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Geographic information systems deal with the exploration, analysis, and presentation of 

geo-referenced data. Virtual reality is a type of human-computer interface that comes 

close to the way people perceive information in the real world. Thus, virtual reality 

environments become the natural paradigm for extending and enhancing the 

presentational and exploratory capability of GIs applications in both the spatial and 

temporal domains. The main motivation of this thesis is the lack of a framework that 

properly supports the exploration of geographic information in a multi-dimensional and 

multi-sensorial environment (i.e., temporal virtual reality geographic information 

systems). 

This thesis introduces a model for virtual exploration of animations. Virtual 

exploration of animations is a framework composed of abstract data types and a user 

interface that allow non-expert users to control, manipulate, analyze, and present objects' 

behaviors in a virtual-reality environment. 



In the model for virtual exploration of animations, the manipulation of the dynamic 

environment is accomplished through a set of operations performed over abstractions that 

represent temporal characteristics of actions. An important feature of the model is that the 

temporal information is treated as first-class entities and not as a mere attribute of 

action's representations. Therefore, entities of the temporal model have their own built-in 

functionality and are able to represent complex temporal structures. 

In an environment designed for the manipulation of the temporal characteristics of 

actions, the knowledge of relationships among objects' behaviors plays a significant role 

in the model. This information comes from the knowledge base of the application domain 

and is represented in the model through constraints among entities of the temporal model. 

Such constraints vary from simply relating the end points of two intervals to a complex 

mechanism that takes into account all relations between sequences of intervals of cyclic 

behaviors. 

The fact that the exploration of the information takes place in a virtual reality 

environment imposes new requirements on the animation model. This thesis introduces a 

new classification of objects in a VR environment and describes the associated semantics 

of each element in the taxonomy. These semantics are used to direct the way an object 

interacts with an observer and with other objects in the environment. 
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CHAPTER 1 

INTRODUCTION 

Virtual Reality (VR) is a type of human-computer interface (Brodlie et  al. 2002) that 

comes close to the way people perceive information in the real world (Jacobson 1991). 

Because VR communicates information to a user by exploiting every sensory channel, 

VR promises to reduce the impedance between the representation of information and 

people's mental conceptualizations of space and time (Raper 2000). It gives a user the 

impression of being part of a synthetic environment and the ability to interact with this 

environment in a more natural way. These characteristics are particularly useful for 

exploring natural environments. 

Geographic information systems (GISs) deal primarily with the exploration, analysis, 

and presentation of geo-referenced data. Traditional user interfaces, which are static and 

present only a two-dimensional view of the data, have proven to be difficult to use in 

situations that require the analysis of an increasing amount of three-dimensional data 

changing over time (Verbree et al. 1999). In this sense, VR becomes the natural paradigm 

for extending and enhancing the presentational and exploratory capability of GIs 

applications in both spatial and temporal domains. In the spatial domain, for instance, the 

use of irnmersive VR environments in applications of the oil and gas industry has 

suggested that VR interfaces can help geoscientists to analyze in more detail geophysical 



and geological data (Lin et al. 2000). In a field where the process of gathering data is 

always very expensive, the advantage of using VR becomes a strategic issue. In the 

temporal domain, the visualization of information through animations has been 

recognized as a natural means to explore and analyze time-varying information and 

processes (DiBiase et al. 1992). Animation is a powerful mechanism that enhances the 

understanding of the data under investigation and fosters new insight into the underlying 

processes (Brodlie et al. 1992). 

The use of animations as an exploratory tool and the advances of computational 

resources raise many challenges for the GIs community. On the one hand, the complexity 

of time and the diversity of geographic phenomena and their behaviors represent barriers 

for the conceptualization of data models that better capture the richness of temporal 

geographic information. On the other hand, the development of more cognitive 

computational environments, which explore a user's sensory channels and the sense of 

immersion in the communication process, demands the development of new metaphors 

and methods for exploration of the information. 

This thesis focuses on the exploration of geographic spaces in VR settings. The main 

motivation for this thesis is the current lack of a theory that properly supports exploratory 

analysis of spatio-temporal data sets using VR technology. This research presents a data 

model that supports manipulation, analysis, and presentation of dynamic geographic 

objects in VR environments, giving attention to the representation of interactions between 

the user and the data set in the spatial and temporal domains. 



1.1 Virtual Reality Geographic Information Systems 

GIs can be roughly defined as a combination of database management systems, a set of 

operations for examining data, and a graphic display for spatial analysis (Rhyne 1997). 

For presentation and analysis purposes, GIs applications have been relying on two- 

dimensional displays. The increasing amount of multi-dimensional and geo-referenced 

data, however, demands a more cognitive computational environment (i.e., hardware and 

software) to handle this kind of information (Kraak et al. 1999). In this sense, VR is a 

natural candidate to fill such a position. 

The combination of VR with GIs becomes known in the literature as VRGIS (Faust 

1995). In a first attempt to combine VR with GIs, some GIs applications simply provide 

VR as an alternative interface for the presentation of three-dimensional geographic 

information. The second generation of VRGIS applications increased the level of 

integration by incorporating some GIs functionality into the VR interface. These 

applications have been reported in many areas such as urban planning (Verbree et al. 

1999; Zlatanova 2000), environment and ecology (Raper 2000), data visualization (Kraak 

et al. 1999), terrain visualization (Koller et al. 1995; Neves el al. 1999; Reddy et al. 

1999), animations (Dollner and Hinrichs 1997; Luttermann and Grauer 1999; Hardisty et 

al.), archaeology (Ogleby 2002), military recognition and training (Macedonia 2002), 

simulation (Wenzel and Jensen 2001), navigation, orientation, and usability issues 

(Fuhrmann and MacEachren 1999; Kraak et al. 1999; Verbree et al. 1999; Chitaro and 

Scagnetto 2001), and education (Dykes et al. 1999). 



The increasing number of VRGIS applications and the acknowledgment of the 

potential of this integration encourage the search for a more formal definition for the term 

VRGIS. Williams (1999) defined VRGIS as "a multi-dimensional, computer-based 

environment for the storage, modeling, analysis, interrogation of, and interaction with, 

geo-referenced spatio-temporal data and processes." This definition depicts a strong 

connection between the general goals of VR and GIs applications. From the VR 

perspective, the VR definition (Kalawsky 1993) is extended to incorporate geo- 

referenced data and to highlight the exploratory nature of GIs applications. On the GIs 

side, the traditional GIs's definition (USGS 2003) is simply complemented with the term 

multi-dimensional. 

The integration of VR and GIs, however, is more than a simple combination of two 

different disciplines. This integration has the potential of enhancing the functionality of 

both fields in a way that surpasses the sum of each field separately. When VR and GIs 

are combined in a single application, new possibilities and opportunities arise, helping to 

solve old problems and address new questions not attempted yet. These features are 

enhanced when the temporal dimension is added to the VRGIS framework, producing 

what became known as temporal VRGIS (Williams 1999). In this way, Temporal VRGIS 

represents a new tool in the GIs arsenal to be used wherever the cartographic view of the 

world is no longer adequate or sufficient to support spatio-temporal reasoning. 

1.2 Temporal VRGIS 

Temporal VRGIS is the symbiotic convergence of the advances in three salient features 

of a GIs application: presentation, spatial interaction, and temporal interaction (Figure 



1 . 1 ) .  Presentation deals with formats and devices used to display the information (e.g., a 

digital image in a computer screen). Spatial interaction is concerned with the interplay 

between the observer and the data (e.g., changing the scale of an image or selecting an 

object for deletion). Temporal interaction refers to the control and presentation of the 

dynamic information (e.g., playing an animation). 

Presentation Spatial Lnteraction Temporal Interaction 

I 2D Graphics I I Space Manipulation 
I I 
f f 

Projected 3D Graphics I Camera Control I I Animated Graphics 
I I I + + 

I Irnrnersive VR I I space-user Interaction 
I I 
f f 

I Temporal Virtual Reality Geographic Information Systems I 
Figure 1.1. The convergence of presentation media and devices, spatial interaction and 

temporal interaction yields the model of Temporal VRGIS. 

1.2.1 Presentation 

The presentation of information can be accomplished in a wide combination of formats 

and devices. The most rudimentary set is a digital image or two-dimensional graphic 

rendered on a flat computer screen. This configuration has been used for decades and 

represents the traditional cartographic view of the world in a digital environment. 

The second stage of presentation of spatial information is the display of three- 

dimensional information in a two-dimensional media. This transformation is 

accomplished through a mapping from the three-dimensional to the two-dimensional 

space (e.g., a perspective projection). This mechanism produces more realistic views and 



allows an observer to perceive volume and distinguish objects located at different 

distance. The major drawback of perspective projections is that geometric properties are 

not preserved under such a mapping. In this way, the user cannot extract any metric 

information from the display (e.g., distance and area). Since topological properties are 

preserved, it is still possible to extract qualitative information about the environment. 

This approach is used in traditional 3D graphics and non-immersive VR applications. 

A more sophisticated form of presentation of three-dimensional graphics is imrnersive 

VR. h this environment, the computer generates two slightly different views of the 

three-dimensional space and a special device (e.g., a pair of goggles) coordinates the 

presentation of these images for the observer. This stereo view produces a strong depth 

cue and allows an observer to "see" in three-dimensions (Foley et al. 1997). If in 

addition, an observer is surrounded by stereographic displays, it gives an observer the 

illusion of full immersion in the environment. The sense of immersion experienced by a 

user exploring such environments constitutes a communication medium that cannot be 

simulated by any other computational resource. In this sense, VR can be seen as the 

leading edge of computer-generated environments that starts with a simple digital version 

of an image (Haklay 2002). 

Despite the differences in the level of sophistication and the computational effort 

involved in each visualization technique, there is no better form to present the 

information. Each technique has its own characteristics and serves different purposes. 

Verbree et al. (1999) suggest the combination of different visualization techniques in a 

single application. The application provides different views of the environment (i.e., 2D, 

projected 3D, and VR) that may be used either simultaneously or intermittently. In this 



approach, the decision of the appropriate form of visualization is left for the observer. 

The observer decides which view is more adequate based on the task at hand and the 

functionality available for each view. Moreover, the observer can select a view that he or 

she feels is more comfortable for performing the desired task. Some users are not trained 

to read two-dimensional maps, while others get lost in navigating VR environments. The 

combination of different views can help the observer to understand more symbolic 

representations and enhance the orientation in large environments. 

1.2.2 Spatial Interaction 

Spatial interaction is usually discussed under the perspective of an active observer 

changing his or her view of the environment, manipulating an objects' appearance or 

spatial location, and performing some kind of request about geometric characteristics of 

the image. In this sense, a zoom or pan of a map, the selection of an object for deletion, 

and a request about the distance between two points are all types of spatial interaction. 

The increasing support of the media for richer forms of representation and the 

imrnersive characteristic of the observer in the data extends the number of possibilities of 

spatial interactions. The presentation of three-dimensional graphics together with the 

ability to interactively and continuously define the vantage point of the observer allow for 

a new type of spatial interaction. The observer, immersed in the environment, can now 

perform a walk-through and analyze the data from different perspectives. 

In VR environments the observer becomes increasingly part of the data set (Kraak 

2002). The ability of existing computer devices to output sensory feedback makes 

interactions an even more complex topic. Interaction in VR can include constraints 
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imposed by the data on an observer's actions (e.g., a building that blocks the path of the 

observer or a heavy object that cannot be moved). This type of spatial interaction needs 

further investigation. In the GIs context, it is important to identi@ the type of constraints 

imposed by geographic objects on the objects themselves and on the observer acting in 

VR environments. It is also important to determine which kinds of constraints need to be 

represented and to evaluate the cognitive impact of imposing such constraints on a user 

who is exploring the environment. 

1.2.3 Temporal Interaction 

Temporal interaction is related with the exploration and presentation of information that 

changes over time. The portrayal of static images is the paradigm of applications that 

offer only a limited support for the presentation of the time-varying information. Ln these 

applications the user is constrained to explore snapshots of different configurations of the 

information in which each snapshot represents the state of the environment at a certain 

instant in time. The user can alternate the display and analyze a single state of the 

environment at a time. If the application supports the presentation of a coherent sequence 

of images in an automatic fashion and in a way that gives the observer the illusion of 

movement, the application provides animations. 

The most rudimentary animation mechanism is animated graphics. This mechanism 

presents a coherent sequence of images giving a user the illusion of movement. 

Animated graphics, however, does not give the user the ability to control the flow of 

information. Some VRGIS applications that support animations use animated graphics as 

the only mechanism to present time-varying information. Thus, the level of interactions 



with the temporal domain is limited to a passive and contemplative observation of the 

flow of dynamic objects in the environment. In these settings there is no way to pause, 

rewind, or fast-forward the animation. It is equivalent to the mechanism of animated gifs 

used with raster images in two-dimensional displays. By giving a user the ability to 

control the flow the animation constitute a stepforward towards a "truly" temporal 

interaction mechanism. 

The set of operations used to control the animation defines the level of interaction that 

can be accomplished in the temporal domain. In the majority of applications that support 

animations, users control the presentation of the animation using a small set of operations 

that resembles operations of a video-cassette recorder (VCR) control (e-g., play, stop, 

rewind, and fast forward). The use of the VCR metaphor to control animations has pros 

and cons. Its main advantages are the reduced number of operations and the fact that 

almost everybody is very familiar with the functionality of such a set of operations. The 

main drawbacks of this set of operations are the limited number of different views of the 

dynamic environment that can be created and the fact that the user is constrained to 

control the animation as a whole, without any means to address the behavior of an 

individual or a set of individuals. With a VCR-like metaphor, for instance, it is 

impossible to observe the behavior of an object been performed in a chronological order, 

while other objects are observed performing their activity in a reverse chronological 

order. A user controlling the animation as a whole cannot generate this interesting and 

possibly insightful view of the dynamic environment. 



1.3 Motivation 

The basic requirements of a temporal VRGIS application include the support for the 

representation of time, behavior evolution, and processes (Williams 1999). Moreover, 

this kind of application needs to support operations that allow a user to observe, distort, 

and modify the temporal dimension, to gain insights and discover relationships among 

geographic phenomena. Existent temporal VRGIS applications do not accomplish these 

requirements. 

While the integration of VR and GIs in the spatial domain is growing fast, this 

integration in the temporal domain is still incipient. The multi-dimensionality of VRGIS 

applications cannot be reduced to the representation, perception, and analysis of the 

three-dimensional space. The temporal dimension and other semantics dimensions of the 

geographic space require the same support and investigation effort as experienced by that 

of the spatial dimensions. 

This thesis pursues a model for virtual exploration of animations. The model of 

virtual exploration of animations covers specific aspects of the more general model that 

supports Temporal VRGIS applications (Figure 1.2). Virtual exploration of animations is 

a framework composed of abstract data types and a user interface that allow non-expert 

users to control, manipulate, analyze, and present objects' behaviors. The term 

exploration suggests that the interface and methods used to control the animation move 

beyond the mere presentation of the animation. The exploratory nature of an interface for 

virtual exploration of animations must afford users the ability to create their own view of 

the dynamic environment. Thus, the user can learn from the act of creating and not just 



by the result of the creation. The term virtual suggests that the exploration of the 

animation takes place in a VR environment. Thus, objects in the environment interact 

with other objects and the observer and this interaction may modify the progression of the 

animation. 

Temporal VRGIS 

Virtual Exploration of Animations 

Figure 1.2. A model for virtual exploration of animations in the context of a model that 

supports Temporal VRGIS applications. 

The model for virtual exploration of animations addresses a major research topic for 

the scientific visualization community that has not been given the deserved attention in 

the context of temporal VRGIS applications. Animation is an important mechanism for 

the visualization and analysis of dynamic phenomena; therefore, it is helpful in the 

cognitive process of exploration of the environment. 

Computer animations have been used for decades to present time-varying phenomena 

or information (Tobler 1970). The low-level of abstraction of existent animation models 

makes it diff~cult to isolate pieces of the animation (e.g., the behavior of a single object) 

and, therefore, limits the user's ability to produce a view of the dynamic environment that 

is appropriate for the task at hand. An animation model that supports entities representing 

different granularities of the dynamic environment and presentation operations that have 

such entities as argument provides the foundation for finer control over the animation. 

This approach is equivalent to extending the traditional set of operations used to control 
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the animation of each object's behavior in the environment (i-e., to have a VCR control 

attached to each dynamic object). Such a hypothetical model pushes the VCR metaphor 

to its limits. This model is called individual VCR. 

In an animation model that supports presentation operations over individual objects' 

behavior (i.e,, the individual VCR model) the number of different views that can be 

accomplished by a user grows exponentially. In the context of GIs, however, this 

extended version of the animation model is still not expressive enough to support virtual 

exploration of animations. First, the representation of individual object's behaviors is not 

necessarily the best abstraction for a user work with. Sometimes the user is more 

interested in analyzing and manipulating a small piece of the behavior of an object, the 

behaviors of a group of objects, or the behaviors of all objects in the environment. 

Second, the VCR-like style of operations aims at the presentation of the animation. These 

operations, even when performed over individual objects' behavior, constitute a limited 

mechanism to compose different views of the environment. These operations, for 

example, do not support any kind of selection, filtering or grouping mechanism over the 

set of dynamic objects. In most GIs applications the number of dynamics objects in the 

environment can easily become unmanageable for a person. Third, the conceptualization 

of the temporal domain in current animation models does not properly capture the 

complexity of time in the GIs field. In such models, the representation of temporal 

information is usually accomplished by an absolute and quantitative representation of 

time. This simple temporal representation does not explore qualitative representation of 

time and the temporal relation between objects' activities and does not support the 

representation of more elaborate temporal structures (e-g., the temporal structure 



associated with objects that have a cyclic behavior). Fourth, in existent animation models, 

objects' behaviors are not related through temporal constraints. This information is 

important to prevent unrealistic views of the environment due to the manipulation of the 

animation (e.g., a cause that happens after its effect). Fifth, in existent animation models 

for VR environments, the semantics of the objects are not represented. These semantics 

are almost always assumed by the observer and derived from the context of the 

application. The semantics of the object, however, play a significant role in directing 

interaction between the object and the observer, as well as in directing the interaction 

among the objects themselves. 

1.4 Goal and Hypothesis 

The main goal of this thesis is to develop an animation model to support exploratory 

analysis of dynamic VR environments. In order to accomplish such a goal we need an 

animation kamework in which (1) the level of abstraction of the model's entities is rich 

enough to allow a non-expert user to perform qualitative spatio-temporal reasoning about 

the patterns of VR object's behaviors at different levels of granularities, (2) the set of 

operations are small, intuitive, and sufficient to give a user effective control over the 

presentation, combination, and manipulation of objects' behavior, (3) the temporal model 

is rich enough to support the representation of complex geographic phenomena over time, 

(4) temporal constraints among objects' behaviors are captured, and (5) the semantics of 

each object in the environment is explicitly represented. These requirements lead to 

major research questions that direct this thesis: 



1. What are the levels of abstraction needed to represent objects7 behaviors? 

2. What are the operations over objects' behaviors needed to combine and 

manipulate different configurations of the dynamic environment? 

3. What are the temporal structures needed to capture the richness of geographic 

phenomena? 

4. What types of temporal constraints are needed to capture known dependencies 

among geographic phenomena? 

5. What are the semantic characteristics of an object in VR environments? 

6 .  How do objects' semantics interact with the behaviors of others objects and with 

an observer immersed in a VR environment? 

The answer of these questions yields a model for virtual exploration of 

animations, which is used to support the hypothesis of this thesis: 

The model of virtual exploration of animations produces views of an 

animation that cannot be accompIished by any combination of operations of the 

individual VCR model. 

In the context of this thesis, we consider a view as an animation in which an observer 

perceives the progression of objects' behavior. Thus, an animation with two objects 

performing their behavior in the normal temporal order and an animation in which only 

one object performs its behavior in the reverse temporal order are different views of the 

animation. The number of different views of the animation is directly proportional to the 

number of dynamic objects in the environment. Since the user cannot create new objects 

or behaviors, but only modifL the temporal configurations of existent behaviors, the 

14 



number of possible views of the animation is finite. In this thesis we assume that all 

views are equally important and have the same weight in the exploration of the 

animation. 

The method used to support the hypothesis of this thesis is the comparison of the 

number of views of an animation produced by two different animation models. 

Animations produced with the first model extend the traditional VCR control to every 

dynamic object in the environment (i.e., the user produces animations through a VCR- 

like control that affects each object individually). The second model produces animations 

based on the abstractions and operations of the model for virtual exploration of 

animation. 

1.5 Research Approach 

The scientific-visualization community has proposed many different data models to 

represent time variation of information through animations. Among the great number of 

animation models, keyframe animation is still the dominant paradigm (Chandru et al. 

2000). In this kind of animation, representative scenes (called key frames), together with 

the instant at which a scene should be presented, are explicitly stored. The computer uses 

interpolation functions to automatically generate intermediate frames of the animation. 

The low level of abstraction of existing implementations of keyframe animations limits 

the manipulation of animations and the scalability of the model. The conceptualization of 

an animation model with different levels of abstraction and a reasonable set of operations 

can easily overcome this deficiency. Users working with different levels of abstractions 



of objects' behaviors can construct and manage efficient, meaningful, and huge 

animations. 

This thesis proposes an animation model based on the keyframe paradigm. The 

conceptualization of the model conceives a framework composed by four main logical 

parts (i.e., geometric, action, temporal, and semantics). 

The geometric model describes the geometry and appearance of the objects (i.e., the 

static content of the animation). There exist many data models to represent the static 

content of an animation. Some of these data models are standards and have a wide 

acceptance while others are very specific and used for a certain task. The main 

characteristic of such data models is that they are relatively decoupled fiom the dynamic 

content of the animation and, therefore, they can be used interchangeably with minor 

efforts. 

The action model encompasses different granularities of the objects' behaviors. Such 

granularity is modeled through a hierarchical structure that represents increasing 

abstractions of the animated environment. The animation is built-up constructively from 

the lowest to highest level of abstraction in the model. Entities at a low-level of 

abstraction represent the building blocks of an object's activity. These entities model 

different pieces of the object behavior. At a mid-level of abstraction, entities representing 

a collection of small pieces an object's activity model the entire behavior of an object. At 

a high-level of abstraction, individual behaviors are combined forming groups of objects' 

behaviors. Entities of this level of abstraction represent the behaviors of semantically 

related groups of objects. The action model encapsulates all information needed to 

generate the time variation information of an object's attributes, except time itself. 
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Different from many animation models, in which time is treated as a simple attribute, 

entities of the action model do not cany temporal information. In this thesis time is an 

abstract dimension that deserves its own model. 

The temporal part of the framework is modeled by data abstractions that represent a 

hierarchical structure of time. Entities of the dynamic and temporal part of the framework 

are strongly related (i.e., the structure of the temporal model follows the structure of the 

action model). This tight connection between the dynamic and temporal parts of the 

framework enforces the user's understandings and facilitates the implementation of the 

model. Moreover, this coupled representation allows the depiction of an object behavior 

as time interval, representing the period when the object is performing its associate 

activity. The set of operations used to combine and manipulate objects' behaviors having 

temporal intervals as arguments are effective abstractions even for naive users and have 

the convenience of being easily represented with a simple graphical user interface 

(Schmitz 2002). This abstract representation also has the advantage of hiding information 

that cannot be manipulated by a user, such as type and values of objects' attributes, 

interpolations functions, and so on. 

The semantic part of the framework models the evolution of VR objects' semantics 

over time. In the context of GIs, the interaction with virtual geographic objects is a 

critical issue. The irnrnersive nature of the observer in the data requires that the objects 

embody semantic information that directs its response in a VR environment. This thesis 

identifies individual semantic characteristics of VR objects and proposes a classification 

of such objects based on an exhaustive combination of their semantic characteristics. 

Objects with different combinations of characteristics carry distinct semantics in the 



model (i.e., the object interact with the observer or with other object in the environment 

in a different way). 

This thesis presents a prototype implementation for the model of virtual exploration 

of animations. This prototype is implemented using the Java programming language. A 

possible graphical user interface for the model is also introduced. This interface carries 

all functionalities of the model that employed in the production of new views of the 

animation. Thus, it is used to compute the expressive power of the model of virtual 

exploration ofanimations. 

1.6 Scope of the Thesis 

This thesis is concerned with the conceptualization of an animation model tailored for 

users of multidimensional GISs. The major concern of this work is the conceptualization 

of an animation model with high-level abstractions and operations that allow a user to 

manipulate objects' behavior in VR environments, getting insights and discovering 

relationships among dynamic phenomena. 

This thesis does not treat the production of the animation. The user can manipulate 

pre-orchestrated behaviors of objects by selecting pieces of the movement, changing the 

temporal order or speed, or modifying the instant when an object performs its activity. 

We assume that the animation is generated in an automatic fashion by a simulation 

application, by an application that translates the information stored in a spatial-temporal 

database, or by a human using any authoring tool that supports the proposed model. 

This work is not about behavioral animations or those animations found in interactive 

computer games. The animation framework requires that the entire behavior of an object 
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be known ahead of time. In this way, this model can act as a post-processor of a 

simulation application or as a fiont-end of a spatio-temporal database. 

The thesis does not treat film-based animation. We do not work with the presentation 

of a sequence of snapshots of the environment or raster representation of the information. 

Entities of the animation framework represent the three-dimensional geometry and 

appearance of the data set and the behavior of dynamic objects. 

1.7 Major Results 

The major result of this thesis is a fiarnework that can be used for exploratory analysis of 

multidimensional environment. The framework has the following advantages over 

existent animation models: 

The representation of objects' behavior at different levels of granularity allows a non- 

expert user to control elements of a single object's behavior, the entire behavior an 

object, the behavior of groups of object, or all objects in the environment. 

The separation of spatial and temporal characteristics of objects' behaviors and a set 

of operations over temporal representations give a user an intuitive framework to 

manipulate the animation, creating new views of the dynamic environment. 

The representation of more elaborated temporal structures captures complex 

geographic phenomena and support temporal reasoning over cyclic behaviors. 

The representation of temporal constraints among objects' behaviors. These 

constraints are used to preserve some known relationships among objects behavior 

during the manipulation of the animation by a user. 
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The representation of the evolution of the VR objects' semantics over time. The 

semantics associated with VR objects provide valuable information in the process of 

the virtual exploration of an environment and play a significant role in interactions 

with observers and the data. 

1.8 Intended Audience 

The intended audience of this thesis is any person interested in the conceptualization, 

representation, and visualization of three-dimensional dynamic objects. This thesis 

addresses especially users, analysts, designers, and implementers of systems that support 

three-dimensional graphics and animations, as well as researchers from the fields of 

geographic information science, visualization, computer animation, virtual reality, and 

software engineering. 

1.9 Organization of Remaining Chapters 

The remainder of the thesis is organized into seven chapters structured as follows. 

Chapter two reviews related work of multi-dimensional geographic information 

systems. This review includes topics related with geographic visualization and animation 

models. These topics are analyzed in the context of an exploratory tool of geographic 

phenomena and processes. 

Chapter three introduces the action part of a fi-amework for virtual exploration of 

animations. Tn this chapter we introduce data abstractions and relevant operations 

associated with the spatial characteristics of objects' behaviors. 



Chapter four presents a conceptualization of the temporal part of a framework. 

Different conceptualizations of time are discussed. A structure of classes representing the 

temporal characteristics of actions was presented and attributes and methods of these 

classes were discussed in an informal way. 

Chapter five discusses the temporal constraints mechanism. This mechanism is used 

to represent in the animation model some known relationships among the temporal 

characteristics of entities of the real world. 

Chapter six introduces compositions operations. Compositions operations allow an 

observer to modifjr the temporal configuration of the animation and create different views 

of the dynamic environment. 

Chapter seven presents the semantic model. This chapter introduces a new 

classification of VR Objects and discusses the semantics associated with each class of 

object in the taxonomy. This chapter presents also a model to represent the evolution of 

the objects' semantics over time and outlines the rationale used to modify such semantics 

during the manipulation of the object behavior. 

Chapter eight presents a user interface of a prototype implementation of the model 

and provides an evaluation of the expressive power of the model. 

Chapter nine draws conclusions and indicates further work. 



CHAPTER 2 

MULTI-DINIENSIONAL GIs 

This chapter reviews relevant research topics and literature concerned with the 

representation of dynamic geo-referenced information in multi-dimensional 

environments. The next section discusses the role of visualization of geographic 

information and the use of new visualization devices in GIs applications. Subsequently, 

we discuss some important data models used to represent three-dimensional and dynamic 

information. Finally, we highlight the major strengths and weakness of current animation 

models in supporting exploratory analysis of dynamic information in a VR setting. 

2.1 Geographic Visualization 

Visualization has been defined as the mapping of data to representations that can be 

perceived by a person using any sensorial channel (Foley et al. 1997). Geographical 

Visualization (GVis) focuses on representations of geographic spatio-temporal data and 

their applications in supporting all tasks of geographic analysis (Buckley et al. 2000; 

Gahegan 200 1 ; MacEachren and Kraak 200 1). 

Two important research topics for the GVis community and of special interest for this 

thesis are related to the use of animations as a tool for exploratory analysis (Fairbain et 

al. 2001) and the incorporation of technological advances in GIs applications 

(MacEachren and Kraak 200 1 ). 



The first topic investigates the role and effectiveness of animations in communicating 

geographic phenomena and processes. The majority of GIs applications use animations 

as a simple mechanism to depict time-varying information. In these applications the 

observer becomes a mere spectator of previous modeled behaviors. The exploratory 

nature of GIs, however, requires an environment where the observer has full control over 

the content and flow of the animation (Fairbain et al. 2001; Kraak 2002). 

The second topic looks into technological advances in hardware and software and 

their cognitive significance for GIs applications. While two-dimensional displays are still 

the dominant paradigm among GVis applications, the next generation of GISs will 

certainly benefit fiom the increasing capability of hardware and software to support and 

output more sophisticated data representations. In the visual domain, for instance, the 

presentation of stereoscopic three-dimensional scenes explores the sense of immersion of 

the user into the data to better communicate information derived or not fiom the physical 

world (Jacobson 1991 ; Brodlie et al. 2002). In the non-visual domain, the use of sound 

(Krygier 1994) and haptic feedback (Neves et al. 1997) promise to enhance the cognitive 

gain of the observer in exploring and analyzing spatial information (Raper 2000). 

Although these topics have been an active research area among the GVis community, 

the combination of animations as an exploratory tool and VR environments is still 

lacking. The synergetic integration of these disciplines launches many research questions 

that can greatly benefit each other and are beyond the scope of each topic individually. 



2.2 Computer Animation 

Animation is the process of creating, storing, and presenting a sequence of different 

images that gives the observer the illusion of motion (Thalmann and Thalmann 1985). 

The term computer animation refers to a technique in which the computer is used in at 

least one phase of the animation process. Different computer techniques are used in each 

phase of the animation. The creation of the animation, for instance, ranges from a person 

using the computer to produce every image of the animation to the production of the 

animation by a computer in an automatic fashion. The storage of the animation varies 

from recording a linear sequence of every image of the animation to storing a description 

of the evolution of three-dimensional objects. The presentation of the animation can be 

accomplished by any visual display, ranging from the small screen of a personal device to 

the set of large displays of a CAVE system (Dam et al. 2000). To simulate motion, the 

computer presents a new, slightly different image many times per second (Foley et al. 

1997). 

One salient characteristic of computer animations is related with the data model used 

to store and process the imagery. Based on this characteristic, the animation can be 

classified as image-based or content-based (Lee 1998a). 

2.2.1 Image-Based Animations 

Image-based data models store a sequence of images (Gall 1991; Miller 1993; Chen 

1995). Each image is called a frame or a scene of the animation. In these models the 

computer stores matrices of picture elements (pixels) representing frames of the 

animation. The position of each element in the matrix corresponds to a spatial position in 
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the image and the value of the element represents the pixel's brightness (Gonzalez and 

Woods 1992). 

Image-based data models can be used to store both recorded digital videos and 

computer-generated images. In the former case, the level of realism of the animation can 

only be compared to the one achieved by the human visual system (Raper 2000). In the 

latter case, the level of realism may vary, and only in few cases can be compared to those 

of digital videos (Cosatto and Graf 2000). Computer-generated images, however, have a 

significant advantage over recorded videos. The computer can generate images of objects 

that do not exist in the physical world (i.e., the object no longer exists, will be created, or 

represents the graphical realization of a concept). The computer also can generate images 

of objects that cannot be captured by a digital camera (e.g., objects of the size of an atom 

or located at an astronomic distance). 

The elementary data structure of image-based animations imposes some limitations 

on interactions between the user and the information depicted in the screen. In this model, 

interactions are usually restricted to the presentation of the animation. At the presentation 

phase, an application (i.e., a player) reads the information stored in a file and renders the 

correct sequence of images on a computer screen. The functionality of each player 

defines the level and type of interactions that can be accomplished with the animation. 

This functionality depends on the organization of the frames in the model, which can be 

ordered in a linear (Miller 1993) or non-linear (Chen 1995) fashion. A player for linear 

models (Figure 2.la), for instance, allows the observer to set some playback parameters 

and watches the flow of animation with the selected configuration. With this type of 

player the observer, using a VCR metaphor to interact with the information, can play or 
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stop the animation, watch the animation at different speeds, and examine, step by step, 

each frame of the animation. A player for non-linear models (Figure 2.lb) allows the 

observer to change his or her vantage point, simulating a "walk through" or "looking 

around" the environment. Controls associated with these players allow the observer to 

perform a complete turn of the camera along the principal directions (i.e., horizontal and 

vertical), zoom in, zoom out, or jump to a "hot spot" (i.e., a recorded configuration of the 

camera highlighting some feature of the image). These players are used mainly to present 

panoramic images (i.e., they support only still objects). Thus, the illusion of movement 

comes from the movement of the camera in a static environment. 
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Figure 2.1. Different types of image-based animations: a) A linear player with controls to 

manipulate the flow of the animation and b) a non-linear player with controls that directs 

the movement and position of the camera. 

2.2.2 Content-Based Animations 

Content-based data models store a description of a scene, behaviors of animated objects, 

and the position and direction of a camera. The computer uses this information to 



generate and render each image of the animation. The manipulation of any piece of 

information stored in the model produces a new animation. In content-based data models 

the level of interaction between the observer and the information is potentially high. The 

observer, for instance, can continuously change the position of the camera while other 

objects are performing their associated behaviors. This configuration corresponds to the 

combinations of the functionalities of linear and non-linear image-based animations. The 

observer can also hide a group of objects or direct the computer to generate only the 

movement of certain objects. This configuration cannot be accomplished in image-based 

animations where the content of the animation is fixed. 

There are many different content-based data models. Some of them have been 

designed to accomplish a specific task and are used in a narrow context. Others are 

generic and experience a wide acceptance. Unlike image-based models (Gall 1991), there 

is no standard among them yet. Content-based data models differ mainly in the strategy 

used to structure and process the information of each scene. Based on the methods used 

to control the motion, the animation model can be classified as geometric, physical, or 

behavioral (Thalmann and Thalmann 1994). 

Geometric models (Zeleznik et al. 1991; Koved and Wooten 1993; Strauss 1993; 

Elliott et al. 1994; Najork and Brown 1995; Green and Halliday 1996; Dollner and 

Hinrichs 1997; Lee 1998b) are based on the description of the evolution of the 

objects' geometry and appearance (e.g., position, shape, or texture). These models 

"know" relevant states of the objects in the scene (e.g., the initial and final positions 

of the object) and, through some internal mechanisms, they compute intermediate 

states of the movement. These mechanisms are based solely on the knowledge of the 



evolution of objects' behavior and do not consider any force that drives the 

movement. Geometric models sacrifice the realism of the scene for the sake of a fast 

computation of the animation. Thus, these models are suitable for real-time 

animations with pre-orchestrated objects' behavior (i-e., behaviors completely known 

before the presentation of the animation). 

Physical models (Pentland and Williams 1989; Cohen 1992) compute the evolution of 

an object behavior based on the physical laws that govern the movement or 

deformation of the object. These models produce very realistic results and rely on the 

support of external applications to solve differential equations or non-linear systems. 

Physical models have applications in engineering, medicine, and realistic animations 

of characters for the cinematography industry. 

Behavioral models (Reynolds 1987; Funge 2000) emphasize the information and 

rationale used to represent objects' behaviors. In this model objects are capable of 

adapting to social and physical constraints. These models are strongly based on 

concepts from artificial intelligence and behavioral science and have the game 

industry as their major target audience. 

Geometric data models are usually the most suitable representation for GIs 

applications. In a typical GIs application the behaviors of the objects are known ahead of 

time. They are customarily stored in spatio-temporal databases (Erwig et al. 1998; 

Chornicki et al. 1999; Forlizzi et al. 2000) or outputted from a simulation application 

(Lieberman 1 99 1 ; Wenzel and Jensen 200 1). 

A number of GIs application use VRML (Web3D 2003) as the mechanism to encode 

and present three-dimensional and sometimes animated graphics. VRML is an 
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interchange format for the representation and presentation of animated three-dimensional 

graphics. The data model behind a VRML file (Strauss and Carey 1992) was designed 

aiming at an efficient and interactive presentation of the information in VR environments. 

VRML, however, has critical limitations in interacting with temporal information. VRML 

does not have any native support for controlling the animation or changing the temporal 

configuration of the objects' behavior. 

The presentation of animation with commercial VRML players does not allow a user 

to manipulate the content of the animation. Thus, users are constrained to seeing 

animations in which the number of animated objects in a scene can easily exceed the 

users' capacity to understand the dynamic environment. In order to overcome this 

deficiency some applications are extending the VRML syntax and exploring the potential 

offered by the manipulation of the temporal domain (Dollner and Hinrichs 1997; 

Luttermann and Grauer 1999; Reddy et al. 2000; Hardisty et al.). These applications 

extend the set of operations to control the animation with operations that allow the user to 

perform a selective view of the animation (Manoharan et al. 2002). This selection, 

however, is solely based on the users' judgments and does not consider temporal 

constraints among the objects. In this way, some important behaviors can be 

inadvertently hidden so that they are not taken into account in the exploration of the 

animation. In such a model, users should have the opportunity to explore the rich set of 

relations that exists among objects. 

Although the specification of VRML contemplates a mechanism to extend the 

language, this mechanism is insufficient to accommodate all requirements of temporal 

VRGIS applications. VRML lacks the extensible power of an object-oriented data model. 



Thus, VRGIS applications based on VRML are restricted to offer only a few basic GIs 

functionalities. The implementation of a "true" temporal VRGIS application requires the 

conceptualization of a data model that incorporates the GIs functionality in both spatial 

and temporal domains. 

2.2.3 Animations for GIs  

Animations in GIs serve different purposes. The task involved and the target audience 

are critical for determining the appropriate type of animation. In an explanatory approach, 

for instance, the animation is used to communicate the information for a broad audience 

with distinct backgrounds and different degrees of expertise. In this context, image-based 

animations, with realistic images and embedded in multimedia documents, have been 

used successfully (Cartwright 1999; Peterson 1999). The use of realistic and animated 

representations of geographic phenomena avoids considerations about previous 

knowledge or training of the observer. Moreover, the use of a VCR metaphor to control 

the presentation of the animations provides an effective user interface with a limited but 

universal set of operations. 

The simple use of realistic animations, however, is insufficient for supporting an 

exploratory analysis of time-varying information (Andrienko et al. 2000). In an 

exploratory approach, the observer needs a more interactive environment that gives the 

observer complete control over the flow and the content of the animation (Kraak 2002). 

These requirements need investigations on data models that better represent multi- 

dimensional geographic information and a set of operations that control the flow and the 

content of the animation. In this sense, geometric content-based animations with a 



coherent representation of geographic phenomena and high-level abstractions 

representing the dynamic environment can be used to move the user interface beyond the 

VCR metaphor and support an exploratory analysis of animations. 

2.3 Data Models for Temporal VRGIS 

The representation of information is a fundamental issue for the integration of VR and 

GIs applications. The major problem with current temporal VRGIS applications is 

related with the data model used to support the VR interface. An appropriate data model 

of the conceptualized world is the foundation of an efficient storage, management, and 

presentation of geographic information (Fairbain et al. 2001). These basic functional 

units, however, have different requirements in a GIs application. For storage and 

management purposes, the focus is on the form, structure, and properties of geographic 

phenomena. In this context, the aim is a data model that captures the complexity of 

geographic phenomena and processes, and supports a wide variety of GIs functions. For 

presentation purposes, the objective is an effective exploration of the information. In this 

context, the goal is a data model that supports different media (e.g., three-dimensional 

graphics, sound, and dynamic imagery), real time feedback, and interactions. Due to 

these different and sometimes conflicting goals, it is very difficult to achieve efficiency 

using a single data model for VR and GIs domains. Thus, GIs, like other graphic- 

intensive applications, needs to deal with two different data models: one for the 

application domain and another for the presentation domain. 

For the application domain, the discretisation of the spatial and the temporal domains 

(discrete or continuous) and the integration of spatio-temporal structures (integrated or 
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hybrid) are critical factors in determining the appropriate data model (Raper 2000). The 

integrated approach assumes a world that is fully four-dimensional in nature. The hybrid 

approach recognizes differences in the nature of space and fime and treats them 

differently. Due to the diversity and conceptualizations of the GIs domain, a single data 

model that accommodates all abstractions or functional requirements is unlikely (Herring 

1991). 

For the presentation domain, the type of information to be visualized (e.g., raster, 

two-dimensional or three-dimensional geometric representations) and types of 

interactions with the data are major requirements in specifying the appropriate data 

model. The conceptualization of a data model for the presentation domain must be robust 

and extensible to support the wide variety of conceptualizations of the application domain 

and incorporate the desired functionality for an exploratory analysis of the information. 

In this thesis we are interested in the presentation and exploration of three- 

dimensional objects and their dynamics. It thus excludes fiom this review data models for 

the application domain, as well as two-dimensional and raster representations of the 

presentation domain. 

2.3.1 Three-Dimensional and Interactive Graphics 

Prior to the early 1990s, almost all three-dimensional applications were based on some 

kind of graphic package such as GKS (ANSI 1985), PHIGS (ANSI 1988), and OpenGL 

(OpenGL 1992) to produce visual representations of two and three-dimensional objects. 

These graphical packages were attempts to create a device-independent model for the 

developers of graphic applications. In this way, these packages can be positioned in an 



intermediate level between the application program and the graphic hardware (i.e., they 

act as the data model of the presentation domain). 

Despite the success experienced by some graphics packages, they have critical 

limitations. First, the level of interaction with the model is limited. Most applications rely 

on programmers' skills and hard-coding to achieve the required interactivity. Second, the 

level of abstraction of the presentation domain is very low and keeps no relation with the 

modeled application domain. The internal structure of these packages is based on a list of 

drawing commands representing polygons and faces to be rendered by the graphic 

engine. Third, these packages have no explicit notion of time. Time can be specified only 

implicitly, as a sequence of operations on the display-list representation (Foley et al. 

1997). 

In order to overcome the limitations of these graphic packages, the scientific- 

visualization community has proposed many different data models to represent 

interactive and dynamic three-dimensional graphics (Zeleznik et al. 1991; Strauss and 

Carey 1992; Koved and Wooten 1993; Elliott et al. 1994; Najork and Brown 1995; Green 

and Halliday 1996; Dollner and Hinrichs 1997; Lee 1998b; Java-3D 2004). These models 

are presented in the form of object-oriented toolkits or high-level API, which give 

developers an abstract and extensible representation to construct presentation 

applications. 

2.3.2 A Framework for Animated Three-Dimensional Graphics 

Although there are some differences in the architecture and functionality of three- 

dimensional toolkits and APIs, the majority of proposed data models partitions the 



presentation domain into three main logical parts. This framework models the animated 

objects (who), the actions these objects undergo (what), and the times during which the 

objects undergo the actions (when). 

The who-part refers to the geometric model, representing objects that compose the 

scene. The what-part of the framework represents the object's behavior and is called the 

action model. Entities of the action model represent the evolution of an object's attributes 

with the passage of time. The when-part of the framework represents the temporal model. 

Entities associated with such part of the framework model the temporal configuration of 

objects' behavior. 

2.3.2.1 Geometric Models 

The geometric model describes the geometry, position, and appearance of visual objects 

that populate the environment. Objects of the geometric model are instances of classes 

provided by the toolkit or sub-classes inherited by the developer of the application. These 

objects are collected and organized in a direct acyclic graph structure called a scene 

graph (Strauss and Carey 1992; Koved and Wooten 1993; Najork and Brown 1995; 

Dollner and Hinrichs 1997; Lee 1998b; Java-3D 2004). In this tree-like structure, each 

object represents a node and performs some specific function in the model. Links 

between nodes represent a parent-child relationship. These links draw the structure of the 

graph; grouping related objects and directing how operations and properties are 

propagated along the structure. 

A scene graph is a powerful graph-based construction paradigm for three-dimensional 

applications. The hierarchical structure of the scene graph and the grouping mechanism 
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allow for the representation of meaningful structures, which can be used to incorporate 

the semantics of the application domain. Nodes in the scene graph have instances data 

called fields. Values associated with fields define the state of an object. These values can 

be either a simple value or a reference to another object. Some models use a "pure" 

object-oriented approach and encapsulate all information of the object in itsfields (Koved 

and Wooten 1993; Java-3D 2004). In other models, object'sfields capture only attributes 

that are strictly related with the class of the object (Strauss and Carey 1992; Najork and 

Brown 1995; Dollner and Hinrichs 1997; Lee 1998b). In this model, objects inherit other 

attributes from their parents or share a common attribute with their siblings. 

The organization of a scene graph is constrained by the structural role of the node. 

Based on its structural role, a node can be classified as a root, a group, or a leaf node. The 

root node is the unique node in the structure without a parent. This node marks the start 

point of the graph and it is used to define default characteristics of the environment. A 

branch-group node is a node that supports children. This type of node creates new 

branches in the scene graph and it is used to group semantically related objects, imposing 

a meaningful and coherent structure on the tree. A leaf node is a terminal node in the 

structure (i-e., a leaf node does not admit child nodes). Leaf nodes are responsible for the 

visual content of the scene. 

Although the structure of scene graphs is preserved among different toolkits, the 

semantics of the nodes may have slight variations. As a rule, leaf nodes are divided into 

four basic categories: shape, property, camera, and light. Shape nodes represent 

geometric objects (e-g., volume primitives, boundary representation primitives, and 

texts). Property nodes are objects that represent all visual aspects of the object that are not 



related to its geometry (e.g., color, texture, location). The camera node defines the 

position and orientation of the camera in the environment. This node models the vantage 

point of the observer in the environment. Lights nodes illuminate the environment, 

creating more realistic scenes. 

Consider, for instance, an application depicting some geometric objects (Figure 2.2a). 

In the application domain context, these objects represent a clown and a box. In the 

presentation domain context, these objects are geometric primitives provided by virtually 

all three-dimensional toolkits (i.e., sphere, cones, and cube). 

Figure 2.2. Graphical realization of a clown and a box based on geometric primitives 

The geometric primitives that model the clown and the box are stored in a scene 

graph. There are different strategies to organize these primitives in a scene graph 

structure. The simplest way is to add the geometry of each object directly to the scene 

graph structure without using any grouping mechanisms (Figure 2.3a). 

A presentation application, however, can take advantage of the grouping mechanism 

of the scene graph and impose a meaninghl structure on the graph, that is, a structure that 

incorporates semantics of the application domain (Figure 2.3b). The strategy used does 

not change the content of the model nor the information perceived by an observer. 
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Figure 2.3. Representation of geometric primitives in a scene graph structure: a) a scene 

graph without the grouping mechanism, and c) a scene graph with primitives grouped 

accordingly the semantics of the application domain. 



2.3.2.2 Action Models 

The action part of the framework represents behaviors of objects. Behaviors are any 

modification in the state of an object that can be perceived by an observer. A behavior 

can be directed either by a user action or by the passage of time. Based on the type of 

object that is experiencing the action and the agent that causes the change, behaviors can 

be classified into four categories: interaction, navigation, guided navigation, and 

animation (Table 2.1). 

Table 2.1. Classification of types of changes based on the object changing and the agent 

that causes the change. 

Cause of Change 

User 

Time 

Navigation and Guided Navigation are behaviors that change the position and 

orientation of the camera, thus defining the vantage point of the observer in the 

environment. The difference between these two behaviors is the agent that causes the 

change. Navigation is a type of behavior entirely controlled by the observer. The observer 

using some navigation mechanisms directs the movement of the camera, performing a 

walk-through or a fly-by in the environment. Guided Navigation performs the same kind 

of movement, but does not dependent on the observer action. In this kind of behavior, the 

movement of the camera is previously defined or recorded in the model and can be 

Object Changing 

Camera 

Navigation 

Guided Navigation 

Shapes, Properties, 
Transforms, and Lights 

Interaction 

Animation 



played at any time, giving the observer a tour around the environment. Time in Guided 

Navigation is implicitly represented by the evolution of the movement of the camera. 

Interactions and Animations are behaviors associated with visual objects or objects 

that change the appearance of the scene. Interactions are triggered and fed directly by 

user actions. The act of an observer examining an object by continuously rotating it 

around a specific axis, for example, is supported by a rotate behavior. This kind of 

interaction is called active, since it depends on the user's desire to execute the action. 

Other types of interactions are performed in automatic fashion by the application and are 

called passive. Passive interactions are transparent for the observer and do not depend on 

the intention of the user to perform the action. The level of detail behavior is a type of 

passive interaction, which is based on the position of the observer in the environment. 

The level of detail behavior loads different versions of the object based on the distance 

between the observer and the object. The idea is to present a refined version of the object 

only when the observer can perceive details, thus eliminating the computational cost of 

rendering pieces of the object that cannot be seen. Other types of interactions are 

constraints imposed by the objects on an observer action. The collision detection 

mechanism is an example of such kind of interaction. This mechanism limits the 

movement of the observer in the environment (e.g., prohibiting the observer to walk 

through a wall). The collision detection mechanism can be extended to treat interactions 

among the objects in the environment as well (e.g., an object that blocks the passage of a 

moving object). 

Animations are behaviors directed by the passage of time. Animation behaviors define 

how some objects' visual attributes change their values as time passes. The action that 
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triggers animation behaviors can be a direct user action, another behavior, or an instant in 

time. Once triggered, however, the only external stimulus that keeps the animation 

running is time. 

The mechanisms associated with each kind of object's behaviors (i.e., interaction, 

navigation, guided navigation, and animation) are not mutually exclusive. Lnstead, it is a 

desired characteristic of presentation applications that they support all types of behaviors. 

In this thesis, however, we are interested in animations behaviors. These behaviors 

represent the dynamic characteristics of application domain's objects. 

The approach used to implement animation behaviors varies among different toolkits. 

Some toolkits implement these behaviors as member functions of the visual objects 

(Koved and Wooten 1993), as a list of commands representing the evolution of an 

object's action (Zeleznik et al. 1991), or as an object behavior connected to a visual 

object (Strauss and Carey 1992; Koved and Wooten 1993; Najork and Brown 1995; 

Green and Halliday 1996; Dollner and Hinrichs 1997; Lee 1998b; Java-3D 2004). The 

latter approach has the advantage of isolating the action and geometric parts of the 

framework. This characteristic enhances scalability and facilitates the implementation of 

the model. 

The toolkits that model animation behaviors as first class entities provide a set of 

built-in classes that represent basic behaviors (e.g., position, color, and orientation). 

These classes carry information and functionality to produce an object behavior, that is, 

an attribute specifying visual objects to be animated, the end states of the object's 

behavior, and an interpolation function to generate intermediate values (Figure 2.4). The 



object behavior based on stimuli received from objects of the temporal model makes 

computations and informs the visual object of its new state. 

Geometric Model Action Model 

behavior 
visual objects 

I initial state 
final state I 

initial state 
final state 

Figure 2.4. Two behaviors of the dynamic model and their associated visual objects of 

the geometric model. The object behaviors continuously inform the new state of their 

associate visual objects. 

Since animation behaviors are directly connected with an object of the scene graph, 

they are highly specialized classes (i.e., each object behavior models the evolution of a 

specific type of visual object). If an object changes its color, position, and shape, for 

instance, it is necessary to assign one behavior for each changing characteristic of the 

object. 

A simple list of objects is the traditional approach used to structure the collection of 

behavior objects that forms the dynamic part of the framework (Strauss and Carey 1992; 

Najork and Brown 1995; Green and Halliday 1996; Java-3D 2004). In this approach, the 

position of the behavior in the list is irrelevant. This highly unstructured organization has 

several drawbacks. First, the structure of the dynamic domain does not follow the 

structure of the geometric domain. There is no entity in the model that aggregates groups 
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of related behaviors. Second, this list of object behaviors is neither semantically nor 

temporally indexed. These characteristics make it diff~cult, for instance, to retrieve a 

temporal sequence of behaviors of a certain object. Third, the unstructured nature of this 

list of objects makes the resulting code hard to parallelize and difficult to manage as the 

complexity of the animation increases. 

In order to overcome these drawbacks some toolkits impose a more structured 

organization of the dynamic domain (Dollner and Hinrichs 1997; Lee 1998b). These 

models propose an entity with a high-level abstraction encompassing the activity of a 

certain object (e.g., an activity object). The activity object stores a collection of behaviors 

associated with a visual object. Although activity objects represent a step forward in the 

organization of the action model, these entities fail to support the representation of 

complex behaviors. If an object has a period of inactivity, for instance, its behavior is 

modeled using different activity objects (i.e., one activity for each period when the object 

is performing some movement). In this way, it is impossible to aggregate the entire 

behavior of the object in a single representation. Thus, activity objects transfer the 

problems found in other data models to a high-level of abstraction. 

2.3.2.3 Temporal Model 

In existent three-dimensional graphics toolkits, the temporal model is by far the least 

abstract part of the framework. The simple temporal structures of such models permit 

only the representation of quantitative and absolute conceptualizations of time. In these 

models non-linear representation of time (e.g., cyclic time) is a weak approximation, and 

qualitative and relative representations of time are difficult to accomplish. 



Data abstractions of the temporal part of the framework are critical in a model for 

exploratory analysis of animations. The conceptualization of this part of the framework 

needs to support the richness and complexity of the temporal structures of the application 

domain. Failing to satisfy these requirements means that information of the application 

domain is lost or represented only by an approximation in the data model that supports 

the presentation application. 

The majority of temporal models have a unique type of object that carries all temporal 

characteristics of an objects' behavior (Strauss and Carey 1992; Najork and Brown 1995; 

Green and Halliday 1996; Java-3D 2004). In these models, a temporal object has an 

associate behavior, the duration and the condition that trigger the behavior (e.g. a certain 

instant in time), and a mechanism to feed the behavior with information that translates the 

passage of time (Figure 2.5). 

Behavior Temporal Object 

4 
Start Condition 

Behavior r v  1 Duration 1 
I 
I Internal Clock 
I 

Figure 2.5. A temporal object representing the temporal characteristics of two behaviors. 

The temporal object continuously sends messages to its associated behavior. 

A temporal object can have more than one associated behavior. The behaviors 

associated with a temporal object, however, share the same temporal characteristics (e.g., 

start condition and duration) and receive the same set of messages from the temporal 



object. Temporal objects have a link to a system clock. As a consequence, all behaviors, 

even those based on different temporal objects, are synchronized. 

The major problem of existent toolkits for animated three-dimensional graphics is 

that they were designed for efficient running of the animation and not the user of virtual 

exploration of animations. Some models have suggested extensions for the temporal part 

of the framework to incorporate qualitative and relative representation of time and 

temporal relations (Dollner and Hinrichs 1997; Lee 1998b). These models, however, are 

limited by a poor conceptualization of the action domain and they still are not concerned 

with the user of the animation. The exploration of an environment's dynamic content is 

based on the ability of a user to change the temporal configuration of modeled behaviors. 

Therefore, the user needs a more abstract representation of the object behavior and a set 

of operations that allows him or her to combine these behaviors to create new views of 

the dynamic environment. 

2.4 Summary 

This chapter reviewed related work on representation of multi-dimensional GIs. 

Different types of animations and their use in GIs applications were investigated. In the 

context of temporal VRGIS, basic requirements for the integration of VR and GIs and 

animated three-dimensional data models were discussed. 



CHAPTER 3 

ACTIONS 

In a virtual environment, objects are roughly classified in two major categories: static and 

dynamic. This classification is based on the capability of the object to change the values 

of its sensorial attributes. Dynamic objects are those objects that allow the modification 

of their sensorial attributes with the passage of time. Sensorial attributes are attributes 

that can be communicated to a user by exploiting any user's sensorial channels. Thus, 

sensorial attributes include visual attributes such as shape and texture, as well as non- 

visual attributes such as sound, weight, smell, or temperature. Dynamic objects have 

associated objects that inform how their sensorial attributes evolve over time. These 

objects are collectively called action objects. Action objects represent the behavior of 

dynamic objects in the environment. 

The mechanism that directs the evolution of dynamic object's attributes with the 

passage of time is called animation. A critical issue in exploring an animation is the 

user's ability to manipulate dynamic objects. This ability depends on the level of 

abstraction used to represent objects' behavior (i.e. actions), as well as on the set of 

operations available to manipulate this information. This chapter presents a 

conceptualization of the action part of a framework for virtual exploration of animations. 

In the next section we discuss the major requirements of the model and introduce its 



general structure. Then we present some characteristics of each element in the model 

through an informal specification. 

3.1 Structure of the Action Model 

In order to allow the user to manipulate and control the presentation of animations, the 

animation model needs to address two major requirements (Carnpos et al. 2003a). First, 

the model needs to support the representation of pre-orchestrated behaviors (i.e., 

behaviors that are completely known ahead of time). The fact that behaviors are known in 

advance gives the user the possibility of manipulating the dynamic environment. Second, 

the model needs a reasonable structure representing different granularities of objects' 

behaviors. Such a structure gives the user the ability to manipulate the dynamic 

environment. A model based on the keyframe paradigm, using cognitively plausible 

representations of objects' behaviors, addresses these requirements. 

The conceptualization of the action part of the framework considers distinct 

granularities of the dynamic environment. Elements at different granularities represent 

increasing abstractions of the animated objects' behaviors, which are built from the 

highest to the lowest level of granularity (Figure 3.1). 

Act and Course of Actions represent different granularities of the behavior of a single 

object. Acts represent pieces of an object's behavior. For example, a car making a turn or 

moving beteween two locations. Course of Actions aggregates Acts forming the entire 

behavior of an object. Each Course ofdctions has an associated Performer. Performer is 

an abstraction that represents the geometry and appearance of the dynamic object. At the 

coarsest level of granularity, Animation aggregates pairs of Course of Actions and 
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Performer representing the behavior of groups of objects. Animations can also aggregate 

other Animations forming complex Animations. 

Low 

t Animation I . .*  

1 1 

I. .* 

High Act 

Figure 3.1. Class diagram representing the general structure of the action model. 

The next sections present an informal specification of each class of the action part of 

the framework. These specifications discuss only fundamental operations used to define 

the structure of the model and to impose constraints on the association of their instances. 

A more detailed definition of these classes is presented together with a prototype 

implementation in chapter 8. 

3.2 Acts 

Acts are the building blocks of an object's behavior. The behavior of an object can be 

represented by a single Act or by any combinations of Acts. The number of Acts needed 

to represent the behavior of an object depends on the complexity of the behavior and on 

the requirements of the application domain. Consider, for instance, the behavior of a car 

traveling between two locations (Figure 3.2a). The behavior of the car can be divided in 

small pieces of information representing different segments of the trip. Each segment 



corresponds to an Act of the object's behavior. The movement of the car making a turn, 

for example, represents one act of the entire trip (Figure 3.2b). 

Figure 3.2. A car traveling between two locations: a) the entire behavior of the car and b) 

the act of the car making a turn. 

From the user's perspective, an Act is the smallest piece of an object's behavior that 

can be manipulated. As far as a user is concerned, Acts represent the finest granularity of 

an object's behavior. The manipulation of Acts by a user is accomplished through the 

manipulation of their temporal characteristics discussed in chapter 4. 

From the modeling perspective, an Act is an abstraction that encapsulates all the 

information needed to generate the evolution of an object's attributes with the passage of 

time. Each Act has four components: (1) a list of types of attributes being interpolated, (2) 

a list of key values for every attribute being interpolated, (3) interpolators to compute the 

intermediate attribute values, and (4) temporal information about the Act. These 

components are modeled as a separate classes and associated with the main class Act 

(Figure 3.3). The class diagram shows a dependency (dashed arrows) among some 

components of the Act. These dependencies will be discussed later in this chapter. 
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Figure 3.3. Class diagram of the act and its components. 

In order to understand the role of each component in the model, consider the act of a 

car making a turn. Consider yet that the bend of the road is unpaved. Thus, cars get dirty 

when going through this segment of the road. The dirt is modeled by gradually darkening 

the color of the car (Figure 3.4). 

Figure 3.4. The car changes its color when traversing an unpaved segment of the road. 

The Act of the car making a turn and getting dirty involves the evolution of three 

types of attributes (i.e., position, direction, and color). In this example, the car, originally 

with a yellow color, becomes gradually brown as it moves along the bend. Suppose in 

addition, that the car decelerates in the first half of the bend, accelerates in the second 

half, and takes 5 seconds to complete the turn. All these pieces of information are 

encapsulated in an Act object. The state of this Act and its associated components can be 

depicted in an object diagram (Figure 3.5). 
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Figure 3.5. Object diagram of a car making a turn and getting dirty. 

An instance of Changing Attributes Types class carries the types of attributes being 

interpolated. An object Changing Attributes Key Values stores a list of relevant values of 

each attribute listed in the previous object. An object Act Interval encapsulates all 

temporal-related information of the act (e.g., duration, and acceleration). An object 

Interpolator Factory takes all this information into account and produces the object 

Interpolator that, when properly executed by a system clock, produces the "continuous" 

movement of the car. 

One important characteristic of an Act is that all attributes have an active state during 

the entire act (i.e., at any instant each attribute specified by the Changing Attributes 

Types object has a different value from the value it had in the previous instant of 

observation). If the car changes its color only during a fraction of the duration of the Act 

(e.g., only half of the bend is unpaved), the color attribute cannot be used together with 



attributes representing the position and direction of the car making a turn. To handle this 

situation, the evolution of the color attribute must be modeled as a separate Act and 

combined with other Acts at a higher level of abstraction. 

The next sections discuss some components of the Act (i.e., Changing Attributes 

Types, Changing Attributes Key Values, and Interpolator Factory). The class Act Interval 

is discussed together with other temporal characteristics of actions, presented later in this 

thesis. 

3.2.1 Changing Attributes Types 

The class Changing Attributes T p e s  represents a collection of attributes types that 

change during the Act. These types correspond to any sensorial attribute of the Performer 

(e-g., color and position). For the sake of simplicity, we deal in this thesis only with 

sensorial attributes that have a graphical realization. This fact, however, does not 

constitute a limitation of the model. The model is robust enough to accommodate all 

types of sensorial attributes. 

Figure 3.6 shows the specification of the class Changing Attributes Types. Lnstances 

of this class can be seen as .a set of strings in which each element of the set represents a 

type of attribute. One important operation shown in the specification is 

h a s  I n t  er sect ion. This operation checks if two sets of attributes (i.e., two instances 

of ChangingArtributeTypes) have at least one element in common. The operation 

h a s  Intersect i o n  is used in the context of coordination of multiple changes, 

discussed later in this chapter. 



class ChangingAttributeTypes { 

Overview: An unbounded and non-empty set of strings. A typical 
ChangingAttributeTpes is {S,,. .., S,), where Si is a string with the 
name of the type of attribute (e.g., position and color). 

11 Constructors 
... 

// Methods 
boolean hasIntersection(ChangingAttributeTypes cat) 

Effects: Returns true if the argument has at least one common type of 
attribute with this object. 

. . . 

Figure 3.6. Specification of the class ChangingAttributeTypes. 

The class Changing Attributes T p e s  deals only with types of attributes being 

interpolated. Thus, there is no information in this class about the key states of these 

attributes or how to generate the evolution of these attributes with the passage of time. 

These functionalities are part of the Changing Attributes Key Values and Interpolator 

Factory objects associated with the Act. 

3.2.2 Changing Attributes Key Values and Interpolator Factory 

In an animation model based on the keyframe paradigm the information needed to 

generate the evolution of an object's attributes over time are: (1) some representative 

states (key states) of the attribute, (2) an interpolator function to compute intermediate 

states between key states, and (3) temporal information (e.g., the duration of the act). In 

our model, an instance of the class Changing Attributes Key Values stores representative 

states of the Act. An Interpolator object generates intermediate state values. The 

Interpolator Factory object builds the appropriate Interpolator based on the type of 



attribute and the number of key states. Finally, an Act Interval object carries out the 

temporal characteristics of the Act. 

Changing Attributes Key Values is a class that encapsulates key states of the Act. 

These states are stored in a list for each type of attribute being interpolated in the act. 

There are as many lists of values as there are types of attributes being interpolated. This 

characteristic is represented by a dependency between the classes Changing Attributes 

Key Values and Changing Attributes Types in the class diagram (Figure 3.3). Elements of 

each list store the value of a certain attribute and its relative position inside the act (i.e., 

each state is associated with a number between 0 and 1, inclusive). These numbers are 

called normalized times. Normalized times represent the relative position of key states of 

an object inside the act. The first and last states of the attribute hold at the normalized 

time 0 and 1 ,  respectively. Other key states, if they exist, hold in the interval between 0 

and 1, exclusively. Normalized times allow the representation of an object's behavior 

without an explicit reference to time. This characteristic allows the encapsulation of all 

temporal information and temporal related operations in a single object (i.e., Act 

Interval). 

Figure 3.7 depicts some key values and normalized times for the example of the car 

making a turning. This example shows that there is no constraint that the number of 

elements in the lists be equal. The attribute position, for instance, has three key states, 

while the attribute direction has only two. 
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Figure 3.7. Key states of the position and direction of a car making a turn. 

The Interpolator Factory object is responsible for building Interpolator objects for 

the Act. There is a wide variety of Interpolators that can be used to generate intermediate 

states of an act. The best option depends on the type of attributes being interpolated and 

the number of key states available. This characteristic is represented by a dependency 

between the classes Interpolator Factory and the classes Changing Attributes Types and 

Changing Attributes Key Values (Figure 3.3) .  

Depending on the requirements of the application domain, the level of realism can 

also be taken into account by the Interpolator Factory Object. Figure 3.8 shows two 

possible configurations of a car making a turn. The first configuration has two key states 

and a non-linear interpolation hnction (Figure 3.8a). The second configuration has a 

sequence of key states and a linear interpolation function (Figure 3.8b). The graphical 

realization of these two Acts represents different approximations of the real movement. 

The first one generates a more realistic movement of the car, while the second generates a 

coarse approximation of the real movement. 
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Figure 3.8. Two possible configurations of a car making a turn: a) a non-linear 

approximation of the movement, and b) a linear approximation of the movement. 

Interpolator Factory and Changing Attributes Types Values are powerful abstractions 

for both users and implementers of the model. On one hand, the user "sees" each act as a 

single object, and there is no need for the user to think about types of attributes or 

interpolation functions. On the other hand, implementers can use the Interpolator Factory 

abstraction to build interpolators that generate the desired act of an object. It means that 

the complexity of the act does not require irnplementers to artificially break acts with a 

complex behavior in more simple acts. Implementers must use the Interpolator Factory 

class to provide the code to generate complex acts. The act of an object must be defined 

by the application domain only, and not constrained by limitations of the implementation. 

3.2.3 The Act Specification 

The components of the Act object encompass almost all hctionalities of this small piece 

of an object's behavior. In this sense, the specification of the Act class itself becomes 

very simple. The class Act has four attributes, each one representing a specific component 

of the Act (Figure 3.9). 



class Act { 

Overview: acts represent a piece of a performer's behavior. 
I/ Attributes 

ChangingAttributesTypes cat; 
ChangingAttributesValues cav; 
ActInterval ai; 
Interpolator i; 

N Constructors 
... 

I1 Methods 
boolean isRelated(Act  a) 

Effects: Returns true if the component ChangingAttributesTypes of this object 
has a non-empty intersection with the same component of the act used 
as argument. 

Figure 3.9. Specification of the class Act. 

For the effort of coordination of multiple changes, the Act implements the operation 

isRelated. This operation defines whether two Acts are related, that is, if two Acts 

have at least one attribute in common. Objects of a higher level of abstraction use this 

operation to avoid certain combinations of Acts. 

It is important to emphasize that there is no operation that allows a user to manipulate 

the types of attributes and their key states, or to define the Interpolator used in the Acf. 

All manipulation of an object's behavior is accomplished through the manipulation of the 

objects' temporal characteristics, which is discussed in Chapter 4. 

3.3 Course of Actions 

The Act abstraction represents the finest granularity of an object's behavior. In a virtual 

exploration of an animation, however, a user needs the flexibility to explore coarser 

representations of the dynamic environment as well. Sometimes a user is more interested 
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in knowing if an object starts its behavior before or after another object's behavior or if 

two objects are performing their associated behavior simultaneously. In this sense, it is 

important for a user to reason over abstractions that represent the behavior of the object 

as a whole and not its constituent parts. 

Course of Actions is an abstraction that represents the entire behavior of an object. A 

Course ofActions is a combination of Acts. Consider, for instance, the entire behavior of 

the car moving between two locations (Figure 3.10). This behavior is modeled with five 

individual Acts that capture "representative" segments of the trip. Those Acts are 

combined forming the Course of Actions of the car. The second Act of the car's trip, for 

example, corresponds to the case in which the car is traveling an unpaved segment of the 

road discussed earlier in this chapter. 

r -  Axt, A:? !a w' .... "' ....' e,..:: 
b- -- ---------- 
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Figure 3.10. A Course of Actions of a car traveling between two locations. 

The object diagram in Figure 3.1 1 depicts an instance of the class Course of Actions 

representing the behavior of the car traveling between two locations. This object has an 

association with individual Acts, a Performer, and a Course Of Actions Interval Objects. 

The later object is not depicted in the structure of the action's conceptual model (Figure 

57 



3.1). For the sake of simplicity, the class diagram in Figure 3.1 does not show the 

association between entities of the action part of the framework and their temporal 

characteristics. This class is discussed in details in Chapter 4. 

Figure 3.11. Object diagram of the car traveling between two locations. 

/course Of ~ c t i o n s ~  

The Specification of the Course Of Actions class (Figure 3.12) shows the attributes 

used to store its components (i.e., a Performer, a Course of Actions Interval, and a list 

representing a set of Acts objects). 

The process of building a Course of Actions is accomplished by instantiating an 

object with its associate Performer and Course of Action Interval objects. This process 

continues with the addition of Acts to the Course of Actions set of Acts. Individual Acts of 

an object's behavior, however, cannot be arbitrarily added to the set of Acts. The 

coordination of multiple changes prohibits that two Acts that "compete" be stored in the 

set. The operation compete of the Course ofActions class handle this task. 
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class CourseOfActions { 

Overview: Course of actions represents the entire behavior of a performer's 
behavior. 

I/ Attributes 
Performer p; 
CourseOfActionsInterval coai; 
Acts[] acts; 
... 

/I Constructors 
... 

/I Methods 
boolean compete(Act a, Act al )  
// Effects: If a compete with a1 returns true else returns false. 

Return a.isRelated(a1) A coai.isConcurrent(a,al) 
... 

Figure 3.12. Specification of the class Course of Actions. 

The operation compete identifies when two Acts are competing to interpolate the 

same attribute. Two Acts "compete" if they are "related" a d  their Acts Intervals objects 

are "concurrent". The first requirement is verified by the operation i sRelated of the 

Act class. The second requirement is checked by the operation isconcurrent of the 

Course of Actions Interval class. This operation is discussed in the next chapter. 

Intuitively, the operation isconcurrent informs if the temporal intervals representing 

the periods of time when each Act occurs overlaps along the animation timeline. In the 

case of the car traveling between two locations, for example, all Acts are related (i.e., 

every Act interpolates at least the attribute position of the car). These Acts, however, can 

be combined forming the desired Course of Actions of the car. This combination is 

possible only because in such a Course ofActions of the car one Act follows the other and 

they do not overlap in the temporal domain (i-e., the Acts are not concurrent). 



Although the Course of Actions abstraction represents already a coarser granularity of 

an object's behavior, this representation is not always suitable for a real application. In a 

typical animation the number of Performer objects can easily overcome the user's 

capability to analyze the dynamic environment. An environment composed of hundreds 

or thousands of animated objects requires increasing coarse representations of objects' 

behaviors. In this way, we need to extend the model with abstractions that represent 

groups of possibly semantic-related Course of Actions objects. 

3.4 Animations 

The coarsest level of granularity of the dynamic environment is modeled by means of the 

abstraction Animation. An Animation can represent the behavior of a single object, a 

group of objects, or all the objects in the environment. Consider, for example, an 

application running an animation of all vehicles traveling between the two locations. 

Based on the semantics of the application domain, it is possible to build increasing 

abstractions of the dynamic environment. Objects with related semantics can be grouped 

in a single Animation. Animations can also be grouped forming an even more abstract 

collection. Consider, for instance, that the vehicles are traveling between two buildings in 

a university campus and that the vehicles belong to students, faculties, and staff personal. 

In this scenario, it is possible to have one Animation for every vehicle, different 

Animations for each class of vehicle owner, or an Animation with all vehicles in the 

environment. The first option is often unmanageable for humans, giving a large number 

of objects in the environment. The second option gives rise to a more reasonable number 

of objects (Animations), which can be manipulated by users. The last option is the 



approach used by existing applications (Strauss and Carey 1992; Najork and Brown 

1995; Green and Halliday 1996; Java-3D 2004) and has the disadvantage of limiting 

users to exploring the animation as a whole. An object diagram with the second option is 

shown in the Figure 3.13. 

I i l l  vehicles 1 

Figure 3.13. Object diagram of a possible configuration of Animations and Course of 

Actions of all vehicles running on a university campus. 

> 

Animations objects are formed by a combination of pairs of Course of Actions and 

Performers or by a combination of Animations, creating an even more complex 

animation. Thus, an Animation can be seen as a multi-sort collection of Course of Actions 

and Animation objects. 

Animation 
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Figure 3.14 shows some details of the of the Animation specification. An attribute of 

this class represents a set of Actions objects. Due to the heterogeneous characteristic of 

the set, some operations of the animation specifications are overloaded (i.e., they have the 

same name but different types of attributes). Consider, for example, the operation 

i n s e r t .  This operation has two versions, one adds a Course of Actions object and the 
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other adds an Animation object in the set of Action objects. Although the Act abstraction 

is also of the type Action, this type of object is not allowed in the set of actions of the 

Animation class. 

class Animation { 

I/ Attributes 
Actions[] actionset; 

11 Constructors 
. * .  

11 Methods 
void insert (CourseOfActions ca) 
// Effect: Insert a Course ofActions object in the set of actions. 

void insert (Animation a) 
// Effect: Jnsert an Animation object in the set of actions. 
... 

Figure 3.14. Specification of the class Animation. 

The operation insert does not specify any constraint for the inclusion of Animation 

or Course of Actions objects in the set. The coordination of multiple changes (i.e., an 

attribute of a Performer object being interpolated at the same time) does not apply at this 

level of granularity. The behavior of a single object is completely encapsulated in the 

Course of Action abstraction and each Course of Action participate only once in the set of 

actions of the Animation object. 

The conceptualization of the action part of the framework for virtual exploration of 

animation with increasing abstraction of objects' behaviors gives a user a cognitively 

plausible representation of the dynamic. environment. The ability of the user to 

manipulate this representation, however, is strongly dependent on the configuration of the 



animation produced by the application that converts the information stored in the 

database to the internal representation of the animation model. Here, the maxim 

"garbage-in-garbage-out" is still valid. The configuration of the animation does not 

change the content of its presentation, but a poor configuration of the animation limits 

users' creativity and flexibility for manipulating the dynamic environment. 

3.5 Summary 

This chapter introduced the structure of the action part of a framework for virtual 

exploration of animations. Data abstractions of the model were presented and relevant 

operations were discussed through an informal specification. 

Although the data abstractions of the action part of the framework does not allow a 

user to direct the presentation of the animation, these classes represent the foundation of 

the animation framework, which serves as the basis of all manipulations that can be 

accomplished by a user. All manipulations of the dynamic environment are accomplished 

by the modification of the temporal characteristics of actions objects (i.e., through 

operations of classes of the temporal part of the framework). These classes carry all 

temporal information about the behavior of dynamic objects. The next chapter introduces 

data abstractions that represent the temporal characteristics of Actions objects. 



CHAPTER 4 

TEMPORAL CHARACTERISTICS OF ACTIONS 

In a model for virtual exploration of animations, the manipulation of the dynamic 

environment is accomplished through a set of operations performed over abstractions that 

represent temporal characteristics of actions. Hence, the exploration of dynamic 

environment is strongly dependent on the way that the observer perceives and 

manipulates time. This chapter presents a conceptualization of the temporal part of a 

framework for virtual exploration of animations. The next section discusses different 

temporal domains related with exploration of animations. Subsequently, we present 

relevant abstractions of the temporal model and discuss their characteristics. 

4.1 Temporal Domains 

Applications that support animations deal with information that has a temporal 

component. Such information is typically represented at different temporal granularities 

and based on distinct calendars (e.g., hours, days, academic terms, or geologic eras). In 

order to present these data in a way that is suitable for a user to analyze the temporal 

evolution of the information, it is necessary to perform mappings among different 

temporal domains. 



In some GIs application @ollner and Hinrichs 1997; Luttermann and Grauer 1999; 

Hardisty et al.), the presentation of temporal information through animations requires 

mappings among three temporal domains (Figure 4.1). 

User Time 

Figure 4.1. Mappings among valid, animated, and user time domains. 

Valid time represents the time when the fact is true in the modeled reality (Jensen et 

al. 1992). For example, valid time is time generated by a simulation application or stored 

in a spatio-temporal database. This kind of information cannot be modified through 

operations of the animation model, but only observed by a user at a special and 

ephemeral point along the user time domain (i.e., the user present). 

User time is the time in which the user senses the facts. Thus, user time is time as 

experienced by a user. This experience of time by the user can only be in the present and 

"going forward" at a fixed rate. Since valid times are fixed and user time cannot be 

manipulated, a direct mapping from the valid time domain to the user time domain 

constrains the user to explore the information as it "happened" or "will happen" in the 

modeled world. In order to allow the user to control the flow of information coming from 

the valid time domain, we need to represent such information in an intermediate temporal 

domain that can be manipulated. This intermediate temporal domain is called animated 

time. 

The mapping from valid times to animated times is made by an application in an 

automatic fashion. These mappings are performed during the production of the animation 



without the involvement of the user. The mapping from animated time to user time, 

however, is controlled by a user through a set of operations that modifies animated time. 

The simplest mapping between these time domains aligns the user present with a certain 

instant in the animated time domain, allowing the user to sense a single snapshot of the 

modeled reality. By continuously mapping subsequent animated times to the unfolding 

user's present, that user can sense the evolution of the modeled reality. We call this 

continuous process an animation. 

Consider, for example, the behavior of two objects, as these behaviors are stored in a 

spatio-temporal database. The activity of each object can be represented as a temporal 

interval spanning the valid time tirneline (Figure 4.2a). The temporal structure of the 

valid time space is linear, discrete, and unbounded at both ends. In this thesis we adopted 

the former representation. This choice is motivated by the fact that discrete time is the 

usual representation of both animations and GIs applications. 

Valid time intervals are mapped onto the animated time domain by converting time 

units of the former temporal domain to time units of the animated time domain (usually 

milliseconds). The animated time domain, however, is bounded on the start and, 

eventually, bounded on the end. An arbitrary point (i.e., the start point of the animation) 

defines the origin of the animated time space (Figure 4.2b). It means that activities 

occurring before the animation start point are not mapped onto the animated time space 

and, therefore, cannot be seen. Finally, the animation start point is mapped to the user 

present. As time goes by, all subsequent animated time instants are mapped to the ever- 

evolving user present (Figure 4.2~). This mapping allows the user to perceive the 

temporal evolution of all activities of the animated time domain. Such a mapping 



continues until animated time instants reach the upper bound of the animated time space, 

or indefinitely, in the case where no end point is specified. 
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Figure 4.2. Mapping of temporal information among different temporal domains. 

In the previous example, the evolution of animated time and user time spaces are 

synchronized (i.e., both temporal spaces evolve at the same pace and in the same 

direction). In this way, a user becomes a spectator of an animation of the modeled reality 

(i-e., a user is merely observing an animated version of the information stored in a 

database). The manipulation of the animated space gives a user the opportunity to play a 

more active role in the exploration of the animation. Thus, a user can create more 

appropriate views of the dynamic environment (i.e., views more suitable to the task at 

hand). 

In existing animation models (Strauss and Carey 1992; Koved and Wooten 1993; 

Elliott et al. 1994; Green and Halliday 1996; Hardisty et al. 200 I), the user's control over 

the presentation of the animation is limited to the manipulation of the animated space. 



This manipulation is accomplished by means of three basic operations. First, a user can 

slow down or speed up the evolution of the information by directing the animated time to 

evolve at a different pace from the user time. This operation allows the user to adjust the 

pace of the evolution of the information to be presented in a reasonable time frame (e.g., 

a geological phenomenon that took millions of years to evolve can be explored in a few 

minutes in a user time scale). Second, a user can change the temporal order of the 

animation by inverting the evolution of the animated time space. This operation allows a 

user to explore the environment where the evolution of the information is observed in the 

reverse chronological order (e.g., instead of seeing glaciers receding, seeing glaciers 

advancing). Third, a user can explore a single snapshot of the dynamic environment by 

stopping the evolution of the animated space. This operation allows the user to 

investigate the configuration of the environment at a certain instant in time. Other 

operations can be defined as a combination of these basic operations (e.g., by combining 

the first and second operation, a user can speed up the presentation of an animation in the 

reverse chronological order). 

The manipulations of the animated time space are usually presented to a user through 

a graphical interface that mimics operations of a VCR control. The use of the VCR 

metaphor has a cognitive appeal, that is, it has a small number of operations and many 

users are very familiar with the semantic of this set of operations. The main disadvantage 

of the VCR-style of operations, however, is that the user is constrained to control the 

animation as a whole, without any means to address the behavior of an individual or 

group of objects. Moreover, these operations manipulate only the temporal space. The 



VCR metaphor, for example, does not provide operations that change the temporal 

organization of the animation. 

Consider, for example, a scenario where a user needs to explore the behavior of two 

phenomena that occur at different times (i.e., there is a temporal gap between the 

occurrence of these phenomena in valid time). In a typical animation environment, a user 

can start the animation with the behavior of the first object, wait a certain amount of time, 

and continue to explore the behavior of the second object. In order to minimize the 

temporal gap between these behaviors, a user can speed up the evolution of the 

animation. By doing so, however, all dynamic objects in the environment move faster, 

which it is not necessarily the best pace to explore the dynamic information. Using VCR- 

like operations, the user cannot generate an animation where one phenomenon follows 

the other with no temporal gap, or where both phenomena occur at the same time, 

facilitating the comparison of their behaviors. 

The exploratory nature of GIs applications, requires an environment where the 

observer has full control over the content and flow of the animation (Fairbain et al. 200 1 ; 

Kraak 2002). These requirements can be accomplished with a data model that captures 

different granularities of both the temporal space and of objects' behaviors. The first 

characteristic allows the manipulation of the temporal space associated with pieces of the 

animation. This characteristic gives a user a finer control over the flow of the animation. 

It is equivalent to having a VCR control attached to different components of the 

animation (e-g., part of an object behavior, the entire behavior of an object or the 

behavior of a group of objects). The second characteristic allows the modification of the 

temporal organization of pieces of the animation. This characteristic gives a user the 



ability to change the temporal arrangement of an object's behavior or of groups of 

objects' behaviors. The conceptualization of such a data model provides the means to 

move the user interface beyond the VCR metaphor and supports an exploratory analysis 

of dynamic geographic phenomena. 

h the model for virtual exploration of animations the presentation of the temporal 

information is still done by mappings among valid, animated, and user time domains. In 

order to give a user finer control of the temporal space, however, a more elaborate 

conceptualization of the animated time domain is necessary. Thus, the animated time 

space is partitioned into a hierarchical representation of time (Figure 4.3). Each element 

in the structure works as a local temporal coordinate system for representations that 

embody the temporal characteristics of action's objects (e.g., an object carrying the 

temporal characteristic of an Act are represented over the act time space). 

Animation Time 

v 
Valid Time Course o f  Actions Time 

v 
Act Time 1 

Figure 4.3. Mappings among valid times, different elements of the animated time 

domain, and user time. 

In this setting, the process of mapping the information available in a database (valid 

time) to an application that presents the information to an observer (user time) becomes 

more elaborate. The mapping from valid time to animated time is spread among different 

elements of the animated time domain. Since valid times have all temporal information 
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about an object's behavior, there is no simple abstraction in the model that incorporates 

all information coming from the valid time domain. The dotted arrows in the figure 4.3 

represent a dependency among elements of the animated time domain. Thus, 

transformations of an element of the animated time space are consistently propagated for 

all elements in the hierarchy. 

The next section discusses the data abstractions represented over each element of the 

structure of the animated time space. These abstractions capture temporal information 

about certain pieces of the dynamic environment. The specification of each data 

abstraction describes operations to combine these pieces of information and to 

manipulate their temporal characteristics. The specification describes also operations that 

modify the underlying temporal space of each representation (i.e., the elements of the 

structure of the animated time domain). 

4.2 Structure of the Temporal Model 

The conceptualization of the temporal model deals with abstractions that represent the 

temporal characteristics of action objects (Figure 4.4). This fact is modeled through a 

one-to-one association between classes of the temporal and action parts of the framework 

(i.e., each object of the action model has an associated representation in the temporal 

model). 

The structure of the temporal model is similar to the structure of the action model 

(i.e., the temporal characteristic of entities representing a coarser granularity of objects' 

behaviors aggregates the temporal characteristics entities representing a finer 

granularity). The aggregation between classes of the temporal model, however, is 
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redundant. This information can be retrieved through the association between entities of 

the temporal and action models and the same type of aggregation between classes of the 

action model. We replicate the aggregation in the temporal part of the framework to 

enhance the structural characteristic of the model and facilitate the model 

implementation. 

Temporal Model Action Model Geometric Model 

Figure 4.4. Class diagram of the dynamic, temporal, and geometric parts of the 

framework for virtual exploration of animations. 

1 
Animation Interval 

The next sections present the specification of each class of the temporal model (i.e., 

Act Interval, Course of Actions Interval, and Animation Interval). Operations of these 

classes build the hierarchical structure of the model and allow the manipulation of 

temporal characteristics of their instances. Each class of the temporal model encapsulates 

operations that simulate some kind of transformation of the underlying temporal space 

(i.e., an operation that inverts the act time space is part of the Act Interval class). 
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4.2.1 Act Interval 

Act Interval refers to the temporal characteristic of acts. The Act Interval abstraction 

captures the duration of its associated Act object. Each Act Interval is defined over its 

own temporal space (i.e., act time). The temporal structure of the act time space is linear, 

discrete, and bounded at both ends. Act Interval is a finite subset of integers defined as 

{n E Z 1 0 I n I d), where d is the duration of the act. 

The specification of the Act Interval abstraction (Figure 4.5) shows a constructor 

method with two arguments (i.e., an Act object and a duration). The first argument (an 

Act) links objects of the temporal model with their associated representation in the action 

model. The second argument (an integer) represents the duration of the Act converted 

from Valid Time units to Act Time units (i.e., the duration of the act as stored in the 

database). The Act Interval specification does not provide any operation to designate the 

start point of the interval. This information is defined at a high level of abstraction in the 

model and will be discussed later in this chapter. 

Other important temporal characteristics of the act are modeled through operations 

that simulate some kind of transformation of the underlying temporal space (i.e., the act 

time space). The operations s e t D u r a t i o n ,  s e t o r d e r ,  s e tF low,  and s e t p a c e  

perform such transformations. These operations affect the way that an observer perceives 

the evolution of objects' states with the passage of time. Taken together, these operations 

direct the mechanism that links each state of an object's behavior with an instant in the 

act time domain. Changing the order an object's states are presented to the user, for 

example, simulate a transformation that inverts the act time space. 



class ActInterval { 

overview: represents the temporal characteristics of Acts objects. 

11 Constructors 
Act Interval (Act a, int duration) 
11 Effects: initializes this with the duration of its associated Act. 

I1 Methods 
void set Durat i o n  (int duration) 
void setorder (String o) 
void setFlow (String f )  
void set Pace (String p) 

Figure 4.5. Specification of the class Act Interval. 

In order to understand the effect that each transformation operation has in the way 

that a user perceives the evolution of the act, it is important to review the mechanism 

used to generate states of an object with the passage of time introduced in chapter 3. 

Consider, for example, the act of a car traveling in a straight line between two locations 

(Figure 4.6a). This Act is modeled with three key states (i.e., the initial, intermediate, and 

final position of the car). Although the intermediate state of the car is redundant for this 

act, we introduce it here to enhance the understanding of some concepts discussed in this 

section. 

Each key state of an object Act is associated with a normalized time value. A 

normalized time is a real number in the interval [0,1]. The lower and upper bound of the 

normalized time interval are associated with the state of an object at the beginning and 

end of the act, respectively. An Interpolator object takes into account key states of the 

movement, and, upon request, returns the state associated with a given normalized time 



(Figure 4.6b). The continuous arrow in the figure represents an incoming message to the 

Interpolator object with a normalized time value of 0.25 as argument. The dashed arrow 

represents an outgoing message carrying out the result of the computation. 

Key States 

Interpolator ri 
Key states Values 

a) b) 

Figure 4.6. An act of a car moving in a straight line: a) Key states of the position of the 

car and b) an interpolator object computes the position of a car for a given normalized 

time value. 

Interpolator objects accept only normalized time values as input. In order to evaluate 

the state of an object at a certain instant in time, it is necessary to map instants in the act 

time space to values in the normalized time space. A normalize function performs such a 

mapping. The domain of this function is act time values (i.e., values in the interval [0, 

duration]) and its range is normalized time values (i.e., a value in the interval [O, 11). 

Based on the output of the normalize function, the object Interpolator returns the 

respective state of the object (i.e., the car's position) at the instant used as argument. 

The combination of transformation operations ( s e t  Dura t i o n ,  set  Order ,  

s e tF low,  and set  Pace), depending on the value of their arguments, produces 

different shapes of the normalize function (Figure 4.7). The semantics of each operation 



and the effect that each kind of argument has on the shapes of the normalize function 

follow. 

The set Dura t ion  operation changes the duration of Act Intervals. This operation 

has as an argument the new duration of the act. Changing the duration of the Act 

Interval slows down or speed up the movement of an object. 

The operation set Order defrnes the temporal order of the presentation of the act. 

This operation has two kinds of arguments: reverse and normal. The reverse 

argument, for example, causes the movement of the car to be perceived in the reverse 

chronological order, while the argument normal preserves the modeled evolution of 

the car. 

The operation setFlow alternates the shape of the normalize function between a 

constant function and a non-constant function. The setFlow operation has two 

kinds of arguments: stepwise and continuous. The argument stepwise constrains the 

range of the normalize function to normalized time values associated with key states 

of the act. In this way, only the discrete movement of an object's act is presented. The 

stepwise argument is used to highlight key states of an object behavior. The argument 

continuous indicates that the range of the normalized function is any value between 0 

and 1. In this way, any increment in the act time space produces a different state from 

the previous instant of observation. It causes the illusion of the car moving 

continuously between two locations. 

The operation se tpace  alternates the shape of the normalize function between a 

linear and a non-linear function. This operation has five kinds of argument: 



constant - speed, accelerated, decelerated, accelerated - decelerated, and 

decelerated - accelerated. The argument constant-speed defines a linear normalize 

function. Such a function produces an animation where the car is seen moving at a 

constant speed along the entire act. The arguments accelerated, decelerated, 

accelerated - decelerated, and decelerated - accelerated define different shapes of non- 

linear normalize functions. A non-linear normalize function implies that different 

unitary increment in the act time space represents a different increment in the 

normalized time space. Non-linear normalize functions produce an animation where 

objects' states are perceived changing at different speeds during the act. In the case of 

the car, the car is seen moving at variable speeds (e.g., accelerating or decelerating). 

The argument accelerated defines a non-linear function where an unitary increment 

of the act time space cause a small increment in the normalized time space in the 

beginning of the act and a large increment in the normalized time space near the end 

of the act. Such a function causes the illusion of the car moving initially at a low 

speed and gradually increasing its speed with the passage of time. The argument 

decelerated defines a function that produces the opposite effect. The argument 

accelerated - decelerated produces an accelerated movement in the first half of the act 

and a decelerated movement on the second half of the act. The opposite effect is 

accomplished through the decelerated-accelerated argument. 



setDurat ion(d)  setOrder(normal) 
set Flow(continuous) s e t  Pace(constant) 
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Figure 4.7. Different shapes the normalize function. 
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Transformation operations are high-level abstractions used to define the shape of the 

normalize function. In a GIs context, these operations simulate the most usual 

manipulations of the temporal space that can be accomplished by a user at the act level of 

granularity. If an application of a specific domain needs even more control of the 

temporal space, however, the set of transformation operations or their arguments can be 

extended to incorporate such requirements. 

4.2.2 Course of Actions Interval 

Course of Actions Interval represents the temporal characteristics of Course of Actions. 

Each Course of Actions Interval is defined over its own temporal space (i.e., course of 

actions time). The temporal structure of this temporal space is linear, discrete, and 

unbounded at both ends (i.e., isomorphic with the set of integers ordered by the "less 

than" relation). 

Course of Actions Intervals are modeled as a collection of Act Intervals positioned 

along the course of actions timeline. Instances of this class are built in the same fashion 

as their associated objects of the action part of the framework. A constructor method 

instantiates a Course of Actions Interval and adds the first Act Interval in the collection 

(Figure 4.8). The constructor also specifies the start point of such an interval. This 

argument (an integer) represents the start point of the Act converted from valid time units 

to course of actions time units (i.e., the modeled start point of the Act as stored in the 

database). Acts Intervals are positioned along the course of actions tirneline by mapping 

the origin of the act time space to a point in the course of action space. This point 

corresponds to the start point of the act. The process of building the Course of Actions 



Interval continues with the method i n s e r t .  This method is similar to the constructor 

method in the sense that it adds an Act Interval to the collection and defines the Act 

Interval start point in the course of actions time space. 

class CourseOfActionsInterval { 

11 Overview: represents the temporal characteristics of Course of Actions objects. 

11 Constructors 
CourseOf A c t  i o n s  I n t e r v a l  (ActInterval ai, int start) 
// Effects: initializes this with the first act interval in the set and specifies the 
// start point of the interval in the course of actions temporal space. 

11 Methods 
void i n s e r t  (ActInterval ai, int start) 
/I Effects: inserts an act interval in the collection and specifies the start point 
N of the interval in the course of actions temporal space. 

Figure 4.8. Specification of the class Course of Actions Interval. 

In order to illustrate the process of building the temporal characteristic of an object's 

behavior consider, for example, the Course of Actions of a car traveling between two 

locations (Figure 4.9a). The entire behavior of the car is modeled with five Acts. Each Act 

object has an associated Act Interval in the temporal model. Consider, also, that the car 

completely stops for a few seconds before traveling the unpaved bend of the road. Since 

the lack of activity is not modeled as an act of the object, this information does not have 

an associated representation on the action model. The Course of Actions Interval 

representing such a behavior is instantiated with the first Act Interval of the car and 

complemented with a sequence of calls to the i n s e r t  method with other Act Intervals 

of the object's behavior. The resulting Course of Action Interval can be seen as an 

aggregation of Act Intervals spanned over the course of actions timeline (Figure 4.9b). 
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b) 
Figure 4.9. Representations of the course of actions of a car moving between two 

locations: a) Entities of the action model and b) entities of the temporal model. 

The graphical representation of the Course of Actions Interval in the Figure 4.10b is 

depicted at two different levels of granularity. At the finest level of granularity, the 

Courses of Actions Intewal is seen as a collection of convex intervals (i.e., Act Intervals). 

At the coarsest level of granularity the Course of Actions Interval is represented by the 

smallest convex interval that encompasses all associated Act Interval in the collection. h 

this way, at a high level of abstraction periods of inactivity are incorporated in the 

graphical representation of the Course of Actions Interval. 

Act Intervals are congruent with the intuitive notion of intervals, a duration of time 

associated with some event occurring in the world (Allen and Ferguson 1997). Course of 

Actions Intervals, on the other hand, do not fit well with this notion. We can have a 



Course of Actions Interval composed of Acts Intervals, which do not meet or overlap, 

implying a period of inactivity inside the Course of Actions Interval. The advantage of 

reducing such entities to a simple interval is that operations at different levels of 

abstractions become very similar (i.e., these operations have the same name and a convex 

temporal interval as argument). This characteristic enhances the understanding of the 

model and facilitates the user's assimilation of the functionalities of different versions of 

many operations that are used throughout the model at different levels of granularities. 

Due to the fact that Course of Actions Intervals represent the temporal characteristics 

of the entire behavior of an object, the set of operations used to manipulate their instances 

increases in number and in complexity. A set of transformation operations similar to 

operations performed at the Act Interval level of granularity is used to simulate 

transformations of the course of actions time space. Other operations allow a fmer control 

over an object's behavior by changing the temporal organization of its constituent parts 

(i.e., their associated Act Intervals). The later group of operations is introduced in the 

context of temporal constraints, discussed in chapter 5. 

4.2.2.1 Transformation Operations 

A set of transformation operations modifies the underlying temporal space of Course of 

Actions Interval. At the Course of Actions Interval level of abstraction, the set of 

transformation operations consist only of the operations s e t  Du r a t i on, s e t Fl ow, and 

se torder .  The operation set Pace is not available at this level of abstraction. The 

acceleration/deceleration of an object behavior can be specified only for individual pieces 

of the movement (i.e., at the Act Interval level of abstraction). This constraint is due to 

the difficulty of identifying the precise semantics of the set Pace operation when this 
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operation is performed over an abstraction that represents the entire behavior of an object. 

The behavior of an object can be composed of multiple periods of acceleration, 

deceleration, and constants speeds, which is hard to model with a single argument. 

Syntactically, transformation operations at the Course of Actions level of abstraction 

are identical to their version performed over a finer granularity (i.e., they have the same 

name and accept the same kinds of arguments). Semantically, these operations are 

similar, but with more elaborate functionalities. Intuitively, the operation 

setDuration changes the duration of the Course of Actions Interval, the operation 

set Flow alternates between continuous and stepwise presentation of the behavior, and 

the operation setorder changes the temporal order of an evolution of the object's 

behavior. The hierarchical structure of the animated time space, however, imposes that 

the manipulation of the temporal space at a certain level of granularity be consistently 

propagated to its associated temporal spaces at a lower level of granularity. In this way, 

manipulations of the course of action time space affect all Acts Intervals associated with 

the Course of Actions Interval. 

In order to understand the semantics of each transformation operation consider, for 

example, the Course of Actions Interval representing the behavior of the previous 

example of the car moving between two locations (Figure 4.10a). Consider yet, that a 

user wants to create a new view of the environment where the car is seen performing its 

modeled behavior twice as fast. In this way, the user can reduce the duration of the 

Course of Actions Interval to half of its original duration (Figure 4.1 Ob). 
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Figure 4.10. Graphical representations of two versions of a car's movement: a) the 

modeled configuration of the car and b) the effect of changing the duration of the trip. 

Changing the duration of an object Course of Actions is equivalent to performing a 

scale operation over Course of Actions Interval with respect to the start point of the 

interval. Thus, the start point of the Course of Actions Interval remains the same and its 

duration is multiplied by a scale factor. The ratio between the previous and the new 

duration defines the scale factor. A scale operation with the same scale factor and same 

reference point (i.e., the start point of the Course of Actions Interval) is performed over 

every Act Interval in the collection. It means that not only are the durations of Act 

Intervals affected, but also all Act Intervals' start point that do not coincide with the 

reference point of the scale operation. 

The set Orde r operation allows the user to produce an animation where a certain 

object is seen performing its behavior in a reverse chronological order while the other 

objects are seen performing their behaviors in the chronological order. If a user wants to 

produce such animation with the car of the previous example, a setorder operation 

with a reverse argument performed over the car temporal characteristics can handle the 



task. Figure 4.1 l a  shows the graphical representation of the modeled behavior of the car 

while the Figure 4.1 1 b depicts the graphical representation of the car moving backwards. 

cai 
-00 

Figure 4.11. Graphical representations of the operation setorder over the entire behavior 

of the car: a) the modeled configuration of the car's behavior and b) the effect of 

inverting the evolution of the entire behavior of the car. 

The se t  O r d e r  operation does not change the modeled duration or start point of the 

Course ofActions Interval. At a finer level of granularity, however, the start points of the 

Act Intervals are affected. Graphically, the setorder operation with a reverse 

argument is equivalent to perform a mirror transformation with respect to the midpoint of 

the Course of Actions Interval. A mirror transformation over temporal intervals changes 

the endpoints of the interval. The new position of these points are the ones in which the 

distance from the new position to the reference point is the same as from the old position 

to the reference point. Thus, at a coarse granularity, the Course of Actions Interval 

remains the same (i.e., the new position of the interval end point coincides with the old 

position of the interval start point). At a finer granularity, however, the start points of all 

Act Intervals in the collection change. The process of updating the start points of Acts 

Intervals is accomplished by mirroring each Act Interval with respect to the midpoint of 
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the Course of Actions Interval (Figure 4.12b). In addition to that, a set Orde r operation 

with a reverse argument is performed over every Act Interval in the collection. 

The set Flow operation allows the user to select between a continuous evolution of 

the movement of the car or an animation where only representative states of the car's 

position are shown. The setFlow operation performed over a Course of Actions 

Interval is equivalent to performing the same version of this operation over all Act 

Intervals in the collection. In this case, the duration and start point at all temporal 

intervals at both levels of granularity remain the same. Thus, the graphical representation 

of the outcome of this operation is similar to the original configuration of the Course of 

Actions Interval at both levels of granularity. 

4.2.2.2 Cyclic Behaviors 

One important requirement of an animation model is that its data abstractions need to 

capture the temporal structure of the application domain. Failing to satisfy this 

requirement means that information coming from the valid time domain is only 

approximate or gets lost when mapped onto the animated time domain. The 

conceptualization of different granularities of objects' behaviors position along a timeline 

and powered with operations to modify their temporal organization is not robust enough 

to capture the richness of temporal geographic information. These abstractions do not 

capture, for example, objects' behaviors that repeat themselves in a cyclic fashion. 

Current animation models do not properly capture cyclic behaviors. In these models 

cycles are simulated through a mechanism that repeats portions of the animation a certain 

number of times or indefinitely. Moreover, in these models the behavior of the object 



represents the entire period of the cycle. It means that there is no interval of inactivity 

between two occurrences of the cycle. In order to support more sophisticate kinds of 

cyclic behaviors, we extend the animation model with a new class called Cycle Interval. 

This class is modeled as a specialization of the class Course of Action Interval (Figure 

4.12). The temporal characteristics of cyclic behaviors are represented by instances of the 

class Cycle Interval. At this point we support only cyclic behaviors of the entire behavior 

of an object (i.e., Course of Actions). We leave for future extensions of this model the 

support of cycles at the Act level of abstraction. 

Course of Actions Interval 

Cycle Interval 

Figure 4.12. Class diagram showing a Cycle Interval as a specialization of the class 

Course of Actions Interval. 

In order to understand the structural elements of objects that represent cycles, 

consider, for example, the spray of hot water from a geyser. The water is sprayed out 

from the ground in a cyclic pattern (Figure 4.13). In the action domain, there is no 

abstraction that specifically represents different occurrences of the cycle. Every 

occurrence of the cycle is modeled through a single Course of Actions that repeats itself 

accordingly to the temporal characteristics of the Cycle Interval object. In this example, 

the object spillage represents the Course ofActions of the geyser. 

In the temporal domain each hot spring is represented by a single interval (i.e., the 

temporal extent of one occurrence of the geyser's activity). We call this interval the 



period of activity. In this cyclic phenomenon, the time necessary to warm up the 

underground water to a certain temperature and cause the next spray of the geyser is 

represented by an interval under the relation meets with the period of activity. We call 

this interval the period of inactivity. The period of inactivity represents the period of time 

when the associated action is not happening, or that what is happening is not modeled in 

the action domain. Thus, there is no action associated with the period of inactivity of the 

geyser. The interval of inactivity represents the temporal extent between two consecutive 

occurrences of the cyclic behavior. The set union of the interval of activity and the 

interval of inactivity defines the period of the cycle. 

period? cycle , 
period of activity period o f  inactivity 

Temporal Domain 

ctt 

Action Domain 
----J---- --. <-> spillage < w m u P  - _ i 
---___-- --#' 

Figure 4.13. An interval of activity followed by an interval of inactivity representing the 

temporal extent of a single occurrence of the cycle of a geyser. 

Similar to the Course of Actions Interval representation, a Cycle Interval can be 

depicted at different levels of granularity. At a fine level of granularity, a Cycle Interval 

object is represented by two intervals (i.e., the periods of activity and inactivity). At a 

coarse level of granularity, a Cycle Interval is represented by a single interval (i-e., the 

period of the cycle). The later representation encompasses the representation of both 

intervals at the fine level of granularity. 



The class Cycle Interval inherits from its super-class Course of Actions Interval all 

structural elements related with the cycle's period of activity (i.e., the associated action 

and the start point and duration of the period of activity). The class Cycle Interval 

complements the structure of the cycle by adding an attribute that defines the duration of 

the period of inactivity of the cycle (Figure 4.14). Other structural elements of the Cycle 

Interval (e.g., duration of the period of the cycle) can be easily derived from the existing 

structural elements (Cuckierman and Delgrande 2000; Terenziani 2003). 

class CycleInterval extends CourseOfActionsInterval { 

Overview: represents the temporal characteristics of cyclic behaviors. 
I/ Attributes 

int dpi 
. . . 
/I Constructors 

... 
N Methods 

int setDurationPeriodInactivity (int dpi) 
... 

Figure 4.14. Specification of the class Cycle Interval. 

The structural elements of the class Cycle Interval capture the temporal characteristic 

of a single occurrence of the cycle. We call this occurrence the occurrence of reference. 

Other occurrences of the cycle can be retrieved based on occurrence of reference. 

In order to represent other occurrences of the cyclic behavior we need to define the 

pattern of the repetition of the cycle. This information is modeled through the operation 

set P a t  t ernsOf Repe t i t ions. This operation has four kinds of arguments: in$nite, 

finite, until, and porn. The semantic associated with each kind of argument determines 



the temporal characteristics of all occurrences of the cycle and which instance of the 

cycle the occurrence of reference refers to. The semantics of each argument follows: 

The argument infinite represents endless cyclic behaviors (Figure 4.1 5a). This type of 

cycle implies that the object is always observed performing some activity. The 

occurrence of reference of this cycle can be any occurrence of the cyclic behavior. 

The argument Jinite represents behaviors that repeat themselves a certain number of 

times after the occurrence of reference (Figure 4.15b). The number of cycles needs to 

be provided in this case. An operation se t  Numberof Repe t i o n s  informs the 

number of times that the cycle repeats. 

The argument porn models cycles that start with the occurrence of reference and 

repeats the associated action indefinitely (Figure 4.15~). 

The argument until models cycles that finish with the occurrence of reference but the 

object is observed performing its behavior at every instant before that (Figure 4.15d). 

tcat 
a) infinite 

tcat 
b) finite 

bat 
c) from 

tcat 
d) until 

Figure 4.15. Different patterns of repetitions of cyclic behaviors. 



It is important to note that the representation of the cycle' occurrences in the Figure 

4.16 is depicted using an interval representing the period of the cycle (i.e., an interval that 

encompasses the periods of activity and inactivity of the cycle). 

In this section we treat only the extended functionality and semantics of the class 

Cycle Interval. This class inherits all operations of its super-class (i.e., Course of Actions 

Interval). Some operations, however, are overriden to accommodate specificities of the 

cycle's representation. Other temporal operations involving cycles are introduced in 

chapter 5. 

4.2.3 Animation Interval 

The main purpose of an Animation object in the action domain is to serve as a grouping 

mechanism. Courses of Actions are combined to form Animations and Animations are 

combined forming complex Animations. Animation Intervals represents the temporal 

characteristics of these objects. 

Each Animation Interval is defined over its own temporal space (i.e., animation time). 

The temporal structure of animation time is identical to the temporal structure of course 

of actions time (i.e., linear, discrete, and unbounded at both end). 

Animation Intervals are similar to Course of Actions Intervals in the sense that they 

are modeled as a collection of intervals positioned along a temporal axis. Thus, the 

process of building Animation Intervals is accomplished by adding temporal intervals to a 

collection of intervals. Different fiom Course of Actions Intervals, however, the elements 

in the collection of intervals can be of different sorts (i-e., the elements can be either 

Animations Intervals or Course of Actions Intervals). This characteristic is represented in 
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the specification of the Animation Interval, for example, by two versions of the method 

insert, one for each sort of object allowed in the collection (Figure 4.1 6). 

class AnirnationsInterval { 

Overview: represents the temporal characteristics of animations objects. 

11 Constructors 
11 Methods 

void i n s e r t  (AnirnationsInterval ai) 
void i n s e r t  (CourseOfActionsLnterval cai) 

Figure 4.16. Specification of the class Animation Interval. 

From the users perspective an Animation Interval is the smallest convex interval that 

encompasses all temporal intervals in its collection. Figure 4.17 shows a graphical 

representation of Animation Interval composed of one Animation Interval and two 

Courses of Actions Intervals. 

Figure 4.17. Graphical representation of Animation Intervals. 

At the Animation Interval level of abstraction, a set of transformation operations (i.e., 

set  Dur a t i o n ,  s e t  Order ,  and set   low) simulates some kind of transformation of 

the animation time space. These operations allow a user to manipulate the behavior of a 

group of objects or all objects in the environment. The semantics and syntax of 

transformation operations over Animation Intervals are similar to the same set of 



operations at the Course of Actions Interval level of abstraction and they are not repeated 

here. 

Users are not restricted to manipulate Animations Intervals only by simulating 

transformation of the underlying temporal space. At the Animation Interval level of 

abstraction, a group of operations that resembles operations over sets (i.e., intersection, 

difference, and union) can also be used to produce a new view of the dynamic 

environment. We call this group of operations combinations operations. 

The intersect ion of two animations generates an animation defined over an 

interval obtained from the intersection of the intervals used as the arguments. The 

result is an animation defined over an interval when only the simultaneous 

occurrences of both animations will be presented. With this operation a user can 

verify, for instance, mutual interference between the movements of different objects. 

The difference of two animations generates an animation defined over an 

interval when the second animation is not defined (i.e., an interval when only the first 

animation occurs). This operation permits the user to isolate the behavior of the first 

object during the period when the second object does not occur. 

The union of two animations is a simple combination of two animations while 

preserving the temporal configuration of individual arguments. This operation is 

useful for combining animations to form complex animations. 

Despite the modeled configuration of the dynamic environment (i-e., the number and 

configuration of all ~nimations, Course of Actions, and Act objects), the model for virtual 

exploration of animation creates a special Animation object that combine all action 

objects in the environment. We named this special object All Animations. The temporal 
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representation of the entity All Animations is an interval that spans from the instant that 

the first object starts to perform some action until the last movement in the environment. 

Operations performed over the object All Animations affect all objects uniformly. In 

this way, an operation se tDura t ion ,  for example, allows the user to specify the 

desired duration of the entire animation, while preserving the relative duration of all 

actions in respect to each other. There are some operations, however, that are applied 

only over the object All Animations. We call this group of operations presentation 

operations. 

The group of presentation operations is formed by the operations st art , p 1 a y, and 

s top .  These operations direct the flow of information coming from the animated time to 

the user time domain. The operation start aligns a. point in the animation timeline 

with the user present. This operation has the effect of defining the point of insertion of 

the user in the animated temporal domain (i.e., this operation defines the start point of the 

animation). The operation p l a y  performs a continuous mapping from the animated time 

domain to the user time domain, allowing the user to sense the evolution of the modeled 

dynamic environment (i-e., allowing the user to explore the animation). The operation 

s t o p  suspends the flow of information coming from the animated time domain, which 

allows a user to observe a static version of the environment. 

4.3 Summary 

This chapter discussed the conceptual model of the temporal part of the framework of 

virtual exploration of animations. A structure of classes representing the temporal 



characteristics of actions was presented and attributes and methods of these classes were 

discussed in an informal way. 

The conceptualization of the action and temporal parts of the animation model 

framework gives a user a cognitively plausible representation of the dynamic 

environment at different levels of granularity of objects' behaviors. A user can, through 

operations associated with each level of granularity, create new views of the dynamic 

environment. This process is accomplished by manipulating the object's underlying 

temporal space through transformation operations or by combining objects Animalions 

through combination operations. These operations, however, do not allow a user to 

change the temporal arrangement of the dynamic objects in the environment. This 

functionality is accomplished through operations called compositions operations. 

Composition operations allow a user to change the animation by rearranging the 

temporal characteristics of the object's behaviors at different levels of granularity (e.g., 

changing the start point of an Act Interval or the end point of a Course of Actions 

Interval). Giving a user the possibility of manipulating this kind of information, however, 

allows a user to create views of the environment that make no sense in the context of the 

application domain (e.g., a cause happening after the effect). In this way a mechanism to 

avoid "unrealistic" views of the dynamic environment and keep the modified version of 

the animation coherent with some requirements of the application domain is necessary. 

The next chapter introduces composition operations and the mechanism used to 

represent temporal constraints among entities of the temporal part of the animation 

framework. 



CHAPTER 5 

TEMPORAL CONSTRAINTS 

The basic unit of time in the animation model is an interval. Intervals are ubiquitous in 

the model and used to represent the temporal extent of objects' behaviors at different 

levels of granularity. Abstractions of the animation model, however, does not capture any 

qualitative relationship among the intervals, which is a valuable piece of information to 

represent constraints among temporal entities and treat temporal information that is 

available only as the relative order between objects' behavior (Frank 1998). 

This chapter introduces a mechanism to incorporate into the animation model 

qualitative information about the organization of the temporal characteristics of objects' 

behavior. This information comes fiom the knowledge base of the application domain 

and it is represented in the model through temporal constraints among intervals. The next 

section discusses the role of representing such temporal relationships among entities of 

model. Subsequently, the mechanism to represent temporal constraints is discussed in the 

context of temporal relationships between two intervals and among a sequence of 

intervals of cyclic behaviors. 



5.1 The Role of Representing Relationships between Temporal Intervals 

In existing animation models (Fiurne et al. 1987; Dollner and Hinrichs 1997), the 

"knowledge" about the temporal organization of the animation's components is used 

mainly for performance purposes. Considering the order in which behaviors occur, for 

example, these models can perform a temporal indexation of objects' behavior and 

optimize the information sent to the graphic engine. This "knowledge", however, plays a 

significant role if the application allows the user to manipulate the temporal configuration 

of the elements that form the animation. In an animation model that supports the 

manipulation of the temporal characteristics of objects' behavior, it is important to 

"know" if there exists any temporal relationship among their constituent parts. Thus, the 

modification of the temporal characteristic of a single interval allow the animation model 

to modifj the temporal characteristics of all related intervals in a way that preserves some 

"known" characteristics of the modeled animation. 

Consider, for example, the animation of two vehicles from the University of Maine's 

maintenance department. These vehicles travel between two locations in response to two 

different requests. The blue and red lines in the Figures 5.la represent the spatial 

characteristics of such vehicles' behavior (i.e., the path of each vehicle on the campus). 

The temporal characteristics of the vehicles' behavior (i.e., the instant when they start to 

move and the duration of the trip) are represented as temporal intervals positioned along a 

timeline (Figure 5.1 b). 
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Figure 5.1. Graphical representations of the spatial and temporal characteristics of the 

movement of two vehicles on the campus: a) the paths of the vehicles and b) the temporal 

characteristics of each movement. 

Analyzing the spatial and temporal characteristics of the vehicles' behavior, an 

observer can infer that each trip corresponds to a request from different locations on the 

campus and that these requests are responded in a timely manner (i.e., they are responded 

at different periods). If the animation model provides the means to an observer to change 

the temporal characteristics of the vehicles' behavior, an observer can produce, for 

example, an animation in which the trip of the second vehicle occurs before the trip of the 

first vehicle or an animation in which both vehicles are traveling at the same time. Since 

there is no information in the model relating the behaviors of the vehicles, the 

progression of the animation in both cases is obvious. If there exists any relationships 

between these behaviors, however, the progression of the animation may vary. 

Consider, for example, that is known fiom the application domain that the trip of the 

first vehicle (the red interval) is due to a request fiom the President's office and the trip 

of the second vehicle (the blue interval) is due to a request fiom the library. Due to the 



nature of the problem of each request (i.e., the library has a problem with the roof and the 

President's office has a problem in the sewer), the vehicle used in each response is 

different. Consider yet that requests from the President's office have a higher priority 

than requests from other departments of the University and that the same employee 

responds to both requests. This information can be represented in the animation model 

through a relationship that captures that the red interval always occurs before the blue 

interval (Figure 5.2). This relationship models the fact that a high priority is given to the 

President office's requests as well as the fact that a person cannot drive the same vehicle 

at the same time. 

Figure 5.2. A relationship between two intervals representing some knowledge from the 

application domain. 

In this scenario, an observer can change the temporal characteristic of the interval that 

represents the response to the President's office (the red interval) and make it start at the 

instant when the blue interval starts. Since there is a temporal relationship between these 

intervals, two possible temporal configurations of the animation are possible. First, the 

application can redefine the start point of the blue interval in a way that the original 

temporal relationship between the intervals still holds (Figure 5.3a). In this case, the 

modified version of the animation is similar to the original version and differs only by the 

fact that the maintenance department starts to respond the requests later. The rationale 

used to update the temporal characteristics of the animation when a temporal relationship 

99 



is in place is discussed in chapter 6 together with the operations that allow an observer to 

manipulate the animation. Second, the application can ignore the temporal relationship 

between the intervals and keep the original configuration of the blue interval (Figure 

5.3b). In this case, the modified version of the animation shows both vehicles traveling at 

the same time. Since the modified version of the animation violates some knowledge 

from the application domain, the animation model responds to this fact by changing the 

way in which the object interacts with other objects in the environment (i.e., the 

animation reflects the fact that the same person is driving two vehicles at the same time). 

The rationale used to modify the way that objects interact with other objects is discussed 

in chapter 7 together with the mechanism used to represent the semantics of the objects in 

VR environments. 

a) b) 
Figure 5.3. Different configurations of an animation where the start point of the red 

interval is redefined: a) a configuration in which the relative temporal relationship is 

preserved and b) a configuration in which the temporal relationship is violated. 

Using a certain temporal relation between two intervals to capture some known 

relationship between objects' behavior does not cover some cases in which the behavior 

of the objects have a cyclic pattern of repetition. The temporal relation between such 

behaviors requires a richer representation (i.e., a representation that considers the set of 

relations among elements in a sequence of intervals). Consider, for example, the behavior 



of two buses running on the campus. Each bus has a different route on the campus (i.e., 

they serve different locations). The blue and red lines in the Figures 5.4a represent the 

spatial characteristics of the buses behavior (i.e., the buses route). Due to the difference in 

the length of each route, the amount of time for each bus to perform each run is different, 

but between each run the buses rest for the same period of time. Thus, the temporal 

characteristics of the buses' behavior are represented by a sequence of intervals 

intercalated with gaps of the same duration (Figure 5.4b). Each interval in the sequence 

corresponds to a run of the bus and the gaps represent periods when the buses are not 

running. 
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Figure 5.4. Graphical representations of the spatial and temporal characteristics of the 

movement of two buses with a cyclic behavior: a) the routes of the buses and b) the 

temporal characteristics of each run. 



The graphical representation of the temporal characteristics of the buses' behavior 

(Figure 5.4b) allows an observer to reason about the buses' schedule. An observer can 

infer, for example, when the buses start to run, the duration of each run, and so forth. This 

representation, however, does not tell the observer the reason that the bus of the blue 

route starts its first run when the bus of the red route finishes its fust run. It can be either 

a coincidence or an imposition between the buses' schedule. 

Consider that is known fiom the application domain that the schedule of the buses is 

set up in a way that enforces a policy of the University that states that "whenever possible 

there is at least one bus running on the campus". Due to the duration of the periods of 

activity and inactivity of the buses, the temporal configuration shown in Figure 5.4b 

guarantees that there is always one bus running on the campus. This information can be 

registered in the model through a temporal relationship between the first run of each bus 

(e.g., the interval representing the first run of the bus on blue route is "met by" the 

interval representing the first run of the bus on the red route). The temporal relationship 

between the first run of each bus, however, is not robust enough not capture the 

knowledge from the application domain (i.e., the university policy concerned the 

schedule of the buses). This relationship reflects only a solution found by a person that 

sets up the schedule of the buses based on the duration of each run. 

In this scenario, the animation model is not always capable of preserving the 

knowledge from the application domain. Depending on the manipulation made by an 

observer, the modified version of the animation may not reflect a "known" or "desired" 

temporal relationship between entities of the "real" world. Consider, for example, that an 

observer wants to create an animation where each run the bus on the blue route takes 



more time to complete each run. This situation can be motivated, for example, by the fact 

that the bus mming on the blue route has a new driver and for security reasons the speed 

limit of the bus is be reduced by 5 mph during the driver's training period. Thus, 

changing the duration of each run of the bus on the blue route and preserving the 

temporal relationship between the first run of the buses generates a temporal 

configuration where sometimes both buses are not running (Figure 5.5). 

Figure 5.5. Graphical representations of the temporal characteristics of the buses' 

behavior in which the bus of the blue route has a new driver. The oval highlights the 

period in which neither bus is running. 

When dealing with cyclic behaviors, a new set of temporal relationships is needed to 

relate these more complex structures. These relationships have to be less restrictive and 

able to address temporal relations that must hold between all intervals of the cycle. A 

temporal relationship of the kind "maximize the occurrence of periods of non-concurrent 

activities", for example, gives the animation model the information needed to find a new 

temporal configuration with always at least one bus running on the campus. There is no 

guarantee, however, that it is possible to find such a temporal configuration, but the 

application can find a configuration in which simultaneous periods of inactivity are 

distributed evenly during the day, minimizing the occurrence of long periods with no bus 

running on the campus. 



The next section discusses the mechanism used to represent relationships among the 

temporal characteristics of objects' behavior and to update such characteristics when an 

observer changes the temporal configuration of the modeled animation. 

5.2 Representing Temporal Constraints 

In the model for virtual exploration of animations, Course of Actions Interval and 

Animations Interval are abstractions that deal with collections of time periods. These 

classes have an attribute to represent some known temporal relationship among elements 

in their collections of intervals. This attribute is called temporal constraints. 

The attribute temporal constraints is implemented as a list of triples of the form 

(temporal object, temporal object, constraint). Temporal object is any instance of the 

classes of the temporal model introduced in chapter 4 (i.e., Act, Course of Actions, 

Cycles, and Animations Intervals). The element constraint is any information that 

represents a dependency between temporal objects. The types of temporal objects in the 

triple vary accordingly the class that the attribute belongs. For example, a Course of 

Actions Interval is composed of Act Intervals. Thus, the temporal objects in the triple are 

always instances of Act Intervals and the value of the element constraint is some 

information that relates two temporal intervals, for example, a temporal relation metBy 

between two Act Intervals informs that one act of the object follows the other. 

The class Animation Interval is more complicated. Animation Intervals handles a 

multi-sort collection of intervals. Objects in t h s  collection can be of the sort Course of 

Actions Interval, Cycle Interval, and Animation Interval. Thus, the range of values of the 



element constraint varies fiom values that relate two intervals to values that relate 

sequences of intervals of cyclic behaviors. 

The implementation of attribute temporal constraint is straightforward. An operation 

called Insert Temporalcons t ra int s adds elements in the list of the attribute 

temporal constraint. This operation registers all known dependencies among entities of 

the model. The operation Insert Tempora lCons t ra in t s is polymorphic and 

available to all classes that deal with collections of intervals (i.e., it can be used to relate 

any sort of temporal objects). Thus, two major issues concerned the temporal constraint 

mechanism are the definition of possible values associated with the element constraint 

and the definition of the rationale used to keep modified versions of the animation 

coherent with the temporal constraints introduced in the model. The next sections discuss 

these issues in the context of temporal constraints between two intervals and between two 

cycles. 

5.2.1 Temporal Constraints between Intervals 

The first task to handle in the temporal constraints mechanism is the characterization of 

the elements in the list of triples of the attribute temporal constraints. Firstly, its need to 

characterize which kinds of temporal structure we are relating. Secondly, we need to 

identify which kind of constraint we intend to capture. Thirdly, we need to define the 

rationale used to update the temporal characteristics of all related temporal structures 

when an observer changes the temporal characteristics of an object's behavior. 

The kinds of temporal structure that we dealing in this section are intervals and the 

constraint that we intend to capture are some temporal relation between two intervals. In 
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this way, the major issue concerning the functionality of the temporal constraints 

mechanism becomes the characterization of the object constraint. 

The range of values of the element constraint is strongly dependent on the kind of 

temporal relation that the model is able to express (i.e., we cannot define values of 

constraint without knowing the type of temporal relations that can be represented in the 

model). In this thesis we adopted the Allen's set of relationships between intervals (Allen 

1983). This set is composed of thirteen temporal relations (i.e., before, meets, overlaps, 

starts, contains, finishes, equals, and their converse) and captures any relationship that 

may hold between two intervals. 

Based in the Allen's set of temporal relations, we propose a set of fifteen values of 

constraints to relate two intervals (Table 5.1). Although it is natural to think about 

instances the element constraint representing only the basic set of temporal relations 

between intervals, we decide to represent the constraint where two intervals start together 

or finish together without having to constraint the duration of the related interval. The 

semantic of the constraints makeStartTogether and makeFinishTogether are 

discussed later in this section. 

Based on the rationale used to update the temporal characteristics of related intervals, 

instances of the constraint element can be divided in two sub-groups: tight and loose 

(Table 5.1). The tight group of instances constrains at least one point of the interval 

involved in the relation. The constraint ma keEquals represents the strongest constraint 

in the set since it defines the position of the start and end points of the related interval. 

The loose group of instances of constraint limits the range of possible values of the 



related interval end points, but does not unambiguously define the position of any end 

points. 

Table 5.1. Temporal constraints between a pair of intervals. 

Tight 

Loose 

Once populated the list of triples of the attribute temporal constraints, the model has 

incorporated all knowledge fiom the application domain concerned temporal 

relationships among entities of the animation (i.e., intervals representing the temporal 

extend of object's behavior). Thus, any modification made by an observer in the temporal 

characteristic of an interval present in the list of the attribute temporal constraint causes 

the modification of all related intervals in a way that preserves known relationships 

stored in the model. Intervals that are not related in the list of the attribute temporal 

constraint keep their original temporal characteristics. 

Values of the element Constraints 

ma keMeet 

ma keMet By 

makeStartTogether 

makeFinishTogether 

makeEquals 

makeBefore 

makeAfter 

makestart 

makeStartBy 

makecontain 

makeContainedBy 

makeFinish 

makeFinishedBy 

makeoverlap 

makeOverlappedBy 

Possible Temporal Relations 

Meets 

MetBy 

Starts or StartedBy 

Finishes or FinishedBy 

Equals 

Before 

Ajler 

Starts 

StartedBy 

Contains 

ContainedBy 

Finishes 

FinishedBy 

Overlaps 

OverlappedBy 



Consider, for example, an animation composed of the behavior of four objects. The 

temporal characteristics of these objects' behavior are represented by four Course of 

Actions Intervals (i.e., c l ,  c2, c3, and c4). Triples in the attribute temporal constraints 

captures known relationships among the temporal characteristics of these behaviors (i.e., 

[(cl ,c2, s t a r t T o g e t h e r ) ,  (c2,c3, s t a r t s ) ,  (c3,c4, over laps)]) .  Given certain 

duration for the intervals, figure 5.6a shows a graphical representation of the Course of 

Actions Intervals and the temporal constrains register in the model. 
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Figure 5.6. Temporal constraints between a Course of Actions Interval and different 

kinds of cycles. 

Consider that an observer wants to simulate a situation where the behavior of the 

second object takes longer (i.e., the observer changes the duration of the yellow interval). 

If the yellow interval represents the behavior of a car moving between two locations, for 

example, an observer wants to slow down the movement of the car. Figure 5.6b shows a 

graphical representation of the modified version of the animation. In this version of the 

animation, the duration of the yellow interval is the one specified by the observer. Since 

there exist temporal constraints among the intervals, however, the application redefines 

the temporal characteristics of other intervals in a way that preserves all information 



stored in the list of the attribute temporal constraints. The first triple of the attribute 

temporal constraints captures the fact that blue and yellow intervals start together. In the 

modified version of the animation the temporal characteristic of the blue interval remains 

the same. The new duration of the yellow interval does not change this fact. The second 

constraint in the list captures the fact that the yellow interval starts the red interval. It 

means that the intervals have the same start point but the duration of the yellow interval is 

shorter. The new duration of yellow interval violates such a constraints (i.e., the temporal 

relation becomes startBy). Thus, in the modified version of the animation, the duration of 

the red interval is redefined in order to preserve the temporal constraint. The third 

constraint informs that red interval overlaps the green interval. Considering the new 

configuration of the red interval, the application changes the start point of the green 

interval and preserves the temporal relations overlaps between these entities. 

The rationale used to update the temporal characteristics of the intervals related by a 

constraint fiom the group of tight constraints (e.g., ma  keS t a r t Toge t her) is 

straightforward. The temporal characteristics of the interval are completely defined in 

terms of the temporal characteristics of the related interval and the intended constraint. 

The group of loose temporal constraints is more flexible in the sense that it gives 

implementers of the model more room to specify the best configuration of the related 

interval. For example, the decision about the new duration of the red interval and the new 

position of the green interval is left to implementers. In this chapter we abstract the 

implementations details. 

The model of virtual exploration of animation supports other temporal structures that 

cannot be represented as a single interval. In the class Animation Interval, for example, 



some temporal objects can be of the sort Cycle Interval. It means that Cycle Intervals 

objects can be also elements in the triple of the attribute temporal constraints. In this 

way, it is possible, for example, to relate a Course of Actions Interval with a Cycle 

Interval or to relate two Cycles Intervals with constraints that relates two intervals (Table 

5.1). 

Consider, for example, the behavior of three objects. The first object has a non-cyclic 

behavior (i.e., the temporal characteristic of the object's behavior is represented by a 

single interval). The second and the third objects have a cyclic behavior with an infinite 

and finite pattern of repetition, respectively. The temporal characteristic of the cyclic 

object's behavior is represented by a sequence of intervals. Consider also that is known 

from the application domain that a certain occurrence of the infinite cyclic behavior starts 

when the non-cyclic behavior stops and that this same occurrence of the infinite cycle 

starts together with the first occurrence of the finite cyclic behavior. Figure 5.7 shows the 

graphical representations of the temporal characteristics of these objects' behavior and 

the temporal constraints introduced in the model. The yellow interval represents the 

temporal characteristics of the non-cyclic behavior and the red and blue intervals 

represent the related occurrences of the Cycle Intervals. In this scenario, the modification 

of any characteristic of an object's behavior makes the application to redefine the 

temporal characteristics of all related intervals using the same rationale discussed early in 

this section. In the case of the cyclic behaviors, the application considers only the colored 

occurrences of the cycles. Other occurrences of the cycles are redefined based on the 

structural elements of the Cycle Intervals (i.e., the periods of activity and inactivity, and 



the pattern of repetition), but they are not taken into account in the temporal constraints 

mechanism. 

Figure 5.7. Temporal constraints between a non-cyclic behavior and cyclic behavior and 

between two cyclic behaviors. 

Imposing a temporal constraint between a Course of Actions Interval and an 

occurrence of a Cycle Interval or between two occurrences of Cycle Intervals is 

meaningful only because a single temporal relation is in place. When two cycles are 

involved, however, a temporal relation between two occurrences is not always the most 

representative. Other occurrences of the cycles will have different temporal relations and 

with the possibility that the imposed relation is the less relevant (i.e., is the relation that 

occurs less frequently). The next section discusses an extension to values of constraints 

to be used when the temporal objects are cycles and when the knowledge that we want to 

capture involves temporal relations between all occurrences of the cycles. 

5.2.2 Extending Temporal Constraints between Cycles 

A sequence of intervals that do not overlap is the temporal representation of cyclic 

behaviors. In this way, the mechanism used to constraints pairs of intervals is no longer 

sufficient to be used by an application that deals with cycles. 

111 



A critical issue in the extension of the temporal constraint mechanism is the 

representation of the set of temporal relations among the basic units of time that comprise 

a cyclic behavior. Previous studies have addressed the issue of temporal relations 

between collections of intervals. These studies can be divided into three main groups. 

The first group (Ladkin 1986; Leban et al. 1986; Balbiani et al. 1988; Morris and Khatib 

1997) considers relations among generalized sequences of recurring events, that is, these 

studies do not consider any constraints among elements of the sequence. The second 

group (Frank 1998; Hornsby et al. 1999; Osmani 1999) takes into account the cyclic 

pattern of the sequence of intervals but limit their scope to the particular case in which 

the cycles have the same period. The third group considers cycles with different periods 

(Cuckierman and Delgrande 2000; Terenziani 2003) but limit the representation of 

temporal relations to a disjunction of Allen's set of temporal relations (Allen 1983). This 

thesis is more related with the second and third groups of study but our reasoning process 

depends on a more detailed representation of temporal relations that is not addressed in 

any previous studies. This more detailed representation considers cycles with different 

periods and includes the frequency in which each temporal relation between occurrences 

of the cycles occurs. The next section discusses the representation of temporal relations 

between cycles with different periods. 

5.2.2.1 Temporal Relations between Cycles 

A temporal relation between occurrences of cycles is called correlation (Morris et al. 

1996). The number of correlations, depending on the temporal characteristics of the 

cycles, can be infinite. After, a certain amount of time, however, the pattern of 

correlations repeats in a cyclic fashion. Thus, a finite subset of correlations can be chosen 
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to represent all possible correlations that may hold between occurrences of these cycles. 

In this thesis we are interested in the smallest subset of correlations that captures also the 

frequency in which each correlation occurs. Consider, for example, two cycles in which 

pairs composed of one occurrence of each cycle are either under a temporal relation 

startBy or contains. Consider yet that the temporal relation contains occurs two times 

more frequently than the temporal relation startBy. Thus, the smallest subset of 

correlations must reflect this fact. In this case, an instance of the smallest subset of 

correlation between these cycles would be: {contains, contains, startBy) . 

In order to compute the smallest subset of correlation between two cycles we need to 

take into account some quantitative information about the cycles (i.e., the duration of 

each cycle period). Consider, for example, animated objects that have a cyclic behavior 

with an infinite pattern of repetition. The first cycle has a period of twelve time units 

(nine units for its period of activity and three units for its period of inactivity). The 

second cycle has a period of eight time units (three units for its period of activity and five 

units for its period of inactivity). Figure 5.8 shows a small portion of a timeline with 

some occurrences of these cycles. A set of correlations can be retrieved from this sample. 

This set, however, do not necessarily represent the smallest subset of correlations 

between these cycles. 

Cycle 1 t 

Cycle 2 

Figure 5.8. Temporal representations of the occurrences of two cycles. 



The minimum amount of time required to capture the frequency of all correlations 

that may hold between occurrences of two cycles is determined by the duration of the 

periods of the cycles involved in the process. This amount of time is called extended 

period of the cycle (E). The duration of the extended period equals the least common 

multiplier between the duration of the cycles. Thus, the duration of the first cycle's period 

(DL) and the duration of the second cycle's period (D2) are used in the computation of the 

duration of the cycles' extended period (DE) as follows: D E = ~ C ~ ( D I ,  D2). LCM is an 

operation that returns the least common multiplier of two integers. The duration of the 

extended period determines the number of occurrences of each cycle needed to cover the 

entire extended period. In the cycles depicted in the Figure 5.8, for example, the number 

of occurrences of cycles 1 and 2 needed to compute the smallest subset of correlations are 

two and three, respectively. 

Once the number of occurrences for each cycle has been determined, an application 

can select two subsets of occurrences of each cycle and compute all temporal relations 

that hold between pairs of these occurrences (Figure 5.9a). Since these subsets of 

occurrences do not represent any specific set of occurrence of the cycles, they can be also 

depicted using a cyclic representation (Figure 5.9b). In the cyclic representation the 

circumference of the circle equals the extended period of the cycles. 

The smallest subset of correlations is obtained by comparing the period of activity of 

the set of occurrences of the cycles 1 and cycle 2. Elements of the subset of correlations 

are one out of twelve possible temporal relations between intervals in a cyclic 

representation, that is, relations before and after are collapsed in a single relation called 

disconnected (Frank 1998; Hornsby et al. 1999). Thus, the smallest subset of correlation 



between the cycle 1 and 2 are composed of the temporal relations startedBy, overlaps, 

and contains. 

11- 

Cycle 1 1 

I I I I ~ I I I I ~ , I I I I I I  
Cycle 2 1 

a) b) 

Figure 5.9. Temporal representations of subsets of occurrences of two cycles covering 

the extended period of the cycle: a) a linear representation and b) a cyclic representation. 

Based on the representation of temporal relations between two cycles (i.e., the 

smallest subset of correlations), we propose an extension of the range of values of the 

element constraint. These values of constraints can only be used when temporal objects 

in the triple of the attribute temporal constraints are of the sort Cycle Interval. We call 

this set of values cyclic constraints. 

5.2.2.2 Constraints between Occurrences of Cycles 

The role of temporal constraints between cycle intervals is the same as the temporal 

constraints between intervals (i.e., to represent some known relationships among entities 

of the model and keep these characteristics in modified versions of the animation). Cyclic 

constraints, however, are less rigid than the set of constraints between two intervals and 

the rationale used to maintain the modified version of the animation coherent with the 

constraint introduced in the model is more complicated. In order to represent some 

known relationship between cycles we propose a set of eighteen values for the element 



constraint. hstances of constrains are values of the form maximizeRelation and 

minimi zeRel a t ion, where Re1 a t ion assumes one of the following values: 

Meets, MetBy, StartTogether, FinishTogether, Equals, Disconnected, 

Contain, Overl aps, or Overl appedBy. 

The set of values of cyclic constraints does not refer to all kinds of temporal relations 

individually. We collapse certain temporal relations into a single temporal relation that 

does not depend on the duration of the intervals. In this sense, the pairs of temporal 

relations start and startedBy, finish and finishedBy, and contains and containedBy are 

represented by the constraints maximize or minimize s tartTogether, 

finishTogether, and contain, respectively. This is motivated by the fact that the 

mechanism used to modify the temporal characteristics of the cycles while keeping the 

modified version of the animation coherent with cyclic constraints does not change the 

duration of the cycles involved in the process. 

Consider, for example, the case of the buses introduced earlier in this chapter. The 

original configuration of the buses was defined based on the knowledge from the 

application domain that requires, whenever possible, that buses run at the same time. This 

constraint between the behaviors of the buses can be represented in the model through an 

instance of cyclic constraints of the type max imi z e Di s conne c t ions. The temporal 

relation disconnected means that when one object is performing its associated behavior 

the other object is at rest. In this way, when an observer changes the temporal 

characteristics of one cycle, the application can look for a temporal arrangement of the 

cycle intervals in which the smallest subset of correlations has the largest number of 

relation disconnected. 

116 



The rationale used to redefine the temporal arrangement of Cycle Intervals and 

enforce a cyclic constraint is very different from the rationale used for non-cyclic 

temporal structures. First, the redefinition of the temporal characteristics of the cycles is 

limited to redefinition of the of the start point of the cycles' occurrences. Thus, this 

mechanism never changes the duration of the cycles' occurrences. Second, cyclic 

constraints do not impose a certain temporal relationship or a set of temporal 

relationships between the Cycle Intervals, but requires that a certain temporal relation 

hold more or less frequently between occurrences of the cycles. Moreover, the temporal 

relation that an instance of cyclic constraints refers to does not necessarily holds between 

any pair of occurrences. In the case of the buses, for example, it is impossible to achieve 

a temporal configuration for the schedule of the bus in which a temporal relation 

disconnected holds. The duration of both periods of activity of the buses is larger than 

their periods of inactivity. 

The algorithm used to find the best temporal configuration of the cycles (i.e., the start 

points of occurrences of the cycles) that reflects a cyclic constraints is the same as the 

algorithm used by operations that allow an observer to modify the temporal 

configurations of cyclic behaviors. This algorithm is discussed in next chapter. 

5.3 Summary 

This chapter discussed a mechanism to represent temporal constraints among entities of 

the animation model. This mechanism captures all known temporal relations among the 

elements in a collection of intervals maintained by entities at different levels of 

abstractions. Thus, any modification in the temporal characteristics of an interval in the 



list of temporal constraints, cause the redefinition of the intervals in the list in a way that 

preserves all constraints introduced in the model. These modifications occur during the 

manipulation of the temporal characteristics of the elements of an animation performed 

by a user in order to produce new views of the environment. 

Temporal constraints is a robust mechanism to incorporate knowledge from the 

application domain in a form of temporal relationships between intervals. The complexity 

and computational effort to maintain such a mechanism, however, are useless if the 

temporal configuration of the animation is fixed (i-e., cannot be modified by a user). In 

order to allow an observer to interfere with the temporal configuration of the animation, 

classes of the temporal model have a set of operations that allow a user to modifL the 

temporal organization of the components of the animation. These operations are called 

composition operations. 



CHAPTER 6 

TEMPORAL COMPOSITION 

Classes representing high-level abstractions of objects' behavior deal with collections of 

time periods. In these abstractions intervals are positioned along a temporal axis by 

specifying their start points. In an environment tailored for users to manipulate 

animations, however, this mechanism is time consuming, susceptible to errors, and hard 

to maintain. 

Using temporal relations between time periods (Little and Ghafoor 1993; Weiss et al. 

1995) is a more natural way to position temporal intervals. Existing animation models 

have explored the use of temporal relations between intervals (Fiume et al. 1987; Dollner 

and Hinrichs 1997). These models, however, are primarily concerned with the production 

of the animation. The set of operations of such models acts over low-level abstractions of 

the objects' behavior. Thus, they are not suitable for manipulation by users. Moreover, a 

critical problem of these models is that they do not consider cyclic behaviors, a recurrent 

type of behavior in GIs applications. 

This chapter introduces a set of operations to redefine the arrangement of temporal 

characteristics of objects' behavior taking into account the temporal relationship between 

their arguments. This set of operations is called composition operations. 



6.1 Composition Operations 

Composition operations are used by an observer to manipulate the configuration of the 

animation at different levels of abstractions creating new views of the dynamic 

environment. These operations have two temporal objects as arguments: a reference and 

a target object. The observer is responsible for identifying the reference and the target 

objects. The main functionality of these operations is that the temporal characteristics of 

the target object are redefined to satisfy a certain temporal relation between the reference 

and target objects. The resulting temporal configuration is given by the semantics of each 

operation. 

The sorts of the reference and target objects are any classes of the temporal model. 

Thus, it is possible for an observer to redefine a new temporal configuration of the 

animation manipulating the temporal characteristics of objects' behavior from different 

levels of granularity. For example, an observer can impose a temporal relation between 

an interval representing the behavior of a group of objects (i.e., an Animation Interval) 

and an interval representing a single act of an object (i.e., an Act Interval). Some 

compositions operations, however, are specific for cycles and do not accept other sort of 

temporal objects as arguments than Cycles Intervals. Thus, the set of composition 

operations can be divided in two main groups. The first group of operations is used to 

compose animations by redefining the temporal characteristic of a single interval. Cycles 

can be used as arguments for this group of operations but only the occurrence of 

reference (a single interval) of the cycle is taken into account. The second group of 

operations is specific for cycles. Next sections discuss these groups of operations. 



6.2 Composition Operations between Two Intervals 

The goal of composition operations is similar to the goal of the temporal constraint 

mechanism (i.e., to impose temporal relationships among temporal characteristics of 

objects behavior). In the context of the temporal constraints mechanism, the imposed 

temporal relationship informs a known dependency between entities of the animation. In 

the context of composition operations, the imposed temporal relationship reflects an 

observer intention to manipulate the temporal configuration of the animation to gain 

insights and discover relationships among geographic phenomena. Despite the similarity 

of their goals, these mechanisms have different requirements. The temporal constraint 

mechanism requires a sophisticated functionality to keep the modified temporal 

configuration of the animation coherent with constraints introduced in the model. It 

includes the redefinition of temporal characteristics of all related intervals or the 

modification of the semantics of associated objects. The latter requirement is discussed in 

chapter 7. Major requirements of composition operations are that this set of operations 

needs to be small, intuitive, and have the same functionality across different levels of 

granularities. These requirements facilitate the assimilation of the functionalities of these 

operations by a user. 

Composition operations are part of the user interface. These operations represent the 

bridge between the user and instances of the model's abstractions. Thus, these operations 

are strongly dependent on the way that the user perceives such abstractions. In this thesis 

we propose a graphical interface (chapter 8) in which the representation of the temporal 

characteristics of objects' behaviors are depicted as intervals positioned along a timeline. 

In order to make the set of composition operations intuitive to .the user, it is essential to 
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associate the operations' functionality with the graphical representation of their 

arguments (i.e., operations used to modify the position of intervals along a timeline need 

to have a graphical appeal). Thus, we borrowed from the drawing packages that deal with 

geometric objects some of operations used to align graphics objects (Table 6.1). These 

operations have a well-known functionality in the graphical domain that can be easily 

extrapolate to the temporal domain. In the context of an animation interface, these 

operations impose a temporal relationship between two intervals selected as arguments. 

makeAl ignLef t  I starts, startedBy, or equal 

makeTouch 

makeAl ignRight  I fnishes, fnishedBy, or equal 

1 
meets or metBy 

makeAl ignCenter  I contains, containedBy, or equal 

makec ross  1 overlaps or overlappedBy 

m a  keEqual  I equal 

Table 6.1. Composition operations between intervals and possible temporal relations 

holding between the intervals after the execution of the operation. 

The temporal relationship that holds between the intervals after a composition 

operation depends on the order in which the intervals are selected by the user and on the 

configuration of the intervals prior to the execution of the operation. The operation 

ma keTouch, for example, makes the start point of the target interval coincide with the 

end point of the reference interval or vice-versa, depending on which is closer. Thus, 

possible temporal relations between the reference and target intervals would be the 

temporal relations meets or metBy. The operation makeMirror  changes the position of 

the midpoint of the target interval to a new position where the absolute value of the 



distance from the midpoint of the reference interval is preserved. This operation acts as a 

converse for the other operations in the set. If the temporal configuration resulting from 

the operation makeTouch is the relation meets, for example, the observer can turn the 

temporal configuration to a relation metBy via the operation ma keMi rro r. We believe 

that the semantics of the other operations are self-explanatory. The amount of 

overlapping in the operation makecross is the only issue that deserves further 

consideration. We define this value as half of the smallest duration of the reference and 

target intervals. For example, if the target interval is shorter than the reference interval, 

the start point of the target interval coincides with the mid point of the reference interval 

(Figure 6.la). If the target interval is longer than the reference interval, the mid point of 

the target interval coincides with the end point of the reference interval (Figure 6.1 b). 

Figure 6.1. Two different configurations of the animation for the operation makecross: 

a) a configuration in which the reference interval is shorter than the target interval and b) 

a configuration in which the reference is longer than the target interval. 

These set composition operations takes two temporal objects as arguments. It means 

that Cycle Intervals can also be used as arguments of these operations. In this case, the 

composition operation considers only a single occurrence of the cycle (i.e., the cycle's 

occurrence of reference). Changing the start point of a cycle's occurrence of reference 

changes the start point of all occurrences of the cycle, but only the occurrence of 
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reference is under the temporal relation specified by the observer through a certain 

composition operation. 

Similar to the temporal constraints mechanism, there are some composition 

operations specific for cycles and do not accept other sort of objects as arguments. These 

operations are discussed in next section. 

6.3 Composition Operations Between Intervals 

Cyclic compositions are operations that change the temporal characteristics of cyclic 

behaviors taking into account the temporal relation that must hold between all 

occurrences of the cycles used as arguments (i.e., the reference and target cycles). These 

operations are divided into two groups. The first group changes the durations of periods 

of activity and inactivity of the target cycle in a way that a particular temporal relation 

holds between all occurrences of the cycles. The second group of operation preserves the 

duration of target cycle but changes the start point of its occurrences in a way that a 

certain temporal relation among occurrences of the reference and target cycles occurs 

more or less frequently. These groups of operations are discussed in next sections. 

6.3.1 Changing the Structural Elements of the Cycle 

The first group of composition operations between cycles is composed of the operations 

makeconcurrent and makeAlternate. These operations change the values of 

the structural elements of the target cycle (i.e., the periods of activity and inactivity of the 

cycle) based on the values of the structural elements of the reference cycle. 



The operation makeconcurrent is the cyclic version of the operation 

makeEqual between two intervals. This operation redefines the start point and the 

duration of the target cycle in a way that their occurrences and occurrences of the 

reference cycle are concurrent (i.e., they start at the same time and have the same 

duration). The operation makeAlternate redefines also the start point and the 

duration of occurrences of the target cycle but in a different way. For this operation the 

start point of the target cycle's occurrences coincide with the end point of the reference 

cycle's occurrences and the duration of the target cycle coincides with the period of 

inactivity of the reference interval. In this way, the behavior associated with the reference 

cycle is seen only when the behavior associated with the target cycle is not happening, 

and vice-versa. Consider, for example, the temporal configuration of the cycles depicted 

in Figure 6.2a. Blue intervals represent occurrences of the refirence cycle and red 

intervals represent occurrences of the target cycle. The temporal configurations of the 

cycles after the operations makeconcurrent and makeAlternate are shown in 

Figures 6.2b and 6.2c, respectively. 

The operations makeconcurrent and makeAlternate produce a temporal 

configuration in which the cycles have the same period (the sum of the durations of the 

period of activity and period of inactivity is the same). Thus, there exists a single 

temporal relation between all occurrences of the cycles. The first case is the temporal 

relation equals and the second case is the temporal relation meetsTwice (Hornsby et al. 

1999), that is, a conjunction of the temporal relations meets and metBy. 



Figure 6.2. Cycles compositions: a) the original temporal configuration, b) the temporal 

configuration after the operation makeconcurrent, and c) the temporal configuration after 

the operation makeAlternate. 

6.3.2 Changing the Start Point of Cycle's Occurrences 

The second group of composition operations between cycles changes the position of the 

start point of the occurences of the target cycle in a way that maximizes or minimizes a 

certain correlation between their arguments. These operations preserve the duraton of 

periods of activity and inactivity of the cycles used as arguments. 

The algorithm used to find the position of the target cycle that best represents the 

intended temporal configuration between the cycles is identical to the algorithm used by 

the temporal constraint mechanism cycles to enforce a cyclic constraint. 



The first task of this algorithm is to identifj all possible temporal configurations 

between two cycles obtained by changing the start point of all occurrences of one cycle. 

The number of possible configurations depends on the number of cycles' occurrences 

needed to cover the period of equivalence (i.e., the amount of time needed to capture all 

correlations between two cycles). Consider, for example, the occurrences of the reference 

and target cycles during the period of equivalence (Figure 6.3) 

reference 
11- 

t 

target 
I I I I ~ ~ I I I I I  

1 

a) b) 

Figure 6.3. The linear and cyclic representations of occurrences of the reference (outer) 

and target (inner) cycles needed to capture the smallest subset of correlations. 

In order to obtain all possible temporal configurations between these cycles, the 

algorithm increments and decrements by one unit of time the start point of target cycle. 

For each increment or decrement the algorithm computes the smallest subset of 

correlations. Figure 6.4 depicts the four possible temporal configurations between the 

reference and target cycles and their respective smallest set of correlations. 



startedBy overlappedBy overlappedBy metBy 
overlaps, overlaps, finishedBy, contains, 
contains contains contains contains, 

meet 

Figure 6.4. Possible temporal configuration between the reference (outer) and target 

(inner) intervals and the smallest set of correlations for each configuration. 

Once computed all possible configurations between the cycles, the algorithm can 

select the configuration that maximizes or minimizes the occurrence of a certain temporal 

relation in the smallest set of correlations. Consider, for example, that the temporal 

relation to be maximized is meets, metBy, contain, StartTogether, or FinishTogether. In 

these cases, the algorithm can unambiguously select a certain temporal configuration 

from the set of all possible configurations. If the intention is to maximize the relation 

meet, metBy, or contains, for example, the fourth configuration is selected. If the 

intention is to maximize the relations startTogether or finishTogether, the first and the 

third configurations is selected, respectively. 

If the intention is to maximize the relation equal, disconnected, overlap, or 

overlappedBy, however, the criterion of frequency of occurrences is not enough to select 

a unique configuration. The criterion of maximizing the temporal relation overlap or 

overlappedBy, for example, is satisfied by two different configurations each (i.e., the 

criterion of maximizing overlap is satisfied by the first and second configurations and the 
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criterion of maximizing overlappedBy is satisfied by the second and third configuration). 

The criteria of maximizing equal or disconnected are satisfied by every configuration. 

Since the relations equal and disconnected do not hold between occurrences of the 

reference and target cycles, all configurations have the same frequency of these temporal 

relations (i.e., no occurrence of such relations). 

This scenario is worst when the intention is to minimize a certain temporal relation. 

In this case, the algorithm can identify only the configuration that satisfies the criterion to 

minimize the temporal relations overlap and overlappedBy (i.e., the fourth configuration). 

The limitation of the frequency of relation criterion requires the definition of 

additional criteria that can be used to break the tie when more than one configuration 

satisfy the intended relation. The second criterion is qualitative and considers the 

frequency of closest temporal relations (in a topological sense) that occur in the set of 

correlations. The third criterion is quantitative and considers the topological distance of 

the temporal relation. 

In order to compute frequencies of closest relations we used the idea of conceptual 

neighborhood introduced by Freksa (Freksa 1992). A conceptual neighborhood of a 

temporal relation between two intervals is a different temporal relation obtained by 

atomic deformations of one of the intervals. Such a deformation can be 1) the redefinition 

of the interval's start or end point, 2) the redefinition of the interval's start and end points 

in a way that preserves the duration of the interval, or 3) the redefinition of the interval's 

start and end points in a way that preserves the location of the midpoint of the interval. 

Depending on the type of deformation, the structure of conceptual neighborhood changes. 

Freksa called these structures A-, B-, and C-neighborhood, respectively. 

129 



The second type of deformation is the only method that preserves the duration of the 

intervals. This deformation is equivalent of sliding an interval along the temporal axis. 

Since it is the same mechanism used to obtain different configurations of the smallest set 

of correlation between two cycles, we adopt the structure of b-neighborhood. 

Figure 6.5 depicts the structure of the conceptual neighborhood of the set of relations 

between occurrences of cycles. This structure differs from the structure proposed by 

Freksa (Freksa 1992). In our case we are dealing with a representative set of intervals that 

captures temporal relations between two cycles. These occurrences do not represent any 

specific occurrence of the cycle. Thus, in the conceptual neighborhood diagram the 

temporal relations before and after are collapsed in a single relation disconnected. 

Figure 6.5. Conceptual b-neighborhood structure for temporal relations between 

occurrences of cycles. 

Based on the structure of the b-conceptual neighborhood, we define as the second 

criterion to be used by the algorithm the configuration of the smallest set of correlations 



with the largest or smallest frequency of conceptual neighborhoods of the intended 

relation. 

Consider, for example, the intention of maximizing the temporal relation 

disconnected between the cycles of the previous example. Since the temporal relation 

disconnected does not occur in the set of correlation, the intention of maximize 

disconnected is satisfied by all different configurations. Considering the frequency of 

conceptual neighborhoods of the relation disconnected (i.e., met and metBy), however, 

the fourth configuration is the "closest" one that satisfies the intended relation (Figure 

6.4). Therefore the fourth configuration is selected. 

The process of breaking a tie with conceptual neighborhoods is recursive in the sense 

that it can be extend for different degree of conceptual neighborhoods. Thus, if the 

immediate conceptual neighborhood is not sufficient to distinguish among different 

configuration, the second-degree conceptual neighborhood can be used. Consider, for 

example, the intention of maximizing the temporal relation overlaps. The first and second 

configurations satisfy the first criterion (i.e., they have the same frequency of the relation 

overlaps). Considering the conceptual neighborhood of the relation overlaps (i-e., the 

relations meet, starts,$nishedBy, and equal), the first and the second configurations are 

still undistinguishable. These configurations have no occurrences of conceptual 

neighborhood relations. At the second degree of conceptual neighborhood, however, the 

second configuration is chosen since it has an occurrence of a conceptual neighborhood 

in second degree (i.e., the relation overlappedBy). 

Considering only the criterion of frequencies of relations at different levels of 

conceptual neighborhood, however, does not give the "best" configuration when the 
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relations under consideration are disconnected, contains, containedBy, overlapps, and 

overlappedBy. 

Consider, for example, two cycles with the same period and different periods of 

activity (i.e., the smallest set of correlation has a single temporal relation). If the intention 

is to maximize the relation disconnected, for example, three temporal configurations are 

possible (Figure 6.6). Using only frequency of temporal relations and conceptual 

neighborhood, however, the algorithm is unable to select a configuration among the set of 

possible configurations. Because the temporal relation to maximize is disconnected, the 

second configuration should be chosen. It can be interpreted as that the occurrence of the 

target cycle in the second configuration is "more diconnected" than it is in the first and in 

the third configuration. 

Figure 6.6. Different configuration of two cycles with a temporal relation disconnected. 

In order to distinguish a certain configuration among set of correlations with the same 

frequency of temporal relations, we introduce a weight for each temporal relation. A 

measure for such a weight takes into account the topological distances between the 

relation and its closest neighborhoods. We define as a topological distances the number 

of unitary increments and decrements in the target interval needed to change the 

underlying relation. Figure 6.7 shows the representations of the topological distances in a 
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conceptual b-neighborhood structure for the relations disconnected, contains, 

containedBy, overlapps, and overlappedBy. The arrows in the figure represent the 

number of atomic increments or decrements in the target interval needed to change the 

relations (i.e. their topological distances). We do not consider the topological distances 

of the temporal relations meets, starts, Jinish, equal, and their converses. For these 

relations, any unitary increment or decrement changes the underlying temporal relation. 

Thus, they are not useful in our reasoning. 

CFb ( c > C  

OFb 

Figure 6.7. Topological distances associated with relations of the loose group of 

temporal relations in the conceptual b-neighborhood structure. 

Each relation has two topological distances: the distance obtained by incrementing 

the target interval (D') the distance obtained by decrementing the target interval (D-). For 

the relation contains, for example, the topological distance D' is represented by the arrow 

CFb and the topological distance D- is represented by the arrow CSb. In the case of the 

relation overlaps, the topological distance D' is represented by the arrow OM and the 

topological distance D- is represented by the arrows OFb, OE, or 0s. The exact relation 

133 



obtained by the decrementing the target interval under the relation overlaps depends on 

the duration of the reference and the target intervals, but the topological distances OFb, 

OE, or OS are the same. 

Based on the pair of topological distances of each relation we define the index of 

topological distance (ITD). The ITD is computed as follows: 

A characteristic of the topological distances D' and D- is that the sum of these 

distances is constant for a given reference and target interval. In this way, the index of 

topological distance ranges between 0 and 1, inclusive. For relations of the loose group of 

temporal relations, however, the ITD7s capture the number of increments needed to change 

the underlying relation. ITD7s close to 1 mean that the relation is about to change due to an 

increment or decrement of the target interval. ITD7s close to 0 represent a configuration 

where the relation will remain the same considering the largest number of increments and 

decrements of the target interval. 

The index of topological distance is used as a quantitative criterion wherever the 

qualitative criterion of frequency of temporal relations fails to distinguish identical 

configurations (i.e., sets with the same of number of correlations). 

The criterion of topological distances is different if the intention is to maximize or 

minimize the occurrence of a temporal relation. If the intention is to maximize a certain 

temporal relation the criterion is to select the set that has the smallest ITD for the intended 

relation. If the intention is to minimize a certain temporal relation the criterion is to select 

the set that has the greatest ITD for the intended relation. If we reach the highest level of 



conceptual neighborhood without discerning a unique configuration, we consider that 

these configurations are undistinguishable with respect to b-neighborhood and 

topological distances, and everyone satisfies the intended relation. 

The algorithm used to find a configuration of the target interval considering the 

frequency of each temporal relation is adequate only for the temporal constraint 

mechanism. For the user of the animation, this mechanism generates a large number of 

operations in the graphical interface, which can become very confused. In order to keep 

the set of composition operation between cycles small and intuitive, we collapse some 

temporal relations in a single composition operation. Thus, the types of correlation that 

can be enforced are to maximize or minimize the temporal relations disconnected, 

touching, overlappings and containement. The temporal relation touching encompasses 

the relations met and metBy, the temporal relation overlapping encompasses the relations 

overlaps and overlappedBy, and the temporal relation containment encompasses the 

relations start, finish, contains, equals, and their converses. The functionalities of these 

compositions operations are discussed with a prototype implementation of the model in 

chapter 8. 

6.4 Summary 

This chapter introduced the set of composition operations. This set of operations gives a 

user the opportunity of changing the temporal arrangement of the elements of the 

animation at different levels of granularity. These operations are divided in two groups: a 

group that deals with two intervals and a group that deals with cycle intervals. 



This chapter also introduced an algorithm to redefine the temporal configuration of 

cycle intervals in a way that maximize or minimize occurrences of a certain temporal 

relation. This algorithm is used in the context of temporal constraints between cyclic 

behaviors and in the context of composition operations between cycle intervals. 

The next chapter introduces the semantics part of the framework of virtual 

exploration of animations. The semantics model extends the traditional animation model 

by introducing entities that explicitly represent the semantics of VR objects. The 

semantics direct the interaction of the objects with the observer and other objects in the 

environment. 



CHAPTER 7 

SEMANTICS OF VR OBJECTS 

The conceptualization of data model with high-level abstractions of objects' behaviors 

and a rich set of operations to manipulate such behaviors provides the means for an 

observer to produce and investigate new views of the environment. During the production 

phase, an observer uses operations over temporal intervals positioned along a timeline as 

a framework to create new temporal configurations of objects' behavior. During the 

investigatory phase, an observer has a wide variety of devices to support the exploration 

of the environment. The most usual device is a computer screen presenting projections of 

the four-dimensional world (i.e., a sequence of projections of the three-dimensional 

space). An increasing number of GIS applications (Kraak et al. 1999; Neves et al. 1999; 

Reddy et al. 1999; Verbree et al. 1999; Raper 2000; Zlatanova 2000)' however, are 

extending their representational capability to present their information in virtual reality 

environments. 

The ability of the user to manipulate objects' behavior and the fact that the 

exploration of the information takes place in an immersive environment imposes new 

requirements on the data model that supports the presentation application. First, the 

manipulation of the temporal characteristics of the behavior of an object may produce a 

situation where two objects originally dissociated, start to interact. For example, two 

objects that were at different positions at a certain instant in time may compete for the 
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same location in the modified version of the animation. Second, in an irnrnersive 

environment there is a presence of a new actor (i.e., the observer) interacting with other 

objects in the environment. Different from non-irnrnersive environments, interactions 

between the observer and the objects become an important issue in VR environments 

(Kraak 2002). The key point in both cases is interactions that involve constraints imposed 

by an object on other objects or an observer's actions (e.g., a building that blocks the path 

of the observer, an obstacle that hides another object, or a heavy object that cannot be 

moved). 

The type of constraints imposed by the objects depends on their associated semantics. 

In current data models for VR environments, the semantics of the objects are almost 

always assumed by the observer and derived from the context of the application. These 

semantics, however, play a significant role in the interaction between VR Objects, as well 

as in the interaction between observers and the environment. 

This chapter introduces a new classification of VR Objects and describes the 

associated semantics of each element in the taxonomy(Campos et al. 2002; Campos et al. 

2003b). This chapter introduces also a model to represent the semantics of VR objects 

over time and the rationale for modifying such semantics under the effect of a 

manipulation by the observer of the object behavior. 

7.1 Characteristics of VR Objects' Semantics 

The semantics of VR objects directs the way that these objects interact among themselves 

and with an observer. These semantics are based on three salient characteristics of all 

objects in the environment: activity, existence, and visibility. 
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Activity is a characteristic of an object that describes periods when the object is 

performing an associated action. Based on its activity an object can be considered active 

or inactive. An active object has the value of at least one of its attributes different from 

the value perceived in the previous time of observation (e.g., an object that changes 

continuously its position or shape at different instants in time). An inactive object, on the 

other hand, refers to the case where all the values of an object's attributes equal the 

values of the attributes from the previous time of observation. 

Data abstractions of the animation model describe the activity of a special kind of 

object in a VR environment (i.e., a performer). Performer was defined as an abstraction 

that represents the geometry and appearance of dynamic objects. Performer objects, 

however, do not have an active state all the time. Instead, the behavior of these objects is 

quite distinct. Some objects are always performing some kind of activity, others have a 

very short period of activity, and others perform the same activity in a repetitive fashion. 

The evolution of a performer's activity is depicted as time intervals representing 

periods when the object has an active state. This representation allows an observer to 

carry out qualitative temporal reasoning about the patterns of VR Objects behaviors, 

identifying fiequency, durations, and synchronization between objects' activities (Blok et 

al. 1999). A model that captures only the activity-related characteristics of an object, 

however, is not rich enough to model all the semantics of such objects in a VR 

environment. In such an environment it is also important to be aware of the visibility and 

existence of the object. In current VR data models, the evolution of an object's visibility 

and existence states are not modeled. The existence of the object is almost always 

assumed (Luttermann and Grauer 1999) and is strongly related with its visibility. 



Visibility is the characteristic of an object that determines if an observer can see the 

object. Based on its visibility, an object can be classified as visible, invisible, or non- 

visible. A visible object is an object that the user can see. An invisible object is an object 

inside the field of view of the observer that the observer cannot see, although there are no 

obstacles between the object and the observer. Invisible objects reflect either an intrinsic 

characteristic of the object or a characteristic that can be manipulated by observers for 

analysis purposes. A non-visible object, on the other hand, is an object outside the field of 

view of the observer, behind a visible object, or so distant that it cannot be seen. In this 

thesis we deal only with visible and invisible objects. The non-visible state of an object 

can only be verified at run-time considering both the observer and the object's positions, 

therefore it is not something that is worth modeling. 

Existence refers to the physical presence or occurrence of an object or, for conceptual 

objects, the belief in or perception of an object (Hornsby and Egenhofer 2000). Based on 

its existence state, an object can be classified as non-existent or existent. The non-existent 

state describes the case where an object does not exist at the instant of observation. The 

object has been destroyed, will be created, or simply does not exist in the physical world 

at any time. The existence of an object is almost always associated with the notion of its 

appearance (i.e., the graphical realization of the object). However, the existence of an 

object does not imply a particular graphical realization and vice-versa (Egenhofer and 

Hornsby 1998). Some objects do not have an associated visual representation. 

Alternatively, an observer can manipulate object visibility, turning the object into an 

invisible object, for instance for analysis purposes. Other objects do not exist at the 

instant of observation (e.g., a building that will be constructed in the future). The 



visualization of non-existing objects is likely to occur as the result of a temporal 

manipulation of the object existence or activity, discussed later in this chapter. 

7.2 Taxonomy of VR Objects 

Existence, activity, and visibility are orthogonal characteristics of a VR Object. The 

combination of these three characteristics gives rise to eight possible statuses for an 

object at a certain time. Objects with different combinations of characteristics carry 

different semantics in the model. We classify each object in a VR environment based on 

the combination of these characteristics (Figure 7.1). 

Figure 7.1. Classification of VR objects accordingly to their existence, activity and 

visibility characteristics. 

7.2.1 Existent VR Objects 

Actor, scenery, spy, and camouflage objects are elements of the subset of existing VR 

Objects. These objects exist and are performing the activity, if any, that they are 

supposed to be performing at the instant of the observation. 



Actor is an object with an existent, active, and visible state. An actor represents an 

existent and visible object performing its associated activity, for example, a car traveling 

between two cities in a non-stop trip. Scenery refers to an object that is existent, inactive, 

and visible. A car that is stopped at a gas station, or a building that always maintains the 

same size and appearance are examples of scenery objects. The semantics associated with 

actor and scenery require their visual realizations and that both the observer and other 

objects be sensitive to the presence of these objects (e.g., an actor or a scenery object can 

block the path and the sight of the observer). 

Spy and camouflage refer to an existent and invisible object. A spy represents an 

object during the performance of its associated activity, while a camouflage represents an 

object during periods of inactivity. The semantics associated with spy and camouflage 

objects are similar to the semantics associated with actor and scenery objects, except that 

spy and camouflage objects are invisible. Spy and camouflage represent objects that do 

not have a graphical representation or objects that are intentionally hidden by an observer 

to facilitate the analysis of the environment. 

Consider, for instance, a scenario where an urban traffic analyst explores a virtual 

environment representing a city. Streets, buildings, and vehicles compose the virtual 

environment. The analyst knows ahead of time that the traffic on some roads will be 

significantly affected due the construction of a new business complex. The goal of the 

analyst is to analyze the projected flow of vehicles in some critical intersections of the 

city. The analyst can walk or fly through the multi-dimensional representation of the 

information, observing the dynamic behavior of vehicles via animations. The evolution of 

the state of the objects reveals the semantics of each object over time. Some objects are 



always scenery (e.g., roads and buildings), others are always actors (e.g., a bus that runs 

continuously in the environment), and others alternate their state between actor and 

scenery (e.g., a car that parks along the road for a while and then drives off away). As far 

as the analyst is concerned, vehicles and roads are essential objects. Buildings, on the 

other hand, have a secondary role in the environment, at least for the purpose of a traffic 

analysis. The presentation of the buildings provides a more realistic representation of the 

city and can be eventually used as landmark, helping the navigation of the observer in the 

environment. During the exploration of the dynamic environment, however, some 

buildings can steal the attention of the analyst or block the visualization of an interesting 

configuration of the traffic's flow. Thus, the analyst can hide a group of buildings to 

clean up hisfher field of view facilitating the observation of phenomena of interest. These 

buildings, originally scenery objects, are transformed into camouflage objects when 

hidden by the analyst. A camouflage building permits the visualization of every object 

behind it, while the environment remains sensitive to the physical presence of this object 

(i.e., a camouflage building still blocks the path of the analyst). One can conceive also a 

situation where the analyst decides to hide certain class of vehicles (e.g. buses or trucks). 

These hidden vehicles become camouflage or spy objects, depending on their current 

state, scenery or actor, respectively. The semantics associate with a spy vehicle, for 

instance, is that the vehicle continues to change its position despite the fact that it cannot 

be seen, and, eventually, can collide with or block the passage of another vehicle in an 

intersection of the roads. 

A model that has only existent objects is not yet rich enough to represent the 

semantics of all objects in the VR environment. The buildings of the business complex, 



for instance, do not yet exist as well as some of the vehicles representing the projected 

flow of vehicles. Including additional semantics that treat non-existent versions of objects 

gives us an additional group of VR Objects. 

7.2.2 Non-Existent VR Objects 

Ghost, mirage, fable, and myth compose the non-existent subset of VR Object statuses. 

Ghost refers to an object with a non-existent, active, and visible state, while mirage is an 

object with a non-existent, inactive, and visible state. Ghost and mirage share some 

semantic characteristics with their existent versions (i.e., actor and scenery, respectively); 

the only difference is that the observer and other objects are not sensitive to the physical 

presence of ghost and mirage objects. Ghost and mirage are useful for visually 

comparing existent and non-existent objects while avoiding the interference of the non- 

existent ones in the environment. 

Consider, for instance, the example of the traffic simulation in the neighborhoods of 

the new business complex. The existent buildings are modeled as scenery objects, while 

the status of the buildings of the business complex are modeled as a mirage objects. The 

semantics associated with mirage buildings requires their visual realizations, but does not 

impose physical constraints on the environment (e.g., the observer can walk through 

mirage buildings). The vehicles representing the projected flow of vehicles become a 

mirage or ghost objects, depending on their activity's state. The semantics of a ghost 

object also does not impose physical constraints on the environment, but requires the 

visualization of the object while it performs its associated activity. 



Fable and myth represent the non-existent versions of spy and camouflage objects or 

the hidden version of ghost and mirage objects. Fable is a non-existent, active, and 

invisible object, while myth refers to a non-existent, inactive, and invisible object. The 

semantics associated with fable and myth objects are that the environment and the 

observer are not sensitive to the presence of these objects and the observer cannot see 

them. For example, if the traffic analyst decides to explore the actual configuration of the 

environment, he or she can hide the mirage and ghost objects, transforming them into 

myth and fable objects, respectively. This kind of manipulation generates an environment 

where only existent objects are visible. 

7.3 Semantics Operations 

The status of VR Objects can change over time. Some objects constantly change their 

status, others change it only a few times, and others have a particular status during their 

entire lifetime. The change from one status to another is accomplished through a set of 

semantic operations (i.e., a p p e a r ,  d i s a p p e a r ,  a c t i v a t e ,  d e a c t i v a t e ,  k i l l ,  

and r e s u s c i t a t e ) .  These operations can be arranged in three different groups (Figure 

7.2). Operations of each group act only over a specific characteristic of the object (i-e., 

visibility, activity, or existence). Each group has exactly two operations where one 

operation is the inverse of the other. The domain of each operation is a subset of the set 

of VR Objects' statuses (e.g., actor, scenery, spy, and camouflage). The range of each 

operation is the complimentary subset of its respective semantic domain (e.g., ghost, 

mirage, fable, and myth). 



The visibility-related operations are appear and its inverse, di s appe a r. Appear 

and disappear model the transition of the visibility state of an object to visible or 

invisible, respectively. These operations direct the application to start or to stop 

rendering the graphical representation of the object (Figure 7.2a). 

Activate and deactivate form the group of activity-related operations. 

Activate indicates that the object starts to perform its associated activity. After the 

activate operation, the object becomes an active object, implying that the value of at 

least one of its attributes for which the observer can sense the variation will change at the 

next instant. The deactivate operation indicates that the object stops performing its 

associated activity. Figure 7.2b shows the result of these operations over their respective 

semantic domains. 

The existence-related operations are k i  11 and resuscitate (Figure 7.2~).  Ki 11 

models the case where the object ceases to exist. Resuscitate indicates that an object 

comes to an existent state. 

The domain and range of each operation limit possible transitions between different 

statuses. Thus, it is not possible to model the transition fiom a myth to an actor using a 

single operation. The combinations of the semantics operations, however, can model all 

possible transitions among elements of the set of VR Objects statuses. For instance, a 

composition of operations (denoted by e) that turn a myth into an actor could be: 

activate appear resuscitate(myth) = actor 



Visible Invisible Active Inactive 

a) 

Existent Non-existent 

scenery mirage 

camouflage 

c) 

Figure 7.2. Mappings of semantics operations: (a) visibility-related operations, (b) 

activity-related operations, and (c) existence-related operations. 



7.4 Evolution of VR Objects' Semantics 

In order to keep track of a VR Object's semantics throughout its lifetime, we introduce 

History. History is a data abstraction that models the evolution of the status of every VR 

Object with respect to existence, visibility, and activity characteristics. 

Figure 7.3 shows the relationships of the class History with other data abstractions of 

the animation model. Each VR Object has its own History. VR Object is an abstraction 

that represents the geometry and appearance of all objects in the environment. The class 

Performer represents a special type of VR Object. Object performer has associated 

Course of Actions and Course of Actions Interval objects modeling the spatial and 

temporal characteristics of its behavior. There exists a dependency between the temporal 

characteristics of an object performer and its History. This dependency is due to the fact 

that the periods of activity of the performer define the activity-related status of the object. 

History VR Object Course of Actions c 
I 

Course of Actions Interval 
I 

Figure 7.3. Class diagram with the History and other related data abstractions of the 

animation model. 

The functionality of the class History is completely defined by its constructor method 

and the set of semantics operations (i.e., a p p e a r ,  d i s a p p e a r ,  a c t i v a t e ,  

d e a c t i v a t e ,  k i  11, and r e s u s c i t a t e ) .  The constructor method instantiates a 

History object a myth status. If it is not the case, the initial status of the object can be 



changed through an appropriate combination of semantic operations. Semantic operations 

model the evolution of an object's status over time. Thus, each operation has as argument 

the instant in time when it is introduced in the object's history. If the time attribute is 

null, it means that the semantic operation is changing the initial status of the VR Object; 

otherwise, the operation is changing the status of the VR Object fiom that instant on. 

The representation of the history of an object is accomplished by an attribute that 

stores a list of all semantics operations and the instant when these operations occur in the 

model. Thus, a status of a VR object can be retrieved at any instant based of the elements 

of this list. Figure 7.4 shows the graphical representation of history of a VR Object. The 

VR Object is of the type performer, which means that it has an associated behavior. The 

graphical representation of such a behavior is also shown in Figure 7.4 to highlight the 

dependency between these two representations. 

object's 
activity 

Course of Actions Interval 

scenery actor I scenery 
object's A A C b 

I I L history resusc i ta te(nu1l )  a c t i va t e  (tl) deactivate(t2 
appear(nul1) 

Figure 7.4. Graphical representations of the History and Course of Action Intervals of a 

performer object. 

The graphical representation of the object's history shows the evolution of the 

objects' statuses over time. The object's history is instantiated as myth, but the operations 

resuscitate and appear with a null argument changes the initial status of the 
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object to a scenery object. This object keeps the scenery status until the first occurrence 

of a semantic operation. At the instant tl, an activate operation changes the status of 

the object to an actor. This operation reflects the fact that the object has an associated 

activity that starts at the instant t, (e-g., if the performer object is a car, the car starts to 

move). At the instant t2, a deactivate operation transforms the object back into a 

scenery object, reflecting the end point of the course of action (e.g., the car stops its 

movement). The object remains as scenery indefinitely since there are no other operations 

to be performed in the model. From the instant t2 on, the car can be seen parked 

somewhere in the virtual environment. 

7.5 Modification of VR Objects' Semantics 

Some important manipulations of VR objects involve the redefinition of the time when 

the object performs its associated activity. Phenomena that have occurred at different 

times can be manipulated and observed at the same time, facilitating the comparison of 

their behavior. Allowing observers to interfere with the original flow of the objects' 

dynamics, however, requires the modification of an objects' history in an automatic and 

consistent way. 

Consider, for instance, a scenario where an analyst explores a virtual environment 

involving a storm and a ship traveling from Boston, Massachusetts to Portland, Maine. 

The storm system developed a path somewhere between Boston and Portland. Figure 7.5 

depicts the graphical representation of the storm and ship activities (i-e., their associated 

course of actions intervals) and the evolution of their statuses (i.e., their histories). The 



exact path and size of the storm and the path of the ship are modeled by their respective 

courses of action. 

Course of Actions 
Storm's 
Activity 

Storm's myth I actor myth 
History -03 /I\ 4 tb 

Ship's 
Activity 

Course of Actions 
Interval 

Ship's myth scenery I actor I scenery myth 
History -03 tb 

resusc?tate(t2) act i t t e ( b )  deactTvate(t5) disa!pear(ta) 
a ~ ~ e a r ( t 2 )  k i  1 l(k) 

Figure 7.5. Graphical representation of the original configuration of the course of action 

and history of the storm and ship. 

The history of the storm reveals that the object starts as a myth and remains with this 

status until the instant t,, when a sequence of operations (i.e., a c t i v a t e ,  

r e s u s c i t a t e ,  and a p p e a r )  changes its status to an actor. The semantics associated 

with an actor object indicates that the object exists, is visible and is performing the 

activity modeled by its course of action (e.g., the storm is changing its position and size). 

The storm remains as an actor until the instant t3, when another sequence of operations 

(i.e., d e a c t i v a t e ,  k i l l ,  and d i s a p p e a r )  transforms it back into a myth, modeling 

the end of the storm. The simultaneous occurrence of one operation of each group in the 

history of the storm is not a coincidence. A storm is a phenomenon in which the 
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visibility, existence and activity states are strongly related. Thus, is reasonable to think 

that a storm object has a history with only myth or actor statuses. 

The history of the ship shows that the object starts as a myth, implying that the 

environment and the observer are not sensitive to the presence of the ship and the 

observer cannot see it. The ship retains this status until the instant t*, when a sequence of 

operations (i.e., r e s u s c i t a t e  and a p p e a r )  transforms it into a scenery object. The 

semantics associated with a scenery object is that the object can be seen and the 

environment is sensitive to the presence of the object. The position of the ship is a dock at 

the port of Boston. This information is available as the initial value of position's attribute 

of the ship. The ship remains docked at Boston until the instant t4, when the occurrence of 

an a c t i v a t e  operation transforms its status into an actor, indicating that the ship starts 

its trip to Portland. A d e a c t i v a t e  operation at the instant t5 denotes that the ship 

finishes its trip and becomes a scenery object at the Portland's port (i.e., the ship no 

longer is performing an associated activity). At the instant ts, another sequence of 

operations (i.e., k i l l  and d i s a p p e a r )  turns the ship's status into a myth. The ship 

keeps the myth status indefinitely. The status of the ship as a myth in the start and end of 

its history can be interpreted as a lack of knowledge about the ship during these periods. 

The analysis of the storm and ship history discloses that the ship was safely anchored 

during the occurrence of the storm. However, an observer can manipulate the original 

flow of the object behavior and explore the virtual environment with hypothetical 

c ~ ~ g u r a t i o n s .  Consider, for instance, a situation where the observer makes the ship start 

its trip at the same instant as the formation of the storm. This configuration can be 

accomplished with an operation that changes the start point of the ship Course of Actions 
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Interval (e.g., the operation m a  keS  t art Toge t her). In such a manipulation the history 

model of the storm is not affected but the evolution of the semantics of the ship needs to 

be updated accordingly to reflect the new spatio-temporal configuration of the object. 

Figure 7.6 shows the process of manipulating the ship's activity and the resulting history 

of such an object. For the sake of clarity semantic operations are represents by the first 

three initials in the figure. 

The modified history of the ship shows that the ship starts as a myth and keeps its 

status until the instant of the formation of the storm. At this instant the ship appears at 

the port of Boston and immediately starts its trip to Portland as a ghost object. The ghost 

semantic implies that the ship can be seen performing its associated activity, but its 

presence does not interfere with the environment. The ship finishes its trip at the instant 

t,, becoming a mirage at the port of Portland. The mirage semantics implies that the ship 

still can be seen and its presence does not interfere with the environment, but there is no 

activity associated with the ship. The ghost and mirage semantics associated with the ship 

reflect the fact that the ship is not supposed to be doing its trip or to be docked at the 

Portland's port during these periods. The ship remains as a mirage until the instant t~ 

when it becomes a scenery object at the Portland's port. After the instant ts, the ship 

continues with its original history. 



Course of Actions 
Storm's Interval 

Activity 
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Ship's 
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I Course of Actions 
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Figure 7.6. Manipulation of the temporal configuration of the ship's activity and the 

modified version of the ship's history. 

The modified history of the ship illustrates the rationale used to update the evolution 

of VR objects' statuses when its activity is manipulated. In this case, the course of action 

of the ship is translated to a new position in the temporal domain. The translation of the 

course of action implies the reposition of the a c t i v a t e  and d e a c t i v a t e  operations 

in the object's history. The temporal displacement between these two operations is kept 

the same as the original configuration (i.e., tn-tl=t5-t4). This constraint guarantees the 

original pace of the ship's trip. All operations occurring in the ship's history between the 

original and the new position of the activate operation are positioned at the same time 

(i.e., at the new position of the a c t i v a t e  operation) forming a long sequence of 

operations. The order of the operations in the sequence reflects the order that they occur 

in the original model. A k i  11 operation is added at the end of this sequence to represent 



the fact that the object's activity was manipulated. Finally, a resuscitate operation is 

introduced at the original position of the deactivate operation, restoring the original 

semantics of the object. 

A graphical representation of the history the VR Objects can be presented in a 

graphical user interface together with commands representing semantic operations. Such 

an interface allows the user to manipulate the status of the objects by changing one of its 

semantics characteristics. Giving the observer the ability to manipulate such 

characteristics is not treated in this thesis. We used the modeled semantics of the objects 

to capture types of interactions that may occur among objects and between an observer 

and the objects in the environment and to modify the status of the objects due to a 

manipulation of the temporal configuration of the animation. 

7.6 Summary 

This chapter introduced a model to represent VR Objects' semantics. Based on this 

model, a new classification of VR Objects was presented, and the semantics associated 

with each class of object was described. VR Objects were categorized with respect to 

existence, activity, and visibility. A set of operations, acting upon individual 

characteristics of the object, models the object's semantics. In order to capture an object's 

changing semantics, we introduced History, an extension of the animation model that 

represents the evolution of the semantics of VR Objects over time. Finally, this chapter 

outlines the rationale used to modify the evolution of an object's semantics during the 

manipulation of the object behavior. 



The next chapter introduces a graphical user interface for the virtual exploration of 

the animation model and discusses some interface's operations. 



CHAPTER 8 

PROTOTYPE IMPLEMENTATION AND ASSESSMENTS 

The Virtual exploration of animations is a framework composed of abstract data types 

and a user interface that allow non-expert users to control, manipulate, analyze, and 

present objects' behaviors. Previous chapters discussed the conceptualization and 

functionalities of a model for virtual exploration of animations. This chaptei introduces a 

graphical user interface for the model and also assesses the model's expressive power. 

The next section introduces a simple example. Subsequently, we present a prototype 

implementation and discuss the functionality of a representative subset of the interface's 

operations. The prototype was written in the programming language Java (Horton 1999) 

and relies on the support of the Java 3D application programming interface (Java-3D 

2004) to render four-dimensional information. Finally, we use the example introduced in 

the first section as a reference in the computation of the number of different versions of 

the animation that can be accomplished by a user with the proposed model and with a 

model that extends the set of operations of a VCR control to each object's behavior in the 

environment. The analysis of these results is used to test the hypothesis that is: 

The model of virtual exploration of animations produces views of an animation that 

cannot be accomplished by any combination of operations of the individual VCR model. 



8.1 An Example 

The example discussed here was conceived to highlight all features of the model for 

virtual exploration of animations and does not intend to represent any real world 

scenario. In an abstract way, however, this example can be compared with a simulation of 

the movement of equipment on a factory floor. 

Our virtual world is composed of the floor of a square room and five moving objects 

(Figure 8.1). The moving objects are a cone, a cylinder, a box, and two balls. The cone 

follows a triangular path in the room. The object starts to move at the instant t=Os and 

takes 12 seconds to complete its entire behavior. The cone returns to its original position 

at the end of the movement and rests for 3 seconds before starting to move again. The 

cone repeats the same behavior in a cyclic fashion indefinitely. 

The cylinder object also moves in a triangular path in the room. The spatial and 

temporal characteristics of the cylinder's movement, however, are different from those of 

the cone. The trajectory of the cylinder, for example, has only some spatial locations that 

coincide with the trajectory of the cone. These locations are potential points of contact 

between the cone and the cylinder. The temporal characteristic of the cylinder's 

movement also follows a cyclic behavior. The cylinder starts to move at the instant eOs 

but takes only 8 seconds to complete its movement. The cylinder rests for 2 seconds 

before starting its movement again. 

The red and yellow balls move from the center to the border of the room in a straight 

line. The balls start their movement at the instant t=Os, and since the duration of their 

movements is the same, they finish their behavior together at the instant t=3s. There 



exists a temporal constraint in the model between the red and yellow balls (i.e., the red 

ball always starts when the yellow ball starts to move). Thus, changing the instant when 

the yellow starts to move causes the changing of the instant when the red ball starts to 

move as well. 

The box also moves in a straight line, but its trajectory is perpendicular to the 

trajectories of the balls. The temporal characteristic of the movement of the box is that the 

box starts its movement when the balls stop moving. There is no temporal constraint in 

the model representing this fact. The box takes 2 seconds to complete its movement and 

stops somewhere along the path of the balls. 

Figure 8.1. Trajectories and key states of the objects moving in the room. 



8.2 A Possible Graphical User Interface 

The model for virtual exploration of animations requires two graphical user interfaces: an 

animation editor and an animation browser. The animation editor presents the modeled 

configuration of objects' behavior and their temporal representations. This interface 

allows the user to manipulate the temporal characteristics of object's actions and some 

parameters of the animation's presentation. The animation browser allows the user to 

explore the three-dimensional representation of the environment in which objects can be 

seen performing their behaviors. The next sections present two possible graphical user 

interfaces for the editor and browser of the model for virtual explorations of animations. 

8.2.1 The Virtual Exploration of Animations Editor 

The virtual exploration of animation editor is comprised of two main sections. The first 

section presents the organization of action objects and their temporal characteristics. The 

second section presents the operations used to manipulate the structure and the temporal 

characteristics of objects' behaviors (Figure 8.2). 

Figure 8.2. An editor for virtual exploration of animations. 
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In the first section of the animation editor, action objects are depicted in a tree-like 

structure and their temporal characteristics are depicted as intervals positioned along the 

animation timeline (Figure 8.3). The structure of the tree is defined by the application that 

converts information from the application domain to the virtual exploration of animations 

domain. The tree in the Figure 8.3 represents the structure of action objects of the 

example introduced early in this chapter. 
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Figure 8.3. The graphical representation of the structure of action objects and their 

temporal characteristics. 

Elements of the tree are objects of the action part of the framework for virtual 

exploration of animations (i.e., Animations, Course ofActions, and Acts). The root of the 

tree is an object of the sort Animation and represents the collection of all objects' 

behaviors in the environment. Branches of the tree are Animations or Course of Actions 

objects. Animation represents a collection of Course of Actions or Animations objects. 

Course of Actions represents the behavior of a single object. The leaves of the tree are 

always Acts objects. Acts objects represent the finest granularity of an object's behavior. 



Since all Course of Actions nodes in the tree are collapsed, the Acts objects are not 

depicted in Figure 8.3. 

The temporal characteristics of action objects are represented as black rectangles on 

the right side of the interface. Each action has an associated convex temporal interval 

representing the start point and duration of the behavior. If an object has a cyclic 

behavior, however, the representation of its temporal characteristics is slightly different. 

The temporal characteristics of cycles are depicted with one black rectangle and some 

gray rectangles. The black rectangle represents the occurrence of reference of the cycle. 

The gray rectangles represent other occurrences of the cyclic behavior. The number and 

positions of gray rectangles depend on the pattern of repetition, the period of inactivity, 

and for finite cycles, the number of repetitions. In the example shown in the Figure 8.3, 

the cone and the cylinder have a cyclic behavior of the type porn. It means that the 

objects start their behavior with the occurrence of reference and repeat the same behavior 

indefinitely. 

The hierarchical structure of the model imposes the constraint that any modification 

in the temporal characteristic of an action object be consistently propagated up and down 

in the tree structure (i.e., changing the start point of a Course of Action Interval changes 

the start point of all Act Intervals associated with the Course of Actions and may change 

the temporal characteristics of the Animations Interval located higher up in the 

hierarchy). This process is repeated until the application reaches the root of the tree (i.e., 

the node all animations). It was a design decision to not incorporate the duration of all 

occurrences of cyclic behaviors in the temporal characteristics of their parents in the tree 

structure. In this way, only the occurrence ofreference is used in the computation of the 



start point and duration of the Animation Interval that has Cycle Intervals as children. 

This decision allows the model to extend the operations performed over convex intervals 

to Cycle Intervals. 

The second section of the animation editor shows a graphical interface for operations 

used by an observer to manipulate the content of the animation (Figure 8.4). These 

operations are divided in five main groups (i.e., linear compositions, cycle compositions, 

combination operations, transformation operations and presentation operations). 

-- 

Figure 8.4. User interface representing operations to manipulate the temporal 

characteristics of animations. 

Linear compositions, cycle compositions, combinations operations, transformation 

operations, and their effects in the outcome of the animation are discussed latter in this 

chapter. Presentation operations allow an observer to specify some parameters of the 

animation's presentation and link the information of the animation editor with the 

animation browser. 

Presentation operations are s t  art point , end point , and play. The operation 

s t a r t  p o i n t  defines an instant in the animation temporal space when the application 



starts to map animation times to the user time domain. This operation has the effect of 

defining the instant of insertion of the observer in the virtual world. The operation end 

p o i n t  defines the instant in the animation temporal space when the application stops 

mapping animation times to the user time domain. This operation has the effect of 

stopping the movement of all objects in the environment from the specified instant on. In 

this chapter we assume that the start point of the animation is the instant that the first 

object starts to move and the endpoint is not defined, that is, the mapping from animation 

time to user time domain never stops. 

The operation p l ay  aligns the present of an observer with the start point of the 

animation and directs the application to start mapping animation times to user times. This 

operation allows an observer to perceive objects' behaviors. The operation p l a y  opens a 

window to the virtual world. This window is presented as a browser that allows the 

observer to navigate in the virtual environment and explore objects' behavior. The next 

section introduces the browser used for the virtual exploration of animations. 

8.2.2 The Virtual Exploration of Animations Browser 

The graphical realization of the objects and the outcome of the manipulations of the 

animation are explored in a virtual reality environment. In such an environment an 

observer can walk through the three-dimensional representation of the information, 

interact with the objects, and examine the objects performing their modeled behavior. In 

our prototype we use an application that renders such pieces of information on the screen 

of a desktop computer. In such a computer environment, the user does not experience full 

immersion in the virtual world. 



In order to control the position and orientation of the observer's vantage point in the 

environment, the browser offers a set of buttons (Figure 8.5). These buttons allow the 

observer to move along the principal directions (i.e., up, down, right, leJt, forward, and 

backwar4 and to change the direction of his or her vantage point by rotating around the x 

axis (turn up and turn down) and by rotating around they axis (turn right and turn ZeJt). 

In this application, the xy plane always coincides with the plane of the screen and the 

positive direction of the z axis is pointing toward the observer. 

Figure 8.5. A browser for virtual exploration of animations. 

One salient characteristic of the animations' browser is that all objects carry semantic 

information (i-e., the status of the object's visibility, activity and existence). This 

information is used by the application to direct the way that an object is rendered and the 

way it interacts with other objects in the environment and with the observer. An object 

with an existent status, for example, blocks the path of the observer or other objects in the 

environment with a similar status. 



The navigational functionality of the animation browser is straightforward and does 

not need further explanation. The way that the application processes semantic 

information, however, is discussed in the next section together with operations of the 

virtual exploration of animations editor. 

8.3 Animation Operations 

Animation operations allow an observer to manipulate the modeled animation (i.e., 

information of objects' behavior converted from the application domain to the animations 

domain). The animation model carries information about the spatial characteristics of the 

behavior (e.g., the key states of an object), the temporal characteristics of the behavior 

(e.g., the instant when the behavior starts), temporal constraints (e.g., the fact that an 

object always starts its behavior when other objects are performing their activity), and 

semantic information (e.g., whether the object exists at the instant of observation). 

Among all pieces of information captured by the animation model, only the temporal 

characteristics of behaviors can be directly manipulated by an observer. At this stage of 

development, the prototype does not provide the means to introduce temporal constraints 

or to manipulate the semantics of the objects and the spatial characteristics of object's 

behavior. The application, however, uses all these pieces of information to keep the 

modified version of the animation coherent with the original configuration. The 

application, for example, does not limit the observer to generating versions of the 

animation where all temporal constraints are satisfied, but the application does change the 

semantics of the object to reflect the fact that the modified version violated a temporal 



constraint from the application domain. The next section discusses some animation 

operations and their effects on the outcome of the animation. 

8.3.1 Compositions Operations 

Composition operations are used to change the temporal arrangement of objects' 

behavior. These operations have two temporal intervals as arguments: a reference interval 

and a target interval. 

Depending on the sort of their arguments, composition operations can be divided into 

two main groups: linear compositions and cycle compositions. Linear composition 

operations accept any sort of temporal interval as arguments. Cycle composition 

operations are more specific and accept only Cycles Intervals as arguments. The next 

sections introduce the representations of these operations on the graphical user interface 

and discuss some relevant details. 

8.3.1.1 Compositions Operations Between Intervals 

Linear compositions are used to position an interval (i.e., a target interval) with respect to 

the position of another interval (i.e., a reference interval). Depending on the operation, 

the start point and/or duration of the target interval are modified to satisfy a certain 

temporal relation between the target and reference intervals. 

Linear compositions operations are ma keTouch, ma k e A l  i gnLe f t, 

makeAlignRight ,  makeAl ignCenter ,  makecross ,  makeEqua1, and 

makeMirror .  Each operation is associated with a button in the graphical user interface 

(Figure 8.6). The semantic of each operation was discussed in chapter 6. 
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Figure 8.6. The seven linear composition operations between convex intervals. 

In order to illustrate the use of linear composition operations, consider the movement 

of the balls and the box in the room. In the modeled configuration, the box starts to move 

at the same instant when the balls finish their movement. Since the box crosses the path 

of the balls, there is a potential interference between these objects. 

An observer may be interested in analyzing an animation where the balls and the box 

start to move at the same time. Such a configuration can be accomplished, for instance, 

by changing the start point of the balls. One possible strategy is to select the box's 

temporal interval as the reference interval and the yellow ball's interval as the target 

interval and apply the linear composition operation m a  k e  S t a r t Tog e t he r . From the 

knowledge base of the application domain, it is known that the red ball always starts its 

movement when the yellow ball starts to move. Thus, the start point of the red ball is also 

redefined by the application to satisfy the temporal constraint. Figure 8.7 shows the 

temporal configuration of the intervals before and after the execution of this operation. 

Figure 8.7. The effect in the temporal configuration of the animation by applying a 

makeStartTogether operation with the box and the yellow ball used as arguments. 
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The analyses of the graphical representation of the periods when the box and the balls 

are performing their activities do not allow an observer to reason about interactions 

among these objects. The observer does not have any spatial information about the 

objects' behaviors but only information about the qualitative state of the object (i.e., the 

object is moving or not). In this way, the observer cannot infer if the object interacts with 

other object simply by analyzing this kind of information. Although the animation model 

does have all necessary information that allows an application to anticipate any kind of 

interaction, we decide to leave to the observer the task of exploring the environment and 

verifying all interactions among the objects. For example, by exploring the dynamic 

environment with the balls and the box, the observer can verify that the box blocks the 

path of the balls; that is, due to a collision with the box, the yellow and the red balls stop 

their modeled behavior sooner than expected. Figure 8.8 shows some snapshots of 

representative instants of the animation. The vantage point of the observer was positioned 

to facilitate the analysis of the behavior of the objects of interest. During the first 2 

seconds of the animation only the cone and the cylinder objects are moving in the 

environment. At the instant t=3s, the balls and the box start to move. By the instant t=5s 

the box finishes its movement but the balls are still on their way to the border of the 

room. Between the instants t=5s and t=6s the balls collide with the box and finish their 

movement without reaching their final destination. 



Figure 8.8. Snapshots of an animation where the balls and the box start to move at the 

same time. The balls collide with the box and stop their modeled behaviors. 

The outcome of the animation in the previous example would be different if an 

observer chose the red ball as the target interval instead. By doing that, we assume that 

the observer is intentionally violating a temporal constraint introduced in the model. 

Thus, the start point of the movement of the yellow ball remains the same and only the 

start point of red ball is redefined (Figure 8.9). 
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Figure 8.9. The effect in the temporal configuration of the animation by applying a 

makeStartTogether operation with the box and the red ball used as arguments. This 

configuration violates a temporal constraint introduced in the model. 

In order to capture the fact that a temporal constraint was violated, the application 

change the status of the red ball during the time period when the object is violating the 

temporal constraint. Thus, the status of the red ball changes from an existent to a non- 

existent object. Figure 8.10 shows representative snapshots of this animation with the 



modified status of the red ball. In this version of the animation, the yellow ball starts to 

move in the beginning of the animation and the red ball becomes a mirage in the 

environment (i.e., an object with a inactive, visible, and non-existent state). At the instant 

t=3s the red ball and the box start to move. Since the red ball still has a non-existent 

status, it moves as a ghost object. At the instant t=5s the yellow ball and the box had 

finished their behaviors but the red ball is still moving as a ghost object. Between the 

instants t=5s and t=6s the red ball passes through the box and reaches its destination. 

Although the box has an existent status, the box is not able to block the passage of non- 

existent objects. From the instant t=6s on, the red ball recovers its existent status and 

becomes a scenery object in the environment (i.e., an existent, inactive, and visible 

object). We have decided to present non-existent objects with a semi-transparent 

graphical representation. This mechanism gives the observer visual feedback about the 

existent status of the object. 

Figure 8.10. Snapshots of an animation where only the red ball start to move with the 

box. The red ball has a non-existent status during the period when the temporal constraint 

is violated. 



All composition operations but makeEqua1 preserve the duration of the target 

interval. For these operations, the application needs only to deal with the existent status 

of objects when changing the position of reference interval violates a temporal constraint 

introduced in the model. If the duration of the target interval changes, however, the 

existent status of the object always changes. In the model for virtual exploration of 

animations the duration of the interval is considered a implicit temporal constraint. The 

rationale used to modify the status of an object when the duration of its behavior is 

discussed later in this chapter. 

Since composition operations accept any sort of temporal intervals, these operations 

can also be used to modify the temporal characteristics of Cycles Intervals. When at least 

one of the arguments is of the sort Cycle Interval, the reference and/or the target intervals 

of the operation are always the occurrence of reference of the cyclic behavior. 

8.3.1.2 Compositions Operations Between Cycles Intervals 

Cycle compositions are operations that modify the temporal characteristics of Cycle 

Intervals. Operations of this kind are performed only when both of the intervals used as 

arguments are cycles. Depending on the semantics of the operation, the start point, 

duration of the period of activity, and/or the duration of the period of inactivity of the 

target cycle is modified to satisfy a certain temporal configuration among all occurrences 

of the cycles. 

The group of cycle compositions operations is composed of ten operations: 

makeconcur ren t ,  m a k e A l t e r n a t e ,  max imizeRe la t ion ,  and 

m i n i m i z e R e l a t i o n ,  where R e l a t i o n  can assume one of the following values: 



disconnections, touchings, crossings, or containments. The graphical 

user interface provides a set of buttons representing such operations (Figure 8.11). The 

first button in the group allows an observer to select between operations that maximize or 

minimize the number of incidences of certain temporal configurations between 

occurrences of the cycle. The following four buttons in the group represent two 

operations each. These buttons can either represent a max imi z eRe 1 at ion operation 

or a minimizeRelation operation. The relations are in the order: 

disconnections, touchings, crossings and containments. The last two 

buttons represent the operations ma keconcurrent and ma keAl ternate, 

respectively. 

- . -  -. - 

Figure 8.11. The group of composition operations between cycle intervals. 

The main difference among operations that maximize or minimize the incidence of a 

certain temporal configuration and the operation ma keC oncu r r en t and 

ma keAl t ernate is that in the former case the target cycle preserves the duration of its 

periods of activity and inactivity and in the later case both durations are redefmed. 

In order to illustrate the use of operations of the group of cycle compositions, 

consider the original configuration of the animation of the cone and the cylinder object in 

the room. By exploring this version of the animation, an observer can verify that the 

movements of the cone and the cylinder have two spatial locations where they almost 

collide. The closest distance between these objects occurs at the instants t=4.7s and 
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t=16.7s. At these instants the distance from center to center of each object is only 1.5 

units of distance. To give an idea of the magnitude of such a distance, the radius of the 

cylinder and the cone have 0.5 unit of distance. 

- -- 
Figure 8.12. Snapshots of the instants in which the cone and the cylinder are at a closest 

distance. 

By analyzing the original configuration of the occurrences of the cone and cylinder 

behaviors (Figure 8.13), an observer can verify that there exist some periods when the 

cone is moving and the cylinder is during its period of inactivity, and vice-versa. Since 

the spatial location in which one object stops is not part of the path of the other object, it 

is reasonable to think that increasing the periods when both objects are moving will 

increase the possibility of collision between the objects. 
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Figure 8.13. Linear representation of occurrences of cone and cylinder's cycles interval 

in the modeled animation. 

In order to maximize the periods when both objects are performing their activities, an 

observer can select the temporal characteristics of the cone and the cylinder and perform 

a maximi zecont a inement s operation. The observer makes the decision of which 

174 



object will be the reference interval and which object will be the target interval. This 

decision is based mainly on which interval the observer wants to preserve the original 

temporal characteristics. This interval must be the reference interval. 

Based on the temporal characteristics of the reference and target cycles, the 

application computes all possible different configurations and selects the best 

configuration that satisfies the intended temporal relation. The selection of the best 

configuration is based on the number and kinds of temporal relations that hold between 

occurrences of the cycles and on the topological distance of these relations as detailed in 

Chapter 5. Before changing the position of the target interval, the application provides a 

summary of all temporal relations and a cyclic graphical representation of the cycles' 

occurrences (Figure 8.14). In this way, an observer has the opportunity to verify the 

proposed temporal configuration before applying it to the target interval. Figure 8.14 

shows also the temporal configuration of behavior of the cycles after the observer had 

accepted the proposed configuration. 

I I 

Figure 8.14. Summary of temporal relations, linear and cyclic representation of a 

temporal configuration that maximizes containments between the cone and the cylinder. 

An observer can analyze the animation of the modified version the cone behavior and 

verify if his or her assumption about maximizing containments cause the collision of the 

objects. The outcome of the animation, however, shows that the effect is opposite the one 
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expected by the observer. In the modified version of the animation, the closest distance 

between the objects occur at instants t=21 s and the t=26s. These distances are 4.5 and 1.5 

units of distances, respectively (Figure 8.15). In this way, by maximizing containments 

between the behavior of the cone and the cylinder, the observer actually minimized the 

possibility of collisions between these objects. 

Figure 8.15. Snapshots of the instants in which the cone and the cylinder are at a closest 

distance in a modified version of the animation that maximizes containments. 

Since the operation maximi zecon t  a inement s did not violate any temporal 

constraint, the application does not have to deal with the existent status of the objects 

involved in the operation. This fact, however, is not true when the operations are 

m a  keconcur ren t  and ma keAl t e r n a t  e. These operations may change the duration 

of both the period of activity and the period of inactivity of the target cycle. If it occurs, 

the application changes the status of the object associated with the target cycle from 

existent to non-existent. 

Consider, for example, that an observer wants to analyze an animation where the 

cylinder and the cone have the same period and start together (i.e., they are concurrent). 

By selecting the cylinder as the target interval and performing the ma keconcur ren t  

operation (Figure 8.16), the temporal configuration of these cycle intervals change to a 
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configuration where a single temporal relation holds between all occurrences of the 

cycles (i.e., the temporal relation equal). 

Figure 8.16. The effect in the temporal configuration of the animation by applying a 
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By analyzing the animation with the concurrent behaviors of the cylinder and cone, 

an observer can see the cylinder moving in the environment as a ghost object or resting in 

its initial position as a mirage object during. Making the behavior of the cylinder 

concurrent with the behavior of the cone, however, produces an animation where these 

objects collide many times. Since the cylinder has a non-existent status, these objects 

never stop performing their activities. Figure 8.17 shows a snapshot of the first instant 

when the cylinder and the cone touch each other. The application does not provide any 

mechanism to modify the semantics of the object. Thus, there is no way to make these 

objects stop due to a collision detection. 

Figure 8.17. Snapshot of the first instant when the cylinder and the cone touch each other 

in the modified version of the animation where the cycle intervals are concurrent. 
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8.3.2 Transformation Operations 

Transformation operations simulate some kind of transformation of the objects' 

underlying temporal space. These operations have a single temporal interval as argument. 

Transformation operations modify the way that an observer perceives the evolution of an 

object's behavior. 

The set of transformation operations is composed of the operations O r d e r ,  Flow, 

Pace  and D u r a t i o n  (Figure 8.18). The operation S t a r t  P o i n t  and E n d  P o i n t  

appear in interface in the group of transformation operations for a convenience in the 

interface's design. Rigorously, these operations do not produce any transformation of the 

object's temporal space. These operations are used by an observer for a finer adjustment 

of the temporal configuration of the animation or to accomplish a configuration that 

cannot be produced by the set of combination operations. 

- - . . - . . 

Figure 8.18. The group of transformation operations. 

The operation P a c e  allows an observer to adjust the evolution of an object's 

behavior to a more realistic presentation. This operation is available only the Act Interval 

level of abstraction. In the example of the objects in the room, all objects have a pace of 

the kind constant. Modifling the pace of an object's act does not alter the existent status 

of the object. 
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The operation O r d e r  allows an observer to change the chronological order of the 

presentation of object's behavior. The operation Flow allows observer to suspend the 

execution or to present only representative states of an object's behavior. The operation 

D u r a t i o n  allows an observer to change the duration of an object's behavior, slowing 

down or speeding up the presentation an object's behavior. The operations Order, 

Flow, D u r a t i o n  always alter the semantics of the associated object from a existent to 

a non-existent status. In the case of the O r d e r  operation, for example, the change in the 

object status reflects the fact that the object is performing its behavior in a reverse 

chronological order. For the Flow operation, the non-existent status of the object 

reflects the fact that the object was supposed to be performing some kind of activity. In 

the case of the D u r a t i o n  operation the change in the object's status is due to a violation 

of an intrinsic temporal constraint (i-e., the duration of an object's behavior). 

Consider, for example, a more elaborate manipulation of the temporal characteristics 

of the animation. An observer applies a m a  k e M i  r r o r operation between the temporal 

characteristics of the box (the reference interval) and the temporal characteristic of the 

yellow ball (the target interval). Thus, the movement of the balls starts after the 

completion of the movement of the box. Due to a temporal constraint between the red and 

the yellow ball, the start point of the red ball is also redefined. In addition, the observer 

changes the order of the movement of the red ball (i.e., the red ball performs its 

movement in a reverse chronological order). Figure 8.19 shows the temporal 

configuration of the animation and a transformation operation performed over the red 

ball interval in the interface of the animation editor. 



Figure 8.19. The effect in the temporal configuration of the animation by changing the 

instant when the balls start to move and inverting the order of the red ball. 

By analyzing the temporal configuration of the animation, an observer can verify that 

the rearrangement of the balls' temporal characteristics does not violate any temporal 

constraint in the model (i.e., the red ball start its movement as the yellow ball starts to 

move). The fact that the red ball is not supposed to be performing a reverse movement, 

however, forces the application to change the status of the red ball from an existent to a 

non-existent status. 

Figure 8.20 shows snapshots of the animation of the red ball performing its 

movement in the reverse chronological order. Between the instants t=3s and t=5s only the 

box, the cone, and the cylinder are moving in the environment. The red ball, however, 

occupies its start location (i.e., its end location in the modeled animation) with a non- 

existent status. At the instant t=5s, the box has already finished its movement and it is 

positioned somewhere along the path of the balls. Between the instant t=5s and t=8s, the 

balls can be seen performing their behaviors (i.e., the yellow ball as an actor object and 

the red ball as a ghost object). Since the red ball has a non-existent status, it is capable to 

pass through the box. This fact is not true for the yellow ball. Thus, the yellow ball stops 

its modeled behavior earlier due to a collision with the box. After the instant t=8s on, the 

red ball keeps its non-existent status and remains in the environment as a mirage object. 
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Figure 8.20. Snapshots of an animation where only the red ball performs its movement in 

a reverse chronological order. 

8.3.3 Combination Operations 

Combinations operations are similar to operations over mathematical sets. These 

operations are union, difference, and intersection (Figure 8.21). 

r Combination 0peratims7 

Figure 8.21. The group of composition operations between cycle intervals. 

Combinations operations allow an observer to manipulate the structure of the tree and 

the content of the animation. In this implementation, Combinations operations are 

implemented only for objects of the sort Animation Interval (i-e., these operations are 

applied only at the coarsest level of granularity of objects' behavior). 

The union of two Animation Intervals produces a new node in the tree that has both 

arguments as children. Thus, this operation does not change the outcome of the animation 

and it is used only as a grouping mechanism. The difference and intersection 
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have the effect of performing a Flow operation with the argument none in pieces of an 

object's behavior. Thus, the application changes the existent status of the objects during 

periods in which its behavior is disabled. Consider, for example, the difference 

between the animation of the box and the cone. The cone performs its modeled behavior 

until the box starts to move and then the cone stops its movement during the period of 

activity of the box. The cone becomes a mirage object during this period. This change 

reflects the fact that the cone is not supposed to be at its actual position in the 

environment. After the completion of the behavior of the box, the cone recovers its 

existent status, "jumps" to its modeled position, and continues to move as an actor object 

(Figure 8.22). 

Figure 8.22. Snapshots of an animation with the difference between the behaviors of the 

box and the cone. The cylinder does not move during the period when the box is moving. 

8.4 Hypothesis Evaluation 

The use of the VCR metaphor to direct the way in which a sequence of images is 

presented to an observer has been the dominant paradigm for the analysis of time-varying 

information in the GIs field. Clear advantages of the VCR metaphor are that the number 

of operations is small and the functionality of each operation is widely known. A major 

drawback of such a mechanism, however, is that the information is treated as whole, 



which makes it impossible to control individual pieces of the information. Thus, the 

number of different views that can be created by a user is limited. 

Extending the set of VCR-like operations to each object's behavior in the 

environment enhances the user's ability to produce more views of the information. In a 

scenario where all objects in the application have an associated VCR control, the number 

of different views of the dynamic environment is large. We call this model Individual 

VCR. Despite the large number of views that can be produced using the Individual VCR 

approach, this thesis postulates the hypothesis that the model of virtual exploration of 

animations allows an observer to produce views that cannot be produced by any 

combination of operations of an animation model in which each dynamic object has an 

associated VCR control. The next sections highlight limitations of the Individual VCR 

model when compared with views that can be produced by a user with the model of 

virtual exploration of animations. 

8.4.1 What Can Be Done with Operations of the Individual VCR Model 

In order to illustrate the number of different versions of animation that can be produced 

with operations of the individual VCR model, we use the example of objects moving in a 

room introduced earlier in this chapter. In the example of the room there are five objects 

with associated behaviors. 

In the individual VCR model, each object's behavior in the environment has an 

extended VCR control attached to it and each control has exactly one of the operations 

selected. The number of controls in a VCR-like interface varies according to the 

application. There is no standard specifying the number and kind of controls. These 
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characteristics depend on the requirements of the application domain. In our hypothetical 

model of individual VCR we propose an interface with a large number of buttons Figure 

8.23). It is very unusual for an application to require such a number of operations. We use 

it here only for comparison purposes. 

Figure 8.23. Operations of the extended VCR control. 

The extended set of VCR controls has 13 buttons The functionality of each button is 

in the order: frame by frame fast backward, frame by fiame slow backward, frarne by 

frame backward, fast backward, slow backward, backward, stop, forward or play, slow 

forward, fast forward, Ji-ame by frame forward, frame by JFame slow forward, and pame 

by frame fast forward. Operations with the modifier frame by frame show only key 

frames of objects' behavior. Thus, if the object is moving between two locations and only 

the initial and final position of the object is stored in the model (i.e., the object's key 

states), the animation shows the object in its initial position during the duration of the 

movement and at its final position at the end. These operations have the effect of showing 

the object "jumping" from one location to another without passing through intermediate 

locations. Operations with the modifier fast and slow show objects performing their 

behavior twice as fast or slow. 

Consider, for example, that a user of the individual VCR model wants to produce an 

animation in which different operations of the extended VCR control are selected for 

each object's behavior (Figure 8.24). The analysis of the progression of this version of 

the animation shows that the cone is moving backward, the cylinder is moving forward, 
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the box is not moving, the yellow ball is moving forward twice as fast and the red ball is 

seen only at its initial or final position (i.e., the animation does not show intermediate 

positions of the red ball). This animation represents only one possible configuration of 

the animation that can be accomplished by a user with the individual VCR model. 

Selecting a different operation for any object's behavior produces a new version of the 

animation. 

Figure 8.24. A view of the animation produced by different operations of the VCR 

control for each object's behavior. 

Animations produced by operations of the individual VCR model can be simulated by 

the combination of three operations of the model for virtual exploration of animations 

(i.e., Durat ion,  Order, and Flow). These operations are part of the group of 

transformation operations. This group of operations affects the way that an observer 

perceives the evolution of objects' states with the passage of time and can be used over 

abstractions of the model that represent the entire behavior of an object. 

Transformation operations take two arguments: the first argument is an object's 

behavior and the second argument is a value for the temporal characteristic of the object 

behavior that the operation modifies. The number and kinds of values of the second 

argument varies according to the transformation operation. The operation Order, for 

example, has two kinds of arguments: reverse and normal. The reverse argument causes 
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the behavior of the object to be perceived in the reverse chronological order, while the 

argument normal preserves the modeled evolution of the object's behavior. The operation 

Flow has three kinds of arguments: none, continuous, and stepwise. The argument none 

indicates that the object is not performing its associate behavior. When the Flow 

operation has the argument none, the values of the arguments of other operations are 

irrelevant. This operation is equivalent to the operation stop of a VCR control. The 

arguments continuous or stepwise indicates that the object is performing its associated 

behavior but in a different way. The argument continuous causes the illusion of the object 

moving continuously between two locations, while the argument stepwise shows only key 

states of an object movement. The operation Duration does not have a fixed range of 

values for the second argument of the operation (i.e., the duration of an object's 

behavior). The user can specify any value for this argument. It makes the number of 

views produced by this operation infinite. In order to be compatible with the operations 

available in a VCR control we limit the range of the second argument to the following 

values: ( Ix ,  03x, and 2x). The first value keeps the modeled duration of the object's 

behavior, the second argument reduces the modeled duration by half, and the third 

argument increases the modeled duration by a factor of 2. 

In order to produce the same versions of the animation created by operations of the 

individual VCR model it is necessary to select appropriate values for the arguments of the 

operations Order, Flow and Dura t ion .  Figure 8.25 shows the previous version of the 

animation produced with the individual VCR model using a combination of 

transformation operations of the model for virtual exploration of animations. 



Figure 8.25. A view of the animation produced by the combination of the operations 

order, flow and duration. 

For each operation of the extended VCR control there is a unique combination of the 

operations Order,  Flow and Dura t ion  that produces the same result. Table 8.1 shows 

the values of the arguments of transformation operations for every operation of the 

individual VCR model. 

Table 8.1. Operations of the extended VCR control and the equivalent set of operation in 

the virtual exploration of animation model. 

Operations of Individual VCR 
Model 

fiame by fiame fast backward 

fiame byfiame slow backward 

fiame byfiame backward 

fast backward 

slow backward 

backward 

stop 

forward or play 

slow forward 

fast forward 

fiame by fiame forward 

fiame byfiame slow forward 

fiame byfiame fast forward 

Operations of the Virtual Exploration of Animation 
Model 

O r  d e  r(reverse) F l  ow(stepwise) Du r a t i on(O.5~) 

Order(reverse) F l  ow(stepwise) Dur a t i on(2x) 

Order(reverse) Flow(stepwise) Dura t ion(1x) 

Orde r(reverse) F l  ow(continuous) Dura t i on(O.5~) 

Order(reverse) F l  ow(continuous) Dura t i on(2x) 

Order(reverse) Flow(continuous) Durat ion(1x) 

Order(any) Flow(none) Duration(any) 

Orde r(normal) Flow(continuous) Dura t ion ( l x )  

Orde r(normal) Flow(continuous) Dur a t ion(2x) 

Orde r(normal) Flow(continuous) Dur a t i on(2x) 

Order(normal) Flow(stepwise) Duration(1x) 

Orde r(normal) Flow(stepwise) Dura t ion(2x) 

O r  d e  r(norma1) F l  ow(stepwise) Du r a t i on(O.5~) 



The set of operations of the model for virtual exploration of animation is richer than 

the set of operations composed of Order, Flow, and D u r a t i o n .  Other operations of 

the model produce different versions of the animation that cannot be accomplished by 

any operation of the individual VCR model. The next section discusses such operations. 

8.4.2 What Cannot Be Done with Operations of the Individual VCR Model 

The number of different versions of the animation produced by transformation operations 

Order ,  Flow, and Duration offer the same capabilities (measured in terms of views) 

as the Individual VCR model. What is more, in the model for virtual exploration of 

animations these capabilities are provided by a more compact interface. The group of 

transformation operation, however, has an additional operation (i.e., Pace) that changes 

the way that an observer perceives the evolution of an object's behavior. Thus, this 

operation also produces different views of the animation. The operation Pace  has five 

kinds of arguments. This operation allows the representation of object's behavior at 

variable speeds (e.g., accelerating or decelerating). This effect cannot be accomplished by 

any operation of the individual VCR model. The operation Pace  is used to give a more 

realistic presentation of an object's behavior. For a large number of applications, 

however, the effect of the Pace  operation does not give any additional insight into the 

analysis of the information. In this way, this operation is irrelevant for most applications 

and does not constitute a significant advantage of the virtual exploration of animations 

model over the individual VCR model. The main difference between the virtual 

exploration of animations and individual VCR models is defined by two groups of 

operations: composition and combination operations. 



Composition operations give a user the opportunity of changing the temporal 

arrangement of the elements of the animation in order to gain insights and discover 

relationships among geographic phenomena. These operations take two behavior objects 

as arguments. Depending on the order of the arguments, the operation produces a 

different view of the animation. 

The group of composition operations is composed of two groups of operations (i.e., 

linear and cyclic compositions). Linear compositions are operations that change the 

temporal characteristics of object's behavior by imposing a temporal relationship 

between their arguments. Cyclic compositions are operations that change the temporal 

characteristics of cyclic behaviors taking into account the temporal relation that must 

hold between all occurrences of the cycles used as arguments. 

The group of combination operations is composed of three operations: un ion ,  

d i f f e r e n c e ,  and i n t e r s e c t i o n .  The u n i o n  operation allows an observer to 

rearrange the structure of the tree in a more suitable structure based on the task at hand. 

This operation is useful in a real-world scenario where the number of animated objects is 

large. The d i f f e r e n c e  and i n t e r s e c t  i o n  of two animations change the outcome 

of the animation by limiting the periods of time when the objects are seen performing 

their activities. The d i f f e r e n c e  of two animations, for example, defines an animation 

where the objects associated with the second argument have an inactive state during the 

periods in which the objects associated with the first arguments are moving. This 

operation reduces the number of active objects in the environment that are not of interest 

to an observer, thus, facilitating the analysis of phenomena of interest and reducing the 

computational cost of rendering the animation. The i n t e r s e c t  i o n  operation 
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generates an animation where the objects associated with its arguments are seen 

performing their activities only when both objects have an active state. This operation 

allows an observer to isolate pieces of animations where all objects of interest are moving 

simultaneously. 

The unique views created by composition and combination operations supports the 

hypothesis of this thesis. These operations create views of the animation that cannot be 

accomplished by operations of the individual VCR model. The simple accounting of the 

number of views of such operations, however, does not represent the importance of these 

operations in the cognitive process of exploring and analyzing dynamic environments. An 

observer cannot simulate the functionality behind this group of operations simply by 

manipulating the start points of the objects' behaviors. The group of cycle compositions is 

the most significant example of the importance and complexity behind the operations of 

the model. For example, an operation that maximizes the incidence of a certain temporal 

relation takes into account temporal relations among the occurrences of the cycle at 

different levels of conceptual neighborhood and the topological distances of these 

relations. Moreover, the mere calculation of the number of views does not consider 

additional qualitative advantages of the model for virtual exploration of animations. 

Operations of this model are performed across different levels of granularity of object's 

behaviors. In the example discussed in this thesis, however, we consider for the sake of 

comparison only the number of operations performed over the behavior of individual 

objects. The number of different views produced by manipulating individual pieces of an 

objects' behavior or the behavior of groups of objects, increases the number of views 

produced by the model. Additionally, we assume that all views are equally important and 



have the same weight in the comparison of the models. This assumption does not 

consider, for example, the possibility of the Individual VCR model to produce a view that 

is not coherent with the constraints holding in the application domain. 

8.5 Summary 

This chapter introduced a graphical user interface for the model of virtual exploration of 

animations. The user interface is composed of an animation editor and an animation 

browser. The animation editor implements all operations that allow a user to manipulate 

the content of modeled animations. The animation browser allows an observer to analyze 

the modified version of the animation in a non-irnmersive virtual reality environment. 

An illustrative example was introduced and used to discuss the animation editor and 

animation browser user interface. The example was also used to compare views that can 

be produced by the models for virtual exploration of animations and individual VCR and 

to test the hypothesis of this thesis. 

The next chapter summarizes major contributions and highlights the major findings of 

this thesis. Future work is also discussed. 



CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

This thesis focuses on the presentation and analysis of geographic spaces in VR settings. 

The research presents a data model that supports the manipulation, analysis, and 

presentation of dynamic geographic objects in VR environments, giving attention to the 

representation of interactions between the user and the data set in the spatial and temporal 

domains. 

9.1 Summary of Thesis 

The main motivation of this thesis is the lack of a framework that properly supports the 

exploration of geographic information in a multi-dimensional and multi-sensorial 

environment (i.e., temporal virtual reality geographic information systems). More 

specifically, this thesis is concerned with a data model and a user interface that allows 

non-expert users to analyze, explore, and produce different views of the data in order to 

gain insights and discover relationships among geographic phenomena. 

Five research issues drove the search for a model that supports the exploratory 

analysis of dynamic objects in Temporal VRGIS applications. The first issue is that 

multiple levels of abstractions are needed to represent objects' behavior. The second 

issue is that complex temporal structures are needed to capture the richness of geographic 

phenomena. The third issue is that known dependencies among geographic phenomena 
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must be represented to incorporate knowledge from the application domain. The fourth 

issue is that the semantics of geographic objects in a multi-sensorial environment need to 

be represented. The fifth is that new operations are needed to support the manipulation of 

objects' behavior. The conceptualization of the model for virtual exploration of 

animations addresses these issues. 

Entities of the action and temporal parts of the model considered two major 

requirements of a GIs application. These entities are both abstract enough to allow a non- 

expert user to perform qualitative spatio-temporal reasoning and robust enough to support 

a wide variety of geographic applications. Moreover, the organizations of these entities 

are similar. This characteristic gives a user a coherent representation across different 

domains and allows a quick assimilation of the model's structure. 

In the model for virtual exploration of animations, the manipulation of the dynamic 

environment is accomplished through a set of operations performed over abstractions that 

represent temporal characteristics of actions. An important feature of the model is that the 

temporal information is treated as first-class entities and not as a mere attribute of 

action's representations. Therefore, entities of the temporal model have their own built-in 

functionality and are able to represent complex temporal structures. 

In an environment designed for the manipulation of the temporal characteristics of 

actions, the knowledge of relationships among objects' behaviors plays a significant role 

in the model. This information comes from the knowledge base of the application domain 

and is represented in the model through constraints among entities of the temporal model. 

These constraints are used to keep the modified version of the information coherent with 

the information available in the application domain. The complexity of these constraints 
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increases with the complexity of the temporal structures being represented. Such 

constraints vary from simply relating the end points of two intervals to a complex 

mechanism that takes into account all relations between sequences of intervals. 

The fact that the exploration of the information takes place in a virtual reality 

environment imposes new requirements on the data model that supports the presentation 

of the information. In such an environment, the observer becomes an increasing part of 

the data. This thesis introduces a new classification of objects in a VR environment and 

describes the associated semantics of each element in the taxonomy. This thesis also 

introduces a mechanism to represent such semantics over time and the rationale to alter 

object's semantics characteristics under the modification by a user of the object's 

temporal characteristics. These semantics are used to direct the way an object interacts 

with an observer and with other objects in the environment. 

This thesis also introduces a prototype implementation for the model of virtual 

exploration of animations. The prototype is composed of an animation editor and an 

animation browser. The animation editor implements all functionalities of the model and 

presents, through a graphical user interface, all operations that allow an observer to 

manipulate the content of modeled animations. The animation browser allows the 

exploration of the information in a virtual reality environment. 

9.2 Results and Major Findings 

This thesis introduced a data model and a user interface that give users a cognitively 

plausible fiamework to analyze, explore, and produce different views of dynamic 



environments. The major advantages of the model of virtual exploration of animations 

over existing data models are: 

The model supports the representation of objects' behavior at different levels of 

granularity. This characteristic allows a non-expert user to control the pieces of the 

behavior a single object, the entire behavior an object, the behavior of groups of 

object, or all objects in the environment. 

The model supports the representation of more elaborate temporal structures. These 

structures are able to represent complex geographic phenomena and support temporal 

reasoning over cyclic behaviors. 

The model incorporates temporal constraints among entities at different levels of 

abstractions. These constraints are used to preserve some known relationships among 

objects' behavior during the manipulation of the animation by the user. A salient 

contribution of this thesis is a novel mechanism to represent temporal constraints 

between cyclic phenomena. 

The model supports the representation of the evolution of the VR objects' semantics 

over time. The semantics associated with VR objects provide valuable information in 

the process of the virtual exploration of an environment and play a significant role in 

interactions with observers and the data. 

The model has a set of operations that allow a user to create new views of the 

environment. It was demonstrated that the number of different views that can be 

produced by a user is greater than in a model where each object's behavior has an 

associated VCR control. 



9.3 Future Work 

This thesis addresses specific research questions concerning a framework for the 

presentation and analysis of multi-dimensional geographic information. Although the 

model of virtual exploration of animations represents a step forward for a truly temporal 

VRGIS framework, there are some research questions that need to be addressed in future 

work. 

9.3.1 Anticipation of Mutual Interference 

The user interface to manipulate the content of animations presents the organization of 

action objects in a tree-like structure. The temporal characteristics of these objects are 

depicted as temporal intervals positioned along the animation timeline. In such a 

representation, an observer does not have any spatial information about the objects' 

behaviors. Thus, the fact that two objects interact in the temporal domain (e-g., the 

objects move at the same time) does not mean that the objects interact in the spatial 

domain (e.g., the objects collide). In order to verify spatial interactions, the observer need 

to explore the environment. 

The model of virtual exploration deals with pre-orchestrated object's behaviors (i.e., 

the behavior of the object is known ahead of time). Thus, the model has all information 

needed to allow an application to anticipate any kind of spatial interaction. 

Allowing the application to process spatial interactions before the presentation of the 

animation has two main advantages. First, an observer knowing that the manipulation of 

the animation causes the collision of two objects can change the temporal configuration 

to avoid the collision or keep the temporal configuration and analyze the way in which 
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these objects interact. In the later scenario, an observer also knows when the interaction 

occurs. Thus, he or she can focus only on small segments of the animation. Second, 

developers of the model can implement a more elaborate algorithm to treat collisions 

between complex geometries and to bring the collision detection mechanism to the 

animation editor. This approach alleviates the computational demand of the animation 

browser, allowing the presentation of complex four-dimensional environments. 

9.3.2 Incorporating Knowledge 

The knowledge from the application domain is represented in the model through temporal 

constraints among the entities of the temporal part of the framework. This knowledge is 

sometimes incomplete or wrong. In our model, however, an observer cannot change this 

kind of information. An observer exploring the dynamic environment can gain insights 

and discover new relationships among geographic phenomena. In this way, it is necessary 

to incorporate in the model a mechanism that allows an observer to add or remove 

information from the knowledge base of the application domain. The insights and 

understandings achieved by observers exploring the modified dynamic environment must 

be used to re-feed the knowledge base of the application domain, creating a virtuous 

cycle. 

9.3.3 Support for Causalities 

The model for virtual exploration of animations has no explicit notion of causality. 

Causality can be treated only implicitly, as a temporal relationship between objects 

behavior. In order to capture the complexity of geographic phenomena and their 

relationships, the set of temporal constraints need to be extended with a formal 
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representation of causal constraints and a richer set of causal predicates (e.g., cause, 

prevent, enable, help, and hinder). This kind of information allows the extension of the 

rationale used to update the semantics and temporal characteristics of object's behavior 

during the manipulation of the animation in a way that more complex feedbacks can be 

presented to an observer. Thus, the support of causalities may increase an observer 

capability to get insights from the animated environment. 

Consider, for example, the behavior of two objects (01 and 02) related through the 

causal predicate help, that is, help(ol,o2). One possible rationale to change the behavior 

of the object 02 when the user disables the behavior of 01 is to slow down the movement 

of the second object. Thus, an observer can perceive that something that was "helping" 

the movement of the object 02 is not in place anymore. 

9.3.4 Cycles Behaviors at Different Levels of Granularity 

Cyclic behaviors are allowed only at the level of granularity representing the entire 

behavior of an object (i.e., an object Course of Actions). It is important to extend the 

model to support the representation of cycles at both a finer and a coarser level of 

granularity. At a finer level of granularity, it is important to represent pieces of an 

object's behavior with a cyclic pattern of repetition. This feature avoids the duplication of 

certain pieces of information in the model, thus minimizing sources of errors. At a coarse 

level of granularity, cycles can be defined qualitatively in terms of other cyclic behaviors 

(e.g., a phenomena that occurs only between occurrences of other cyclic behaviors, or 

only when occurrences of others cycles overlaps in time). 



9.3.5 Uncertainties 

The temporal characteristics of objects behavior are defined with attributes that can 

assume only a single value. Thus, it is impossible to deal with uncertainties in the model. 

Possible approaches to incorporate uncertainties in the model are to allow the temporal 

attributes to deal with an interval of values or a triple with a minimum, a maximum, and a 

likely value. Either approach has a tremendous impact on the hctionality of the model 

an on the interface used to treat these representations. 

Incorporating uncertainties in the model also has an impact on the temporal constraint 

mechanism. This mechanism needs to be extended to support imprecise and complex 

constraints (e.g., a certain behavior meets or overlaps another behavior). 
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