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Despite the commercial importance and widespread management of eastern white 

pine {Pinus strobus L.) in the Northeast, surprisingly little is known about the effects of 

thinning on even-aged stand development. To address this, patterns of leaf area, bole 

form, volume growth, and growth efficiency - defined as volume increment per unit leaf 

area - were examined over a 17-year period within a thinning study in central Maine 

designed to compare the conventional B-line and low density thinning regimes. 

At the tree-level, many of the effects of thinning were as expected. Heavier, low 

density thinning resulted in significantly larger and deeper crowns with greater leaf area 

than equivalent trees in both the B-line and unthinned control treatments. These changes 

explained higher rates of diameter and volume growth. Thinning did not alter growth 

efficiency per se. but larger trees had slightly (but significantly) lower growth efficiency 

than smaller trees. Reconstruction of bole taper - quantified as Girard form class -

showed that, surprisingly, B-line thinning produced more tapered butt-logs (first 5-meter) 



than low density thinning, resulting from a thinning-induced growth response at breast 

height but not at the top of the butt-log. 

At the stand-level, an annual record of leaf area index (LAI) attained by litterfall 

collection showed that leaf area in the control treatment was relatively constant or 

slightly declined over the study period. Thinning significantly reduced stand leaf area and 

thus gross volume growth, but the thinned treatments had nearly equal LAIs for the ten 

years following the initial thinning. This explained the similar gross volume growth rates 

and growth efficiencies of the thinning treatments. Following the re-entry harvest, B-line 

leaf area increased until the stands reached crown closure, while the low density 

treatment continued rates of crown expansion and LAI increase without reaching a peak. 

Due to greater LAI, B-line gross stand volume growth and growth efficiency were 

significantly higher during the latter growth period: low density stand growth efficiency 

was still no different from the control. Growth efficiency of the unthinned stands was 

found to be positively related to stand density. 

Results of this study have important implications to managers of eastern white 

pine. The contention that thinning below B-line stocking has deleterious effects on stand 

yield was in general not supported. On the contrary, only a minor loss of gross stand 

volume growth was found by thinning to a low density. In addition, low density trees 

were larger, faster growing, and had better stem form than comparable B-line trees. 

Therefore, low density thinning was found to be a viable alternative to conventional 

management. 
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INTRODUCTION 

Since the time of European settlement, eastern white pine (Pinus strobus L.) has 

been a revered and iconic part of the New England forest (Howard 1986). Over the last 

200 years up to today, the species has been an important contributor to New England's 

forest industry (McWilliams and others 2004). Pure stands of eastern white pine are 

common throughout the region (Widman and McWilliams 2004) as a result of agriculture 

land abandonment, yet white pine is also a prominent component of other northeastern 

forest types (Wendel and Smith 1990). When white pine trees reach larger sizes, they are 

both financially (Page and Smith 1994) and ecologically valuable (Rogers and Lindquist 

1992), which is why foresters in New England often favor and actively regenerate eastern 

white pine. 

When managing young pine stands, foresters are faced with a choice between two 

well-established silvicultural systems, the conventional B-line thinning regime and the 

low density thinning regime. Neither the research community nor experienced foresters 

have been able to provide clear consensus as to which system is more likely to meet the 

common management objectives of achieving rapid growth of individual trees while 

maximizing the use of available growing space to produce high stand yields. Both 

systems have their advocates, and a debate as to which regime best meets such objectives 

has been ongoing for nearly 40 years (Leak 2004; Seymour 2007). 

Conventional B-line management follows the regional guidelines (Lancaster and 

Leak 1978) which state that stands should be maintained between the A- and B-lines on 

the white pine stocking guide (Philbrook et al. 1973), thus representing the "minimal 
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stocking for full site utilization" (Lancaster and Leak 1978, p. 6). Lancaster and Leak 

(1978) warn that stand densities below the B-line will suffer from "diminished volume 

growth per acre." Low density management, therefore, challenges these notions since it is 

designed to fully isolate select crop trees through substantially heavier thinning than 

under conventional management. The initial design of low density regimes came from 

observations of extremely high growth rates on trees that were isolated by the 1938 

hurricane (Smith and Seymour 1986; Page and Smith 1994). Recognizing that wide 

crowns resulting from the lack of competition defied the size-density metrics used in the 

conventional stocking guide, Seymour and Smith (1987) devised a new stocking guide 

that would aid in implementing low density rotations. Advocates of low density 

management assert that volume growth per acre will be sacrificed for increased monetary 

yield resulting from such high-value crop trees (e.g, Seymour 2007). 

To date, there have been only two comparisons of these management regimes: 

one on Quabbin Reservoir lands in central Massachusetts, and the other on the University 

of Maine's Dwight B. Demeritt Forest in central Maine. The Quabbin thinning trial was 

meant to assess the different regimes in terms of growth and water-use through 

transpiration (Hunt and Mader 1970). Hunt and Mader (1970) found that low density 

thinning substantially increased diameter-at-breast-height growth over conventional 

thinning, and created stands that had lost less water to transpiration and were more 

tolerant of drought. After 20 years in these stands, Stone (1985) found that growth rates 

remained higher on the low density plots and board-foot volumes of low density trees 

were greatest. Economic analyses demonstrated that the low density plots had higher 

earnings on the most productive sites, while on the poorer site the conventional plots had 
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slightly higher earnings (Stone 1985; Stone et al. 1986). Both Hunt and Mader (1970) and 

Stone (1985) concluded that low density thinning is a viable alternative to conventional 

management on watershed lands. 

The study in central Maine, first described by Seymour (2007), showed that at the 

stand-level gross volume growth rates were similar between B-line and low density plots 

during the ten years following the initial thinning of the plantation. This finding was 

surprising, considering that the low density plots had roughly half the number of trees as 

the B-line plots. This thesis uses Seymour's thinning study to compare the growth rates 

and growing space relationships between the two silvicultural systems over the 17 

growing seasons since its establishment in 1991. Ultimately, the results from this study 

will inform forest managers of the responses of eastern white pine to the differing 

thinning regimes. 

Comparisons of the management regimes (Figure 1) will focus on the influences 

of the treatments on leaf area, volume growth, and growing space relationships. An 

understanding of how these ecophysiological characteristics have changed because of 

thinning has proven to enhance the efficacy of silvicultural prescriptions in other forest 

types (Long et al. 2004). Leaf area is used as a measure of site occupancy, but it is also 

directly related to the growth potential of trees and stands (Assmann 1970). Since leaf 

area is difficult to measure directly, we employ allometric equations to estimate its 

amount. The focus of Chapter 1 is to evaluate several allometric models in order to select 

the best equation for accurate and unbiased leaf area estimates that can then be employed 

in further analyses. Chapter 2 explores the effects of thinning on butt-log form and total 

stemwood volume growth. The butt-log (first 16 feet of the stem) receives particular 

-> 
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attention because it both contains a substantial amount of the tree volume and accounts 

for a disproportionate amount of tree value. The form of the butt-log is important in 

timber sales as it directly relates to lumber yields (Husch et al. 2003). Surprising results 

in these analyses prompted an examination into taper equations that could account for the 

changes in stem form brought on by thinning. Again, it was important that an accurate 

and unbiased volume equation be employed to ensure fair and realistic comparisons 

between the thinning treatments. In Chapter 3, the patterns of leaf area and volume 

growth are used together to analyze the efficiency with which the trees utilize their leaf 

area and hence growing space. This study is the first of our knowledge to quantify these 

growth efficiency relationships in eastern white pine. 
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Figure 1. The eastern white pine stocking guide showing the development of the thinning 
treatments over the 17-year study period. Error bars are + one standard error. QMD is 
quadratic mean stand diameter. 
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CHAPTER ONE 

SEVENTEEN-YEAR PATTERNS OF PROJECTED LEAF AREA 

ACROSS CONTRASTING THINNING REGIMES OF EASTERN WHITE PINE 

(Pinus strobus L.): COMPARISON OF ALLOMETRIC LEAF AREA MODEL 

FORMS AND FITTING TECHNIQUES 

ABSTRACT 

Changes in tree leaf area following silvicultural treatments in eastern white pine (Pinus 

strobus L.) have not been well quantified, despite the commercial importance of the 

species. To address this, we used a 17-year record of leaf area index (LAI), attained by 

litterfall collections, to assist in evaluating six allometric leaf area prediction models. The 

models were fit using three different statistical fitting techniques to a sample of 51 

eastern white pine trees, most of which are part of the thinning trial in central Maine 

where litterfall sampling is ongoing. Accuracy of the allometric model predictions was 

evaluated at both tree- and stand-levels. The best fitting technique depended on the model 

form, but stand-level leaf area predictions were always improved by weighting of the 

model primary covariate. Average absolute deviation of allometric-LAI predictions 

ranged from 0.321 to 1.777 among the models and fitting techniques. The best allometric 

model predicted leaf area from sapwood basal area and crown length; this form was the 

most robust among those tested as it was the least influenced by the different fitting 

techniques. The model was fit with weighted nonlinear mixed effects and applied to the 

study population without the input of the model random effects. Analyses on the 
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influences of thinning on leaf area in the 60-year-old eastern white pine stands revealed 

that 10 years following the initial harvest, and despite re-thinning, trees in the 

conventional (or B-line) thinning regime did not continue to increase leaf area because 

the stands had reached crown closure. This caused the LAI to be constant or slightly 

declining, a pattern similar to unthinned control plots. Low density thinning, on the other 

hand, resulted in increases of tree- and stand-level leaf area throughout the study period. 

We found no indication that the thinning treatments, if left unthinned, would ever achieve 

pre-harvest LAI levels. 

INTRODUCTION 

Canopy leaf area is important to consider in evaluations of silvicultural thinning 

treatments because it determines the productivity of trees and stands. Thinning reduces 

stand-level leaf area in the short-term until stands reach the point of crown closure, while 

at the tree-level, leaf area rapidly increases following thinning release through crown 

densification and elongation (Mainwaring and Maguire 2004). Such changes in stand 

structure and crown architecture may better explain the outcome of thinning than changes 

in stand density or tree size would alone (O'Hara 1988, 1989). 

Thinning is commonly employed in even-aged eastern white pine (Pinus strobus 

L.) stands, yet to our knowledge no study has considered the effects of treatment on leaf 

area or how changes in crown structure alter growth response. For nearly 40 years, there 

has been an ongoing debate over the optimal management of white pine in the Northeast 

(see Seymour 2007). The silvicultural systems being employed and debated are thinning 
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to the B-line and low density thinning. Studying the effects of thinning on leaf area could 

help inform this debate. 

Since leaf area is difficult to measure directly, various methods of estimation have 

been developed. These include simple diameter-based (Kittredge 1944) and sapwood-

based (Grier and Waring 1974) allometric equations, foliage litterfall sampling (Magwick 

and Olson 1974; Marshall and Waring 1986), and light interception methods (Pierce and 

Running 1988; Norman and Campbell 1989). Allometric equations, in particular, are 

widely available because of their ease of application and use of strong physiological 

relationships. For example, Valentine et al. (1994) developed equations to predict the 

cross sectional area at the base of the live crown, which is a surrogate for leaf area 

according to the 'Pipe Model Theory' (Shinozaki et al. 1964). In addition, Maguire and 

Bennett (1996) used a modified height-to-diameter ratio to approximate crown width. 

Most sapwood-based allometric equations utilize a nonlinear form to estimate sapwood 

taper below the live crown (Dean and Long 1986; Dean et al. 1988) and some integrate 

crown dimensions (Long and Smith 1988, 1989; Maguire and Hann 1989). Allometric 

models can also incorporate stand density and tree-competition metrics (Monserud and 

Marshall 1999). 

Few studies have evaluated the error with which allometric equations predict leaf 

area when applied to a population. Such an analysis requires independent estimates of 

leaf area that are rarely available. Thus far in the literature, only a diameter-based 

allometric equation (Marshall and Waring 1986; Turner et al. 2000) and a fixed sapwood 

area-leaf area ratio (Dean et al. 1988) have been shown to yield biased results. Recently, 

however, Turner et al. (2000) found that results from the latter type of equation agreed 
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with stand leaf area estimates obtained by litterfall sampling. Important aspects of 

developing allometric leaf area equations that researchers must consider are the model 

form, potential independent variables, and a variety of available statistical fitting 

techniques. Any of these could potentially add bias, especially where the model form is 

biologically naTve (Kershaw et al. 2009). 

Our objectives were to (1) examine the effects of differing allometric model forms 

and fitting techniques through comparisons of allometric and litterfall LAI estimates from 

an eastern white pine thinning study in central Maine, and (2) evaluate the influences of 

B-line and low density thinning on canopy leaf area and crown structure. The former 

objective has the added benefit of aiding in the selection of an allometric leaf area 

prediction equation for further analyses of growth and growing space relationships within 

the thinning study. 

METHODS 

Study site and data collection 

The study site is located in central Maine (44°55: N, 68°41' W) on the University 

of Maine's Dwight B. Demeritt Forest. It is a 0.96 ha eastern white pine plantation where, 

in 1991, the eastern white pine thinning study (WPTS) was initiated to evaluate tree and 

stand responses to two contrasting silvicultural systems for white pine. First described by 

Seymour (2007), the stand was originally an unreplicated spacing study planted in 1949 

on somewhat poorly drained silt-loam soils of the Buxton series with an average site 

index of 19.8 m (base age 50; Frothingham 1914). It received no management until the 
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first thinning in the fall of 1991 at age 42 yr and was subsequently re-thinned in 2001. 

The study consists of eight replicate blocks, each with three 0.04 ha (20 m x 20 m) plots 

blocked according to pre-treatment trees per hectare and basal area. Thinning treatments 

were assigned at random so that each block consists of a low density plot, a B-line plot, 

and an unthinned control plot. Crop trees in the low density treatment were marked prior 

to felling at approximately an 18-20 ft spacing according to the Seymour and Smith 

(1987) stocking guide and all non-crop trees were removed. Crop trees in the B-line 

treatment were marked identically to those in the low density treatment, and thinning was 

done in order to release them on 3-4 sides until the target residual basal area of the 

Philbrook et al. (1973) stocking guide was achieved. The 2001 re-entry harvest removed 

the least desirable low density trees and maintained the isolation of crop trees. On the B-

line plots, the re-entry thinning was done to maintain B-line stocking, but since the initial 

left stocking below the B-line (Seymour 2007), the second entry was light on most plots. 

Analyses in the present study focus on four study blocks for which litterfall data were 

available (Table 1.1). 

Data collection commenced prior to the 1992 growing season with plot tallies 

including diameter at breast height (DBH; nearest 0.25 cm; 1.37 m above the ground), 

total tree height (HT; nearest 0.05 m) and height to the lowest live whorl (HTLLW; 

having three or more live branches) for all trees in thinned treatments. Control trees were 

measured for DBH; however, only a subset (roughly equal to the per-plot number of trees 

on thinned plots) received the HT and crown measurements. Subsequently, these missing 

heights were estimated with plot-specific height-over-DBH regression equations. The 

inventories of 1999, 2001, 2006, and 2008 were conducted in August-September with 
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DBH, height, and crown measurements recorded for all living trees. Sapwood basal area 

(SBA) was measured on all living trees from increment cores extracted at breast height 

on the east and west sides in 2001 and on the north, southeast, and southwest sides in 

2008. The sapwood-heartwood boundary was marked in the field prior to mounting the 

cores and later verified with a 10% ferric chloride (FeCh) solution (which stains the 

heartwood) prior to measuring the sapwood radii (nearest 0.1 mm). Coincident with 

increment coring, each tree was measured fo- bark thickness (nearest 0.1 cm) at breast 

height with a bark gauge. Sapwood basal area was calculated as the difference between 

inside bark basal area and the mean heartwood area (from individual sapwood radii 

minus inside bark radius). 

Litterfall-based projected leaf area 

Five litterfall collection traps were placed in each of six plots (two per treatment) 

in 1992. Additional traps were added to the control plots in 2001 and to two low density 

and two B-line plots in 2007. The traps are 50 cm x 50 cm (2500 cm ) arranged in an 'X' 

pattern with one trap at plot-center and the others located halfway along the diagonals 

from plot-center to the outside corner. Litterfall is collected in October and June (for one-

season's litterfall), placed in paper bags, dried at 65°C for at least one week, sorted, dried 

again, and massed to the nearest 0.01 gram. Plot-level leaf area index (LAI) is estimated 

as the mean of the trap-LAIs. which are calculated as 

T A i /Needle Mass* SLA *SCF\ _. ,. _. ^ . 
1 LAI = * Needle Retention, 

L J \ Trap Area / ' 
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Table 1.1. Stand attributes of eastern white pine thinning study treatments during the 
study period. Values are means of four 0.4 ha plots per treatment; standard errors are in 
parentheses. 

post-harvest 
Control B-line Low Density 

1992 post-harvest 
TPH 1550(347) 594 (62) 313(22) 
BA 45.8 (4.29) 20.2(0.91) 12.7(0.18) 
QMDa 21.7(1.72) 21.7(1.43) 23.3 (0.58) 
LAIb 4.7 (0.27) 2.0 (0.03) 1.9(0.21) 

2001 pre-harvest 
TPH 1300(236) 525 (34) 313(22) 
BA 51.7(3.90) 26.7(1.18) 19.8(0.46) 
QMD 24.8(1.68) 26.4(1.40) 29.1 (0.66) 
LAI 4.8 (0.27) 3.4(0.11) 3.0(0.12) 

2001 post-harvest 
TPH 1300(236) 488 (44) 175(10) 
BA 51.7(3.90) 25.3(1.41) 11.8(0.35) 
QMD 24.8(1.68) 26.6(1.43) 29.4(1.23) 
LAI 4.8 (0.27) 3.3(0.12) 1.9(0.08) 

2008 
TPH 988(142) 444(19) 167(6) 
BA 48.8 (2.37) 28.3(1.68) 15.3(0.47) 
QMD 27.1 (1.58) 29.0(1.22) 34.1 (1.05) 
LAI 4.3(0.16) 3.0(0.18) 2.6 (0.06) 

Note: TPH - trees per hectare; BA - basal area (m2 ha"'); 
QMD - quadratic mean stand diameter (cm); 
LAI - leaf area index (m2 m"2) 

a QMDs are of upper crown class trees 
b From two plots per treatment 

where SLA is specific leaf area (cm needle leaf area per gram needle mass), SCF is a 

senescence correction factor, and needle retention is the average length of time (in years) 

that needles stay on a given branch. Values for SLA and needle retention come from 

archived sample branch data (described below) as part of a larger white pine litterfall 

collection program on the University of Maine School Forests. For all litterfall traps in 

the WPTS, we applied the mean SLA for the site of 65.25 cm2g"' because the treatments 



had no effect on SLA. Thinning was found to affect needle retention, and thus retention 

values of 2.37 years is applied to thinned plots and 2.207 years is applied to the control 

plots. 

The senescence correction factor (SCF) is used to convert the dry weight of 

abscised needles collected in the trap to their approximate dry weight when alive. In 

short, the SCF integrates losses of dry weight resulting from the removal of nutrients and 

carbohydrates from the foliage prior to senescence (Vose et al. 1994), and potential 

decomposition within the trap prior to collection (decomposition is assumed to be 

minimal because trap bottoms are permeable and elevated at least 5 cm above the 

ground). The SCF was determined as the ratio of SLAs from 100 senesced (collected in 

litterfall traps)and oven-dried needles on 10 WPTS plots to the SLAs of 100 green and 

oven-dried needles from the same plots (the SLA procedure is described below). 

Senescent (dead) needles from the traps were found to have lost an average of 15.1% 

(ranging from 6 to 29%) of their dry weight per unit of surface area. Therefore, an SCF of 

1.151 is used to convert the litterfall trap collections to their presumed dry mass when 

living. 

Branch-level projected leaf area 

Branch-level projected leaf area (PLAbranch) prediction models were fit to archived 

data from 48 eastern white pine trees sampled on the University of Maine Dwight B. 

Demeritt Forest (Table 1.2) (Barker 1998; Pace 2003; Rifkin 2005). Nineteen trees were 

located within the WPTS, including four B-line, seven control, and seven low density 

trees. The remaining trees were located within an approximately 100 ha area of the 
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6.10 126.75 49.96 41 
0.47 22.66 14.04 4 

1.67 0.91 0.16 11 

Demeritt Forest. Sample trees from the control treatment come from an unthinned area 

adjacent to the study. 

Table 1.2. Summary statistics for sample trees used to fit the PLAbranch and PLA 
prediction models. Data attributes include diameter at breast height (DBH), total stem 
height (HT), crown length to the lowest live branch (CL), sapwood basal area (SBA), 
total projected leaf area (PLA), and breast-height age. 

DBH (cm) HT(m) CL (m) SBA (cm2) PLA (m2) Age 

Destructively-sampled trees (n = 48) 

Mean 17.88 15.02 

Standard Error 1.80 1.00 

Minimum 1.60 2.77 

Maximum 61.30 29.63 17.14 830.94 604.78 128 

Destructively-sampled plus climbed trees (n = 51) 

Mean 19.16 15.51 6.53 149.71 49.96 41 

Standard Error 1.84 0.98 0.50 24.99 14.04 4 

Minimum 1.60 2.77 1.67 0.91 0.16 11 

Maximum 61.30 29.63 17.14 830.94 604.78 128 

Sample trees were gently felled and measured for height and basal diameter of all 

live branches. Crowns were divided into three sections, with one sample branch randomly 

selected from each crown section. The SLA for each sample branch was determined from 

approximately 100 needles that were kept frozen until projected leaf area was measured 

to the nearest 0.0001 cm using a high-resolution scanner (>1200 dpi) and the 

WinSeedle* program (Regent Systems, Inc.), then oven-dried at 65° C for 72 hours 

before massing to the nearest 0.0001 gram. SLA is calculated by dividing the projected 

leaf area by the dry weight. The remaining portions of the sample branches were dried for 

at least two weeks prior to sorting and massing both foliage and woody material to the 
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nearest 0.01 gram. Total sample branch PLAbranch was determined as the product of the 

total foliage dry weight and the branch SLA (then converted from cm" to m"). 

Following initial screening of various published PLAbranch prediction models, the 

Maguire and Bennett (1996) Weibull model form was selected and fit to the sample of 

143 branches (Table 1.3). The model form is expressed as 

14 

where BD is the branch basal diameter (cm), RelDINC is the relative depth of the branch 

into the crown (0 is at the top, 1 at the crown base), and 3,s are parameters to be 

estimated by the model. The equation was fit with nonlinear mixed effects regression 

using the nlme library (Pinheiro et al. 2008) in R (R Development Core Team 2008). 

Random effects were added to the (3| and P3 parameters and account for the nested 

structure of the data at two levels: the type of thinning [NoThin (o=33), LightThin («=5), 

HeavyThin (w=9), and Shelterwood (n=\)] and the individual sample tree. This technique 

created a tree-specific model while accounting for variation in crown form caused by 

stand density and thinning. 



Table 1.3. Summary statistics for destructively sampled branches (»=143). Data 
attributes include branch basal diameter (BD), relative depth into the live crown 
(RelDINC), total branch leaf mass, specific leaf area (SLA), and branch-level projected 
leaf area (BLA). 

Attribute Mean SE Min Max 
BD(cm) 1.85 0.13 0.20 9.4 
RelDINC 0.546 0.023 0.037 1.0 
Leaf mass (g) 102.33 16.81 0.01 1374.16 

SLA (cm2 g"1) 68.78 0.82 49.52 103.60 
BLA (cm2) 0.673 0.112 7.93E-05 9.416 
Note: SE - standard error 

Since heteroscedasticity was found in the residuals, various transformations and 

weights were tested. The best option was to use a variance power function (Pinheiro and 

Bates 2000), 

[3] Var(£i) = a2 |Vi |
25 , 

where o is the residual sum of squares, v; is the primary covariate (branch basal diameter 

in this case), and 6 is the variance function coefficient to be estimated by the model. The 

variance power function allows the model to find an optimal weight given the variance 

inherent in the data (Pinheiro and Bates 2000). Use of mixed effects with the weighting 

procedure resulted in a highly accurate fit of the PLAbranch model (Table 1.4). 
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Table 1.4. Parameter estimates and fit statistics for the PLAbranch model (eqn. [2]). 

Equation Parameter Estimate SE 6 RMSE R2  

[2] p0 0 5 0 1 3 0 Q 5 5 4 1.3988 0.1292 0.9906 

P1 1.8799 0.1341 

P2 1.8723 0.0925 

Pf 1.7451 0.3930  
No te : All parameter estimates are significant at P < 0 .001; SE - standard 
error; 5 - coefficient of the variance power function (eqn. [3]; R MS E - root 
mean square error; R ' - g e n e r a l i z e d coefficient of determination (Kva l se th 
1985) for fixed + random terms 

Tree-level projected leaf area 

The branch-level model was applied to all live branches (n = 4306) on each 

sample tree and then summed for an estimate of the tree-level projected leaf area (PLA). 

In 2008, three more trees were added to the sample dataset to ensure better coverage of 

the larger trees present on the WPTS (Table 1.2). These trees were climbed and measured 

for heights and basal diameters of all live branches (n = 303), but no sample branches 

were collected. Equation [1] was then applied to each branch including the treatment 

random effects (but no tree effects). 

Tree data used for the allometric-PLA models came from field measurements of 

DBH made prior to felling, and HT and HTLLW made with a logger's tape after felling. 

HTLLW was used to calculate live crown length (CL), live crown ratio (LCR), and 

modified live crown ratio [mLCR; calculated as CL/(HT-1.37 m); Valentine et al. 1994]. 

Measurements of SBA on felled sample trees come from 6 measurements of sapwood 

radii on breast height cross-sections and from the 2008 increment cores on the three 

added trees. 
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Following initial screening of published PLA models, six forms were selected for 

further analysis (Table 1.5). All model forms are nonlinear because preliminary scatter 

plots indicated strong nonlinear relationships between PLA and the independent variables 

used in model fitting. In most cases, these variables approximate diameter or sapwood 

cross-sectional area at crown base by roughly modeling stem or sapwood taper below the 

live crown (Dean and Long 1986; Long and Smith 1988; Maguire and Hann 1989; 

Valentine et al. 1994; Maguire and Bennett 1996). The parameter estimates (Table 1.6) of 

each allometric-PLA model were attained through three statistical fitting techniques: 

nonlinear least squares (NLS); weighted nonlinear least squares (WNLS) using the 

generalized nonlinear least squares function (Pinheiro et al. 2008) where the primary 

covariate was weighted with the variance power function (eqn. [3]); and weighted 

nonlinear mixed effects (NLME). The NLME fits included the weighting function 

because of the improvement shown through the WNLS technique (see Discussion). 

NLME fits also include one random parameter in each model that accounts for the tree's 

location (one of 7 within the Demeritt Forest) and thinning type (same as for the 

PLAbranch model) (Table 1.7). Selection of the random parameter in each model was done 

by iteratively fitting each model using a different random parameter each time and finally 

choosing the option with the lowest Akaike Information Criterion (AIC; Akaike 1974). 

Since NLME models estimate the population trend (fixed effects) and each individual's 

deviations from the population (random effects) (Pinheiro and Bates 2000), we tested the 

differences of applying the models using the full mixed model (NLME-R) and also just 

the fixed effects portion of the model (NLME-F). 
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Table 1.5. Selected model forms for estimating tree-level projected leaf area (PLA). 
Independent variables include sapvvood basal area (SBA, cm"), 1 ive crown length (CL, 
m), diameter at breast height (DBH, cm), basal area at breast height (BA, cm"), total stem 
height (HT, m). modified live crown ratio (mLCR), and live crown ratio (LCR). Live 
crown base is the lowest live whorl containing three or more live branches. 

Model Equation Reference 

SAP 

SCL 

MAG 

SMAG 

VAL 

DCL 

DBH. 

Espinosa Bancalari et al. 1987 

Gilmoreetal. 1996; 
Kenefic and Seymour 1999 

Maguire and Bennett 1996 

This study 

Modified from Valentine et al. 
1994 

This study 

Table 1.6. Parameter estimates of the allometric-PLA equations. All estimates were 
significant at P < 0.05 unless otherwise indicated. 

Model Parameter NLS WNLS NLME-F 
SAP bi 0.1383 0.0845 0.1341 

b2 1.1947 1.2735 1.1828 
SCL b, 0.2236 0.0877 0.1027 

b2 0.4806 0.6671 0.7541 

b3 1.5379 1.4655 1.2538 
MAG b, 0.6280 0.1934 0.2064 

b2 2.3950 2.7811 1.6749 

b3 0.0021* 0.1953* 1.5608 
SMAG b, 0.1634 0.1145 0.1044 

b2 .1.1387 0.9426 0.8297 

b3 0.1018* 0.9990 1.4615 
VAL b, 0.9054 0.1112 0.1174 

b2 0.8374 1.1842 1.1754 
DCL b, 0.3970 0.0747 0.0645 

b2 0.6149 1.0859 1.1497 

b, 1.6450 1.6404 1.6286 

* P > 0.05 



Table 1.7. Random effects of NLME-R model fits specific to the WPTS. These values 
were added to the fixed effect (Table 1.7) of the respective parameter in each model. 

Random 

Parameter Location 

Thinning Type 

Model 

Random 

Parameter Location Control B-line Low • Density 
SAP b2 -1.22E-09 -0.0551 -0.0043 0.0212 

SCL b, 0.0179 -7.30E-09 6.66E-09 2.48E-09 

MAG b2 0.2390 0.0410 0.1002 -0.0815 

SMAG b2 8.47E-11 -0.0012 0.0554 0.0305 

VAL b2 0.0246 -0.0008 0.0223 -0.0133 

DCL b3 0.0043 -2.43E-07 1.87E-07 6.36E-08 

Analyses 

Tests for the effects of thinning on leaf area and tree-sizes used one-way analysis 

of variance and Tukey's HSD post-hoc mean separation test. Statistical significance was 

considered at the 95% level of confidence. Initial fits of the allometric-PLA models were 

evaluated from fit statistics, residual plot analyses, and estimates of bias. Final model 

selection was based on AIC and root mean squared error (RMSE). An AIC reduction of 

10 units was considered statistically significant (Burnham and Anderson 2002). RMSE 

was calculated from model predictions in original units (m2) as 

[4] RMSE |ZP=iC?i-Yi)2 

where Y, is the predicted PLA from the model and Yj is the PLA from branch summation 

(i.e. observed). Population estimates of PLA and LAI were made by applying the models 

to WPTS stand inventories; allometric-LAI was calculated by summing all tree PLAs for 
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a given plot and year and dividing by the plot area. Allometric-LAl estimates were 

compared to litterfall-LAI estimates for each inventory year; however, models including 

SB A could only estimate leaf area for the years 2001 and 2008 because prior SB A 

measurements were unavailable. These comparisons were done both graphically and by 

calculating average absolute deviation (AAD) as 

[5] AAD = £ r = l | Y i " Y i l , 
n 

where Y; is the estimated allometric-LAl and Yj is the litterfall-LAI. Comparisons for the 

years 2001 and 2008 used litterfall-LAI estimates from the years 2000 and 2007, 

respectively. The 2001 litterfall collection could not be used because it was confounded 

by thinning following the fall collection but before to the spring collection; trees removed 

in the thinning thus contributed only to the fall collections. The 2008 litterfall-LAI 

estimates could not be used because they were unavailable. 

RESULTS 

Seventeen-year patterns of litterfall-LAI and tree growth 

Projected LAI from litterfall collections in the unthinned control treatment were 

relatively constant over the study period, staying generally between 4 and 4.5 m~ m~~ with 

a few cases of temporarily reduced leaf areas (Figure 1.1). The sharp decline in 1998 was 

caused by a severe and region-wide ice storm that occurred in January and broke off tree 

tops, branches, and buds throughout the study site. The causes of reduction in 1994, 
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1997, and 2004 are unknown, but possibilities include foliage herbivore or climatic 

variation; allocation to seed production is unlikely because there is general lack of cone 

production on the site. 

5.0-

4.5" 

4 . 0 -

x 3.5 

<u 3.0-

03 

2.5-

2 . 0 -

Control 
B-line 
Low Density 

1992 1994 1996 1998 2000 2002 2004 2006 

Year 

Figure 1.1. Projected leaf area indices (LAI) from litterfall sampling throughout the 
study period. Error bars are ± one standard error, and arrows along the bottom axis 
indicate the timing of the 1998 ice storm and the 2001 thinning entry. 
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Thinning significantly reduced LAIs throughout the study period (P < 0.05). The 

initial thinning entry in 1991 reduced LAIs from 4.75 ITT m~" to approximately 2 rrf m~~ 

(60%) in both the B-line and low density treatments; the similarity between the LAIs of 

the thinned treatments is surprising because thinning was significantly heavier in the low 

density treatment than the B-line treatment (P < 0.001) (Table 1.1; Seymour 2007). From 

1992 to 2001, LAIs generally increased in both thinning treatments. Throughout the final 

growth period (2001-2008), B-line LAIs remained fairly constant, while the low density 

LAI decreased until 2004 and then increased. Basal areas between the treatments were 

significantly different in 2008 (P < 0.001). Variability in the LAI estimates was highest 

in the low density treatment because of widely spaced and randomly located trees with 

respect to the five litterfall traps in each plot. 

As expected, the effects of thinning on growth of upper crown class trees were 

largely to increase DBH and CL, especially in the low density treatment (Figure 1.2). 

Immediately following the initial thinning, the low density trees had significantly greater 

DBH and CL than the control treatment (P < 0.01), and they were similar to the B-line 

trees in terms of DBH (P = 0.067) but had longer crowns (P = 0.007); B-line trees were 

not different from the control (P > 0.06). Growth response in both the low density and B-

line treatments caused significant differences in DBH and CL among all treatments (P < 

0.001) for the remainder of the study period. Tree heights were mostly unaffected by 

thinning (P > 0.05). Sapwood basal area was not measured until 2001, at which point 

significant differences were apparent, which persisted for the rest of the study period (P < 

0.001). Projected leaf area increased in all treatments between 1992 and 2001, at which 

point it remained relatively constant on B-line and control trees but kept increasing on 
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Figure 1.2. Patterns of tree growth among the WPTS treatments during the study period. 
Values are treatment means for dominant and codominant trees; error bars are + one 
standard error. Fits of the DCL and SCL models came from the NLME-F and WNLS 
techniques, respectively (see Discussion for justification). 
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low density trees. In 1992, PLAs between the control and B-line trees were the same (P = 

0.99) but the low density trees had greater leaf area than both treatments (P < 0.049). In 

2001 and 2008, regardless of the estimation equation used, all treatments had 

significantly different PLA (P < 0.002). 

AIlometric-PLA model fits 

The amount of error among the fitting techniques depended largely on the model 

form (Table 1.8). The RMSE of each model increased from the NLS technique to the 

WNLS; the increase was slight for the SAP and SCL models. The mixed effects 

procedure produced the lowest errors, while the application of only the fixed effects of 

the NLME fits resulted in the highest errors. The SAP and SCL models appeared to be 

the least influenced by the different fitting techniques; all others had substantially 

fluctuating RMSE values. Within each fitting technique, the SCL model had the lowest 

bias of the NLS, WNLS, and NLME-F techniques, while the VAL model had the lowest 

bias of the NLME-R procedure. 

Residuals of the PLA predictions indicated that the NLME-F technique produced 

the greatest biases among the four techniques because they both underestimated the leaf 

area on mid-sized trees and substantially over-estimated the PLA on the largest sample 

tree (Figure 1.3). Negative bias was especially apparent with the MAG and SMAG 

models. The SAP and SCL models were best at predicting leaf area on the largest tree. 

Interestingly, the model form of the NLME-R technique had little effect on the predicted 

PLA of each sample tree. 

24 



Table 1.8. Root mean square error (RMSE) and Akaike's Information Criterion (AIC) for each PLA prediction equation and fitting 
technique. 

Weighted RMSE (m2) AIC_ 
Model Variable NLS WNLS NLME-R NLME-F NLS WNLS NLME-R 

SAP SBA 19.485 19.976 15.377 22.231 453.6 345.4 341.2 

SCL SBA 14.849 18.024 11.636 20.334 427.9 323.3 319.6 

MAG CL 17.284 30.717 10.422 46.005 443.4 380.0 354.5 

SMAG SBA 19.379 34.078 8.904 50.074 455.1 334.5 312.7 

VAL BA 19.013 51.298 8.191 50.091 451.1 309.1 291.7 

DCL DBH 15.680 27.128 8.889 34.012 433.5 318.6 317.7 25 



According the AlC values in Table 1.8, the WNLS technique greatly improved the fit of 

each model from the NLS level. The mixed effects models were generally better than the 

WNLS, but significant improvements were only made for the MAG, SMAG, and VAL 

models. The best model within each fitting technique was the SCL for the NLS and the 

VAL for both the WNLS and NLME-R. The fit of the DCL model was similar to the best 

form under both the NLS and WNLS techniques. 
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Figure 1.3. Residual plots for NLME model fits of each allometric-PLA equation. The 
x-axes are observed PLA (from branch summation). Filled symbols are NLME-R and 
hollow symbols are NLME-F. Arrows indicate a value that plots outside the plot region 
(the number is the value of the residual); all of which are from NLME-F predictions. 
Residuals are predicted minus observed. 
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AIlometric-LAI estimation 

Contrary to errors at the tree-level, comparisons of stand-level LAI estimates from 

the allometric models and litterfall showed that the VVTs'LS procedure was often better 

than NLS fitting, and application of NLME-R fits increased error for most model forms 

(Table 1.9). Furthermore, performance of the NLME-F technique was better than the 

NLS and NLME-R, but similar to or slightly worse than the WNLS fits. The most 

accurate LAI predictions were made by the SAP and SCL models; in the 2001 

comparison, these models had similar AAD values, which were less than half the other 

model forms. While not as substantially different in the 2008 comparisons, these two 

models still had the lowest AADs. 

Much of the error in the NLME-F predictions was generated in the LAI estimates 

of the unthinned control plots (Figure 1.4). The models were better at predicting the LAIs 

of the low density treatment, where there is less leaf area. 

DISCUSSION 

Allometric-PLA model selection and assessment 

The research objectives of the WPTS require a leaf area prediction equation that 

is robust, accurate, and unbiased. Assessing these attributes required an independent 

estimate of leaf area within the WPTS; the litterfall collections provided an ideal resource 

for the evaluations. Furthermore, the long-term record of litterfall revealed that using just 

a single season's collection could have had a substantial impact on the model evaluations 

because LAI was found to have reductions of around 20% four times during the study 

period due to both known and unknown factors (Figure 2.1) that would not have been 
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Table 1.9. Average absolute deviations (AAD) of allometric-LAI estimates compared to litterfall-LAl estimates. 

1992 (6 plots) 2001 (6 plots) 

Model NLS WNLS NLME-R NLME-F NLS WNLS NLME-R NLME-F NLS WN 

SAP - - - - 0.638 0.387 0.498 0.389 0.730 0. 
SCL - - - - 0.445 0.679 0.458 0.393 0.446 0. 
MAG 0.657 1.088 1.576 0.895 1.003 0.628 2.867 1.004 0.645 0. 
SMAG - - - - 0.734 0.796 1.477 1.019 0.770 0. 
VAL 1.079 0.648 0.798 0.637 1.734 1.064 1.777 1.074 1.238 0. 
DCL 0.390 0.683 0.591 0.607 1.208 0.739 0.886 0.858 0.918 0. 
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Figure 1.4. Comparison of projected LAI estimates from the NLME-F allometric 
equations and litterfall collections. The SAP, SCL, and SMAG model LAI estimates were 
not made for 1992 because SBA was not measured at that time. Diagonal lines represent 
perfect correspondence. 
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accounted for by the allometric equations. Comparisons of the litterfall-LAI and 

allometric-LAl estimates were done for years without anomalous variation. 

In the end, the SCL model, using the NLME-F fit, was chosen as the best model 

for future studies in the WPTS. With no clearly superior allometric model form and fit, 

the choice was somewhat subjective. However, the decision was based on the consistent 

accuracy of the equation at both the tree and stand levels. While the SAP model predicted 

LAI slightly better, it was inconsistent between years and fitting techniques. This 

variability, present in other forms as well, indicates a lack of a robust relationship within 

the model, such that small changes in the parameter estimates (Table 1.6) can have a 

large impact on the predictions. 

Evaluations of the six model forms showed that, for some, the fitting technique 

had a substantial impact on the accuracy of the PLA predictions. The effect of weighting 

the models was to improve the fit to the small trees in the sample. This had the further 

impact of making the predictions worse for large trees. Because the large trees simply 

carry far greater leaf area than the smaller ones, increased error in predicting their leaf 

area had a great impact on RMSE (Table 1.8). AIC, as a measure of how well the model 

fits the data (Burnham and Anderson 2002), rewarded the weighting procedure because 

most of the sample trees were small, and thus the weighted models were more accurate in 

terms of fitting more of the data, without consideration for the magnitude of the 

predictions or their error. These weighted models in turn predicted LAI more accurately 

because of the prevalence of small trees in the WPTS, in particular on unthinned control 

plots. 
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The NLME-R technique generated the best overall estimates at the tree-level 

because it included the benefits of the weighting procedure described above while also 

accounting for variation in the allometric relationships by site, and resulting from 

thinning (as designated by the multi-level random effects). This allowed for the 

predictions of the large trees to be more accurate than with WNLS because their 

deviation from the overall trend was known; therefore, the tree predictions were similar 

among all model forms using the mixed effects approach (Figure 1.3). For the models 

where AIC did not show significant improvement between the WNLS and NLME-R 

techniques, all sample trees were predicted quite well by WNLS and the random effects 

were close to zero (Table 1.7). The NLME-R models were among the worst in 

application to the WPTS because the within-group variation of the selected random levels 

did not account for actual variations between sites and thinning treatments. In other 

words, the random effects did not extract well to the population. This was the result of 

having relatively few sample trees within each group; greater sampling (particularly 

within the WPTS) may have improved the application of these models. 

In the NLME-F technique, the model random effects were ignored. Applications 

of the allometric models with this technique had similar accuracy to the WNLS (Table 

1.9) because of the influence of weighting alone; in this case, estimating the parameters 

with maximum likelihood and least squares had similar results. Had the random effects 

been better estimates of the population, as noted, the fixed effects would have likely 

performed better. As it was, the fixed effects reflected the trends within the sample 

dataset better than the WPTS as a whole and thus applied just as well as the WNLS 

technique. 
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In estimating leaf area, forest managers may prefer an equation that does not 

require sapwood measurements because of the labor required in taking increment cores 

and potential for defects to the bole; in addition, non-SBA models utilize basic forest 

mensuration data. Of the non-SBA models we evaluated, the DCL (using the WNLS 

technique) performed the best, and is thus recommended if sapwood measurements are 

unavailable. The VAL and MAG models, as noted, have strong theoretic and empirical 

foundations that rely upon surrogates for leaf area (Valentine et al. 1994; Maguire and 

Bennett 1996), but despite favorable fits to the sample trees (Table 1.8) produced 

unrealistically high LAI estimates. These biased tree PLA predictions accumulated into 

LAI estimates for the control plots that were above 5 m2 m"2, which may be within the 

range of published LAIs for unmanaged eastern white pine stands (Table 1.10), but is 

well outside of reasonable confidence intervals of the litterfali estimates over the 17-year 

study period (Figure 1.1). 

When applying the SCL equation, it is important to recognize the potential error 

associated with measuring SBA accurately. We tried to minimize this error by measuring 

SBA close to the time of peak leaf area (Vose and Swank 1990; Vose et al. 1994) from 

two to three radii per tree using increment cores. Up to six radii, however, may be 

required to estimate SBA with only 20% error (Seymour, unpublished data). Further 

research is required to determine the exact amount of error involved when measuring 

SBA from any number of radii, and if there is additional error associated with measuring 

it from increment cores. 

Despite this shortcoming, sapwood basal area is commonly used as a surrogate for 

leaf area (e.g.. O'Hara 1988, 1989). However, we advise caution in using SBA alone with 
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Table 1.10. Published estimates of projected LAIs from unmanaged white pine stands. 
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Reference Location BA TPH Age SLA Retention LAI Method 

1 NH 31.5 469 94 48.32 2.32" 1.0 Litterfall 

1 NH 82.1 445 121 48.32 2.32" 2.4 Litterfall 

1 NH 44.7 1124 39 48.32 2.32" 2.4 Litterfall 

2b NC 
7.3-
23.4 

1790-
1760 

10-15 75.40' na 
1.7-
3.2J Allometric 

3 ME 56.0 1775 62 65.25 2.207 4.1, 
4.4 

Litterfall, 
Allometric 

4 ME 45.9 750 62 65.25 2.207 
4.5, 
4.6 

Litterfall, 
Allometric 

5° NC 50.1 1154 32 na na 5.3e 

7.1, 
8.5' 

Light 
Interception 
Allometric 

6 WI 41.8 1180 29 na na 

5.3e 

7.1, 
8.5' 

Light 

5.3e 

7.1, 
8.5' 

Interceptio 

7° WI 44.19 1248s 28 76 ±5 3 7.4 Litterfall 

8° WI 65.1 1250 27 na na 7.4" Allometric 

References: 1 - Innes et al. (2005); 2-Swank and Schreuder (1973); 3-This study, block 1 control in 2001; 
-This study, block 7 control in 2001; 5 - Vose and Swank (1990); 6-Gower and Norman (1991); 7-Gower 
et al. (1993); 8 - Bolstad and Gower (1990) Notes: BA - Basal area (m2 ha"1); TPH - trees per hectare; SLA -
specific leaf area (cm2 g"1); Retention - needle retention (yrs); LAI - leaf area index (m2 m"2)." Values are 
study means; Data from re-measured plots and re-fit allomctric equations over a 5-yr period;' Estimated from 
Swank and Schreuder [1974, eqn. (4)] assuming 1/5 of a 100 mg fascicle converted to projected area using a 
divisor of 3.14 (Grace 1987); ''Converted from all-sided LAI to projected LAI using a divisor of 3.14 (Grace 
1987);'' Reported season peak (late July);' Estimated from Fig. lb; * From Son and Gower (1991); ''Also 
reported light interception LAIs of 7.1 and 8.2 



eastern white pine because it may not account for changes in crown structure resulting 

from silvicultural thinning or natural self-thinning. This is best demonstrated by plotting 

SB A and leaf area indices over common measures of stand density (Figure 1.5). From 

Figure 1.5. it is clear that sapwood basal area is linearly related to stand density across the 

WPTS treatments, while the SCL equation produces LAI estimates with an asymptote at 

LAIs between 4 and 5 m2 m"2, just as is present with the litterfall-LAI estimates. The 

asymptote likely occurs at the maximum LAI of the site, where with increasing density, 

LAIs remain fairly constant owing to the plasticity of crowns that are affected by crown 

recession and abrasion (Jack and Long 1991a, 1991b; Smith and Long 1992). The non­

linear form of the SCL model (Dean et al. 1988) along with the integration of CL as a 

metric for localized stand density and competition (Weiskittel et al. 2007a) helped to 

capture the influence of crown structure on the SBA-PLA relationship. 

Influence of thinning 

The annual record of LAIs from litterfall collection presented here showed that 

when short-term fluctuations due to disturbances or climatic influences (Gholtz et al. 

1991) are excluded, the unthinned control plots had relatively stable or slightly declining 

leaf areas throughout the 17-year study period (Figure 1.1). This pattern is consistent with 

litterfall records for slash pine (Pinus elliottii) (Gholtz and Fisher 1982; Gholtz et al. 

1991). As noted, the stable LAIs were related to the effects of crown closure on 

individual trees (Smith and Long 1989), where crown recession maintained constant CL 

and PL A as the trees grew taller (Figure 1.2). 
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Figure 1.5. Sapwood basal area (SBA), allometric-LAI (from the SCL model using the 
NLME-F technique), and litterfall-LAI plotted over three measures of stand density 
including: trees per hectare, basal area, and Wilson's (1946) spacing-to-height ratio 
(using Lorey"s height). WPTS treatments are indicated by a circle for the control. 
diamond for the B-line, and triangle for low density. Each graph includes all observations 
of LAI, SBA, and density throughout the study period. 
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Following the initial thinning, the response of trees was as expected. Much of the 

observed DBH growth in the B-line and low density treatments was associated with 

increases in CL, SBA, and thus PLA (Figure 1.2). With respect to CL, the 

implementation of the low density thinning was successful as the wide spacing is largely 

meant to retard crown recession (Seymour and Smith 1987; Seymour 2007) and build 

leaf area per tree. The increase in leaf area on thinned trees was likely concentrated in the 

lower portion of the crown (Brix 1981; Maguire and Bennett 1996; Medhurst and Beadle 

2001) because the primary effect of thinning on crowns is to increase the size (Weiskittel 

et al. 2007a) and longevity (Weiskittel et al. 2007b) of lower branches. Between 2006 

and 2008, the CL and PLA of low density trees was relatively stable, indicating some 

crown recession which is explained by shading as the lowest branches had begun to touch 

those of neighboring trees; this happened roughly 4 years before low density thinning 

schedules predicted (Seymour and Smith 1987). 

At the stand-level, thinning significantly reduced LAI, but reasons for the 

surprising similarity in LAIs between the thinning treatments are unclear; one cause 

could have to do with the implementation of the thinning treatments. Crop-tree selection 

was done identically in each treatment, and B-line stocking was achieved by leaving 

small codominants and intermediates, while all non-crop trees were removed in the low 

density treatment (Seymour 2007). It is plausible that these small B-line trees did not 

contribute greatly to the overall leaf area of the stands and the LAIs are then more 

reflective of the larger crop trees. The direct effect of this similarity in LAIs may have 

been to produce the nearly equal stand-level volume growth rates of these treatments 

during the same time period (Seymour 2007; and see Chapter 2). 
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While both thinning treatments began to recover leaf area rapidly following the 

initial treatment, after 2001 the B-line LAI remained relatively constant for the rest of the 

study period. This stability coincided with decreased CL, slightly increasing SBA, and 

constant PLA because the stands reached crown closure. In their review, Long et al. 

(2004) stated that full recovery of pre-harvest LAI by thinned stands depended on the 

intensity of thinning and site quality. The patterns of tree and stand leaf area presented 

here indicate that thinned stands will in fact never recover the full amount of pre-harvest 

LAI, even if left unthinned (which is not part of the management plan for the WPTS) 

because of canopy structural changes that occur following crown closure. 

37 



CHAPTER TWO 

INFLUENCE OF CONVENTIONAL AND LOW DENSITY THINNING ON THE 

VOLUME GROWTH AND BOLE TAPER OF EASTERN 

WHITE PINE (Pinus strobus L.) 

ABSTRACT 

Thinning eastern white pine {Pinus strobus L.) stands is common throughout the 

northeast, yet foresters lack clear information as to whether conventional B-line thinning 

or low density thinning will better achieve their management objectives. To inform this 

debate, we compared the thinning regimes with each other and unthinned controls with a 

focus on two practical and important aspects of white pine management: bole taper 

(quantified as Girard form class) and stemwood volume growth. Over the 17-year study 

period, Girard form class increased among all treatments from an overall average of 0.77 

to 0.82. Surprisingly, B-line thinning produced more tapered butt-logs than low density 

thinning, resulting from a thinning-induced growth response at breast height but not at the 

top of the butt-log. Low density thinning, on the other hand, resulted in substantially 

larger, less tapered logs with significantly higher growth rates at breast height and the top 

of the butt-log. These findings have important implications for financial returns from 

management practices such as pruning. 

Comparisons of stemwood volume estimates using the Honer (1967) equation and 

two taper equations (Li and Weiskittel 2009) revealed that the Kozak (2004) "Model 02'' 
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variable-exponent taper equation provided the most accurate volume estimates. Results 

from the Kozak equation showed that low density trees grew at more than 50% the 

volume growth rate of B-line trees and 100%) more than control trees. Thinned stands 

grew at 50 - 80% of the gross volume growth rate of the control treatment. Growth rates 

between the thinning treatments, however, were generally similar despite significant 

reductions in stand density between the B-line and low density thinning regimes. These 

findings reveal the remarkable growth potential of low density eastern white pine stands 

and have important implications for forest management in the region. 

INTRODUCTION 

Eastern white pine (Pinus strobus L.) is a significant component in many forest 

types throughout the northeastern U.S. (Widmann and McWilliams 2004). Pure stands of 

white pine are common in the region as a result of agricultural land abandonment and the 

widespread use of shelterwood regeneration systems. White pine trees can be highly 

valuable once they reach a large diameter and volume; therefore, thinning treatments are 

widely recommended and often implemented to hasten growth rates. A consensus as to 

optimal residual densities, however, has not been reached after nearly 40 years of 

research on the topic (Leak 2004; Seymour 2007). 

Many studies in white pine stands have documented patterns of increased growth 

rates in response to thinning. Della-Bianca (1981) reported a 20% increase in DBH 

growth rates on thinned trees and higher gross volume growth over 8 years in a thinned 

versus an unthinned stand, despite differences in site quality. Likewise, Burger et al. 
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(2003) showed a 54% increase in the 6-year annual volume increment due to thinning a 

17-year-old white pine plantation in Virginia. Projected to the final harvest at age 30, 

thinning would account for a 31% increase in the value of the stand (Burger et al. 2003). 

Potential for even greater growth response under substantially heavier thinning 

than previously tested was first documented on mature white pines isolated by the 1938 

hurricane (Smith and Seymour 1986; and reviewed by Seymour 2007). This led to the 

idea of low density management, which was first evaluated by Hunt (1968) and Hunt and 

Mader (1970) and led to a new stocking guide that incorporated the growth of large 

crowns produced by heavily releasing young crop trees (Seymour and Smith 1987). In the 

last two decades, the number of proponents and practitioners of low density management 

has grown. 

Low density thinning involves retaining only those pines with the best form 

and/or the highest growth potential at an unconventionally wide spacing. Seymour (2007) 

suggested that Wilson's (1946) spacing: height ratio should be kept between 0.4 and 0.5; 

in other words, trees should be spaced to half of the stand height. Thinning entries are 

then timed to prevent crown recession and will ultimately result in about 75 trees per 

hectare (30 trees per acre). Hunt and Mader (1970), and subsequently Stone (1985), 

concluded that low density thinning is an attractive alternative to conventional thinning 

because low density trees have substantially higher diameter growth rates than their 

counterparts in conventionally thinned and unthinned stands, which amounted to similar 

basal area and board-foot volume growth rates between the treated stands. Desmarais and 

Leak (2005) reported that low density thinning in a roughly 40-year-old white pine stand 

in New Hampshire had a 20% increase in quadratic mean stand diameter over 10 years. 
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During this growth period the stand more than doubled board-foot volume which caused 

stumpage value to triple (Desmarais and Leak 2005). 

Low density thinning, however, challenges the regional guidelines for white pine 

management, which recommend maintaining optimal stand-level gross volume growth 

through repeated thinning to the B line on the Philbrook et al. (1973) stocking guide 

(Lancaster and Leak 1978). Lancaster and Leak (1978) state that B-line thinning 

maintains high growth rates because the stand is neither under- nor over-stocked. 

However, several comparisons of growth rates of stands thinned to different densities 

either at or well below B-line stocking have indicated that stand growth losses may 

actually not be incurred below the B-line (Leak 1982; Stone 1985; Seymour 2007) and 

that the highest stand-level growth is actually well above B-line stocking in unthinned 

stands (Schlaegel 1971; Leak 1981; Seymour 2007). Therefore, gross volume increment 

in white pine stands is linearly related to stand density (Innes et al. 2005), and no 

evidence has been shown of an optimal level of growth around B-line stocking (Seymour 

2007). This has prompted some to believe that perhaps the regional guidelines should be 

re-evaluated. 

An update of management guidelines should consider those attributes of 

management that foresters focus their attention on in the field. In the case of white pine, 

thinning is done to increase growth rates, which will in turn reduce the time to attain 

target piece size of crop trees. Since the 5-meter butt-log portion of a white pine tree 

contains much of the total stemwood volume and a disproportionate amount of the value, 

the effects that thinning has on butt-log growth and form are important. Often foresters 

estimate the Girard form class (GFC; Girard 1933) of crop trees prior to a timber sale 
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because GFC, as a measure of bole taper, is highly related to both cubic and board foot 

volumes (Husch et al. 2003). Thinning can substantially decrease GFC. increasing log 

taper, due to disproportionate growth in the lower bole (Larson 1963), which may lower 

the value of the log. As such, if low density thinning were to result in the degradation of 

butt-log quality, foresters might be better served by maintaining higher stand densities. 

Other important aspects of management include stemwood volume and volume 

growth, and obtaining accurate and unbiased volume estimates is essential for making 

objective comparisons among different management regimes. Because thinning intensity 

can influence bole form, it is essential that a volume prediction equation accounts for 

these differences. At present, there are two types of volume equations for white pine in 

this region: the widely used Honer (1967) allometric model, and taper equations (Li and 

Weiskittel 2009). Honer s equation was used previously by Innes et al. (2005) and 

Seymour (2007) in their analyses of the relationship between gross volume increment and 

stand density. No study has applied the taper equations to date, but Li and Weiskittel 

(2009) found that their best model reduced bias in volume estimation by 45% compared 

to Honer's equation. 

The objectives of this paper were to: (1) explore the influence of thinning on 

Girard form class and butt-log growth; (2) assess the accuracy of the two best Li and 

Weiskittel (2009) taper equations in the Seymour (2007) white pine thinning study 

(WPTS); (3) compare the volume predictions and volume growth results of the taper 

equations to the Honer (1965) equation; and (4) analyze the influence of thinning on total 

stemwood volume growth over 17 years in the WPTS. 

42 



METHODS 

Study site and data collection 

The study site is located in central Maine (44°55' N, 68°4T W) on the Dwight B. 

Demeritt Forest of the University of Maine. It is a 0.96 ha eastern white pine plantation 

where, in 1991, the eastern white pine thinning study (WPTS) was initiated to evaluate 

tree and stand responses to two contrasting silvicultural systems for white pine. First 

described by Seymour (2007), the stand was originally an unreplicated spacing study 

planted in 1949 on somewhat poorly drained silt-loam soils of the Buxton series with an 

average site index of 19.8 m (base age 50; Frothingham 1914). It received no 

management until the first thinning in the fall of 1991 at age 42, and was subsequently re-

thinned in 2001. The study consists of eight replicate blocks, each with three 0.04 ha (20 

m x 20 m) plots blocked according to pre-treatment trees per hectare (tph) and basal area. 

Thinning treatments were assigned at random so that each block consists of a low density 

plot, a B-line plot, and a control plot. Crop trees in the low density treatment were 

marked prior to felling at approximately an 18-20 ft spacing according to the Seymour 

and Smith (1987) stocking guide; all non-crop trees were removed. Crop trees in the B-

line treatment were marked identically to those in the low density treatment, and thinning 

was done in order to release them on 3-4 sides until the target residual basal area of the 

Philbrook et al. (1973) stocking guide was achieved. The 2001 re-entry harvest removed 

the least desirable low density trees and maintained the isolation of crop trees. On the B-

line plots, the re-entry thinning was done to maintain B-line stocking, but since the initial 
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thinning left stocking below the B-line (Seymour 2007), the second entry was light on 

most plots. Analyses presented here focus on four study blocks (Table 2.1). 

Data collection commenced prior to the 1992 growing season with plot tallies 

including diameter at breast height (DBH; nearest 0.25 cm; 1.37 m above the ground). 

total tree height (HT; nearest 0.05 m), and height to the lowest live branch (HTLLB) for 

all trees in thinned treatments. Control trees were measured for DBH; however, only a 

subset (roughly equal to the per-plot number of trees on thinned plots) received the HT 

and crown measurements. Subsequently, these missing heights were estimated with plot-

specific height-over-DBH regression equations. The inventories of 1999, 2001, 2006, and 

2008 were conducted in August-September with DBH, height, and crown measurements 

recorded for all living trees. 

Girard form class 

In 2008, 63 trees were selected for reconstructing Girard form class (GFC; Girard 

1933) over the study period. Crop trees in the low density stands were paired with 

equivalent trees in the B-line and control stands based on 1992 DBH, crown ratio (CR), 

and crown class; in addition, only unthinned trees with desirable bole form were selected 

to ensure compatibility with thinned crop trees. In effect, the sample represented 21 

individual crop trees grown for 17 years in three different density management regimes. 

Each tree was climbed to 5.27 m and measured for diameter outside bark and bark 

thickness (nearest 0.1 cm), then increment bored through the center of the entire bole (i.e. 

two cores at 180°). The cores were mounted to wooden boards in the field and later 

sanded with increasingly finer grit sandpaper to clearly expose ring boundaries under 
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Table 2.1. Stand attributes of the eastern white pine thinning study treatments during the 
study period. Values are means of four 0.4 ha plots per treatment; standard errors are in 
parentheses. 

Control B-line Low Density 

1992 post-harvest 
TPH 1550(347) 594 (62) 313(22) 
BA 45.8 (4.29) 20.2(0.91) 12.7(0.18) 
QMDa 21.7(1.72) 21.7(1.43) 23.3 (0.58) 
LAIb 4.7 (0.27) 2.0 (0.03) 1.9(0.21) 

2001 pre-harvest 
TPH 1300(236) 525 (34) 313(22) 
BA 51.7(3.90) 26.7(1.18) 19.8(0.46) 
QMD 24.8(1.68) 26.4(1.40) 29.1 (0.66) 
LAI 4.8 (0.27) 3.4(0.11) 3.0(0.12) 

2001 post-harvest 
TPH 1300(236) 488 (44) 175(10) 
BA 51.7(3.90) 25.3(1.41) 11.8(0.35) 
QMD 24.8(1.68) 26.6(1.43) 29.4(1.23) 
LAI 4.8 (0.27) 3.3(0.12) 1.9(0.08) 

2008 
TPH 988(142) 444(19) 167(6) 
BA 48.8 (2.37) 28.3(1.68) 15.3(0.47) 
QMD 27.1 (1.58) 29.0(1.22) 34.1 (1.05) 
LAI 4.3(0.16) 3.0(0.18) 2.6 (0.06) 

Note: TPH - trees per hectare; BA - basal area (m2 ha'); 
QMD - quadratic mean stand diameter (cm); 
LAI - leaf area index (m2 m"2) 

a QMDs are of upper crown class trees 
b From two plots per treatment in 1992 
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magnification. Ring widths were measured to the nearest 0.001 mm using the WinDendro 

program (Regent Instruments. Inc.) after scanning to 1200 dpi resolution. In order to 

estimate previous diameters, ring widths were scaled with the ratio of the full core length 

to half the measured inside bark diameter in 2008. Diameters inside bark at 5.27 m 

(scaling diameter) for the four stand inventories prior to 2008 were calculated as twice 

the average core radius for each year. GFC was then calculated as the ratio of inside bark 

diameter at 5.27 m and DBH from inventory data. 

Stem taper equations 

Stem taper equations predict diameter inside bark (dib) at any height along the 

stem (h) and can be numerically integrated to obtain an unbiased volume estimate 

(Gregoire et al. 2000). The numerical integration technique estimates the volume of 100 

sections per tree using Smalian's formula, which assumes sections are frustra of 

parabloids (Husch et al. 2003). Li and Weiskittel (2009) fit various published taper 

equations to the white pine stem profile data of Honer (1967) as well as trees sampled 

from the WPTS. The best performing equations for dib and volume for eastern white pine 

were the Kozak (2004) "Model 02"' and the Clark et al. (1991) models, respectively. Li 

and Weiskittel (2009) noted that including crown dimensions into the models resulted in 

improved volume estimates. Since crown variables were shown to adequately account for 

stand structural changes through time and from thinning when predicting projected leaf 

area in the WPTS (Chapter 1), we chose to use the Kozak model form that includes 

crown length (CL; [HT-HTLLB]) and the Clark model that includes crown ratio (CR; 

CL/ HT). The Kozak equation is defined as 
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[1] dib = a0DBHa i 

where: v 1 - a i / H T ) 1 / 3 

l - p l / 3 

1.3 

^ HT 

Q = l - z 1 / 3 

h 
z = — 

HT 

= 1.055 
= 0.991 
= -0 .027 
= 0.366 
= -0 .824 

= 0.305 
= 4.978 
= 0.112 
= -0.552 
= 0.002 

The Clark et al. (1991) equation was modified by Jiang et al. (2005; their eqn. 5) and is 

defined as 

[2] 

where: 

dib = 

0.5 

= 58.94088 
= 1.941309 
-0.720758 
= 2.455252 
= -0.27982 

= dib at 5.27 m 

Clark et al. (1991) and Jiang et al. (2005) provide equations to predict F on standing 

trees, but in this study F was estimated as the product of DBH and the plot-average GFC 

for that year. Parameter estimates are given here because they were not reported by Li 

and Weiskittel (2009) for these particular model forms. 
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Taper model validation 

Validation of the dib predictions from the Li and Weiskittel (2009) taper 

equations focused on possible treatment-related biases when the models were applied to 

WPTS data. The validation data includes 139 trees and 1.304 dib measurements (Table 

2.2). Overall accuracy of dib and GFC predictions from the taper models was calculated 

as the average absolute deviation (AAD) 

[3] AAD = £ " = l | Y i " Y i l , 
n 

where Y; is the predicted dib or GFC and Y; is measured dib or GFC. 

Table 2.2. Means and ranges of the taper model validation dataset {n = 139). See text for 
variable definitions. These data include 52 control, 45 B-line and 42 low density trees. 

dib (cm) h(m) DBH (cm) HT(m) HTLLB (m) CR 

Mean 21.05 5.51 26.11 19.25 10.96 0.43 

Minimum 0.60 0.15 15.24 15.21 6.13 0.20 

Maximum 50.05 20.87 42.16 23.99 16.58 0.66 

Analyses 

Analysis of variance (ANOVA) was used to test for differences in GFC, DBH, 

and scaling diameters among the treatments. Volume growth rates were calculated with 

the Kozak, Clark, and Honer (1967) equations for two growth periods separated by the 

10-year harvest entry in the thinning study; the growth periods were 1992-2001 (10 

years) and 2001-2008 (7 years). ANOVA was then used to simultaneously test for 

differences among the treatments, volume equations, and for an interaction between these 
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terms. Orthogonal contrasts were included to test for differences between the B-line and 

low density treatments, and between the unthinned control and the thinning treatments 

combined. Multiple comparisons of the ANOVA results were done using Tukey's HSD 

post hoc tests which maintained a 95% family-wise error rate. Statistical significance of 

all tests was considered at the 95% level of confidence. 

RESULTS 

Girard form class 

Girard form class (GFC) increased in all treatments over 17 years from an overall 

average of 0.77 ± 0.006 (± SE) to 0.82 ± 0.004 (Figure 2.1). Initially, there were no 

GFC differences among the treatments {P > 0.66); however, after 17 years, the B-line 

crop trees had significantly more taper (i.e. lower GFC) than comparable control trees (P 

< 0.01) and somewhat more taper than low density trees (P = 0.12). These patterns 

resulted from a significant thinning-induced diameter growth response at breast height (P 

< 0.001) for both treatments, while scaling diameters (dib at 5.27 m) in the B-line 

treatment remained nearly the same as the control, thus increasing butt-log taper relative 

to the control (Figure 2.2). Diameter growth rates at 5.27 m in the low density and B-line 

treatments were 97 + 6 and 19 + 8% greater than the control, respectively. 
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Taper model validation 

The Li and Weiskittel (2009) taper models predicted dib measurements from the 

WPTS with less than 10% error on average (Table 2.3). The Kozak model produced more 

accurate estimates of dib than the Clark equation. Whether the equations could replicate 

the patterns of butt-log taper presented above was assessed through biases of dib 

predictions at breast height, 5.27 m, and overall GFC. The Kozak equation was closer to 

breast-height dib and GFC, but the Clark equation was a better predictor of scaling 

diameter. The latter result is a consequence of inputting scaling diameter directly into the 

model as the F variable. Residuals of the dib estimates showed no apparent treatment-

related bias (Figure 2.3), but the Clark equation exhibits more bias below 5.27 m for all 

treatments. Both equations predicted dib accurately throughout the middle and top 

portions of the trees. 

Table 2.3. Average absolute deviations (AAD) of the Li and Weiskittel (2009) taper 
equation predictions compared to dib and Girard form class of the validation dataset. 

All Trees (n = GFC-analyzed trees (n = 63)  

Model 139) dib dib at breast-height dib at 5.27 m Girard form class 

Kozak 1.0767 0.8697 0.8051 0.0322 
Clark 1.4821 2.8021 0.1775 0.0709 
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Figure 2.3. Residuals (predicted - observed) of dib estimates made by the Li and 
Weiskittel (2009) Kozak and Clark taper equations. Arrows indicate the mean crown base 
in 2008 for the control (solid), B-line (dashed), and low density (dotted) treatments. 
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Volume growth 

As expected, heavier thinning in the low density treatment resulted in greater tree 

volumes than the other treatments throughout the study period (Figure 2.4). Volume 

predictions made by the Honer (1967), Kozak. and Clark equations were similar for B-

line and control trees; however, the Clark equation added substantial volume to low 

density trees. The Honer equation estimated the lowest volumes in all treatments. 

Regardless of the equation used, tree-level periodic annual increments (TVINC; 

dm yr"1) of dominant and codominant trees were significantly different among all 

treatments during both growth periods (Tables 2.4 and 2.5). Volume growth estimates for 

the B-line and control treatments were equal among the prediction equations. For the low 

density treatment, however, volume growth estimates of the Clark equation were 

significantly higher than both other equations during the first growth period (1992-2001) 

but only differed from the Honer equation during the second period (2001-2008). 

According to the Kozak equation, during the first period the low density trees grew 96% 

more volume than the control and 47% more than the B-line trees; during the second 

period the low density trees grew 181% more than the control and 75% more than the B-

line trees. 

Stand-level volume growth estimates made by each equation showed the same 

general patterns throughout the study period (Figure 2.5). Again, the Honer estimates 

were the lowest for each treatment, and the Clark estimates were higher than the others 

for the low density treatment. Volume growth per hectare (SVINC; m ha" yr" ) during 

the first growth period did not differ between the B-line and low density treatments [as 

was reported previously by Seymour (2007)] but during the second period, the B-line 
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grew significantly more volume (Table 2.5). This resulted from a 28% increase in B-line 

SVINC while the low density stand SVINC was constant between growth periods (as 

estimated by the Kozak equation; Table 2.4). The control plots grew significantly more 

volume than both thinning treatments during each period. 
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Figure 2.4. Mean stemwood volumes of dominant and codominant trees for each 
treatment throughout the study period. 
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Table 2.4. Mean periodic annual volume growth estimates by equation and treatment. 
Standard errors are in parentheses; units are dm yr" for tree-level growth and m3 ha"1 yr 
for stand-level gross growth. Only dominants and codominants are included in the tree-
level estimates, and stand-level values are gross volume growth. 

Equation Control B-line Low Density 

1992-2001 Growth Period 

Tree-level 
Honer 11.4(0.50) 16.5(0.91) 24.6(1.13) 
Kozak 12.8(0.57) 17.1(0.90) 25.1(1.16) 
Clark 14.3 (0.86) 19.3 (1.44) 32.3 (1.86) 

Stand-level 
Honer 12.2(1.19) 8.0(0.47) 7.3(0.30) 
Kozak 13.8(1.52) 8.3(0.38) 7.4(0.36) 
Clark 15.7(0.94) 9.3(0.99) 9.7(0.42) 

2001-2008 Growth Period 

Tree-level 
Honer 13.8(0.68) 22.3(1.24) 41.5(2.96) 
Kozak 15.6(0.78) 24.9(1.34) 43.7(2.99) 
Clark 14.3(1.05) 22.3(1.66) 52.1(3.97) 

Stand-level 
Honer 11.5(0.64) 9.5(0.69) 7.0(0.15) 
Kozak 13.0(1.08) 10.6(0.91) 7.4(0.18) 
Clark 11.9(0.63) 9.4(1.17) 8.8(0.29) 
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Figure 2.5. Mean volumes per hectare for each treatment throughout the study period. 
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Table 2.5. Analysis of variance results for tests of differences in volume growth rates among the treatments as calcu 
Kozak, Clark, and Honcr (1967) equations. The treatment parameter was divided into orthogonal contrasts between t 
low density (LD) treatments and between the two thinning treatments combined (Thin) and the unthinned control (C 
and codominants are included in the tree-level comparisons. 

Parameter df SS F-value P-value RSE Parameter df SS F-value P-value 

oo 

1992-2001 Growth Period 

Tree-level 

Block 3 5026 21.933 < 0.001 

Treatment 2 21765 142.471 < 0.001 

B vs. LD 1 4798 62.811 < 0.001 

C vs. Thin 1 16967 222.130 < 0.001 

Equation 2 2007 13.137 < 0.001 

Trt:Eqn 4 724 2.370 0.051 

Residual 834 63704 

2001-2008 Growth Period 

Tree-level 

Block 3 3687 9.6847 < 0.001 

Treatment 2 65105 256.5084 < 0.001 

B vs. LD 1 1161 9.150 0.003 

C vs. Thin 1 63943 503.866 < 0.001 

Equation 2 539 2.125 0.1203 

TrtiEqn. 4 1687 3.324 0.1203 

Residual 648 82235 

0.317 8.740 

0.463 11.265 

Stand-level 

Block 

Treatment 

B vs. LD 

C vs. Thin 

Equation 

Trt:Eqn. 

Residual 

3 
2 
1 
1 
2 
4 

24 

21.457 
249.302 

0.861 
248.441 
35.019 
5.833 

54.596 

3.144 
54.795 
0.378 

109.212 
7.697 
0.641 

0.0 

< 0.0 

0.5 

< 0.0 

0.0 

0.6 

Stand-level 

Block 3 25.215 6.270 0.0 

Treatment 2 117.005 43.643 < 0.0 

B vs. LD 1 26.685 19.907 < 0.0 

C vs. Thin 1 90.320 67.379 < 0.0 

Equation 2 6.691 2.496 0.1 

TrtrEqn. 4 9.178 1.712 0.1 

Residual 24 32.171 

Note: df - degrees of freedom; SS - sum of squares; RSE - residual standard error 



DISCUSSION 

Girard form class 

Initially, we expected that changes in Girard form classes (GFC) in the WPTS 

would follow the stem form development patterns reviewed by Larson (1963). These 

would suggest that in the control and B-line treatments, GFC would increase as crowns 

receded due to crowding and age, and that the low density treatment would greatly 

decrease GFC due to long crowns on widely spaced crop trees (Chapter 1; and Figure 

2.3). While control trees supported this hypothesis, we were surprised to find that B-line 

trees had more taper than low density trees 17 years after thinning (Figure 2.1). 

Investigation into the growth trends of each component of the GFC ratio 

elucidated the possible causes of this result. Diameter growth along the butt-logs 

analyzed in this study conformed to the "passive" and "stimulatory" growth concepts of 

Larson (1965). Passive growth occurs when the upper stem increases in diameter while 

the lower stem does not; this happens on trees that do not experience substantial wind 

sway, such as those in dense stands (Larson 1965) or that are experimentally guyed 

(Jacobs 1954). Stimulatory growth is a response to stresses in the lower bole caused 

primarily by wind sway; growth concentrates within the stressed areas to build greater 

support. This type of growth has been observed relatively high on stems. For example, 

Jacobs (1954) found a stimulatory growth response up to 4.57 m high on heavily thinned, 

fee-swaying Pimis radiata. In the present study, control trees grew more at the top of the 

first log (5.27 m) relative to growth at breast height, which may have resulted from 

reduced sway in these dense stands and thus a higher ratio of passive to stimulatory 
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growth. Thinning around B-line crop trees caused them to sway somewhat more than 

controls and thus experience greater diameter growth at breast height. Apparently, the 

wind sway was not sufficient enough to also increase growth at 5.27 m (Figure 2.2), and 

therefore, the B-line trees had greater bole taper (lower GFC) than the control trees. Wind 

exposure was certainly greatest for low density trees, which also had larger crowns that 

both catch wind and add weight to the top of the trees; the resulting sway increased the 

amount of stimulatory growth up to at least 5.27 m. 

These growth trends have important management implications. For example, 

pruning dead branches from the butt-logs of select crop trees can substantially increase 

value (Smith and Seymour 1986; Page and Smith 1994) because white pine has a poor 

ability to shed dead branches naturally (Wendel and Smith 1990). Exposed branch knots 

or pruning wounds are considered log defects (Ostrander 1971) and, therefore, rapid 

occlusion of the pruning wounds is essential for recovering expenses and making a profit. 

Slow growth at 5.27 m on B-line trees would hamper occlusion, while low density trees 

will quickly begin growing valuable clear timber. 

To our knowledge, the patterns of Girard form class presented here are unique in 

the literature because by pairing trees based on size (DBH and CR), crown class, and bole 

form immediately following thinning, the effects of thinning alone were able to be 

analyzed. Some studies have confounded the influences of tree size and thinning. For 

example, Hilt and Dale (1979) found that 11 to 12 years after thinning upland oaks 

(Quercus spp.) changes in GFC were attributable to initial form class and not to thinning; 

they concluded that thinning had no effect when in fact the trees they analyzed were not 

comparable. Similarly, Brinkman et al. (1965) reported that 10 years after thinning 
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shortleaf pine (Finns echinata Mill.), changes in GFC were again based on tree size 

where trees in the higher DBH classes had the greatest increase in form class. Trees in the 

lowest density stands had on average the highest GFC because they had the greatest 

number of large trees. Brinkman et al. (1965) thus concluded that thinning only indirectly 

affected GFC by increasing tree size and that unthinned trees were likely to have similar 

form class to heavily thinned trees once they reach the same size. In a one-time sample of 

repeatedly thinned loblolly pine (Pinus taeda L.), Shearin et al. (1985) found no 

differences in GFC among three thinning treatments and an unthinned control. However, 

when all trees less than approximately 24 cm were excluded, thinned stands had 

significantly higher GFC than unthinned stands (Shearin et al. 1985). Here again, despite 

the filtering of their data, they did not control for differences in crown class or initial 

form that could have influenced the array of bole forms present in the unthinned stands. 

Yet another study found Girard form classes in an eastern white pine thinning trial similar 

to ours (Stone 1985) were nearly the opposite of those presented in this study. 

Specifically, Stone (1985) found that conventionally thinned trees had the highest overall 

GFC, followed by low density trees and then unthinned control trees. The discrepancy 

between Stone's (1985) findings and ours is likely the result of Stone's tree selection, as 

with other studies, which was based on diameter class within each plot and not paired 

trees. Despite all of these different findings, what is consistent in the literature, and our 

results (Figure 2.1), is the finding that heavy thinning does not negatively influence 

Girard form class. It seems apparent, however, that tree selection is important for 

comparisons between thinned and unthinned stands because plot averages are unlikely to 
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reflect the GFC on "would-be" crop trees that were never released in unthinned control 

stands. 

Taper model selection 

Both the Kozak and Clark taper equations predicted dib well, but the Kozak 

model was clearly more accurate. Because of its segmented polynomial form, biases of 

the Clark equation were caused by problems in the fit or form of the butt-log portion of 

the model. These over-predictions were surprising because Li and Weiskittel (2009) 

showed no such bias in their residual graphs. Li and Weiskittel (2009) also found that the 

Kozak equation was a better predictor of stem taper in their evaluations of eastern white 

pine, balsam fir (Abies balsamea L. Mill.), and red spruce (Picea rubens Sarg.). 

Similarly, Rojo et al. (2005), with maritime pine (Pinus pinasterAit.) in Spain, found the 

Kozak model to be the best predictor of stem profile out of the 31 taper equations they 

compared. When predicting volumes, however, Li and Weiskittel (2009) found that the 

Clark model was the least biased. Similarly, Filho et al. (1996) found the Clark model 

best at predicting both stem profile and volume for loblolly pine in Brazil, and Filho and 

Schaaf (1999) demonstrated the accuracy of the Clark model by comparing volume 

estimates from several taper equations to those obtained by water displacement of slash 

pine (P. elliotti Engelm. var. elliolti). It should be noted that the Kozak equation was not 

tested by either Filho et al. (1996) or Filho and Shaaf (1999). 

Despite the previous vindication of the Clark equation, its biased dib predictions 

make its volume estimates for the WPTS questionable. ANOVA of tree- and stand-level 

volume growth (Table 2.5) showed the potential for spurious conclusions from biased 
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volume equations, such as the Clark model which estimated higher volumes for the low 

density treatment in particular. These likely resulted from the relatively large scaling 

diameters input into the model, combined with the elevated dib predictions in the lower 

bole. Differences between the Kozak and Honer (1967) predictions were less dramatic, 

but clear nonetheless. The Honer equation has long been the regional standard among 

researchers and foresters, and its predictions are usually trusted. Using much of Honers 

(1967) data to fit their taper equations, Li and Weiskittel (2009) found that the Kozak 

model decreased absolute biases by 31% from the Honer equation. Given this result and 

the model's performance on our sample trees, the volume predictions made by the Kozak 

equation are likely to be more accurate than either other equation employed here. 

Furthermore, by including crown length in the model, it can account for crown structural 

changes following thinning (Weiskittel et al. 2007a; Chapter 1). 

Influences of thinning on volume growth 

Since the Kozak model is most likely to provide accurate volume predictions, 

further analyses here and for the WPTS will employ the Kozak equation. At the tree-

level, we found low density trees to have significantly more volume and higher growth 

rates than either B-line or control trees. This trend was expected since heavily released or 

open-grown trees tend to be the largest in any given even-aged population, and low 

density trees in this study had significantly bigger crowns with greater leaf area than trees 

in either other treatment (Chapter 1). Most surprising was that B-line trees were not 

substantially (or significantly) larger than comparable trees in the control treatment 

(Figure 2.4). B-line TVJNC, however, was significantly higher than the control during 

63 



both growth periods, which seems to indicate a slow growth response from B-line 

thinning such that with more time, significant differences in mean tree volumes might 

arise. 

Consistent with thinning studies in other regions (Assmann 1970; Zeide 2001), 

thinning reduced total stand gross volume growth in the WPTS. However, thinning to 

two different densities did not substantially affect SVINC during the first growth period, 

as was already reported by Seymour (2007). During the 2001-2008 growth period, the B-

line growth rate increased nearly 30% over the first period, and became significantly 

higher than the low density treatment. This increase in SVINC was likely the result of an 

increase in leaf area between periods (Table 2.1) to the point of crown closure (Chapter 

1) that was not augmented by thinning after the light re-entry harvest in 2001 (to re­

establish B line stocking) (Figure 2.5). That SVINC of the low density treatment was 

equal between growth periods (Table 2.4) is remarkable because roughly half of the trees 

were removed in the 2001 thinning (Table 2.1). 
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CHAPTER THREE 

PATTERNS OF TREE AND STAND GROWTH EFFICIENCY IN EASTERN 

WHITE PINE (Pinus strobus L.) STANDS MANAGED BY 

CONVENTIONAL AND LOW DENSITY THINNING 

ABSTRACT 

Despite the commercial importance of eastern white pine {Pinus strobus L.), its growing 

space relationships are largely unknown; these relationships have helped to improve 

silvicultural systems in many other North American forest types. This study was 

undertaken to inform a long-standing debate between conventional B-line and low 

density management of eastern white pine through analyses of tree and stand level 

growth efficiency (GE) - defined as the amount of stemwood volume growth per unit leaf 

area - over two growth periods spanning 17 years. Growth was measured between three 

stand inventories during the study period; leaf area was estimated from a power function 

of sapwood basal area and crown length at two times 7 years apart during the study 

period. Within each thinning treatment and the unthinned control, canopy position of 

individual trees did not GE. Also, thinning significantly increased leaf area and volume 

growth, but not differences in GE were found. At the stand-level, gross volume increment 

was positively and linearly related to leaf area index. Volume growth and growth 

efficiency of the B-line treatment were significantly higher than the low density treatment 

during the second growth period (but not the first); this coincided with canopy closure 
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and is thought to be temporary. In general, however, thinned plots had similar GE to 

unthinned plots, but with reduced variability. Variation in the GE of unthinned plots was 

more related to density (trees per hectare) than to the shape of the diameter distributions 

(stand structure); density was positively related to GE in the unthinned treatment. 

Contrary to expectations, low density thinning of eastern white pine did not sacrifice 

growing space efficiency at the tree- or stand-levels, and thus site utilization is not 

reduced by thinning below B-line stocking. Changes in the GE relationships between 

growth periods for the B-line treatment in particular emphasize the need for more long-

term studies of production ecology. 

INTRODUCTION 

Growth efficiency (GE), the amount of annual stemwood volume increment per 

unit of leaf area (Waring et al. 1980), is an important component of forest production 

ecology because it defines how trees and stands utilize available growing space 

(Assmann 1970; Waring 1983). Growth efficiency was originally used as a simple 

measure of tree vigor (Waring et al. 1980), but advances in volume and leaf area 

estimation procedures have enabled wider application of GE studies in recent decades. 

Seymour and Kenefic (2002) identified three possible relationships of tree growth 

efficiency (TGE) and leaf area: (1) monotonic decreasing, where TGE decreases with 

crown size: (2) monotonic increasing, where TGE increases with crown size; and (3) 

sigmoid, where TGE peaks at an intermediate crown size. These patterns are influenced 

by tree size (Smith and Long 1989), shade tolerance (Webster and Lorimer 2003), stand 
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density (Jack and Long 1991a), canopy position or strata (Gilmore and Seymour 1996; 

Kollenberg and O'Hara 1999), site quality (DeRose and Seymour 2009), and age 

(Seymour and Kenefic 2002). 

Thinning can also have a strong influence on the GE of trees and stands. 

Following thinning, residual trees have been observed to increase their TGE due to an 

enhanced light environment until the negative effect of large crown size causes a 

reduction (Brix 1983; Jack and Long 1992). Thus, recently released intermediate-sized 

trees can have the highest TGEs (O'Hara 1988; Powers et al. 2009). Applied to the stand-

level. this suggests that residual stands dominated by medium-sized trees can be most 

efficient and that more heavily thinned stands may result in less efficient use of the 

available space. Studies of various conifer species have resulted in both increased 

(Waring et al. 1981; Velazquez-Martinez et al. 1992) and relatively constant stand growth 

efficiency (SGE) following thinning (Binkley and Reid 1984; O'Hara 1989; McDowell et 

al. 2007). O'Hara (1989) attributed much of the variability in the SGEs of thinned 

Douglas-fir [Psuedotsuga menziesii (Mirb.) Franco.] stands to differences in stand 

structure, or the distribution of tree sizes within a stand (Smith et al. 1997). 

For many North American tree species growing in both even- and uneven-aged 

forests, an understanding of production ecology has aided in the design and 

implementation of silvicultural systems that create optimal stand structures for utilizing 

growing space (e.g., O'Hara 1996). However, very little is known about the growth 

efficiency of eastern white pine {Pinus strobus L.), which is a component of many of the 

forest types in the Northeast (Wendel and Smith 1990) and frequently occurs in a dense, 

even-aged condition when growing in pure stands. White pine is also one of the fastest 
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growing and most valuable species in the region (Widmann and McWilliams 2004), but 

foresters lack clear, quantitative direction on how to manage even-aged stands, owing to 

a long-standing debate within the forestry community (see Seymour 2007). Conventional 

management follows the Lancaster and Leak (1978) regional guidelines, which 

recommend repeated light thinning entries to the B-line on the white pine stocking guide 

(Philbrook et al. 1973; Leak and Lamson 1999). Others argue for substantially heavier 

thinning through a low density regime (e.g., Hunt and Mader 1970; Seymour and Smith 

1987; Page and Smith 1994; Seymour 2007). With such contrasting density management 

approaches, understanding the efficiency with which thinned white pine trees and stands 

utilize the provided growing space will improve the efficacy of these systems (Long et al. 

2004) while also helping to inform the debate. Therefore, the objective of this study was 

to model the relationships of growth efficiency for both thinned and unthinned eastern 

white pine stands to examine how this relationship is affected by thinning at both the 

tree- and the stand-levels. 

METHODS 

Study site and data collection 

The study site is located in central Maine (44°55' N, 68°41" W) on the University 

of Maine's Dwight B. Demeritt Forest. It is a 0.96 ha eastern white pine plantation where, 

in 1991, the eastern white pine thinning study (WPTS) was initiated to evaluate tree and 

stand responses to two contrasting silvicultural systems for white pine. First described by 

Seymour (2007), the stand was originally an unreplicated spacing study planted in 1949 
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on somewhat poorly drained silt-loam soils of the Buxton series with an average site 

index of 19.8 m (base age 50; Frothingham 1914). It received no management until the 

first thinning in the fall of 1991 at age 42, and was subsequently re-thinned in 2001. The 

study consists of eight replicate blocks, each with three 0.04 ha (20 m x 20 m) plots 

blocked according to pre-treatment trees per hectare (TPH) and basal area. Thinning 

treatments were assigned at random so that each block consists of a low density plot, a B-

line plot, and a control plot. Crop trees in the low density treatment were marked prior to 

felling at approximately an 18-20 ft spacing according to the Seymour and Smith (1987) 

stocking guide; all non-crop trees were removed. Crop trees in the B-line treatment were 

marked identically to those in the low density treatment, and thinning was done in order 

to release them on 3-4 sides until the target residual basal area (i.e., the B-line) of the 

Philbrook et al. (1973) stocking guide was achieved. The 2001 re-entry harvest removed 

the least desirable low density trees and maintained the isolation of crop trees. On the B-

line plots, the re-entry thinning was done to maintain B-line stocking, but since the initial 

thinning left stocking below the B-line (Seymour 2007), the second entry was light on 

most plots. Analyses presented here focus on six study blocks (Table 3.1). 

Data collection started prior to the 1992 growing season with plot tallies including 

diameter at breast height (DBH; nearest 0.25 cm; 1.37 m above the ground), total tree 

height (HT; nearest 0.05 m), height to the lowest live whorl (HTLLW; having three or 

more live branches) and height to the lowest live branch (HTLLB) for all trees in the 

thinned treatments. Control trees were measured for DBH; however, only a subset 

(roughly equal to the per-plot number of trees on thinned plots) received the HT, 

HTLLW, and HTLLB measurements. Subsequently, the missing heights were estimated 
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Table 3.1. Stand attributes of eastern white pine thinning study treatments during the 
study period. Values are means of six 0.4 ha plots per treatment; standard errors are in 
parentheses. 

Control B-line Low Density 
1992 post-harvest 

TPH 1450(230) 608 (42) 312(14) 
BA 44.6 (2.80) 20.2 (0.69) 12.3(0.27) 
QMDa 22.0(1.13) 21.6(0.97) 22.7(0.51) 
LAIb 4.7 (0.27) 2.0 (0.03) 1.9(0.21) 

2001 pre-harvest 
TPH 1233(157) 545 (25) 308(15) 
BA 50.9(2.61) 27.1 (1.00) 19.1 (0.51) 
QMD 25.3(1.11) 26.2 (0.93) 28.6 (0.55) 
LAI 4.9 (0.20) 3.5(0.11) 2.9 (0.09) 

2001 post-harvest 
TPH 1233(157) 522(26) 179(7) 
BA 50.9(2.61) 25.5 (0.69) 11.6(0.29) 
QMD 25.3(1.11 26.3 (0.95) 29.2 (0.85) 
LAI 4.9 (0.20) 3.4(0.10) 1.9(0.05) 

2008 
TPH 933 (97) 441 (12) 167(5) 
BA 47.9(1.64) 27.5(1.24) 14.9(0.63) 
QMD 27.9(1.10) 29.0 (0.77) 33.7 (0.74) 
LAI 4.2(0.15) 3.0(0.13) 2.4(0.11) 

Note: TPH - trees per hectare; BA - basal area (m" 
QMD - quadratic mean stand diameter (cm) 
LAI - leaf area index (m2 rrf2) 

a QMDs are of upper crown class trees 
b From two plots per treatment in 1992 only 

ha'); 
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with plot-specific height-over-DBH regression equations. In 2001 and 2008, stand 

inventories were conducted in August and September with DBH, HT, and crown 

measurements recorded for all living trees. Sapwood basal area was measured on all 

living trees during these inventories from increment cores extracted at breast height on 

the east and west sides in 2001 and on the north, southeast, and southwest sides in 2008. 

The sapwood-heartwood boundary was marked in the field prior to core mounting. 

Boundary marks were verified with a 10% ferric chloride (FeCU) solution that stains the 

heartwood prior to measuring the sapwood radii (nearest 0.1 mm). Coincident with 

increment coring, each tree was measured for bark thickness (nearest 0.1 cm) at breast 

height with a bark gauge. Sapwood basal area was calculated as the difference between 

inside bark basal area and the mean heartwood area (from individual sapwood radii 

minus inside bark radius). 

Leaf area estimation 

Tree-level projected leaf area (PLA, irf) was estimated for the years 2001 and 

2008 using an allometric equation based on sapwood basal area (SBA, cm') and live 

crown length (CL, m). with crown base as HTLLW. The PLA prediction equation is 

[1 ] PLA = 0.1027 * SBA07541 * CL12538. 

where each variable is as defined. This model form was previously used by Gilmore et al. 

(1996) and Kenefic and Seymour (1999) for balsam fir (Abies balsamea L.) and eastern 

hemlock (Tsuga canadensis L.), respectively. Parameter estimates are fixed effects from 
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a nonlinear mixed effects model fit. Projected leaf area index (LAI) predictions from 

Equation [1] were validated against an independent litterfall-LAI dataset on 12 of the 

same plots included here (Chapter 1). LAI (m m "), or the total amount of PLA per unit 

ground area, is estimated using the allometric equation by summing tree PLAs on each 

plot and dividing by the plot area. 

Stemwood volume estimation 

The total stemwood volume of trees was estimated from the stand inventories. A 

stem taper equation was selected from those presented by Li and Weiskittel (2009) to 

predict diameter-inside-bark (dib) at any height (h) along the stem so that volume could 

be calculated by numerical integration; this procedure has been shown to provide 

unbiased estimates of volume given a robust taper equation (Gregoire et al. 2000). The Li 

and Weiskittel (2009) models were fit to the Honer (1967) regional eastern white pine 

dataset with some trees from the WPTS added. Results from Chapter 2 indicated that 

when applied to WPTS data, the best Li and Weiskittel (2009) model was the Kozak 

(2004) 'Model 02' variable exponent equation, which included crown length (here CL is 

HT-HTLLB): 

a0 = = 1.055 P3 = 0.305 

« i = = 0.991 P4 = 4.978 
a2 = = -0.027 P5 = 0.112 

Pi = = 0.366 p6 = -0.552 

h- - -0.824 P7 = 0.002 

where: _ I - Q / H T ) 1 / 3 

l - p l / 3 

1.3 
K HT 
Q = 1 _ z l / 3 

h 
Z = 

HT 
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Analyses 

Patterns of tree and stand growth efficiency (TGE and SGE, respectively) were 

calculated by dividing volume growth by leaf area and were examined for two growth 

periods spanning the 17-year study. The first period includes the growth between the 

inventories of 1992 and 2001. the first 10 years after the initial thinning; the second 

period includes the growth from 2001 until 2008, the seven years following the second 

harvest entry. Periodic annual stemwood volume increment was calculated at the tree-

level (TVJNC; dm3 yr"1), and at the stand level as gross growth (SVINC; m3 ha"1 yr"1). 

Patterns of growth efficiency depend upon the relationship of volume growth to leaf area 

(Seymour and Kenefic 2002). For the three TGE patterns described above, there are two 

general mathematical forms of the TV1NC-PLA relationship: a simple power function 

and a peaking function (often a cumulative Weibull distribution). Since there is no 

evidence of peaking TGE in our study (see Results), a power function was used to 

quantify patterns of growth efficiency as 

[3] TV1NC = PiPLA"*, 

where TVINC and PLA are as defined, (3i is the constant, and p% is the exponent. 

Preliminary analyses tested the effects of including PLA estimates from the beginning, 

middle, and end of the growth period in equation [3]. Results showed substantial 

improvements in R2, AIC, and statistical significance using the latter PLAs; thus, the 

period-end PLA or LAI was used in calculating TGE or SGE for each growth period. 
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Tree-level analyses focus on the TV1NC-PLA and TGE-PLA relationships 

between crown classes within treatments and between treatments for upper crown class 

trees (dominant and codominant). Analyses of the differences in form and pattern of the 

TV1NC-PLA relationship between crown classes or treatments used indicator variables 

for each respective factor in the model. Thus, the (3i and fc parameters were modified by 

converting each parameter to an additive linear function which would then predict the 

constant and exponent for each factor in a single model. For example, to test for 

differences between thinning treatments the constant parameter in Equation [3] became 

[4] pi = b ,+a ,*B + a2*LD, 

where B and LD are indicator variables for the B-line and low density treatments, 

respectively, b] is the parameter for the control, and ajS are parameter estimates of the 

difference between the control parameter and the respective thinning treatment. Analyses 

of the differences between each factor's parameter estimates focused on the 95% 

confidence intervals (CIs) of each estimate where overlapping CIs indicated a non­

significant difference and non-overlapping CIs were considered significantly different. 

Stand-level analyses focus on the volume growth - leaf area index (SVINC-LAI) 

and SGE-LAI relationships between treatments for both growth periods. Analysis of 

covariance (ANCOVA) was used to test for the effect of thinning on SGE within each 

growth period using LAI as a covariate. Orthogonal contrasts were included to 

specifically compare the B-line and low density treatments as well as the unthinned 
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control with the two thinning treatments combined. Statistical significance in the 

ANCOVA tests was considered at the 95% level of confidence. 

Stand SGEs were also related to stand density (TPH) and stand structure. 

Structure was quantified as the shape parameter estimate of a Weibuil probability density 

function (Husch et al. 2003) 

r , n . c / D - a \ 1 / c - r — l c 

[5] ^ D ) = b ( ~ b ~ ) * e ' 

where /(D) is the probability density of each plot's DBH distribution, a is the location 

parameter (fixed at 2 cm, which is below the minimum population value), b is the scale 

parameter, and c is shape parameter. The Weibuil model estimated the distribution of 1 

cm diameter classes from the tree lists of each plot in 2001 and 2008. The shape 

parameter describes the general form of the distribution. For example, plots with a wide 

range of tree sizes will have a low estimate and plots with nearly uniform distributions 

will have a high estimate. 

RESULTS 

Unthinned control trees during the first growth period (1992-2001) had an 

increasing amount of TVFNC with PLA, resulting in a monotonic decreasing TGE pattern 

(Figure 3.1). There were no differences in these relationships among the separate crown 

classes (Table 3.2; Figure 3.2). Likewise, when the crown classes were grouped into 

upper (dominant and codominant) and lower (intermediate and over-topped), no 
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differences between the groups were found. In addition, during the second growth period 

(2001-2008) the crown classes were still similar; the same was true within each thinning 

treatment during both growth periods. Because there were very few or no lower crown 

class trees in the thinned treatments, further analyses focus on dominants and 

codominants only. 

Dominant 
Codominant 
Intermediate 
Overtopped 

n 1 1 r 

75 90 105 120 135 150 

Projected Leaf Area (m2) 

Figure 3.1. The relationships of stemwood volume growth (TVINC) and projected leaf 
area (PLA), and tree growth efficiency (TGE) and PLA for each crown class in the 
control plots during the 1992-2001 growth period. TVINC-PLA lines show the fits by 
crown class of the power function (Table 3.2); TGE-PLA lines were drawn by dividing 
the power function predictions by PLA. 
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Table 3.2. Nonlinear regression fit of the tree-level TVINC-PLA relationship by crown class for the control treatmen 
1992-2001 growth period. Parameter estimates for the dominant, intermediate, and over-topped crown classes are the 
between that crown class and the codominant estimate. 

Parameter Crown Class Estimate SE /-value f-value Rz RSE 

Constant Codominant 1.1291 0.1290 8.7516 < 0.0001 0.8706 
Dominant 1.1233 0.6820 1.6472 0.1006 

Intermediate -0.4615 0.3159 -1.4608 0.1452 

Over-topped -0.6070 0.7446 -0.8151 0.4157 

Exponent Codominant 0.6387 0.0281 22.6980 < 0.0001 
Dominant -0.1002 0.0710 -1.4120 0.1590 

Intermediate 0.0737 0.1450 0.5084 0.6115 

Over-topped -0.0840 0.6398 -0.1314 0.8956 

2.7428 

Note: SE - standard error; RSE - residual standard error; df- residual degrees of freedom 



o 
O 

-2 -

Crown Class 

Figure 3.2. Comparison of the 95% confidence intervals of the constant and exponent 
parameter estimates of the nonlinear model for the control treatment during the 1992-
2001 growth period (Table 3.2). Error bars are 95% confidence intervals of the parameter 
estimates. The grey dashed and dotted lines are the 95% confidence intervals for the 
codominant crown class. 

The TV1NC-PLA relationships for all treatments during both growth periods were 

significantly nonlinear (Table 3.3), resulting in a slight but significant decline in TGE 

with greater leaf area (Figures 3.3 and 3.4). There were no differences in the TVINC-

PLA relationships between control and low density trees during either growth period. The 

TVINC-PLA relationship for the B-line treatment during the first growth period, 

however, was different from the control treatment (Table 3.3), but not from the low 

density treatment (Figure 3.5). By the end of the second growth period, there were no 

differences in the relationships of TGE among the treatments. 
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Table 3.3. Nonlinear regression fits of the tree-level TVINC-PLA relationship for each treatment during the 1992-20 
2008 growth periods. Parameter estimates for the B-line and low density treatments are the difference between that t 
control estimate. Only dominants and codominants are included. 

Parameter Treatment Estimate SE /-value P-valuc R" RSE df 

1992-2001 

Constant 

Exponent 

2001-2008 

Constant 

Exponent 

Growth Period 

Control 
B-line 

Low Density 

Control 
B-line 

Low Density 

Growth Period 

Control 
B-line 

Low Density 

Control 
B-line 
Low Density 

0.8377 3.3267 403 0.8734 0.1057 8.2606 < 0.0001 
-0.5417 0.1260 -4.3000 < 0.0001 
-0.1153 0.1882 -0.6125 0.5405 

0.7145 0.0286 24.9543 < 0.0001 
0.2085 0.0540 3.8613 0.0001 
0.0427 0.0519 0.8226 0.4112 

0.8147 0.1542 5.2841 < 0.000! 0.8577 4.9320 303 
-0.1423 0.2088 -0.6817 0.4959 

-0.2376 0.2254 -1.0540 0.2927 

0.7610 0.0441 17.2750 < 0.0001 
0.0709 0.0637 1.1128 0.2667 
0.0961 0.0706 1.3603 0.1747 

Note: SE - standard error; RSE - residual standard error; df- residual degrees of freedom 
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Figure 3.3. The relationships of stemwood volume growth (TV1NC) and projected leaf 
area (PLA), and tree growth efficiency and PLA for each treatment during the 1992-2001 
growth period. TVINC-PLA lines show the fits by treatment of the nonlinear regression 
model (Table 3.3); TGE-PLA lines were drawn by dividing the power function 
predictions by PLA. 
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Figure 3.4. The relationships of stemwood volume growth (TVINC) and projected leaf 
area (PLA), and tree growth efficiency and PLA for each treatment during the 2001-2008 
growth period. TVINC-PLA lines show the fits by treatment of the nonlinear regression 
model (Table 3.3); TGE-PLA lines were drawn by dividing the power function 
predictions by PLA. 
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Figure 3.5. Comparison of the 95% confidence intervals of the constant and exponent 
parameter estimates of the nonlinear model for each treatment during the 1992-2001 
growth period (Table 3.3). Error bars are 95% confidence intervals of the parameter 
estimates. The grey dashed and dotted lines are the 95% confidence intervals for the 
control treatment. 

Gross stand volume growth (SVINC) during the 1992-2001 growth period was 

linearly related to leaf area index (LAI) (Figure 3.6). Surprisingly, the relationship of 

SVINC and LAI was stronger within the thinned treatments than it was for the control. 

SGE is quite variable for the control, despite similar LAIs among four of the plots. The 

ANCOVA showed that during this period there were no differences in SGE between the 

thinned treatments or between the unthinned control and the thinned treatments combined 

(Table 3.4). 
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Figure 3.6. The relationships of leaf area index to volume growth and growth efficiency 
for the 1992-2001 growth period. 
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Table 3.4. Analysis of covariance results for tests of the effects of thinning on SGE 
within each growth period. Specific contrasts were made between the B-line (B) and low 
density (LD) thinning treatments, and between these treatments combined (Thin) and the 
unthinned control (C). 

Parameter df SS F-value P-value R2 RSE 

1992-2001 Growth Period 

Block 5 0.603 1.886 0.192 

LAI 1 0.453 7.089 0.026 

Treatment 2 0.203 1.586 0.257 

B vs. LD 1 0.104 1.628 0.234 

C vs. Thin 1 0.099 1.544 0.245 

Residual 9 0.576 

2001-2008 Growth Period 

Block 5 0.878 2.229 0.140 

LAI 1 0.045 0.576 0.467 

Treatment 2 0.479 3.038 0.098 

B vs. LD 1 0.459 5.832 0.039 

C vs. Thin 1 0.019 0.244 0.633 

Residual 9 0.709 

0.686 0.253 

0.664 0.281 

Note: df - degrees of freedom; SS - sum of squares; RSE - residual standard 
error 

During the 2001-2008 growth period, the SVINC-LA1 relationship was somewhat 

more distinct among the treatments than during the first growth period, with the 

exception of two B-line plots that were similar to the low density plots (Figure 3.7). The 

overall SGE of the B-line treatment, however, was significantly different from the low 

density treatment, but not the control (Table 3.4). Likewise, the mean of the combined 

thinning treatments was not different from the control. SGEs among all treatments 

increased between growth periods (Table 3.5). 
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Leaf Area Index (m m ) 

Figure 3.7. The relationships of leaf area index to volume growth and growth efficiency 
for the 2001 -2008 growth period. 

Table 3.5. Mean SGE of each treatment during the two growth periods; standard errors 
are in parentheses. 

Growth Period Control B-line Low Density 
1992-2001 
2001-2008 

2.81(0.187) 2.38(0.049) 2.45(0.044) 
3.01(0.126) 3.21(0.184) 2.80(0.062) 

The Weibull shape parameters did little to explain the variability of SGE within 

the control plots during either growth period, as the shape parameters were similar amon£ 
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the plots (Figure 3.8). There was, however, a shift to higher shape parameter estimates 

between growth periods. The low density treatment showed that increasing uniformity 

(higher shape parameters) caused a slight decrease in growth efficiency. While the B-line 

treatment during the first growth period had constant or slightly decreasing SGE with 

increasing uniformity, there was no clear pattern during the second growth period. It 

should be noted that linear regressions of the shape parameters and SGE reflected the 

lack of a relationship (P > 0.15). 

Stand density, expressed as trees per hectare (TPH), appears to explain the 

patterns of LAI, SVINC, and SGE better than the Weibull shape parameters (Figure 3.9). 

Both LAI and SVINC are positively and linearly or asymptotically related to density. 

While the treatments differentiate in terms of density, the overall relationships did not 

change as a result of thinning. The previously noted variability of the control treatment 

SGE was related to different stand densities, where higher densities were more growth 

efficient during both growth periods. Furthermore, adding the block numbers of each 

study plot to the graphs showed that the initial densities had an influence on SGE in that 

the higher initial densities (lower block numbers) were generally the most growth 

efficient plots after thinning. 
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Figure 3.8. The relationship of Weibull shape parameter estimates to growth efficiency 
for the 1992-2001 and 2001-2008 growth periods. Note the change in scale of the x-axes 
between graphs. 
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Figure 3.9. The relationship of stand density (trees per hectare) to leaf area index (LAI), 
annual volume increment (SVINC), and growth efficiency (SGE) for the 1992-2001 and 
2001-2008 growth periods. Density and LAI values are for the end of the growth periods. 
Numbers adjacent to data points indicate the study block of that plot. Note that the scales 
of the x-axes change between growth periods. 



DISCUSSION 

Patterns of growth efficiency within the even-aged eastern white pine stands of 

the WPTS follow an asymptotic TVINC-PLA relationship across crown classes and 

thinning treatments. These results represent a monotonic decreasing pattern of TGE over 

leaf area and are consistent with patterns from even-aged stands of lodgepole pine {Pinus 

contorta) (Long and Smith 1990; Roberts et al. 1993; Kollenberg and O'Hara 1999), 

loblolly pine (P. taeda L.) (Sterba and Amateis 1998), red pine (P. resinosa Ait.) 

(Larocque and Marshall 1994; Powers et al. 2009), Douglas-fir (Velazquez-Martinez et 

al. 1992; Brunner and Nigh 2000), red spruce {Picea rubens Sarg.) (DeRose and Seymour 

2009), black spruce {Picea mariana Mill.) (Groot and Saucier 2008), and balsam fir 

{Abies balsamea L.) (Gilmore and Seymour 1996; DeRose and Seymour 2009). 

The most efficient trees in the WPTS had small to medium-sized crowns. Trees of 

this size are often found to be the most efficient following thinning (e.g., Assmann 1970; 

O'Hara 1988; Gilmore and Seymour 1996; Powers et al. 2009) but the exact mechanism 

for reduced efficiency in larger trees remains largely speculative (see Ryan et al. 2006). 

In this study, reductions in TGE were associated with increased PLA, and thinning was 

previously found to significantly increase tree PLA (Chapter 1). Although not measured, 

it is likely that the volume of the non-foliated "bare inner core" portion of the crown 

(Assmann 1970) increased from thinning because crown widths would have increased 

(Peterson et al. 1997). Jack and Long (1992) showed that TGE is negatively correlated 

with the size of the bare inner core. Lavigne (1991) found that foliage, branch, and stem 

growth were increased by thinning balsam fir; however, the growth of all aboveground 
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components per unit of foliage weight was not affected by thinning. Our results were 

consistent with Lavigne's (1991) in that thinning did not alter TGE. Lavigne (1991) 

attributed the similarity between the efficiencies of thinned and unthinned stands to 

greater allocation of photosynthates in thinned trees to branch and (or) root respiration. 

Given that larger trees are generally less efficient than comparable smaller trees, 

we initially hypothesized that thinning would alter the relationship of TVINC to PLA 

During the first growth period, the B-line trees had a more linear TVINC-PLA 

relationship than the other treatments and smaller B-Iine trees had the lowest TGEs. By 

the end of the second growth period, however, the B-line pattern shifted to one equal to 

the low density and control treatments. This shift can be attributed to a delayed response 

to the initial thinning for the smaller B-line trees. Originally, B-line stocking was 

achieved through crown thinning, which released selected crop trees on two to three sides 

and maintained enough basal area to meet the stocking guide target (Seymour 2007). 

These crop trees were mostly well-formed dominants and large codominants, with the 

remaining trees being small-crowned codominants or intermediates. As such, the smaller 

trees grew relatively less than the crop trees during the 1992-2001 growth period and 

caused the linear TVINC-PLA pattern for the B-Line treatment (Figure 3.3). By the end 

of the second growth period, however, all B-line trees had fully responded to thinning, 

and their TGEs were similar to low density trees. Therefore, we believe that B-line 

thinning did not truly reduce the TGE of smaller trees as was suggested by the GE pattern 

during the first growth period (Figure 3.3). 

The TVINC-PLA pattern of low density trees changed little between growth 

periods and was not different than the control during either period. The effects of low 
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density thinning, therefore, were to significantly increase leaf area (Chapter 1) and tree 

volume growth (Chapter 2) without substantially changing the patterns of growth 

efficiency. Any reduction in TGE in low density stands is related to the increase in tree 

sizes. 

Gross volume growth (SV1NC) within the WPTS during the first growth period 

was linearly related to LAI (Figures 3.7 and 3.8). This pattern has been shown previously 

for eastern white pine (Innes et al. 2005) and other conifers (Binkley and Reid 1984; 

O'Hara 1989; Smith and Long 1989; O'Hara 1996; Berrill and O'Hara 2007). The fact 

that thinning had little effect on SGE is surprising, because the literature suggests that the 

canopy architecture in low density stands, in particular, would be less efficient because of 

the prevalence of deep and wide crowns (e.g.. Smith and Long 1989). 

During the second growth period, half of the B-line plots had higher SGEs than 

the low density treatment. It was previously shown that the B-line treatment was thinned 

below actual B-line stocking in 1991 (Figure 1) but reached the point of crown closure 

and a stable LAI shortly after the light thinning entry in 2001 (Chapter 1). Peak growth 

commonly occurs at canopy closure followed by a growth decline (Long and Smith 1992; 

Ryan et al. 1997; Smith and Long 2001; Ryan et al. 2004). This pattern implies that 

maintaining B-line stocking, and thus keeping the stand at the point of crown closure 

indefinitely (Philbrook et al. 1973). could be a means to maintain high SGE if growth 

rates continue to be high and LAI remains constant. However, thinning entries would 

have to be repeated often to prevent a decline in either growth or leaf area, and thus may 

not remove enough volume to be profitable. We believe that the increased B-line SGE is 

temporary because it coincides with canopy closure and is the result of increased growth 
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rates on previously subordinate trees. Future inventories and analyses will test this 

hypothesis. 

Thinning substantially reduced the variability in growth and growth efficiency 

evident on control plots. We originally hypothesized that this variability was related to 

stand structure (following the conclusions of 0*Hara [1989]) since the control plots 

differed in their planting density which ultimately affects the array of tree sizes and 

timing of stand development (Oliver and Larson 1996). However, the shape of the 

diameter distributions had little or no relation to SGE (Figure 3.12). Stand density, 

however, was positively related to growth and SGE. This shows that there is a substantial 

contribution of each tree in dense eastern white pine stands to SVINC and SGE, despite 

having reached maximum LAI. 

Results of this study emphasize a need for more research into the long-term 

patterns of some well-established trends in production ecology. For example, being able 

to investigate changes in the growth efficiency relationships of the B-line treatment in 

particular between growth periods allowed for more informed conclusions as to the 

effects of thinning. 
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