 
chomp Ssamplepattern; 
printoutput ( "\nW ) ; 
if (Ssamplepattern eq " ) {&myundef ( )  ; return; ) 
$samplenametemp="; 
foreach Ssamplename (keys %samples) 
{if($samplename=-/$samplepattern/i) 
{if(! defined $samples{$samplename}{~VOLUME')) 
{print "Volume data for Ssamplename is absent!\nW; 
&myundef ( )  ;return; 
1 

#Volume data is necessary to calculate densities. 
$samplename=-s/T= (\d+) MIN$//; 
$time=$l; 
if(Ssamp1enametemp eq ") {$samplenametemp=$samplename;} 
if($samplename!-/$samplenametemp/) 
{printoutput("$samplename and Ssamplenametemp share this pattern, 

please be more specific!\nW); 
&myundef ( )  ; $i=O; 
next there; 
1 

#Examination for replicate sample name redundancy. 
else 
{split(/\ /, ${$flask.'sampletimeseries~){$samplenametemp)); 
for ( $  - =0;$ <=$# ;$ ++) {if ( $  [ $  ]==$time) {next there; ) )  
$ {Sf lask. ~ ~ i r n e ~ ~ r n ~ i e a ~ ~ r e ~ a t ~ ~  )T$time} t+; 
${$flask.'sampletimeseries')(Ssamplenametemp).='$time "; 

1 
1 

1 
if(Ssamp1enametemp eq ") 
{printoutput("Unmatched $flask sample pattern, please try 

again ! \nW ) ; 
&myundef();$i=O; 
next there; 
1 

1 
foreach Ssamplename (keys %{$flask.'sampletimeseries')) 
{split(/\ /,$~$flask.'sampletimeseries~}{$samplename}); 
${$flask.'sampletimeseries~){$samplename)=join( I, sort {$a<=>$b} 

@-I ; 
${$flask.'sampletimeseries'){$samplename)=~ 

~.${$flask.~sampletimeseries~}{$samplename).~ I; 
1 

printoutput("Avai1able $flask time points:"); 



@{$flask.'timepoint'}=sort($a<=>$b) keys 
%{$flask.'timesampleaggregate'); 
foreach Stp (@{$f1ask.'timepoint'}){printoutput($tp."Min " ) ; )  
printoutput ( "\nW) ; 
do 
Iprintoutput("Pick $flask time range (<tl>-<t2>, press enter for 

all) : " )  ; 
$timerange=<>; 
while($timerange=-/\!/ I I Stimerange ne "\n" & &  $timerange!-/\d+\s*- 

\s*\d+/) 
{print "Please give two time values connected by a hyphen. Grazing 

rates calculation will be between these two time points only. Press 
enter to keep all time points.\nl'; 

print "Pick $flask time range (<tl>-<t2>, press enter for all):"; 
$timerange=<>; 
1 

if ($macro) {print fdrnacro Stimerange; ) 
print fdlog Stimerange; 
chomp Stimerange; 
printoutput ("\nW) ; 
if($timerange ne " 1  
{if ($timerange=-/ (\d+) \s*-\s* (\d+) / )  
{@timepointtemp=sort{$a<=>$b) ($1,$2); 
foreach Ssamplename (keys %{$flask.'sampletimeseries')) 

~if($~$f1ask.'samp1etimeseries'){$samp1ename}!-/\s$timepointtemp[01\s/l 
I${$flask.'sampletimeseries'}{$samplename}!-/\s$timepointtemp[l]\s/) 

{printoutput("$samplename does not fit this range!\nw); 
$timerange='NULL1; 
1 

1 
1 

else {$timerange='NULL';) 
1 
)while ($timerange eq "NULL") ; 

#If valid, ONLY those two selected time points are used in 
calculations. Invalid input causes maintenance of all available time 
points. 

if (Stimerange ne I )  

{@{$fla~k.~timepoint')=@tirnepointtemp; 
foreach Ssamplename (keys %{$flask.'sampletimeseries')) 
{${$flask.'sampletimeseriesl){$samplename}=' $timepoint[O] 

$timepoint [ll "; 
1 

1 
1 

1 
printoutput("Mode1 (1 for linear or any other key for exponential):"); 
$model=<>; 
while ($model=-/\! / )  
{printWLinear model assumes a constant predator ingestion speed while 

exponential model proportionate it to the density of available prey. 
The rate units are \"number of prey/(grazer*min)\" and 
\"ml/(grazer*min)\", respectively. Exponential model is the 
default. \nW; 
print "\nModel (1 for linear or any other key for exponential):"; 
$model=<>; 



1 
if($macro) (print fdmacro $model;} 
print fdlog $model; 
$model=-tr/a-z/A-Z/;chomp $model; 
printoutput("\nPredator Gate:"); 
$predatorgate=<>; 
while($predatorgate=-/\!/) 
(printnPredator gate should be an exact full match. Press enter if you 

have already aliased a \"predator\" gate. Perl RegExp control must not 
be escaped.\nW; 
print "\nPredator Gate:"; 
$predatorgate=<>; 
1 

if($macro) (print fdmacro Spredatorgate;} 
print fdlog Spredatorgate; 
chomp Spredatorgate; 
$predatorgate=-tr/a-z/A-Z/; 
if($predatorgate eq " )  ($predatorgate='PREDATOR';) 
printoutput("\nNumber of prey species:"); 
$preynumber=<>; 
while($preynumber=-/\!/ I I $preynumber ne "\nW & &  $preynumber!-/\d+/) 
(printNPlease enter a integer for the number of grazing rate tables to 

be generated. Any invalid input will default it to one:"; 
$preynumber=<>; 
1 

if ($macro) (print fdmacro Spreynumber; 1 
print fdlog Spreynumber; 
if ($preynumber<=O) ($preynumber=l; ) 
for($preycount=l;$preycount<=$preynumber;$preycount++~ 
(printoutput("\nPrey Spreycount Gate:"); 
$preygate=<>; 
while ($preygate=-/\ ! / )  
(printWPrey gate should be an exact full match. Press enter if you 

have already aliased a \"prey\"(\"prey2\" ... ) .  Perl RegExp control must 
not be escaped.\nV; 
print "\nPrey Gate:"; 
$preygate=<>; 
1 

if($macro)(print fdmacro Spreygate;} 
print fdlog Spreygate; 
chomp Spreygate; 
$preygate=-tr/a-z/A-Z/; 
printoutput ("\nW ) ; 
if ($preygate eq " )  

($preygate=($preycount==1?'PREY':'PREY'.$preycount);} 
$preygate [Spreycount] =$preygate; 
1 

@allsample=sort keys %sampletimeseries; 
undef %statdata; 
for($preycount=l;$preycount<=$preynumber;$preycount++~ 

( $pre ygate=$preygate [ $preycount ] ; 
printoutput("\nPreygate $preygate\n\n\t\tW); 
foreach $samplename (@allsample) 
($samplenametemp=$samplename; 
if($samplename=-/.(.{7})$/){$samplenametemp=$l;} 

#Peculiar things will happen if use $samplename=$l directly 
printoutput("%-7s\t",Ssamplenametemp); 



1 
printoutput("SAMPLE AVE+/-S.D.\n\nW); 
#Print output headline 
%sampletimeseriestemp=%sampletimeseries; 
#%sampletimeseriestemp will be altered during calculation, 
sampletimeseries is used to maintain the initial values. 
for ($i=O; $i<$#timepoint; $it+) 

{if($PREY-CONTROLreplicate>O) 

~$controlgr=O;$controlnum=0;$controlpredator=O;$controlpredatornum=O; 
foreach $controlsample (keys %PREY~CONTROLsampletimeseries) 
{$controlnum++; 
$splittemp=$~REY~CONTROLsampletimeseries{$controlsample~; 
$splittemp=-s/* //; 
@controltp=sort{$a<=>$b~split(/\ /,$splittemp); 
for($j=O;$j<=$#controltp & &  $controltp[$j]<=$timepoint[$i];$jtt){}; 
if ($j>Ol {Sj--; 1 

~controlstartdensity=$samples {$controlsample. "T=". $controltp [ $  j 1 . "MIN" } 
~ ~ ~ r e y g a t e ~ ~ ' ~ ~ ~ ' } { ' ~ ~ ~ ~ ~ ~ ' ) / S s a m ~ l e s { $ c o n t r o l s a m ~ l e . " T = " . $ c o n t r o l t p [ $ j  
]."MIN"}{'VOLUME'}; 

for ( $  j2=$#controltp; $j2>=0 & &  

Scontroltp [$j21 >=$timepoint [$it11 ; $j2--) { } ;  

if ($j2<$#controltp) {$j2++; } 

$controlenddensity=$samples {$controlsample. l'~=''. $controltp [ $  j2] . * f ~ ~ ~ * * }  { 
~ ~ r ~ ~ g a t e ~ ~ ' ~ ~ ~ ' l ~ ' ~ ~ ~ ~ ~ ~ ' ) / ~ s a m ~ l e s { $ c o n t r o l s a m ~ l e . ~ ~ ~ = ~ ~ . $ ~ ~ ~ t ~ ~ ~ t ~ [ $ j ~  
l . " M I N W } { ~ v o ~ ~ ~ ~ ~ } ;  

if ($j!=$j2) 
{$controlgr+=($model eq 'L')?($controlstartdensity- 

Scontrolenddensity) / ($controltp [$j2] - 
$controltp[$jl) :log($~~ntrolstartdensity/$controlenddensit~)/($con~~~~~ 
p[$j2]-$controltp[$j]); 

1 
else{$controlgr+=O;} 
if (defined 

$samples { $controlsam~le. 'IT=". $controltp [$j2] . "MINV1} { $predatorgate} { I F ~ C  

' 1  {'EVENTS'}) 

{ $controlpredator+=$samples { $controlsample. "T=". $controltp [ $  j2 I . "MIN"} { 
$predatorgate}{'~~~'}{'~~~~~~')jSsamples{$controlsam~le."T=".$controltp 
[$j21."MIN"){'VOLUME'); 

$controlpredatornumtt; 
1 

if (defined 
$samples{ $controlsample. 'IT=''. $controltp [ $  j ] . "MIN"} { $predatorgate} { 'FSCr 
}{'EVENTS1)) 



#Calculate control caliberation rates. If control samples do not exist 
for the current experiment time points, the encompassing control time 
points are used. 

if($PREY-CONTROLreplicate!=O) {$controlgr/=$controlnum;} 
if($controlpredatornum!=O) {$controlpredator/=$controlpredatornum;) 
printoutput ($timepoint [$i] . ' I--" .$timepoint[$itll ."Min\t"); 
foreach $calcsample (@allsample) 
do 
{$sampletimeseriestemp{ $calcsample}=-/"\ (\dt) \ (\dt) /; 
$tl=$l;$t2=$2; 
if ($tl<=$timepoint [$i] & &  $t2==$timepoint [$it11 ) 
~$sampletimeseriestemp{$calcsample}=-s/\ $tl//; 
$startsample=$calcsample. "T=". $t1. "MIN"; 
$endsample=$calcsample. "T=". $t2. "MIN"; 

~predatordensity=($samples{$startsample}{$predatorgate) {'FSC'){'EVENTS8 
1 /$samples I $startsample}{ 'VOLUME')+Ssamples ($endsample) { $predatorgate} { 
'FSC' 1 { 'EVENTS' 1 /$samples { $endsample} { 'VOLUME' 1 )  /2; 

Spredatordensity-=$controlpredator; 
$timelapse=$t2-$tl; 

$enddensity=$samples { sendsample } $preygate} ' FSC ' 1 { 'EVENTS' } /$samples { $ 
endsample} {'VOLUME'}; 

$gr= ($model eq 'L' ) ? (Sstartdensity- 
$enddensity)/($timelapse*$predatordensity):log($startdensity/$enddensit 
y) / ($timelapse* Spredatordensity) ; 

Sgr-=$controlgr/$predatordensity; 
$gr*=1000000; 

#Making grazing rates in the unit of microliter per grazer per minute. 
$samplerate{$t2}.=$gr." "; 
Stimerate($calcsample}.=$gr." "; 
$t2temp=$t2; 

{$preydiff{"SAMPLE ".$calcsample."-FROM-".$tl."-TO-'I.St2.l' - MINV')=$gr- 
$ratestatdata{"~~~F~~-" . $calcsample. "_PREY " . $preygate [l] ."-PREDATOR_". 
Spredatorgate. "-FROM-". $tl. " - TO - " . $t2. W-MIN~} 

1 
printoutput("%-6,3g\t",Sgr); 
1 

else 
{ i f ( $ t l > = $ t i m e p o i n t ( S i + l l  I I$tl==O&&$t2==0) 

{printoutput("xxxxxx\t");) 
#Experiment time points unavailable. 

else {if($t2>$timepoint[$itll) {printoutput("> \t");} 1 
#End time point extended to the next time range. 

1 

~while($t2<$timepoint[$itll&&$sampletimeseriestemp{$calcsample} !-/\dt/) 
1 

#Average and SD displayed on different lines for aesthetic purposes. 



printoutput("--->"); 
undef %statdata;undef @statdata; 
@statdata=split(/\ /,$samplerate{$t2temp}); 
foreach Sstatdata (@statdata) 
I$statdata{$statdata)=Sstatdata;} 

&ave ( )  ; 
printo~tput("%6.3g+/-%-6.3g\n~~,$ave,$sd); 
1 

printoutput("\nTIME AVERAGE\tW); 
undef %statdata;undef @statdata; 
foreach Sratesample (@allsample) 
{@statdata=split(/\ /,$timerate($ratesample}); 
foreach Sstatdata (@statdata) {$statdata($statdata)=Sstatdata;} 
&ave ( )  ; 
$timesd($ratesample}=$sd; 
printoutput (I1%-6. 3g\tW, Save) ; 
undef @statdata;undef %statdata; 
1 

printoutput ("--->") ; 
foreach Sratesample (keys %timerate) 
{push(@statdata,split(/\ /,$timerate{$ratesample})); 
1 

foreach $statdata (@statdata) {$statdata{$statdata)=Sstatdata;} 
&ave ( )  ; 
printoutput ("%6.3g+/-%-6.3gq1, $aver $sd) ; 
printoutput("\n+/-S.D.\t\t"); 
foreach Sratesample (@allsample) {printoutput("%- 

6.3g\t",$timesd{$ratesample});} 
printoutput("\n\nW); 
undef %samplerate;undef %timerate;undef %statdata; undef @statdata; 
1 

if ($preynumber==2) 
{%statdata=%preydiff; 
&ave ( )  ; 
$t=$ave/$sdm; 
$df=$count-1; 
&probt ( )  ; 
printoutput("\n\nProbability of indiscrimination between $preygate[l] 
and $preygate [2] : %-6.3g\n1I, $pt) ; 

1 
do 
(printoutput("De1ete rate data?(press enter to skip or specify a data 

pattern) : " )  ; 

$ratepattern=<>; 
while ($ratepattern=-/\ ! / )  
{print("The following rate data exist:\nW); 
foreach Sratesample (keys %ratestatdata) 
{printoutput("$ratesample: " ) ;  
printoutput("%-6.3g\n",Sratestatdata{$ratesample}); 
1 

print "You may substitute spaces for underscores, but the order of 
elements should be kept and Per1 RegExp escaped.\nW; 
print "Rate data pattern :"; 
$ratepattern=<>; 
1 

if($macro){print fdmacro Sratepattern;} 
print fdlog Sratepattern; 



chomp Sratepattern; 
printoutput ("\nW) ; 
$ratepattern=-tr/a-z/A-Z/; 
$ratepattern=-s/\s+/\ - /g; 
if($ratepattern ne ") 
{foreach $ratename (keys %ratestatdata) 
{if($ratename=-/$ratepattern/i) 
{printoutput("Delete $ratename="); 
printoutput("%-6,3g",Sratestatdata{$ratename)); 
printoutput("? (y for yes or any other key for no):"); 
$rateundefselect=<>; 
if($macro){print fdmacro Srateundefselect;) 
print fdlog Srateundefselect; 
chomp $rateundefselect;$rateundefselect=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
if($rateundefselect eq 'Y') {delete $ratestatdata{$ratename);) 
1 

1 
1 
)while($ratepattern ne "); 

#Rate data may be deleted to discard outlier. 
printoutput ("Save to rate file ( . grr) : " )  ; 
Sf ilename=<>; 
while($filename=-/\!/I 

(print "You may omit the .grr extension. Skip by pressing enter.\nW; 
print "Save to rate file ( .grr) : "; 
$filename=<>; 
1 

if($macro) {print fdmacro $filename;) 
print fdlog $filename; 
chomp $filename; 
printoutput ("\nW) ; 
if ($filename ne ' ) 
{if($filename!-/\.grr/i) ($filename.=".grr";) 
if ( !open (fdl, ">>$filename") ) (printoutput ("Unable to write to 
$filename!\nW);) 
else 
(foreach Srateentry (sort keys %ratestatdata) 
(print fdl "Srateentry:"; 
printf fdl "%-6.3gW,$ratestatdata($rateentry); 
print fdl "\n"; 
1 

1 
1 

close fdl; 
&myundef ( )  ; 

1 

sub myundef ( )  

(undef %timesampleaggregate; 
undef %PREY-CONTROLsampleaggregate; 
undef %sampletimeseries; 
undef %PREY CON~ROLsampletimeseries; 
undef %sampierate; 
undef %timerate; 
undef @allsample; 
undef %statdata; 



undef @statdata; 
undef %sampletimeseriestemp; 
1 
#Per1 global variable lifespan has to be addressed. 

sub ave ( 1  
{ 
$count=O;$sd=O;$ave=0; 
for Sstatsample (keys %statdata) 
{$count++; 
$ave+=$statdata{Sstatsample); 
$sd+=$statdata{ $statsample) *$statdata{$statsample) ; 
1 

if($count==O) (Save=-l;$sd=-1;return;) 
if ($count==l 1 ($sd=O; return; ) 
$ave/=$count; 
Ssd-=$count*$ave*$ave; 
$sd/=$count-1; 
$sd=sqrt (Ssd) ; 
$sdm=$sd/sqrt ($count 1 ; 
1 

sub ttest ( ) 
(undef %tested;undef %cv;undef %s;undef %n;undef %x;$sigdiff=O; 
for Sstatsample (keys %statdata) 
{if($statsample=-/([":I+): ([":I+) :([":I+): ([":I+)/) 

I $XI $statsample)=loglO ($statdata{$statsample) ) ; 
$n{$statsample)=$samples($l~ {$2 ) {$3) ( 'EVENTS' 1;  
ScvI$statsample)=$samples($l) {$2) { $ 3 }  { 'CV1 1;  
Ss~$statsample)=$cv{$statsample)/1OO*$x{$statsample); 
1 

1 
#Matching formats for individual parameter comparison 
for Sstatsample (keys %statdata) 
(if ($statdataI$statsample)=--/ (\d+) \ *  ( [\d\.e\-It) \ +  ( [\d\.e\-It) / )  
{$n{$statsample)=$l; 
$x{$statsample)=$2; 
$s{$statsample)=$3; 
1 

1 
#Matching formats for pattern-grouped comparison 
foreach $testsample (sort keys %statdata) 
(foreach Stestedsarnple (sort keys %statdata) 
{if($testsample ne Stestedsample & &  ! defined $tested{"$testedsample- 

$testsamplew) ) 
{$te~ted("$testsarnple-$testedsamp1e~~}=1; 
$dfl=$n($testsample)-l;$df2=$n($testedsample}-1; 
if($s{$testsample)==O I lSs{$testedsample)==O) (next;) 
else($f=$s{$testsample}**2/$s{$testedsample)**2;) 
&probf ( ) ; 
$k=O; 
if($fp>0.025 & &  $fp<0.975) 
~$df=$nt$testsample}+$n~$testedsample)-2;) 

else 



~df=floor(l/($k*$k/$n{$testsample)+(l-$k)**2/$n{$testedsample))); 
1 

#Determination of equal expected standard deviation between two groups 
for choosing degree of freedom. 

if($df1>50&&$df2>501 pk>O) 
($t=($x{$testsample)- 

Sx{Stestedsample) /sqrt ($s{ $testsample} **2/$n {$testsample}+$s{$testedsa 
mple)**2/$n{$testedsample)); 

1 
else 
{$t=($x{$testsample)- 

~x~~testedsample))/sqrt(($s{$testsample)**2*$dfl+$s{$testedsample)**2*$ 
df21/ ($dfl+$df2) * (l/$n{$testsample)+l/$n{ $testedsample) ) ) ; 

1 
if($t<O) {St=-St; ) 
&probt ( 1  ; 
$siglevel=0.05; 
if($options[Ol=-/s([\d\.l+)/) {$siglevel=$l;) 
if($pt<$siglevel) 
{$sigdiff++; 
printoutput("\n%-10s: ",$testsample); 
printoutput("%-6.39 * %-6.39 + / -  % -  

6.3g",$n~$testsamp1e),$~{$testsample),Ss~$testsam~~e)); 
printoutput("\tvs.\n%-10s: ",$testedsamplel; 
printoutput("%-6.39 * %-6.39 +/ -  % -  

6.3g",~n~$testedsamp1e),$~~$testedsam~1e),$s{$testedsamp1e)); 
printoutput("\n~~=%-5.29 \nN,$pt); 

#Per1 doesn't allow variables' appearance in format strings 
1 

1 
1 

1 
printoutput("\nT-test found no significant difference at 0.05% 
level ! \nV) if ! Ssigdiff; 
1 

sub vtest ( 1  
{for Sstatsample (keys %statdata) 
{if($stat~ample=-/([~:l+):([^:l+):([^:l+):([~:]+)/) 
~$x~$statsample)=loglO($statdata{$statsample)); 
$n{$statsample)=$samples{$1){$2){$3){~~~~~~~'); 
~cv~$statsample)=$samples{$1) {$2 ) {$3) { tCV' ) ; 
$s~$statsample)=$cv{$statsample)/100*$x{$statsample); 
1 

1 
for Sstatsample (keys %statdata) 
{if($statdata{$statsample)=-/(\d+)\*([\d\.e\-l+)\+([\d\.e\-]+)/) 
{$n{$statsample}=$l; 
$x{$statsample)=$2; 
$s{$statsample)=$3; 
1 

1 
$ssa=O;$sse=O;$totalx=0;$t0taln=0;$totals=0;$treatment=O; 
for Sstatsample (sort keys %statdata) 
{$treatment++; 
$totalx+=$x~$statsample}*$n{$statsample); 
$totaln+=$n{$statsample); 



sub probf ( )  
{$switch=O; 
if ($df l%2==l & &  $df2%2==1) 
{Stempq = $dfl*$f/ ($df l*$f+$df2) ; 
Stempsa = sqrt (Stempq) ; 
Stempsl = log (Stempsa) ; 
Stempca = sqrt(1-Stempq); 
Stempcl = log (sqrt (1-Stempq) ) ; 
Stempal = atan2($tempsa,$tempca); 
$fp=l-2*$tempa1/3.1416; 
$tempr=O ; 
if ($df2!=1) 
{$tempc=log(2*$tempsa/3.1416); 
$fp-=exp ($tempc+$tempcl) ; 
if ($df2!=3) 
($tempn=floor( ($df2-3)/2); 
for ($i=l; $i<=$tempn; $it+) 
{$tempx=2*$i+l; 
$tempr+=log ( (Stempx-1) /$tempx) ; 
$temprr=$tempr+$tempcl*$tempx+$tempc; 
if ($temprr>-78.4) {$fp-=exp (Stemprr) ; } 
1 

1 
1 

if ($dfl!=l) 
{$tempc=$tempr; 
if ($df2>1) {$tempc+=log($df2-1)) 
$tempc+=log(2/3.1416) + $temps1 + $tempcl*$df2; 
if ($tempt>-78.4) {$fp+=exp($tempc);} 
if ($dfl!=3) 
{Stempn =floor ( (Sdfl-3) /2) ; 
$tempr=O; 
for ($i=l;$i<=$tempn;$i++) 
{$tempx=$i*2+1; 
$tempr+=log( ($df2+$temp~-2)/$tempx); 
$temprr=$tempr+$tempsl*($tempx-l)+$tempc; 
if (Stempro-78.4) {$fp+=exp (Stemprr) ; } 
1 

1 
1 

return; 
1 



if ($df l%2==l & &  $df2%2==0) 
t $f=l/$f; 
$temp=$dfl; 
$dfl=$df2; 
$df2=$temp; 
$switch=l; 
1 

if ($dfl==O) {$dfl=l; ) 
if ($df2==0) {$df2=1; ) 
#to avoid log0 error 
Stempq = $dfl*$f/ ($dfl*$f+$df2) ; 
$tempql=log (Stempq) ; 
$fp=O; 
Stempc =log(l-$tempq)*$df2/2; 
if (Stempc>-78.4) {$fp =exp (Stempc) ; ) 
if (Sdfl != 2) 
{$tempn=floor ($df l/2-1) ; 
$tempr=O; 
for ($i=l;$i<=$tempn;$i++) 
{$tempx=2*$i; 
$tempr+=log($df2+$tempx-2)-log($tempx) + Stempql; 
if ($tempr+$tempc> -78.4) {$fp+=exp($tempr+$tempc);) 
1 

1 
if ($switch==l) (Sfp = 1-$fp;$temp=$dfl;$dfl=$df2;$df2=$temP;] 
1 

sub probt ( )  
I if ($t<O) { St=-St; ) 
$th=atan ($t/sqrt (Sdf) ) ; 
if($df==l) ($pt=l-$th*2/3.1416;return;) 
$sth=sin (Sth) ; 
$cth=cos ($th) ; 
$zz=l;$statcom=$zz; 
$statcomi= ($df %2==l) ?2 : 1; 
while (Sstatcomi<= (Sdf-3) ) 
($zz*=$cth*$cth*$statcomi/($statcomi+l);$statcom+=$zz;$statcomi+=2;} 
if((Sdf%2)==1) ($pt=l-($th+$sth*$cth*$statcom)*2/3.1416;) 
else { $pt=l-$sth*$statcom;) 
1 
#Two-tail Student's t-test 

sub comp ( )  

{if(! defined %comparestatdata) {printoutput("\nNo data to 
compare!\nW);return;) 
$comparepatternnum=O; 
$comparepattern='NULL1; 
printoutput ("\nu ; 
where: for($i=l;$comparepattern ne I1;$i++) 

I do 
{printoutput("Grouped comparison data pattern Si:"); 
$comparepattern=<>; 
while ($comparepattern=-/\ ! / )  

{print "Please refer to the format of previous output for proper 
specification for a pattern. You may substitute spaces for underscores, 
but the order of elements should be kept and Per1 RegExp escaped.\nW; 

print "Grouped comparison data pattern $i:"; 



$comparepattern=<>; 

if($macro) (print fdmacro Scomparepattern;) 
print fdlog Scomparepattern; 
chomp Scomparepattern; 
printoutput ("\nV) ; 
$comparepattern=-tr/a-z/A-z/; 
$comparepattern=-s/\st/\-/g; 
if($comparepattern eq ") (next where;) 
undef %statdata; 
$comparenum=O; 
foreach Scornparesample (keys %comparestatdata) 
{if($comparesample=-/$comparepattern/i) 
{Scomparenumtt; 
$comparesampletemp=$comparesample; 
printoutput("$comparesampletemp: " ) ;  
print0utput("%-6.3g\n",Scomparestatdata{$comparesample)); 
Sstatdata { $comparesample)=$comparestatdata ( $comparesample) ; 

if($comparenum<Z) 
{printoutput("Each group pattern must have at least two 

matches. \nW) ; 
$itt;next; 
1 

printoutput("Accept this grouping?(y for yes, any other key for 
no) : I 1 ) ;  

$accept=<>; 
if($macro) {print fdmacro $accept;) 
print fdlog $accept; 
chomp $accept;$accept=-tr/a-z/A-Z/; 
printoutput ("\nW) ; 
if ($accept eq 'Y') 
tave 0 ; 
$compare{ $comparepattern)=$count. "*".$ave. "t" . $sd; 

#Transfer compare pattern statistics to be compared, see above. 

)while($accept ne 'Y'); 
$comparepatternnumtt; 
1 

if($comparepatternnum<Z) 
{printoutput("Less than 2 groups. Grouped comparison aborted!\nW); 
return; 
1 

%statdata=%compare; 
&ttest 0 ; 
printoutput ("\nANOVA: " )  ; 
&vtest ( )  ; 
undef %compare; 
undef %statdata; 
1 

sub printoutput ( )  

{if(! defined $ [I]) {print $-[Ol;print fdlog $-[Ol;) 
else {printf @ - fprintf fdlog @ - ; )  

1 



sub help1 ( )  

{print "Please give me a partial or full sample name. Press I.' for all 
samples. A Full sample name may help to locate all of its available 
gates. Alternatively, partial sample pattern, or even per1 regular 
expression can be used to indicate a pool of samples.\nW; 
1 

sub help2 ( 1  
{print "Gate name patterns are handled similarly to sample names. 
Remember to escape Per1 regular expression control characters such as 

and '*'.\nl'; 1 

sub help 0 
{print <<EOH; 
n...... 
#code printing Chapter I V  of  t h i s  thes i s  i s  omitted 
n...... 
EOH 
exit; 

1 
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