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Regional integration of potato and dairy farms has developed in Maine through 

arrangements where manure, feed, and sometimes land, are exchanged between 

neighboring farms.  The effects of integration on soil quality, crop production, nitrogen 

(N) cycling, and N loss were investigated in field and laboratory studies of contrasting 

amended (manure, compost, green manure, and supplemental fertilizer) and nonamended 

(fertilizer only) soil management systems within 2-year potato (Solanum tuberosum L.) 

rotations in the Maine Potato Cropping Systems Project (MPEP).  Additionally, soil 

quality of 48 integrated and nonintegrated Maine potato and dairy farm fields was 

assessed.  The MPEP’s amended soil system enhanced soil quality and demonstrated 

aspects of increased resilience for crop production and N cycling.  The amended system 

produced higher and more stable potato yields than the nonamended system by reducing 

the impact of adverse growing conditions.  It also demonstrated the potential to buffer 



 

 

excess N by retaining a greater proportion of net N inputs than the nonamended system.  

Possible mechanisms to explain increased N retention include better early-season 

synchrony between N release and crop uptake, as observed in in situ soil monitoring; 

carbon-enhanced immobilization of excess N, as observed in a laboratory study; 

increased recalcitrance of N sources; and physical protection.  Nitrogen loss, in absolute 

terms, however, was higher in the amended system due to higher N inputs and a build-up 

of soil organic N.  Soil amendment history had the largest impact on soil N 

mineralization capacity – fall nitrate levels were higher in the amended system in two of 

three years, and residual manure N contributed more N than predicted using the standard 

decay-series model – but it also reduced the availability of recently added N.  As 

currently practiced in Maine, integrated potato systems appear to need greater increases 

in carbon inputs (preferably as sod crops and trap crops) and reductions in tillage to 

produce changes in soil carbon that can be detected at a landscape level.  Future work 

should focus on finding balance points for soil organic matter content that enhance soil’s 

crop production and N cycling functions while avoiding N excesses and loss. 
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Chapter 1 

INTRODUCTION 

1.1. Integrating Crop and Livestock Farming 

Increasing industrialization of agriculture has decoupled crop and livestock 

production and encouraged individual farmers to specialize in one or the other (Naylor et 

al., 2005).  Consequently, crop farmers rely on purchased inorganic fertilizers to meet 

crop nutrient needs, while livestock farmers import feed nutrients and often do not have 

enough land to avoid excessive applications of manure nutrients.  Given these concurrent 

trends, it is not surprising that agriculture is the leading source of nitrogen (N) pollution 

in much of the United States, with fertilizer and manure accounting for up to 90% of 

point and nonpoint sources of N in agricultural watersheds (Pucket, 1994).   

In Maine and elsewhere, an increasing number of farmers are establishing linkages 

between the nutrient cycles of neighboring crop and livestock operations, a process 

referred to as integration.  In some cases, integration consists solely of excess dairy 

manure being applied to nearby potato (Solanum tuberosum L.) farm fields.  In other 

cases, integration is more complex, with farmers sharing land between operations, 

expanding the potato rotation to include feed crops (e.g., silage corn (Zea mays L.) or 

barley (Hordeum vulgare L.) as forage or grain) for the dairy operation, and trading 

services such as tillage or spraying.  This crop-livestock integration has many potential 

benefits.  For instance, manure N, often in excess on a dairy farm, may replace a portion 

of the fertilizer needs of a neighboring potato farm.  Hence, integration is viewed as a 

potential strategy to increase N use efficiency and reduce N losses to the environment at 
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watershed or regional scales (Christensen, 2004; Naylor et al., 2005; Russelle et al., 2007; 

Schröder, 2005).  These efficiencies, however, may go beyond input substitution. 

Organic amendments, including animal manures, compost, and crops grown for soil 

improvement, create soil that is fundamentally different than nonamended soil.  Repeated 

applications of organic amendments increase stocks of total and labile carbon (C) and N 

(Aoyama et al., 1999a; Cambardella and Elliott, 1992; Griffin and Porter, 2004; 

Sommerfeldt et al., 1988; Wander et al., 1994), enhance soil microbial biomass and 

activity (Fauci and Dick, 1994b; Gunapala and Scow, 1998; Houot and Chaussod, 1995; 

Witter et al., 1993), improve soil structure (Angers and Carter, 1996; Grandy et al., 

2002), and increase water-holding capacity (Khaleel et al., 1981; Weil and Magdoff, 

2004).  All of these characteristics influence how a soil functions with regard to nutrient 

cycling, crop production, and environmental impact.  This dissertation investigates how 

amended soil management systems alter soil characteristics and soil function, relative to 

nonamended systems. 

The research for this thesis was conducted as part of the interdisciplinary project 

“Reintegrating Crop and Livestock Enterprises in Three Northern States,” an Initiative 

for Future Agricultural and Food System (IFAFS) project funded by USDA-CSREES 

that involved researchers, farmers, and educators from Maine, Michigan, and Iowa. 

1.2. Soil Quality and Resilience 

The concept of soil quality emerged to describe the functional capacity of soil, not 

only for crop production, but also for environmental quality, human health, and multiple 

uses (Karlen et al., 2004).  Soil quality is necessarily a subjective term with varied 

definitions and interpretations (Schjønning et al., 2004).  In this dissertation, the term soil 
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quality is used according to the definition proposed by the Soil Science Society of 

America (SSSA) as, “the capacity of a specific kind of soil to function, within natural or 

managed ecosystem boundaries, to sustain plant and animal productivity, maintain or 

enhance water and air quality, and support human health and habitation” (Karlen et al., 

1997).  Soil quality includes both inherent properties (e.g., parent material and 

topography), and dynamic properties influenced by management (e.g., soil organic 

carbon (SOC) and compaction) (Carter, 2002; Karlen et al., 2004).  In this dissertation, 

the soil quality term is used to refer to dynamic properties with regard to crop production 

and environmental quality. 

The linkage between soil quality characteristics and soil productivity is well 

established.  Numerous studies have demonstrated increased productivity associated with 

enhanced SOC, achieved by amending with organic materials (Barzegar et al., 2002; 

Christensen and Johnston, 1997; Hornick and Parr, 1987) or other means (Díaz-Zorita et 

al., 2002; Dick et al., 1997; Johnston, 1991).  Additionally, predictive relationships have 

been found between crop yield and soil quality characteristics, such as total soil C 

(Alvarez et al., 2002), active soil C and macroaggregate stability (Stine and Weil, 2002), 

and total soil N (Stenberg, 1998).  Productivity increases in SOC-enhanced soils have 

been attributed to improvements in soil structure, water-holding capacity (Johnston, 

1991), and nutrient supply (Cassman, 1999; Díaz-Zorita et al., 1999). 

There is also a perception that high-quality soils produce more stable yields by 

buffering environmental factors such as limited or excessive rainfall, pests, and diseases 

(Ellmer et al., 2000; Karlen et al., 2004; Romig et al., 1995).  Thus, high-quality soils are 

considered to produce more robust growing environments because they are more resistant 
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and resilient to external stresses (Karlen et al., 2004; Schjønning et al., 2004; Seybold et 

al., 1999).  It has been shown that crops grown on soil that receives organic amendments 

and has enhanced soil quality characteristics have access to greater soil moisture (Liebig 

and Doran, 1999; Lotter et al., 2003) and are more resistant to weed (Gallandt et al., 

1998a) and insect (Alyokhin et al., 2005) pressures. But direct evidence that amended 

systems reduce year-to-year variation in yields is lacking. 

Chapter 2 of this dissertation investigates the influence of an amended soil 

management on soil quality characteristics, potato yield, and potato yield stability.  

Chapter 2 has been published previously (Mallory and Porter, 2007).  This and three of 

the other studies comprising this dissertation were conducted as part of the Maine Potato 

Ecosystem Project (MPEP).  A brief description of the MPEP is given in section 1.6. 

1.3. Nitrogen Stabilization and Loss 

The concept of soil resilience as a component of soil quality (Seybold et al., 1999) 

can be extended to nutrient dynamics with regard to soil’s nutrient supplying and 

buffering functions.  In this context, “resilience is imparted by a balance between nutrient 

mobilization for biological uptake and nutrient stabilization in the soil or other system 

components to avoid leaching or erosion loss” (p. 157, Tiessen et al., 1994).  Amended 

soil management systems designed to improve soil quality may provide resilience 

regarding nitrogen dynamics by rejoining the biological links between C and N cycles 

and enhancing N stabilization in the soil (Drinkwater et al., 1998; Drinkwater and Snapp, 

2007). 

Two possible mechanisms may contribute to greater N stabilization in high-C 

systems: C-enhanced immobilization and physical protection.  The major pathways of 
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loss from cultivated soil (leaching, volatilization, and denitrification) all act on inorganic 

forms of N.  Thus there is potential to reduce N loss by reducing high levels of inorganic 

N when crop demand is low.  Immobilization of inorganic N to organic N by microbes is 

a major N stabilizing mechanism and is stimulated by readily available C.  Research on 

untilled soils has illustrated this linkage.  Barrett and Burke (2000) found a positive linear 

relationship between soil C concentration and gross rates of mineralization (slope = 

0.595) and immobilization (slope = 0.934) in grassland soil, with greater influence on 

immobilization.  Similarly, Hatch et al. (2000) detected a greater increase in N-

immobilization in high- vs. low-C pasture soil 3 months after a one-time surface 

application of manure. 

Physical protection of N as organic matter in soil microaggregates also is an 

important N stabilizing mechanism and is influenced by soil C (Six et al., 2002).  Manure 

application has been shown to increase aggregate-protected N fourfold compared to a 

synthetic fertilizer treatment (Aoyama et al., 1999b). 

The role of amended soil management systems in stabilizing N has been 

investigated in a limited number of medium-term cropping systems trials by comparing 

changes in soil total N with calculated N balances (inputs minus outputs).  In two such 

studies, a greater proportion of N inputs was accounted for, either as harvested crop or 

soil storage, in manure- and legume-based systems compared with fertilizer-based 

systems, but the influence of increased soil C could not be confirmed in either study due 

to the inclusion of N-scavenging winter cover crops in only the organic systems 

(Drinkwater et al., 1998; Poudel et al., 2001).  In Chapter 3, a similar N budgeting 

method is used to assess whether an amended soil management system reduced loss and 
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enhanced soil stabilization of N relative to a nonamended system over an eight year 

period, where the soil management factor was not confounded with tillage or rotation 

factors.  Carbon stabilization is also addressed. 

1.4. Managing Nitrogen in Amended Systems 

Soil management systems that rely on organic sources of nutrients and build soil 

quality represent a fundamentally different approach to nutrient management than 

fertilizer-based approaches (Drinkwater and Snapp, 2007).  Whereas fertilizer-based 

systems focus on adding soluble, plant-available nutrients to meet crop needs for a single 

season, amended systems build stocks of mineralizable nutrients, or nutrient “capital” 

(van Noordwijk, 1999), and rely more on microbial and plant-mediated processes and the 

re-coupling of nutrient cycles.  Both systems share a common goal of synchronizing 

nutrient availability, temporally and spatially, with plant uptake. 

Managing N in amended soil management systems can be challenging, compared to 

fertilizer systems, because organic N sources must be mineralized to plant available 

inorganic forms (NO3
- and NH4

+).  For instance, manure is a slower or more gradual 

source of plant-available N than fertilizer N (Langmeier et al., 2002; Ma et al., 1999).  

While this may result in increased synchrony with plant demand and reduce potential N 

leaching losses (Ma et al., 1999), it may also lead to potentially leachable end-of-season 

excesses of soil NO3¯ (Basso and Ritchie, 2005; Magdoff, 1991; Pang and Letey, 2000; 

Schröder, 2005).  Additionally, standard manure application recommendations, which do 

not recognize N contributions after the third year following application, may 

underestimate the longer-term N-release potential of manure, leading to over application 

(Schröder, 2005; Whalen et al., 2001).  Chapter 4 reports the results of an in situ field 
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monitoring study that examines seasonal patterns of N availability relative to crop needs 

over three growing seasons in amended and nonamended soil treatments, and estimates 

the relative contribution of current and residual manure organic N. 

In addition to the quantitative increase in the size of the soil organic N pool, 

repeated long-term application of organic amendments also brings about changes in soil 

characteristics that could affect N dynamics.  Chapter 5 summarizes results from a 

laboratory investigation of the influence of soil amendment history on the mineralization 

and availability of recently added N substrates.  This chapter has been published 

previously (Mallory and Griffin, 2007).  

1.5. Potato-Dairy Integration and Soil Quality in Maine 

Maintaining soil quality is difficult in potato cropping systems as they are typified 

by high levels of soil disturbance and low levels of crop residue return.  That is why the 

relinking of C and nutrient cycles between potato and livestock farms through integration 

is seen as a promising strategy to assure soil quality and productivity in potato systems in 

Maine and elsewhere (Files and Smith, 2001; Stark and Porter, 2005).   Chapter 6 

addresses the question whether the adoption of integrated potato-dairy systems has 

produced changes in soil quality that are measurable on a landscape level across fields 

and farming operations.  It reports results from an on-farm assessment of the soil quality 

status of 48 potato and dairy farm fields under various degrees of integration in Central 

Maine.   
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1.6. The Maine Potato Ecosystem Project 

Four of the five studies in this dissertation were conducted as part of the MPEP.  

This interdisciplinary cropping systems trial is located in Presque Isle, Maine.  Since its 

establishment in 1991, the MPEP has included a comparison of contrasting amended and 

nonamended soil management systems in the context of 2-year potato rotations.  The 

amended soil system is representative of an integrated potato system.  It was designed to 

rapidly improve soil quality through additions of organic amendments (manure, compost, 

and green manure) and was supplemented with inorganic fertilizer as needed to meet crop 

needs.  The nonamended treatment, representative of a nonintegrated potato system, 

followed industry standards including inorganic fertilizers and red clover interseeded into 

the barley rotation crop.  These soil management systems were in factorial combination 

with the other experimental factors (pest management systems and cultivars from 1991 to 

1998 and rotation treatments from 1999 to 2006).  This experimental design allows for 

the effects of soil management to be isolated from the other factors, which is not the case 

in most other cropping systems trials (Smolik et al., 1995; Stine and Weil, 2002).   

The amended soil management system caused rapid changes in soil quality, with 

significantly greater organic matter content after only one season, and significantly 

greater water stable aggregates after only two (Gallandt et al., 1998b).  After 8 years, 

differences in soil stocks of total and labile C and N between the soil management 

treatments for this trial were more dramatic than differences observed in similar medium-

term cropping systems trials (Burger and Jackson, 2003; Harris et al., 1994; Langmeier et 

al., 2002; Poudel et al., 2001; Wander et al., 1994).  The contrasting and highly divergent 

amended and nonamended soil management systems, along with the factorial 

arrangement of treatment factors, created an ideal opportunity to study the effects of 
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amended soil management on soil quality, yield stability, and short- and long-term 

nitrogen dynamics.
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Chapter 2 

POTATO YIELD STABILITY UNDER CONTRASTING SOIL MANAGEMENT 

STRATEGIES 

2.1. Chapter Abstract 

Managing soil quality is recognized as a cornerstone of maintaining crop production 

potential.  Here we show that soil management that improves soil quality characteristics 

can also reduce year-to-year variation in yields.  Thirteen years of data from the Maine 

Potato Ecosystem Project were used to investigate the long-term effects of soil 

management, pest management, cultivar, and rotation in a factorial design on the yield 

and yield stability of potatoes grown in 2-year rotations.  Potato yields in the amended 

soil system (manure, compost, green manure, and supplemental fertilizer) were up to 

55% higher than yields in the contrasting nonamended soil system (synthetic fertilizer) in 

all but 1 year.  Yield stability was also enhanced in the amended system compared with 

the nonamended system, as demonstrated by lower coefficients of variation (CV) of total 

and U.S. no. 1 potato tuber yield.  Stability analysis indicated that yields in the amended 

system were less influenced by adverse growing conditions, particularly low rainfall.  

Total and U.S. no. 1 treatment yields in the poorest-yielding year were 63 and 59% of 

maximum yields, respectively, in the amended system, compared with 44 and 45% in the 

nonamended system.  Yields and yield stability were also influenced by pest management 

system and cultivar but not by rotation.  These results indicate that management practices 

that improve soil quality can enhance potato yield stability by reducing the impact of 

adverse growing conditions. 
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2.2. Introduction 

Farmers emphasize yield potential when evaluating cropping systems but also 

consider the predictability, or stability, of those yields (Eghball et al., 1995; Varvel, 

2000).  Year-to-year variation in yields on a specific field is due primarily to weather-

related environmental factors, pest and nutritional stresses, and management (Batchelor et 

al., 2002; Loomis and Conner, 1992; Smolik et al., 1995).  A key question in designing 

cropping systems is whether management can buffer the effects of an unpredictable 

environment (Varvel, 2000). 

Managing soil quality is fundamental to maintaining a soil’s crop production 

potential (Christensen and Johnston, 1997).  In fact, the term “soil quality” is commonly 

defined in terms of sustaining biological productivity as well as maintaining 

environmental quality and plant and animal health (Karlen et al., 1997).  Evidence of the 

need to manage for soil quality comes from studies of degraded soils that exhibit reduced 

productivity even with high fertilizer inputs (Aref and Wander, 1998; Cassman, 1999; 

Parr and Hornick, 1992) and from studies in which increased productivity is associated 

with enhanced SOC, achieved by amending with organic materials (Barzegar et al., 2002; 

Christensen and Johnston, 1997; Hornick and Parr, 1987), growing a sod crop (Díaz-

Zorita et al., 2002; Johnston, 1991), or reducing tillage (Díaz-Zorita et al., 2002; Dick et 

al., 1997).  Others have found predictive relationships between yield and soil quality 

characteristics, such as total soil C (Alvarez et al., 2002), active soil C and 

macroaggregate stability (Stine and Weil, 2002), and total soil N (Stenberg, 1998).  

Productivity increases in SOC-enhanced soils have been attributed to improvements in 

soil structure, water-holding capacity (Johnston, 1991), and nutrient supply (Cassman, 

1999; Díaz-Zorita et al., 1999). 
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There is also a perception that high-quality soils may produce more stable yields by 

buffering environmental factors such as limited or excessive rainfall, pests, and diseases 

(Ellmer et al., 2000; Romig et al., 1995).  Crops grown on soil that receives organic 

amendments and has enhanced soil quality characteristics have been shown to have 

access to greater soil moisture (Liebig and Doran, 1999; Lotter et al., 2003) and are more 

resistant to weed (Gallandt et al., 1998a) and insect (Alyokhin et al., 2005) pressures.  

However, evidence is scarce that these amended systems reduce yield variation.  One 

recent study comparing two organic systems with a conventional system found similar 

maize yields in years of adequate rainfall but higher yields in the organic systems in years 

of drought (Lotter et al., 2003).  They attributed this difference to enhanced water-

holding capacity of the organically managed soil.  In contrast, analysis of two long-term 

experiments found no evidence that manure-amended systems, associated with improved 

soil quality, altered temporal yield variability (Aref and Wander, 1998; Eghball and 

Power, 1995).  Additionally, in some organic systems that included soil amendments, 

greater variation in yield has been reported (Clark et al., 1999; Spiertz, 1989).  Work in 

this area is insufficient to make broad generalizations.  Few studies are of adequate 

duration to assess temporal yield variability (Varvel, 2000), and those with longer-term 

histories often compare entire cropping systems in an experimental design that makes it 

difficult to isolate soil management effects from other effects, such as tillage frequency 

and rotation (Smolik et al., 1995; Stine and Weil, 2002). 

Potato may be particularly sensitive to weather-related variation in part because it 

has a shallower root system than other annual crops (Opena and Porter, 1999).  Benoit 

and Grant (1980; 1985) noted that periods of water deficit or excess severely limited 
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potato yields in northern Maine despite the fact that total rainfall amounts were generally 

sufficient.  Compounding the sensitivity of potato to water stress is the fact that the 

water-supplying capacity of soil under potato production is often degraded.  Potato 

production in Maine and northeastern Canada has resulted in lower SOC concentration 

and less structural stability (Saini and Grant, 1980) due to high levels of soil disturbance 

and low levels of crop residue returns (Angers and Carter, 1996; Grandy et al., 2002).  

Black and White (1973) noted an increase in potato yield with manure application, 

independent of applied fertilizer, which they attributed to increased organic matter, 

water-holding capacity, and cation exchange capacity (CEC).  In Maine, the idea that 

degraded soils are limiting potato yields is supported by the observation that yields have 

remained relatively constant over the last 50 yr despite increasing inputs of pesticides and 

fertilizers (Economic Research Service, 2002; Westra and Boyle, 1991). 

The Maine Potato Ecosystem Project (MPEP) was initiated in 1991 to investigate 

key factors limiting potato production.  This cropping systems trial compared two 

contrasting soil management systems.  The amended soil management system, designed 

to improve soil quality, received annual additions of organic amendments (manure and 

compost) supplemented by synthetic fertilizer.  The nonamended soil management 

system used only synthetic fertilizers.  These soil management systems were in factorial 

combination with the other experimental factors (pest management systems and cultivars 

from 1991 to 1998 and rotation treatments from 1999 to 2004) so the effects of soil 

management can be isolated from the effects of other factors.  This aspect of the trial, and 

the fact that the soil treatments caused highly divergent soil characteristics, make the 

MPEP an ideal trial to investigate long-term effects of soil management.  The objectives 
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of this study were (i) to assess the impact of soil management on soil chemical and 

physical properties and (ii) to investigate the influence of soil management, pest 

management, cultivar, and rotation on yield and yield stability of potatoes grown in 2-yr 

rotations. 

2.3. Materials and Methods 

2.3.1. Site Description 

The experiment was conducted from 1991 to 2004 at the Maine Agricultural and 

Forest Experiment Station’s Aroostook Research Farm in Presque Isle, Maine, on a 

gravely, well drained, Caribou loam soil (fine-loamy, mixed, frigid Typic Haplorthods).  

The 5.9 ha used for the study had a long history of commercial and research potato 

production.  Details of the establishment of the experiment are given in Porter (1996). 

2.3.2. Cultural Practices and Treatments 

The experiment consisted of 96 plots (14.6 by 41.0 m) in four replicate blocks and 

can be divided into two phases.  During Phase 1 (1991–1998), treatments were arranged 

in a randomized, complete-block, split-plot design.  Main-plot factors were one of three 

pest management systems: conventional, reduced input, and bio-intensive.  Subplots were 

a fully factorial combination of two soil management systems (amended vs. 

nonamended), two potato cultivars (‘Atlantic’ vs. ‘Superior’), and two rotation entry 

points (potato vs. rotation crop).  Although pest treatments were randomly assigned to 

locations within blocks, and soil and cultivar treatments were randomly assigned to 

locations within main plots, entry points were assigned to alternating positions within the 

field in an effort to minimize the movement of insects. 
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The amended soil management system was designed to rapidly improve soil quality 

by adding organic amendments (raw beef manure and/or potato cull compost) and by 

rotating potato with a pea (Pisum sativum L. subsp. sativum)–oat (Avena sativa L.)–hairy 

vetch (Vicia villosa Roth) green manure crop.  A secondary objective of this system was 

to reduce the need for fertilizer.  Manure and compost were applied and incorporated 

before planting potatoes.  These organic amendments were supplemented with fertilizer 

as needed to provide approximately the same nutrient levels as in the nonamended soil 

treatment.  The nonamended soil management system followed industry standards, 

including rotating potato with barley interseeded with red clover (Trifolium pratense L.) 

and using recommended rates of inorganic fertilizers.  Table 2.1 provides average annual 

application rates of manure, compost, and fertilizer and the estimated average annual 

availability of N, phosphorus (P), and potassium (K) for the two soil management 

systems.  No micronutrient fertilizers were applied to either soil treatment.  Complete 

descriptions of the pest and cultivar treatments and of the cultural methods are provided 

elsewhere (Gallandt et al., 1998b; Porter and McBurnie, 1996).
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Table 2.1.  Applications of amendments and fertilizer and estimated nitrogen (N), 
phosphorus (P), and potassium (K) availability from these sources during Phase 1 (1992–
1998) and Phase 2 (1999–2004) of the Maine Potato Ecosystem Project. 

† Manure and compost had the following ranges of compositional factors, expressed in kg Mg-1 on a fresh 
weight basis. Manure: total solids, 219–418; total N, 4.0–7.0; NH4

+–N, 0.08–1.90; P, 0.82–2.63; and K, 
0.61–4.45. Compost: total solids, 289–543; total N, 2.3–11.7; NH4

+–N, 0.21–0.62; P, 0.65–3.12; and K, 
1.28–4.05. 
‡ Fertilizers were applied in the following forms and times to the following crops: barley, NH4NO3 at 
planting; potato, 10–10–10 at planting (a blend of diammonium phosphate, KCl, NH4NO3, and NH4SO4), 
urea ammonium nitrate sidedress, and KCl preplant; soybean, 10–10–10 at planting. In Phase II, amended 
potato received NH4SO4 instead of 10–10–10. 
§ The range presented for nitrogen (N) represents uncertain availability of N from solid-bedded manure and 
compost. The lower value was based on a conservative availability estimate of 50% of applied NH4

+–N and 
25% of applied organic N from manure (Klausner, 1983). The upper range uses less conservative values of 
100 and 30%, respectively. Compost N availability was estimated at 50% of applied NH4

+–N and 10% of 
applied organic N. The availabilities of N from fertilizer and of P and K from manure, compost, and 
fertilizer were assumed to be 100% of the applied amounts. The availability of N from the pea/oat/vetch 
green manure was not included due to uncertainty but was probably about 30 kg N ha-1. 
¶ Compost was applied to the pea/oat/vetch rotation crop in 1991, 1992, and 1993 at rates of 13, 22, and 22 
Mg ha-1, respectively. 
# Potato was grown every other year in Phase 2, as in Phase 1, but in a 2-yr rotation of potato-barley/red 
clover or a 4-yr rotation of potato-barley/red clover-potato-soybean. 
 

Average annual application rate 

Amendments† Fertilizer‡ 

Total estimated average 
annual availability from 

current-year 
applications§ 

 

Manure Compost N P K N P K 
 Mg ha-1 fresh wt. —— kg ha-1 —— ——— kg ha-1 ——— 

 Phase 1 
Amended         
 Potato 45 22 84 25 58 179–203 150 239 
 Pea/oat/vetch   0    7¶ 0 0 0 3 6 16 
Nonamended         
 Potato   0   0 191 59 169 191 59 169 
 Barley/red clover   0   0 72 0 0 72 0 0 

 Phase 2# 
Amended         
 Potato 67   0 78 0 19 152–186 90 135 
 Barley/red clover 45   0 0 0 0 57–73 64 92 
 Soybean   0   0 0 0 0 0 0 0 
Nonamended         
 Potato   0   0 190 59 221 190 59 221 
 Barley/red clover   0   0 73 0 0 73 0 0 
 Soybean   0   0 34 15 28 34 15 28 
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The objectives of the project shifted in 1999 to include an investigation of crop 

diversity effects (Phase 2).  The conventional and reduced input pest management plots 

were redistributed among three crop rotations: standard (potato–barley/red clover), 

intensive (potato–soybean [Glycine max (L.) Merr.]–potato–barley/red clover), and 

integrated (potato–soybean–barley/alfalfa [Medicago sativa L.]/timothy [Phleum 

pratense L.]–forage).  These rotations were managed using conventional integrated pest 

management (IPM) and one potato cultivar (‘Atlantic’).  The bio-intensive pest 

management plots were assigned to the integrated rotation only, with “biorational” IPM 

pest management (Alyokhin et al., 2005).  The changes in the study for Phase 2 created 

two fully factorial experiments.  Experiment 1 included crop rotation and soil 

management factors and was managed under conventional IPM.  Experiment 2 compared 

pest management and soil management factors within the context of the integrated crop 

rotation.  The two experiments shared the set of plots that were in the integrated rotation 

and managed with conventional IPM.  For consistency with Phase 1, the only 1999–2004 

results presented in this paper are those from the standard and intensive rotations of 

Experiment 1, in which potato was grown every other year. 

Plot assignments for the soil management (and entry point) treatments remained 

constant from 1991 to 2004, giving the plots a continuous 14-yr history of amended or 

nonamended soil systems.  During Phase 2, beef manure was applied before potato and 

barley crops (Table 2.1).  No compost was applied, and amended system soybeans 

received no manure or fertilizer. 
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2.3.3. Soil Analyses 

Cation exchange capacity, pH, and mineral nutrient content were determined from 

soil samples taken each fall after crop harvest.  Ten soil cores were collected to a 15-cm 

depth from each plot, bulked, and mixed thoroughly.  A subsample was dried, sieved 

through 2-mm screen, and submitted to the University of Maine Soil Testing Laboratory 

for pH and CEC analysis using standard methods (Hoskins, 1997; Northeast Coordinating 

Committee on Soil Testing, 1995).  A modified Morgan procedure was used for 

phosphorus and cation extraction (Northeast Coordinating Committee on Soil Testing, 

1995).  Soil organic matter and water-stable aggregate content were determined from 

samples taken each spring before the application of organic amendments.  Ten soil cores 

were collected from a 15-cm depth, air-dried, sieved through a 6.4-mm screen, bulked, 

and mixed thoroughly.  Duplicate subsamples were analyzed for readily oxidizable SOC 

using the Walkley–Black method (Nelson and Sommers, 1996).  A separate set of 

duplicate subsamples was analyzed for water-stable soil aggregate content according to 

the methods described by Porter and McBurnie (1996).  Soil moisture content was 

estimated as part of the procedure to monitor soil mineral N content at biweekly intervals 

throughout the growing season.  Ten soil cores were taken to a 20-cm depth and bulked.  

A 50-g subsample was sieved through a 2-mm screen, weighed wet, dried at 105°C for 24 

h, and weighed again. 

2.3.4. Yield and Tuber Quality 

Potato crop yields were determined from the four center rows of each plot.  Tubers 

were lifted with a two-row potato digger and collected by hand, and the yield of the entire 

four rows was weighed in the field.  Any decaying tubers were weighed separately.  Two 
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22.7-kg subsamples were collected from each plot and graded for tuber size and external 

defects.  U.S. no. 1 yields were calculated as the yield of tubers between 4.8 cm and 10.2 

cm in diameter, excluding decayed, sunburned, misshapen, scabby, or growth cracked 

tubers. 

2.3.5. Statistical Analyses 

Significant treatment effects and interactions on the selected soil characteristics 

were identified using ANOVA.  The normality of total and U.S. no. 1 tuber yield data 

was tested using Kolmogorov-Smirnov tests (p < 0.01; SYSTAT v.11, 2004).  Repeated-

measures ANOVA was used to determine the significance of rotation cycle, treatment, 

rotation cycle by treatment, and treatment interaction effects on total and U.S. no. 1 tuber 

yields for each phase of the experiment.  There were three rotation cycles for each entry 

point in both phases, corresponding to years 1993/1994, 1995/1996, and 1997/1998 for 

Phase 1 and 1999/2000, 2001/2002, and 2003/2004 for Phase 2.  The first rotation cycle 

in Phase 1, 1991/1992, was not included because the treatment structure of the 

experiment was substantially altered after the 1991 season. 

Yield stability was assessed by two methods.  In the first, the CV of total and U.S. 

no. 1 yields over time was calculated for each plot within each phase of the experiment 

(Clark et al., 1999; Spiertz, 1989).  The CVs were subjected to ANOVA to determine 

significant treatment effects and interactions.  The second assessment of variability was 

stability analysis (Guertal et al., 1994; Raun et al., 1993), in which total and U.S. no. 1 

yield for each soil management treatment was regressed on the annual mean yield of both 

treatments combined, designated the “environment mean yield.” The environment mean 

yield reflects the overall growing conditions for each year, which includes temperature, 
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rainfall, pest pressure, and effectiveness of pest and crop management.  Regressing 

treatment yields on the environment mean yield allows one to evaluate the relative 

response of the treatments under the range of growing conditions that occurred, thereby 

providing a way to investigate significant year-by-treatment interactions that commonly 

appear in repeated-measures analyses of long-term trials (Raun et al., 1993).  Data from 

the two phases of the experiment were combined for stability analysis because there were 

no significant interactions between the soil management treatment and other treatments 

(pest management, variety, and rotation) on total yield, U.S. no. 1 yield, and the CV of 

those yields during both phases.  A subset of the plots were used that were consistent 

between Phases 1 and 2 in having potato grown every other year during both phases (this 

excluded the bio-intensive/biorational IPM plots) and in being planted to ‘Atlantic’ (this 

excluded the plots that were planted to ‘Superior’ in Phase 1).  Data for the soil 

treatments were then averaged by replicate over the two remaining pest treatments in 

Phase 1 and the two rotation treatments in Phase 2. 

The relationship between tuber yield and rainfall was explored to investigate the 

hypothesis that lower sensitivity to fluctuations in rainfall was a possible mechanism for 

enhancing yield stability.  Using the subset of data used for stability analysis, tuber yield 

was regressed on rainfall amount (May–September, May–August, and June–August) and 

evenness (using Shannon diversity index [Bronikowski and Webb, 1996]).  The residuals 

of the regression of yield on June–August rainfall (i.e., the variation in yield that was not 

explained by June–August rainfall) were regressed on the environment mean yield.  The 

purpose of this second stability analysis, with the effect of rainfall removed, was to 

investigate the importance of rainfall as a driver of treatment differences in the original 
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stability analysis.  The regression lines for the soil treatments from stability analyses and 

from regressions of yield on rainfall were compared using the extra sums of squares 

procedure (Motulsky and Christopoulos, 2004).  This procedure uses an F test to 

determine if there is a statistically significant difference between the error sum of squares 

for a model fitting treatments separately (sums of squares are added) and a model fitting 

all the data at once.  We used a p value of 0.05 to indicate whether the model with 

separate fits provided a significant reduction in the error sums of squares, indicating that 

the treatment regression lines were significantly different. 

2.4. Results and Discussion 

2.4.1. Soil Characteristics 

The amended soil management system substantially increased soil organic C, pH, 

CEC, and total water-stable aggregates (Table 2.2).  Soil organic C in the amended soil 

was significantly greater than in the nonamended soil after only one season, and water-

stable aggregates were significantly greater than in the nonamended soil after two seasons 

(Gallandt et al., 1998b).  Soil organic C was 50% higher in the amended plots by the end 

of Phase 1 (1998) and 63% higher 5 yr into Phase 2 (2004).  This is one of the largest 

increases in soil organic C among experiments investigating the effects of organic 

amendment on soil characteristics and crop performance (Clark et al., 1998; Fraser et al., 

1988; Poudel et al., 2002; Wander et al., 1994).  Consistent with these similar 

experiments, particulate organic matter carbon was disproportionately enhanced in the 

amended system, doubling by the end of Phase 1 (Griffin and Porter, 2004).  Higher CEC 

and water-stable aggregate values in the amended system reflect the increase in soil 

organic C.  The amended system substantially increased soil test P due to much greater 
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rates of P inputs than in the nonamended system (Table 2.1).  Modified Morgan P in the 

amended soil in 1998 and 2003 was above the level considered excessive according to 

Maine nutrient planning guidelines (45 kg ha-1), although it was below the action level 

for row crops grown on land that is not classified as highly erodable or located in a most 

at-risk watershed (USDA-NRCS, 2004).  In practice, manure application rates should be 

adjusted to avoid excessive P accumulation in the soil and potential loss to the 

environment (Sharpley et al., 2001). 
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Table 2.2.  Selected chemical and physical properties of the amended (+) and nonamended (−) soil before initiation (1991) and 1 yr 
later (1992), at the end of Phase 1 (1998), and 5 yr into Phase 2 (2003) of the Maine Potato Ecosystem Project. 

Organic carbon† 
Total water-stable 

aggregates† pH 
Cation exchange 

capacity Modified Morgan P
Year   +    −   +   −  +  −  +   −  +   − 

 ——–g kg−1—– ——–%——–   —meq 100 g−1— ——kg ha−1—— 

1991 15.7 15.5 ns ‡ 25.6 25.7 ns 5.3 5.3 ns 5.3 5.3 ns 29.9 30.5 ns 
1992 17.7 15.6 *** 25.8 25.1 ns 5.5 5.4 ns 5.1 4.9 ns 29.9 29.7 ns 
1998 27.0 18.0 *** 30.6 19.7 *** 6.2 5.9 *** 10.7 8.2 *** 49.8 32.9 *** 
2003 32.1 19.7 *** 36.9 26.4 ** 6.3 5.7 *** 10.9 7.9 *** 66.9 36.8 *** 
† Dry weight basis. 
‡ ns, not significant. 
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. 
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2.4.2. Yields and Yield Variation 

The amended soil management system produced total and U.S. no. 1 potato yields 

equal to or greater than those in the nonamended soil in all years but 1996 (Fig. 2.1).  

Repeated-measures ANOVA revealed significant rotation-cycle by soil system 

interactions for total and U.S. no. 1 yield (Table 2.3).  Yield gains in the amended system, 

when statistically significant, were 4 to 54% for total yield and 8 to 36% for U.S. no. 1 

yield.  Foliar macronutrient concentrations in the amended system were lower or equal to 

those in the nonamended system in all years (Alyokhin and Atlihan, 2005; Porter and 

McBurnie, 1996) and were always in the sufficiency range for potato (Westermann, 

1993).  This suggests that yield enhancement in the amended system was not related to 

the supply of macronutrients.  However, boron availability could have contributed to the 

difference in yields.  Leaf tissue boron levels in the amended system (20–32 mg kg-1) 

were in the sufficiency range, whereas they were in the marginal range for the 

nonamended system (10–22 mg kg-1), with values of >20 mg kg-1 considered sufficient 

and 10 to 20 mg kg-1 considered marginal (Westermann, 1993).  The yield results are 

consistent with many other trials that have demonstrated the ability of systems relying 

primarily on organic sources of fertility to produce crop yields comparable to those of 

synthetic fertilizer-based systems (Eghball et al., 1995; Johnston, 1991; Poudel et al., 

2002; Stanhill, 1990).  These results are also in agreement with others who have found 

that potato production can be limited by soil quality (Black and White, 1973; Porter et al., 

1999).
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Figure 2.1. Annual mean yields of (a) total and (b) U.S. no. 1 potatoes in the amended 
and nonamended soil treatments in Phase 1 (n = 24) and Phase 2 (n = 8) of the Maine 
Potato Ecosystem Project.  Error bars correspond to 1 SE. Significant differences 
between the treatments in any given year are indicated with * p < 0.05 and ** p < 0.01. 
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Table 2.3.  Repeated-measures ANOVA of total and U.S. no. 1 potato tuber yield of the 
Maine Potato Ecosystem Project. 

Mean square 

Sources of variation df Total yield U.S. no. 1 yield 

  Phase 1 

Cycle (C)† 2 135,974 *** 117,132 *** 
C×Rep 6 2,400 ** 1,576 ns 
C×Pest (P) 4 2,400 ns ‡ 56 ns 
Error (a) 12 1,058 1,237 
C×Soil (S) 2 3,896 *** 1,664 ns 
C×Cultivar (V) 2 23,070 *** 33,207 *** 
C×Entry point (EP) 2 198,710 *** 115,135 *** 
C×P×EP 4 2,515 * 2,613 ** 
C×S×EP 2 13,130 *** 13,645 *** 
C×V×EP 2 1,624 ns 3,120 * 
Other interactions  ns ns 
Error (b) 126 734 733 

  Phase 2 

C 2 24,969 *** 17,572 *** 
C×Rep 6 1,882 ns 1,632 * 
C×S 2 3,578 * 976 ns 
C×Rotation 2 1,855 ns 1,329 ns 
C×EP 2 21,898 *** 13,452 *** 
C×S×EP 2 3,474 * 3,207 * 
Other interactions  ns ns 
Error 42 937 684 
† The “cycle” term refers to three rotation cycles for each entry point in Phase 1 and 2, 
which correspond to years 1993/1994, 1995/1996, and 1997/1998 for Phase 1 and 
1999/2000, 2001/2002, and 2003/2004 for Phase 2. 
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. 
‡ ns, not significant. 
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Temporal variation in annual potato yield was high (Fig. 2.1) and loosely followed 

annual rainfall patterns (Table 2.4).  However, year-to-year variation was significantly 

reduced in the amended soil system for both yield classes and during both phases of the 

study (Tables 2.5 and 2.6).  This finding contradicts results from two long-term trials in 

which repeated manure application enhanced crop yields compared with unmanured 

treatments but failed to reduce year-to-year variation in those yields (Aref and Wander, 

1998; Eghball et al., 1995).  It is possible that the discrepancies in soil physical and 

chemical characteristics between contrasting soil treatments were not as great in these 

studies as in the MPEP.  Neither study reported soil characteristics for the treatments or 

time period reported.  Additionally, the crops tested (maize, oats, and hay) may not be as 

sensitive to sources of temporal variation as potato. 

 
Table 2.4.  Monthly rainfall amounts at Aroostook Research Farm, Presque Isle, Maine, 
1992–2004. 

 Monthly rainfall  Totals 

Year May June July Aug Sept  May - Aug May - Sept 

1992 38 107 93 128 52  330 419 
1993 83 141 51 76 131  267 483 
1994 115 118 81 32 92  231 437 
1995 58 39 61 61 56  161 276 
1996 101 93 130 65 101  288 491 
1997 138 62 74 113 64  249 451 
1998 94 83 140 63 78  286 458 
1999 37 104 64 114 239  283 558 
2000 116 63 65 77 35  205 356 
2001 50 58 83 46 114  186 351 
2002 91 55 160 38 102  253 446 
2003 66 94 117 85 42  295 404 
2004 54 83 114 91 68  287 408 
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Table 2.5.  Analysis of variance of year-to-year variation, expressed as the CV, in total 
and U.S. no. 1 potato tuber yield during Phase 1 (1992–1998) and Phase 2 (1999–2004) 
of the Maine Potato Ecosystem Project. 

 CV of total yield CV of U.S. no. 1 yield 

Sources of variation df Mean square  df Mean square 

 Phase 1 

Rep 3 299 ns †  3 200 ns 
Pest 2 534 *  2 821 ns 
Error (a)  6 76  6 200 
Soil 1 444 *  1 482 * 
Cultivar 1 4459 ***  1 6707 *** 
Entry point 1 3172 ***  1 434 * 
Interactions  ns   ns 
Error (b) 62   61  

 Phase 2 

Rep 3 148 ns  3 335 ** 
Soil 1 697 **  1 759 ** 
Rotation 1 3 ns  1 1 ns 
Entry point 1 144 ns  1 130 ns 
Interactions  ns   ns 
Error 21   21  
† ns, not significant. 
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. 
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Table 2.6.  Effect of soil management, pest management, and cultivar on the CV of total 
and U.S. no. 1 potato tuber yield during Phase 1 (1992–1998) and Phase 2 (1999–2004) 
of the Maine Potato Ecosystem Project. 

Treatments CV of total yield CV of U.S. no. 1 yield 

 Phase 1 
Soil management   
 Amended soil 24.5 b† 23.9 b 
 Nonamended soil 28.8 a 28.4 a 
Pest management   
 Conventional 23.7 b 21.7 a 
 Reduced input 24.8 b 25.0 a 
 Bio-intensive 31.4 a 31.8 a 
Cultivar   
 ‘Atlantic’ 19.8 b 17.7 b 
 ‘Superior’ 33.5 a 34.7 a 

 Phase 2 

Soil management   
 Amended soil 15.5 b 16.0 b 
 Nonamended soil 24.8 a 25.7 a 
Rotation   
 Potato-barley 19.9 a 20.7 a 
 Potato-barley-potato-soybean 20.5 a 21.0 a 
† Treatment means within columns and treatment factors that are followed by different 
letters are significantly different based on Fisher-protected LSDs (p < 0.05). 
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Pest and cultivar (Phase 1) affected the CV for yields, whereas rotation (Phase 2) 

did not (Tables 2.5 and 2.6).  ‘Superior’ showed considerably more variation in yield than 

‘Atlantic’ (CVs for ‘Superior’ were 33.5 and 34.7% compared with CVs for ‘Atlantic’ of 

19.8 and 17.7% for total and U.S. no. 1 yield, respectively) presumably because 

‘Superior’ matures earlier and is more susceptible to heat stress, water stress, and early 

dying than ‘Atlantic’.  Mean CVs for total and U.S. no. 1 yield were higher in the bio-

intensive pest management system (31.4 and 31.8%, respectively) than in the pesticide-

based systems (23.7 and 21.7%, respectively, for conventional and 24.8 and 25.0%, 

respectively, for reduced input).  Pest and cultivar effects are discussed in more detail 

elsewhere (Gallandt et al., 1998b). 

2.4.3. Yield Stability 

Regression of treatment yield on the environment mean yield was significant in all 

cases (Fig. 2.2), and extra sums of squares analysis distinguished between the responses 

of the two soil management treatments for total and U.S. no. 1 yield.  The amended 

system produced more stable yields over the range of growing conditions occurring in 

this study.  Total and U.S. no. 1 treatment yields in the poorest-yielding year were 63 to 

59% of maximum yields, respectively, in the amended system compared with 45 and 

46% in the nonamended system.  Yields were most divergent between the soil 

management systems at the lowest environment mean (i.e., poorest growing conditions) 

and converged as growing conditions improved, suggesting that the amended system 

buffered one or more yield-limiting factors.
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Figure 2.2. Linear regression of (a) total potato yield and (b) U.S. no. 1 potato yield on 
the environment mean yield for amended (filled triangle) and nonamended (open 
triangle) soil management treatments of the Maine Potato Ecosystem Project, 1992 to 
2004. Individual data points are the mean of four replicates (n = 4). Probability values are 
from extra sums of squares (ESS) analysis comparing amended vs. nonamended soil 
regression lines (n = 52; 13 yr times four replicates). 
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Rainfall could be one such yield-limiting factor whose effects could be influenced 

by soil management.  Variation in the amount and timing of rainfall is one of the primary 

causes of year-to-year variation in crop yields (Batchelor et al., 2002; Loomis and 

Conner, 1992; Runge and Hons, 1998).  In this study, June–August rainfall produced the 

strongest linear relationship with total and U.S. no. 1 tuber yield (R2 between 0.07 and 

0.15) compared with other rainfall periods and rainfall evenness measures.  Although the 

relationships between yield and the rainfall evenness measures used were weak, the 

distribution of rainfall was also important.  For instance, June–August rainfall in 1999 

was in the middle of the range (283 mm) but much of that rainfall came late in the 

season.  In contrast, in 2002 most of the 253 mm of rain occurred early in the season, 

with little rainfall from mid-July through August during the critical tuber-bulking period.  

The poor distribution of rainfall in these years is reflected in relatively low yields.  

Additionally, other influences, such as insect pests, diseases, nutrient availability, and 

growing degree days, are important influences on yield and should be included in a 

subsequent study of the major determinants of yield in this trial.  Here, our intention was 

to identify a likely source of year-to-year variation whose effects were influenced by soil 

management. 

The amended treatment was less sensitive to changes in rainfall than the 

nonamended treatment, as indicated by the lower slopes and R2 values (Fig. 2.3).  

Increased water-supply capacity is often associated with increased SOC (Barzegar et al., 

2002; Liebig and Doran, 1999; Weil and Magdoff, 2004).  Soil moisture, measured at 

biweekly intervals throughout the growing season, was almost always significantly 

higher in the amended versus the nonamended system.  In the three representative years 
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of soil moisture data presented in Fig. 2.4, soil moisture was 4 to 29% greater in the 

amended than in the nonamended plots. 

The observation that the relationships between yields and rainfall paralleled those 

with the environment mean yield suggests that the different responses of the soil 

management systems to rainfall largely explain the difference in yield stability between 

the soil systems.  Further evidence of this comes from the fact that when the residuals 

from regressing yield on rainfall were regressed against the environment mean, the soil 

management system effect was no longer significant (extra sums of squares p values were 

0.181 and 0.504 for total and U.S. no.1 yields, respectively).  In other words, removing 

the variation due to rainfall from the yields eliminated the difference in yield stability 

between the two soil management systems. 

Lotter et al. (2003) recently reported increased drought tolerance of two organic 

cropping systems compared with a conventional system in Pennsylvania.  In years of 

insufficient rainfall, the manure-based and legume-based organic systems, both of which 

had enhanced soil characteristics, produced higher yields of maize and soybean than a 

fertilizer-based system, but yields between the three systems were equal when rainfall 

was sufficient.  Likewise, in the Argentine Pampa, wheat (Triticum aestivum L.) grain 

yields correlated with total soil C and soil water retention in years of rainfall deficit but 

correlated with total organic N and available P in higher rainfall years (Díaz-Zorita et al., 

1999).
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Figure 2.3. Linear regression of (a) total potato yield and (b) U.S. no. 1 potato yield on 
June through August rainfall for amended (filled triangle) and nonamended (open 
triangle) soil management treatments of the Maine Potato Ecosystem Project, 1992 to 
2004. Individual data points are the mean of four replicates (n = 4). Probability values are 
from extra sums of squares (ESS) analysis comparing amended vs. nonamended soil 
regression lines (n = 52; 13 yr times four replicates). 
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Figure 2.4. Gravimetric soil moisture in the amended and nonamended soil treatments (a) 
in the first year soil moisture was measured (1995), (b) at the end of Phase 1 (1998), and 
(c) 6 yr into Phase 2 (2004) of the Maine Potato Ecosystem Project (n = 8). Error bars 
correspond to 1 SE. Significant differences between the treatments in any given year are 
indicated with * p < 0.05, ** p < 0.01, and ***p < 0.001. 
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Buffering variable rainfall amounts may not be the only way in which an amended 

soil management system enhances crop yield stability.  Results from the MPEP show that 

when weed biomass significantly affects yield, as occurred in the bio-intensive pest 

management treatments, both were reduced in the amended as compared with the 

nonamended system (Gallandt et al., 1998a).  The authors proposed that the amended soil 

management system produced a more vigorous crop that was better able to compete with 

weeds than the nonamended soil system.  Also in the MPEP, in situ densities of Colorado 

potato beetles [Leptinotarsa decemlineata (Say)] were lower in the amended system 

compared with the nonamended system (Alyokhin et al., 2005), as were reproduction and 

development of Colorado potato beetles caged on potato plants grown in the amended 

versus the nonamended soil (Alyokhin and Atlihan, 2005).  Additionally, potato leaf 

mineral compositions in the two soil systems were highly discrepant and explained 40 to 

57% of the variation in in situ Colorado potato beetle populations (Alyokhin et al., 2005).  

The authors proposed that, taken together, these results provide support for the mineral 

balance hypothesis (Phelan et al., 1996), which postulates that increased SOC and 

microbial activity associated with organically managed soils maintain a balanced nutrient 

profile in the plants that promotes good plant growth and resistance to herbivory.  The 

relative importance of the amended soil management system’s apparent abilities to 

modulate the effects of weed pressure, insect pest pressure, and variable rainfall on potato 

yields cannot be separated in this study. 

In addition to enhancing soil physical and chemical characteristics considered 

favorable for crop production, the amended soil treatment exhibited an increase in soil 

test P (Table 2.2), raising concerns of environmental export.  From this standpoint, levels 
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of manure such as these might not be desirable, nor are they likely possible given a 

limited supply (Christensen and Johnston, 1997; Magdoff and Weil, 2004).  However, if 

the enhancement of organic matter and its associated soil quality characteristics are 

primarily responsible for increasing yield stability, then the relationship between organic 

matter and yield stability should be maintained for other management strategies that 

improve or maintain soil quality, such as reduced tillage (Díaz-Zorita et al., 2002; Dick et 

al., 1997), rotations with sod crops (Johnston, 1991), or reducing amendment applications 

to maintenance levels (Grandy et al., 2002). 

2.5. Conclusions 

A soil management system designed to improve soil quality through the addition of 

organic amendments provided the optimal combination of enhancing potato yields and 

reducing the year-to-year variability of those yields.  Potato production in the contrasting 

nonamended soil system was more susceptible to adverse growing conditions, 

particularly low rainfall, and seemed to be limited by poor soil quality.  These results 

demonstrate that managing for soil quality with an amended soil management system can 

be a viable strategy to buffer the effects of an unpredictable growing environment and 

stabilize yield. 
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Chapter 3 

STORAGE AND LOSS OF CARBON AND NITROGEN UNDER CONTRASTING 

SOIL MANAGEMENT STRATEGIES 

3.1 Chapter Abstract 

Soil management systems that retain a greater proportion of added C and N can 

play a key role in reducing the negative impact of agriculture on the environment.  Soil 

retention of N appears to be related to soil C availability, thus systems that enhance soil C 

stocks may also reduce N loss.  Carbon and N loss and retention were evaluated in 

contrasting amended (manure, compost, green manure, and supplemental fertilizer) and 

nonamended (synthetic fertilizer) soil management treatments in the Maine Potato 

Ecosystem Project from 1991 to 1998.  Loss of C and N was greater in the amended 

system, which received three and two times more inputs of C and N, respectively, than 

the nonamended system.  In relative terms, however, the amended system lost less, and 

retained more, C and N.  Retention efficiencies for C and N were 43% and 88%, 

respectively, in the amended system compared with 14% and 71%, respectively, in the 

nonamended system.  Greater retention efficiencies in the amended system are probably 

related, for C, to input quantity and quality, and, for N, input quality and higher soil C 

levels. 
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3.2. Introduction 

Maintaining or improving soil stocks of C and N while minimizing their export to 

the environment are key goals of sustainable agriculture.  Soil management systems that 

include organic amendments (animal manure, compost, and green manure) may play a 

role in meeting both goals.  Studies comparing amended and nonamended soil systems 

have found a linear relationship between the quantity of C added to the soil and resulting 

soil C (Carter, 2002; Griffin and Porter, 2004).  The composition, or quality, of added C 

also appears to play a role by influencing the retention of added C in the soil (Paustian et 

al., 1992).  For instance, solid cattle manure, grass green manure, straw plus N fertilizer, 

and straw alone, applied annually for 35 years at equivalent C loading rates, altered soil C 

differently; C retention was 27, 12, 17, and 5% of applied C, respectively, for these 

treatments (Persson and Kirchmann, 1994).  The authors attributed the higher retention of 

manure C to its composition, specifically its higher proportion of recalcitrant C.  

Drinkwater et al. (1998) used natural abundance δ13C analysis to show that a legume-

based system retained a greater proportion of C from the residue of C3 plants versus C4 

plants.  Using the same technique, Gregorich et al. (2001) also found increased retention 

of C in a legume-based versus a monoculture corn cropping system.  Drinkwater et al. 

(1998) proposed that the lower C:N ratio and the diversity of inputs in the legume-based 

system resulted in better biological cycling and increased retention. 

Soil N retention appears to be governed largely by soil C content, but clear evidence 

of this relationship in agricultural soil is lacking.  In two studies, a greater proportion of 

N inputs was accounted for, either as harvested crop or soil storage, in manure- and 

legume-based systems compared with fertilizer-based systems, but the influence of 
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increased soil C could not be confirmed in either study due to the inclusion of N-

scavenging winter cover crops in only the organic systems (Drinkwater et al., 1998; 

Poudel et al., 2001).  The linkage between N retention and C availability has been shown 

more definitively in non-cultivated soils.  Barrett and Burke (2002) applied 15N labeled 

fertilizer to a range of grassland soils from the Great Plains and found that soil C 

concentration explained up to 40% of the variation in total recovery of applied N one to 

three growing seasons after application.  Similarly, Hatch et al. (2000) detected a greater 

increase in N immobilization in high- vs. low-C pasture soil three months after a one-

time application of manure. 

The Maine Potato Ecosystem Project has included a comparison of contrasting 

amended (manure, compost, and green manure) and nonamended soil management 

systems in the context of 2-year potato rotations since its establishment in 1991.  The soil 

management factor was not confounded with tillage or rotation factors, as is often the 

case in cropping systems trials (Smolik et al., 1995), and produced soils of highly 

divergent C and N stocks.  Changes in soil C and N from 1991 to 1998 were compared to 

C and N budgets to assess whether the amended soil management system reduced loss 

and enhanced soil retention of C and N relative to the nonamended system. 

3.3. Materials and Methods 

3.3.1. Site Description 

The Maine Potato Ecosystem Project (MPEP) was established in 1991 at the Maine 

Agricultural and Forest Experiment Station’s Aroostook Research Farm in Presque Isle, 

Maine.  The 5.9 ha used for the study were on a gravely, well drained, Caribou loam soil 

(fine-loamy, mixed, frigid Typic Haplorthods) that had a long history of commercial and 
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research potato production.  Details of the establishment of the experiment are given in 

Porter (1996).  Results from the first eight years of the project are reported here. 

3.3.2. Cultural Practices and Treatments 

The experiment consisted of 96 plots (14.6 by 41.0 m) in four replicate blocks.  

Potatoes were grown in 2-year rotations, typical for northern Maine.  Treatments were 

arranged in a randomized, complete-block, split-plot design with four replications. Main-

plot factors pest management systems (conventional, reduced input, and bio-intensive). 

Subplots were a fully factorial combination of two soil management systems (amended 

and nonamended), two potato cultivars (‘Atlantic’ and ‘Superior’), and two rotation entry 

points (potato and rotation crop).  The present study focuses on the amended vs. 

nonamended comparison although statistical results for cultivar and pest management 

system factors (excluding the biological treatment) are presented.  To reduce sample 

numbers, only plots from the second entry point were analyzed. 

The amended soil management system was designed to rapidly improve soil quality 

by adding organic amendments.  These amendments were supplemented with small 

inputs of inorganic fertilizer as needed during the potato phase of the rotation to provide 

approximately the same level of plant-available nutrients as the nonamended soil 

management system.  Beef manure and potato compost were applied annually from 1991 

to 1993 and semi-annually (potato year only) from 1994 to 1998.  The amended soil 

system also included a pea–oat–hairy vetch green manure as the rotation crop, except in 

1991 when barley was grown as the rotation crop.  The nonamended soil management 

system followed industry standards, including rotating potato with barley interseeded 

with red clover and using recommended rates of inorganic fertilizers. Complete 
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descriptions of the pest and cultivar treatments and of the cultural methods are provided 

elsewhere (Gallandt et al., 1998b; Porter and McBurnie, 1996). 

Tillage practices were identical for all treatments.  Plots were moldboard plowed in 

the fall of 1990.  In subsequent years plots were generally chisel plowed in the fall, 

tandem offset disked once or twice in the spring, and harrowed prior to planting potato or 

rotation crops.  Potatoes were hilled once or twice. 

3.3.3. Soil Sampling and Analyses 

Ten soil cores were collected to a 23-cm depth from each plot, bulked, and mixed 

thoroughly each fall after crop harvest.  A subsample was dried, sieved through a 2-mm 

screen, and stored in a cardboard box.  In 2007, a 2-g subsample of archived soil was 

pulverized and submitted to the University of California-Davis Stable Isotope Facility for 

total C and N analysis by combustion.  The total C measured likely represents organic C 

because the soil pH (5.3 to 6.2) and the length of time between lime application and 

sampling (applied in 1991 and 1992 but before 1991 soil sampling) suggest that inorganic 

C levels were negligible.  

Bulk density was determined each year in May before primary tillage, and in July of 

1997 and 1998, using the core method described by Blake and Hartge (1986).  Metal 

rings were pounded into the soil using a cylindrical sleeve.  The sample rings were 

removed, trimmed with a metal spatula, capped, dried at 105°C, and sieved to 2 mm to 

separate coarse fragments.  Both fractions were weighed and bulk density estimates were 

corrected for coarse fragments.   
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3.3.4. C and N in Harvested Crop, Crop Residues, and Amendments 

Potato crop yields were determined from the four center rows of each plot (3.7 x 41 

m).  Tubers were lifted with a two-row potato digger and collected by hand, and the yield 

of the entire four rows was weighed in the field.  Tuber and haulm biomass yields were 

determined by removing eight randomly selected plants per plot just before vine 

desiccation (representing a 1.7 m2 area).  Plants were separated into tubers, stems, and 

leaves, and these fractions were washed, weighed, and subsampled.  Subsamples were 

dried, reweighed for dry matter determination, ground, and submitted to the University of 

Maine Analytical Laboratory for C and N determination. 

Barley grain yields were determined by harvesting two 1.5-m swaths with a small-

plot combine.  Before combining, six 0.5-m2 quadrat samples were collected to determine 

aboveground biomass production.  Straw yields were determined by subtracting grain 

yields from above-ground biomass.  Subsamples of grain and straw were dried, ground, 

and submitted to the University of Maine Analytical laboratory for C and N 

determination. 

Green manure and red clover above-ground production was determined in October 

of each year by clipping biomass at soil level from six 0.5-m2 quadrat samples per plot.  

Three of the quadrat samples were pooled to create a single aggregate yield sample.  The 

remaining three quadrat samples were sorted to determine biomass of the individual crops 

and total weeds.  A representative subsample of the aggregate green manure mixture was 

dried, ground, and submitted to the University of Maine Analytical Laboratory for C and 

N determination. 

Manure and compost samples were submitted to the University of Maine Analytical 

Laboratory for moisture and nutrient analyses.  Total C was measured starting in 1997.  
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The linear relationship between total C and N for manure samples from 1997 to 2005 was 

used to estimate manure C concentration in 1991 to 1996. 

3.3.5. C and N Budget Calculation 

Carbon and N input, output, and net input (balance) were estimated for each plot 

from 1991 to 1998 (Tables 3.1 and 3.2).  Potato and barley yield data were available for 

all years, but at the time of writing, plant above-ground biomass and C and N 

concentration were available by plot for only 1997 and by soil management treatment for 

only 1991 to 1994.  For other years, soil management treatment average values from 

1991 to 1994 and 1997, as well as published values (Meisinger and Randall, 1991), were 

used.  In the absence of measured values, plant tissue was assumed to be 40% C (Johnson 

et al., 2006).  Legumes were assumed to have derived 58% of their N content from the 

atmosphere via dinitrogen fixation.  This figure, determined in 2002 using the 15N pool 

dilution method (Weaver and Danso, 1994) in a separate field experiment of red clover 

interseeded with barley (Mallory and Griffin, unpublished), was within the range 

published by Meisinger and Randall (Meisinger and Randall, 1991) for annual legumes 

grown in soil with 56-112 kg ha-1 available N.  Root biomass input was estimated using 

published root:shoot ratios for the different plants (Bolinder et al., 1997; Bolinder et al., 

1999; Buyanovsky and Wagner, 1986; Janzen et al., 2003; Johnson et al., 2006; Kolbe 

and Stephan-Beckmann, 1997; Marra, 1996; Opena and Porter, 1999; Vos and van der 

Putten, 2000).  Rhizodeposition was not included due to the great uncertainty in these 

estimates (Johnson et al., 2006).  Atmospheric deposition was estimated by year using 

published values of annual wet and dry N deposition for Caribou, Maine (National 
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Atmospheric Deposition Program, 2007) and Ashland, Maine (US Environmental 

Protection Agency, 2007). 

Soil storage was calculated as the difference between 1991 and 1998 in soil C and 

N stocks, which were determined by converting measured soil C and N concentrations (g 

kg-1) to an area basis (kg ha-1) using bulk density measures.  Bulk density varies with 

tillage, rainfall, and other temporal factors.  Thus, it is preferable that bulk density 

samples be collected concurrently with soil C and N samples.  This was not the case in 

the present study, as described previously.  The measure of bulk density closest to the fall 

1998 soil C and N sampling and with the least soil disturbance between them would have 

been in spring 1999, but bulk density was not taken that year.  Instead, the average of 

May 1997 and May 2001 bulk densities were used (0.854 and 0.962 g cm-3 for amended 

and nonamended systems, respectively).  Reliable estimates of bulk density in 1991 were 

not available for the selected plots used in this study.  It was assumed, therefore, that the 

average estimate of spring 1998 bulk density for the nonamended system plots was 

representative of initial conditions in both the nonamended and amended system plots 

since soil C was similar for all three (Table 3.3). 

Retention efficiency was calculated as the proportion of net C or N input that was 

found stored in the soil (i.e., soil storage divided by net input times 100). 
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Table 3.1.  Carbon input, harvest output, and net C input in the amended and nonamended soil management systems of the Maine 
Potato Ecosystem Project, 1991 to 1998. 

  Carbon (C) input   

Year Crop† Crop  
Cover 
crop  Manure Compost Seed Total  

C harvest 
output 

Net C 
input 

  ———————————————— kg C ha-1 ———————————————— 
Amended          
1991 Barley/RC 1,044 404 0 632 51 2,131 442 1,688
1992 Potato 5,327 0 4,417 993 258 10,995 3,836 7,159
1993 POV 0 3,234 0 1,050 89 4,373 0 4,373
1994 Potato 4,703 0 3,842 1,425 235 10,205 3,387 6,819
1995 POV 0 3,234 0 0 72 3,306 0 3,306
1996 Potato 4,991 0 4,130 1,903 293 11,317 3,594 7,723
1997 POV 0 3,187 0 0 72 3,260 0 3,260
1998 Potato 3,764 0 3,891 1,904 339 9,899 2,710 7,188
Cumulative total 19,830 10,058 16,281 7,908 1408 55,485 13,970 41,515
          
Nonamended         
1991 Barley/RC 1,038 404 0 0 51 1,492 440 1,052
1992 Potato 5,279 0 0 0 258 5,537 3,802 1,735
1993 Barley/RC 2,849 404 0 0 51 3,303 1,207 2,096
1994 Potato 4,439 0 0 0 235 4,674 3,196 1,478
1995 Barley/RC 2,852 404 0 0 48 3,303 1,208 2,095
1996 Potato 5,595 0 0 0 293 5,887 4,029 1,859
1997 Barley/RC 2,760 405 0 0 56 3,220 1,301 1,919
1998 Potato 3,614 0 0 0 339 3,952 2,602 1,350
Cumulative total 28,425 1,616 0 0 1329 31,370 17,785 13,584
† RC, red clover interseeded cover crop; POV, Pea/oat/vetch green manure cover crop. 
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Table 3.2.  Nitrogen input, harvest output, and net N input in the amended and nonamended soil management systems of the Maine 
Potato Ecosystem Project, 1991 to 1998. 

 
 

 
Nitrogen (N) input 

  

Year Crop† Manure Compost Fertilizer Seed 
N 

fixation 
Atmosph. 
deposition Total 

N harvest 
output 

Net N 
input 

  —————————————————— kg N ha-1 ———————————————— 
Amended          
1991 Barley/RC 0 43 58 3 17 3 123 23 100
1992 Potato 315 67 110 10 0 3 505 153 352
1993 POV 0 71 0 11 70 3 156 0 156
1994 Potato 237 96 67 9 0 3 413 135 278
1995 POV 0 0 0 8 70 3 82 0 82
1996 Potato 276 110 71 12 0 3 471 144 327
1997 POV 0 0 0 8 71 3 82 0 82
1998 Potato 269 156 78 14 0 3 519 108 411
Cumulative Total 1098 543 383 76 228 24 2352 564 1788
           
Nonamended          
1991 Barley/RC 0 0 58 3 17 3 81 23 58
1992 Potato 0 0 171 10 0 3 185 152 33
1993 Barley/RC 0 0 85 3 17 3 108 63 44
1994 Potato 0 0 194 9 0 3 206 128 78
1995 Barley/RC 0 0 80 3 17 3 102 63 39
1996 Potato 0 0 207 12 0 3 222 161 61
1997 Barley/RC 0 0 74 3 17 3 97 66 31
1998 Potato 0 0 186 14 0 3 203 104 99
Cumulative total 0 0 1056 56 67 24 1203 761 442
† RC, red clover interseeded cover crop; POV, Pea/oat/vetch green manure cover crop. 
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Table 3.3.  Soil total C and N concentration and stock in the amended and nonamended soil management systems of the Maine 
Potato Ecosystem Project, 1991 and 1998. 

  Total C  Total C Stock  Total N  Total N Stock 

  n 1991 1998  1991 1998  1991 1998  1991 1998 

 —— g kg-1 ——  —— kg ha-1 ——  —— g kg-1 ——  —— kg ha-1 —— 
Soil management system          
  Amended 16 16.4 24.9 a† 35,910 53,522 a 1.52 2.29 a  3,333 4,912 a
  Nonamended 16 15.9 16.6 b 34,517 36,392 b 1.51 1.66 b  3,322 3,626 b

  ANOVA (mean square) 
Sources of variation df            
  Year (Y) 1 341.71 ***  1477.7 *** ‡  3.1885 ***  13,848,000 *** 
  YxRep 3 0.19 ns§  3.4 ns  0.0072 ns  69,287 ns 
  YxPest 1 11.08 *  53.2 ns  0.0301 ns  141,931 ns 
  Error (a) 3 0.96  8.27  0.0102  78,834 
  YxSoil 1 221.98 ns  906.3 ***  1.4769 ***  5,893,440 *** 
  YxCultivar 1 0.47 ns  1.9 ns  0.0001 ns  174 ns 
  Interactions 4          ns  ns  ns  ns 
  Error (b) 17 0.66  3.8  0.0055  25,771 
† Treatment means within columns followed by different letters are significantly different based on univariate ANOVAs. 
*, *** Significant at 0.05, and 0.001 probability levels, respectively. 
‡ Mean squares for soil C stock are in Mg ha-1. 
§ ns, not significant. 
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3.3.6. Statistical analysis 

Repeated measures ANOVA was used to test the effects of year (1991 and 1998), 

soil management system, pest management system and cultivar on soil total C and N 

concentrations, and was followed by univariate ANOVA by year for significant year by 

treatment interactions. 

3.4. Results and Discussion 

3.4.1. C and N Input and Output 

Total C inputs were 77% higher in the amended than in the nonamended soil system 

(Table 3.1).  The amended system received 597 kg ha-1 yr-1, or 50%, less C as crop 

residues (crop input – harvested crop), but 1055 kg ha-1 yr-1 more C as cover crop than 

the nonamended system.  The amended system also received an average of 3024 kg C ha-

1 yr-1 as manure and compost.  Resulting net C inputs were three times higher in the 

amended system than the nonamended system. 

Total N inputs were twice as high in the amended system as in the nonamended 

system (Table 3.2).  The diverse sources of N amendments (manure, compost, and 

legume N fixation) together contributed 80% of the N to the amended system, with 

fertilizer, seed, and atmospheric deposition contributing the remainder.  In the 

nonamended system, fertilizer N constituted 88% of total N inputs.  Nitrogen outputs 

were 34% lower in the amended system than the nonamended system due to the inclusion 

of the non-harvested pea/oat/vetch green manure instead of barley in 1993, 1995, and 

1997.  The resulting net N inputs were four times higher in the amended system than the 

nonamended system. 
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3.4.2. Soil C and N Concentration 

The high loading rates of organic amendments in the amended soil management 

system were intended to rapidly increase soil C and they did — soil total C concentration 

increased by 52% from 1991 to 1998, while it changed by only 4% in the nonamended 

soil management system over the same period (Table 3.3).  Results were similar for total 

N concentration, with a 51% increase in the amended system and a 10% increase in the 

nonamended system from 1991 to 1998.  The increases in soil C and N concentration in 

the amended system are large compared to changes observed in other cropping systems 

trials of similar duration most likely because organic amendment loading rates were 

lower in these other trials (Burger and Jackson, 2003; Fraser et al., 1988; Langmeier et 

al., 2002; Poudel et al., 2001) or growing conditions were more conducive to high C 

turnover (Clark et al., 1998).  Increases in soil C and N concentration similar to those in 

the amended soil system have been observed in trials of much longer duration (Fauci and 

Dick, 1994a; Persson and Kirchmann, 1994).  The amended soil management system also 

affected other soil characteristics.  Soil bulk density was lower: 0.846 vs. 0.929 g cm-3 in 

1997 (p < 0.05) and 0.863 vs. 0.994 g cm-3 in 2001 (p < 0.001) in the amended and 

nonamended systems, respectively.  Additionally, soil pH, CEC, total water-stable 

aggregates, and soil test phosphorus were all higher in the amended system compared 

with the nonamended soil system after eight years (Mallory and Porter, 2007). 

3.4.3. Calculating Soil Storage 

In a similar C and N budget study, Persson and Kirchmann (1994) noted that soil C 

and N storage is underestimated if bulk density decreases over the study period, as 

typically happens when soil C increases with organic amendment (Khaleel et al., 1981; 
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Brady and Weil, 1996).  This is because a decrease in the mass of soil (organic and 

inorganic) that is found in a fixed volume of soil without a concurrent decrease in soil 

organic matter indicates that some of the original inorganic soil mass is not accounted for 

in the later sample.  Soil C and N stocks in the MPEP were adjusted to maintain a 

constant mass of inorganic soil, as in Persson and Kirchmann (1994).  The mass of 

inorganic soil contained in the sample volume was calculated from bulk densities and soil 

C concentrations for 1991 and 1998, assuming that organic matter is 56% C.  On average, 

the amended soil contained 0.07 g cm-3 less inorganic soil in 1998 than in 1991, 

equivalent to 3.3 cm of soil at the average 1998 bulk density (0.854 g cm-3).  The soil C 

and N associated with that mass of soil was added to the estimates of soil C and N stock.  

Soil C and N concentrations typically decrease with depth.  In these plots, there were no 

data available for soil total C and N below 23 cm but water soluble C was 24% lower at 0 

to 20 cm compared with 20 to 40 cm in the spring of 1993 (M.S. Erich, personal 

communication).  Poudel et al. (2001) reported 22 to 29% lower total C concentration and 

18 to 32% lower total N concentration at 15 to 30 cm compared with 0 to 15 cm depth.  

For the present study, we used a conservative estimate of 30% lower C and N 

concentration for the 23 to 26 cm soil. 

3.4.4. Storage and Loss of Added C 

The amended soil management system both stored nine times more and lost two 

times more C than the nonamended system from 1991 to 1998 (Tables 3.3 and 3.4).  In 

relative terms, however, the amended system lost less and retained more C than the 

nonamended system.  Soil C storage expressed as a percentage of net C inputs (i.e., 

retention) was 43% in the amended system compared with 14% in the nonamended 



 

52 

system.  These results were slightly sensitive to changes in the bulk density value used to 

convert soil C concentration into soil C stock.  For example, when bulk density values 

from May and July 1998 were used, estimated retention rates were 50 and 49% for the 

amended system and 16 and 15% for the nonamended system, respectively.  Although 

these estimates probably overestimate actual retention rates since they do not account for 

C inputs from rhizodeposition, they are representative of the relative difference between 

the two soil management systems, and as such indicate that the amended system was 

more efficient at storing C than the nonamended system.  

 
 
Table 3.4.  Net input, soil storage, loss, and retention of C and N in the amended and 
nonamended soil management systems in the Maine Potato Ecosystem Project, 1991 to 
1998. 

  Carbon  Nitrogen 

  Amended Nonamended  Amended Nonamended

 Net input, kg ha-1 41,515 13,584 1788 435 
 Soil storage, kg ha-1 17,612 1,875 1579 305 
 Loss†, kg ha-1 23,903 11,796 208 130 
 Retention‡, % 43 14 88 71 
† Loss was calculated as net inputs minus soil storage.   
‡ Retention was calculated as soil storage divided by net inputs. 

 

 

Numerous studies comparing soil management systems with similar tillage regimes 

have shown a linear, but nonproportional, relationship between the level of C inputs and 

the resulting changes in soil C over time (Griffin and Porter, 2004; Parton et al., 1996; 

Paustian et al., 1992; Paustian et al., 1997).  The nonproportional aspect of the 

relationship results from the x-intercept (the amount of C input needed to maintain steady 

state soil C) being greater than zero and suggests that C retention efficiency increases 
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with C input level.  This conclusion is congruent with conceptual and mathematical 

models of soil organic matter (SOM) dynamics (Carter, 2002; Grant et al., 2001; 

Sommerfeldt et al., 1988).   

Carbon retention is also influenced by C input quality.  In all of the above studies 

(Griffin and Porter, 2004; Parton et al., 1996; Paustian et al., 1992; Paustian et al., 1997), 

as in the MPEP, the amount of C added is confounded with its composition, or quality.  

For instance, the highest rates of C inputs were often achieved with applications of 

manure while the lower rates corresponded to treatments with crop residues alone.  

Paustian et al. (1992) found that materials with high lignin content (sawdust and farmyard 

manure) had greater C retention efficiencies than low-lignin materials (straw and green 

manure) when applied to soil at similar rates for 30 years, providing direct evidence of a 

residue-quality effect.  Additionally, Drinkwater et al. (1998) observed higher retention 

of legume C than non-legume C, and proposed that the variety and lower C:N ratio of the 

inputs in systems containing legumes resulted in better biological cycling and increased 

retention compared with the conventional system.  In the MPEP, the amended system 

received almost half of its C input as manure and compost, and had higher C inputs as 

legume green manure than the nonamended (Table 3.1).  Carbon retention efficiency was 

probably influenced, therefore, by C input quality as well as quantity. 

Possible differences between the treatments in rates of erosion should be mentioned 

as they can also affect C retention.  No measurements of erosion losses were made in the 

MPEP plots, but soil high in C has been shown to be more resistant to wind and water 

erosion (Carter, 2002) and would therefore lose less C.  Tillage, which stimulates soil C 
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mineralization and thus also is influential in soil C storage (Paustian et al., 1997), was 

identical in the two soil management systems.   

3.4.5. Storage and Loss of Added N 

Results for N paralleled those for C — the amended soil management system 

demonstrated greater efficiency for storing excess N compared with the nonamended 

system (Table 3.4).  As with C, N retention was probably influenced by the composition 

of N inputs (Paustian et al., 1992).  Additionally, our results confirm that soil 

management system played a role in the higher N retention observed in organic (manure 

and legumes) systems compared to conventional systems by Drinkwater et al. (1998) and 

Poudel et al. (2001) and support the explanation that C is needed to retain N in the soil. 

Two possible mechanisms to explain greater N retention in high-C systems are C-

enhanced immobilization and physical protection.  The major pathways of N loss from 

cultivated soil (leaching, volatilization, and denitrification) all act on inorganic forms of 

N.  There is potential to reduce N loss by reducing high levels of inorganic N when crop 

demand is low.  Immobilization of inorganic N to organic N by microbes is a major N 

retention mechanism and is stimulated by readily available C.  In a recent laboratory 

study of the MPEP soil, C-enhanced immobilization was the most probable mechanism 

causing reduced soil NO3
- levels in the amended soil relative to nonamended soil 

following the addition of fertilizer and manures (Mallory and Griffin, 2007).  Physical 

protection of N as organic matter in soil microaggregates also is an important N retention 

mechanism and is influenced by soil C (Six et al., 2002).  Manure application has been 

shown to increase aggregate-protected N fourfold compared to a synthetic fertilizer 

treatment (Aoyama et al., 1999b).  Soil aggregate data from the MPEP support the idea 
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that physical protection played a role in N retention.  Total water stable aggregates 

increased by 19% in the amended soil system but decreased by 23% in the nonamended 

system from 1991 to 1998 (Mallory and Porter, 2007). 

In spite of greater N retention rates, the amended soil management system also had 

more N loss, in absolute terms, than the nonamended system.  A key strategy to reducing 

N loss is to optimize the synchrony between N availability and crop N demand 

(Christensen, 2004).  Animal and green manures are considered slower or more gradual 

N sources than fertilizer because they must first be mineralized to plant available forms.  

This delay in availability may result in increased synchrony with plant demand early in 

the season (Ma et al., 1999), but continued mineralization after crop uptake ceases may 

lead to potentially leachable end-of-season excesses of soil NO3¯ (Magdoff, 1991; 

Schröder, 2005).  High fall NO3¯ levels have been observed in manure-based systems 

relative to fertilizer-based systems (Jensen et al., 1999; Magdoff, 1991; Roth and Fox, 

1990), underscoring the need to include N trap crops to prevent N loss from systems with 

high levels of soil organic N.  Reducing amendment loading rates is another management 

option to reduce potential N loss.  The rates used in the present study were designed to 

bring about rapid and dramatic increases in soil C for experimental purposes, but are not 

desirable from N loss and potential P loss standpoints.  It may be possible to reduce 

amendment applications to maintenance levels and still maintain the higher N retention 

efficiencies associated with higher soil C levels, but this requires further research. 

3.5. Conclusions 

The amended soil management system was more efficient at retaining C and excess 

N than the nonamended system.  The amended system received much higher inputs of C 
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and N than the nonamended system, but also received the majority of its inputs as manure 

and compost, which are known to be more stable sources of C.  The probable influence of 

C input quality and quantity on soil C storage has clear implications for developing 

strategies to increase soil C and improve attendant soil quality attributes in degraded 

soils.  It may be of interest also for developing strategies to increase soil C sequestration 

in regard to climate change.  In this case, a C budget analysis that includes the livestock 

production component of the amended system is needed to properly assess net gains in C 

storage relative to the nonamended system. 

Our results support the concept that diversified soil management systems enhance 

biological linkages between C and N cycles and can reduce N loss (Drinkwater et al., 

1998).  The higher retention efficiency of N in the amended soil suggests that excess N 

was buffered via C-enhanced immobilization or protected from mineralization via 

aggregate formation.  In light of the relatively high rate of N loss, in absolute terms, in 

the amended system, the importance of these possible N retention mechanisms should be 

investigated under lower amendment loading rates. 
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Chapter 4 

SEASONAL NITROGEN AVAILABILITY FROM CURRENT AND PAST 

APPLICATIONS OF MANURE AND FERTILIZER 

4.1 Chapter Abstract 

Integrating crop and livestock production is increasingly viewed as a regional 

strategy to improve N efficiency and reduce N losses to the environment.  Key to the 

proper management of manure N is predicting the rate and extent of manure N 

availability relative to crop needs.  This includes recognizing the potential importance of 

N contributions from the accumulation of residual manure organic N that occurs with 

repeated applications.  Nitrogen availability relative to crop needs was assessed in plots 

with 13–16 yr histories of contrasting manure- and fertilizer-based soil treatments in the 

Maine Potato Ecosystem Project.  Soil and barley samples were collected every 7–14 

days during 2003 to 2005, and once in 2006.  In 2004 to 2006, samples also were 

collected from “zero-N” strips within the plots where normal applications of manure or 

fertilizer were withheld to estimate the proportion of available N that came from current 

versus previous manure applications.  Barley dry matter, N content, and yield were 

equivalent between the two soil management systems.  Temporal patterns of N 

availability in the manure-based system were more synchronous with crop needs early in 

the season compared with the fertilizer-based system, but potentially excessive after 

harvest.  Apparent N recovery of the current years’ application of manure organic N was 

less than predicted by a standard decay series.  The relative contribution of residual 

manure N to total manure N uptake was more than predicted from the decay series, 
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providing support for a residual N effect from repeated manure applications.  Standard 

manure recommendations may underestimate the N contribution from past applications. 

4.2 Introduction 

Crop and livestock production have been decoupled in industrial agricultural 

systems, with farmers encouraged to specialize in one or the other.  Consequently, crop 

farmers rely on purchased inorganic fertilizers to meet crop nutrient needs, while 

livestock farmers import feed nutrients and often do not have enough land to avoid 

excessive applications of manure nutrients.  As concerns about the negative impacts of 

agriculture on water quality continue to intensify, there is increasing interest in re-

coupling or re-integrating crop and livestock farming (Naylor et al., 2005; Russelle et al., 

2007).  One aspect of integration, the use of manure as a N source for crop production, is 

seen as a way to increase N use efficiency and reduce N losses to the environment at a 

watershed or regional level (Christensen, 2004; Schröder, 2005). 

The management of manure organic N can be challenging, compared to fertilizer N, 

because mineralization to plant available forms is necessary and robust estimates of the 

rate and extent of N mineralization from the organic pool remain elusive.  In general, 

manure is considered a slower or more gradual source of plant-available N than fertilizer 

N (Langmeier et al., 2002; Ma et al., 1999).  This may result in increased synchrony with 

plant demand and reduce potential N leaching losses (Ma et al., 1999), but may also lead 

to potentially leachable end-of-season excesses of soil NO3¯ (Magdoff, 1991; Schröder, 

2005). 

Decay series are commonly used to estimate the amount of N mineralized from the 

organic fraction of manure during the years after application (Ketterings et al., 2005; 
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Klausner and Bouldin, 1983).  Decay series have been developed for specific manure 

types.  A commonly used decay series for beef manure, 25-12-5 (Ketterings et al., 2005), 

predicts that 25% of manure organic N will be mineralized during the first year, 12% of 

the remaining manure organic N will be mineralized in the first year following 

application, and likewise 5% the second year after application.  Mineralization during 

subsequent years is assumed to be negligible.  Schröder (2005), however, has recently 

shown in a conceptual model that repeated applications of manure can lead to a residual 

N effect whereby the sum of many small contributions can constitute an important 

addition to overall N availability.  The residual N effect can not be detected in short-term 

experiments such as those used to develop decay series, because soil organic N 

accumulation is small over the time frame of 1 to 3 growing seasons.  Not accounting for 

the accumulation and subsequent mineralization of residual manure N can lead to over 

application of manure or fertilizer N (Schröder, 2005; Whalen et al., 2001). 

The Maine Potato Ecosystem Project in Presque Isle, Maine established contrasting 

amended and nonamended soil management strategies in 1991 and so provided an ideal 

opportunity to examine in situ N dynamics in well-established manure- and fertilizer-

based potato–barley production systems.  The specific objectives were 1) to assess 

seasonal patterns of N availability in the two systems with particular regard to synchrony 

with crop demand and potentially leachable excesses, and 2) to estimate the relative 

contribution of current and residual manure organic N.  The study was conducted during 

the barley phase of the rotation to minimize problems with soil N heterogeneity and to 

simplify plant sampling. 
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4.3 Materials and Methods 

4.3.1 Site characteristics and field experiment 

The study was conducted during 2003 to 2006 in the Maine Potato Ecosystem 

Project (MPEP), a large, interdisciplinary potato cropping systems experiment located in 

Presque Isle, Maine on a gravely, well-drained Caribou loam soil (fine-loamy, mixed, 

frigid, Typic Haplorthods).  The MPEP has included a comparison of contrasting 

amended and nonamended soil management systems in the context of 2-yr potato 

rotations since its establishment in 1991.  The amended soil management system relied 

largely on organic sources of nutrients.  These were supplemented with small inputs of 

inorganic fertilizer as needed during the potato phase of the rotation to provide 

approximately the same nutrient levels as in the nonamended soil management system.  

Beef manure and potato compost were applied annually from 1991 to 1993 and semi-

annually (potato year only) from 1994 to 1998.  From 1999 to 2006, manure was applied 

to both potato and barley crops, but compost applications were discontinued.  The 

amended soil system also included a pea–oat–hairy vetch green manure as the rotation 

crop until 1998, when it was changed to barley undersown with red clover.  The 

nonamended soil management system followed industry standards, including inorganic 

fertilizers and a barley/red clover rotation crop.  Table 4.1 provides average fertilizer and 

manure N, P, and K inputs to the amended and nonamended soil management systems 

from 2003 to 2006.  Plot size was 14.6 m x 41.0 m.   

During 2004 to 2006, zero-N subplots were established in the amended and 

nonamended plots in the barley phase of the rotation.  The subplots were 2- to 3-m wide 

strips that were located about 1 m from one side of the plots and ran their full length (41 
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m).  The application of either manure (amended system plots) or fertilizer (nonamended 

system plots) was withheld in the subplots. 

The soil treatment factor was in factorial combination with other treatment factors 

(pest management and potato variety from 1991 to 1998, and rotation and pest 

management from 1999 to 2003) in a split plot design with four replicates.  Further 

details about the establishment of the experiment, cultural methods, and the other 

treatment factors are provided elsewhere (Alyokhin et al., 2005; Gallandt et al., 1998b; 

Mallory and Porter, 2007; Porter, 1996; Porter and McBurnie, 1996). 

 
Table 4.1.  Average annual application rates of fertilizer nitrogen (N), phosphorus (P), 
and potassium (K), manure fresh weight, and manure nutrients from 2003 to 2006 in the 
Maine Potato Ecosystem Project. 

  Fertilizer  Manure† 

  N P K  
Fresh 
weight 

Organic 
N 

NH4
+-

N P K 

  —— kg ha-1 ——  Mg ha-1 ———— kg ha-1 ————— 

Amended          
 Barley 0 0 0  45 177 14 56 147 
 Potato 78 0 0  67 266 21 83 220 

Nonamended          
 Barley 78 0 0  0 0 0 0 0 
 Potato 190 59 219  0 0 0 0 0 
† Manure nutrient application rates are estimated based on analysis of the manure and do 
not take into account loss during storage and application. 
 
 

4.3.2 Soil and plant analyses 

Soil organic carbon was determined from samples taken each spring prior to the 

application of organic amendments.  Ten soil cores were collected from a 15-cm depth, 

air-dried, sieved through a 6.4-mm screen, bulked, and mixed thoroughly.  Duplicate 

subsamples were analyzed for readily-oxidizable SOC using the Walkley-Black method 
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(Nelson and Sommers, 1996).  Total soil N was determined from samples collected for an 

incubation experiment in 2003 after barley harvest.  Six individual soil cores were taken 

to a depth of 15 cm using an 8-cm diameter bulb corer.  Soil was bulked by soil 

treatment, mixed gently, sieved to 2 mm.  A 100-g sample of each soil was air-dried, 

from which 5 g was pulverized and analyzed in quadruplicate for total N concentration by 

combustion using a CE Instruments NA2500 Elemental Analyzer (ThermaQuest Italia 

S.p.A., Rodano, Italy).  Bulk density was determined in the spring using the core method 

described by Blake and Hartge (1986).  Metal rings were pounded into the soil using a 

cylindrical sleeve.  The sample rings were removed, trimmed with a metal spatula, 

capped, dried at 105°C, and sieved to 2 mm to separate coarse fragments.  Both fractions 

were weighed and bulk density estimates were corrected for coarse fragments. 

Above-ground barley biomass was measured at 7 to 14 d intervals beginning 2 to 7 

d after barley planting (May) and ending at physiological maturity (August).  In 2006, 

barley samples were collected only at physiological maturity.  Sampling occurred in 

about 2-m wide strips located 1 m from the plot edge.  At four locations in each strip, 

barley plants were clipped 2 cm above the soil surface from 0.3 m of two adjacent rows.  

Samples from the four locations were bulked, representing a total sample area of 2.4 m of 

row.  From 2004 to 2006, separate samples were collected in the same manner from the 

zero-N sub-plots.  On successive sampling dates, sampling areas were spaced 0.5 m along 

the rows from the previous sampling area.  Plant samples were dried at 60°C, weighed, 

and ground.  A 5-g subsample was pulverized and analyzed for total N concentration by 

combustion using a CE Instruments NA2500 Elemental Analyzer (ThermaQuest Italia 

S.p.A., Rodano, Italy).  Plant N uptake was estimated as the product of biomass and N 
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concentration.  Weed and red clover biomass and N uptake were not measured because 

visual assessments indicated that weed and red clover biomass were insignificant relative 

to barley biomass.  

Soil sampling was conducted concurrently with barley sampling, and continued 

after barley harvest until the first killing frost (October).  Two soil cores (2cm diameter) 

were taken to a depth of 20 cm in each of the four sample areas per plot, one within a row 

and one between rows.  The eight cores per plot were bulked and mixed thoroughly.  A 

200-g subsample was sieved to 2 mm and stored at 4ºC for <24 h until inorganic N (Ni) 

and moisture determinations were made.  A 3-g subsample of the soil (approximately 2.5 

g dry weight equivalent) was placed in a 25 mL centrifuge tube with 25 mL of 2.0 M 

KCl, shaken for 1 h, and centrifuged (2700 x g for 10 min).  The supernatant was filtered 

(0.45 µm) and analyzed for NH4
+ and NO3¯ colorimetrically on a Lachat Autoanalyzer 

(Lachat Instruments, Mequon, WI).  Inorganic N concentration was corrected for bulk 

density and expressed on an area basis.  For moisture content, a 10-g subsample was 

weighed wet, dried at 105°C for 48 h, and weighed again. 

Apparent N recovery (ANR) was calculated for manure and fertilizer using 

maximum barley N uptake average values for each treatment, adjusted to include root N 

uptake assuming a root/shoot ratio of 0.18 (Janzen et al., 2003; Johansson, 1992), and 

using Eq. [1]: 

 (N uptake in main plot – N uptake in zero-N subplot) / N applied [1] 

Manure ANR was calculated for the organic N fraction by subtracting estimated 

available NH4
+-N (50% of manure NH4

+-N content (Klausner and Bouldin, 1983)) from 

the barley N uptake and from the manure N applied. 
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The contributions to barley N uptake from soil, new manure (current year), and 

residual manure (accumulated in the soil N pool) were estimated using two important 

assumptions.  First, it was assumed that barley N uptake in the nonamended zero-N 

subplot was equivalent to the N contribution from soil in the amended manured treatment 

had it never received any manure.  This assumption presupposes that there was no net 

accumulation or depletion of soil organic N in the nonamended soil over the course of the 

MPEP, and that there was minimal carryover of N from the previous potato crop year.  

Second, it was assumed that barley does not discriminate between the various sources of 

Ni.  Given these assumptions, contributions to barley N uptake from the different sources 

were calculated from Eq. [2–4]: 

 Soil = N uptake in nonamended zero-N subplot [2] 

 Old manure = N uptake in amended zero-N subplot – Soil [3] 

 New manure = N uptake in amended manured main plot – Old manure [4] 

4.3.3 Statistical analysis 

Repeated measures ANOVA was used to test the significance of sampling date, soil 

management system (amended vs. nonamended), nitrogen treatment (main plot vs. zero-

N subplot), and treatment interactions on soil Ni, barley dry matter, and barley N uptake.  

Effects found significant in repeated measures ANOVA were then investigated further in 

univariate ANOVAs by sampling date.  Univariate ANOVA also was used to test 

treatment effects on maximum barley N uptake. 
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4.4 Results and Discussion 

4.4.1 Soil Characteristics 

Stocks of SOC and soil total N were approximately 75% higher in the amended soil 

management system than the nonamended system.  Soil organic C content averaged 31.4 

and 18.0 g kg-1 in the amended and nonamended systems, respectively, from 2003 to 

2006.  Soil total N, measured in 2003, was 2.5 and 1.4 g kg-1 in the amended and 

nonamended systems, respectively.  The amended system also influenced other soil 

characteristics, increasing soil pH, the proportion of total water stable aggregates, and 

CEC relative to the nonamended system (Mallory and Porter, 2007). 

4.4.2 Soil Inorganic N 

In the main plots (which received fertilizer or manure N as they had in the past), 

soil inorganic N (Ni) content was highest in the spring, after fertilizer or manure 

application and barley planting, and remained high for 2 to 4 wk until N uptake by the 

crop began (Fig. 4.1).  In 2003 and 2005, decreases in soil Ni content in the main plots 

were large relative to the concomitant accumulations of barley N.  This result suggests 

that N was lost from the system, possibly via denitrification or leaching below the 

sampling depth, and possibly below the root zone.  The fertilizer-based system 

demonstrated greater potential for loss as spring soil Ni content was significantly higher 

in this system than in the manure-based, amended system in all years (Table 4.2 and Fig. 

4.1).  These results are congruent with previous findings that fertilizer is a more rapidly 

available source of plant available N than manure (Langmeier et al., 2002; Ma et al., 

1999; Mallory and Griffin, 2007).
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Figure 4.1. Soil inorganic N and barley N uptake over the growing season in 2003, 2004, 
and 2005 in the Maine Potato Ecosystem Project.   *, Significant difference between soil 
management treatments at the 0.05 probability level. 
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Table 4.2.  Probability values from repeated measures ANOVA of barley dry matter (DM), barley N content, and soil N content in 
2003, 2004 and 2005 of the Maine Potato Ecosystem Project. 

 2003  2004  2005 

 Barley Soil  Barley  Soil  Barley Soil 

Sources of 
variation df DM N df N df DM N  df N df DM N df N 

Date (D) 7 <0.001 <0.001  12 <0.001  7 <0.001 <0.001  15 <0.001  6 <0.001 <0.001  12 <0.001
D×Rep 21 0.199 0.316  36 0.304  21 0.538 0.845  45 0.358  18 0.242 0.533  36 0.923 
D×Soil (S) 7 0.245 0.831  12 <0.001  7 0.240 0.573  15 0.001  6 0.913 0.961  12 0.013 
D×N† - - -  - -  7 0.000 0.017  15 0.000  6 0.001 0.006  12 0.214 
D×S×N - - -  - -  7 0.907 0.446  15 0.033  6 0.325 0.369  12 0.940 
† Nitrogen treatment (N vs. no N) was added in 2004 and 2005 as a subplot in the soil management treatment plots and the 
experiment was analyzed as a split plot design. 
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Spring soil Ni content in the subplots that received no fertilizer or manure (zero-N 

subplots) was significantly lower than in the fertilized and manured main plots (Table 

4.2, Fig. 4.1).  Soil Ni in the zero-N subplots originated from either early spring 

mineralization of the soil organic N pool or retention of soil Ni that remained after potato 

harvest.  Surprisingly, there was no measurable difference in soil Ni in the zero-N 

subplots between the amended and nonamended soil in spite of the amended soil having 

approximately a 75% greater total soil N pool.  This suggests that carryover of fall Ni 

could be an important contributor to early spring soil Ni.  Zebarth et al. (2003) observed 

carryovers ranging from 22 to 63 kg Ni ha-1 (30 cm soil depth) in the spring following 

potato in eastern Canada. 

After crop harvest, soil Ni remained low (< 10 kg ha-1) in all treatments for the 

remainder of the season with one exception.  In 2003, soil Ni in the amended soil 

management system began accumulating after crop harvest, presumably from the 

continued mineralization of the large organic N pool in this soil and of the recently added 

organic manure N.  There was little rainfall during this period of accumulation (Fig. 4.2).  

The subsequent decline in soil Ni content coincided with significant rainfall events that 

probably leached the excess soil Ni below sampling depth.  These results indicate that the 

lack of observable Ni accumulation in the amended soil in the other years could simply be 

due to more regular precipitation patterns (Fig. 4.2) and movement of soil Ni below the 

sampling depth rather than due to lower soil N mineralization rates.  Others have 

observed high fall soil Ni levels in manure-based systems (Jensen et al., 1999; Magdoff, 

1991; Roth and Fox, 1990) and stressed the importance of including trap crops to prevent 

N loss (Christensen, 2004).
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Figure 4.2. Daily precipitation in 2003 and 2004 in the Maine Potato Ecosystem Project. 
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4.4.3 Barley biomass and yield 

Barley performed similarly in the amended soil management system as in the 

nonamended soil system.  In spite of early season differences in plant N availability, 

barley dry matter accumulation was not significantly affected by soil management system 

(Table 4.2, Fig. 4.3).  Barley grain yields also were not significantly affected by soil 

management and averaged 2368, 2483, and 1188 kg ha-1 in 2003, 2004, and 2005, 

respectively.  These results suggest that barley was likely not N-limited in either soil 

system.  Barley biomass was significantly lower in the zero-N subplots, but grain yield 

was not measured.  Barley crop development and N uptake were slower in 2005 than in 

previous years due to poor initial seed germination and establishment of the crop.  In 

2004, there was a decrease in biomass at the last sampling date, presumably due to loss of 

leaves by the mature crop.
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Figure 4.3. Barley biomass over the growing season in 2003, 2004, and 2005 in the 
Maine Potato Ecosystem Project.  *, Significant difference between nitrogen treatments 
(with N and zero-N subplots) at the 0.05 probability level.  There was no significant soil 
treatment effect. 
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4.4.4 Barley N Uptake 

The maximum value of barley N uptake in the zero-N subplots represents 

cumulative plant available N supplied by the soil over the season.  Soil N supply was not 

significantly different between the two soil management systems (Table 4.3).   This result 

is surprising given that the amended soil had approximately 75% greater total N pool and, 

in a recent incubation study (Mallory and Griffin, 2007), demonstrated similarly higher 

mineralization potential.  In 2006, soil N uptake was unusually low in both treatments 

due to plant disease.   

Apparent N recovery (ANR) of the manure organic N applied in the amended soil 

management systems was 8, 11, and 9% in 2004, 2005, and 2006, respectively (Table 

4.3).  These values are only slightly lower than the 13% recovery by spring barley of 

sheep manure organic N reported by Jensen et al. (1999), yet they are considerably lower 

than the 25% estimated by a typical decay series for the plant availability of beef manure 

organic N during the year of application.  Manure decay series typically have been 

developed based on experiments conducted with full-season corn (Klausner et al., 1994; 

Magdoff, 1978).  Crops with shorter growing seasons, such as barley, can only capture a 

portion of this estimated plant available N because the remainder is mineralized after 

crop uptake has ceased.  This highlights the need to adjust manure N credits for crops 

with shorter maturities and lower N uptake capacities than corn.  Fertilizer ANR was 46 

and 59% in 2004 and 2005, respectively, and is typical of fertilizer recovery values 

reported in the literature for barley (Glendining et al., 1997).  Fertilizer ANR in 2006 was 

unusually low, again due to disease.
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Table 4.3.  Maximum barley N uptake in the amended and nonamended soil management 
system main plots and zero-N subplots, and calculated apparent N recover (ANR‡) of 
fertilizer N and manure organic N, from 2003 to 2006 of the Maine Potato Ecosystem 
Project. 

  df 2003 2004 2005 2006 

   —————— kg ha-1 —————— 
Amended      
 Main plot  115 79.4 82.5 51.3 
 Zero-N subplot  - 64.7 54.2 34.3 
 (ANR)  - (8%) (11%) (9%) 
Nonamended      
 Main plot  101 85.6 83.6 49.1 
 Zero-N subplot  - 57.4 44.4 32.0 
 (ANR)  - (46%) (59%) (28%) 

   ANOVA (p-values) 
Sources of variation      
 Rep 3 0.748 0.220 0.478 0.009 
 Soil (S) 1 0.706 0.797 0.991 0.828 
 Error (a) 3     
 Nitrogen (N) 1 - 0.049 0.023 0.007 
 S x N 1 - 0.199 0.813 0.634 
 Error (b) 5     

C.V. (%)  22.1 19.4 28.4 15.0 
‡ Manure ANRs are for organic N.  ANR for total manure N (organic plus NH4

+-N) were 
10, 17, and 11% in 2004, 2005, and 2006, respectively. 
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The relative contribution of residual manure N to barley N uptake was greater than 

predicted based on a standard decay series for solid beef manure (Table 4.4).  The decay 

series predicted that 27 and 23% of total manure N contributions would be from residual 

manure N and that 73 and 77% would be from new manure (NH4
+-N and organic N) in 

2004 and 2005, respectively.  In contrast, observed estimates of the relative contribution 

from residual manure were 33 and 26%, in these years.  These higher than expected 

values may be evidence of a residual N effect (Schröder, 2005) brought about by 14 to 15 

years of manure applications.  These results should be interpreted cautiously for two 

reasons.  First, estimates of the relative contributions of new and residual manure were 

sensitive to small changes in barley N uptake for the different treatments.  Second, these 

estimates are based on the assumption that barley N uptake in the nonamended zero-N 

subplots was equivalent to the indigenous soil N contribution in the amended manured 

treatment had it never received any manure.  While there has been little change in the 

organic N content of the nonamended soil from the beginning of the MPEP (0.15% in 

1991 vs. 0.16% in 2004), the results from the current study suggest that there may be N 

carryover from the previous potato year.  Carryover would reduce the estimated 

contribution of N from the soil, which would in turn increase the contribution attributed 

to residual manure and increase the apparent residual N effect.  Estimates from 2006 are 

suspect given the unusually low barley N uptakes in that year (Table 4.3).
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Table 4.4.  Estimated and predicted contributions to barley N uptake from soil, the 
current year’s application of manure (New manure), and previous years’ applications of 
manure (Residual manure), as well as the percent of manure N contributions from New 
and Residual manure N.  Values are estimated from barley N uptake data and predicted 
from a 25-12-5 manure decay series. 

  N sources 

   Manure 

  Soil New† Residual  

  ——————— kg N ha-1 ——————— 
Barley N content    
 2004 57.4 14.7 (67%) 7.3 (33%) 
 2005 44.4 28.3 (74%) 9.8 (26%) 
 2006 32.0 17.0 (88%) 2.3 (12%) 

Predicted from 25-12-5 decay series   
 2004 - 16.0 (73%) 6.0 (27%) 
 2005 - 29.6 (77%) 8.6 (23%) 
 2006 - 13.9 (72%) 5.4 (28%) 

† Includes available manure NH4
+-N, estimated as 50% of applied manure NH4

+-N.  
Available manure N was 3.7, 12.2, and 2.9 kg N ha-1 in 2004, 2005, and 2006, 
respectively.  
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4.5 Conclusions 

Barley performed equally well in terms of biomass and yield in an amended, 

manure-based soil management system as in a nonamended, fertilizer-based soil 

management system.  Soil N availability was not optimally synchronized with barley N 

uptake in either system – both fertilizer-based and manure-based soil management 

systems demonstrated periods of Ni excess and potential N loss.  Nitrogen was available 

more rapidly in the fertilizer-based system, with excessive soil Ni and the potential for N 

loss occurring in the spring before barley N uptake began.  Nitrogen was released more 

slowly in the manure-based system, with continued mineralization and accumulation of 

soil N occurring after crop uptake ceased.  The manure-based system showed the 

potential for N loss in the fall, underlining the importance of including fall trap crops in 

these systems.  Apparent N recovery of manure organic N was less than predicted by a 

standard decay series for beef manure.  Concomitantly, the relative contribution of 

residual manure N to total manure N uptake was more than predicted from the decay 

series, providing support for a residual N effect from repeated manure applications.  

Standard manure recommendations may underestimate the N contribution from past 

applications. 
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Chapter 5 

IMPACTS OF SOIL AMENDMENT HISTORY ON NITROGEN AVAILABILITY 

FROM MANURE AND FERTILIZER 

5.1. Chapter Abstract 

Repeated, long-term additions of organic materials not only increase stocks of 

mineralizable soil N, but also bring about changes in soil characteristics that influence N 

dynamics. We conducted an aerobic incubation to explore how soil amendment history 

affects the transformation and availability of recently added N.  Soil was collected from 

plots under contrasting amended and nonamended soil management systems in a 13-yr 

cropping systems experiment.  Nitrogen source treatments were: no added N (control), 

NH4
+ fertilizer (Fert), a net mineralizing manure (MManure), and a net immobilizing 

manure (IManure).  Soil NH4
+ and NO3¯ concentrations were monitored for 282 d.  A 

two-pool, first-order model with fixed rate parameters was fitted to the NO3¯ 

accumulation data.  When no N was added, net mineralization in the historically amended 

soil was twice that in the historically nonamended soil, mostly due to differences in soil 

total N stocks.  When N sources were added, NH4
+ consumption, net N mineralization, 

and estimated N pools were affected by both soil amendment history and N source, with a 

significant interaction between the two factors.  Historically amended soil reduced the 

availability of recently added N relative to the nonamended soil.  This reduction occurred 

in the active pool (N1) for MManure and in the slow pool (N2) for Fert.  It appeared to be 

related to the timing of C availability.  Future work modeling N availability should 
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consider soil amendment history not only for its effects on soil N supply capacity, but 

also for its effects on the availability of recently added N sources. 

5.2. Introduction 

Tightening the N cycle by optimizing N use efficiency is fundamental to the design 

of sustainable agricultural systems (Christensen, 2004).  Achieving this goal requires the 

ability to predict N release from soil organic matter and added N sources (Christensen, 

2004; Honeycutt et al., 1991).  Soil N dynamics are influenced by environmental factors 

such as temperature (Andersen and Jensen, 2001; Griffin and Honeycutt, 2000; 

Honeycutt, 1999) and soil moisture (Griffin et al., 2002; Thomsen et al., 1999).  Even 

under similar environmental conditions, however, N dynamics are also substantially 

affected by substrate and soil characteristics. 

For animal manures, there has been considerable effort to identify chemical 

characteristics that can be used to refine predictions of N mineralization potential 

(Cabrera et al., 2005).  Most of these studies have focused on the release of plant-

available N from manure within a single cropping season.  The repeated addition of 

manure and other organic materials, however, brings about important changes in the soil 

that can affect N dynamics.  Most obvious is the enhancement of the soil organic N pool.  

Only a portion of the organic N in manure is mineralized during the year of application; 

the remainder accumulates in the soil.  While any given application contributes only a 

small amount to mineralized N in a subsequent year, the combined contributions of 

organic N from repeated applications can lead to a substantial residual N effect (Eghball 

et al., 2004; Schröder, 2005), emphasizing the need for consideration of soil amendment 
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history in nutrient management plans (Beauchamp et al., 1986; Feng et al., 2005; Whalen 

et al., 2001). 

In addition to the quantitative increase in the size of the soil organic N pool, 

repeated long-term application of organic amendments also brings about changes in soil 

characteristics that could affect N dynamics.  As reviewed recently by Cabrera et al. 

(2005), reduced net N mineralization has been observed repeatedly in finer vs. coarser 

textured soils following organic N additions, with effects attributed to adsorption of N by 

clays (Van Veen et al., 1985), greater protection of microbial biomass N (Kuikman et al., 

1991; Van Veen et al., 1985), pore-size effects on water availability (Thomsen et al., 

1999), and differences in the microbial and grazer communities (Hassink et al., 1994).  

While organic amendment does not alter soil texture, added organic matter can affect all 

of the above processes. 

Repeated application of organic amendments also adds to the pool of available soil 

C (Aoyama et al., 1999a; Cambardella and Elliott, 1992; Griffin and Porter, 2004; 

Sommerfeldt et al., 1988) and enhances microbial biomass and activity (Fauci and Dick, 

1994b; Gunapala and Scow, 1998; Houot and Chaussod, 1995; Witter et al., 1993).  

Carbon and N cycles are tightly coupled in the soil (Chantigny et al., 2001).  The site of 

this coupling is the soil microbial community, which acts as an important source and sink 

of both C and N.  Research on untilled soils illustrates this linkage.  Barrett and Burke 

(2000) found a positive linear relationship between soil C concentration and gross rates 

of mineralization (slope = 0.595) and immobilization (slope = 0.934) in grassland soil, 

with greater influence on immobilization.  Similarly, Hatch et al. (2000) detected a 

greater increase in immobilization in high- vs. low-C pasture soil 3 months after a one-
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time surface application of manure.  If these results can be translated to tilled soils, higher 

gross N transformation rates and retention of added N would be expected in historically 

amended soil than nonamended soil. 

Few studies have investigated the influence of soil amendment history on the 

mineralization and availability of recently added N substrates.  Soil amendment history 

had no effect on net mineralization of added N (Hadas et al., 1996; Sanchez et al., 2001) 

or microbial biomass and enzyme activity (Fauci and Dick, 1994b) following additions of 

composted manure and plant residues.  These researchers concluded that the response of 

soil to current N additions far outweighs any differences due to long-term soil 

management, with no interaction between the two factors.  This conclusion may be 

premature.  For instance, both soil amendment history (organic amendments vs. fertilizer) 

and N source (fertilizer, manure urea, solid manure, and combinations of these), as well 

as their interaction, significantly affected plant uptake of added N (Langmeier et al., 

2002).  In their study, where soil C and N differed by only 7 and 15%, respectively, 

between the contrasting soil treatments, the effect of soil amendment history was an order 

of magnitude smaller than the effect of N source.  A larger soil treatment effect might be 

expected for soils with more discrepant soil C and N stocks. 

The Maine Potato Ecosystem Project provided an ideal opportunity to further 

explore the potential influence of soil amendment history on N dynamics.  Thirteen years 

of contrasting amended (manure, compost, and green manure) and nonamended soil 

management systems has resulted in soil with highly divergent C and N stocks.  An 

aerobic incubation of these soils was conducted to: (i) compare the N supplying capacity 

of historically amended vs. historically nonamended soil; (ii) investigate the effects of 
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soil amendment history on N transformations following addition of fertilizer or manure; 

and (iii) quantify these possible effects on N pools of differing lability. 

5.3. Materials and Methods 

5.3.1. Soils and Manures 

Soil was collected from the Maine Potato Ecosystem Project, a large, 

interdisciplinary potato cropping systems experiment located in Presque Isle, ME, on a 

gravely, well-drained Caribou loam soil (fine-loamy, mixed, frigid Typic Haplorthod).  

This experiment has included a comparison of contrasting amended and nonamended soil 

management systems in the context of 2-yr potato rotations since 1991.  The amended 

soil management system relied largely on organic sources of nutrients, supplemented 

with small inputs of inorganic fertilizer.  Beef manure and potato compost were applied 

annually from 1991 to 1993 and semiannually (potato year only) from 1994 to 1998.  

From 1999 to 2003, manure was applied to both potato and rotation crops, but compost 

applications were discontinued.  The amended soil system also included a pea–oat–hairy 

vetch green manure as the rotation crop until 1998, when it was changed to barley 

undersown with red clover.  The nonamended soil management system followed industry 

standards, including inorganic fertilizers and a barley–red clover rotation crop.  The soil 

treatment factor was in factorial combination with other treatment factors (pest 

management and potato variety from 1991–1998, and rotation and pest management from 

1999–2003) in a split plot design with four replicates.  Plot size was 14.6 by 41.0 m. 

Further details about the soil management systems, other treatment factors, and cultural 

methods are provided elsewhere (Alyokhin et al., 2005; Gallandt et al., 1998b; Mallory 

and Porter, 2007; Porter and McBurnie, 1996). 
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Griffin and Porter (2004) reported total, particulate organic matter, and soil 

microbial biomass (SMB) C and N pools for soil collected in the spring of 1999 from the 

contrasting soil management systems (Table 5.1).  Identical methods were used to collect 

and characterize soil in the fall of 2002.  Ten-day CO2 evolution rates on both sets of 

samples were determined as part of the SMB procedure.  Soil pH of the 2002 samples 

was measured in a 1:1 soil/water slurry (Thomas, 1996). 

Soil for the aerobic incubation was collected after barley harvest in August 2003 

from the four replicate amended and nonamended plots that were in a 2-yr potato–barley 

rotation and conventional integrated pest management.  Six individual soil cores were 

taken to a depth of 15 cm using an 8-cm-diameter bulb corer.  Soil was bulked by soil 

treatment (i.e., historically amended and historically nonamended), mixed gently, sieved 

to 2 mm, and stored at 4°C.  A 100-g sample of each soil was air dried, from which 5 g 

was pulverized and analyzed in quadruplicate for total C and N concentration by 

combustion using a CE Instruments NA2500 Elemental Analyzer (ThermaQuest Italia 

S.p.A., Rodano, Italy).
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Table 5.1.  Characteristics of the historically amended and nonamended soils from the Maine Potato Ecosystem Project, 1999† and 
2002. 

     Carbon  Nitrogen  

Year Soil history df Soil pH CO2 evol Total POM‡ SMB§ Total POM SMB 

    mg kg-1 day-1 —————————— g kg-1 —————————— 
1999           

 Amended  – 38.6 21.8 8.24 0.48 1.96 0.62 0.12 
 Nonamended  – 22.1 16.6 4.02 0.29 1.50 0.33 0.07 

2002           
 Amended  6.3 33.5 33.9 13.68 1.27 2.92 1.02 0.30 
 Nonamended  5.5 27.3 17.3 3.79 0.39 1.60 0.31 0.09 

  ANOVA 
Source of variation          

 Year 1 – ns# *** *** *** *** *** *** 
 Soil history 1 ** *** *** *** *** ** *** *** 
 Year*Soil 1 – ns *** *** *** *** *** *** 
 CV, %  2.2 15.1 5.4 10.4 10.7 5.1 10.0 10.6 

† From Griffin and Porter (2004). 
‡ Particulate organic matter (POM). 
§ Soil microbial biomass (SMB). 
# ns, not significant. 
*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels, respectively. 
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Two freeze-dried dairy manures were used in the aerobic incubation, based on N 

dynamics in a previous incubation experiment (Griffin et al., 2005).  The MManure, 

which resulted in net N mineralization when added to two soils of different textures, had 

lower total C concentration, higher total N and NH4
+ concentrations, and a lower C/N 

ratio than IManure, which resulted in net immobilization of N (Table 5.2).  While the 

total C concentration of IManure was only 9% higher than that of MManure, fibrous C 

concentration (measured as neutral detergent fiber, NDF; Mertens, 2002) was 281% 

higher.  Griffin et al. (2005) found the ratio of NDF to NH4
+ to be the best predictor of 

net nitrification and final NO3¯ concentration following manure addition, compared with 

C/N or other ratios of manure components. 

 
 
Table 5.2.  Characteristics of the net mineralizing (MManure) and net immobilizing 
(IManure) dairy manures used in the incubation experiment†. 

 MManure IManure 

Total C, g kg−1‡ 415 451 

Neutral detergent fiber (NDF), g kg−1 162 617 

Total N, g kg−1 55.8 14.7 

Organic N, g kg−1 40.0 12.1 

NH4
+, g kg−1 15.8 2.6 

Total C/N 7.4 30.7 

Total C/NH4
+ 26.3 173.5 

NDF/NH4
+ 10.3 237.3 

† From Griffin et al. (2005). 
‡ Dry-matter basis. 
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The MManure was obtained from a sample submitted to the Maine Agricultural and 

Forest Experiment Station Analytical Laboratory and IManure was collected directly 

from a commercial dairy.  The fresh manures were homogenized using a food processor.  

Subsamples were analyzed for total Kjeldahl N (Kane, 1998) and NH4
+ concentration via 

distillation with MgO (AOAC Method 973.49).  Organic N was estimated as the 

difference in these values.  The remaining manure samples were frozen (−20°C), freeze-

dried (−80°C), and ground (2 mm).  Ammonium concentrations of the freeze-dried 

manures used in this study were in the range for fresh manures used by others (Griffin et 

al., 2005). 

5.3.2. Incubation Procedure 

Soils were preincubated in the dark for 5 d at 25°C before N additions were made.  

One hundred and fifty grams of soil (dry-weight equivalent) were added to 250-mL acid-

washed, plastic containers and packed to a density of 1.1 g cm−3.  During the 

preincubation period, soils were adjusted to a water content of 200 g H2O kg−1 by either 

allowing evaporative losses from open containers or adding deionized water. 

The MManure (528 mg), IManure (3409 mg), and a fertilizer solution (Fert) (22.3 

mg NH4Cl in 5 mL H2O) were mixed with samples of each soil on Day 0, an approximate 

addition rate of 50 mg NH4
+ kg−1 dry soil.  This rate is roughly equivalent to 100 kg ha−1 

to a depth of 15 cm.  A soil-only control treatment was also mixed but no N was added.  

All treatments were replicated five times.  After mixing, a 3-g subsample of the soil 

(approximately 2.5 g dry-weight equivalent) was placed in a 25-mL centrifuge tube with 

25 mL of 2.0 M KCl, shaken for 1 h, and centrifuged (2700 × g for 10 min).  The 

supernatant was filtered (0.45 µm) and analyzed for NH4
+ and NO3¯ colorimetrically on a 
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Lachat Autoanalyzer (Lachat Instruments, Mequon, WI).  The remaining soil was 

repacked to a density of 1.1 g cm−3.  Deionized water was added to increase the water 

content to 250 g H2O kg−1 (47% water-filled pore space, WFPS) and the containers were 

recapped and returned to the incubator. 

Soil NH4
+ and NO3¯ concentrations were determined at 1, 3, 7, 14, 28, 56, 112, 171, 

and 282 d.  At each sampling date, the soil was stirred, subsampled, and processed as 

above, repacked, and returned to the incubator.  The soil was aerated by leaving the 

containers open for 1 h daily for the first 2 wk, and weekly thereafter.  Moisture content 

was maintained by adding deionized water as needed on a weekly basis.  Nitrate 

concentration represented net N mineralization after 3 or 7 d, depending on soil 

treatment, since NH4
+ concentrations decreased to and remained near zero for the 

remainder of the incubation.  The proportion of added N that was net mineralized by the 

end of the incubation was calculated from 

 N% mineralized = (282dNO3¯tmt − 282dNO3¯control)/(Nadded)tmt [1] 

where 282dNO3¯ is the NO3¯ concentration at 282 d and Nadded is the total N added (as 

NH4
+ and organic N) in the N treatments. 

Soil microbial biomass N was estimated at 28 d following the microwave 

irradiation procedure of Islam and Weil (1998), with the following modifications.  After 

stirring the soil for NH4
+ and NO3¯ sampling, 20-g subsamples (dry-weight equivalent) 

were removed and placed in small glass beakers, packed to density of 1.1 g cm−3, wetted 

to 70% WFPS, irradiated in a microwave oven to receive 400 kJ kg−1 dry soil, stirred, 

allowed to cool, and then irradiated again.  The irradiated soil was inoculated with 1 g 

untreated soil, repacked to the original density, rewetted to 60% WFPS, and incubated in 
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sealed jars with 5 mL of water in the bottom for 10 d at 25°C.  After the incubation 

period, soil was extracted for NH4
+ and NO3¯ determination as above.  Soil microbial 

biomass N was calculated following Voroney and Paul (1984). 

5.3.3. Statistical Analysis 

A double exponential model has been found to provide the best description of NO3¯ 

accumulation in disturbed soil with or without N additions (Benbi and Richter, 2002; 

Cabrera and Kissel, 1988; Christensen and Olesen, 1998; Deans et al., 1986; Dou et al., 

1996; Lindemann and Cardenas, 1984; Wang et al., 2004).  This two-pool model allows 

the separation of N into two conceptual pools: a small, active pool comprised of easily 

transformed material responsible for an initial rapid phase of NO3¯ accumulation (N1), 

and a larger, resistant pool with a slower turnover time (N2), each described by first-order 

kinetics.  The cumulative amount of accumulated NO3¯ at time t is given as 

 Nt = N1[1 − exp(-k1t)] + N2[1 − exp(-k2t)] [2] 

where k1 and k2 are the rate constants associated with the active and slow N pools. 

There are concerns that estimates of N1, N2, k1, and k2 obtained from fitting all four 

parameters of the double exponential model simultaneously are highly sensitive to 

incubation conditions, particularly duration (Benbi and Richter, 2002; Böttcher, 2004; 

Dou et al., 1996; Wang et al., 2004), and that the rate constants and pool sizes are 

strongly correlated (Christensen and Olesen, 1998; Wang et al., 2004).  For these reasons, 

some researchers have proposed fixing the rate constants to increase the certainty of the 

pool size estimates (Christensen and Olesen, 1998; Wang et al., 2004).  This approach 

focuses on the effects of pool size alone on mineralization. 
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The double exponential model was fit to NO3¯ accumulation data using both fixed 

and unfixed rate constants.  The values of the fixed rate constants were determined by 

fitting Eq. [2] to the combined data set of all treatments simultaneously with common k1 

and k2 parameters but individual N1 and N2 for each treatment.  The rate constants 

estimated by this global model were k1 = 0.1989 d−1 and k2 = 0.0031 d−1 (R2 = 0.99).  

Model fitting was done with Nonlinear Model (SYSTAT Software, 2004) using the least 

squares loss function and the Marquardt option.  Data were first standardized by 

subtracting the Day 0 soil NO3¯ concentration for each treatment.  Curves were fit for 

each treatment replicate.  Extra sums of squares analysis was used to distinguish 

significantly different curves between soil pairs.  The effects of treatment on estimated N1 

and N2 parameters were analyzed with ANOVA (SYSTAT Software, 2004).   Parameter 

means were separated with Fisher’s protected LSD procedure, with a Bonferroni 

adjustment of critical probability values due to multiple tests (Sokal and Rohlf, 1995).  

The IManure NO3¯ accumulation data could not be fitted with a reasonable model.  

Instead, repeated measures ANOVA was used to determine the significance of 

amendment history and sampling date. 

5.4. Results 

5.4.1. Soil Properties 

A history of soil amendment increased both total C and N concentrations by 31% 

by 1999, and by 96 and 83%, respectively, by 2002 compared with the historically 

nonamended treatment (Table 5.1).  The more labile pools of C and N were 

disproportionately enhanced; particulate organic matter and SMB-C and -N 

concentrations were two to three times greater in the historically amended soil than in the 
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nonamended soil.  Microbial respiration and soil pH were also greater in the historically 

amended soil than in the nonamended soil.  The soil samples used for the incubation were 

representative of these treatment differences, with total C and N concentrations of 30 and 

2.5 g kg−1, respectively, for the historically amended treatment and 18 and 1.4 g kg−1, 

respectively, for the historically nonamended treatment. 

5.4.2. Soil Nitrogen Mineralization 

Net mineralization in the historically amended soil was twice that in the historically 

nonamended soil during the 282-d incubation when no N sources were added (Fig. 5.1a).  

Final soil NO3¯ accumulated was 168 vs. 84 mg kg−1 soil, respectively.  Nitrate 

concentrations reflect net mineralization, as well as nitrification, since NH4 

concentrations were negligible in the control soil throughout the incubation.  The 

proportion of total soil N that was net mineralized during the incubation was also higher 

in the historically amended soil (6.8%) than the nonamended soil (5.8%; Fig. 5.1b).  

Curves fit to the contrasting soil treatments in Fig. 5.1a and 5.1b were significantly 

different (p < 0.001), as determined by extra sums of squares analysis.
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Figure. 5.1. (a) Nitrate concentration and (b) NO3¯ as a percentage of total soil N for 
historically amended and nonamended soils, fitted with a two-pool, first-order model. 
Individual data points are the mean of five replicates (n = 5). EES, extra sums of squares 
comparison of fitted soil treatment curves. 
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5.4.3. Short-Term Nitrogen Dynamics following Nitrogen Additions 

Soil NH4
+ concentrations immediately following the addition of MManure or Fert 

were equivalent to the target NH4
+ addition rate (50 mg kg−1) at 0 d and declined at 

approximately the same rate, reaching zero within 3 to 7 d (Fig. 5.2).  Soil NH4
+ 

concentrations in all treatments remained nominal (i.e., <1 mg kg−1 soil) for the 

remainder of the incubation (data not shown).  In the Fert treatment, NH4
+ consumption 

and NO3¯ accumulation appeared to be strongly linked, as the rapid disappearance of 

NH4
+ was matched by rapid accumulation of NO3¯ (Fig. 5.2 and 5.3a).  Rates of NO3¯ 

accumulation slowed once concentrations reached 50 mg kg−1, suggesting complete 

nitrification of the added fertilizer NH4
+.  In comparison, consumption of NH4

+ from 

MManure occurred slightly faster than from Fert, but initial NO3¯ accumulated more 

slowly.  Nitrate concentrations in the MManure treatment reached only 31 and 35 mg 

kg−1 in the historically amended and nonamended soils, respectively, by 7 d when NH4
+ 

was depleted (Fig. 5.2 and 5.3b). 

Initial NH4
+ concentrations in the IManure treatment exceeded the target 

application rate by 10 mg kg−1 soil (Fig. 5.2).  Soil NH4
+ concentrations showed 

relatively little change at 1 d, but then decreased rapidly, disappearing by 3 or 7 d.  Soil 

NO3¯ concentration in the IManure treatment increased rapidly during this period of NH4
+ 

consumption, as with the other N treatments.  Unlike the other treatments, however, soil 

NO3¯ concentrations began to fall once NH4
+ was fully consumed, at 3 d for the 

historically amended treatment and 7 d for the historically nonamended treatment (Fig. 

5.3c). 



 

92 

Incubation time (days)
0 1 2 3 4 5 6 7N

H
4+ -N

 C
on

ce
nt

ra
tio

n 
(m

g 
kg

-1
 s

oi
l)

0

20

40

60

80

LSD0.05

MManure, Amended soil
MManure, Nonamended soil
IManure, Amended soil
IManure, Nonamended soil

Fert, Amended soil
Fert, Nonamended soil

 
 
Figure. 5.2. Ammonium consumption in historically amended and nonamended soils 
following incorporation of NH4+ fertilizer (Fert), net mineralizing manure (MManure), 
or net immobilizing manure (IManure). Individual data points are the mean of five 
replicates (n = 5). The MManure and Fert data were fitted with linear models (R2 > 0.97). 
LSD between all treatments, from a repeated measures ANOVA.
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Figure. 5.3. Nitrate concentration in historically amended and nonamended soils 
following the incorporation of (a) NH4+ fertilizer (Fert), (b) net mineralizing manure 
(MManure), and (c) net immobilizing manure (IManure). Individual data points are the 
mean of five replicates (n = 5). EES, extra sums of squares comparison of fitted soil 
treatment curves; LSD between soil treatments, from a repeated measures ANOVA of 
IManure. 
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While N source defined the overall shape of the NH4
+ consumption and NO3¯ 

accumulation curves, amendment history affected N transformation rates.  Soil NH4
+ 

disappeared and NO3¯ accumulated more rapidly in the historically amended soil than the 

nonamended soil for all N sources during the first 7 d of the incubation.  Curves fit to the 

NO3¯ accumulation data of the contrasting soil treatments were significantly different (p 

< 0.001 for both Fert and MManure), as determined by extra sums of squares analysis 

(Fig. 5.3a and 5.3b). 

5.4.4. Long-Term Nitrogen Dynamics following Nitrogen Additions 

The Fert and MManure NO3¯ accumulation curves resembled those for the control 

soils after the initial flush of NO3¯, with accumulation occurring more rapidly in the 

historically amended soil (Fig. 5.1a, 5.3a, and 5.3b).  In the IManure treatment, soil NO3¯ 

concentration remained near zero after 3 or 7 d until it began to increase after 56 d.  

There were relatively small differences between the soil treatments.  The negative NO3¯ 

concentrations observed at 28 and 56 d are an artifact of standardizing the data by 

subtracting Day 0 NO3¯ concentrations. 

Nitrogen source, soil amendment history, and the interaction of these two factors all 

affected the proportion of recently added N that was found in the mineral pool at the end 

of the incubation (Table 5.3).  Within each soil history treatment, Fert was the most 

available source of N, followed by MManure and IManure.  For each N source, less of 

the recently added N was found in the NO3¯ form at 282 d in the historically amended 

soil than in the historically nonamended soil.  The interaction between the treatment 

factors was due to the difference between soil treatments being smaller for MManure (4.7 

units) than for Fert (22.5 units) or IManure (18.8 units). Soil microbial biomass N, 
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determined at 28 d, was two to three times greater in the historically amended soil than 

the historically nonamended soil (Table 5.4).  Soil microbial biomass N was also affected 

by N source, with IManure causing the greatest increase in SMB-N relative to the control 

and Fert resulting in almost no change. 

 

Table 5.3.  Nitrate pool at the end of the 282-d incubation, expressed as a percentage of N 
added (NH4

+ plus organic N), for the historically amended and nonamended soil 
treatments. 

N Source† df Amended Nonamended 

  —————— % —————— 

Fert  24.5‡ 47.0 
MManure  22.3 27.0 
IManure  6.7 25.5 

 ANOVA 
Source of variation   
 Replicate 4 ns§ 
 Soil history (S) 1 *** 
 N source (N) 2 *** 
 S × N 2 ** 
LSD(0.05)  0.07 
CV, %  21.3 
† Fert = NH4

+ fertilizer; MManure = net mineralizing manure; IManure = net immobilizing 
manure. 
‡ Calculated by dividing control-corrected NO3¯ concentrations at 282 d by the sum of NH4

+ and 
organic N added for each N source. 
§ ns = not significant at the 0.05 probability level. 
**, *** Significant at the 0.01 and 0.001 probability levels, respectively. 
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Table 5.4.  Soil microbial biomass (SMB) N concentration at 28 d after N source 
treatments were added to the historically amended and nonamended soil treatments. 

N Source† df Amended Nonamended 

  ————— mg kg−1 ————— 

Control  259 77 
Fert  241 72 
MManure  308 129 
IManure  513 285 

ANOVA 
Source of variation   
 Replicate 4 ns‡ 
 Soil history (S) 1 *** 
 N source (N) 3 *** 
 S × N 3 *** 
LSD(0.05), mg kg−1 9 
CV, %  2.8 
† Fert = NH4

+ fertilizer; MManure = net mineralizing manure; IManure = net immobilizing 
manure. 
‡ ns = not significant at the 0.05 probability level. 
*** Significant at the 0.001 probability level.  

 

5.4.5. Estimated Nitrogen Pool Sizes 

The double exponential model provided good fits for NO3¯ accumulation curves of 

the Fert and MManure treatments, regardless of whether rate constants were fitted or 

fixed (R2 values ranged from 0.98 to >0.99 in both cases).  The control treatment could be 

fit with the two-pool model when rate constants were fixed (R2 > 0.99), but with only a 

single-pool model when the rate constant was fitted (R2 > 0.99).  Fitting all the 

parameters simultaneously produced more variable parameter estimates than fixing the 

rate constants, as seen with higher ANOVA CVs (Table 5.5).  Also, correlations between 

the fitted rate constants and pool sizes were high (−0.62 to −0.86 for N1 and k1; −0.84 to 

−0.99 for N2 and k2), which makes interpretations of the parameters uncertain 
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(Christensen and Olesen, 1998; Wang et al., 2004).  Finally, differences in rate constants 

are difficult to interpret as they represent only the net rate of change in the size of the 

NO3¯ pool, which is the result of multiple opposing processes and cannot be equated with 

microbial activity.  For these reasons, the remaining discussion of pool sizes refers to the 

estimates of N1 and N2 when the rate constants were fixed (Table 5.5). 

Estimated active and slow pools (N1 and N2, respectively) were significantly 

affected by both N source and soil amendment history (Table 5.5).  There were also 

significant interactions between these two factors for both N1 and N2.  The size of the 

active pool (N1) was minimal in the control treatment; this rapidly available N pool may 

have been exhausted during the 5-d preincubation period.  In the Fert treatment, the size 

of the N1 pool was equivalent to the amount of NH4
+ added and was unaffected by soil 

amendment history.  In contrast, N1 for the MManure treatment was less than the amount 

of manure NH4
+ added, and was 25% lower in the historically amended soil than in the 

historically nonamended soil.  Rankings of N2 for the N treatments were: MManure > 

control > Fert.  The difference in N2 between soil treatments for MManure was 

equivalent to that for the control (135 and 137 mg kg−1, respectively), yet this difference 

was smaller in the Fert treatment (117 mg kg−1).  The IManure NO3¯ concentration data 

could not be fit with the two-pool model, nor could pool sizes be estimated.
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Table 5.5.  Estimated active (N1) and slow (N2) N pool sizes determined by fitting a double exponential model to NO3¯ accumulation 
curves resulting from the addition of N sources to the historically amended and nonamended soil treatments (Figures 5.3a-c).  Pool 
sizes, expressed as mg N kg-1 soil, were estimated either by 1) allowing rate constants (k1 and k2) to be fit simultaneously, or 2) 
fixing the rate constants at k1=0.1989 day-1 and k2=0.0031day-1. 

  Rate constants fitted  Rate constants fixed 

 Treatment† df N1 k1 df N2 k2  df N1 N2 

Control           
 Amended  - -  302.0 0.0025   1.5 277.8 
 Nonamended  - -  131.9 0.0036   1.5 140.8 

Fert           
 Amended  47.5 0.5574  250.5 0.0028   53.6 211.3 
 Nonamended  50.9 0.2140  93.3 0.0034   51.9 94.4 

MManure           
 Amended  34.2 0.1607  288.9 0.0035   32.1 307.9 
 Nonamended  43.6 0.1310  117.3 0.0050   41.0 172.5 

   ANOVA 
Source of variation           
 Replicate 4 ns‡ ns 4 ns ns  4 ns ns 
 Soil history 1 *** *** 1 *** ***  1 *** *** 
 NSource 1 *** *** 2 * ***  2 *** *** 
 SxN 1 * *** 2 ns ns  2 *** ** 
LSD0.0125§, mg kg-1  5.7 0.1075  65.6 0.0012   3.1 9.1 
CV, %  6.0 18.8  19.1 17.6   5.9 3.0 
† Fert = NH4

+ fertilizer; MManure = net mineralizing manure. 
‡ ns = not significant at the 0.05 probability level. 
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Bonferroni adjusted LSD for experiment-wise Type I error of 5%. 
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5.5. Discussion 

5.5.1. Amendment History Effects on Soil Nitrogen Availability 

Thirteen years of organic amendment application created a soil distinct from its 

nonamended counterpart, with greatly enhanced soil C and N stocks, especially the more 

readily available pools of C and N, and increased microbial biomass and activity (Table 

5.1).  Historical amendment application also doubled the capacity of the soil to supply N.  

Nitrate accumulation during the incubation and the estimated size of N2 in the historically 

amended soil were twice those of the historically nonamended soil when no N was added 

(control treatment; Fig. 5.1a and Table 5.5).  Repeated, long-term application of manure 

has consistently been shown to increase the N supplying capacity of soil (Burger and 

Jackson, 2003; Griffin and Laine, 1983; Hadas et al., 1996; Langmeier et al., 2002), with 

higher application rates resulting in proportionally more potentially mineralizable N 

(Whalen et al., 2001).  In the present study, total soil N concentrations were 79% higher 

in the historically amended soil than in the historically nonamended soil.  Most of the 

difference between soil treatments was removed when net mineralized N was expressed 

as a proportion of total soil N (Fig. 5.1b).  This suggests that the size of the substrate pool 

was the major determinant of N mineralization, and agrees with findings that total soil N 

is a good predictor of potentially mineralizable N (Cabrera and Kissel, 1988; Griffin and 

Laine, 1983; Hadas et al., 1986).  Total N did not explain all of the difference in net N 

mineralization, however.  At the end of the incubation, 6.8% of total soil N was net 

mineralized in the historically amended soil vs. 5.8% in the historically nonamended soil.  

This difference may reflect the relative enhancement of the more readily available pools 

of N in the historically amended soil. 
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Numerous edaphic factors other than N pool size also have been shown to influence 

N mineralization, largely through their effects on microbial activity.  These include soil C 

content (Barrett and Burke, 2000), pore size and water status (Thomsen et al., 1999), soil 

pH (Curtin and Wen, 1999; Gordillo and Cabrera, 1997), microbial community 

composition (Hassink, 1994; Hassink et al., 1994), and grazer communities 

characteristics (Griffiths et al., 2003; Kuikman et al., 1991).  Most of these factors or 

mechanisms are potential contributors to differences in N mineralization between soils 

with divergent soil amendment histories.  It is possible that differences in soil 

characteristics such as these played a role in the present study, especially given the 

measured differences in soil C, pH, microbial biomass, and microbial activity (Table 5.1).  

Their combined effects were small, however, compared with the effect of the size of the 

mineralizable N pool. 

5.5.2. Nitrogen Mineralization from Recently Added Nitrogen Sources 

Nitrogen from manure became available more slowly than fertilizer N.  Despite 

similar NH4
+ inputs and rates of NH4

+ consumption for the MManure and Fert treatments 

(Fig. 5.2), NO3¯ accumulation was slower (Fig. 5.3) and estimated N1 was smaller (Table 

5.5) in the MManure treatment.  The proportion of recently added N that was found in the 

mineral pool at the end of the incubation was also smaller in the MManure treatment than 

in the Fert treatment (Table 5.3).  These results are congruent with findings that manure 

is a more gradual source of plant-available N than fertilizer (Langmeier et al., 2002; Ma 

et al., 1999).  Whereas the primary transformation of added fertilizer NH4
+ is 

nitrification, immobilization and nitrification are both stimulated by manure additions, 

with the possibility that immobilized N can later be remineralized via mineralization–
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immobilization turnover (Jansson and Persson, 1982).  Greater SMB-N in MManure than 

in the control at 28 d provides evidence that immobilization was indeed an important 

alternative pathway for this treatment, but not for Fert, which showed no such increase 

(Table 5.4).  Denitrification has recently been shown to be another important alternative 

sink in aerobic incubations of manure-amended soil, with losses of manure NH4
+ up to 

30% (Calderón et al., 2004).  These losses result from the addition of readily available C 

and N; C stimulates intense microbial activity, which consumes the local O2 supply, and 

NO3¯ fuels denitrification in the anoxic microsites (Calderón et al., 2004; Calderón et al., 

2005).  Denitrification most likely did not play an important role in the present study, 

however, because the soil was aerated daily and stirred periodically during the period of 

intense microbial activity and O2 consumption (0–2 wk). 

Alternative pathways for recently added N were even more important for IManure 

than MManure.  In this treatment, there was an initial flush of NO3¯ accumulation, 

presumably from nitrification of the added NH4
+, followed by a steep drop in NO3¯ 

concentration to near zero at 28 d (Fig. 5.3c).  A similar pattern of N availability was 

observed for this particular manure in a previous incubation experiment and reflects 

manure with a high concentration of C relative to NH4
+ (Griffin et al., 2005).  Greater 

SMB-N in the IManure treatment than the control at 28 d (Table 5.4) suggests that 

microbial immobilization was responsible for the drop in NO3¯ concentration.  

Appreciable rates of NO3¯ assimilation by microbes have been observed in tilled and 

untilled soils, and have been associated with C availability (Burger and Jackson, 2003; 

DeLuca and Keeney, 1995; Schimel, 1986).  The IManure added seven times more total 

C than MManure at the same NH4
+ addition rate (10,247 vs. 1460 mg C kg−1 soil, 
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respectively) due to its high C/NH4
+ ratio (Table 5.2).  Additionally, IManure C was 

substantially more recalcitrant than MManure C, probably becoming available more 

slowly.  Calderón et al. (2005) observed that lower cumulative N2O flux correlated with 

lower CO2 flux regardless of manure total C concentration.  They hypothesized that slow 

and gradual sources of C favor immobilization over denitrification, as would a well-

aerated soil status.  Following the drop to near zero at 28 d in the present study, NO3¯ 

concentrations began accumulating in IManure, indicating a shift in the relative 

importance of ammonification and subsequent nitrification over immobilization. 

Net mineralization of organic N was observed for MManure as an increase in N1 + 

N2 compared with the control (61 and 72 mg kg−1 for the historically amended and 

nonamended soils, respectively) that was greater than the amount of NH4
+ added 

(approximately 50 mg kg−1).  Organic N can contribute to active, slow, and recalcitrant 

pools of N (Wander, 2004), while NH4
+ is assumed to be part of the active N pool.  The 

relative contributions of organic N and NH4
+ to N1 and N2 cannot be determined in the 

present study.  The coincidence of NH4
+ disappearance and NO3¯ accumulation during 

the first 7 d, however, suggests that NH4
+ was the largest contributor to N1.  Net 

mineralization of organic N was probably responsible for the greater N2 in MManure 

relative to the control. 

The Fert treatment resulted in a smaller N2 pool relative to the control.  Reduced 

NO3¯ concentrations could have occurred from loss of mineral N, suppression of soil N 

mineralization, or both.  Denitrification is not a likely mechanism for lowering NO3¯ 

levels in the Fert treatment for the reasons mentioned above and because Fert did not 

introduce a source of readily available C.  It is more probable that net mineralization was 
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suppressed by the addition of N fertilizer.  Mineralization of organic N is known to 

decrease progressively with decreasing pH below pH 6 (Adams and Martin, 1984).  The 

pH of the incubation soils started in this range (Table 5.1) and could have been reduced 

by nitrification of the added NH4
+ fertilizer (Brady and Weil, 1996).  While a pH effect is 

a more likely explanation than denitrification, the actual cause of the reduced Fert N2 

relative to the control remains unclear. 

5.5.3. Amendment History Effects on Mineralization of Recently Added N 

Results from the historically amended and nonamended soils indicate that the 

effects of soil amendment history on mineralization of recently added N can be more 

important than previously documented.  Although the N source treatment factor defined 

the overall shapes of the NO3¯ accumulation curves, soil amendment history also clearly 

influenced N dynamics.  In the short term (0–7 d), initial rates of NH4
+ disappearance and 

NO3¯ accumulation were higher in the historically amended soil than the nonamended 

soil in almost all cases (Fig. 5.2 and 5.3a–c), presumably due to a larger, more active 

microbial biomass (Table 5.1).  In the long term, however, historical amendment had the 

opposite effect, reducing rather than increasing the availability of recently added N.  

Recovery of added N as NO3¯ at the end of the incubation was lower in the historically 

amended soil than in the historically nonamended soil (Table 5.3), suggesting that 

immobilization of recently added N was more important in the historically amended soil. 

Previous research has found little or no effect of soil amendment history on the 

availability of current N additions (Hadas et al., 1996; Langmeier et al., 2002; Sanchez et 

al., 2001).  Langmeier et al. (2002) reported a significant effect of soil management 

(organic vs. mineral fertilizers) on plant uptake of N from mineral and organic N sources, 
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but the soil effect was an order of magnitude smaller than N source effects, and was only 

observed for organic N sources.  In contrast, our results demonstrate that the effects of 

soil amendment history on the availability of N from organic and inorganic N sources can 

be as important in scale and duration as N source effects.  One possible reason why our 

results do not concur with others is that the historically amended and nonamended soils 

were far more disparate than the pairs of contrasting soils used in the other studies.  For 

example, total soil C and N concentrations, 67 and 79% higher, respectively, in the 

historically amended soil than in the historically nonamended soil, differed between soil 

pairs by only 7 and 15% in Langmeier et al. (2002), by 36 and 30% in Sanchez et al. 

(2001), and by 61% (reported for total soil N only) in Hadas et al. (1996). 

Estimating the active and slow N pools with the double exponential model revealed 

that, although the historically amended soil reduced the availability of all sources of N, 

the pools affected were not the same.  Historical amendment affected N1 for MManure 

and N2 for Fert (Table 5.5).  One possible explanation involves the relative availability of 

the different sources of C that could facilitate N immobilization, namely soil and manure.  

Although soil C was much more abundant in the historically amended soil than the 

historically nonamended soil, the preincubation period may have depleted both soils of 

the most readily available C pools.  If so, immobilization of Fert NH4
+ may have been C 

limited in the short term, thereby favoring nitrification.  With time, however, 

mineralization of soil organic matter would have liberated soil C, with more becoming 

available in the historically amended soil, and allowed immobilization in the Fert 

treatment.  This apparent lag time for C availability could explain why historical 

amendment affected N2 but not N1 in the Fert treatment.  In the MManure treatment, this 
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lag time for C availability may have been overcome by the addition of labile C in the 

manure.  In this case, the reduction of N1 in the historically amended soil could be 

attributed to an interaction of a more active soil microbial community with the added C 

and NH4
+ (Burger and Jackson, 2003), resulting in increased immobilization relative to 

nitrification (Barrett and Burke, 2000; Hatch et al., 2000). 

Although pool sizes were not estimable for IManure, the NO3¯ accumulation results 

(Fig. 5.3c) show a reduction in soil NO3¯ concentration in the historically amended 

treatment relative to the nonamended treatment.  This reduction did not occur until after 

the initial flush of NO3¯ (after 3 d), suggesting that C availability was delayed in the 

historically amended soil receiving IManure.  In this case, the apparent lag time for C 

availability was due to recalcitrance of the manure C (Table 5.2) as well as soil C. 

5.5.4. Implications of an Amendment History Effect 

Two factors determine how N use efficiency might be impacted by the reduced 

availability of recently added N in a historically amended soil: (i) the magnitude and 

timing of plant N demand relative to N supply, and (ii) the fate of the recently added N 

not recovered in the inorganic N pool.  Inorganic N in excess of plant demand is 

susceptible to loss via leaching or denitrification.  Creating better coincidence between N 

supply and plant demand is central to improving N use efficiency and tightening the N 

cycle (Christensen, 2004).  Delaying or reducing N availability from added sources, as 

occurred in the historically amended soil, may increase synchrony with plant demand and 

reduce potential N leaching losses (Ma et al., 1999), but may also lead to potentially 

leachable end-of-season excesses of NO3¯ (Schröder, 2005). 
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The fate of recently added N not recovered in the NO3¯ pool of the historically 

amended soil depends on the mechanism responsible for the soil history effect.  It appears 

that reductions were related to microbial activity and available manure C in the short term 

(0–7 d), and to available soil C in the longer term.  Carbon-enhanced immobilization is a 

probable mechanism since it is microbiologically driven, dependent on a readily available 

source of C, and provides an alternative pathway for NH4
+.  Immobilized NH4

+ enters the 

microbial biomass instead of the NO3¯ pool.  As mentioned above, denitrification can be 

another important pathway for manure N (Calderón et al., 2004), although of unlikely 

importance in the present study.  Distinguishing between immobilization and 

denitrification of recently added N is not necessary for predicting plant-available N 

during the first growing season after application, but it is critical for estimating the longer 

term N supply effects (Lindemann and Cardenas, 1984) as well as the environmental 

impact of manure amendments.  While both processes reduce current-season plant-

available N, denitrification results in net loss of N from the system to the environment.  

In contrast, immobilization builds the N supply capacity of the soil, reduces potential N 

losses via leaching, and thereby increases the overall N efficiency of the agricultural 

system (Christensen, 2004). 

Soil amendment history had the largest impact on soil N mineralization capacity 

through the accumulation of residual N, but it also altered the dynamics of recently added 

N.  As such, future work to develop and refine predictive models for N availability 

should include consideration of soil amendment history not only for its effects on the 

ability of the soil to supply N, but also for its effects on the availability of recently added 

N sources.  Additionally, an understanding of the fate of added N not recovered in the 
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NO3¯ pool in historically amended soil, and how it is influenced by manure and fertilizer 

characteristics, is clearly needed to predict the long-term availability and the potential 

environmental impact of N added to these soils. 
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Chapter 6 

ON-FARM ASSESSMENT OF SOIL QUALITY IN INTEGRATED POTATO-

DAIRY SYSTEMS 

6.1. Chapter Abstract 

Integrating potato and dairy systems can improve the quality and crop production 

potential of soil used for growing potatoes through manure additions and longer rotations.  

We investigated whether effects of integration were observable at a landscape level by 

assessing the soil quality status of 48 potato and dairy farm fields under various degrees 

of integration in Maine.  Fields were in one of six cropping systems: 2 yr potato–small 

grain or grain corn rotations, no manure (2YrPot-M0); 2 yr potato–small grain or silage 

corn rotations, manure every other year (2YrPot-M50); 3 yr potato–corn silage–corn 

silage or small grain rotations, manure two of three yr (3YrPot-M67); continuous corn 

silage, manure every yr (CornSil-M100); mixed forage grass, no manure (Hay-M0); and 

mixed forage grass, manure every yr (Hay-M100).  Soil was analyzed for total and 

particulate organic matter (POM) C and N, Modified Morgan P, CaCl2 P, pH, cation 

exchange capacity, soil texture, and bulk density.  Soil pH and P were higher in 

integrated potato systems (2YrPot-M50 and 3YrPot-M67) than nonintegrated potato 

systems (2YrPot-M0) but there were no detectable differences in total or POM C or N 

among potato systems.  Soil C and N pools were significantly higher in dairy systems 

(CornSil-M100, Hay-M0 and Hay-M100) than in potato systems.  A nonlinear 

relationship between POM C and total C was observed.  Intensively-tilled potato-based 



 

109 

systems appear to need greater increases in C inputs and reductions in tillage to produce 

changes in soil C and N that can be detected at a landscape level. 

6.2. Introduction 

Improving or maintaining soil quality is recognized as fundamental to preserving 

the crop production potential of soil.  Maintaining soil quality is difficult in potato 

cropping systems because they are typified by high levels of soil disturbance and low 

levels of crop residue return.  In Maine and northeastern Canada, intensive potato 

production has led to measurable decreases in SOM, porosity, and structural stability 

(Saini and Grant, 1980).  The use of manure, composts, and other organic amendments in 

potato systems in this and other regions have been shown in research station studies to 

increase C and nutrient inputs, improve SOM levels, increase potato yields (Black and 

White, 1973; Grandy et al., 2002; Snapp et al., 2003), and enhance the stability of those 

yields (Mallory and Porter, 2007).  Thus, relinking C and nutrient cycles between potato 

and livestock farms is seen as a promising strategy to assure soil quality and productivity 

in potato systems (Files and Smith, 2001; Russelle et al., 2007; Stark and Porter, 2005). 

In Maine, regional integration of potato and dairy farms has developed over the last 

15 years (Files and Smith, 2001; Hoshide et al., 2004).  In some cases, integration 

consists solely of excess dairy manure being applied to nearby potato farm fields, and is 

thus a unidirectional flow of organic matter and nutrients from dairy to potato farms.  In 

other cases, integration is more complex and bidirectional, with farmers sharing land 

between operations, expanding the potato rotation to include feed crops (e.g., silage corn 

or barley as forage or grain) for the dairy operation, and trading services such as tillage or 

spraying.  Integrated dairy farmers identified an expanded land base for applying manure 
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and a local source of feed as the key benefits of integration (Files and Smith, 2001).  

Integrated potato farmers noted increased crop yields and crop quality, which they 

attributed in large part to improvements in soil quality (experienced as improved friability 

and water holding capacity) resulting from the use of manure and longer rotations.  While 

the benefits to soil quality have been observed on an individual field level, the question 

remains whether the adoption of integrated potato dairy systems has produced changes in 

soil quality that are measurable on a landscape level across fields and farming operations. 

The primary objective of this study was to assess the impact of different levels of 

potato-dairy integration on soil quality.  A secondary objective was to develop guidelines 

for nonintegrated farmers on the level or degree of integration necessary to achieve 

observable improvements in soil quality.  We assessed the soil quality status of 48 

integrated and nonintegrated potato and dairy farm fields in Maine using total soil and 

POM C and N content as our indicators.  Soil organic matter attributes are regarded as the 

best indicators of soil quality status (Gregorich et al., 1994).  Whereas total soil C and N 

pools integrate inherent site characteristics with historical management effects, POM C 

and N are early indicators of management-induced SOM changes (Cambardella and 

Elliott, 1992; Gregorich et al., 1994; Wander and Bollero, 1999).  We also assessed the P 

status of the soils because of concerns that manure use can cause the accumulation of soil 

P to excess levels (Edmeades, 2003; Stark and Porter, 2005), which is especially relevant 

to potato systems with a history of heavy P fertilizer use (Erich et al., 2002). 
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6.3. Materials and Methods 

6.3.1. Site Descriptions 

Initially, 49 potato and dairy farm fields located within 50 km of one another in 

Central Maine were selected for this study.  All surface soils were developed from glacial 

till and belong to one of three related silt loam series:  Bangor silt loam (coarse-loamy, 

isotic, frigid Typic Haplorthods); Dixmont silt loam (coarse-loamy, isotic, frigid Aquic 

Haplorthods); and Thorndike silt loam (loamy-skeletal, isotic, frigid Lithic Haplorthods).  

Clay concentration in the original 49 samples ranged from 57 to 145 g kg-1. 

The fields were selected to cover the existing range of integrated and nonintegrated 

potato and dairy cropping systems.  All of the selected fields had been managed 

consistently over the previous 10 years, according to farmers’ accounts.  The fields were 

assigned to one of six cropping system categories based on crop rotation and frequency of 

manure applications (Table 6.1).  The cropping systems were ordered according to what 

we hypothesized to be their relative levels of net annual carbon inputs to the soil.  The 

systems, in ascending order of estimated C input, were: 2-yr potato–small grain or corn 

grain rotations with no manure (2YrPot-M0);  2-yr potato–small grain or corn silage 

rotations with manure applied in non-potato year (2YrPot-M50); 3-yr potato–corn silage–

corn silage or small grain rotations with manure applied in the non-potato years (3YrPot-

M67); continuous corn silage with manure applied every year (CornSil-M100); mixed 

forage grass with no manure (Hay-M0); and mixed forage grass with manure applied 

every year (Hay-M100).  The manure applied was liquid dairy manure with sawdust, 

sand, or both as bedding.  Both integrated and nonintegrated potato rotations also often 

included barley or rye (Secale cereale L.) cover crops after the potato or small grain 

harvest.  The 2YrPot-M50 systems represent the lowest level of potato-dairy integration 
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in which the only change is that manure is added to the pre-existing potato rotation.  The 

3YrPot-M67 systems represent the next level of integration in which the rotation is 

expanded to include an annual forage crop for the dairy operation and manure is applied.  

Higher levels of integration are possible, including expanding the potato rotation to 

include a perennial forage crop, but they are not currently practiced in this area of Maine.
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Table 6.1.  Characteristics of the 48 potato and dairy farm fields sampled. 

   Manure application† 

Cropping 
system‡ 

Number 
of fields Crop rotation 

Percent of 
years  

Average 
annual rate§ 

   — % — – Mg ha-1 – 

2YrPot-M0 12 Potato – small grain or corn grain  0 0.0 
2YrPot-M50 7 Potato – small grain or corn silage 50 4.3 
3YrPot-M67 10 Potato – corn silage – corn silage or small grain 67 6.4 
CornSil-M100 8 Continuous corn silage 100 10.0 
Hay-M0 3 Continuous grass 0 0.0 
Hay-M100 8 Continuous grass 100 5.3 
† The manure was liquid dairy manure with sawdust, sand, or both as bedding. 
‡ 2YrPot-M0 = two-year potato–small grain or corn grain rotations with no manure,  2YrPot-M50 = two-year potato–small grain or 
corn silage rotations with manure applied in non-potato year, 3YrPot-M67 = three-year potato–corn silage–corn silage or small grain 
rotations with manure applied in the non-potato years, CornSil-M100 = continuous corn silage with manure applied every year, Hay-
M0 = mixed forage grass with no manure, and Hay-M100 = mixed forage grass with manure applied every year.   
§ Dry matter basis. 
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6.3.2. Soil Sampling and Analysis 

Samples were collected from commercial fields after crop harvest in October and 

November of 2003 and 2004.  Four locations per field were sampled and analyzed 

separately.  The position of each location was determined by visually dividing a field into 

quadrats and then choosing a position in each quadrat such that locations were in a 

staggered pattern.  Field edges, depressions, knolls, and other extreme areas were 

avoided.  In sloping fields, locations were chosen so that one was upslope, one was down 

slope, and two were midslope.  Fields ranged in size from approximately 6 to 60 acres.  

In fields larger than 30 acres, an approximately 30-acre subsection was chosen that was 

representative of the whole field and that did not contain extremely variable areas.   

At each location, six soil cores (2 cm dia) were taken to a depth of 15 cm from a 1-

m2 area, bulked, and mixed thoroughly.  A 500-g subsample was sieved to 2 mm, of 

which 200 g was air dried at room temperature and stored in cardboard boxes until 

analysis.  Bulk density was determined in each of the 1-m2 areas using the core method 

described by Blake and Hartge (1986).  Metal rings (7.2 cm dia by 7.6 cm height) were 

pounded into the soil to 1cm below the soil surface using a cylindrical sleeve.  The 

sample rings were removed, capped, dried at 50°C, and sieved to 2 mm to separate coarse 

fragments.  Both fractions were weighed and bulk density estimates were corrected for 

coarse fragments. 

Total soil C and N concentrations were determined on a pulverized 5-g subsample 

of the air-dried soil.  Analysis was by dry combustion using a Carlo Erba Instruments 

NA2500 Elemental Analyzer (ThermaQuest Italia S.p.A., Rodano, Italy).  Particulate 

organic matter C and N were determined following the method described by Cambardella 
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et al. (2001) with minor modifications.  A 5-g subsample of the air-dried soil was 

dispersed in 15 ml of 0.5% hexametaphosphate for 16 h on a reciprocal shaker at 120 

RPM.  The soil slurry was poured through a 0.053 mm sieve.  The material retained on 

the sieve, the sand fraction (0.053 – 2 mm), was washed thoroughly with deionized water, 

transferred to aluminum weighing crucibles, dried at 50°C, and weighed.  This fraction 

was pulverized and analyzed for POM-C and -N concentration by dry combustion as 

above.  The liquid fraction was collected in plastic pails to determine the size of the silt 

fraction (Kettler et al., 2001).  Samples were stirred and allowed to sit undisturbed for 4 

hr at which point the liquid, containing the clay fraction, was carefully decanted and 

discarded.  The remaining silt fraction was dried at 50°C and weighed.  The size of the 

clay fraction was determined by difference.  Mineral-associated C (and N) was calculated 

as the difference between total soil C (or N) and POM-C (or -N).   

Soil test P and cations were determined using a modified Morgan extraction 

(McIntosh, 1969; 3 g air-dried soil in 15 mL of pH 4.8, 0.62 M NH4OH + 1.25 M 

CH3COOH, shaken for 15 min) and inductively coupled plasma emission spectroscopy 

(ICP).  Effective CEC was estimated by summing cation concentrations and 

exchangeable acidity (Sumner and Miller, 1996).  Samples from 2004 were also extracted 

for soluble P with 0.01 M CaCl2 (2 g air-dried soil in 20 mL, shaken for 1 h) and 

analyzed using ICP.  Soil pH was determined using the soil slurry method (Thomas, 

1996). 

6.3.3. Carbon Inputs 

Ten-year average annual carbon inputs to each field from seed, manure, above-

ground and root residues were estimated using field history information recorded from 
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interviews with the cooperating farmers.  Above-ground residue inputs were estimated 

based on yield data and published harvest indexes, and root biomass inputs were 

estimated using published root:shoot ratios (Bolinder et al., 1997; Bolinder et al., 1999; 

Buyanovsky and Wagner, 1986; Janzen et al., 2003; Johnson et al., 2006; Kolbe and 

Stephan-Beckmann, 1997; Marra, 1996; Opena and Porter, 1999; Vos and van der Putten, 

2000).  Dry matter was converted to C assuming a ratio of 0.4 (Johnson et al., 2006).  

Estimations of carbon input from rhizodeposition were not attempted due to the great 

uncertainty in these estimates (Johnson et al., 2006).  Rhizodeposition is known to 

contribute relatively high amounts of C in perennial sod systems compared with annual 

systems (Paustian et al., 1997).  For this reason, it was deemed inappropriate to compare 

estimated C inputs between the annual and perennial systems; only estimates for the 

annual systems are presented.  The relative intensity of soil disturbance for each of the 

cropping systems was estimated using the Soil Tillage Intensity Rating (STIR) online 

program (USDA-NRCS, 2007). 

6.3.4. Statistical Analyses 

The distribution of average soil clay concentration among the fields was inspected.  

One outlier was identified and removed from the data set.  The remaining fields (n = 48) 

had clay concentrations that ranged from 72 to 145 g kg-1.  Relationships between soil 

parameters were analyzed using Pearson correlation and verified with Spearman 

correlation analysis if some of the parameter distributions deviated from normality.  

Analysis of covariance was used to test the effect of cropping system on soil C, N, pH, 

and P variables with soil clay concentration and the crop grown before sampling as 

covariates (SYSTAT Software, 2004).  The relationship between POM C and total soil C 
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was evaluated by testing linear and cubic regression models using Nonlinear Model 

(SYSTAT Software, 2004).  

6.4. Results and Discussion 

Bulk density in the 0 to 7.6 cm soil layer was significantly affected by cropping 

system and current crop.  Bulk densities were generally highest in soil in hay systems and 

lowest in soil sampled following potato harvest (data not shown).  Thus, concentration 

data were corrected for bulk density and converted to an area basis (15-cm depth).  Clay 

concentration was negatively correlated with soil C and N pools (Table 6.2), contrary to 

most observations that clay and organic matter attributes tend to be positively associated 

(Brady and Weil, 1996).  The negative correlations can be explained as an artifact of the 

confounding of clay concentration and cropping system.  Fields in the systems with lower 

C inputs (and lower soil C and N pools) had higher clay concentrations than fields in the 

systems with higher C inputs (and higher soil C and N pools).  The negative association 

between cropping system and clay concentration was probably due to chance or to 

farmers’ land use decisions.  Its confounding effect was removed via ANCOVA.
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Table 6.2.  Pearson correlation coefficients (r) between measured soil parameters for 
potato and dairy farm fields. (n=48) 

Soil 
measurement 

Cropping 
system† 

Total soil 
C POM C 

Total soil 
N POM N CEC pH 

Total soil C 0.79***       

POM C 0.76*** 0.90***      

Total soil N 0.83*** 0.96*** 0.87***     

POM N 0.75*** 0.87*** 0.98*** 0.85***    

CEC 0.72*** 0.70*** 0.60*** 0.72*** 0.59***   

pH 0.50** 0.29 0.25 0.32 0.27 0.75***  

Clay -0.37 -0.46* -0.46* -0.42 -0.38 -0.43* -0.17
† Cropping systems were put on an ordinal scale from 1 to 6 in ascending order of 
estimated C input: 2YrPot-M0, 2YrPot-M50, 3YrPot-M67, CornSil-M100, Hay-M0, 
Hay-M100. 
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. 

 

6.4.1. Soil Carbon and Nitrogen Pools 

Soil C and N pools were strongly correlated with one another and with CEC (Table 

6.2), and were significantly affected by cropping system (Tables 6.3 and 6.4).  Total soil 

C in the hay systems was 82% higher than in the potato systems and 27% higher than in 

continuous corn silage (Table 6.3).  Similar differences among these cropping systems 

were observed for mineral-associated and POM C and are congruent with previous 

findings that sod systems have higher soil quality characteristics than arable systems 

(Cambardella and Elliott, 1992; Haynes, 2000).  These differences are attributed to the 

absence of tillage, because tillage stimulates the respiration of soil C, and to the relatively 

high, but difficult to estimate, below-ground C contributions from perennial sods 

(Paustian et al., 1997).
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Table 6.3.  Soil carbon pools, average estimated C inputs, and average estimated soil tillage intensity ratings for soil sampled from 
48 potato and dairy farm fields with a minimum 10-year consistent history of one of six cropping systems. 

 

Cropping system n 
Total soil 

C 

Mineral-
associated 

C POM C 
POM C / total 

soil C 

Average 
estimated C 

inputs 

Average soil 
tillage intensity 

rating† 

  —————— Mg ha-1 —————— —— % —— – Mg ha-1 –  

2YRPOT-M0 12 31.8c 23.8c 8.2c 27.1 2.0 130 
2YRPOT-M50 7 32.7c 24.8c 7.9c 24.7 3.3 124 
3YRPOT-M67 10 32.8c 24.3c 8.5bc 26.5 3.2 108 
CornSil-M100 8 46.5b 34.2b 12.3b 26.3 5.4 68 
Hay-M0 3 57.5a 42.8a 14.6a 25.1 ‡ <1 
Hay-M100 8 60.5a 42.1a 18.4a 30.1 ‡ <1 

  ANCOVA (p-values)   
Source of variation df       
  System 5 0.000 0.000 0.000 0.305   
  Clay 1 0.124 0.356 0.038 0.605   
  Crop(System) 7 0.243 0.066 0.900 0.044   
C.V.(%)  17.6 18.5 25.5 16.6   
† Calculated using the Soil Tillage Intensity Rating (STIR) program (USDA-NRCS, 2007). 
‡ Carbon inputs were not estimated for the hay systems because of the high uncertainty associated with carbon estimates for 
perennial system. 
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Table 6.4.  Soil nitrogen pools for soil sampled from 48 potato and dairy farm fields with 
a minimum 10-year consistent history of one of six cropping systems. 

 

Cropping system n Total soil N 
Mineral-

associated N POM N 
POM N / total 

soil N 

  —————— Mg ha-1 —————— —— % —— 

2YRPOT-M0 12 2.65c 2.07c 0.58cd 22.7 
2YRPOT-M50 7 2.86c 2.30c 0.55d 19.4 
3YRPOT-M67 10 2.81c 2.20c 0.62cd 22.2 
CornSil-M100 8 3.86b 3.03b 0.84bc 21.3 
Hay-M0 3 4.61a 3.59a 1.02ab 21.7 
Hay-M100 8 4.98a 3.74a 1.24a 24.8 

 ANCOVA (p-values) 

Source of variation df     
  System 5 0.000 0.000 0.000 0.415 
  Clay 1 0.512 0.811 0.287 0.983 
  Crop(System) 7 0.140 0.093 0.939 0.698 
C.V.(%)  14.0 15.0 27.0 20.1 

 

There were no detectable differences in any of the soil C or N pools among the 

potato systems (Tables 6.3 and 6.4).  Neither of the two levels of potato-dairy integration 

evaluated here, the application of manure every other year (2YrPot-M50) or the inclusion 

of an annual forage crop with manure two of three years (3YrPot-M67), was sufficient to 

alter total, mineral-associated, or POM C or N, despite 65% higher estimated C inputs 

and reduced tillage intensity (Table 6.3).  The only arable system that had measurably 

higher soil C and N stocks than the nonintegrated potato system (2YrPot-M0) was 

CornSil-M100, a dairy system with 2.7 times more C inputs and almost half the soil 

tillage intensity rating.   

Examining total and POM C as a function of estimated C inputs (Fig. 6.1) reveals a 

consistent range of total and POM C content across the range of C inputs in the potato 

systems.  It appears that the increases in C inputs in the integrated compared with the 
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nonintegrated potato systems were not large enough to produce measurable increases in 

soil total C or POM C.  Estimated C inputs in many of the 3YrPot-M67 fields were 

actually less than those of most of the 2YrPot-M50 fields.  The manure used on most of 

the 3YrPot-M67 fields contained sand bedding and therefore had lower C content than 

manure with sawdust bedding.  Griffin and Porter (2004) found a positive linear 

relationship between C inputs and resulting soil total C and POM C in a series of field 

trials in Maine that included soil amendment or cover crop and green manure treatments 

in the context of intensively tilled two-year potato or sweet corn rotations.  Differences in 

C inputs between the contrasting treatments in the Griffin and Porter (2004) study ranged 

from -1 to 8 Mg C ha-1.
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Figure 6.1. Relationship between soil total C or particulate organic matter (POM) C and 
estimated 10-yr average C inputs for soil sampled from 37 potato and dairy farm fields 
with a minimum 10-year consistent history of one of four cropping systems.  Individual 
points are the mean of four samples (n = 4). 
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Applying the linear model derived in Griffin and Porter (2004) to the differences in 

C inputs between treatments from Table 6.3 yielded expected increases over 2YrPot-M0 

in total soil C of 1.0, 0.9, and 2.5 Mg ha-1 and in POM C of 0.2, 0.1, and 2.0 Mg ha-1for 

2YrPot-M50, 3YrPot-M67, and CornSil-M100, respectively.  The expected changes in 

soil total C and POM C for the manured potato systems are small and within the range of 

variation observed among fields for those treatments.  The observed increases in soil total 

C and POM C for CornSil-M100 over 2YrPot-M0 exceeded the expected changes (14 vs. 

2.5 Mg total C ha-1 and 4.1 vs. 2.0 Mg POM C ha-1, respectively) most likely due to the 

substantial reduction in soil disturbance (Table 6.3), which is not accounted for in the 

Griffin and Porter (2004) model.  While these comparisons should be treated lightly 

because of the uncertainty associated the methods used to estimate C inputs in both 

studies, they do underscore the fact that the increases in net C inputs in the integrated 

potato systems compared with the nonintegrated system are relatively small.  Higher 

levels of integration, such as the inclusion of sod crops, would be expected to produce 

greater changes in soil C and N stocks in potato-based systems (Angers et al., 1999), as 

would longer histories of integration. 

The proportion of total soil C that resided in the POM pool was not statistically 

different among the cropping systems (Table 6.3), yet the similarity of the cropping 

system treatment averages obscures a nonlinear relationship between POM-C and total 

soil C (Fig. 6.2).  This disproportionate enhancement of the POM pool at relatively high 

soil C levels has been observed elsewhere (Conant et al., 2004; Griffin and Porter, 2004), 

although not consistently (Haynes, 2000; McLauchlan and Hobbie, 2004), and is 

described in a conceptual model of SOM accumulation by Carter (2002).  Whereas the 
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size of the mineral-associated fraction is constrained by the amount of clay plus silt with 

which it is associated, the POM pool is governed largely by C input and respiration rates, 

and can continue to increase once the mineral-associated fraction is saturated.  Thus, 

under high soil C concentrations, POM constitutes a larger portion of total C than under 

low C concentrations.  POM is also the fraction most susceptible to decomposition and 

most responsive to short-term changes in soil management (Haynes, 2000).  In Fig. 6.2, 

POM increases only incrementally with increasing soil C until about 45 Mg ha-1, at which 

point POM increases more rapidly.  The cropping systems segregate along this curve into 

potato and dairy systems.  In both groups, the range of total soil C is wide, reflecting 

variation in the long-term histories and uncontrolled edaphic factors of the fields 

sampled.  The scale and range of POM reflects recent inputs and management regimes.  

In the potato systems, the C inputs that maintain a relatively low level of total soil C are 

apparently not enough to overcome the high rates of degradation in these systems, and 

POM does not accumulate.  In the dairy systems, with higher C inputs and less or no 

tillage, net rates of C addition appear to have exceeded degradation and POM 

accumulates.  Results for nitrogen mirrored those for carbon (data not shown).
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Figure 6.2. Relationship between particulate organic matter (POM) C and total C for soil 
sampled from 48 potato and dairy farm fields with a minimum 10-year consistent history 
of one of six cropping systems.  Individual points are the mean of four samples (n = 4). 
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Our results suggest that it is difficult to bring about measurable changes in soil 

quality in intensively tilled potato-based systems through the use of annual crops and 

dairy manure at the rates applied here over this 10 to 20 yr time period.  Yet at least two 

of the farmers whose fields we sampled said they have observed functional differences in 

the quality of their soil with integration, such as improved friability and water holding 

capacity, and they cite these improvements as a key benefit to integrating their farm with 

a neighboring dairy farm (Files and Smith, 2001).  It is possible that our measures of soil 

quality, which focus primarily on total soil C and POM C stocks, fail to reflect the 

changes that farmers witnessed.  For instance, water stable aggregates or water 

infiltration may have been more representative and sensitive indicators of observed 

changes in soil function.  It also is possible that this type of multi-field study, conducted 

over a range of field characteristics and management systems, can not provide the 

resolution needed to detect the changes in soil quality that can be observed at a field scale 

with longitudinal observations or controlled research station studies.  Haynes (2000) and 

Wander and Bollero (1999) observed measurable soil quality changes across the 

landscape among systems differing in the proportion of arable versus sod crops and in the 

intensity of tillage, respectively, but these are relatively large system changes compared 

with the changes occurring with the different levels of integration studied here.  

6.4.2. Soil pH and Phosphorus 

The manured cropping systems had higher pH than those that received fertilizer 

alone (Table 6.5), congruent with previous observations that manure can have a liming 

effect on soil pH (Eghball et al., 2004; Vitosh et al., 1997).  Integrated potato fields had 

the highest levels of Modified Morgan P (Table 6.5).  These fields had inputs of P from 
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both manure and fertilizer, and only one of the three cooperating integrated potato 

farmers reported applying a reduced rate of P fertilizer compared with the average 

applied by the nonintegrated farms (175 kg ha-1 P2O5).  All of the fields, however, were 

below the level considered excessive according to Maine nutrient planning guidelines, 45 

kg ha-1 (USDA-NRCS, 2004).  Continuous corn silage, which received no P fertilizer but 

the highest rates of manure application (Table 6.1), had Modified Morgan P levels similar 

to the nonintegrated potato system, which received P only as fertilizer.  Hay-M100, 

which received P only as manure, had the lowest Modified Morgan P level.  No 

significant differences were detected between the cropping systems for soluble, CaCl2 P, 

most likely due to high variability (Table 6.5). 

 

Table 6.5.  Soil pH, Modified Morgan P, and CaCl2-extracatable P for soil sampled from 
potato and dairy farm fields with a minimum 10-year consistent history of one of six 
cropping systems. 

 

Cropping system n pH 
Modified 
Morgan P n† CaCl2 P 

   — kg ha-1 — – kg ha-1 – 

2YRPOT-M0 12 5.3c 22.4b 8 11.0 
2YRPOT-M50 7 6.0ab 25.4a 3 15.8 
3YRPOT-M67 10 6.1ab 27.5a 6 17.3 
CornSil-M100 8 6.5a 19.2b 3 6.1 
Hay-M0 2 5.5bc 13.1bc 0 - 
Hay-M100 8 6.2a 8.5c 4 4.6 

 ANCOVA (p-values) 

Source of variation df   df  
  System 5 0.008 0.000 4 0.595 
  Clay 1 0.934 0.516 1 0.097 
  Crop(System) 7 0.413 0.098 - - 
  C.V.(%)  9.1% 34.3 65.6 
†Modified Morgan P was determined for 2003 and 2004 samples.  CaCl2 P was 
determined for 2004 samples only. 
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6.5. Conclusions 

A multi-field study comparing integrated potato systems, at two levels of 

integration, with non-integrated potato systems detected small increases in soil pH and 

soil test P with integration but no measurable changes in total soil C or N nor POM C or 

N.  Soil C and N pools were significantly higher in dairy systems (manure corn silage, 

manure hay, and nonmanured hay) than potato systems.  These differences were 

attributed to increased C inputs and reduced soil disturbance.  A nonlinear relationship 

between POM C and total C was observed, with disproportionate enhancement of the 

POM pool at relatively high soil C levels.  Intensively-tilled potato-based systems appear 

to need greater increases in C inputs and reductions in tillage, as with the inclusion of sod 

crops, to produce changes in soil C and N pools that can be detected at a landscape level 

over a 10 to 20 year time frame. 
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Chapter 7 

SUMMARY AND CONCLUSIONS 

A soil management system that improved soil quality characteristics through 

organic amendments demonstrated aspects of increased resilience for crop production and 

N cycling.  The amended soil management system buffered the effects of adverse 

growing conditions, particularly low rainfall, and produced greater and more stable 

potato yields (Chapter 2).  These results are unique in providing direct evidence that 

managing for soil quality can enhance yield stability by creating a more robust growing 

environment for crops. 

The amended soil management system also demonstrated the potential to buffer 

excess N by retaining a greater proportion of excess N (N input – output) than the 

nonamended system (Chapter 3).  Increased N retention in the amended system may be 

attributed in part to reduced early season losses of N.  In situ spring soil Ni concentrations 

were lower in the amended system compared with the nonamended system (Chapter 4) 

and C-enhanced immobilization of excess Ni may have played a role in this reduction 

(Chapter 5).  Other factors that possibly contributed to greater N retention in the amended 

system compared with the nonamended system include C-enhanced immobilization 

throughout the rest of the season, physical protection of N as organic matter in soil 

aggregates, and greater recalcitrance of manure and compost N relative to fertilizer N. 

The potential of the amended soil management system to provide resilience 

regarding N dynamics through greater N retention efficiency is compromised by its high 

rate of N loss, in absolute terms, relative to the nonamended system (Chapter 3).  
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Repeated applications of manure, compost, and green manure in the amended soil system 

greatly enhanced soil total N stock, especially the more readily available pool of N 

(POM-N), increased microbial biomass and activity, and doubled the capacity of the soil 

to supply N relative to the nonamended system (Chapter 5).  A manifestation of this 

increased N mineralization potential was observed in situ in the fall of 2003 as 

accumulation of soil Ni during a period with low rainfall (Chapter 4).  High rates of N 

mineralization in the amended soil relative to the nonamended soil may have occurred in 

the other years of the study but may not have been detected due to more consistent 

precipitation and possible leaching of Ni below the sample zone.  

Results of the N dynamics in the contrasting soil management systems of the MPEP 

have two key implications for tightening the N cycle of amended soil management 

systems.  First, soil amendment history should be taken into account both in future work 

to develop and refine predictive models for N availability and also in on-farm nutrient 

management plans.  Increased N credits should be given for residual manure N than is 

done using the standard decay-series model in order to avoid over application of manure 

or fertilizer N to soils with a history of manure amendments (Chapter 4).  Additionally, 

the predicted availability of current year applications of manure or fertilizer may need to 

be adjusted to account for lower availability in soil with a history of amendment (Chapter 

5).   

Second, amendment loading rates should be lower than those used for experimental 

purposes in the MPEP.  Lower rates can still bring about increases in SOM (Grandy et 

al., 2002), and possibly its attendant benefits for crop production, N cycling, and N 

retention, while reducing levels of excess N (and P) and potential loss.  This statement 
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seems to contradict results from the soil quality assessment of integrated potato-dairy 

systems in Central Maine (Chapter 6).  Annual net C inputs in the integrated potato 

systems surveyed were 37% lower than inputs to the amended soil management system, 

but appeared to be too low to produce changes in soil C and N pools that could be 

detected at a landscape level over a 10 to 20 year time frame in intensively-tilled potato 

systems.  It is difficult to directly compare the MPEP with this type of multi-field study 

because the latter is conducted over a range of field characteristics and management 

systems, and therefore can not provide the same resolution as a controlled research 

station study like the MPEP.  The landscape level study may not have been sensitive 

enough to detect changes in soil quality resulting from the levels of integration currently 

practiced.  Results from the MPEP, however, can inform conclusions drawn from the soil 

quality assessment.  Namely, efforts to increase C inputs further should include 

alternative strategies, together with current levels of manure application, such as tillage 

reduction and the inclusion of sod crops.  Additionally, annually cropped soil systems 

that maintain high SOM should include fall trap crops and, if possible, deep-rooted 

rotation crops to capture excess Ni. 

Lastly, results from the MPEP and the on-farm soil quality assessment, taken 

together, highlight the need to find balance points for SOM content that enhance soil’s 

crop production and N cycling functions, while avoiding N excesses and potential loss. 
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