
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2005

Data Structures and Algorithms for Efficient
Solution of Simultaneous Linear Equations from
3-D Ice Sheet Models
Rodney A. Jacobs

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Computer Sciences Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Jacobs, Rodney A., "Data Structures and Algorithms for Efficient Solution of Simultaneous Linear Equations from 3-D Ice Sheet
Models" (2005). Electronic Theses and Dissertations. 218.
http://digitalcommons.library.umaine.edu/etd/218

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/218?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA STRUCTURES AND ALGORITHMS FOR EFFlCIENT

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

FROM 3-D ICE SHEET MODELS

BY

Rodney A. Jacobs

B.S. Massachusetts Institute of Technology, 1976

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Computer Science)

The Graduate School

The University of Maine

December. 2005

Advisory Committee:

Dr. James L. Fastook, Professor of Computer Science, Adv~sor

Dr. Phillip M. Dickens, Assistant Professor of Computer Science

Dr. David Hiebeler. Assistant Professor of Mathematics

DATA STRUCTURES AND ALGORITHMS FOR EFFICIENT

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

FROM 3-D ICE SHEET MODELS

By Rodney A. Jacobs

Thesis Advisor: Dr. James L. Fastook

An Abstract of the Thesis Presented
In Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Computer Science)

December, 2005

Two current software packages for solving large systems of sparse simultaneous l~near equations

are evaluated in terms of their applicability to solving systems of equations generated by the Un~versity of

Maine Ice Sheet Model. SuperLU, the first package, has been developed by researchers at the University

of California at Berkeley and the Lawrence Berkeley National Laboratory. UMFPACK, the second

package, has been developed by T. A. Davis of the University of Florida who has ties with the U . C.

Berkeley researchers as well as European researchers. Both packages are direct solvers that use LU

factorization with forward and backward substitution.

The University of Maine Ice Sheet Model uses the finite element method to solve partial

differential equations that describe ice thickness, veloc~ty, and temperature throughout glaciers as functions

of position and t~me . The finite element method generates systems of linear equations having tens of

thousands of var~ables and one hundred or so non-zero coefficients per equation. Matrices representing

these systems of equations may be strictly banded or banded with right and lower borders.

In order to effic~ently Interface the software packages with the ice sheet model, a modified

compressed column data structure and supporting routines were designed and written. The data structure

interfaces directly with both software packages and allows the ice sheet model to access matrix coefficients

by row and column number in roughly 100 nanoseconds while only storing non-zero entries of the matrix.

No a priori knowledge of the matrix's sparsity pattern is required.

Both software packages were tested with matrices produced by the model and performance

characteristics were measured arid compared with banded Gaussian elimination. When combined with high

performance basic linear algebra subprograms (BLAS), the packages are as much as 5 to 7 times faster than

banded Gaussian elimination. The BLAS produced by K. Goto of the University of Texas was used.

Memory usage by the packages varted from slightly more than banded Gaussian elimination with

UMFPACK, to as much as a 40% savings with SuperLU. In addition, the packages provide

componentwise backward error measures and estimates of the matrix's condition number. SuperLU is

available for parallel computers as well as single processor computers. UMPACK is only for single

processor computers. Both packages are also capable of efficiently solving the bordered matrix problem.

DEDICATION

To my wife Susie and daughter Rebecca.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. James Fastook, for his guidance and support. I would also like to

thank Aitbala Sargent who integrated the routines developed in this work with The University of Maine Ice

Sheet Model. This work was also made possible by J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li

and all the developers of SuperLU; T. A. Davis, the developer of UMFPACK; and K. Goto, developer of

the BLAS software.

My employer, N. H. Bragg & Sons, has provided the financial support and flexible working hours to make

my graduate education at the University of Maine possible. They are a 150+ year-old company with the

talent and vitality to constantly reinvent themselves and be a competitive, successful company. Thank you.

TABLE OF CONTENTS

DEDICATION ... ii

...
ACKNOWLEDGEMENTS .. 111

LIST OF TABLES ... vii

...
LIST OF FIGURES ... viil

1 . Introduction 1

2 . Mathematical Foundations for Solving Systems of Linear Equations ... 10
2.1 . Representing Systems of Linear Equations ... 10
2.2. Solving Triangular Systems of Linear Equations 11
2.3. Gaussian Elimination 13
2.4. LU Factorization 15
2.5. Cost of Solving Systems of Linear Equations ... 20
2.6. Error In Computed Solutions ... 22
2.7. Algorithm Stability .. 23
2.8. Vector and Matrix Norms .. 26
2.9. Checking the Stability of the Calculations ... 29
2.10. Ill-Conditioned Problems ... 31

... . 2.1 1 Scaling 34
2.12. Iterative Refinement .. 36
2.13. Special Cases ... 37

3 . Issues Regarding Sparse Systems of Linear Equations ... 40
3.1. Data Storage Schemes ... 41
3.2. Common Operations On Sparse Matrices and Vectors 50

3.2.1. Addition of Sparse Vectors .. 50
3.2.2. Inner Product of Sparse Vectors ... 55

3.3. Conflicting Optimization Requirements for Data Smctures ... 56
3.4. Markowitz Cost: Row and Column Orderings for Optimized LU Factorization 57
3.5. Minimum Degree Pivot Selection .. 61
3.6. Banded Matrices ... 63
3.7. Frontal Methods ... 67

4 . BLAS: Basic Linear Algebra Subprograms ... 73

5 . Software Packages for Solving Sparse Systems of Linear Equations 79
5.1. SuperLU ... 85
5.2. UMFPACK .. 95

6 . Software Interface to the Ice Sheet Model .. 108
6.1. Data Smlchlres 108
6.2. Implementation of Modified Compressed Column Data Structures .. 112
6.3. Performance of Modified Compressed Column Routines ... 117
6.4. Computing and Printing Error Measures ... 118
6.5. Procedural Interface To SuperLU ... 119
6.6. Procedural Interface to UMFPACK ... 122

7 . Establishing a Basis FOP Performance Measures ... 124

8 . Testing and Benchmarking SuperLU and UMFPACK ... 134
8.1. Verification Testing ... 134
8.2. Test Matrices 137
8.3. Initial Tests of BGAUSS .. 138
8.4. Initial Tests of BLU ... 139
8.5. lnitial Tests of SuperLU .. 140
8.6. Initial Tests of UMFPACK 143
8.7. Detailed Test Results .. 145

8.7.1. Detailed Results: Systems without Pressure ... 146
8.7.2. Detailed Results: Systems with Pressure ... 151

9 . Conclusions and Future Work ... 157

BIBLIOGRAPHY .. 160

APPENDICIES .. 161

Appendix 1 . Modified Compressed Column Routines .. 162
A l . 1 . ccadd.f ... 162
A1.2. ccbase0.c ... 164
A1.3. ccbase1.c .. 164
A1.4. ccget.f .. 165

. .
A1.5. cc1nlt.f 166
A1.6. ccparam.h 167
A1.7. ccput.f ... 168
A 1.8. ccsq2.f ... 170
A1.9. cctest.f 171
A1.lO. cczer0.f .. 173
A l . l 1 . mat dump.^ ... 174

Appendix 2 . Error Measures Routine .. 176

Appendix 3 . SuperLU Interface Routine and Demonstration Program ... 178
A3.1 . demo1 . f ... 178
A3.2. sluxsolve.~ .. 180

Appendix 4 . UMFPACK Interface Routine and Demonstration Program .. 186
A4.1. dem0.f ... 186
A4.2. urnfsolve.~ ... 188

Appendix 5 . Simple Banded Gaussian Elimination Program 192

Appendix 6 . Banded Gaussian Elimination Routines .. 195
A6 . l . bandparam . h .. 195
A6.2. bc0py.f .. 197
A6.3. berr0r.f .. 198
A6.4. bgauss.f ... 200
A6.5. bge.f .. 201
A6.6. binit.f ... 204
A6.7. b1oad.f 205
A6.8. bsca1e.f 207
A6.9. buser.f ... 208

Appendix 7 . Banded LU Factorization Routines .. 213
A7.1. b1u.f ... 213

BIOGRAPHY OF THE AUTHOR .. 221

LIST OF TABLES

Table 6 . 1 . Calling parameters for mat dump ... 115
Table 6 . 2 . Performance of modified compressed column routines ... I17

Table 7 . 1 . Banded matrix control array ... 127
Table 7 . 2 . Banded matrix information array 128
Table 7 . 3 . Banded Gaussian elimination routines .. 128
Table 7 . 4 . Banded LU factorization routines .. 131

Table 8 . 1 . Test results for solutions of Equation 8.3. .. 134
Table 8 . 2 . Test results for solution of Equation 8.1. ... I36
Table 8 . 3 . Test matrices from the ice sheet model ... 137
Table 8 . 4 . Initial BGAUSS tests with m 3 d . 2 0 ~ 2 0 ~ 5 ... 138
Table 8 . 5 . Initial BLU tests with m 3 d . 2 0 ~ 2 0 ~ 5 139
Table 8 . 6 . Initial SuperLU tests with m 3 d . 2 0 ~ 2 0 ~ 5 . .. 140
Table 8 . 7 . Initial SuperLU tests with m3dp .20~20~5 . .. 142
Table 8 . 8 . Initial UMFPACK tests with m 3 d . 2 0 ~ 2 0 ~ 5 143
Table 8 . 9 . Initial UMFPACK tests with m3dp . 15x1 5x5 144

LIST OF FIGURES

Figure 1 . 1 . Components of the UMISM 1
................................. Figure 1 . 2 . Node numbering for a 2-D FEM rectangular grid 3

Figure 1 . 3 . FEM grid overlaying satellite image of Antarctica .. 4
Figure 1 . 4 . Scatter plot of non-zero entries in an ice sheet matrix ... 6
Figure 1 . 5 . Scatter plot of non-zero entries in a matrix that includes pressures ... 9

Figure 3 . 1 . Triplet storage using arrays .. 41
Figure 3 . 2 . Structure for storing a triplet 42
Figure 3 . 3 . Singly linked list of triplets ... 43
Figure 3 . 4 . Doubly linked list of triplets ... 44
Figure 3 . 5 . Compressed column format ... 45
Figure 3 . 6 . Compressed row format 47
Figure 3 . 7 . Linked row format 47
Figure 3 . 8 . Linked row and column format .. 48
Figure 3 . 9 . Linked row and column format with embedded row and column numbers 49
Figure 3 . 10 . Addition of ordered sparse vectors with overwriting ... 51
Figure 3 . 11 . Addition of ordered sparse vectors ... 52
Figure 3 . 12 . Addition of unordered sparse vectors with overwriting .. 53
Figure 3 . I3 . Addition of unordered sparse vectors .. 54
Figure 3 . 14 . Inner product of ordered sparse vectors .. 55
Figure 3 . 15 . Inner product of unordered sparse vectors ... 56
Figure 3 . 16 . Sparsity pattern for matrix A .. 58
Figure 3 . 17 . Swapping first and last rows of A ... 58
Figure 3 . 18 . Swapping first and last columns of A ... 59
Figure 3 . 19 . Swapping first and last rows and first and last columns of A .. 59
Figure 3 . 20 . Non-optimal fill-in with minimum degree ... 62
Figure 3 . 2 1 . A banded 9x9 matrix .. 63
Figure 3 . 22 . Variable-band matrix .. 66
Figure 3 . 23 . A triangulated FEM region .. 67
Figure 3 . 24 . Assembly tree of frontal method .. 71
Figure 3 . 25 . A rectangular FEM region .. 72
Figure 3 . 26 . Assembly tree for multi-frontal method ... 72

Figure 4 . 1 . BLAS Quick Reference Guide 77

Figure 5 . 1 . Freely available software for linear algebra on the Web .. 80
Figure 5 . 2 . Sample SuperLU output ... 93
Figure 5 . 3 . Dense array for assembling a frontal matrix 99
Figure 5 . 4 . Sample UMFPACK output 104

Figure 6 . 1 . Modified compressed column folmat ... 109
Figure 6 . 2 . Sample output of ma tdurnp .. 116

Figure 7 . 1 . Output from bgo . f .. 125
Figure 7 . 2 . Sample output of bgauss . f 130
Figure 7 . 3 . Sample output of blu . f 132

Figure 8 . 1 . Non-zeros in L+U in systems without pressure .. 146
Figure 8 . 2 . Memory usage in systems without pressure 147
Figure 8 . 3 . Floating point operations in systems without pressure 148
Figure 8 . 4 . CPU time for all solvers in systems without pressure ... 149
Figure 8 . 5 . CPU time for solvers with BLAS in systems without pressure .. 150

viii

... Figure 8 . 6 . MegaFLOPs per second in systems without pressure 15 1
......... Figure 8 . 7 . Non-zeros in L+U in system with pressure .. 152

.. Figure 8 . 8 . Memory usage in systems with pressure 153
Figure 8 . 9 . Floating point operations in systems with pressure .. 154

... Figure 8 . 10 . CPU time in systems with pressure 155
... Figure 8 . 1 1 . MegaFLOPS in systems with pressure 156

1. Introduction

Dr. James Fastook, his colleagues, and his students have developed the University of Maine Ice Sheet

Model (UMISM) over the past 15 years. The model predicts ice thickness, velocity, and temperature of

glaciers as functions of position and time. Inputs to the model are climate conditions, giving temperatures

and precipitation rates, and bed conditions, giving elevations and sliding characteristics. Figure 1.1

illustrates the components of the model and the interrelationships of the components in terms of their inputs

and outputs.

Figure 1. 1. Components of the UMISM.
Provided by James Fastook

MELT/FREEZE >>>

The ice dynamics component is at the core of the model. I t predicts ice thickness and ice velocity using

Snowfall rates and melting rates generated by the climate module

Ice temperatures generated by the thermodynamics module

Presence or absence of water at the bed generated by the water module

Bed elevation generated by the isostasy module.

-WATER

2
-

gA i
A /

8 "v
ICE

,, V
4

b A

W - DYNAMICS A
U L k J Y A
4
L 2 2 8 A 5 urn
v, 2 v ? B

v P2 v
I I

A
a
W
m

\

ISOSTASY CLIMATE
L , L ,

- <<<BED

The ice dynamics module uses ice temperature to detennine how the ice reacts to the forces that stress it.

Cold ice is harder than warm ice and is deformed at a slower rate. The ice dynamics module also uses the

boundary condition characteristics between the ice and the earth. If the boundary condition is water, then

the ice can slide without friction. At the opposite end of the spectrum, if the ice is frozen solid to the

ground, then it does not slide. Finally, the weight of the ice depresses the ground, which lowers the surface

elevation of the ice. The isostasy module computes the amount of bed depression.

Climate conditions at the surface of the ice depend upon surface elevation because temperature decreases

with increasing altitude. The climate module uses the surface elevation generated by the ice dynamics and

isostasy modules along with a climate model to predict surface temperatures, melting rates, and

precipitation rates.

The thermodynamics module uses surface temperature as well as basal conditions and geothermal heating

to compute temperature throughout the ice sheet. In addition, deformation of the ice due to movement also

produces heat.

The water module uses bed characteristics from the isostasy module and basal temperatures to predict the

presence of water.

The ice dynamics module uses partial differential equations (PDEs) derived from mass and momentum

conservation principals as a basis for computing ice thickness and velocity. The thermodynamics module

uses PDEs derived from energy conservation principals as a basis for computing ice temperatures.

Combined with constitutive relationships that relate ice strain rates to temperature, and temperature to

amount of heat, a complete system is formed for doing the fundamental calculations of ice thickness and

velocity. The resulting PDEs are solved numerically using a mathematical technique known as the finite

element method (FEM).

FEM computes the solution of the PDEs at discrete points in space and times. Figure 1.3 on the next page

shows FEM spatial nodes overlaying a satellite image of Antarctica. This figure shows 4200 nodes

separated by 70 k~lometers over an area of 20 million square kilometers. This is a low resolution, 2-

dimensional model. The colored contour lines are lines of constant elevation computed by the ice sheet

model. The green square and magenta circle consist of nodes of a high resolution, embedded model that

will be discussed shortly. While not h l ly shown in this figure, the region of calculation is chosen to

include the entire ice sheet. Doing so ensures known boundary conditions: there is no ice at the boundary.

The low resolution model typically uses 10 year time steps over a 100,000 year ice sheet cycle, giving a

total of 10,000 time steps in a low resolution model run. The low resolution model is commonly run with

40 kilometer node spacing over Antarctica, giving a total of 16,000 nodes for the entire continent. With

this node spacing, there are 16,000 ice thickness values and 32,000 velocity values for X and Y

components of velocity. FEM does not require that nodes be arranged in rectangular grids, but this is the

configuration commonly used in the ice sheet model.

FEM generates systems of simultaneous linear equations. The solutions of these equations give ice

thickness and velocity. One equation is generated for each node and each degree of freedom. Ice thickness

has one degree of freedom and 2-D velocities have two degrees of freedom. Non-zero contributions to an

equation come from the node being considered and the nodes that are immediate neighbors of this node.

Nodes are generally numbered sequentially starting along the coord~nate axis with the least number of

nodes. Figure 1.2 illustrates node numbering for a 3x4 grid.

I I

Figure 1. 2. Node numbering for a 2-D FEM rectangular grid.

ANTARCTICA
Nested Grkl5 frnedlum-res]

Figure 1 . 3. FEM grid overlaying satellite image of Antarctica.
Provided by James Fastook.

The first equation for this grid, corresponding to node 1, will have non-zero contributions from nodesl, 2,

4, and 5. An equation for an ~nterior node, such as node 5, will have 9 non-zero entries, 1 for itself and 8

from its immediate neighbors. For the 2-D model these linear equations have the mathematical property of

being diagonally dominant. Diagonally dominant systems of linear equations can be easily solved using an

iterative, numeric routine. The routine converges quickly for the ice sheet model. No working storage is

required beyond storage for the non-zero coefficients and right hand side of the equations generated by

FEM and storage for the solution vector. Chapter 2 contains additional information on diagonal dominance

and iterative methods.

With a 40 kilometer grid spacing, the low resolution model does not provide as much resolution as desired

in some areas where ice velocities can change rapidly with distance. One solution is to decrease the node

spacing to get better resolution. However, the number of nodes is inversely proportional to the square of

the node spacing. Reducing the node spacing by a factor of 4 increases the number of nodes 16 fold. Yet

for the majority of the region, the higher resolution may not be necessary, resulting in much unnecessary

computation. An alternative has been to embed a high resolution FEM grid within the low resolution grid

over the area of interest. Results from the low resolution model provide boundary conditions that can be

interpolated in space and time for the high resolution model. In practice, the low resolution model is run

first and the results are saved. The model is then run for the high resolution grid with the saved low

resolution results read and used as needed. The embedded model can use rectangular or curvilinear

coordinates. These embedded models are illustrated in Figure 1.3.

Assumptions are made in the 2-D model that may be invalid in some regions. For this reason, the 3-D ice

sheet model has been developed. The FEM method is still used to generate systems of simultaneous

equations that are solved for ice thickness and velocity. However, the FEM grid is now three-dimensional

and velocities have three degrees of freedom. In addition, the generated systems of equations are no longer

diagonally dominant. For this reason it was decided that direct methods should be investigated for solving

the equations generated by FEM. Direct methods use Gaussian elimination or sim~lar tactics to solve

systems of simultaneous linear equations. The objective of this work is to investigate and implement direct

methods for solving these systems of equations.

It is instructive to go into more detail regarding the 3-D model. First, consider the linear equations

generated by FEM. The non-zero entries in an equation for a node are still generated by the node itself and

its immediate neighbors. There are a total of 27 non-zero entries per equation when there is one degree of

freedom. For 3-D velocities, there are 3 degrees of freedom for each node and 81 non-zero entries per

equation. For a rectangular region that is 5 0 x 4 0 ~ 5 nodes, there are a total of 30,000 independent velocity

variables and 30,000 equations, so the number of non-zero entries per equation is very small compared to

the number of zero entries. Systems of equations that have many more zero entries than non-zero entries

are called sparse, as opposed to dense systems that have many more non-zero entries than zero entries. I f

you look at the coefficients of the equations in the form of a square matrix, you fmd the diagonal elements

of the matrix are non-zero. To the left and right of the diagonal are parallel bands of nonzero entries.

Figure 1.4 is a scatter plot showing the non-zero entries from an actual matrix for ice velocities generated

by the ice sheet model.

Figure 1 . 4. Scatter plot of non-zero entries in an ice sheet matrix

The number of entries between the outermost non-zero entries in a row of a banded matrix is called the

bandwidth. The outermost non-zero entries are counted in the bandwidth. The number is important

because the Gaussian elimination process generates non-zero entries within this band. The wider the

bandwidth is, the more non-zero entries that are generated and the more arithmetic operations that must be

performed. Minimizing bandwidth is a goal when performing Gaussian elimination on a banded matxix.

The order in which nodes are numbered can have a dramatic affect on bandwidth. Suppose that the

rectangular region is m by n by p nodes and that nodes are numbered along the rn axis first, the n axis

second, and the p axis third. For an interior node 1 with 1 degree of freedom, the bandwidth is the

difference between the node numbers of the highest numbered node and lowest numbered node that are

neighbors of I, plus 1. The lowest numbered neighbor of 1 is

1- = I - m n - m - 1

and the highest numbered neighbor of 1 is

I' = l + m n + m + l .

This gives the bandwidth with a single degree of freedom as

w, = I + - 1 - + I = 2 m n + 2 m + 3

For three degrees of heedom the calculation is slightly different. Each node has three equations and three

variables associated with it. Variables at a node are sequentially numbered first. Then the nodes along the

rn axis are numbered second, the nodes along the n axis thlrd, and the nodes along the p axis fourth. There

is one equation for each variable at each node. For each node and variable, non-zero contributions to an

equation come from each variable of all the neighboring nodes as well as the variables of the node being

considered. The lower bandwidth is the difference between the highest numbered variable of a node and

the lowest numbered neighboring variable. For the highest numbered variable I of a node, the lower

bandwidth is

w,, = [- I , =3(rnn+rn+l)+2. (1.4)

The upper bandwidth is the difference between the lowest numbered variable of a node and the highest

numbered neighboring variable. For the lowest numbered variable I of a node, the upper bandwidth is

w , , ~ = 1; - I = 3(mn + rn + I) + 2 . (1.5)

The total bandwidth with 3 degrees of freedom is then

w3 = wI3 + w , , ~ + 1 = 6nzn + 6m + 11 . (1.6)

The bandwidths in equations 1.3 and 1.6 are minimized when m is chosen along the axis with the fewest

nodes and n is chosen along the axis with the second fewest nodes.

For our 5 0 x 4 0 ~ 5 region with 3 degrees of freedom, the bandwidth is 1,241 and the number of equations is

30,000. With variables stored as 8-byte double precision real numbers and the equations solved using

banded Gaussian elimination, 1,241*30,000*8 = 298 million bytes of storage are required to represent a

matrix containing less than 2.43 million non-zero entries requiring 19.4 million bytes of storage. While

banded Gaussian elimination is easy to implement, it is this disparity in storage sizes and the attendant

number of arithmetic operations that prompts the question "Is there a better way to solve these systems of

equations?"

There is an additional feature of the 3-D ice sheet model that also prompts the question for an alternative

solution method. The version of the 3-D model that generates a banded system of equations eliminates

internal pressures within the ice sheet. When these pressures are explicitly included in the model, the

system of equations is no longer banded. Figure 1.5 shows a scatter plot of the non-zero entries in a matrix

with explicitly specified pressures. Without the banded matrix structure, storing the matrix as a two

dimensional array and straightforwardly applying Gauss~an elimination is impractical.

Figure 1. 5. Scatter plot of non-zero entries in a matrix that includes pressures.

Solving large systems of sparse simultaneous linear equations is a common need in science and engineering

problems. Over the years a great deal of work has been done in this area by researchers [10][11]. Software

to solve these problems has been developed and is readily available. In this work two current software

packages were chosen and evaluated with respect to the ice sheet problem. One is SuperLU [8]. The other

is UMFPACK [6]. In order to use these packages effectively the mathematics of solving these problems

must be understood. In addition, efficient procedures and data structures are needed to interface the ice

sheet model with the packages. Finally, the packages themselves must be understood to a level that enables

us to use them properly. Each of these areas is addressed by this work. In addition, performance testing is

done with banded Gaussian elimination serving as a benchmark.

2. Mathematical Foundations for Solving Systems of Linear Equations

A rudimentary understanding of the mathematical issues regarding systems of linear equations was

essential to this work. Although some concepts of linear algebra were familiar to me from various science

and engineering courses, I lack formal training in linear algebra and numerical analysis. In hindsight,

having formal training in these areas would have made this work easier.

This chapter presents fundamental mathematical concepts required for understanding the solution process.

Most of this information comes from Duff, et. al. [lo], Golub and Van Loan [l I] , and Lay [12]. Most of

the major concepts are motivated through discussion, but careful proofs are not generally given. The cited

references provide further details.

2.1. Representing Systems of Linear Equations

A system of linear equations can be specified explicitly.

The a, and bi terms are numeric constants and the xi terms are variables. Solving the set of equations

means finding a set of values for xi such that all the equations are satisfied. The number of equations and

the number of variables can be any whole number greater than zero. These numbers need not be equal as in

this example. However, for ice sheet modeling, they are equal, and we will assume them to be equal

throughout this work. The ice sheet model generates systems with thousands or tens of thousands of

equations and var~ables.

Alternatively, equations (2.1) may be represented as a matrix equation.

The a, terms may be represented as a matrix A, and the xi and bi terms may be represented as vectors x and

b respectively, so equations (2.1) may be represented even more compactly.

A x = b (2.3)

The a , entries of A are diagonal entries. In a square matrix, the diagonal entries lie along a diagonal line

from the upper left corner of the matrix to the lower right corner. The set of diagonal entries is called the

diagonal of the matrix.

A fourth representation of a system of linear equations is the summation notation

In this notation m is the number of equations and n is the number of variables.

2.2. Solving Triangular Systems of Linear Equations

A system of linear equations Lx = b is lower triangular when all entries of L above the diagonal have the

value zero. Specifically, a,, = 0 for i < J.

This system is easily solved if the diagonal entries of L are non-zero.

X , = b , / l , ,

x 2 = (6, - 1 2 1 x ,) / l 2 2

and in general for i > 1

I i-l

x i = (bi - 1 l g x ,) / l j i
1'1

This method is called j b ~ w a r d subs/itutio~z. The value of x, is calculated using the previously calculated

values of xi for 1 l J 2 I- 1.

If

and

thenxi is undefined and the system has no solution. If

and

then xi may have any value.

A system of linear equations Ux = b is upper triangular when all entries of U below the diagonal have the

value zero. Specifically, ni = 0 for i > j

This system is also easily solved if the diagonal entries of U are non-zero. Assume the system has n

equations

I x n = bn ' ~ n n

' , , - I = (b n - I - " o - l , n ~ n) " n - 1 . n - I

and in general for i < n :

This method is call backward subsfilt~tion. The value of xi is calculated using the previously calculated

values of xi for i + l 2 j I n. Like lower triangular systems, similar arguments can be made regarding the

solution of the system when u , ~ = 0.

2.3. Gaussian Elimination

Gaussian elimination is a method fo1- transforming a system of linear equations to upper triangular form

while preserving the value of the solution vector. Once the equations have been transformed to upper

triangular from, backward substitution can be used to solve them. Gaussian elimination repeatedly applies

three elementary transformations to the system that preserve the solution. These elementary

transformations are:

1. Multiplying both sides of an equation by a constant.

2. Replacing an equation by the sum of itself and a multiple of another equation.

3. Interchanging the positions of two equations.

Consider this system of equations.

For simplicity, the variables x, have been removed as have the arithmetic operators and relations. The right

hand sides of the equations have been combined with the coefficients to produce a single augmented

matrix. The first step of the elimination process uses the first equation to eliminate the coefficients in the

first column below the diagonal. If a , , * 0, then multiplying the first equation by -azl / 0 1 , and adding it to

the second equation produces

where

Similarly, multiplying the first equation by -a3, / a l l and adding it to the third equation produces

where

If n l = 0, then the first equation is interchanged with an equation that has a non-zero coefficient in the first

column before the elimination calculations are performed. Interchanging equations is called pivoting. If all

the coefficients in the first column are zero, then there is nothing to do in the first elimination step.

The second step of the elimination process uses the second equation to eliminate the coefficients below the

diagonal in the second column. The second row is interchanged with the row below it if a::) = 0 and

a!:) tl. 0 . Otherwise, the second row is multiplied by - a!:) la ! :) and added to the third row to produce

where

The transformed set of equations now has the form

U x = c

where

and

When there are more than three equations, the process is continued using the ith equation to eliminate

coefficients below the diagonal in the ith column and using row interchanges to ensure a!:) # 0 . The

entries a!:' are called pivots.

2.4. LU Factorization

Suppose A = LU where L is a lower triangular matrix and U is an upper triangular matrix. Then Ax = b is

equivalent to

LUX = b . (2.28)

We can easily solve equation (2.28) using forward and backward substitution. Let

U x = c . (2.29)

Then

L c = b . (2.30)

We can solve LC = b for c using forward substitution. G~ven c, we can solve Ux = c for x using backward

substitution. Furthermore, Ax = b can be solved for multiple values of b by using the L and U factors of

A . There is no need to perform Gaussian elimination for each b.

To compute the LU factorization, we can apply elementary transformations to A that are similar to the

elementary Gaussian elimination transformations, thus transforming A into an upper triangular matrix that

we can identify with U. Each elementary transformation consists of left multiplying A by an elementary

transformation matrix. The end result is the matrix equation

E,E,-, ... E,E,A = U (2.3 1)

The elementary transformation matrices are easily inverted, allowing us to move them from the left side of

the equation to the right side. The inverted matrices are lower triangular matrices, and the product of lower

triangular matrices is a lower triangular matrix. Thus the product of the inverted transformation matrices is

L. If row interchanges are required to ensure that pivots are not zero, the res~llting LU factorization is for

A with the same row interchanges. Let's take a look at each of these statements in greater detail to

understand how the process works. We'll begin by assuming all pivots are non-zero, so row interchanges

are not required.

The first elementary transformation is adding a multiple of one row to a lower row in the matrix. This is

similar to the second elementary transformation in Gaussian elimination. Like Gaussian elimination, this

transformation does most of the work. For example, the elementary matrix

adds /(times the first row of A to the second row of A.

The following matrix multiplications eliminate a2, and a3, from A

where I,, =a, , l a , , and I,, = a , , l a l 1 .

Finally, we can eliminate a;:), obtaining U.

In general,

The inverses of the transformation matrices are

The product of the inverted transformation matrices in reverse order gives

The second elementary transformation is interchanging rows to avoid zero pivots. A matrix that

interchanges rows or columns of another matrix when the matrices are multiplied is called a permutation

mafris. Left multiplying a matrix by a permutation matrix interchanges rows. Right multiplying a matrix

by a permutation matrix interchanges columns. For example, left multiplying A by the following

permutation matrix swaps the second and third rows.

When implemented on a computer with A represented as a two dimensional array of entries, the LU

factorization can be done in place with the computed L and U factors replacing A. When this is done, the

diagonal of L, which is I's, is not explicitly stored; only the diagonal of U is stored. When pivoting is

required, all L and U entries in the pivot row are interchanged with entries from a row lower in the matrix.

In the general case, thls algorithm produces an upper triangular matrix that looks like

-11-1 -17-2
L P L P ~ - ~ . . . L ~ P ~ L ' P I A = U . (2.39)

- k
wherePk are elementary permutation matrices and L are the product of elementary matrices for

eliminating entries a,k for i > k. Using the transformation

gives

To verify this result, substitute for L1 in equation (40) first. The elementary permutation matrices have the

property P'P' = I where I is the identity matrix. This simply states that interchanging the same two rows

-2
twice produces the or~ginal matrix. Use this fact to simplify the result. Substitute for L and simplify.

Continue this process through Ln-I . Also observe that

- k . = k
The net result of these permutations on L IS to make L a lower unit triangular matrix with zero entries

- k
preserved and the same entrles in column k as L but with the entries reordered by the row interchanges.

The product of the elementary permutation matrices and A can be rewritten as the product of a combined

permutation matrix and A.

~ ~ - ~ p " - ~ . . . p ~ p ~ ~ = PA (2.43)

Thus, equation (2.42) can be rewritten as

P A = L U . (2.44)

In practice, P is recorded as the factorization is computed and rows are interchanged. When solving the

system of equations Ax = b with LU factorization, we actually solve

LUX = Pb . (2.45)

The row interchanges of b are consistent with row interchanges that would take place in Gaussian

elimination.

As will be seen later, it is common to permute the columns of A when performing LU factorization for

sparse matrices. When this is done, we have

PAQ = LU (2.46)

where Q is a column permutation matrix. In general, all permutation matrices have the property Q Q ~ = I

where Q~ is the transpose of Q. Therefore, the original system of equations can be written as

P A Q Q ~ X = ~ b (2.47)

or

L U Q ~ X = ~ b . (2.48)

We can solve this equation as follows. Setting u Q T x = C , we can solve LC = Pb for c using forward

substitution. Setting QTx = w and knowing c, we can solve Uw = c for w using backward substitution.

Finally, we can compute x = Qw .

2.5. Cost of Solving Systems of Linear Equations

The cost of solving a system of linear equations can be measured as the number of arithmetic operations

required to solve them. With Gaussian elimination we must count the number of arithmetic operations to

transform the system of equations to an upper triangular system and the number of operations to find the

solution using backward substitution. The number of operations to transform the system to an upper

triangular system has two components: operations on the left hand sides of the equations and operations on

the right hand sides. Looking at the left hand side first, consider the number of operations required to use

row k of to eliminate aik of row i . First, the ratio lik = a,!:) 1 a ~ ~) m u s t be formed. Then

a r ") = a;' - a r) l i k must be formed for k + I < j 2 n , giving a total of 1 + 2(n - k) operations. This set of

operations must be performed ,? - k times, giving a total of (n - k) + 2(n - k12 operations for A (~) . These

operations must be performed for each A (~) where 1 5 k I n , giving

as the total number of operations to the left hand sides of the equations. Recognizing

and

gives

On the right hand side, the number of operations is

The number of operations to perform backward substitution is given by

The total number operations to perform Gaussian elimination is the sum of these three components, giving

For LU factorization, a, operations are required to do the factorization. Performing forward substitution

with a unit lower triangular system takes a, operations, and performing backward substitution requires

a, operations. So the total number of operations is the same as Gaussian elimination.

These cost calculations are based on dense matrices. When dealing with sparse matrices, our goal is to

achieve better performance.

2.6. Error In Computed Solutions

In addition to computing a solution to a system of equations, we must also evaluate the accuracy of the

computed solution. Real numbers on a computer are generally represented in single precision or double

precision floating point format. Single precision numbers have about 6 decimal digits of precision, while

double precision numbers have about 16 decimal digits. These formats are unable to represent real

numbers exactly. As computations are performed, we must concern ourselves with round off error and the

evolving accuracy. As an example, computer addition is not associative. On a 3-digit computer, (100. +

(.4 + (.4 + .4))) = 101., but (((100. + .4) + .4) + .4) = 100. From the previous section, solving a system of

lo4 equations will involve on the order of 1012 arithmetic operations. In addition to round off error, there is

likely to be uncertainty in the values of A and b that must also be taken into account.

In theory, we should be able to put error bounds on the computations by following the sequence of

operations performed by the algorithm used to solve the system of equations. In practice this approach

tends to grossly overstate the errors that are actually observed because a portion of the round off error is

reduced due to cancellation. Instead, the standard practice is to answer the two following questions [lo].

1. Is the computed solution x the exact solution of a nearby problem?

2. If small changes are made to the given problem, are changes to the exact solution also small?

A problem = b is considered nearby Ax = b when small perturbations to A and b produce A and b .

When the first question is answered yes, the computational error has been kept under control. An algorithm

that satisfies this property is called stable. When the algorithm is stable, it is as though we made small

perturbations to the problem and solved the perturbed system exactly.

If the answer to the second question is yes, then the problem is called well-conditioned. If the problem is

well-conditioned and the algorithm is stable, then our calculated solution is a good estimate of the exact

solution. If the answer to the second question is no, then the problem IS called ill-conditioned. If a problem

is ill-conditioned, then our solution is likely to have a large error even if the algorithm used to compute it is

stable. The condition of a problem is a property of the problem.

The following sections will illustrate these concepts and present the mathematics for dealing with them in a

concrete way.

2.7. Algorithm Stability

The following example from Duff, et.al. [lo] demonstrates that Gaussian elimination and LU factorization

can be unstable. Consider the following system of two equations on a computer that maintains 3 decimal

digits of precision.

lz l = 1000 , giving a::) = 1.58 - 1000 * 2.42 = -2420 and bi2) = 4.57 - 1000 * 5.20 = -5200 . Thus, the

system transformed to an upper triangular system of equations is

Using backward substitution to solve for x, we obtain

whlle the correct solution to 3 decimal places is

While x, has been accurately computed, x, has not. The same problem is manifested in LU factorization.

--
Computing H = LU - A where H is the perturbation in A due to calculation error gives

=;o.oo 0.00 1
0.00 -1.58

h,, = -a,, , so the perturbation due to calculation error is not small.

Another way to demonstrate the stability of these algorithms is to compute r = b - A;. r is called the

residual. From the calculations above,

-
r, is not small compared to x2, so again the algorithms appear unstable.

In each algorithm, the value of I,, = 1000 caused a,, to get lost in the growth of a!: ' . Duff, et. al. report

that work done by Wilkinson and extended by Reid give the inequality

where E is the relative precision of the computer (0.0005 for our hypothetical 3-digit computer) and n is

the number of equations. This states that if the growth in akk) is kept small, the perturbation to A will be

small. This suggests that if we swap the order of the equations in our sample system, l,, will be small, and

the resulting accuracy of our solution should be good. The upper triangular form of the swapped equations

is

Using backward substitution, we obtain the solution

This agrees well with the exact solution to 3 decimal places. Computing the residual exactly gives

Given the 3-digit accuracy of our computer, r is small compared to x .

Computing the LU factorization to 3 decimal positions and computing H exactly gives

Again, given the 3-digit accuracy of our computer, H is small compared to A.

Interchanging rows to keep I /,, / r 1 in an attempt to keep the growth of a:) small is called partial pivoting.

Based on experience, Gaussian elimination with partial pivoting has proven to be stable. Duff, et. al. [lo]

report at the time of their work that the best a priori bound for Gaussian elimination with partial pivoting is

I hy 11 5 . 0 1 ~ np (2.71)

where

p 6 2"-' !ax) a , (.
' . J

This is a very loose bound for large systems of equations. Consider n > 100 and P --

If row and column interchanges are allowed, then it is possible to control growth in a;;) even more by

ensuring that

(k) > a!k) for all i 2 k, j r k . 1 ' k k I - I ii I (2.73)

Thus, when a;!+') = a!:) - ai:)nj;k) la:,) is computed, we are ensuring the minimum growth possible. This

technique is called full pivoling. In practice, however, it is not practical due to the large number of

comparisons that must be made to determine the pivot.

With sparse systems of equations, partial pivoting may be more restrictive than desired. One of the goals

of factoring a sparse system of equations is generating sparse LU factors in an attempt to minimize the

amount of computation and storage required. The row that satisfies the partial pivoting criterion may have

many non-zero entries. These non-zero entries may cause zero entries in lower rows to become non-zero,

thus reducing the sparsity of the factors to a greater degree than another pivot row would. For this reason,

the pivot criterion for sparse matrlces is generally

1 o j i) l h u(ajt) l for i > k (2.74)

where

O<z1<1 . (2.75)

When ti=l, this is simply partial pivoting. When u<l, there may be multiple rows from which the pivot

row is chosen, each of which should allow only moderate growth in a:) . Duff, et. al. give equation (2.7 1)

as an upper bound for growth with

p 5 (I + u-I maxi ovl . (2.76)
'1

Since there are no useful formulas that indicate the stability of Gaussian elimination and LU factorization

in practice, the common approach to ensuring the calculations are stable is to measure the precision of the

solution after it has been calculated. Before discussing this topic, however, let's explore the concept of

matrix and vector sizes.

2.8. Vector and Matrix Norms

The norm of a vector, designated llxll, is a measure of the size of the vector. Be definition, a vector norm is

a non-negative number that satisfies the following conditions:

Ilxll = 0 if and only if x = 0 , (2.77)

JJa x(J = JaJ J(xJJ for any scalar a , (2.78)

IIx + yll < llxll+ llyll for any vectors x and y. (2.79)

By definition the p-norm of x, denoted llxll is given by
P '

Conunonly used p-norms are p = 1,2,co for which

The following relations exist between these norms. n is the dimension of the vector x.

A matrix norm l l ~ l l is defined a little differently. A vector x that is multiplied by a matrix A is transformed

to another vector Ax. This leads to the definition

l/*ll = maxll*xll . llxIl='

For the infinity norm of A we have

If k is the value of i that maxirni res l l~x(l~ and lx.,l< 1 for all j, thenll~xll, is maximized

when x, = sign(ab). T h s gives

I I A ~ ~ , = max x lar 1 . (2.87)
.I

In other words, llAllm is the sum of the absolute values of the entries from the row that has the largest such

sum. The infinity norm of a matrix is also known as the row norm.

The I-norm of A with llxll, = 1 is also easily computed. By definition of the 1-norm

Moving the absolute value inside the summation gives

and changing the order of summation gives

For a fixed value of;, the inner summation is the sum of the absolute values of the entries of A in column j .

The outer summation is a weighted sum of the column sums. The weights, x , , are subject to the constraint

x l x . , 1 = 1 . The outer summation is thus maximized when r i = 1 for j equal to the column number of A
i

with the largest sum. Thus

The 1-norm of a matrix is also known as the column norm

The 2-norm of a matrix is the square root of the maximum eigenvalue of A ~ A . The 2-norm is not used in

this work and is not discussed further.

Matrix norms have the following properties.

llAll= 0 if and only if A = 0

IJa All = lalll~ll for any scalar a

IIA + BII l l ~ l l + llBII

IIAxII < ll*llll~ll

IIABII ll~llllBll

2.9. Checking the Stability of the Calculations

Two forms of stability checking have already been suggested. One, we can compute

H = L U - A (2.98)

to assess the stability of the factorization. Two, we can compute

-
r = b - A x (2.99)

to assess the stability of the solution. In practice, computing H is 0 (n 3) work, whereas computing r is

0(n2) work, so examining r is less effort. Duff, et. al. [lo] make the following claims.

I If llrll is small compared to llbll, IIA;II, or IIAIIII;II, then we have done a good job solving the

equations.

2 If we have done a good job solving the equations, then llrll is small compared to (I A 1;.

With regard to the first statement,

1. Duff, et. a 1 argue that if llrll<< llA INI, then ; is the enact solution of (A + HF = b where

l l~ l l<< 11All. Thus ; is the exact solution of a nearby problem.

2. If /Irl << A ; 5 A11F11, then ; is again the exact solution of a nearby problem.

- -
3. If llrll<< llbll, then Ax = b - r is a nearby problem and x is the exact solution.

W ~ t h regard to the second statement,

I Duff, e t a1 also argue that if I H cc A , then IIrll CI A)1;1
2. A good solution does not ensure that llrll << llbll.

To illustrate this last point, Duff, et. al. give the following example.

has the exact solution x, = 1000, x2 = -561. However, the approximate solution x , = 1000, x2, - 560,

which would be accurate on a 3-digit computer, has residual

and J(rJ(is not small compared to I(bl(

They also point out that the residual does not indicate the behavior of the factorization for other values of b.

For the case of equation (2.63) with

Gausslan elimination without partial pivoting produces the exact answer x , = 1.00, x2 = 0.00 on a 3-digit

computer even though the calculations are unstable for other values of b. For this reason,

l l ~ l l = llEE -All must be computed to determine the quality of the factorization.

The stability of forward and backward substitution must also be considered when considering the stability

of the process. Duff, et. al. argue that solving the triangular system T x = b with calculation error and

obtaining the solution x is equivalent to solving (T +E$ = b exactly. The bound on E is

l e v I ~ (n + l) W l ~ y l (2.103)

where y/ is a constant and E is the relative precision of the computer. From this result, they conclude the

forward substitution and backward substitution are stable.

Norms tend to measure the large values in a vector or matrix. Stabil~ty checks based on norms can be

misleading when the entries of a row or column of A are much larger than the entries in another row or

column. Small values of a j j can have relatively large corresponding values for hii even though J(rJJ and

1 1 ~ 1 1 are relatively small. Another approach given by Demmel, et, al. [9] is to compute the component-wise

relative backward, BERR, error given by

BERR = maxlr, (/ s i (2.104)
I

where r; are the components of the residual and

With component-wise backward error x is the exact solution of the slightly perturbed system

(A + H); = (b + f) where

I h,Ic BERR - 1 av l , (2.106)

If,/< B E R R . ~ ~ , ~ . (2.107)

2.10. Ill-Conditioned Problems

Knowing that the calculations have been stable and the extent to which the system of equations must be

perturbed in order for x to be an exact solution does not yet answer how accurately x represents the

solution of the original problem. If small perturbations of the problem result in large changes to the

solution, then x may be an inaccurate estimation of the solution. To illustrate this fact, consider the

following s~mple example taken from Duff, et. al.

The exact solution is

On a 3-digit computer, b must be rounded. When this is done and A is factored, we obtain

Using forward and backward substitution to solve for x we obtain

Computing r, H, and BERR, we get

BERR = 0.000. (2.1 14)

In fact, if we substitute x into the original set of equations and compute r without any rounding error, we

obtain

11 r(Im is still zero to 3 decimal places. = 0.002 . Yet 1 1 x - -Ilm x /11;11 = 0.499 . The
00

problem is not that the calculations were unstable. The problem is not that the perturbations to the system

of equations were large. The problem is that the system of equations is ill-cond~tioneti and small

perturbations have resulted in large changes to the solution.

Duff, et. al. give the follow~ng discussion of ill conditioning. Suppose that A is a matrlx and v and w are

two vectors such that

1 1 ~ 1 1 = 11 ~ 1 1 (2.1 16)

l lAvl l >> llAwll . (2.1 17)

If b has the value Av, then Ax = b has the solution x = v . If Aw, which is small compared to b, is added

to b, then the solution becomes x = v + w . But w is not small compared to v. Thus a small change to b

has produced a large change in x. The problem is ill-conditioned. How badly the problem is ill-

conditioned is determined by how large the ratio I IAV~I/((AW~~ can become. We can write this ratio as

where w = A-'y . The condition number of A is defined to be

4) = I I A I I ~ ~ A - ' 11 .

Duff, et. a1 go on to consider the variation in x due to perturbations of the system of equations. Starting

with

Ax = b (2.1 20)

and perturbing b, we can write

A(X+S x) = b + 6 b .

Subtracting equation (2.120) from (2.121) gives

6 x = ~ - ' 6 b .

Taking the norms of (2.120) and (2.122) gives

l l * l l l l ~ l l 11 bll ,

Dividing (124) by (1 23) gives

The relative uncertainty in the norm of x is bounded by the condition number of A times the relative change

in the norm of the perturbed b. The bound given by equation (2.123) may be quite loose, so the bound

given by equation (2.125) may also be loose. To see that the bound given by equation (2.123) may be

loose, consider the following. If ((w((= ((~ (1 , then it may be that JAW^^ >> ~~AvI I . If Av = b , then

IIAIIIIvII = l l ~ l l l l ~ l l l l ~ w l l >> llbll .

Performing the analysis for a perturbation of A gives what Duff, et. a1 claim to be a tighter bound on the

norm of x. Begin by writing

(A + s A) (x + ~ x) = ~ . (2.126)

Performing the multiplication, subtracting equation (2.120), and rearranging terms produces

A ~ x = - ~ A (x + ~ x) . (2.1 27)

Multiplying each side by A-' and taking the norm of each side produces

116 xll ((~-'11116 Allll + 8x11 -

Finally, rearranging terms gives

The relative uncertainty in the norm of x is bound by the condition number of A times the relative change

in the norm of the perturbed A. Since we are bounding relative norms, what we are really bounding are the

larger entries of x. These bounds do not apply to entries of x that are much smaller than the largest entries.

The relative error in the norm of A can be no less than E , the relative precision of the computer. This

bounds the relative uncertainty in the norm of x to be as high as F K (A) .

While K(A) can be computed directly by computing A-' and forming the product of the norms, the cost of

computing A-' exceeds the cost of solving Ax = b . Methods are available for estimating K (A) cost

effectively, and both of the software packages used in this project do so. Discussing these methods is

beyond the scope of this work.

2.1 1. Scaling

If A is such that min(nii) << max(aij) , then A is said to be poorly scaled. There may be individual rows
i j !I

or individual columns that contribute to poor scaling. Suppose D, and D2 are diagonal matrices. The

product D,A scales the ith row of A by d , i i . The product AD, scales the jth column of A by d . The
2 i i

system of equations Ax = b can be scaled as

where

x = D2y

Scaling does not introduce round off error and if can be done relatively quickly since it involves 0(n2)

operations. According to Golub and Van Loan [l 11, a heuristic bound is

where p is the relative error in the norm of A. If K , (Dl AD2) << K, (A) , then we should expect increased

-I accuracy in the relative norm of D2 x . This is the goal of scaling. However, minimizing K,(D,AD,)~s

a difficult mathematical problem. Simple row scaling is the scaling of A such that each row of D,A has

approximately the same infinity norm. Row scaling reduces the chances of losing accuracy as a result of

adding large number to small numbers in the elimination process. Row-column equilibration is the process

of choosing and applying D, and D, such the infinity norm of each row and column of D,AD, is within

the interval [1/2, 11. Golub and Van Loan point out that row scaling and row-column equilibration can

improve or worsen the accuracy of x , and the results of scaling need to be examined for each problem. As

an example of the good that simple row scaling can produce, Golub and Van Loan give the following

example from Forsythe and Moler. Let

Row scaling gives

On a 3-digit computer, the solutions for the original problem and the scaled problem are respectively

= [Y::) and = [: :::).
The solution of the scaled problem agrees favorable with the exact solution

2.12. Iterative Refinement

-
Let x be the computed solution of Ax = b . The residual is given by r = b - A x . We may compute a

- - - - -
correction to x by solving Az = r and obtaining . The refined value for x is then given by x = x + z . In

fact, this process can be repeated until there is no further improvement in r. Assuming A has been factored

as LU, each iteration involves the computation of r and the use of forward and backward substitution to

-
solve for z. Not only can iterative refinement improve the accuracy of the computed solution, but z is also

an indication of the likely error in x. Duff, et. al. point out that this may be the most important role of

iterative refinement.

Iterative refinement can also be used to compute changes that occur in x when small changes are made to A

and b. First, compute x using the unperturbed values of A and b. Then compute r and using the

perturbed values. Duff, et. al. tribute Erisman and Reid with the suggestion.

Golub and Van Loan claim that the naive floating point implementation of this algorithm does nothing to

improve the accuracy of the computed solution. They do cite work by Skeel whose analysis has shown that

- -
x does show improvement from the standpoint of backwards error. They go on to suggest a process of

-
mixed precision iterative refinement where r and are computed with greater precision than x so that the

- -
precision of x is huly improved.

2.13. Special Cases

A diagonal entry of a matrix is dominant if its absolute value is greater than or equal to the sum of the

absolute values of the other entries in its row or column. The matrix is diagonally dominant if all its

diagonal entries are dominant. This can be expressed as

a k Z 1 , 2 , ... n (2.137)
i t k

j t k

Gaussian elimination without pivoting is stable for a diagonally dominant matrix. Golub and Van Loan

demonstrate that a matrix that is diagonally dominant by columns remains diagonally dominant by columns

as LU factorization proceeds. Specifically

i t k

This means that no partial pivoting is required.

A similar demonstration can be made for matrices that are diagonally dominant by rows. Write A as

where a = a , , . After the first step of the factorization we can write

The outer matrlces on the right hand side are the developing L and U matrlces. Let B = C - vwT l a . B is

the pol-tlon of A that remains to be factored. We can show that B remains diagonally dominant by rows as

follows.

n-I n-l n-l I", I "-I ClboI=CIci - ~ i w ~ / a l ~ C l ~ / , i + ~ C ~ j
!=I i=l , = I "I i=l

Because A is diagonally dominant by rows, we can write

n-l

1 1 < 1 - 1.i 1
i - l

and

giving

Diagonal dominance by rows limits the growth of ahk), contributing to stability. Duff, et. al. show that

overall growth in Gaussian elimination for diagonally dominant matrices is limited by

p = rnax i , j , k I Y i p < 2 max I a , . !/I

Another special case is positive definite symmetric matrices. A real, symmetric matrix 1s positive dejnite

if for all non-zero vectors x of length n

X ~ A X > 0 . (2.147)

Duff, et. al. claim that these matrices arise often in applications because the form X ~ A X may represent a

non-negative quantity such as energy. Duff, et, al. credit Wilkinson with having shown that Gaussian

elimination with diagonal pivots applied to a symmetric positive definite matrix is stable in the sense that

overall growth of a:;) is limited by

According to Lay [12], a symmetric positive definite matrix can be factored as

A = L D L ~ (2.149)

where D is a diagonal matrix; that is D has non-zero entries only on the diagonal. Taking U = D L ~ , the

factorization of A can be done with approximately half the number of arithmetic operations as a fill1 LU

factorization of A. Such a factorization is called a Choleski factorization.

3. Issues Regarding Sparse Systems of Linear Equations

In addition to the mathematical issues regarding systems of linear equations presented in the previous

chapter, there are issues specific to sparse systems of linear equations. Some of these issues are

mathematical, while others, such as data storage schemes, are computer related. There is no exact

definition of a sparse system. Matrices that have many more zero entries than non-zero entries characterize

sparse systems. The systems of equations generated by FEM and the ice sheet model meet this

requirement. The ice sheet equations have on the order of ten to one hundred non-zero entries per row, but

there are thousands or tens of thousands of variables per row.

In addition to getting an acceptable solution, two goals of solving sparse systems of equations on a

computer are minimizing the storage used and minimizing the execution time needed. Since the arithmetic

operations are generally performed by the computer's floating point processor, arithmetic operations are

measured in floating point operations, or FLOPs. A measure of the speed of the computer is floating point

operations per second, or FLOPS. Matrix and vector values must be stored in some sort of real number

format. Typically, a single precision or double precision floating point representation is used. A single

precision floating point number requires 4 bytes of memory and gives approximately 6 decimal digits of

precision, while a double precision floating point number requires 8 bytes of memory and gives

approximately 16 decimal digits of precision. A system of 24,000 equations represented by double

precision floating point numbers is not uncommon for ice sheet modeling. If the system is represented as

an array of 24,000 by 24,000 entries, approximately 4.6 gigabytes of storage are required to store A and

solving the system requires approximately l o i3 FLOPs. For a typical standalone processor that can perform

lo9 floating point operations per second, 1 o4 seconds or 2 to 3 hours of processing time are required. This

time estimate assumes A will fit in main storage. If it doesn't, the execution time may be much longer

Yet A contains only 1.9 million non-zero entries! Also, keep in mind that ten thousand systems of

equations will need to be solved to model the evolution of a glacier over an ice age. Therefore we must

take advantage of the sparsity of the equations to reduce execution time and storage overhead.

3.1. Data Storage Schemes

While representing the matrix A by a two dimensional array is not storage efficient for sparse systems of

equations, it nonetheless has desirable attributes. So long as the array is small enough to fit in main

storage, any element of A is directly addressable and can be retrieved quickly. Also, if a zero entry should

become non-zero in the course of solving the system, memory has already been allocated for the entry, so

there are no complicated memory allocation considerations. Entries can be found and new entries can be

added with cost O(1). Also, there is no additional overhead for storing row and column information. This

information is an intrinsic part of the addressing scheme.

Triplet notation is another representation for A. In this form only the non-zero entries are stored. For each

non-zero entry we store the row number, column number, and the value of the entry. The row and column

numbers can be stored as two byte integers for systems of equations with less than 32,767 variables, or as

four byte integers for systems with more variables. The entry values must be stored in a suitable real

number format. We will assume that entry values are stored as double precision real numbers from this

point forward. The components of the triplet can be stored in three one-dimensional arrays or as a structure

of two integers and a double precision real. Using three one-dimensional arrays works well with Fortran 77

because the language does not have support for more complex data structures. The ice sheet model is in

fact written in Fortran 77. Figure 3.1 illustrates triplet storage using arrays.

Count 14
1 Row

Column

Figure 3. 1. Triplet storage using arrays.

Value 2.5 5.3 10.1 -10.1 ...

The three components of the triplet share the same index value so ROW(I), COLUMN(I), and VALUE(1)

represent the triplet of the i'th entry. An additional integer variable stores the number of entries. Entries

may be ordered by row and column as in this example, or they may be unordered. If data is ordered, a

binary search can be used to locate specific entries with cost O(log2(n)). In this example the search key is a

segmented key consisting of row and column number. I f the data is unordered, then a sequential search

with cost O(n) is required to find an entry. If a new entry is added to an unordered set of entries, it can

simply be added as the N+l entry with cost O(1). If the data is ordered, then all entries that follow the new

entry must be shifted up one position in the arrays to make room for the new enhy. In this case the

insertion operation has cost O(n) where n is the number of entries already stored. O(log2(n)) work is

required to determine where to insert the new item, and cost O(n) work is required to move the entries that

are ordered after the new one to make room for it . Two options exist for deleting an entry. The value of

the entry can be set to zero, or the entry can be physically removed from the arrays. If the value is set to

zero, then the cost is simply the cost of the search plus the cost to store the zero. If the entry is physically

removed, then the cost is the cost of the search plus the cost of moving all entries above the removed entry

down by one.

Languages such as C and C++ have language support for structures consisting of a collection of intrinsic

data types. The structures may be stored in an array or a linked list. If they are stored in an array, then the

same issues of ordered versus unordered data apply and searching, adding, and deleting have the same costs

as the implementation using three separate arrays.

Column

Figure 3. 2. Structure for storing a triplet

I f structures are stored in a linked list, the list may be singly linked or doubly linked. For singly linked

lists, each structure has a pointer to the next structure in the list. The pointer of the last item in the list is

given a null value to indicate the end of the list. One additional pointer variable is used to point to the first

entry in the list.

Column FI Fl Fl

Figure 3. 3. Singly linked list of triplets.

Value

Singly linked lists are typically unordered. The only way to find an entry in a linked list is to search the list

an entry at a time beginning with the first entry in the list. Thus finding an entry has cost O(n). If a linked

list is unordered, then searching for an item that is not in the list will cause every entry in the list to be

checked. If a linked list is ordered, then searching for an item that is not in the list can be terminated as

soon as we have encountered an entry that follows the one for which we are searching. Still, however, the

cost of searching is O(n). An entry can be added to an unordered list in time O(1). The new entry is simply

added to the beginning of the list. The starting pointer is updated to point to the new entry and the pointer

of the new entry points to the entry that was first. If the list is ordered, then adding a new entry means

searching for the place where the entry belongs, changing the pointer of the preceding entry to point to the

new entry, and setting the pointer of the new entry to point to the following entry. The cost of adding an

enuy to an ordered list is O(n) because of the search. Deleting an entry always involves searching for the

entry, so deleting an entry also has cost O(n). Once the entry to be deleted has been found, the value can be

set to zero or the entry can be physically removed. To remove the entry, the pointer of the preceding entry

is changed to point to the entry following the entry being deleted. Memory for the deleted entry can be

deallocated.

For a doubly linked list each structure has two pointers: one to the next entry in the list and another to the

previous entry. This allows the list to be traversed forwards and backwards. Two additional pointer

variables are used to point to the first and last entries in the list.

2.5

Start Pointer

10.1

+
5.3

Pointer 3 Null

Row 1 vl

Figure 3.4. Doubly linked list of triplets.

Column

Value

Doubly linked l~s ts are normally maintained as ordered lists. If a sequence of operations involves entries

that are nearby one another, the links can be followed in the appropriate direction to find the entries with a

cost that is much less than searching from the beginning of the list. The same principal applies when

entries are added or' deleted. If we have no knowledge of a nearby enh-y, then searching, adding, and

deleting have cost O(n) like a singly linked list. In addition, the need to maintain two sets of pointers adds

a little more complexity to the programming.

While Fortran 77 does not support structures of primitive data types, linked lists can still be implemented in

the language using arrays. A pointer field in a structure can be replaced by an array of pointers. Pointer

values are the index values of the data they reference in the data arrays. Memory management can be

implemented by chaining unused array entries as a singly linked free space chain.

1

2.5

Triplet notation requires storage overhead for row and column information. I f the triplets are stored as

linked lists, additional storage is required for pointers. Most sparse storage schemes require storage

overhead above the storage required for the values. Storage of banded matrices is an exception that will be

discussed later.

Start Pointer

Null

Triplet notation is particular well suited as an input/output format. I t is human readable and a common

format for exchanging data.

2

10.1

4

3

5.3

Pointer

Pointer

3

C

Null

Pointer End

While the discussion so far has focused on sparse matrices, similar techniques and structures can be used to

store sparse vectors. Instead of having row, column, and value attributes, a sparse vector has only colunm

and value attributes.

Another scheme for storing sparse matrices is compressed colzlmn format as illustrated in the next figure,

Figure 3. 5. Compressed column format.

Column
Start

Row

Values and corresponding row numbers are explicitly stored. The column number is used as an index to

access the Column Start array. The values of the Column Start array are the indices for the first Value in

each column. In the example above, column 1 has the value 2.5 in row 1 and 10.1 in row 2. Column 2 has

the value 5.3 in row 2 and 7.8 in row 3. Finally, Column 3 has the value -10.3 in row 1. N contains the

number of columns in the matrix A. The number of entries in column j is

ColumnStart(j + 1) - ColumnStnrt(J) .

To keep the scheme consistent, the N+l element of the Column Start array is set to the number of values

stored in Value plus 1 . The values are intrinsically ordered by column. In addition, the values within a

column are generally ordered by row, producing a total order. When the data are totally ordered, the value

at a specific row and column can be found very quickly. Suppose we want to find the value of aji . The

values ColurnrrStar~(j,, and Col~~rnnSfar~(j,+l)-1 defme the lower and upper bound of the index values of

Row for column J . Use these bounds to perform a binary search on Row for the value i. If i is not found,

... 1

Value

3

1

2.5

5

2

6

. . . 10.1

2

5.3

3

7.8

1

-10.3

. . .

then aii = 0 . If i is found at say index k, then a,, = Value(10 . Thus the cost of searching is O(log2(c))

where c is the number of values in a column.

Adding a new entry is more complicated. First we must determine where the entry belongs in the Value

array. Once that position has been determined, all values in Row and Value at that position and above must

be moved up one position. The value of the new entry must be stored in the opened space in Value and the

row number of the entry must be stored in Row. Finally, all values in Column Start for column numbers

greater than the entry just added must be incremented by 1 to reflect the movement of the data in Row and

Value. Overall, adding a new entry has cost O(n) where n is the number of non-zero entries in A.

As before, deletion of an entry can be accomplished in one of two ways. First, the value of the entry can be

set to zero for the cost of doing a search and storing the zero. Second, we can physically remove the entry

from the data structure. Removing an entry is essentially the opposite of adding an entry. First we search

for the Value index of the entry. Then we move all data above that index in Value and Row down one

position. Finally, we update the values in Column Start to reflect the movement of data in Row and Value.

Overall, this scheme has cost O(n) where n is again the number of non-zero entries in A.

All entries in a specific column can be efficiently retrieved in compressed column format. However,

retrieving all entries in a specific row is much less efficient. To do so we must perform a binary search of

all N columns. Ordered triplet data has this same weakness depending upon whether the row value or the

column value comes first in the segmented key. Compressed row format is an alternative to compressed

column format. All entnes in a specific row can be efficiently accessed, but we lose efficient access to all

entries in a specific column. Figure 3.6 illustrates compressed row.

Row
Start

Figure 3. 6. Compressed row format.

Value

Searching, adding, and deleting entries in compressed row format are the same as compressed column

Column

1

fonnat, except the roles of row and column are interchanged.

The cost of adding and deleting entries in the compressed row and compressed column formats can be

mitigated by storing the entries in a row or column as a linked list. Figure 3.7 illustrates storing rows of

entries as a linked list.

3

2.5 10.1 -1 0.3

Figure 3. 7. Linked row format.

5

Row
Start

Column

Value

The Row Start array is indexed by row number. The value from the Row Start array is the index value for

retrieving the column number and value of the first entry in the row from the Column and Value arrays.

The Link value is the index number for the next entry in the row. A link value of zero indicates the end of

the list. Searching for a value in a row requires a linear search of the list for that row, so the cost of the

search is O(r) where r is the number of entries in a row. If entries within a row are ordered by column

5.3

6

7.8

...

2

Link

3 5 0

2

0

1 1

1 4

0 . . .

5.3

0

. . . 3

2.5 10.1

2

0

-10.3

. . .

7.8 . . .

number, the search can be terminated as soon as we encounter a column number larger than the column

number we are searching for. If entries within a row are not ordered, then the search can only be

terminated if the entry is found or the end of the list is reached. If the list is unordered, then a new entry

can be added with cost O(1) by simply adding it to the head of the list. If the list is ordered, then we must

search the list for the position of the new entry and adjust the link value of the preceding entry to point to

the new one. The overall cost is O(r). Deleting an entry requires searching for it first. If the deleted item

is removed, then the link value of the preceding entry must be updated to point to the following entry.

Otherwise, the value of the deleted entry can simply be set to zero.

Gaussian elimination and LU factorization require access to elements by row and by column. This can be

accomplished by having both row links and column links as illustrated in Figure 3.8.

Figure 3. 8. Linked row and column format.

Row
Start

The storage for the starting pointers, row and column values, and links is three times the storage for the

values if 4-byte integer values and 8-byte double precision values are used. Storage overhead can be traded

2

Column
Start

Row

3 5

2

Column

Value

4 1

0

0

2

Row
Link

Column
Link

0

2 3

1

. . .

0

2 1 ...

1

...

1

3 2

5.3

0

. . .

2.5

4

10.1

1

5

-1 0.3 7.8

0 0

. . .

...

3 0 0 0

for execution overhead by eliminating the row and column arrays and storing the negated values of row

numbers and column numbers as the end of list link values as shown in the next figure.

Figure 3. 9. Linked row and column format with embedded row and column numbers.

Row
Start

When accessing elements by column, the row links for each entry are followed to the end of the row list to

determine the row number. Likewise, when accessing elements by row, the column links for each entry are

followed to the end of the column list to determine the column number.

2

Column
Start

Value

3 5

2

ROW
Link

Column
Link

... 0

0

0

1 4 0

5.3

-2

...

-1 0.3

- 1

2.5

4

7.8 10.1

-3 1

5

...

. . .

-3 3 -2 - 1 ...

3.2. Common Operations O n Sparse Matrices and Vectors

As with any data structures problem, the optimal data structure for a given problem depends upon the

access requirements of the problem as well as the performance attributes of the data shc tu re . From the

viewpoint of the ice sheet model, the operations that will be performed over and over are the computation

of the entries of A and b in the equation Ax=b. In particular, individual entries throughout A and b are

directly accessed through a series of arithmetic accumulations as the ice sheet model runs. Once an

iteration of the model is finished, the entries need to be zeroed and the computational sequence repeated.

Specific choices made for the data structures are discussed later.

From the viewpoint of solving systems of linear equations, the arithmetic operations that will be performed

repeatedly are

1 . The addition of a sparse vector scaled by a constant to another sparse vector (Gaussian row

replacement)

2. The inner product of two sparse vectors (the formation of one entry in a matrix-matrix product or a

matrix-vector product).

To reap the benefits of sparsity, these operations should have cost that is proportional to the count of non-

zero entries in the two vectors. If costs of the operations are proportional to the lengths of the vectors, then

the costs of these operations would be of the same order as the costs of working with dense vectors and we

would gain little or no efficiency.

3.2.1. Addition of Sparse Vectors

Let's consider forming the sum of two sparse vectors x and y. Unless the row numbers of the non-zero

entries of x are a subset of the row numbers of the non-zero entries of y, or vice-versa, the row numbers of

the entries in x + y will not be a subset of the row numbers of x or y. By "non-zero entries" we mean the

entries that are explicitly stored in the sparse representation of the vector, even if the value of some of these

entries happen to be zero. Thus the addition of sparse vectors generally entails the insertion of new entries.

Of the data structures presented, the ones based on linked lists have the lowest insertion costs. Within the

linked list structures, we can choose ordered lists or unordered lists. In addition, we must consider whether

the resultant vector overwrites one of the two vectors being added or if ~t must be stored as a separate

vector. For example, in Gaussian elimination the resultant vector replaces one of the vectors being added.

Let's consider each of the four possible scenarios.

Case 1: the sparse representation is ordered and the resultant vector replaces one of the existing vectors.

The following pseudo code demonstrates how addition can be performed with cost O(cl+c2) where c l is

the number of entries in vector v l and c2 is the number of entries in v2 and v l + v2 overwrites v l .

ptrla = 0
ptrl = vl.StartIndex
ptr2 = v2.StartIndex
While ptrl < > 0

While ptr2 < > 0
If vl (ptrl) .Column > v2 (ptr2) .Column

Insert v2(ptr2) After vl(ptr1a) Advancing ptrla
ptr2 = v2 (ptr2) .Link

Else If vl(ptr1) .Column = v2(ptr2) .Column
vl (ptrl) .Value = vl (ptrl) .Value + v2 (ptr2) .value
ptr2 = v2 (ptr2) .Link
ExitWhile

Else
Exitwhile

EndWhile
ptrla = ptrl
ptrl = vl (ptr) .Link

EndWhile
While ptr2 c > 0

Insert v2(ptr2) After vl(ptr1a) Advancing ptrla
ptr2 = v2 (ptr2) .Link

EndWhile

Figure 3. 10. Addition of ordered sparse vectors with overwrit~ng.

Variables ptrl and ptr2 point to the active entries in vl and v2 respectively. Variable ptrla points to

the entry of vl that is prior to the active entry. When ptrla is zero, there is no prior entry in vl. Any

entries in v2 that have not been processed and are ordered before the active entry of VI are added to vl by

the Insert x (a) After y (b) Advancing b statement. This statement represents the processing

required to add entry x (a) to the linked list y after entry b and advance b to the newly added entry. It has

cost 0(1) for singly and doubly linked lists. It performs whatever memory management is necessary to add

the new entry. If we are dealing with arrays in Fortran 77, then this would mean using the next available

array entries. If the active entries of vl and v2 have the same column number, the value of the active entry

of v2 is added to the value of the active entry of vl. Otherwise, ptrl and ptrla are advanced to the next

entries and the process repeats. Once all entries in vl have been processed, any unprocessed entrles in v2

are added to the end of vl.

Case 2: the sparse representation is ordered and the resultant vector is stored as a new list. The following

pseudo code demonstrates how addition can be performed with cost O(cl+c2) where c l is the number of

entries in vector vl and c2 is the number of entries in v2 and v l + v2 overwrites v l .

ptrl = vl.StartIndex
ptr2 = v2.StartIndex
Initialize v3
ptr3a = v3.startIndex
While ptrl < > 0

While ptr2 c > 0
If vl (ptrl) .Column > v2 (ptr2) .Column

Insert v2 (ptr2) A£ ter v3 (ptr3a) Advancing ptr3a
ptr2 = v2 (ptr2) .Link

Else I£ vl (ptrl) .Column = v2 (ptr2) .Column
Insert vl (ptrl) tv2 (ptr2) After v3 (ptr3a) Advancing ptr3a
ptr2 = v2 (ptr2) .Link
Exi tWhile

Else
Exi tWhile

EndWhile
Insert vl (ptrl) a£ ter v3 (ptr3a) Advancing ptr3a
ptrl = vl (ptr) .Link

EndWhile
While ptr2 c > 0

Insert v2 (ptr2) After v3 (ptr3a) Advancing ptr3a
ptr2 = v2 (ptr2) .Link

EndWhile

F~gure 3. 1 1. Addition of ordered sparse vectors.

This case is similar to Case 1. The Initialize v3 statement instantiates a new list by sett~ng the start

index of the list to zero. The vl (ptrl) + v2 (ptr2) operand in the insert statement signifies that the

sum of the values of vl and v2 is to be added as the value of the new entry. The column of the new entry

can be taken from the column of either vl or v2 since they are equal.

Case 3: the sparse representation is unordered and the resultant vector replaces one of the existing vectors.

The following pseudo code demonstrates how addition can again performed with cost O(cl+c2). Assume

v l is overwritten and w is an array of n real numbers, all initialized to zero, where n is the dimension of v l

and v2.

ptr = v2.StartIndex
While ptr <> 0

w [v2 (ptr) .Column] = v2 (ptr) .Value
ptr = v2 (ptr) .Link

EndWhile
ptr = vl.StartIndex
While ptr < > 0

col = vl(ptr) .Column
If w[coll < > 0

vl (ptr) .Column = vl (ptr) .Column + w [coll
w[coll = 0

Endi f
ptr = vl(ptr) .Link

EndWhile
ptr = v2.StartIndex
While ptr < > 0

col = v2 (ptr) .Column)
If w[coll c > 0

Insert v2 (ptr) AtHead vl
w[coll = 0

Endif
ptr = v2(ptr) .Link

EndWhile

Figure 3. 12. Addit~on of unordered sparse vectors with overwriting.

This algorithm is a three-step process. In the first step, v2 is copied to w. In the second step, each element

of vl is examined. If there is a non-zero entry in w corresponding to an entry in vl, then the value in w is

added to the value in vl and the value in w is set to zero. In the third step, each element of va is examined.

If there is a non-zero entry in w corresponding to an entry in v2, then that entry from v2 is inserted at the

head of vl with cost O(1) and the value in w is set to zero. At the end of the process w is still initialized to

zero and is ready for another vector add~tion operation.

Case 4: the sparse representation is unordered and the resultant vector is added as a new vector. This case

is similar to Case 3

Initialize v3
ptr = v2.StartIndex
While ptr c > 0

w [v2 (ptr) .Column] = v2 (ptr) .Value
ptr = v2 (ptr) .Link

EndWhile
ptr = vl.StartIndex
While ptr <> 0

col = vl(ptr) .Column
If w[coll < > 0

Insert vl (ptr) + w [col] AtHead v3
w[coll = 0

Else
Insert vl (ptr) AtHead v3

Endif
ptr = vl(ptr) .Link

EndWhile
ptr = v2.StartIndex
While ptr < > 0

col = v2 (ptr) .Column)
If w[coll c > 0

Insert v2 (ptr) AtHead v3
w[coll = 0

Endif
ptr = v2 (ptr) .Link

EndWhile

Figure 3. 13. Addition of unordered sparse vectors.

List v3 is initialized as a new list before a similar three-step process begins. The first step copies v2 to W.

The second step examines each entry of vl. If an entry has a corresponding value in w, then the sum of the

values from vl and w are inserted as a new entry in v3 and the value in w is set to zero. Otherwise the entry

from vl is inserted into v3. The third step examines every entry in v2. If the corresponding entry in w is

not zero, then the entry from v2 is inserted into v3 and the value in w is set to zero. At the end of the

process w is still initialized to zero and is ready for another vector addition operation.

3.2.2. Inner Product of Sparse Vectors

The inner product of two sparse vectors is an easier problem than the sum of two sparse products. There

are only two classes of problems to consider: are the vector entries ordered or unordered. For ordered

entries we can borrow techniques from the ordered vector sum algorithm.

ptrl = vl.StartIndex
ptr2 = v2.StartIndex
product = 0
While ptrl <> 0

While ptr2 <> 0
If vl (ptrl) .Column > v2 (ptr2) .Column

ptr2 = v2 (ptr2) .Link
Else If vl(ptr1) .Column = v2(ptr2) .Column

product = product + vl(ptrl).Value + v2(ptr2).Value
ptr2 = v2 (ptr2) .Link
ExitWhile

Else
ExitWhile

EndWhile
ptrl = vl (ptr) .Link

EndWhile

Figure 3. 14. Inner product of ordered sparse vectors.

The first entries of vl and v2 are made the active entrles. The variable product, which will contain the

inner product at the conclusion of the calculations, is initralized to zero. All entries in v2 that precede the

active entry of vl are skipped. If the active entries of vl and v2 have matching column numbers, then the

product of the values of vl and v2 are accumulated in product. Finally, the next entry of vl is made

active and the process is repeated until all entries in vl have been processed.

If the vectors are unordered, then we borrow techniques from the unordered vector sum algorithm. As

before, w is an array of n real numbers where n is the dimension of vectors v l and v2. The entries of w are

presumed to be zero before the algorithm runs.

ptr = v2.StartIndex
While ptr < > 0

w [v2 (ptr) .Column1 = v2 (ptr) .value
ptr = v2 (ptr) .Link

EndWhile
product = 0
ptr = vl.StartIndex
While ptr <> 0

product = product + vl (ptr) .value * w [vl (ptr) . ~olumn]
ptr = vl (ptr) .Link

EndWhile
ptr = v2.StartIndex
While ptr <> 0

w [v2 (ptr) .Column] = 0
ptr = v2(ptr) .Link

EndWhile

Figure 3. 15. Inner product of unordered sparse vectors.

There are three steps in the process. The first step copies the values of the entries in v2 to the

corresponding entries in w by column number. The second step forms the inner product by accumulating

the products of the entries of vl with the corresponding entries in w. The third step resets the entries in w

corresponding to the entries of vz to zero. Thus w is initialized to zeros at the end of the process and is

ready to be used again.

3.3. Conflicting Optimization Requirements for Data Structures

Various processing requirements can cause conflicts when choosing the optimal data structure for a

problem. This is indeed what happens with the ice sheet model. To optimize the FEM portion of the

model, access to entries of A by row and column must have as little overhead as possible. After the first

iteration of the model we know which entries of A are non-zero. With this information in hand, the

compressed column data structure and the compressed row data structure can provide good performance.

However, the question of what data structure to use for the first iteration of the model remains open.

We can expect the process of solving the system of equations to involve sums of sparse vectors. This will

generate new vectors with the requirement to insert additional entries. The linked list representations have

good performance for the insertion operation, but the compressed column and compressed row data

structures have poor performance in this regard.

If we had to choose one data structure, the ordered linked list representation would probably provide the

best compromise between accessing entries by row and column and inserting new entries as a result of

vector addition. The unordered linked list representation would probably be a close second. However,

there is a third possibility. The FEM process is distinct from the equation solving process. Both processes

are computationally intensive. The optimum data structure can be chosen for the FEM process, and when

the FEM calculations are complete, the FEM data structure can be copied to a data structure that is

optimum for solving the system of equations. This is in fact what happens with software packages for

solving systems of linear equations. A data structure is specified for passing A and b to the software

package, but the software package uses alternative structures internally for optimum performance. The

specific shuctures used in this work will be discussed later.

3.4. Markowitz Cost: Row and Column Orderings for Optimized LU Factorization

We have already shown how permutation matrices can be used to change the row and column orderings of

a matrix. In addition, we have also shown how a system of equations is solved with LU factorization when

row and column permutations have been performed. The following example illustrates how row and

column orderings of a sparse matrix can affect the sparsity of the L and U factors. Our goal is to minimize

the number of non-zero entries in A (~) and hence minimize the number of non-zero entries in L and U.

We have shown that the amount of work required to add sparse vectors can be as low as O(cl+c2) where c l

and c2 are the number of non-zero entries in each of the vectors. By optimizing sparsity, we minimize the

cost of factorization. Suppose A has non-zero entries in the positions marked with an x in the following

figure. For the moment, also assume that any set of row and column interchanges will maintain stability.

This example has been taken from Duff, et, al. [lo].

X X X X X X X X

X X

X X

X X

X X

X X

X X

X X

Figure 3. 16. Sparsity pattern for matrix A.

Using a , , as the first pivot will potentially cause all positions of to become non-zero. Every row of

A has a non-zero entry in the first column, so a multiple of the first row will be added to every other row.

In addition, the first row of A has a non-zero entry in every column, so non-zero entries will be added to

every column of every row in A.

If we interchange the first and last rows of A we obtain the following sparsity pattern.

X X

X X

X X

X X

X X

X X

X X

X X X X X X X X

Figure 3. 17. Swapping first and last rows of A.

Now, using a , , as the first pivot will only cause non-zero entries to be added to the last column of

This sparsity pattern will prevail as each is computed, so the number of arithmetic operations is kept

low.

If we instead interchange the first and last columns of A we obtain the following sparsity pattern

X X X X X X X X

X X

X X

X X

X X

X X

X X

X X

Figure 3. 18. Swapping first and last columns of A.

Now, using a , , as the first pivot will only cause non-zero entries to be added to the last row of A (~ ' . This

sparsity pattern will prevail as each A (~) is computed, so again the number of arithmetic operations is kept

low.

As a final case, consider what happens when the first row is interchanged with the last row and the first

column is interchanged with the last column.

X X

X X

X X

X X

X X

X X

X X

X X X X X X X X

Figure 3. 19. Swapping first and last rows and first and last columns of A.

Now the sparsity pattern of A will prevail as each A (~) is computed.

A greedy strategy for choosing pivots to minimize the fill-in of zero entries as the factorization progresses

is attributed to Markowitz in 1957 by Duff, et. al. For each potential pivot Markowitz counts the number of

non-zero entrles in the row of the potential pivot, T - / ~) , and the number of non-zero entries in the column of

the potential pivot, c : ~ ' , of the sub-matrix that remains to be factored at stage k . For each row that has a

non-zero entry in the column of the potential pivot, as many as c:.~) - 1 non-zero entries may be added to

the unfactored portion of the matrix. There are r,(k) - 1 such rows, so the product (r;!k) - l)(c?) - 1) is the

maximum number of non-zero entries that could be added if the potential pivot is used as the next pivot.

The product (r (k) - l) (~ : ~ ' - 1) is called the Mnrkowitz count. The potential pivot with the lowest

Markowitz count is chosen as the next pivot.

For the example matrix in Figure 3.16, the Markowitz algorithm chooses row and column orderings such

that the permuted value of A will have the sparsity pattern shown in Figure 3.19. The first time a pivot is

chosen, there are seven potential pivots with a Markowitz cost of 1, 14 potential pivots with a Markowitz

cost of 7, and one potential pivot with a Markowitz cost of 49. In the case of a tie we may choose from any

of the lowest cost pivots. If a!! is chosen as the pivot, then the first and last rows of A and the first and

last columns of A are immediately interchanged and no additional interchanges will take place. If another

potential pivot with a Markowitz cost of 1 is chosen, then there will be a sequence of row and column

permutations as the factorization process progresses. When the factorization is complete, the combined

permutations will be equivalent to interchanging the first and last rows of A and interchanging the first and

last columns of A.

The number of multiplication and division operations that take place at stage k of the factorization is

(~- i(~) - 1)cY). Therefore the Markowitz strategy also tends to minimize the number of arithmetic

operations at each stage.

Computing the Markowitz cost of all potential pivots is prohibitively large for large sparse matrices. A

modified strategy is to only look at the potential pivots in the first few columns of the remaining unfactored

portion of A.

The Markowitz algorithm does not consider stability of the calculations. In practice, the relative size of the

absolute value of the potentla1 pivot must also be considered. We want to choose a relatively large pivot.

Typically, a potential pivot must also satisfy the requirement

a (k) t u rnax I I B I

where

O < L l S l .

The value u is called the thresholdpnrarneter A value such as u = 0.1 often works well in practice.

Finally, we must recognize that the Markowitz strategy is a local strategy. We minimize the amount of fill-

in at each stage of the factorization with the hope that it will minimize the total fill-in fox all stages.

However, there is no guarantee that it will. In practice, the Markowitz strategy has worked well.

3.5. Minimum Degree Pivot Selection

If is symmetric then r,(k) =cjk' and the Markowitz count of any entry such as a::) is

(r / k) - l)(rLk) - 1). If a / /) is the diagonal entry with minimum Markowitz count, then there is no off-

diagonal entry with a lower Markowitz count. If A is diagonally dominant or positive definite, then

diagonal pivots are stable. Finally, if is symmetric and we use a diagonal pivot, then is also

symmetric. Thus at each stage of the factorization we simply choose the diagonal pivot a!:) corresponding

with

This algorithm is called minim~rrn degree. Duff, et. al. credit Tinney and Walker with this discovery made

in 1967.

The minimum degree pivot algorithm can be easily implemented. We simply maintain an array of the r;

values for all the rows. These values are easily updated as the factorization process proceeds. Whenever a

new non-zero entry is added to a row through row replacement, we increment r; for the row. Whenever a

column is eliminated from a row, we reduce r, for the row. Choosing the next pivot is simply a matter of

scanning the array to find the row with the smallest r; and using the diagonal entry of that row as the next

pivot. Combining this algorithm with the sparse data structures and the algorithms for adding sparse

vectors, we can implement a fast LU factorization algorithm for sparse, positive definite, symmetric

matrices.

If A 1s not symmetric, we must maintain the values of r; and c, as the factorization progresses. Choosing

a pivot requires us to identify the non-zero pivots, compute the Markowitz count from the values of r; and

C, , and ensure the count is minimized subject to the stability constraint. Choosing a pivot is significantly

more work when A is not symmetric. If A is nearly symmetric and diagonal pivots are stable, the minimum

degree algorithm is often used because of its efficiency.

Minimum degree, and hence the Markowitz strategy, do not necessarily minimize fill-in. Consider a

symmetric, positive definite matrix with the following sparsity pattern from Duff, et. al.

X X X X

X X X X

X X X X

X X X X X

X X X

X X X X X

X X X X

X X X X

X X X X

Figure 3. 20. Non-optimal fill-in with minimum degree.

Minimum degree selects the diagonal entry in the fifth row as the first pivot. This results in fill-in in rows

four and six. However, if pivots are chosen in the natural order in which they appear, no fill-in is

generated.

Duff, et. al. [lo] also mention other pivot selection strategies. However, in practice the Markowitz strategy

and minimum degree seem to be about as good as the heuristics get. In addition, we can note that the

minimum degree algorithm and the Markowitz stTategy do not tell us which entry to choose as the next

pivot when multiple entries tie for the lowest count.

3.6. Banded Matrices

Some matrices have special forms that ensure fill-in is globally confined throughout the factorization

process. A banded matrix is such a form. Non-zero elements of a banded matrix lie at fixed distances to

the right and left of the matrix's diagonal. The ice sheet model without pressure generates banded matrices.

Figure 3.2 1 illustrates the pattern of non-zero entries in a banded matrix.

X X X

X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X X

Figure 3 .2 1. A banded 9x9 matrix

The maximum number of non-zero entries to the right of a diagonal entry is called the upper bandwidth,

m,, , and the maximum number of elements to the left of a diagonal entry is called the lower bandwidth,

rn, . The total bandwidth of the matrix is rn, + m, + 1 . For a symmetric matrix, rn, = mu . If the diagonal

pivots are stable and Gaussian elimination is performed without row interchanges, then all fill-in occurs

within the band. If pivoting is performed with Gaussian elimination, fill-ins are restricted to an upper band

that is no wider than m, + m,, and a lower bandwidth that is no wider than m, , giving a total bandwidth

that is no wider than 2m, + rn, . It is easy to see that row interchanges never increase the lower bandwidth

because row interchanges never introduce non-zero entries to the left of the left-most non-zero entry in any

row. A row interchange can increase the upper bandwidth to as much as m, + m,, . Simply consider

interchanging the first and third rows in Figure 3.2 1. If the upper bandwidth of the pivot row is increased,

to rn, + m,, , row replacement will cause the upper bandwidth of the following m, rows to increase to no

more than m, + m , - 1 and any subsequent row interchange will continue to have an upper bandwidth

bound to t n , + m ,

A banded matrix can be stored in a two-dimensional array without storing the zero entries of the matrix that

appear outside the band. For each row of the matrix we store the entries before the diagonal in array

columns 1 through m, , the diagonal entry in array column m, + 1, and the entries to the right of the

diagonal entry in array columns m, + 2 through m, + m,, + 1 . If row interchanges will be performed, then

an additional m, columns are allocated in the array to accommodate them. Entries of the matrix are

directly accessible in the array using the row number and a mapped column number. If i is the row of the

entry to be retrieved and j is the column, then i is the row of the array containing the entry and

j - i + rn, + 1 is the column of the array containing the entry.

If the bandwidth is small compared to the number of columns in the array, the banded storage scheme is

very efficient. For the rectangular coordinates of the ice-sheet model and 3 degrees of freedom we have

already shown that m, = m,, = 3(xy + x + I) + 2 where x is the number of nodes in the first dimension, y is

the number of nodes in the second dimension. For a rectangular region that is 5 x 4 0 ~ 4 0 nodes, the total

bandwidth is 1,24 1. The number of columns in A for this problem is 5x40x40x3=24,000. Thus the banded

matrix can be stored in a space that is only 5.2% of the size of the full matrix.

I f we take the same rectangular region and instead label it with the dimensions 40x40~5 , the total

bandwidth of the matrix becomes 9,845. We are still solving the same problem, and we should get an

identical solution except for some permutations of the solution vector. This indicates that there should be a

set of permutations that transforms t h s statement of the problem to the prior statement and reduces the

bandwidth of A accordingly. The conversion of the problem from a 5 x 4 0 ~ 4 0 rectangular system to a

4 0 x 4 0 ~ 5 rectangular system is nothing more than a mapping of the node numbers from one coordinate

system to another. A node 1 is characterized by having its associated coefficients appear in column 1 of A

and having its characteristic equation defined by the values that appear in row I of A and b. Mapping this

node number to node number m means interchanging rows 1 and in in A and b, and interchanging columns 1

and rn in A. This type of permutation is a symmetric permutation. If A is symmetric before a symmetric

permutation is made, it is symmetric after a symmetric permutation is made. For a symmetric matrix all

entries on row 1 or column 1 obey the relation alll = a,/. After row and column interchanges a,* is mapped

to a,,, and a,,, is mapped to a,,, . By transitivity we have a,,,h =ah,, for all h, so symmetry has been

maintained for entries in row I and column 1. The same symmetry argument applies for all entries that are

initially in row m or column m.

There are two questions that immediately come to mind.

1. How small can the bandwidth be made?

2 . How does the number of arithmetic operations required to solve a problem vary for differing

permutations with differing bandwidths?

This thesis does not explore these bandwidth-changing permutations further, but i t might be interesting to

do so. An alternative question is "What node numbering scheme minimizes the bandwidth of A?" Another

possible approach to the same central issue is "How does one prove or disprove that numbering the nodes

of a rectangular region in the order of smallest dimension first, followed by next smallest dimension

second, followed by largest dimension last minimizes the bandwidth of A over all possible numbering

schemes?"

While Gaussian elimination with row interchanges on a banded matrix has tight bounds on the lower and

upper bandwidths, the lower bandwidth is not so tightly bound for LU factorization. In the worst case, the

bound on the lower bandwidth of L is n - 1 where n is the number of columns in A. This simple fact was

discovered while attempting to write a program to do banded LU factorization with row interchanges. The

program would fail as i t tried to access entries to the left of the lower band. This behavior is easy to

understand using Figure 3.2 1 as an illustration. Suppose the first row is interchanged with the second row

in the first stage of factorization. A non-zero entry is generated at row 2, column 1 as a component of L.

Now suppose at the second stage of factorization, the second row is interchanged with the third row. Now,

there is a non-zero entry at row 3, column 1 that is a component of L. If row k is interchanged with row

k + 1 at every stage k , then there is a non-zero entry at row n, column 1 that is a component of L and the

lower bandwidth of the factored matrix is n - I . This could be an issue for problems where we wish to

solve Ax = b with multiple right hand sides.

In addition to the banded matrix illustrated by Figiue 3.21, there can also be variable-band matrices as

illustrated in the next figure.

X X X

X X X X

X X X X X

X X X X X X

X X X X

X X X X

X X X X X X

X X X X

X X X

X X

Figure 3. 22. Variable-band matrix.

L&e banded matrices, the essential feature of variable-band matrices is that row replacements do not

introduce non-zero elements outside the band if no permutations are made. Variable-band matrices have

also been called skyline, profile, and envelope matrices.

Duff, et. al. discuss other matrix forms that have desirable characteristics when solving Ax = b by

Gaussian elimination. Such Forms are block tridiagonal, doubly bordered block diagonal, and bordered

block triangular. While some of these forms have characteristics that are similar to matrices generated by

the ice sheet model, including matrices that have pressure terms on the right side and bottom of the matrix,

it was beyond the scope of this thesis to carefully investigate them. My intuition is that it is probably more

efficient and more productive to investigate software packages for solving general sparse systems of

equations than it is to investigate these special forms and to use them to write software for solving ice sheet

problems. In addition to presenting special matrix forms, Duff, et. al. also present methods that order

problems for small bandwidth. For the rectangular ice-sheet model, none of these methods were simpler or

produced smaller bandwidths than simply numbering nodes along the smallest dimension first, along the

next smallest dimension second, and along the longest dimension last.

Nonetheless, the special matrix forms have two important attributes. First, by their design, they limit fill-in

at a global level. This is opposed to limiting fill-in at the local level at each stage of the factorization as the

Markowitz strategy and the minimum degree algorithm do. 'This gives us the opportunity to know what the

memory requirements will be before the problem is solved. Second, they tend to use 2-dimensional arrays

for data storage instead of the sparse data structures described earlier. The sparse data structures inherently

use indirect addressing which limits the applicability of vector processors and parallel computers. Directly

addressable arrays tend to be less constraining when parallelizing algorithms.

3.7. Frontal Methods

This section borrows heavily from the discussion of frontal methods presented by Duff, et. al. I choose to

present it for two reasons. One, frontal methods have their origins in solving finite element problems and

the ice sheet model relies on the finite element method. Second, one of the software packages used in this

work uses multi-frontal methods.

Duff, et. al. point out that frontal methods are most easily understood in the context of finite element

problems even though they are applicable to other matrices, too. To begin, consider the triangulated region

in the following figure.

Figure 3. 23. A triangulated FEM region.

The finite element method considers the lettered triangular regions to be elements and the numbered

vertices to be nodes. The nodes are associated with one of more variables. For our example, we will

assume each node has one degree of freedom and is thus associated with one variable. For each element,

FEM generates an element matrix that contains entrles for each node and for each possible cross product of

nodes. Thus element A generates a 3x3 element matrix for variables 1, 4, and 5. Similarly, element B

generates a 3x3 element matrix for variables 4, 5 , and 8. When done, FEM generates a matrix A that is the

sum of the element matrices. The essence of the frontal method is that A is generated as the element

matrices are formed and summed, and LU factorization is performed on variables as soon as they are

totally summed. The result is that A is divided into 3 regions: variables that have been fully summed and

factored, variables that are partially summed but not factored, and variables that are not summed. The

summation and factorization take place in a 2-dimensional array stored in memory. The portions of L and

U corresponding to the totally summed and factored variables are removed from the working array. They

can be stored either in memory or on secondary storage. The partially summed variables are stored in the

2-dimmensional array, and as new element matrices are computed, they are added to the 2 dimensional

array. The 2-dimensional array of partially summed variables is the "front" of the matrix.

Let's take a look at this process for the triangulated region in Figure 3.23. First, matrix element A is

formed and summed producing the following frontal matrix. The column and row numbers designate the

node number, or variable numbers.

1 4 5
l x x x
4 x x x
5 x x x

Next, element B is formed and summed resulting in the following frontal matrix.

1 4 5 8
l x x x
4 x x x x
5 x x x x
8 x x x

At this point node 4 is total summed, so it can be factored. The first step is to perform a symmetric

permutation that places node 4 in the first row and column. The permutation produces the following.

4 1 5 8
4 x x x x
l x x x
5 x x x x
E x x x

Factoring variable 4 produces the following. The "#" symbol denotes fill-in.

4 u u u u
l l x x #
S l x x x
8 1 # x x

At this point the portions of L and U corresponding to variable 4 can be removed from the frontal matrix

and stored. Storing L and U as a collection of sparse vectors with unordered entries is appropriate. The

frontal matrix then becomes the following.

The process can continue until A has been fully summed and factored. Elements should be summed in an

order that minimizes the size of the frontal matrix by efficiently forming total sums for the variables in the

frontal matrix. There must be a system in place for knowing when a variable is fully summed. Also, the

process can proceed more efficiently when the maximum size of the frontal matrix is known a priori so that

memory for it only needs to be allocated once.

If A is neither symmetric and positive definite nor diagonally dominant, then partial pivoting may be

necessary to ensure stability. Partial pivoting may delay the removal of a fully summed variable from the

frontal matrix. From the example above, if row 1 for variable 4 needs to be interchanged with row 4 for

variable 8, then variable 4 cannot be eliminated. Once variable 8 is fully summed, we can complete the

factorization for it and eliminate it. Once partial pivoting is performed, the frontal matrix is no longer

symmetric. However, if partial pivoting is needed, then the symmetry of the frontal matrix isn't a concern

anyway.

Permutation vectors that identify the variable numbers stored in each element of the frontal matrix must

also be maintained. This is nothing more than storing the variable numbers indicated in the row and

column margins in the example above. The i'th element of the permutation vector gives the variable

number for the i'th row or column of the frontal matrix.

The frontal method can be used for non-FEM methods as well. Rows of A are appended to the frontal

matrix one at a time. Rows are fully summed when they enter the frontal matrix because rows of A are

h l ly summed. Once the column for a variable has been fully summed, meaning all rows that contain a

non-zero entry for the variable have been added to the frontal matrix, the variable can be eliminated and the

corresponding components of L and U can be removed from the frontal matrix and stored. Only the frontal

mah-ix needs to be stored in main memory. A, L, and U can be stored in secondary storage if desired. The

frontal method is applicable to vector processors because the frontal matrix is stored as a full, 2-

dimensional array that is directly addressable.

The frontal method can be viewed as an assembly tree as shown in the next figure.

Figure 3. 24. Assembly tree of frontal method.

Elements A and B are assembled to form frontal matrix R. R is reduced and assembled with element C to

form frontal matrix S . S is reduced and the procedure continues in a linear fashion until Z is reached. At

this point all elements have been assembled, all variables have been summed and eliminated, and the L and

U factors are complete.

It is not necessary for the assembly processes to proceed in a linear fashion with a single frontal matrix.

Alternative summation orderings of the element matrices can produce a multi-frontal solution. As an

example, consider the rectangular FEM problem in Figure 3.25. As before, the elements are labeled with

uppercase letters and the vertices are numbered. Assume that each vertex has a single degree of freedom

and corresponds to a single variable. Elements A and B are assembled first and summed. Variables 1 and 2

can be eliminated immediately. The frontal matrix containing variables 3, 6, 7, and 8 is temporarily set

aside. Elements E and Fa re then assembled and summed. Variables 1 1 and 12 are immediately eliminated

leaving a second frontal matrix containing variables 6, 7, 8, and 13. Now the two frontal matrices are

summed and variables 6 and 7 are eliminated, leaving another frontal matrix containing variables 3, 8, and

13. Now elements C and D are assembled and summed, variables 4 and 5 are eliminated, and the resulting

frontal matrix is set aside. Finally, elements G and H a r e assembled and summed, and variables 14 and 15

are eliminated. This frontal matrix is then combined with the frontal matrix generated from elements C and

D and variables 9 and 10 are eliminated. The two remaining frontal matrices are then combined and the

remaining variables 3, 8, and 13 are eliminated.

Figure 3. 25. A rectangular FEM region.

F~gure 3. 26. Assembly tree for multi-frontal method

4. BLAS: Basic Linear Algebra Subprograms

Many basic operations in linear algebra are computationally intensive. While these operations can usually

be easily coded in languages such as Fortran or C, computer performance can be improved when they are

written in assembly language and coded to make best use of the computer's hardware design. BLAS is a

set of basic linear algebra subprograms. The operations performed by BLAS, the subprogram naming

conventions, and the calling parameters are defined by a de facto standard. Hardware manufactures

generally write BLAS for their computers, but public domain versions for specific machine architech~res

also exist.

BLAS operations are divided into 3 major categories. BLAS level 1 routines are operations on vectors.

The routines include swapping the contents of two vectors, scaling a vector by a constant, adding one

vector to another, forming the dot product of two vectors, and computing vector norms. All levels of

BLAS have separate routines for different data types. The supported data types are single precision real,

double precision real, s~ngle precision complex, and double precision complex.

BLAS level 2 routines are matr~x-vector products. A typical operation is y t Ax + cr y , where A is a

matrix, x and y are vectors, and a is a constant. Specific routines are available for various matrix forms

such as general, general banded, symmetric, symmetric banded, triangular, triangular banded, hermitian,

- -
and hermitian banded. (A hermitian matrix is defined by a,; = a,, where a.i, is the complex conjugate of

a j i .) Additional operations include x t A ~ X , outer vector product (A t xyT + A), and triangular

solution (x t A- 'x where A is upper or lower triangular).

BLAS level 3 routines are matrix-matrix products. A typical operation is C t a AB + C . As with BLAS

level 2, specific routines are available for various matrix forms.

BLAS performance is achieved by carefully controlling the movement of data through the computer. The

movement of data within the computer to perform these basic operations can consume a large fraction of

the total execution time. Data residing in the computer's hardware registers can be accessed most quickly,

so management of register usage is important.

In modem computers, data flowing between main memory and the CPU is buffered in cache memory. The

CPU can access data much more quickly if the data can be retrieved from cache. However, the cache is

relatively small compared to main memory. When data is accessed that is not in the cache, it is retrieved

from main memory and stored in cache. To store the new data in cache means that older data must be

dropped from the cache. BLAS routines are carefully written to maximize the number of memory

references that can be satisfied by data that is already in cache, thus optimizing efficiency.

Most modern day computers use a memory management technique called virtual memory. With virtual

memory a program potentially has the entire address space of the computer at its disposal, even when the

amount of physical main memory in the computer is less than the size of the address space. For example, a

64-bit computer has an address space of 264 bytes, but we do not see computers with this amount of main

memory. T o implement virtual memory the program's address space is divided into blocks of addresses

called pages. Page sizes of 4 kilobytes to 64 lulobytes are common. In addition, the computer's memory is

divided into blocks called page frames. The size of a page is the same as the size of a page frame. A page

of the program can be placed in any available page frame and pages of the program that are not in use can

be stored on disk in the pngefile. The location of each page is tracked in the page table that is stored in

memory. Each process running on the computer has its own page table. The operating system manages the

storage of pages and maintains the page table. When the program references an address, the computer's

memory management hardware must convert the virtual address specified by the program to the physical

address in memory by using the storage map contained in the page table. In practice, it would be much too

slow if the computer had to resolve each and every virtual address by accessing the page table. Instead, the

hardware maintains a small associative memory called the translation look-aside b~rffer (TLB) that stores

the most recently accessed page table entries. Because the TLB is associative, it can look at all its entries at

once when presented with a virtual address and return the one page table entry corresponding to the virtual

address. If the page table entry is in the TLB, the virtual address is mapped to a physical address very

quickly. If the page table entry is not in the TLB, the page table must be accessed from memory at much

greater expense. A TLB typically has capaclty to store 64 page table entries. The BLAS can be designed

to maximize TLB hits.

Another issue with virtual memory computers is accessing pages of the program that have been stored on

disk in the page file. Moving a page from disk to memory, called a page fault, has very high overhead.

There is nothing that BLAS can do to rninlmize page faults. When page faults occur excessively, it is an

indication that the computer does not have enough physical memory, or is running too many processes for

the amount of physical memory that it has.

Since BLAS performance is obtained by carefully managing access times to variables, different

performance levels are associated with each level of BLAS operations. BLAS level 1 operations touch

O(n) values in O(n) variables. A value is touched every time it appears in the calculation. In a BLAS

level 1 vector dot product, each value in the two vectors is touched once. Multiplying two n x n matrices

involves n 3 touches of 2n2 variables. Matrix-vector multiplication involves 2n2 touches of

n2 + n variables. The more times a single variable is touched, the greater the opportunity there is for

BLAS to improve performance. Thus the best performance per arithmetic operation is obtained with BLAS

level 3 operations, followed by BLAS level 2 operations, with BLAS level 1 operations taking up the rear.

Although newer additions to BLAS are beginning to offer support for sparse vectors and matrices,

maximum performance is achieved for dense vectors and matrices stored as 1-dimensional and 2-

dimensional arrays. If the software for solving sparse systems of linear equations can be structured to

effectively use BLAS subprograms, they can benefit from the performance of BLAS. The results section of

this thesis shows as much as a seven fold performance gain when using a well-tuned BLAS versus a C

implementation of the BLAS subprograms.

The next two pages are a reprint of the BLAS Quick Reference Guide [2] . The guide summarizes the

BLAS operations, subprogram names, and calling parameters.

Figure 4. 1. BLAS Quick Reference Guide.

Figure 4.1. BLAS Quick Reference Guide. (Continued)

.w ,, -. .- - ,. *
. 2 4 3 3 3 5 Y S
a;;;;;;;

5. Software Packages for Solving Sparse Systems of Linear Equations

The next three pages list software packages that are freely available on the Web. One can visit

ht~:~~www.netlib.orv/utWpeoplelJackDongaa/la-sw.html to view the list and hyperlink to the various

packages. The list is compiled by Jack Dongarra, Distinguished University Professor, University of

Tennessee, Department of Computer Science. Dongarra has a long history of work in computational linear

algebra and his name often appears in this field. For example, he is one of the references listed on the

BLAS Quick Reference Guide presented in the previous chapter. One can learn more about Dongarra and

find other useful links at http://www.netlib.ora/utk~people/JackDongarra/.

FREELY AVAILABLE SOFTWARE FOR
l.,.IKEAR ALGEBRA ON THE WEB (May 2001)

Ilcrr is a li5t of' Ir<~l!. n*ailabls sorrwarc for tlz solurion ot'linear algebra prohlerns. Tl,e in~ercsr is in v>li\\;~l.c 1111
Iligli-pel.tornla~~cc conipurers thar's axailable in --open scrurce" fbr~n on the \ ~ c b for solving prohlrrn.; i n ~~r~m~,l-ical
linear algebra. sl)c.cifici~lly dense. sparse direc~ and iterarive systems and sparse itera1ii.c cizlen\:~luc prohicms.
I'lcasc let nle kno\\. ;1\70\11 undatcs and corrcctiuns.

.\ddiiional poinrers tn sof r~~are can hc found at.
i!lip \ \ n n liI!\c ,~i.x I 111 r c l) i r i i o [~ ~ ' ~ nll\c.cainlog : . N u ~ i i c r ~ c a l ,l'r~~~raln?-n~itl _ K O I I I I I I C \
A sul.\c\ o f Ircra~ive Linear S! slrm Sol\er 1'ocLap.e~ oar1 be round at.
Ih1117: i k n \ i . ~ ! ~ , ~ / t b Llr: IIIL. jwrrr(,, i ~ c r ? t j ! c - c i ~ ! \ c >

' I ' h a n h ~ . . I ; I L ~

Figure 5. 1. Freely available software for linear algebra on the Web.

8 0

I.,Ih;ALG *: I'his is a c~~l l rc t ion ol'soflwarc that is available but too varied t o drscrihe.

Notes:
I'ypc:

Real - U L ~ 3ri1hmciic
C:on~pleu = C'olnplcs ;~rl~llnle!ic

Suppor!: An email n d d r c s \\here yo11 car1 se~lcf questions and bug reports
1-anguage. 177(i:orrrnn 0 5) . c, c t i

hflode:

Figure 5.1. Freely available software for linear algebra on the Web. (Continued)

8 1

Seq = Sequenrii~l. \:eclor andror SMPimul~ithreadecl vcrsions
1)ist - dis~ribirtcd mernor) niessilye passing (M - MPl. 1' = I'VM I

I.)enss: Dense. ~ric~ngular. baridcd. tritliag~)nal matrices
Sparse: A sparse n~atrix repri-scntatinn is uscd to contain the clals.

Direct: A direct approach is used In factor and sol\;e the system
SPI): The nlarris is s) rn~nctric and posirii,e definirc
Gen: The lnatris is general

Iterative: An iterative rne~hod is used to solve the g-sten).
SPD: 'The rni~trix is symmetric and positive dclinitc
Gen: ' rhe rnatris is general
P indicates precondiriuncrs

Sparse ejgenvalue: An iterari\c method is uscd to 1% solne of the t.rgen!.alucs
S>.m: 'r'lie rnatris is symrne~ric (fler~nirian in the complex case)
Gcn: 'Thc n ~ a ~ r i x is general

Figure 5 . 1 . Freely available software for linear algebra on the Web. (Continued)

82

Two classes of solvers for sparse linear systems are listed: direct solvers and iterative solvers. The focus of

this work is on sparse direct solvers, which are based on Gaussian elimination and LU factorization.

Iterative solvers begin with an approximate solution and through a series of iterative steps refine the

approximation until suitable accuracy has been obtained. A straightforward iterative method is the Jacobi

method where the k'th iteration produces an improved estimate from the previous iteration by calculating

The Gauss-Seidel method is similar, but uses estimates from the current iteration as well as the previous

iteration as shown in equation 5.2.

Convergence is an important issue for the iterat~ve methods: will a method converge for a given system and

how quickly will it converge? It can be shown that the Jacobi method converges if A is diagonally

dominant. The Gauss-Seidel method is less restrictive. It can be shown that Gauss-Seidel converges if A is

symmetric and positive definite. The 3-D ice sheet model does not produce diagonally dominant matrices,

but it does produce symmetric matrices that may be positive definite. There are also other iterative

methods mentioned by Golub and Van Loan [I I] . Determining if any of the iterative methods are

applicable to the ice-sheet model and implementing applicable software packages could be an additional

project for someone.

At an early stage, two software packages were chosen for evaluation: SuperLU and UMFPACK. The

packages were found through Web searches for sparse matrix solvers. In hindsight, these proved to be

good choices. Making the choices early in this project was also a good decision. At the outset of this work

there was no idea how much would be discovered about this subject. Choosing the software packages early

and working with them from the beginning provided a firm foundation for the discovery process.

In addition to the sparse direct solvers, a high performance BLAS produced by Kazushige Goto, Visiting

Scientist, University of Texas, was used. Goto's BLAS 1s copyrighted by The University of Texas, 2005,

all rights reserved. It is available free of charge for academic purposes. The BLAS is available for several

hardware architectures and is recommended in the UMFPACK package. One can learn more about Goto's

BLAS from the Texas Advanced Computing Center's website at

http:llwww.tacc.utexas.edu~resources/soft~vare.

5.1. SuperLU

SuperLU is a library of ANSI C subroutines for solving sparse linear systems of equations [8][9][13]. The

principal developers are Xiaoye (Sherry) Li, Computer Scientist, Lawrence Berkeley National Laboratory;

James Dernmel, Professor of Computer Science and Mathematics, University of California at Berkeley; and

John Gilbert, Professor of Computer Science, Un~versity of California at Santa Barbara. The SuperLU

libraries are freely available for commercial and non-commercial use. The whole SuperLU software is

copyrighted by The Regents of the University of California, through Lawrence Berkeley National

Laboratory (subject to receipt of any required approvals from the U.S. Department of Energy), all rights

reserved.

SuperLU is applicable to unsyrnmetric as well as symmetric matrices. It uses LU factorization with

threshold pivoting. SuperLU comes in three versions. Sequential SuperLU, known simply as SuperLU, is

for single processor computers. Multithreaded SuperLU, known as SuperLU-MT is designed for shared

memory multiprocessors. Distributed SuperLU, known as SuperLU-DIST, is for distributed memory

parallel computers. Sequential SuperLU version 3.0 was used in this work. It is the latest version of

sequential SuperLU at t h s time.

A shared memory multiprocessor is a parallel computer that allows all processors to access any main

memory location. Access to main memory by the processors is coordinated by the computer's hardware.

The authors claim that SuperLU-MT can effectively support 16 to 32 processors for sufficiently large

matrices. It uses POSIX threads to coordinate processes.

Each processor in a distributed memory computer has its own memory. A communications network

between the processors is used to share data and coordinate activities. SuperLU-DIST uses Message

Passing Interface (MPI) for interprocess communications. MPI is a common standard for distributed

memory parallel computers. The authors claim these versions are designed to make optimum use of the

sparsity of A and the computer's architecture with attention given to optimum use of cache memory and

parallelism.

The overall scheme of SuperLU is to do an LU factorization of P,D,AD,P, and use forward substitution

and backward substitution to solve for x in Ax = b . Matrix P, is a row permutation matrix for

maintaining stability. Matrix P, is a column permutation matrix for maintaining sparsity. Matrices D, and

D, are row and column scaling matrices for conditioning A so as to minimize the sensitivity of A-' to

perturbations. SuperLU computes each of these four matrices with various levels of control available to the

user. Because SuperLU uses LU factorization, it can compute x for multiple right hand sides.

To solve a system of equations SuperLU uses

A = D;'P;'LuP;'D;'

giving

This equation is solved for x by

1 . Scaling rows of b by D,

2. Permuting rows of b by P,

3 . Using forward substitution with L and the scaled and permuted b to compute an intermediate

vector y

4. Using backward substitution with U and y to compute x

5. Permuting rows of x by PC

6. Scaling rows of x by D,

In SuperLU terminology, driver routines are the user callable routines for performing major tasks.

SuperLU and SuperLU-MT have two driver routines for solving systems of linear equations: the simple

driver and the expert driver. The simple driver chooses P, to minimize fill-in. It then computes L and U.

P, is computed as a by-product of threshold pivoting. The driver then solves for x using

PC, P,., L, andU .

The expert driver, which is also available in SuperLU-DIST, performs the following steps.

1. Equilibrate A by computing the row and column scaling mahices D, and D, so that

-
A = D, AD, is better conditioned than A.

2 . Preorder rows of A for stability. This is only done in SuperLU-DIST and is called static pivoting.

The interprocess communication required to perform threshold pivoting is not practical on a

distributed memory parallel computer.

3. Order the columns of A to optimize the sparsity of L and U and increase parallelism for SuperLU-

MT and SuperLU-DIST.

4 . Compute the LU factorization. Threshold pivoting is done in SuperLU and SuperLU-MT.

5 . Solve the system of equations.

6. Perform iterative refinement to improve the solution.

7. Compute error bounds.

Threshold pivoting is implemented as follows. If SuperLU is choosing the i'th pivot, i t first determines the

value in the i'th column, rows i through n that has the largest absolute value. Let this value be

1 I , ' 2 a where u is a user chosen threshold between 0 and I , then a!:' is used as the pivot.

Otherwise, a!,:! is used as the pivot. The tradeoff is maintaining stability of the calculation versus

minimization of fill-in. Threshold pivoting is equivalent to partial pivoting when u=l . If u=O, pivoting is

only performed when a:;') is zero. A common value for u is 0.1. Static pivoting, on the other hand,

determines row permutations from the values aii before any factorization is performed.

SuperLU can compute the componentwise relative backward error BERR discussed in Chapter 2. The

meaning of BERR is that x, the computed value of x, is the exact solution of the perturbed linear system of

equations (A + EF = b + f where

and

1 ~ . fil 5 BERR . bi

for all i and j. In addition, SuperLU can estimate a forward error bound FERR such that

- 11 x - x 1 1 1 x i FERR .

When the problem is poorly scaled FERR tends to give the relative error of the largest component of x,

while smaller components of x may have significantly higher relative errors. The distributed version of

SuperLU does not compute FERR. The authors claim that by combining static pivoting with row and

column scaling and iterative refinement, the distributed algorithm is as stable as partial pivoting for most

matrices observed in actual applications. In cases where computations are not stable, BERR provides an

indication of a problem.

The driver routines make calls to lower level computational routines to perform tasks such as equilibrating

A, determining column order, factoring A, and performing forward and backward substitution. For large

matrices, factorization generally takes most of the time, but choosing the column ordering can also be time

consuming.

Matrix A must be presented to the driver routine as a C structure defined by SuperLU as SuperMatrix. A

SuperLU routine takes A in either compressed column format or compressed row format and creates the

SuperMatrix structure. The right hand side of the system of equations, b, may be presented to the driver

routine as a dense vector if there is only a single right hand side, or as a dense matrix in column major order

if there are multiple right hand sides. The solution x overwrites b.

SuperLU needs a high-performance BLAS to obtain maximum performance. It organizes A into

supei-nodes. A supernode is a range of columns of L such that the triangular block of L below the diagonal

is completely filled. In addition, each row of L within this range of columns either has all zero entries or

all non-zero entries. Because the supernodes are not necessarily symmetric, the U portion of the supernode

does not have the same dense pattern as L . The majority of SuperLU's computation is updating the

unfactored submatrix of the supernode using the following block mode update.

A (/ , J) t A(1, J) - L (I , K) U (K , J) (5 . 8)

A is the unfactored portion of the supernode. L and U are the factored portions of the supernode. I is the

range of rows of the unfactored portion and J is the range of columns of the unfactored portion. K is the

number of columns of L in the supernode and the number of rows of U in the supernode. This looks like a

BLAS level 3 operation, and that is in fact what SuperLU-DIST uses. SuperLU and SuperLU-MT work a

little differently. The authors c l a ~ m that the non-zero portions of U are dense vectors of varying length.

Instead of using BLAS level 3, care is taken to ensure that L is loaded into cache once and then BLAS level

2 matrix-vector multiplies are performed for each vector of U. The authors refer to this as BLAS level 2.5.

There are five choices for column ordering heuristics for both the simple and expert drivers. They are:

1. Natural order. No column permutations are performed.

2. Multiple Minimum Degree (MMD) applied to the symmetric structure A ~ A

3. Multiple Minimum Degree (MMD) applied to the symmetric structure + A

4. Column Approximate M~nimum Degree (COLAMD)

5. User supplied PC

Multiple minimum degree is a modified version of the minimum degree algorithm by Joseph Lui [14].

Column approximate minimum degree is another minimum degree like algorithm by Timothy Davis, et. al.

[7]. Timothy Davis is the author of UMFPACK, the second software package evaluated in this work. The

authors claim that COLAMD is designed for unsyrnrnetric matrices with partial pivoting. It produces

orderings similar to MMD on A ~ A without explicitly forming A ~ A and is faster. A user supplied

column permutation matrix allows the user to use other column ordering heuristics if desired.

SuperLU has a number of options for speeding up the solution of related systems of equations by reusing

information from the prior run. For example, the matrix generated by the ice sheet model has the same

pattern of non-zero entries for every time step. This means that column orderings can be computed once

for all time steps. Here are the possible options that SuperLU supports.

1. No previous information is used. Factorization is performed from scratch.

2 . Reuse P C . This can be done when the sparsity structure of the matrix remains constant.

3. Reuse PC, P,, and the data structures for L and U. T h s can be done when the sparsity structure

does not change and the entries of A are similar from one system to the next so that the row

ordering does not need to change.

4. Reuse P, , P, , L, and U. This can be done when the right hand side changes, but A remains the

same. It can also be used if the changes in A are small and iterative refinement converges. This

would be an interesting option to by in the ice sheet model. It might significantly reduce

execution time.

The L and U factors generally have many more non-zero entries than A due to fill-in. If P, and P, are not

known before factorization begins, then there is no sure way to know how much memory the factors will

need. Sequential SuperLU provides three options for memory management.

1. The user can pre-allocate the work area and pass the address and size of the area to the driver

routine. If the work area is too small, the driver routine will abort.

2. The user can specify an estimated work size area and the driver routine will initially allocate that

amount of memory. I f the allocation is insufficient, SuperLU will allocate a new work area, copy

the data into it, and free the original work area. If it cannot allocate a larger work area, then it

aborts.

3. SuperLU can estimate the original amount of work area needed. Like option 2, if the estimate is

too small, it will allocate a new work area, copy the data into it, and free the original work area. If

it cannot allocate a larger work area, then it aborts.

SuperLU-MT memory management is similar. The only difference is that SuperLU-MT will not try to

allocate a larger work area if the original work area is too small. This is reasonable in light of the

synchronization that would be required between processors if the work area was reallocated.

SuperLU-DIST memory management is completely different. Because P, and PC are computed before

factorization begins, SuperLU-DIST can determine what the fill-in requirements will be a priori and

allocate the correct amount of memory.

SuperLU has a number of user options.

1. Factorization. (1) Factor A from scratch. (2) Reuse last PC . (3) Reuse last P, and PC . (4) Reuse

last P,. , PC, L, and U.

2. Equilibrate A. (1) No. (2) Scale rows and columns of A to have unit norms.

3. Column ordering. (1) Natural ordering. (2) MMD ordering on A T A . (3) MMD ordering on

+ A . (4) COLAMD ordering. (5) User specified P, .

4. Transpose A. (1) No. Solve Ax = b . (2) Yes. Solve ATx = b . (3) Yes. Solve A"X = b where

A" is the transpose of A with each entry being the complex conjugate of the corresponding entry

of A.

5 . Iterative refinement. (I) No. (2) Single precision iterative refinement. (3) Double precision

iterative refinement. (4) Extended precision iterative refinement.

6. Print statistics. (1) No. (2) Yes.

7. Symmetric mode. (1) No. Assume A is not diagonally dominant. (2) Yes. Assume A is

diagonally dominant or nearly so.

8. Pivot threshold. The value of u.

9. Compute reciprocal of pivot growth. (1) No. (2) Yes.

10. Compute condition number of A. (1) No. (2) Yes.

SuperLU-DIST has some additional user options. There are also options for tuning the performance of

SuperLU. These options relate to blocking sizes and supernode sizes to optimize cache use.

A number of test matrices are available for testing the performance of linear equation solvers. Davis

maintains a library of them at the University of Florida. The authors of SuperLU have run benchmarks for

a number of matrices [8]. Generally, they find that sequential SuperLU can achieve up to 40% of the

theoretical floating-point operations rate on a number of processors. SuperLU-MT demonstrated speedup

by factors of 5 to 10 over sequential SuperLU. SuperLU-DIST achieved up to 100 times speedup with a

5 12-processor Cray T3E.

The authors also did extensive tests comparing SuperLU and UMFPACK. They report that neither package

consistently dominated the other in storage cost or time. SuperLU used less memory 60% of the time in a

field of 45 matrices. SuperLU took less time for 44% of the matrices when considering both column

ordering time and factorization time. When column ordering time is not considered, SuperLU took less

time for 77% of the matrices.

The next page is a sample of the output produced by my implementation of the SuperLU expert driver

when solving a sample problem from the ice sheet model. The demonstration program begins by reading A

and b from a disk file and storing the data in compressed column format. Expert solver initialization is

performed and the selected SuperLU user options are printed. SuperLU has the option to accumulate a

number of statistics about the solution process. These statistics are reported next.

SuperLU Demonstration
Rodney Jacobs, University of Maine, 2005

Initialize compressed column data structures
Non-zero Elements : 1629108
Columns : 24000
Read and store matrix A
Read and store righthand side
Solve Ax=B
SLUXSOLVE: SuperLU Expert Solver initialization
Fact=DOFACT : Factor matrix A from scratch
Equil=YES : Scale A's rows and columns to have unit norm
ColPerm=MMD-AT-PLUSA: Use minimum degree column ordering on A'+A
Trans=NOTRANS : Solve A * X = B (A is not transposed)
IterRefine=DOUBLE . . . : Perform double precision iterative refinement
PrintStat=YES : Print solver's statistics
SyrnrnetricMode=NO : Assume A is not diagonally dominant
Diag Pivot Threshold: 1.000000e-01
PivotGrowth=YES : Compute reciprocal of pivot growth
ConditionNumber=YES.: Compute reciprocal of condition number

SLUXSOLVE: Solve Ax=b
columns (rows) : 24000
non-zero elements : 1629108
Pivot growth : 1.175401e+00
Condition number : 1.188610e+06
Iterative Refinement Steps..: 2
BERR . : 3.833574e-16
FERR . : 6.768792e-10
nonzeros in L 7281453
nonzeros in U 7281453
nonzeros in L+U : 14562906
L\U memory (MB) : 138.328
Total memory needed (MB) : 142.814
memory expansions : 0

Timings
- - - . - - -
Fact or
Solve
Et ree
Equi 1
Rcond
Refine

Total

Time

Wall clock time (seconds) . . . : 10.028008
Total CPU time (seconds) . . . : 10.0199995

Error Measures

BERR

I I R I
I I H I

I I A I
I I B I

1 x 1

. : 4.43100082E-16
infinity : 0.00272948481
infinity (lower bound) : 4.19542809E-31
infinity : 1.Et30
infinity : 1.08198E+11
infinity : 0.0065058553

Deallocate memory
SLUSOLVE: free dynamic memory

Figure 5. 2. Sample SuperLU output

The test matrix has 24,000 rows and columns and 1 . 6 3 ~ 1 0 ~ non-zero entries for a fill-in ratio of 0.283%.

Pivot growth remained low throughout the factorization. It is not known how pivot growth is being

calculated, so a good interpretat~on of its value is lacking. The condition number of the mah-ix is high due

to the penalty method being used within FEM. Two steps of iterative refinement were required to bring

BERR to within the limits of machine round off error. One or two steps of iterative refinement are typical.

FERR is also low at 6 . 7 7 ~ 1 0 - ' ~ . Because L and U have the same number of non-zero elements, it appears

that factorization took place without row interchanges. L and U have nearly 9 times the number of non-

zero entries as A. The total memory needed of 143MB has been well controlled and the fact that zero

memory expansions were required means that no inefficiencies were introduced by having a too small

workspace. SuperLU's estimate of needed workspace was used in the allocation. The timings are broken

down by various activities within SuperLU's process. Most of the time 1s spent factoring the matrix with

iterative refinement coming in as a distant second.

The error measures at the end of the listing are for the original matrix A and the computed solution. This

set of error measures is common throughout all the test programs in this work. BERR has a different value

than SuperLU because SuperLU based its value on the scaled matrix. The lower bound on the infinity

norm of H, the perturbation in A for which the computed solution is an exact solution, is quite worthless.

One reference had suggested t h s calculation for approximating the norm. What is really desired is an

upper bound on the infinity norm of H. An upper bound on the infinity norm of H can be computed by

multiplying BERR by the infinity norm of A, giving 4.43*1014. Except for a small number of occurrences

of 10" in A, most non-zero entries of A tend to have values on the order of lo', so the upper bound of the

infinity norm of H doesn't really tell us much about the solution either. Fortunately, BERR is a

componentwise bound on H, so it really appears that we have a good solution.

5.2. UMFPACK

UMFPACK (pronounced umph-pack with two syllables) is a set of ANSI C routines for solving sparse,

unsymrnetric systems of linear equations. It is written by Timothy Davis of the Computer and Information

Sciences Department at the University of Florida. UMFPACK is copyrighted by Davis with all rights

reserved. I t is freely available at http://www.cise.ufl.edu/researchlsparse/urnfpack. Personal

conlmunication with Davis in the early stages of this work was used to confirm UMFPACK's suitability for

solving equations produced by the ice sheet model.

Davis' experience positions him at the crossroads of two major groups of numerical linear algebra

researchers. Over the past couple of decades, a lot of work in this field has been done in the United

Kingdom under the leadership of Iain Duff starting at the Harwell Laboratory in Oxfordshire and currently

at the Rutherford Appleton Laboratory in Oxfordshire. This group is responsible for the Harwell

Subroutine Library. In the United States, the Scientific Computing Group at the Lawrence Berkley

National Laboratory has developed the SuperLU package. Davis did post-doc work at the European Center

for Research and Advanced Training in Scientific Computation under the direction of Iain Duff. He also

spent a year on sabbatical as a visiting professor at Stanford in the Scientific Computing 1 Computational

Mathematics Program and a visiting staff member at the Lawrence Berkeley National Laboratory.

UMFPACK uses a multifrontal method and BLAS level 3 routines to perform LU factorization.

UMFPACK routines are callable from C, FORTRAN, and MATLAB. MATLAB is a high level language

with an interactive environment and functions for developing algorithms, data analysis and visualization,

and numerical computations. UMFPACK is designed for single processor computers. There are no

parallel computer versions. The UMFPACK software works on a variety of UNIX versions including Sun

Solaris, Red Hat Linux, IBM AIX, SGI IRIX and Compaq Alpha as well as Microsoft Windows. Version

4.3.1 was the latest version of UMFPACK available at the start of this work and is the version used here.

UMFPACK does an LU factorization of P,D,AP,. P, is a row permutation matrix for maintaining

stability while reducing fill-in. D, is a matrix for scaling rows of A in order to improve the condition of A.

PC is a column permutation matrix for reducing fill-in. This approach is analogous to SuperLU with the

exception that UMFPACK does not do column scaling. UMFPACK's row scaling is particularly simple.

There are three options. (1) No scaling is performed. (2) Each row of A is divided by the sum of the

absolute values of the entries in that row. (3) Each row of A is dividend by the absolute value of tlie entry

in that row with the largest absolute value. Option (2) sets the 1-norm of each row to 1, thus giving

I I A ~ ~ , = 1. Davis doesn't explain why option 3 might be used. He does clam that scaling is important when

using his symmetric strategy and that scaling improves the performance of his unsyrnmetric strategy.

These strategies are discussed a later. Solving Ax = b follows the same line of processing as SuperLU.

1. b isscaledby D r .

2. b is permuted by P, .

3. Forward substitution is used with L and the scaled and permuted value of b to compute an

intermediate vector y .

4. Backward substitution is used with U and y to compute x.

5. x is permuted by P C .

UMFPACK begins by finding a column ordering for A that reduces fill-in without regard for the numerical

values of the non-zero entries of A. 'The matrix is scaled and analyzed to determine which of three possible

strategies to use for pre-ordering its rows and columns. The available strategies are unsymmetric, 2-by-2,

and symmetric. All pivots with zero Markowitz cost are eliminated and placed in the LU factors. The

following rules are then appl~ed to the remaining submatrix S to determine the strategy to use.

1. If A is rectangular, then the unsymmetric strategy is used.

2 . If the removal of pivots with zero Markowitz cost did not preserve the diagonal of S, then the

unsymmetric strategy is used.

3. The symmetry o, of S is defined as the number of matched off-diagonal entries in S divided by

the number of off-diagonal entries in S. Entries of S are the sparse entries defined by the input.

An entry si is matched if there is also an entry s , ~ ; , even if the values of the two entries are not

equal. If 0, < 0.1 then the matrix is very unsymmetric and the unsymmetric strategy is used.

4. If the a, 2 0.7 and there are no zeros on the diagonal, then the symmetric strategy is used. S is

nearly symmetric.

5. The 2-by-2 strategy is attempted. A row permutation P, is found that reduces the number of

small diagonal entries in S. A diagonal entry sii is considered small if lsiil < 0.01 . rnaxlsk,l . If
k

s i i is small, an attempt is made to find two rows i and j such that sF and sji are large. Swapping

these two rows ensures that S has large diagonal entries in rows i and j. Let 0, be the symmetry

of P2S , let d2 be the number of nonzero diagonal entries of P,S , and let the dimension of S be

v by v . If 0, > 1.10, and d 2 > 0 . 9 ~ , then use the 2-by-2 strategy. Permuting S by P, has

made the matrix significantly more symmetric.

6. If o, < 0.7aI then use the unsymmetric strategy. The 2-by-2 strategy has significantly worsened

the symmetry.

7. If 0, < 0.25 then use the unsymmetric strategy. The matrix is still very unsymmetric.

8. If o, 2 0.51 then use the 2-by-2 strategy. The matrix is roughly symmetric.

9. If a, 2 0.9990, then use the 2-by-2 strategy. The 2-by-2 strategy has improved the symmetry or

only made it slightly worse.

10. Otherwise, use the unsymmetric strategy.

The unsymmetric strategy pre-orders the columns of S using a modified version of the COLAMD

algorithm. COLAMD is a column approximate minimum degree algorithm developed by Davis, Gilbert,

Larimore, and Ng [7] . Gilbert is one of the primary developers of SuperLU and Ng is the group leader of

the Scientific Computing Group of the Computation Research Division at Lawrence Berkeley National

Laboratory. This algorithm produces the column permutation matrix P,and an ordering for column

elimination. PC is a symmetric permutation of S ~ S that is determined without explicitly forming S ~ S .

An upper bound on the number of non-zero entries in L and U are also computed. During numerical

factorization the column ordering may be modified. Threshold partial pivoting is used at factorization time

to maintain stability. An entry from the pivot column qualifies as a pivot if a > 0,lrnaxl au l . The I v I - 1

sparsest row that meets the criterion is used as the pivot row.

The symmetric strategy pre-orders the columns of S using the AMD algorithm. AMD is an approximate

minimum degree algorithm developed by Amestoy, Davis, and Duff [3][4]. The AMD algorithm is applied

to the pattern S + sT . During numerical factorization the colunm ordering is not modified. Threshold

pivoting is used, but a strong preference is given to the diagonal entry. The diagonal entry is used if

1 a,,,l 2 0.001 .marl nkj l Otherwise, a sparse row is selected using the same method as in the unsymmetric
k

strategy.

The 2-by-2 strategy simply applies the symmetric strategy to P,S .

The column ordering algorithms produce an elimination tree with each node of the tree corresponding to a

dense frontal matrix. A post order traversal of the elimination tree determines the sequence of calculations.

Variables are eligible for elimination as soon as they have been fully summed. The analysis phase also

determines upper bounds on memory usage, floating point operations, and number of non-zero entries in

LU.

In the numeric factorization phase, one or more columns of A are eliminated in each frontal matrix. The

frontal matrices are assembled in dense, 2-dimensional arrays.

Figure 5. 3. Dense array for assembling a frontal matrix.

The L and U columns and rows of the frontal matrix are updated as completely summed variables are

eliminated. After the completely summed variables are eliminated, the contribution block C is updated

with BLAS level 3 matrix-matrix multiplication.

C t C - L " U "

Like SuperLU, UMFPACK estimates the condition number of A and computes the componentwise

backward error BERR. However, UMFPACK does not estimate the forward error FERR. UMFPACK also

has an option for performing iterative refinement.

UMFPACK consists of a library of 31 user-callable routines. In addition, the AMD ordering method is

another l~brary consisting of 4 user-callable routines. Similar to SuperLU's driver routines, there are only a

few UMFPACK routines that a user would typically call when solving a system of equations. When

solving a system of equations, separate UMFPACK calls are made to

1 . Determine the column ordering strategy and perform the initial symbolic factorization

2. Perform the numeric factorization

3. Solve the system of equations from the LU factors using forward and backward substitution

4. Free dynamic memory allocated by numeric factorization

5. Free dynamic memory allocated by symbolic factorization.

UMFPACK also has facilities for user specified column ordering.

UMFPACK does not have user specified options for determining which computational steps to skip when

solving multiple systems of equations like SuperLU. Instead, similar results are achieved by only calling

the routines necessary to perform the needed computations. For example, if a system of equations has

multiple right hand sides, the solve routine can be called multiple times without computing the LU factors

each time. When multiple systems of equations with the same sparsity pattern are solved, the symbolic

factorization routine can be called for the first system of equations and the results reused for each

subsequent system.

UMFPACK's library supports double precision real numbers and double precision complex numbers. In

addition it has support for 32 bit and 64 bit integers. These give a total of four possible versions for many

of its routines. Routine names contain a two-letter designation for their data type support. For example,

routines names with the prefix "di" operate on double precision real data and use 32 bit integers. Routine

names with the prefix "zl" operate on double precision complex data and use 64 bit integers.

The dynamic memory data objects produced by symbolic and numeric factorization routines are opaque to

FORTRAN and C programs. Among other things, these objects contain the L and U factors. While there

is no need to directly access the contents of these objects when solving systems of equations, there may be

other instances where the contents of the objects are of interest. UMFPACK contains routines for copying

L, U, P, , PC, D, and other information from the opaque objects to regular arrays.

UMFPACK requires a high performance BLAS to obtain maximum performance. Davis suggests using

Goto's BLAS. This is why Goto's BLAS was used in this work. The UMFPACK package includes C

implementations of the BLAS routines it uses, so it can be used without BLAS, but overall performance

takes a significant hit. See the results section of this work for details. An UMFPACK build time option

determines the library containing the BLAS subprograms to use. SuperLU is similar to UMFPACK in this

regard, too.

The matrix A is presented to UMFPACK routines in compressed column format. This is the same

representation used by MATLAB. The vectors b and x are represented as dense vectors in 1-dimensional

arrays. The UMFPACK library includes various format conversion routines including

1. Triplet representation to compressed column format

2. Compressed column format to triplet representation

3. Transpose of compressed column format to compressed row format

There are a number of user settable parameters that control the operation of UMFPACK. The parameters

are stored in a 1-demensional, double precision real array named CONTROL. Some of these parameters are

defined when the UMFPACK library is built, while the others are specified at run tlme. The build-time

parameters are as follows.

1. UMFPACK-COMPILED-WITH-BLAS: True if BLAS is used

2. ~MFPACK-COMPILED-WITH-MATLAB: Tnle for MATLAB mex functions

3. UMFPACK-COMPILED-WITH-GETRUSAGE: 1 if the UMFPACK timer routine bases time

measurements on getrusage (preferred). Otherwise, time measurements are based on ANSI C

c l o c k routine.

4. UMFPACK-COMPILED-IN-DEBUG-MODE: True if debug mode is enabled.

The run time control parameters are as follows. Default values are listed in parenthesis

1. UMFPACK-PRL (1) : Printing level. 1 is lowest, 6 is highest. Determines the level of detail

printed by reporting routines.

2. UMFPACK-DENSE-ROW (0.2) : Parameter for defining the number of non-zero entries in a row

that constitute a dense row. Dense rows receive special treatment during syn~bolic and numeric

factorization. A row is dense if it contains more than rnax(16,16ar&) non-zero entries. a,. is

the dense row parameter and n is the number of columns.

3. UMFPACK-DENSE-COL (o .2) Parameter for defining the number of non-zero entries in a column

that constitute a dense column. Dense columns receive special treatment during symbolic and

numeric factorization. A column is dense if it contains more than max(16,16aC &) non-zero

entries. a, is the dense column parameter and n is the number of rows.

4. VMFPACK-PIVOT-TOLERANCE (0 .1) : Threshold for partial pivoting.

5 . UMFPACK-BLOCK-SIZE (32) : BLAS block size.

6. UMFPACK-STRATEGY (O=AUTO) : Strategy for preordering rows and columns.

7. UMFPACK-ALLOC-INIT (0 .7) : Initial memory allocation as a fraction of estimated peak memory usage.

8. UMFPACK-IRSTEP (2) : Maximum number of iterative refinement steps.

9. UMFPACK-ZBYZ-TOLLERANCE (0.01) : Defines large entries for 2-by-2 strategy

10. UMFPACK-FIXQ (O=AUTO) : Fix or modify column permutation matrix. UMFPACK uses Q to

designate PC .

11. UMFPACK-AMD-DENSE (10) : AMD dense row/column parameter.

12. UMFPACK-SYM-PIVOT-TOLERANCE (0.001) : Pivot tolerance for diagonal entries with

symmetric strategy.

13. UMFPACK-SCALE SUM) : Row scaling (none, sum, or max).

14. ~ F P A C K ~ F R ~ N T ~ L L ~ C ~ I N I T (0.5) : Frontal matrix allocation ratio.

15. UMFPACK-DROP-TOLERANCE (O) : Drop tolerance.

16. UMFPACK-AGGRESSIVE YES) Aggressive absorption in AMD and COLAMD.

UMFPACK routines are well documented in the 127-page UMFPACK User Guide. The documentation

explains what each routine does, what its input and output arguments are, and the influence of control

parameters. Detailed explanations of the control parameters are contained in the documentation of the

routines that use them.

Statistics generated by UMFPACK are stored in an information array and are accessible to the user.

UMFPACK provides routines for reporting this and other information as summarized below.

1. Printing the status returned by other UMFPACK routines

2. Printing statistics from the information array

3. Printing user defined control settings

4. Printing the symbolic factorization object

5 . Printing the numeric factorization object

6. Printing matrices and vectors

Below is a sample of the output produced by UMFPACK when solving a sample problem from the ice

sheet model. The demonstration program begins by reading A and b from a disk file and storing the data in

compressed column format. The control parameter settings appear next, followed by the time required to

perform symbolic and numeric factorization and solve the system of equations. These are times measured

by the demonstration software, not by UMFPACK. Following the timings are information statistics

gathered by UMFPACK and printed with the UMFPACK reporting routine. The final section concludes

with the standard section of error measures that are included in all test routines in this work.

Linear Equations Solver with UMFPACK

Rodney Jacobs, University of Maine, 2005

Initialize compressed column data structures
Non-zero Elements : 1629108
Columns : 24000
Read and store matrix A
Read and store righthand side
Solve Ax=B
UMFSOLVE: initialization

ncol = 24000
nz = 1629108

base = 1
mode = 1

UMFPACK V4.3.1 (Jan. 11, 2005), Control:

Matrix entry defined as: double
Int (generic integer) defined as: int

0: print level: 3
1: dense rowparameter: 0.2

"dense" rows have >max (16, (0.2)*16*sqrt(n-col) entries)
2: dense column parameter: 0.2

"dense" columns have > max (16, (0.2) *16*sqrt (n-row) entries)
3: pivot tolerance: 0.1
4: block size for dense matrix kernels: 32
5: strategy: 0 (auto)
6: initial allocation ratio: 0.7
7: max iterative refinement steps: 2
12: 2-by-2 pivot tolerance: 0.01
13: Q fixed during numerical factorization: 0 (auto)
14: AMD dense row/col parameter: 10

"dense" rows/columns have > max (16, (lO)*sqrt(n)) entries
Only used if the AMD ordering is used.

15: diagonal pivot tolerance: 0.001
Only used if diagonal pivoting is attempted.

16: scaling: 1 (divide each row by sum of abs. values in each row)
17: frontal matrix allocation ratio: 0.5
18: drop tolerance: 0
19: AMD and COLAMD aggressive absorption: 1 (yes)

The following options can only be changed at compile-time:
8: BLAS library used: Fortran BLAS.
9: compiled for ANSI C (uses malloc, free, realloc, and printf)
10: CPU timer is POSIX times () routine.
11: compiled for normal operation (debugging disabled)
computer/operating system: Linux
size of int: 4 long: 4 Int: 4 pointer: 4 double: 8 Entry: 8 (in bytes)

UMFSOLVE: Symbolic factorization
0.224851 secs for symbolic factorization
UMFSOLVE: Numeric factorization
13.922337 secs for numeric factorization
UMFSOLVE: Solve Ax=b
0.521602 secs to solve

Figure 5 . 4. Sample UMFPACK output.

104

UMFPACK V4.3.1 (Jan. 11, 2005). Info:
matrix entry defined as:
Int (generic integer) defined as:
BLAS library used:
MATLAB :
CPU timer :
number of rows in matrix A:
number of columns in matrix A :
entries in matrix A:
memory usage reported in:
size of int:
size of long:
size of pointer:
size of numerical entry:

double
int
Fortran BLAS.
no.
POSIX times () routine
24000
24000
1629108
8-byte Units
4 bytes
4 bytes
4 bytes
8 bytes

strategy used: symmetric
ordering used: amd on A+A'
modify Q during factorization: no
prefer diagonal pivoting: Yes
pivots with zero Markowitz cost:
submatrix S after removing zero-cost pivots:

number of "denseu rows:
number of "dense" columns:
number of empty rows:
number of empty columns
submatrix S square and diagonal preserved

pattern of square submatrix S:
number rows and columns
symmetry of nonzero pattern:
nz in S+S1 (excl. diagonal):
nz on diagonal of matrix S:
fraction of nz on diagonal:

AMD statistics, for strict diagonal pivoting:
est. flops for LU factorization:
est. nz in L+U (incl. diagonal):
est. largest front (# entries) :
est. max nz in any column of L:
number of "dense" rows/columns in S+S':

symbolic factorization defragmentations:
symbolic memory usage (Units) :
symbolic memory usage (MBytes) :
Symbolic size (Units) :
Symbolic size (MBytes) :
symbolic factorization CPU time (sec) :
symbolic factorization wallclock time(sec) :

matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)) : 2.99432e+14
maximum sum (abs (rows of A)) : 1.00000e+30

symbolic/numeric factorization: upper bound
variable-sized part of Numeric object:

initial size (Units) 4402279
peak size (Units) 202200563
final size (Units) 164557605

Numeric final size (Units) 164713647
Numeric final size (MBytes) 1256.7
peak memory usage (Units) 202568424
peak memory usage (MBytes) 1545.5

actual

Figure 5.4. Sample UMFPACK output. (Continued)

numeric factorization flops 6.30832e+11
nz in L (incl diagonal) 69551049
nz in U (incl diagonal) 90728112
nz in L+U (incl diagonal) 160255161
largest front (# entries) 32895882
largest # rows in front 5391
largest # columns in front 6114

initial allocation ratio used:
of forced updates due to frontal growth:
number of off-diagonal pivots:
nz in L (incl diagonal), if none dropped
nz in U (incl diagonal), if none dropped
number of small entries dropped
nonzeros on diagonal of U:
min abs. value on diagonal of U:
max abs. value on diagonal of U:
estimate of reciprocal of condition number:
indices in compressed pattern:
numerical values stored in Numeric object:
numeric factorization defragmentations:
numeric factorization reallocations:
costly numeric factorization reallocations:
numeric factorization CPU time (sec) :
numeric factorization wallclock time (sec) :
numeric factorization mflops (CPU time):
numeric factorization mflops (wallclock) :
symbolic + numeric CPU time (sec) :
symbolic + numeric mflops (CPU time) :
symbolic + numeric wall clock time (sec) :
symbolic + numeric mflops (wall clock) :

solve flops:
iterative refinement steps taken:
iterative refinement steps attempted:
sparse backward error omegal:
sparse backward error omega2:
solve CPU time (sec) :
solve wall clock time (sec) :
solve mflops (CPU time) :
solve mf lops (wall clock time) :

total symbolic + numeric + solve flops: 2.75936e+10
total symbolic + numeric + solve CPU time: 13.48
total symbolic + numeric + solve mflops (CPU) : 2047.00
total symbolic+numeric+solve wall clock time: 14.67
total symbolic+numeric+solve mflops(wallclock) 1880.95

Error Measures
.
BERR . : 5.18638481E-16
1 I R ~ [infinity : 0.00155661441
I I H ~ linfinity (lower bound): 2.39263608E-31
1 IAl linfinity : l.E+30
I I B / (infinity : 1.08198E+11
11x1 [infinity : 0.0065058553

Deallocate memory
UMFSOLVE: free Symbolic object

Figure 5.4. Sample UMFPACK output. (Continued)

There are several observations to be made.

1. The AMD estimates made for the number of FLOPS, non-zero entries in L+U, and the largest

front during symbolic factorization compare very well with the actual figures from numeric

factorization. It is not clear why the upper bounds on these quantities in the numeric factorization

phase are so much larger, but the User Guide does say that these estimates can be very loose when

using the symmetric strategy or the 2-by-2 strategy.

2. The estimate of the condition number of A is similar to the estimate produced by SuperLU.

3. Numeric defragmentation and reorganization occurred once, but is not reported as being costly. It

appears that numeric factorization ran efficiently. Consider~ng that actual peak memory usage is

only 17% of estimated peak memory usage, one might conclude that initial allocation ratio in the

control array should be much less than 0.7 for efficient use of memory. However, the User Guide

indicates, and tests corroborate, that when the symmetric strategy is used, the initial allocation is

based directly on the number of non-zero entries estimated in L and U by symbolic factorization

and the initial allocation ratio is ignored.

4. Sparse backward error omega1 (BERR) is nearly at machine precision. It agrees with the test

program's computation of BERR, which is to be expected because A is scaled by rows only. A

definition for sparse backward error omega2 was not found.

5 . lnfin~ty norms compare favorably with infinity norms from the SuperLU computations. (The

same system of equations is solved in both examples.)

6 . The times measured by the demonstration software match the times reported by UMFPACK.

6. Software Interface to the Ice Sheet Model

Using SuperLU and UMFPACK with the ice sheet model involves two interface issues. First, the values of

A, b, and x in Ax = b must be stored in data structures that are efficient for the modeling software to

access and are compatible with SuperLU and UMFPACK. Secondly, the SuperLU and UMFPACK

routines must be called from the modeling software. Both of these issues are addressed by this project.

6.1. Data Structures

The ice sheet model places many requirements on the data structures. The data type for entries of A, b, and

x is double precision real. A is very sparse. There are about 100 non-zero entrles per row and tens of

thousands of zeros per row. Memory overhead should be kept as low as possible, so a dense two-

dimensional array is out of the question. For a problem size of 4 0 x 4 0 ~ 5 nodes with 3D velocities such an

array would exceed 4 gigabytes of memory. A banded data structure would work for problems without

pressure calculations, but would not work for problems with pressure calculations. Even if the banded data

structure were used for problems without pressure, the memory for problems with tens of thousands of

variables would be very large. For example, a problem with 4 0 x 4 0 ~ 5 nodes with 3D velocities, the

bandwidth IS 1,241, giving a storage size of 238 megabytes. Yet the number of non-zero entries is 1.63

million, requiring only 13 megabytes of memory. Entries of A should be addressable by row and column

number and access to entries should be as fast as possible. Direct addressing speeds are ideal, but

somewhat slower speeds are acceptable. We can expect the ice sheet model to perform lo6 to lo8 accesses

to enh-ies of A in a single time step, so access times should not exceed a few hundred nanoseconds. The

row and column addresses of non-zero entries will not be known prior to the f i s t time step, but will remain

the same for all time steps after the first. Finally, b and x are dense vectors.

The double precision real data type is compatible with SuperLU and UMFPACK. Each software package

expects A to be in compressed column format. Storing b and x as dense vectors in single dimension arrays

is compatible with both software packages.

The compressed column format for A meets nearly all the requirements of the ice sheet model. It does not

use excessive space to represent sparse matrices and access by row and column numbers is reasonably

efficient. The column number defines the lower and upper index values of the row numbers for that

column in the row numbers array. The row numbers are stored in ascending order, so a binary search can

be done to quickly find the index of a specific row number. The index of the row number is the index of

the value of the entry we wish to access in the values array. The only requirement not met by the

compressed column format is efficiently populating the data structure during the initial time step. As

discussed earlier, compressed column format does not handle the insertion of new values efficiently.

Values that are already stored and have higher index values than new values being added must be moved

upward to make space for the new entries. This is essentially an insertion sort process with

O(m) performance for inserting a single entry, and 0 (m 2) performance overall.

A simple modification was made to the compressed column data structure that preserved its appearance as

compressed column format to SuperLU and UMFPACK, preserved its efficient memory usage and access

performance, and dramatically improved element insertion performance in the first time step. The new

structure is called modified compressed column format. It consists of four I-dimensional arrays as

illustrated in figure 6.1.

~3 Bucket Size

Column
Start

Column I End

1 Row 1

Figure 6. 1 . Modified compressed column format.

109

1 2

Value

- 2 3 - 1

2.5 10.1 - 5.3 7.8 - -1.3 -

The Column Start, Row, and Value arrays play the same roles as they do in compressed column format. N

is the number of columns stored in the structure. Bucket Size is new. When the data structure is initialized,

Bucket Size specifies the number of entries allocated in the Row and Value arrays for each column. The

indices of the Column Start and Column End arrays are column numbers. The values in the Column Start

array are the index values where the columns begin in the Row and Value arrays. The values in Column

End array are the index values where the columns end in the Row and Value arrays. When a new entry is

added to an existing column, only the entries in that column's bucket need to move in order to make room

for it. For example, if the value 3.2 is added to column 2, row 1, then entries 2 and 3 in Row at index

positions 4 and 5 move up one place as well as the values 5.3 and 7.8 in Value. The value 3.2 is stored at

index position 4 in Value and 1 is stored at index position 4 in Row. Finally, the Column End value for

column 2 is incremented from 5 to 6. As long as there is room in the column bucket, new entries can be

added in 0 (b) time where b is the bucket size. Overall, the process takes ~ (r n b) time where rn is the total

number of entries.

If a bucket fills up, there are two possible alternatives. The process can simply abort, or the bucket size can

be expanded so long as there is sufficient unused space in the Row and Value arrays. The implementation

used in this project allows buckets to expand. When a bucket expands, all the entries above that bucket

must move up, invoking a performance penalty. Bucket size should be chosen to minimize the number of

expansions that occur and the amount of storage space used. If all rows have the same number of non-zero

entries and this number is known, then choosing the bucket size is easy. Otherwise, a value must be chosen

that balances execution time against the amount of storage space. If the bucket size is at least as large as

the largest number of non-zero entries in a row, then no expansions occur and execution time is minimized

at the expense of wasted storage space In buckets that are not filled. If bucket size is equal to the number of

non-zeros in the row with the least number of non-zeros, then storage space tends to be optimized at the

expense of execution time.

Accessing an entry by row and column in the modified compressed column data structure is just as fast as

accessing a compressed column data structure. The only difference is that the upper bound for the binary

search is taken from the Column End array. With a regular con~pressed column data structure, the upper

bound of the binary search is the column start index of the next column minus 1.

The modified compressed column data structure is not directly usable by SuperLU and UMFPACK.

However, if the free space in each column bucket is removed by moving data at higher positions in the

Row and Value arrays down, then the data stored in the Column Start, Row, and Value arrays is the same

as the compressed column data structure. Removing the free space is referred to as squeezing the data. In

the example above, the squeeze operation performs the following moves and changes.

1 . Value array moves: 5.3 from index 4 to index 3, 7.8 from index 5 to index 4, -1.3 from index 7 to

index 5.

2 . Row array moves: 2 from index 4 to index 3, 3 from index 5 to index 4, 1 from index 7 to index 5.

3. Column Start array changes: 4 at index 2 changed to 3,7 at index 3 changed to 5.

4. Column End array changes: 5 at index 2 changed to 4, 7 at index 3 changed to 5.

5. Column End array change: 6 is inserted at index 4 for compatibility with the compressed column

format.

The squeeze operation is performed in the ice sheet model just before SuperLU or UMFPACK is called to

solve the system of equations in the first time step. On subsequent time steps of the ice sheet model, the

column and row arrays already contain the correct entries. All that needs to be done is set the entries in the

Value array to zero before beginning the FEM calculations. There is no need to invoke the squeeze

operation in subsequent time steps.

There is one additional detail to handle. SuperLU and UMFPACK are written in C and C uses zero as the

starting index of arrays. The ice sheet model is written in FORTRAN and FORTRAN uses one as the

starting index of arrays. The modified compressed data structure is created in FORTRAN using base 1

arrays. When SuperLU or UMFPACK 1s called, the values in the Column Start and Row arrays are

decremented by 1, corresponding to C base 0 arrays. After SuperLU and UMFPACK finish using the

arrays, the values in Column Start and Row are incremented by 1, converting them back to FORTRAN

base 1 arrays.

6.2. Implementation of Modified Compressed Column Data Structures

A library of FORTRAN routines has been written to maintain the modified compressed column data

structure. The source code for these routines can be found in Appendix 1. Data storage for the modified

compressed column data structure is allocated in the main program as FORTRAN arrays. An include file,

ccparam. h, defines M A X C ~ L , the maximum number of columns, and MAXNZ, the maximum number of non-

zero entries. The include file is included in the main program and each routine in the subroutine library.

The dimensioned arrays are as follows.

ICCPTR (MAXCOL, 2) The first column of this array is the Column Start array in the modified compressed

column data shucture. The second column is the Column End array. Because

FORTRAN arrays are stored in column major order, the Column Start values are

contiguous in memory. This is a necessary condition when passing the Column Start

values to SuperLU and UMFPACK.

ICCROW (MAXNZ) This array is the Row array in the compressed column data structure.

CCVAL (MAXNZ) This array is the Value array in the compressed column data structure.

The library routines are summarized below.

C C I N I T (ICCPTR, NCOL, NBKTSZ)

This routine initializes the compressed column data structure by setting the initial Column Start and

Column End values in ICCPTR for each column. NCoL 1s the number of columns to allocate and must be

less than MAxCOL. (The NCOL+l entry is used in the compressed column representation to store the last

used index of Row and Value + 1.) NBKTSZ is the initial size of each bucket. ICCPTR (i, 1) is initialized

to (i - 1) *NBKTSZ+l. ICCPTR (i, 2) is initialized to ICCPTR (i, 1) - 1 to indicate that each column is

empty.

CCPUT (IROW, ICOL, VAL, ICCPTR, ICCROW, CCVAL, NCOL)

This routine stores the matrix entry VAL in the modified con~pressed column data structure. IROW is the

row number of the entry and ICOL is the column number of the entry. A binary search of the entries in

column I C ~ L is performed to determine the position where VAL and IRON should be inserted in the

CCVAL and ICCROW arrays. If the column's bucket is full, the bucket's size is increased 20% to make room

for the new entry and any additional entries in the same column.

CCADD (IROW, ICOL, VAL, ICCPTR, ICCROW, CCVAL, NCOL)

This routine adds the value VAL to the entry for row IROW, column ICOL. If this entry does not yet appear

in the modified compressed column data structure, then VAL is added as a new entry to the structure using

the same logic as CCPUT. To optimize performance, the common logic is duplicated in this routine to save

the overhead of making an additional subroutine call. The logic is fairly minimal, so the amount of

duplicate code is quite small. This routine is implemented as a function and it returns the final value of the

entry.

CCGET (IROW, ICOL, ICCPTR, ICCROW, CCVAL)

This routine is a function that returns the value of the entry at row IROW, column ICOL. If the specified

element is not stored in the structure, then the routine returns zero, as it must be a zero entry.

CCSQZ (ICCPTR, ICCROW, CCVAL, NCOL, N Z)

This routine removes the free space in each bucket by moving data in h~gher buckets down to fill the space.

The pointers in ICCPTR are updated to reflect the new positions of each column in the ICCROW and CCVAL

arrays. 'The number of entries stored in the data structure is returned in the variable NZ.

CCZERO (ICCPTR, NCOL, CCVAL)

This routine sets values in CCVAL to zero at the end of the current time step of the ice sheet model in

preparation for the next time step.

In addition, there are two C routines for converting the index pointers in ICCPTR between base 1 arrays and

base 0 arrays.

void ccbase0 (int n z , int ncol, int iccptr [I , int iccrow [I

This routine decrements the values in iccptr [I and iccrow [I . nz is the number of entries in the

data stn~cture and ncol is the number of columns.

void ccbasel(int nz, int ncol, int iccptr[l, int iccrowI1)

This routine increments the values i n iccptr [I and iccrow [1 .

These two routines are called as needed from other C routines. They are not called directly from the ice

sheet model, but are instead called by the routines that interface the ice sheet model to SuperLU and

UMFPACK.

Lastly, there is a C routine for writing the modified compressed column data structure to disk. This routine

is not necessary for the ice sheet model, but it provides a convenient method for testing SuperLU and

UMFPACK. It can be inserted in the ice sheet model to record the values of A and b at the point that

SuperLU or UMFPACK is called. The recorded values can then be used in repeated test runs of SuperLU

and UMFPACK without having to run the entire ice sheet model.

int matdump-(int iccptr [I , int iccrow [I , double cca [I , double b [I , double x[l ,

int *ncol, int *nz, int *base, int *mode, int *debug)

The underscore after the routine name makes the name compatible with FORTRAN global symbol naming

conventions used by the g77 compiler under Linux, the platform used in this project. A FORTRAN call to

MATDUMP is recorded as a call to MATDUMP- in the global symbol table of the FORTRAN program's

object file. The calling parameters are identical to the calling parameters for invoking SuperLU and

UMFPACK from the ice sheet model. The return value is 0 for success or 1 for failure. The following

table describes each calling parameter.

Parameter -
iccptr []
iccrow [I
Cca [I

Description
The Start Column and End Column arrays
The Row array
The Values arrav

b [I
x[l
*ncol
*nz

Table 6 . 1. Calling parameters for m a tdump.

The right hand side of the system of equations
The solution vector (not used by this routine)
The number of columns in A
The number of non-zero entries in the data structure

*base

*mode

*debug

The output file is written to the current directory with the filename matrx# where # is a runtime

substitution parameter. It has the value 1 on the first call to the routine and increments by 1 for each

subsequent call within the run. A sample output file is shown in Figure 6.2.

0 => data structure is composed of C base 0 arrays
I => data structure is composed of FORTRAN base 1 arrays
1 =>Dump A and b to disk
Other values prevent dumping to disk
0 => Do not display debugging messages
1 => Display debugging messages on stdout

1 4 6
1 1 lo
3 1 1
2 2 10
4 2 2
1 3 1
3 3 10
5 3 3
2 4 2
4 4 10
6 4 4
3 5 3
5 5 1 0
4 6 4
6 6 10
1 13
2 2 8
3 4 6
4 6 8
5 59
6 7 6

Figure 6 . 2. Sample output of matdump.

The first line of output contains the number of entries in A and the number of columns in A. The next 14

lines contain entries of A in triplet notation. The first element of each triplet is the row number, the second

element is the column number, and the third element is the entry value. The last 6 lines axe entries of the

vector b. The first element of these entries is the row number and the second element is the value of b for

the indicated row

6.3. Performance of Modified Compressed Column Routines

A simple test program, cctest . f , was written to test the performance of the modified compressed column

routines. The source code for this program can be found at the end of Appendix 1. The program uses data

fi-om the ice sheet model written to a disk file by matdump. The program performs the following actions.

1. Loads and saves the triplet representation of A in alrays.

2. Initializes the modified compressed column data structure with ccini t .

3. Adds the entries of A to the compressed column data structure using ccput.

4. Removes free bucket space by calling ccsqz.

5 . Gets each entry in the data structure using ccget.

6 . Zeros all entries in the data structure using cczero.

7. Adds the values of all entries of A to the data structure using ccadd.

The time required to perform each action is printed to stdout by the program. The clock used to measure

these times has a precision of lo-' seconds. The observed times divided by the number of entries are shown

in Table 2 for a small system of equations and a larger system of equations. The times are in nanoseconds

per entry. Both tests were run with MAXCOL=40,636, MAXNZ=4,100,000, and NBKTSZ=lOO.

Table 6. 2. Performance of modified compressed column routines.

All performance measurements in this work were made using a 2.66 GHz Intel Pentium 4 processor with

5 12 KB of cache, a 533 MHz front side bus, and 5 12 MB of memory. Programs were run under Redhat

Linux version 9 and compiled with g77 using -03 optimization.

Overall, performance is well within the design goals and should be adequate to meet the needs of the ice

sheet model. Differences in timings between the two problem sizes are within the limits of the clock's

precision. However, cache usage patterns may be causing real increases in timing for the larger problem

size. The time for the ccput operation is optimistic because the ordering of the input data ensures that new

entries are always added to the end of a bucket. The test program was modified to insert entries into

buckets in reverse order to see what the worst-case time would be. For the larger problem size, the ccput

time increased from 121 nanoseconds to 267 nanoseconds per entry, still within design goals. In the ice

sheet model new entries will tend to be inserted in increasing order, so the 121 nanoseconds timing is a

better indicator of expected performance. CCADD time is better than CCPUT time in this test because CcADD

is updating existing entries in the data structure and not adding new entries. The relatively large difference

between ccget time and ccadd time was surprising. The major difference between the two routines is the

memory update performed by ccadd.

6.4. Computing and Printing Er ro r Measures

The FORTRAN routine ccberr . f computes the error measures that have been shown on the previous

sample outputs from SuperLU and UMFPACK. The source code for this routine is contained in Appendix

2.

6.5. Procedural Interface To SuperLU

A C routine was written to interface the ice sheet model with the SuperLU expert driver. The source code

for this routine and a FORTRAN demonstration program that calls it is contained in Appendix 3. You may

want to refer to those listings while reading this description of them.

The function prototype for calling the interface routine is

int sluxsolve- (int iccptr[] , int iccrow[l, double cca[l , double b[l,

double x[], int *ncol, int *nz, int *base, int *mode, int *debug)

The calling parameters are the same as the calling parameters for matdump. You can refer back to the

description of that routine for detail about the parameters. The return value is 0 for success and 1 for

failure.

The routine has a number of side effects.

1 . Values of user-defined options may change.

2 . If A is equilibrated, then the values of cca I I and b [I are modified by D, and D, .

3. The solution is stored in x [I .

4. Dynamic memory is allocated for various data structures including the column elimination tree,

row and column permutation arrays, and row and column scaling arrays. The dynamically

allocated memory must be deallocated with an explicit call to sluxsolve.

The routine has two modes of operation. The current mode is determined by the value of mode. When

mode=l, the routine solves Ax = b . Within this mode there are two sub-modes defined by the static

variable pass stored within the routine. The value of pass is initially 0. In this sub-mode the routine

performs the following actions.

I . Initializes user defined options. User defined options are specified by hard coding them into the

routine and recompiling the routine. In future work, it would be desirable to set these options

under user control through a parameter file stored on disk.

2. User defined options are listed on s t d o u t if debug= 1.

3. Dynamic memory is allocated for data structures.

4. The variable p a s s is set to I.

5 . The modified compressed column data structure is converted from array base 1 to array base 0.

6 . C structures unique to SuperLU are initialized.

7. SuperLU statistics are initialized.

8. The SuperLU expert driver is called to solve Ax = b .

9. SuperLU statistics are listed on s t d o u t if debug=l .

10. Dynamic memory allocated for statistics is deallocated.

1 I. The modified compressed column data structure is converted from array base 0 to array base 1.

When p a s s = l , only actions 5 through 11 are performed. This is done for all time steps of the ice sheet

model after the first one.

When mode=2, the dynamic data structures allocated in action 3 above are deallocated and pass is set to 0.

This is the final cleanup call.

As currently coded, this routine does a complete factorizat~on of A every time it is called because

o p t i o n s . Fact=DOFACT. Taking advantage of the constant sparsity pattern of A has the potential of

reducing execution time of the expert solver by a few percentage points. One way to implement such a

change would be to set o p t i o n s . f a c t to a different mode after calling the expert solver. Since the user-

defined optlons are stored in a static variable, this value would be retained for all subsequent calls.

Program demo1 . f illustrates the use of the SuperLU interface routine. This program was used to produce

the SuperLU test results presented later in this work. It uses values of A and b computed by the ice sheet

model and written to disk files using the matdump routine. The program performs the following actions.

Reads the first line of a matrix dump to determine the number of non-zero elements and the

number of columns in A.

Calls the ccinit routine to initialize the modified compressed column data structure. The bucket

size is hard coded in the program. It is set to 81, which is the optimum size for matrices without

pressure. The arrays for the data structure are dimensioned w~thin the program based on the

parameters specified in ccparams . h.

The entries of A are read from the data file in triplet format and stored in the data structure using

calls to ccput.

The entries of b are read from the data file and stored in the array B.

Values of A and b are stored in a second set of arrays. The SuperLU expert driver changes the

values in the original arrays when it equilibrates A. The second copy is used by the routine

ccberr to compute the error measures based on the original values.

The routine sluxsolve is called with mode=l to solve the system of equations.

The solution vector is printed to stdout. This is optional

The routine ccberr is called to compute and print the error measures.

The routine sluxsolve is called with mode=2 to free dynamically allocated memory.

6.6. Procedural Interface to UMFPACK

A C routine was also written to interface the ice sheet model with UMFPACK. The source code for this

routine and a FORTRAN demonstration program that calls it is contained in Appendix 4. Again, you may

want to refer to those listings while reading this description of them.

The function prototype for calling the interface routine is

int umfsolve- (int iccptr [] , int iccrow [I , double cca [I , double b [I ,

double, x [J , int *ncol, int *nz, int *base, int *mode, int *debug)

This routine has a number of side effects, too.

1. Values of user-defined options may be changed and stored.

2. The solution is stored in x [I .

3. Results of symbolic factorization are stored for reuse on subsequent calls when the sparsity pattern

of A 1s the same on those calls.

The routine has two modes of operation like the SuperLU interface. The current mode is determined by the

value of mode. When mode=l, the routine solves Ax = b . Within this mode, there are two sub-modes

defined by the start variable pass. The value of pass is initially 0. In this sub-mode the routine performs

the following actions.

1. initializes user defined options. User defined options are specified by hard coding them into the

routine and recompiling the routine. In hture work, i t would be desirable to set these options

under user contTol through a parameter file stored on disk.

2. The modified compressed column data structure is converted from array base 1 to array base 0.

3 . Symbolic factorization 1s performed to determine column ordering based on the sparsity pattern of

A.

4. If pass is set to 0, i t is set to 1. Otherwise, the modified compressed column data structure is

converted from array base 1 to array base 0.

5 . Numeric factorization is performed to compute L and U.

6 . Forward and backward substitution is used to solve for x.

7. Memory allocated for the results of numeric factorization is freed.

8. UMFPACK statistics are listed on stdout if debug=l.

9. The modified compressed column data structure is converted from array base 0 to array base 1.

When pass=l, only actlons 4 through 9 above are performed. This is done for all time steps of the ice

sheet model except the first one.

When mode=2, dynamic memory allocated for the results of symbolic factorization is freed and pass is

reset to 0. This is the final cleanup call.

Program demo. f illustrates the use of the UMFPACK interface routine. It is identical to the SuperLU

demonstration program demo1 . f except that it does not store copies of A and b before calling UMFPACK.

UMFPACK does not modify the original values of A and b, so there is no need to save copies of them for

calling the error measures routine ccberr. The initial design goal had been that the same demo program

would work for both methods. While either demo program will in fact work properly with SuperLU and

UMFPACK, the minor differences between them allow us to compare the output of ccberr for both

methods.

7. Establishing a Basis For Performance Measures

Typically, the performance of new methods for solving systems of linear equations is evaluated by

comparing the new methods to established methods. The authors of SuperLU and UMFPACK have done

this. However, we lack experience with the prior systems these authors discuss, so the comparisons are not

particularly revealing to us. On the other hand, banded Gaussian elimination (BGE) has been implemented

in the 3D ice sheet problem without pressure and does provide a basis for evaluating SuperLU and

UMFPACK. In addition, the results reported by these authors show that performance characteristics are

not uniform across all sparse matrices. Therefore, comparing SuperLU, UMFPACK, and BGE with sparse

matrices from the ice sheet model should give a good indication of how the methods will perform in the

model.

Initially, a simple BGE program was written in FORTRAN. The source code for this program is contained

in Appendix 5 . It uses data from the ice sheet model written to a disk file by matdump. The program

performs the following actions.

The data file is read to determine the lower and upper bandwidths of A.

With the bandwidth known, the data file is reread and the entries of A are stored in a 2-

dimensional array using the banded matrix storage technique discussed earlier. Gaussian

elimination is performed in place, so a second copy of A is also stored for computing error

measures at the end of the program.

Entries of b are read from the data file and stored. A second copy is also stored for computing

error measures.

A is reduced to upper triangular form using Gaussian elimination without row interchanges.

The results of Gaussian elimination are combined with backward substitution to compute x.

x is printed. This is optional.

Timings and floating point operation counts are printed.

Backward error is computed and pnnted.

Sample results from this program are shown in the next figure

Banded Gaussian Elimination (BGO)
Assume Constant Upper Bandwidth

Rodney Jacobs, University of Maine, 2005

Bandwidth determination
Non-zero Elements : 393588
Rows . : 6000
Lower Bandwidth : 320
Upper Bandwidth : 320
Read and store matrix A
Read and store righthand side
Reduce A to upper triangular form
Sove for x using backward substitution
Triangular Reduction Time (sec) . : 4.56999969
Backward Substitution Time (sec) : 0.0100002289
Total Solve Time (sec) : 4.57999992
Triangular Reduction FLOPS : 1201535520
Backward Substitution FLOPS : 3743280
Total Solve FLOPS : 1205278800
BERR . : 1.846230293-15

Figure 7. 1 . Output from bgo . f .

Interestingly, BERR is near machine precision indicating a stable set of calculations without partial pivoting

or iterative refinement. This tends to be characteristic of the ice sheet equations without pressure. The

matrices are not diagonally dominant, but they are symmetric and may be positive definite or nearly so.

Additional refinements were made to bgo . f to test the following issues.

1. Does counting of the number of FLOPS increase the execution time significantly? Judging for the

code it is not expected to, but the counting operations can be temporarily removed and the

program rerun to see for sure.

2. For optimum cache hits, the array for storing A in banded format is arranged so that entries for

each row are contiguous in memory. What is the performance cost if columns of entries are stored

contiguously in memory instead of rows ofentries?

3 If the 2-D matrix for storing A is dimensioned for a larger bandwidth than the bandwidth of A,

what happens to performance? We can expect lower cache hit rates because the data will be more

spread out in memory.

4. The rectangular arrangement of the FEM nodes in the ice sheet model results in some rows having

a smaller upper or lower bandwidth than others. Are there significant performance benefits to

stor~ng and using this information to reduce the total number of floating point operations

performed?

A 2 0 x 2 0 ~ 5 node ice sheet matrix for 3D velocities was used to obtain the following answers to these

questions.

1 . Counting FLOPS increased execution time by 0.2%, certainly not very significant. For larger

problems, this ratio can be expected to be even smaller.

2. Optimizing for cache hits is crucial to good performance. With entries of A stored contiguously

by column instead of by row, execution time increased by a factor of 6.5.

3. The 20x20~5 node problem has a bandwidth of 641. The parameter MAXBW in b g ~ . f determines

the number of matrix elements allocated for each row of A. Runtimes were measured for MAXBW =

64 1, 941, and 1241. The respective runtimes were 4.18 seconds, 4.32 seconds, and 4.43 seconds,

an overall 6.0% increase in runtime.

4. Tracking individual row bandwidths in order to reduce the number of floating point operations

decreased runtime by 4.4%.

In order to investigate partial pivoting, scaling, and iterative refinement with banded matrices, a library of

banded matrix routines was written to support both banded Gaussian elimination and banded LU

factorization. The expanded BGE routines are listed in Appendix 6 and the banded LU factorization

routines are listed in Appendix 7. In keeping with the designs of SuperLU and UMFPACK, control and

information arrays were defined for specifying user settable parameters and obtaining statistics from the

processes. These arrays are defined in bandparam. h in Appendix 6. The contents of the arrays are

summarized in the following two tables.

Control
BCTL (1 1

' B C T L (2)

and right hand side value in that row
BCTL (4) 1 Matrix permutations

Description
Reporting

0 = Display severe errors only
1 = Display warning messages and severe errors
2 = Display progress and warning messages and severe errors
3 = Display statistics and all other messages

Print solution vector
O = N o

BCTL (3)

1 1 0 = Do not perform any permutations

1 =Yes
Scale matrix before reducing or factoring it

0 = Do not scale
1 = Scale each row by sum of absolute values of coefficients

1 1 = Partial pivoting by row interchanges based on BCTL(5)
BCTL (5) I Partial pivoting threshold (BGE only)

BCTL (6) Iterative refinement (LU factorization only)

1 1 Max number of iterative refinement steps. Stop iterating

! sooner if there is no improvement in x. Increasing BERR is
used as the indicator ofno improven~ent in x.

I 1 If zero, do not perform iterative iefinement
1 / If less than zerb, take the absolute value of this number and

Table 7. 1 . Banded matTix control array.

BCTL (7)
Perform exactly this number of iterative refinement steps.

Print solution vector after performing iterative refinement
O = N o
1 = Yes

Element I Description
B I N F O (1) I Number of non-zero elements in matrix
B I N F O (2) / Number of rows In matrix
B I N F O (3) I Lower bandwidth of matrix
B I N F o (4) I Umer bandwidth of matrix

B I N F O (7) 1 BGE backward substitution FLOPs
B I N F O (8 1 BGE backward substitution wall clock time (seconds)

B I N F O (5)

B I N F O (6
BGE reduction FLOPS
BGE reduction wall clock time (seconds)

B I N F O (11) I LU forward + backward substitution FLOPs
B I N F O (1 2) / LU forward + backward substitution wall clock time

B I N F O (9)

B I N F O (1 0)
LU factorization FLOPS
LU factorization wall clock time (seconds)

B I N F O (17). 1 Infinitv norm of residual vector

B I N F O (1 3)

B I N F O (1 4)

B I N F o (1 5)

LU factorization: Number of non-zeros in L excluding diagonal
LU factorization: Number of non-zeros on diagonal of U
LU factorization: Number of non-zeros in U excluding diagonal

B I N F O (2 0) I Infinity norm of b
BINFO (2 1) I Infinitv norm of x t

B I N F o (18)

B I N F o (1 9)

Infinity norm of H (lower bound) (H is perturbation of A for which the
computed solution is the exact solution of (A + H) x = b)
Infinity norm of A

Table 7. 2. Banded matrix information array.

B I N F O (2 2)

B I N F O (2 3)

The following table summarizes each of the banded Gaussian elimination routines. Each of these routines,

Number of iterative refinement steps performed
Number of row permutations performed

except bge, is used with banded LU factorization as well.

(Routine I Description
b i n i t I Initialize BCTL and BINFO arrays with default values.
buser 1 Let the user soecifv BCTL values interactivelv.
b load I Read a rnatdump file. Store A as a banded matrix and b in a 1-D array.

1 b s c a l e 1 Scale r o w of A I
I Copy A and b to a second set of arrays.
1 Solve Ax - b usinn banded Gaussian elimination.

1 b e r r o r I Compute error measures.

Table 7. 3. Banded Gaussian elimination routines.

Each of these routlnes is straightforward with bge being the most complicated. bge optimizes the amount

of calculatjon by considering the bandwidth of each row of A. It does partial threshold pivoting and checks

for zero pivot values.

The demonstration program for the BGE library is bgauss . f . Appendix 6 contains a listing of the

program. In summary, the program performs the following actions.

The control and information arrays are initialized by calling b i n i t .

The user is given the opportunity to interactively specify cont~ol parameter values by calling

buser.

The matrlx A and the right hand side b are read from disk by calling bload.

A is scaled by calling bscale.

Copies of A and b are saved for computing error measures by calling bcopy.

Gaussian elimination and backward substitution are used to solve the system of equations by

calling bge.

The solution is printed if the option to do so is selected in the control array.

Error measures are computed and displayed by call ber ror .

Sample output produced by this program is shown in Figure 7.2.

Banded Gaussian Elimination

Rodney Jacobs, University of Maine, 2005

Control Settings

1. Display all messages plus statistics
2. Do not print solution vector
3. Do not scale matrix
4. Do not perform any matrix permutations
5. Partial pivoting threshold = 0.1
6. Perform at most 3. iterative refinement steps with LU factorization
7. Do not print solution vector after each iterative refinement step

Enter # to change or 0:
BLOAD: Bandwidth determination
BLOAD: # Non-zero Elements.: 393588
BLOAD: # Rows : 6000
BLOAD: Lower Bandwidth : 320
BLOAD: Upper Bandwidth : 320
BLOAD: MAXROW : 24000
BLOAD: MAXBW : 1241
BLOAD: Initialize arrays
BLOAD: Read and store matrix A
BLOAD: Read and store righthand side
BCOPY: Copy arrays representing a banded matrix
BGE: Reduce A to upper triangular form
BGE: Solve for x using backward substitution
Gaussian Elimination Statistics

No row interchanges
Reduction Time (sec) : 4.4000001
Substitution Time (sec) : 0.00999927521
Total Solve Time (sec) : 4.40999937
Reduction FLOPS : 1.14919848E+09
Substitution FLOPS : 3718962.
Total Solve FLOPS : 1.15291744E+09
BERROR: Compute error measures
Error Measures
.
BERR . : 1.84623029E-15

I I R (/infinity : 0.0195611205
I (H I linfinity (lower bound): 1.90147725E-30
I linfinity : l.E+30
1 I B ~ [infinity : 4.55868E+11
11x1 linfinity : 0.0102873282

Figure 7. 2. Sample output of bgauss . f.

The banded LU factorization routines are summarized in the following table.

Routine I Description I
b lu fac I Factor A into LU. 1

Table 7. 4. Banded LU factorization routines.

-

bluso lve

b l u s t a t s

b lu r e f i ne

The demonstration program for the banded LU factorization library is b l u . f . Appendix 7 contains a

Solve LUX = b using forward and backward substitution.
Display statistics for the factorization of A and solving of LUX = b.
Iteratively refine the solution x.

listing of the program. In summary, the program performs the following actions.

1. The control and information arrays are initialized by calling b i n i t .

2. The user is given the opportunity to interactively specify control parameter values by calling

buser.

3. The matrix A and the right hand side b are read from disk by calling bload.

4. A is scaled by calling bsca le .

5 . Copies of A and b are saved for performing iterative refinement and computing error measures by

calling bcopy. Iterative refinement is performed using the scaled arrays. Also, error measures are

computed using the scaled arrays.

6. A is factored by calling bluf ac.

7. LUX = b is solved for x by calling blusolve.

8. Statistics for performing the factorization and solving for x are displayed by calling b l u s t a t s

9. Error measures are computed and displayed by call ber ror .

10. Iterative refinement is performed by calling b luref i n e .

Sample output produced by this program is shown in Figure 7.3.

Banded LU Factorization with Iterative Refinement
Rodney Jacobs, University of Maine, 2005

Control Settings

1. Display all messages plus statistics
2. Do not print solution vector
3 . Do not scale matrix
4. Do not perform any matrix permutations
5. Partial pivoting threshold = 0.1
6. Do not perform iterative refinement with LU factorization
7 . Do not print solution vector after each iterative refinement step

Enter # to change or 0:
BCTL(6)= 0. : Perform iterative refinement (LU solutions only)

0 = No iterative refinement
>O = Number of refinement steps. Stop early if no furthre improvement
<O = -1 * exact number of refinement steps
Enter value:
ctl= 5.

Control Settings

1. Display all messages plus statistics
2. Do not print solution vector
3. Do not scale matrix
4 . Do not perform any matrix permutations
5. Partial pivoting threshold = 0.1
6. Perform at most 5. iterative refinement steps with LU factorization
7 . Do not print solution vector after each iterative refinement step

Enter # to change or 0:
BLOAD: Bandwidth determination
BLOAD: # Non-zero Elements.: 393588
BLOAD: # Rows : 6000
BLOAD: Lower Bandwidth : 320
BLOAD: Upper Bandwidth : 320
BLOAD: MAXROW : 24000
BLOAD: MAXBW : 1241
BLOAD: Initialize arrays
BLOAD: Read and store matrix A
BLOAD: Read and store righthand side
BCOPY: Copy arrays representing a banded matrix
BLUFAC: Factor A to LU form
BLUSOLVE: Solve Ly=b using forward substitution
BLUSOLVE: Solve Ux=y using backward substitution
BLUSTATS: Count non-zero entries in L and U
LU Statistics

Non-zeros in U w/diagonal..:
Non-zeros in LtU :
LU Factorization Time (sec) :
Substitution Time (sec) :
Total Solve Time (sec) :
LU Factorization FLOPS :
Substitution FLOPS :
Total Solve FLOPS :

Figure 7. 3. Sample output of blu . f

132

BERROR: Compute error measures
Error Measures
.
BERR . : 7.46892707E-16
1 I R ~ [infinity : 0.0202770683
(JH[[infinity (lower bound): 1.971072368-30
1 A I linfinity : l.E+30
I / B / /infinity : 4.55868E+11
11x1 linfinity : 0.0102873282
BREFINE: Iterative refinement
BLUSOLVE: Solve Ly=b using forward substitution
BLUSOLVE: Solve Ux=y using backward substitution
BERROR: Compute error measures
Error Measures

BERR . : 5.45366524E-17
I I R ([infinity : 0.00178424106
II~l(infinity (lowerbound): 1.73440667E-31
1 J A I linfinity : l.E+30
((B/(infinity : 4.55868E+11
(1x1 linfinity : 0.0102873282
BLUSOLVE: Solve Ly=b using forward substitution
BLUSOLVE: Solve Ux=y using backward substitution
BERROR: Compute error measures
Error Measures
-
BERR . : 5.60270716E-17
 infinity : 0.00210852362
IlHllinfinity (lowerbound): 2.04963192E-31
I I A ~ linfinity : l.E+30
((~I/infinity : 4.55868Ec11
 infinity : 0.0102873282
BREFINE: No further improvement
BREFINE: 1 refinement step(s) performed

Figure 7.3. Sample output of b1u.f. (Continued)

The same system of equations is solved in the BGE and banded LU examples. Some initial observations

can be made from the outputs of the two programs.

I . The run times of the two programs, excluding iterative refinement in blu. f , are essentially

identical.

2. The numbers of floating point operations performed by the two programs, excluding iterative

refinement in blu. f, are identical. This is expected. The two methods order the calculations a

little differently, but they perform the same calculations.

3. The infinity norm of x agrees to 10 places between the two solutions.

4. One step of iterative refinement reduced BERR and the infinity norm of the residual by more than

a factor of 10. This did not change the infinity norm of x to 10 places.

8. Testing and Benchmarking SuperLU and UMFPACK

8.1. Verification Testing

As an initial verification test, all programs were required to solve

which has the solution

All programs passed this test.

Next, the poorly scaled problem from Chapter 2,

was solved by each program to see how error measures compared. The following error measurements were

observed.

Program & Options I I BERR I [[RIJinfinity 1 e estimate) I

SuperLU 1 2.32E-17 1 2.42E-16 1 4.27
UMFPACK auto 1 3.71E-14 1 3.39E-I3 1 2.42E+06

BGAUSS 1
BGAUSS wlpartial pivoting
BLU
BLU wliterative refinement

Table 8. 1. Test results for solutions of Equation 8.3

3.71E-14
3.26E-17
3.71E-14
3.26E-17

UMFPACK auto wtiterative refine I 8.01E- 17
UMFPACK unsyrnrnetric 1 2.64E-17

3.39E-13
3.39E- 16
3.39E-13
3.39E-16

8.33E-I6 1 2.42E+06
2.41E-16 1 2.42

Machine precision for the computer running these tests is approximately 1 0 ' ~ . With partial pivoting,

BGAUSS is achieving machine precision. Without pivoting, BERR and IIR(I, for BGAUSS are lo3 times

larger, which is reasonable given the pivot growth of I 03. BLU gives the same error measures as BGAUSS

without pivoting. As discussed earlier, banded LU factorization is not compatible with partial pivoting.

However, iterative refinement is possible. With iterative refinement, BLU produces the same error

measures as BGAUSS with partial pivoting.

SuperLU without iterative refinement or additional options produces results comparable to BGAUSS with

partial pivoting. This indicates that SuperLU is automatically cont~olling pivot growth and, in fact,

SuperLU reports pivot growth to be 1 .O.

UMFPACK is a little more complicated. By default, UMFPACK automatically chooses to solve the

system using its symmetric strategy and does not perform row interchanges. T h ~ s results in high error

measures comparable to BGAUSS without partial pivoting. If iterative refinement is invoked, error

measures are brought in line with BLU with iterative refinement. UMFPACK normally does iterative

refinement by default. Manually selecting UMFPACK unsymmetric mode and turning off iterative

refinement forces partial pivoting and reduces error measures to levels comparable to SuperLU, BGAUSS

with partial pivoting, and BLU with iterative refinement.

The condition number for A is easily computed. It is r, = IIAII,IIA-'II = 4.26. SuperLU7s estimate of the
cn

condition number is 4.27. UMFPACK's estimate is anomalous.

We can also look at results for the solution of Equation 8.1 in Table 8.2. (The column labeled "FLOPs" is

floating point operations. The label "FLOPS" is reserved for floating point operations per second.)

Table 8. 2. Test results for solution of Equation 8.1

BGAUSS and BLU produce componentwise backward error at machine precision without partial pivoting

or iterative refinement. Partial pivoting for BGAUSS and iterative refinement for BLU brings the error

measures to zero.

SuperLU takes the error measures to zero directly, but does 4 times more floating point operations than

BGAUSS and BLU without iterative refinement. It takes approximately 30 FLOPS for BLU to perform

one cycle of iterative refinement on this system of equations, giving a total of 79 FLOPS for BLU to run

with iterative refinement. Still, these are 2.7 times fewer FLOPs than St~perLU. SuperLU equilibration

was enabled to see if the condition number estimate would change. It did not. This seems strange. The

value of the condition number is observed to change when SuperLU's scaling is enabled for other matrices.

An independent calculation of the condition number of tlus matrix gives K, = 98.4 , so an estimate of 152

without scaling is reasonable. SuperLU does not count floating point operations for equilibrating the

matrix, computing the condition number, or performing iterative refinement.

UMFPACK's automatic strategy selection chose the symmetric strategy again. UMFPACK still has

problems with the condition number estimate for the symmetric strategy, but the unsymrnetric strategy

gives a number that is in the ballpark. Iterative refinement and scaling are UMFPACK's default settings.

With these settings the error measures are comparable to BGAUSS and BLU without partial pivoting or

iterative refinement. However, these settings cause the number of floating point operations to drastically

exceed the counts for BGAUSS and BLU. Since SuperLU is not counting floating point operations for

scaling and iterative refinement, it is hard to say how UMFPACK and SuperLU compare.

UMFPACK's unsymmetric strategy works better for this matrix. Error measures are low without iterative

refinement or scaling and floating point operation counts are lower. UMFPACK's row scaling reduced the

condition number for the unsymmetric strategy, which was expected. However, the reliability of

UMFPACK's estimate is questionable. An independent computation of the condition number could be

done for the scaled matrix to check the numbers.

8.2. Test Matrices

Two series of matrices were generated from the ice sheet model for benchmarking UMFPACK and

SuperLU as well as BGAUSS and BLU. One series does not include pressure and the other series does.

Table 8. 3. Test matrices fiom the ice sheet model.

Matrix names beginning with "m3d" are banded matrices for 3-D velocit~es without pressure. Matrix

Name

m3d. 10x10~5
rn3d. 15x15~5
m 3 d . 2 0 ~ 2 0 ~ 5

names beginning with "m3dp" are non-banded matrices for 3-D velocities with pressure. The remainder of

Rows

1,500
3,375
6,000

Band-
witdth

34 1
49 1
64 1

Non-
Zeros

9 1,728
216,333
393,588

Struct .
Sym-
metr

1 .O
1 .O
1 .O

Diag.
Non-

1,500
3,375
6,000

Value
Sym-
metr

1 .O
1 .O
1 .O

Diagonal
Dominance

0.2
0.2
0.2

the mah-ix name is the number of FEM nodes in each dimension. An entry ai is structurally symmetric ~f

a ji is also non-zero. Structural symmetry is the ratio of the number of structurally symmetric entries to the

total number of non-zero entries. An entry a,, is value symmetric if a,, = a j i . Value symmetry is the ratlo

of the number of value symmetric entries to the total number of non-zero entries. The test matrices are

structurally symmetric as well as value symmetric. Diagonal dominance is the ratio of the number of

columns that are diagonally dominant to the total number of colunms.

8.3. Initial Tests of BGAUSS

BGAUSS is only applicable for banded matrices. The initial tests look at error measures and number of

floating point operations as a function of scaling and partial pivoting. Matrix r n 3 d . 2 0 ~ 2 0 ~ 5 was used to

obtain these results.

Table 8. 4. Initial BGAUSS tests with m 3 d . 2 0 ~ 2 0 ~ 5 .

Without scaling, nearly half the rows are interchanged, causing BERR to increase by a factor of 100 and the

number of floating point operations to increase by 93%, although I (R (I , decreased by a factor of 4. With

scaling, the pivot threshold can be adjusted to control the number of row interchanges. However, there 1s

no threshold value that produces significantly better results. Overall, the calculations are stable without

row interchanges even though the matrix is not diagonally dominant.

8.4. Initial Tests of BLU

Like BGAUSS, BLU is only applicable for matrlces without pressure. BLU allows iterative refinement and

scaling to be performed. Matrix m 3 d . 2 0 ~ 2 0 ~ 5 was used to obtain the following results.

Table 8. 5. Initial BLU tests with m 3 d . 2 0 ~ 2 0 ~ 5 .

Iterative refinement improved BERR and l l ~ l l ~ with negligible additional cost. Error measures with scaling

Scale

NO
No
Yes
Yes

are more difficult to interpret. Because iterative refinement is based on the scaled system of equations, the

error measures are also based on the scaled equations. The norm of the residual using the scaled system of

equations is much better than the residual of the unscaled equations. This is because the residual is the

difference of large numbers for the unscaled system, but it is the difference of small numbers for the scaled

system. BGAUSS demonstrated that scaling probably did little to change the value of x. This is inferred

from the fact that the norm of the residual in BGAUSS is always calculated from the unscaled equations,

and the fact that the value of x computed without scaling has a residual norm that is comparable to the

residual norm when x is computed with scaling.

BERR

7.47E-16
5.45E-17
7.32E-16
5.04E-17

Iterative
Refinement

NO
Yes
No
Yes

IIRIlinfinity

2.03E-02
1.78E-03
7.23E-20
7.57E-20

FLOPS

1.15E+09
1.15E+09
1.15E+09
1.1 5E+09

8.5. Initial Tests of SuperLU

Initial tests of SuperLU with the m 3 d . 2 0 ~ 2 0 ~ 5 matrix produced the following results.

Table 8. 6. Initial SuperLU tests w ~ t h m 3 d . 2 0 ~ 2 0 ~ 5

With SuperLU we need to evaluate the column permutation method as well as the effects of scaling and

iterative refinement. The most outstanding result is that scaling has a significant impact on all four column

permutation methods. SuperLU's equilibration reduces fill-in, thus reducing the number of floating point

operations, the runtime, and the amount of memory used. The effects of iterative refinement are much less

dramatic, and are in line with improvements seen in BGAUSS and BLU. The multiple minimum degree

algorithm operating on the structure of A ~ + A is particularly effective at solving this system of equations

when scaling is used. Without scaling, this method was very ineffective. The amount of memory and the

number of floating point operations far exceeded the other tests. Six memory expansions were required and

the runtime was abysmal.

It is also interesting to look at the condition number estimates. Without scaling, K = 2 . 5 5 . 1 0 ~ ' . If the

condition number is truly this large, then there may be problems with the 3-D ice sheet model. From

Chapter 2 we have

and

With a machine precision of 10-16 and these bounds, the norm of the uncertainty of x potentially exceeds

the norm of x. Under these conditions, it appears that the model may be unable to produce meaningful

results. The penalty method of solving the FEM equations is introducing entries of the order lo3' in A.

Other terms in A tend to have magnitudes of 10' to 10". Two possibilities could be investigated. The

FEM problem can be solved without introducing the lo3' entries. It would be interesting to know the

condition number of the matrix without them. Assuming this condition number is small enough to ensure

meaningful results from solving the system of equations, it would then be interesting to compare those

results with the results produced by SuperLU and the penalty method.

With scaling, K = 2.63. lo5 . While the matrix is better scaled for computing x, the ill-conditioning of the

actual problem still exists. SuperLU also computes BERR and FERR. With scaling and iterative

refinement, these values across the four column permutation methods are

3.58 - 10-16 < BERR < 4.83.1 0-l6 (8.6)

and

FERR = 2.02. lo-'' . (8.7)

BERR 1s in line with the BERR numbers computed by ccberr . f and reported in the above table. FERR is

in line with the product of K and the machine precision. SuperLU only reports BERR or FERR when

iterative refinement is performed. It appears that MMD on A~ + A with scaling and iterative refinement is

the best choice for solving the 3-D model without pressure, but the matrix condition number remains an

open Issue.

Initial tests of SuperLU with the m3dp. 1 5 x 1 5 ~ 5 matrix with pressure produced the following results.

Table 8. 7. Initial SuperLU tests with m 3 d p . 2 0 ~ 2 0 ~ 5 .

MMD on AT + A , which was best for the problem without pressure, now produces the worst results in

terms of FLOPS, time and memory for this matrix. SuperLU reports multiple memory expansions

occurred. MMD O ~ A ~ A produces the best results in terms of FLOPS, time, and memory, but the error

measures are high. This leaves COLAMD as the seemingly best choice. The effect of scaling is not as

pronounced for this matrix, but the effect of iterative refinement is more pronounced.

The condition number of the matrix without scaling is K = 4 . 3 3 4 0 ~ ~ . With scaling, K = 5.12. lo3 . The

same concern we had for the large condition number in the problem without pressure also applies to the

problem with pressure.

8.6. Initial Tests of UMFPACK

Initial tests of UMFPACK with the m 3 d . 2 0 ~ 2 0 ~ 5 matrix produced the following results.

I COLAMD I Yes 1 Yes 3.80E-16 1 4.81E-03 1 5.38E+04 1 1.13E+09 1 1.05 29.6 1
Table 8. 8. Initial UMFPACK tests with m 3 d . 2 0 ~ 2 0 ~ 5 .

UMFPACK chooses AMD on + A as the column permutation strategy when left to pick the strategy on

its own. While both permutation strategies deliver similar results with scaling and iterative refinement,

error measures for COLAMD with scaling and no iterative refinement are anomalous. Scaling does a good

job reducing fill-in with COLAMD resulting in reduced FLOPS, time, and memory, but does nothing for

the AMD on + A strategy.

The condition number estimates computed by the two strategies are comparable. They are also pretty much

in line with SuperLU's estimates.

Initial tests of SuperLU with the m3dp. 15x1 5x5 matrix produced the following results.

I COLAMD I Yes 1 Yes 1 2.03E-11 1 5.22E+01 1 2.54E+03 1 6.22E+08 1 0.70 (19.6 1
Table 8. 9. Initial UMFPACK tests with m 3 d p . 1 5 ~ 1 5 ~ 5 .

UMFPACK chooses COLAMD as the column permutation strategy when left to pick the strategy on its

own. Unfortunately, the COLAMD strategy again has anomalous error measures with scaling. Otherwise,

COLAMD has good performance specs. Runtime for AMD on + A is particularly long and not it

proportion to the number of FLOPS performed or the memory used. The answer appears to be that

UMFPACK's i n ~ t ~ a l memory allocation is too low, causing an excessive number of memory reallocations.

More work should be done to determine why the COLAMD error measures are anomalous. This may be a

software bug and not an inherent limitation in the algorithm. Comparing the solution vectors produced by

COLAMD and other methods would be a good place to start. For COLAMD with scaling and iterative

refinement, UMFPACK reports BERR = 5.3 1. 10-16 instead of BERR = 2.03. lo-" reported by

ccberr. f and shown in the table above. Usually these measures are well within a factor of ten of each

other.

8.7. Detailed Test Results

The software for solving our systems of equations should be fast, should have modest memory

requirements, and should produce stable calculations with small error measures. The number of non-zero

entries in the L and U factors is a key parameter in evaluating speed and memory requirements of an

algorithm. The number of floating point operations and the amount of memory required tend to increase

with increasing numbers of non-zero entries, and runtime tends to increase with increasing numbers of

floating point operations. In the next two sections, we will look at numbers of non-zero entries in L and U,

total memory requirements, number of floating point operations, and runtime. These numbers will be

compared for SuperLU, UMFPACK, BGAUSS and BLU. The first section evaluates these methods in

terms of the ice sheet model without pressure calculations (banded matrices). The second section evaluates

them in terms of the ice sheet model with pressure calculations (unbanded matrices). The speedup

produced by using BLAS is also investigated by looking at the number of floating point operations

performed per second. The test results were produced using the test matrices discussed earlier. SuperLU

and UMFPACK were run with the scaling and iterative refinement options enabled.

Issues regarding stability and error measures have been discussed in the sections on initial testing are not

discussed further.

8.7.1. Detailed Results: Systems without Pressure

Figure 8.1 shows the number of non-zero entries in L+U as a function of problem size. Banded LU

factorization and SuperLU with natural column ordering produce equal numbers of non-zero entries and

produce more non-zeros than any other method. UMFPACK produces the second highest number of non-

zero's. UMFPACK was allowed to automatically select its strategy for these tests. It chose to use its

symmetric AMD on AT + A algorithm. SuperLU's COLAMD (labeld SLU-AMD) and MMD on A T A

methods produce numbers of non-zero entries similar to UMFPACK for problem sizes of 13,500 rows and

fewer, but they produce nearly 20% fewer non-zero entries for 24,000 rows. SuperLU's MMD on + A

algorithm produces the fewest number of non-zeros by far, beating BLU and SuperLU natural ordering by

nearly 50%.

I - Non-zeros in L+U - Systems wlo Pressure

-El- BLU
X- SLU-Natural
A SLU-AMD

-.X- - SLU-ATA
+ SLU-AT+A
-+ UMFPACK

0 5,000 10,000 15,000 20,000 25,000 30,000

Number of Rows

Figure 8. 1 . Non-zeros in L+U in systems without pressure.

Figure 8.2 shows the total memory usage. As expected, UMFPACK and SuperLU memory usage is

roughly proportional to the number of non-zeros in L+U. BLU and BGAUSS are different. The memory

used by these methods is simply the bandwidth times the number of rows times eight bytes per double

precision real number. Approximately 97% of the in-band zero entries become non-zeros in the BLU

factorization. UMFPACK and SuperLU require working memory in addition to the memory required to

store the L and U factors. Despite this, SuperLU's COLAMD, MMD on A ~ A , and MMD on A T + A

column ordering methods result in lower memory usage than BGAUSS and BLU.

Memory Usage - Systems wlo Pressure

350.0 -

1 300.0 I . -- ~- - -.

+ BGAUSS I BLU

+ SLU-Natural

+ SLU-AMD

X SLU-ATA

+ SLU-AT+A

-+ UMFPACK

0 5,000 10,000 15,000 20,000 25,000 30,000

Number of Rows

Figure 8. 2. Memory usage in systems without pressure.

Figure 8.3 shows the number of floating point operations performed. BGAUSS, BLU, and SuperLU with

natural column ordering have approximately the same number of floating point operations for each problem

size. UMFPACK is similar for problem sizes less than 24,000 rows, but is significantly higher for 24,000

rows. Although SuperLU COLAMD and SuperLU AMD on A ~ A have similar numbers of non-zeros in

their L and U factors, MMD on A ~ A performs significantly more floating point operations. SuperLU's

MMD on AT + A consistently performs fewer floating point operation than all other methods.

Floating Point Operations - Systems wlo Pressure

0 5,000 10,000 15,000 20,000 25,000 30,000

Number of Rows

-Ef- BGAUSS / BLU

---x~ - SLU-Natural

+ SLU-AMD

+ SLU-ATA

--+- S LU-AT+A

+ UMFPACK

Figure 8. 3. Floating point operations in systems without pressure.

Figures 8.4 and 8.5 show CPU time as a function of problem size. Figure 8.4 includes BGAUSS, BLU and

UMFPACK without BLAS data. Figure 8.5 leaves out these data so that the remaining methods can be

seen in better detail. The most striking feature of Figure 8.4 is the reduction in CPU time for UMFPACK

when BLAS are used. For 24,000 rows UMFPACK runs in approximately 118 the time when BLAS are

used. Measurements for SuperLU without BLAS were not made. However, the speedup can be estimated

by comparing the runtime of BLU to the runtime of SuperLU with natural column ordering. Each of these

methods perform an equal number of floating point operations. BLU runs wjthout BLAS and SuperLU

runs with BLAS. The speedup from BLU to SuperLU natural ordering is approximately 2.5 for 24,000

rows. This is reasonable in light of UMFPACK's speedup and the fact that UMFPACK relies heavily on

level 3 BLAS functions whereas SuperLU relies on level 2 BLAS functions. A high performance BLAS is

important for optimum performance of UMFPACK and SuperLU.

CPU Time - Systems wlo Pressure
All Solvers

100.00 I -

0 , -
-I+ BGAUSS I BLU

/

Number of Rows I

80 00 -

Figure 8.4. CPU time for all solvers in systems without pressure.

- -/ - . ->e SLU-Natural /
fn
0
0

+ SLU-AMD

3 60.00 - -- -x SLU-ATA
E .- + SLU-AT+A

4 0 0 0 - - 4- UMFPACK

0 - UMFwloBLAS

1 I I I I

0 5,000 10,000 15,000 20,000 25,000 30,000

CPU Time - Systems wlo Pressure
Solvers Using BLAS

-X- SLU-Natural

A SLU-AMD

-a- SLU-ATA
+- SLU-AT+A

+ UMFPACK

0 5,000 10,000 15,000 20,000 25,000 30,000

Number of Rows

Figure 8. 5. CPU time for solvers with BLAS in systems without pressure.

In Figure 8.5 we see that SuperLU's performance is not just a function of the number of floating point

operations. SuperLU COLAMD and SuperLU MMD on A ~ A have similar runtimes, but significantly

different numbers of floating point operations. Neither method required memory expansions, which can be

a source of additional runtime.

Figure 8.6 shows millions of floating point operations per second. Unsurprisingly, UMFPACK is at the top

of the chart. In fact, its mega-FLOPS performance for 24,000 rows seems exceedingly high for an Intel

2.66 GHz Pentium 4 processor, but all the numbers seem to indicate that it is correct. Without a high

performance BLAS, UMFPACK megaflop rates are comparable to BGAUSS and BLU. SuperLU

performance tends to be restricted to a relatively narrow band. SuperLU COLAMD seems to have greater

overhead than SuperLU with MMD on A ~ A and SuperLU with MMD on AT + A .

I MegaFLOPs I Second - Systems wlo Pressure
I I

+BGAUSS/BLU

x - SLU-Natural

-& SLU-AMD

- -x SLU-ATA

t- SLU-AT+A

++ UMFPACK

o UMFPACKwIoBLAS

0.00 1

0 5,000 10,000 15,000 20,000 25,000 30,000

Number of Rows

Figure 8.6. MegaFLOPs per second in systems without pressure.

8.7.2. Detailed Results: Systems with Pressure

Figure 8.7 shows the number of non-zero entries in L+U versus problem size and method for problems

with pressure. BGAUSS and BLU are not included because the ice sheet model with pressure does not

produce banded matrices. Runtimes for SuperLU with natural column order and SuperLU with MMD on

AT + A produced exceedingly long runtimes, so results are only presented for small problem sizes.

UMFPACK was again allowed to choose its own column ordering strategy and it chose the unsymmetric

COLAMD strategy for this set of problems. UMPACK produces fewer non-zero entries than any of the

SuperLU column ordering methods for this problem. SuperLU's MMD on A=A and COLAMD produce

similar numbers of non-zero entries, just as they did in the problem without pressure. SuperLU's MMD on

+ A , however, is now producing the greatest number of non-zero entries. It produced the least number

of non-zeros for problems without pressure.

Non-Zeros in L+U - Systems with Pressure

-A- SLU-AMD

+ SLU-ATA

t S LU-AT+A

o UMFPACK 1

0 5,000 10,000 15,000 20,000

Number of Rows

Figure 8. 7. Non-zeros in L+U in system with pressure.

Figure 8.8 shows memory usage as a function of problem size. These results are pretty much in line with

the number of non-zeros in L+U. One exception is the difference in memory required by SuperLU with

MMD on ATA and SuperLU with COLAMD. The COLAMD memory requirement is much less than the

MMD on ATA memory requirement, even though both methods produce similar numbers of non-zero

entries in L+U.

Memory Usage -Systems with Pressure

250.0 -

. ..

++ SLU-Natural
- - -X-.

-A- SLU-AMD

-X SLU-ATA

E 100.0 - + S LU-AT+A
I -

+ UMFPACK

50.0 . . .- .

0 5,000 10,000 1 5,000 20,000

Number of Rows

Figure 8. 8. Memory usage in systems with pressure.

Figure 8.9 shows the number of floating point operations as a function of problem size. UMFPACK's

relative performance gets better for the largest problem. The number of floating point operations is more

directly related to memory usage than it is to number of non-zero entries in L+U, but all three are similar.

Floating Point Operations - Systems with Pressure

+ UMFPACK

5,000 10,000 15,000 20,000

Number of Rows

Figure 8. 9. Floating point operations in systems with pressure.

Figure 8.10 shows CPU time as a function of problem size. Again, there are no big surprises here.

UMFPACK is fastest.

CPU Time - Systems w1Pressure
Solvers Using BLAS

-+- SLU-Natural
+ SLU-AMD

X SLU-ATA

+ SLU-AT+A

0- UMFPACK

5,000 10,000 15,000 20,000

Number of Rows

Figure 8. 10. CPU time in systems with pressure.

Finally, Figure 8.1 1 shows millions of floating point operations per second as a fbnction of problem size.

UMFPACK performance decreases for the largest problem size. This is an unexpected result. The

decrease was not due to memory expansion. The initial memory allocation was sufficient for solving the

problem. UMFPACK's solution for this problem has BERR = 2.04 1 0-lo while smaller problems had

BERR - 5 . lo-'' . I t appears that something else is going on here. SuperLU with MMD on + A also

shows decreasjng performance for the largest problem solved. In this case, however, there were nine

memory expansions that occurred. Zero memory expansions tend to be the norm, and the problem size

before the largest one had 3 memory expansions, so the need for memory expansions is assumed to be the

cause of this performance decrease.

T M e g a F L O P s I Second - Systems with Pressure 7

+ SLU-Natural

+ SLU-AMD
-. - m- SLU-ATA

----- x
% 600 00

-4- SLU-AT+A
*--

cn I x r--

+ UMFPACK
-a

5 400.00 -, x/' -a------*-------- -
/

-
A

0.00 -1- - - I 1

0 5,000 10,000 15,000 20,000

Number of Rows

Figure 8. 1 1 . MegaFLOPS in systems with pressure.

9. Conclusions and Future Work

SuperLU and UMFPACK are reasonable software packages for solving the systems of linear equations

generated by the 3-D version of the University of Maine Ice Sheet Model. These packages, along with the

interfacing routines and data structures developed in this work, meet the goals of running quickly and using

m a n memory sparingly. In addition, they are capable of providing further insight into a system of

equations by producing error measures and an estimate of the matrix condition number. SuperLU also

offers the opportunity for the ice sheet model to be easily parallelized should the need arise.

An unsettling finding was the discovery that some column permutation methods produced solutions with

unexpectedly high error measures. The reason is unknown. The matrices produced by the ice sheet model

have large condition numbers that are on the order of lo2 ' to 10". Such large condition numbers cast

concern on the meaning, or lack of meaning, of the computed solutions. They may also be the reason some

column permutation methods are failing. The large condition numbers may be the result of using the

penalty method to specify boundary conditions with the finite element method. This method introduces

entries in the matrix that are on the order of lo3' while other entries tend to be on the order of lo9 to 10" .

The boundary conditions can be specified without introducing these large entries. Future work should

investigate if the condition numbers can be reduced, and if reducing them takes care of the high error

measures observed with some column permutation methods. If the condition number cannot be reduced,

then we need to determine if solutions are indeed meaningful. While these findings are unsettling, it is at

least reassuring that these software packages have brought them to light.

If we turn from these concerns and focus on the methods that produce low error measures, then we can

draw the following conclusions. For problems without pressure, SuperLU's MMD on + A column

ordering method produces superb results. For the largest problem size, i t runs seven times faster than

banded Gaussian elimination and banded LU factorization. In addition to running faster, it also uses 40%

less memory than banded Gaussian elimination and banded LU factorization.

For problems with pressure, UMFPACK's COLAMD column ordering strategy produces the fastest

runtimes and uses the least amount of memory. Unfortunately, UMFPACK's error measures are very high.

This leaves SuperLU with its COLAMD column ordering strategy as the best choice. Unfortunately,

SuperLU's iuntime is 4.4 times longer than UMFPACK's, and it uses 49% more memory. For future work,

UMFPACK's AMD on + A column order strategy should be tested on matrices with pressure to see if

it has better performance than SuperLU while maintaining low error measures.

Overall, SuperLU is an outstanding package. It offers a choice of four column ordering strategies. Its

matrix equilibration algorithm normalizes both rows and columns of the matrix, which had a significant

impact on ice sheet problems without pressure. In addition to providing an estimate of the matrix condition

number and componentwise backward error, SuperLU also provides an estimate of forward error and a

measure of pivot growth. On top of this, versions of SuperLU are available for shared memory and

distributed memory parallel computers as well as single processor computers.

Despite its positives, SuperLU did not give a good initial impression. The user documentation is weak. At

times the comments in the source code must be consulted to understand how to use the software. The

simple driver routine lures the new user for an initial implementation, while the expert driver routine is

really needed to use SuperLU's features. Matrix equilibration and iterative refinement are not enabled by

default, but these features are necessary to get the best results. There are no guides for selecting a column

ordering strategy. The user must experiment to determine what works best.

What SuperLU lacks in its initial impression, UMFPACK has. The UMFPACK user documentation is very

good. Its default options include matrix scaling, iterative refinement, and automatic selection of a column

ordering strategy. UMFPACK worked well the first time it was run. However, additional experience with

the package reveals potential weaknesses for some problems. Its matrix scaling algorithm normalizes rows

only and was not as effective as SuperLU. For problems without pressure, it used more memory than

banded Gaussian elimination instead of less. It also had relatively more problems with high error measures

than SuperLU. UMFPACK's megaflops per second performance was outstanding. However, the

performance measures that matter most from a user's point of view are runtime and memory usage.

A high performance BLAS is necessary to get optimum performance from both SuperLU and UMFPACK.

This work stopped short of doing a detailed study of column ordering strategies. While a detailed

knowledge of these strategies is not necessary to use the software packages, a better understanding of them

might lead one to make better choices with less t~ ia l and error. This topic can also be added to the list of

future work.

While potential problems have been uncovered and additional work remains to be done, this work has

accomplished its initial goal of efficiently solving the linear systems of equations generated by the

University of Maine 3-D ice sheet model. Software packages have been identified that are far more robust

than anything that would have been written from scratch. Data structures and methods have been written

that efficiently interface the ice sheet model with the software packages. Finally, detailed testing of the

software packages has been performed using actual systems of equations generated by the ice sheet model.

BIBLl OGRAPHY

[I] .. . (1995). Ntimerical Linear Algebra. Computational Science Education Project. Sponsored by
U.S. Department of Energy. l~ttp://www.phy.ornl,~ov!csep/

[2] . . . (1997). Basic Linear Algebra Subprograms: A Quick Reference Guide. University of Tennessee,
Oak Ridge National Laboratory, and Numerical Algorithms Group Ltd. Ava~lable at
http:Nnetlib.org/blas/.

[3] Amestoy, P. R., Davis, T. A., and Duff, I. S. (1996). An Approximate Minimum Degree Ordering
Algorithm. SIAM J . Matrix Anal. Applic., 17(4), 886-905.

[4] Amestoy, P. R., Davis, T. A,, and Duff, I. S. (2004). Algorithm 837: AMD, An Approximate
Minimum Degree Ordering Algorifhm. ACM Trans. Math Software, 30(3), 381-388.

[5] Davis, T. A. (2005). UMFPACK Version 4.3.1 User Guide. Tech Report TR-04-003, Dept. of
Computer and Information Science and Engineering, Univ. of Florida.
http://~~~.ci~e.ufl.edu/researchlsparse/umfpack/.

[6] Davis, T. A., and Duff, I. S. (1994). An Unsymefric-Patfern Mt~ltijrontal Methodfor Sparse LU
Factorization. Tech report TR-94-038, Dept. of Computer and Information Science and
Engineering, Univ. of Florida.

[7] Davis, T. A., Gilbert, J. R., Larimore, S. I., and Ng, E. (2000). A Column Approximate Minimum
Degree Ordering Algorithm. Tech Report TR-00-005, Dept. of Computer and Information Science
and Engineering, Univ. of Florida. Submitted to ACM Trans. Math. Software.

[8] Dernmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, Xiaoye S., and Liu, J. W. H. (1999). A
Supernodal Approach to Sparse Partial Pivoting. Siam J . Matrix Analysis and Applications, 20,
720-755.

[9] Dernmel, J. W., Gilbert, J . R., and Li, Xiaoye S. (1999, Last update 2003). SuperLU Users' Guide.
Tech report LBNL-44289, Computational Research Division, Lawrence Berkley National
Laboratory. &~//crd.lbl.gov/-xiaoye/SuperLU/.

[lo] Duff, I. S., Erisman, A. M., and Reid, J . K. (1986). Direct Melhods for Sparse Matrices. Oxford
University Press.

[I 11 Golub, G. H., and Van Loan, C. F. (1996). Matrix Computations, Third Edition. The John Hopkins
University Press.

[I21 Lay, D. C. (2003). Lineczr Algebra and Its Applrcations, Third Edition. Addison Wesley

[13] Li, Xiaoye S. (2005). An overview of SuperLU: Algorithms, Implementation, and User Interface.
ACM Transactions on Mathematical Software, Vol. 31, No. 3, 302-325.

[I41 Liu, J . W. (1985). Mod~ficatiorz ofthe Minimum Degree Algorithm by Mulliple Elimination. ACM
Trans. Math. Software, 1 I, 14 1 - 153.

APPENDICIES

Appendix 1. Modified Compressed Column Routines

c -
C ccadd. f
L

C 03/13/2005 Rodney Jacobs
C
C Add a value to an element of a matrix stored in compressed column
C format.
C
C Input:
C I ROW row of element to return
C I COL column of element to return
C VAL value of element to store
C ICCPTR compressed column pointers
C I CCROW compressed column row indices
C CCVAL compressed column matrix element values
C NCOL number of columns in matrix
C
C Return:
C New value of the array element
C
C Side effects:
C ICCPTR, ICCROW, CCVAL, and NZ are updated
C
C Rodney Jacobs, University of Maine, 2005
c -

FUNCTION CCADD (IROW, ICOL, VAL, ICCPTR, ICCROW, CCVAL, NCOL)
IMPLICIT REAL*8 (A-H,O-2)
include "ccparam.hn
DIMENSION ICCPTR (MAXCOL, 2) , ICCROW (MAXNZ) , CCVAL (MAXNZ)

c - - -

JO=ICCPTR(ICOL, 1)
Jl=ICCPTR(ICOL, 2)
J2=J1

c - - -
C - - - Binary search for IROW at ICOL
c - - -

DO WHILE (JO.LE.Jl)
JMID= (JO+Jl) /2
IR=ICCROW (JMID)
IF (1R.EQ.IROW) THEN
CCVAL (JMID) =CCVAL (JMID) +VAL
CCADD=CCVAL (JMID)
RETURN

ENDI F
IF (1R.LT.IROW) THEN
JO=JMID+l

ELSE
Jl=JMID- 1

ENDI F
ENDDO

c - - -
C - - - New matrix element must be added
c - - -

C - - - Expand the bucket for cICOL> by 20% if it is full
c - - -

IF (J2+1.GE.ICCPTR(ICOL+l,l)) THEN
JDELTA=O.2* (ICCPTR(ICOL,2) -ICCPTR(ICOL, 1) +I)
IF (JDELTA.LT.1) JDELTA=l

IF (ICCPTR(NCOL+~,~)+JDELTA.GT.MAXNZ) THEN
PRINT *,

1 'CCADD: Compressed column structure size exceeds MAXNZ1
STOP

ENDI F
I =NCOL+ 1
DO WHILE (1.GT.ICOL)

KO=ICCPTR(I, 1)
Kl=ICCPTR(I, 2)
K2=K1+ JDELTA
DO WHILE (K1.GE.KO)

ICCROW (K2) =ICCROW (Kl)
CCVAL (K2) =CCVAL (K1)
K2=K2 - 1
Kl=Kl-1

ENDDO
ICCPTR (I, 1) =ICCPTR (I, 1) +JDELTA
ICCPTR(I,2) =ICCPTR(I, 2) +JDELTA
I=I-1

ENDDO
ENDI F

c - - -
C - - - Add the new element
c - - -

DO WHILE (J2.GE.JO)
ICCROW(J2cl) =ICCROW (J2)
CCVAL(J2+1)=CCVAL(J2)
J2=J2-1

ENDDO
ICCROW (JO) =IROW
CCVAL (JO) =VAL
ICCPTR(ICOL, 2) =ICCPTR(ICOL,2) +1
CCADD=VAL
END

/ * ccbase0.c
* Convert compressed column format from base 1 for Fortran to base 0
* for C.
*
* ~nput :

* nz : number of matrix elements stored
* nrow : number of rows
* ccptr[]: compressed column pointers
* ccrow [1 : row indices
* Output :
* ccptr[l : compressed column pointers
* ccrow I:] : row indices
*
* Rodney Jacobs, University of Maine, 2005

* /

void ccbaseO (int nz, int nrow, int ccptr[], int ccrow[]) {

int i;

for (i=O; ic=nrow; i++) --ccptr [i] ;
for (i=O; icnz; i++) --ccrow[il;

/ * ccbase1.c
* Convert compressed column format from base 0 for C to base 1
* for Fortran.
*
* Input :
* nz : number of matrix elements stored
* nrow : number of rows
* ccptr[]: compressed column pointers
* ccrow [I : row indices
* Output:
* ccptr[l : compressed column pointers
* ccrow [I : row indices
*
* Rodney Jacobs, University of Maine, 2005
* /

void ccbasel (int nz, int nrow, int ccptr [I , int ccrow [1) {

int i;

for (i=O; i<=nrow; i++) ++ccptr[il ;
for (i=O; i<nz; i++) ++ccrow[i] ;

1

C ccget.f
C
C 03/13/2005 Rodney Jacobs
C
C Return the value of a matrix element from a compressed column
C representation of the matrix.
C
C Input:
C I ROW row of element to return
C I COL column of element to return
C ICCPTR compressed column pointers
C I CCROW compressed column row indices
C CCVAL compressed column matrix element values
C
C Return:
C Matrix element value at <IROW> and <ICOL>. Zero is returned if
C no matrix element value is stored for cIROW> and <ICOLs.
C
C Rodney Jacobs, University of Maine, 2005
C -

FUNCTION CCGET (IROW, ICOL, ICCPTR, ICCROW, CCVAL)
IMPLICIT REAL*8 (A-H,O-2)
include "ccparam.hN
DIMENSION ICCPTR(MAXCOL,~),ICCROW(MAXNZ),CCVAL(MAXNZ)

c - - -

JO=ICCPTR(ICOL, 1)
Jl=ICCPTR(ICOL,2)

c - - -

C - - - Binary search for IROW at ICOL
c - - -

DO WHILE (JO.LE.Jl)
JMID= (JO+Jl) 12
IR=ICCROW (JMID)
IF (1R.EQ. IROW) THEN
CCGET=CCVAL (JMID)
RETURN

ENDI F
IF (1R.LT.IROW) THEN
JO= JMID+l

ELSE
Jl=JMID-1

ENDI F
ENDDO

c - - -

C - - - Element not found
c - - -

CCGET=O.DO
END

ccinit . f

03/13/2005 Rodney Jacobs

Initialize arrays for compressed column matrix storage

Input :
I CCPTR compressed column pointers
NCOL number of columns in matrix
NBKTSZ numer of elements to allocate per row

Side effects:
ICCPTR(ICOL,l) is the starting index of ICCROW for elements in
column cICOL> of the matrix. ICCPTR(ICOL,2) is the ending index
of ICCROW for elements in column <ICOL>. Initially, all columns
are empty, so ICCPTR(ICOL,2)=1CCPTR(ICOL,l)-1. Initial values

C of ICCPTR are set so that the estimated number of entries per
C column can be added to the data structure without having to
C move data in the structure.
L

C Rodney Jacobs, University of Maine, 2005

SUBROUTINE CCINIT (ICCPTR, NCOL, NBKTSZ)
IMPLICIT REAL*8 (A-H,O-2)
include "ccparam.hU
DIMENSION ICCPTR(MAXCOL,2)

C
IF (NCOL+l.GT.MAXCOL) THEN
PRINT *,'CCINT: MAXCOL size exceeded~,ncol,maxco1
STOP

ENDI F
IF (NBKTSZ*NCOL.GT.MAXNZ) THEN
PRINT *,'CCINT: MAXNZ size exceeded',nbktsz*ncol,maxnz
STOP

ENDI F
DO I=l,NCOL+l
ICCPTR(1,l) =1+ (I-l)*NBKTSZ
ICCPTR(I,2)=ICCPTR(I,1) -1

ENDDO
END

C ccparam.h
C
C Parameters for compressed column matrix storage routines
C
C Rodney Jacobs, University of Maine, 2005

c - - -

C - - - MAXCOL is the maximum number of columns in the matrix + 1.
C - - - MAXNZ is the maximum number of explicitly specified matrix element
C - - - values. Usually, these are non-zero values.
c - - -

PARAMETER(MAXCOL=40636,MAXNZ=4100000)

c -
C ccput .f
C
C 03/13/2005 Rodney Jacobs
C
C Store the value of a matrix element in a compressed column
C representation of the matrix.
C
C Input:
C I ROW row of element to return
C ICOL column of element to return
C VAL value of element to store
C ICCPTR compressed column pointers
C I CCROW compressed column row indices
C CCVAL compressed column matrix element values
C NCOL number of columns in matrix
L

C Side effects:
C ICCPTR, ICCROW, CCVAL, and NZ are updated
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE CCPUT (IROW, ICOL, VAL, ICCPTR, ICCROW, CCVAL, NCOL)
IMPLICIT REAL*8 (A-H,O-Z)
include "ccparam.hU
DIMENSION ICCPTR(MAXCOL,2),ICCROW(MAXNZ),CCVAL(MAXNZ)

c - - -

JO=ICCPTR(ICOL, 1)
Jl=ICCPTR(ICOL,Z)
J2=J1

c - - -

C - - - Binary search for IROW at ICOL
c - - -

DO WHILE (JO.LE.Jl)
JMID= (JO+JI) / 2
IR=ICCROW (JMID)
IF (1R.EQ.IROW) THEN
CCVAL (JMID) =VAL
RETURN

ENDIF
IF (1R.LT. IROW) THEN
JO=JMID+l

ELSE
Jl=JMID-1

ENDIF
ENDDO

c - - -
C - - - New matrix element must be added
c - - -
C - - - Expand the bucket for <ICOL> by 20% if it is full
c - - -

IF (J2+1.GE.ICCPTR(ICOL+l,l)) THEN
JDELTA=O .2* (ICCPTR(ICOL, 2) -ICCPTR(ICOL, 1) i.1)
IF (JDELTA . LT .1) JDELTA= 1
IF (ICCPTR(NCOL+1,2)+JDELTA.GT.MAXNZ) THEN
PRINT * ,

1 'CCPUT: Compressed column structure size exceeds MAXNZ'
STOP

END1 F
I =NCOL+ 1
DO WHILE (1.GT.ICOL)

KO=ICCPTR (I, 1)
Kl=ICCPTR(I,2)
K2=K1+ JDELTA
DO WHILE (K1.GE.KO)
ICCROW (K2) =ICCROW (K1)
CCVAL (K2) =CCVAL (K1)
K2=K2 - 1
Kl=Kl-1

ENDDO
ICCPTR(I,~)=ICCPTR(I,~)+JDELTA
ICCPTR(I,2) =ICCPTR(I, 2) +JDELTA
I=I-1

ENDDO
END1 F

c - - -

C - - - Add the new element
c - - -

DO WHILE (J2.GE.JO)
ICCROW (J2+1) =ICCROW (J2)
CCVAL(J~+~) =CCVAL(J2)
J2=J2-1

ENDDO
ICCROW (JO) =IROW
CCVAL (JO) =VAL
ICCPTR(ICOL,2) =ICCPTR(ICOL,2) +1
END

C ccsq2.f
C
C 03/13/2005 Rodney Jacobs
C
C Remove free space from buckets of the compressed column data
C structure. This produces a conventional compressed column data
C structure.
C
C Input:
C I CCPTR compressed column pointers
C I CCROW compressed column row indices
C CCVAL compressed column values
C NCOL number of columns in matrix
C NZ number of matrix elements stored
C
C Side effects:
C N Z number of matrix elements stored is updated
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE CCSQZ (ICCPTR, ICCROW, CCVAL, NCOL, NZ)
IMPLICIT REAL"8 (A-H, 0 - Z)
include "ccparam.hM
DIMENSION ICCPTR(MAXCOL,2), ICCROW(MAXNZ) ,CCVAL(MAXNZ)

c - - -

DO I=l,NCOL
Il=I+l
JO=ICCPTR(I, 2) +1
Jl=ICCPTR(Il, 1)
JZ=ICCPTR(11,2)
JDELTA=Jl-JO
IF (JDELTA . GT . 0) THEN
DO WHILE (Jl.LE.J2)

ICCROW (JO) =ICCROW (Jl)
CCVAL (JO) =CCVAL (Jl)
JO=JO+l
Jl=J1+1

ENDDO
ICCPTR(I1,l) =ICCPTR(Il, 1) -JDELTA
ICCPTR(I1,2) =ICCPTR(Il,2) -JDELTA

END1 F
ENDDO
NZ=ICCPTR (NCOL+l, 2)
END

c -
C cctest.f
C
C Test performance of compressed column routines.
C
C Rodney Jacobs, University of Maine, 2005
c -

IMPLICIT REAL*8 (A-H,O-2)
INCLUDE "ccparam. ha'
DIMENSION ICCPTR (MAXCOL, 2) , ICCROW (MAXNZ) , CCVAL (MAXNZ)
DIMENSION IROW (MAXNZ) , ICOL (MAXNZ) ,VAL (MAXNZ)
REAL DTIME,TA(2)
SAVE ICCPTR,ICCROW,CCVAL,IROW,ICOL,VAL

c - - -
C - - - Pre-load data from data file into internal arrays
c - - -

PRINT *,'Test Performance of Compressed Column Routines'
TIME=DTIME (TA)
OPEN (l,FILE='matrixl)
READ (1, *) NE,NROW
NCOL=NROW
DO I=1 ,NE
READ (I,*) IROW(I) ,ICOL(I) ,VAL(I)

ENDDO
CLOSE (1)
TIME=DTIME (TA)
NBKTSZ=WNZ/WCOL

. PRINT *,'MAXCOL : ',MAXCOL
. PRINT * , ' W N Z : ' ,MAXNZ
. PRINT *,'NBKTSZ : ',NBKTSZ

. PRINT * , I # of rows. : ',NROW
. . . . PRINT * , I # of elements : ',NE

PRINT *,'Read time : ',TIME
c - - -
C - - - Perform multiple iterations of the tests
c - - -

DO ITER=1,4
PRINT * , ' '
PRINT *,'Iteration #',ITER

c - - -
C - - - Initialize compressed column data structure with CCINIT
c - - -

TIME=DTIME (TA)
CALL CCINIT (ICCPTR,NCOL,NBKTSZ)
TIME=DTIME (TA)
PRINT *,'CCINIT time : ',TIME

c - - -

C - - - Load compressed column data structure with CCPUT
c - - -

TIME=DTIME (TA)
DO I=l,NE
CALL CCPUT (IRoW(I),ICOL(I),VAL(I),ICCPTR,ICCROW,CCAL,NCOL~

ENDDO
TIME=DTIME (TA)

. PRINT *,'CCPUT time : ',TIME
c - - -
C - - - Squeeze data in compressed column arrays with CCSQZ
c - - -

TIME=DTIME (TA)
CALL CCSQZ (ICCPTR,ICCROW,CCVAL,NCOL,NZ)
TIME=DTIME(TA)

PRINT *,'CCSQZ time : ',TIME
c - - -
C - - - Get data in compressed column data structure with CCGET
c - - -

TIME=DTIME (TA)
DO I=l,NE
A=CCGET (IROW(1) ,ICOL(I) ,ICCPTR,ICCROW,CCVAL)

ENDDO
TIME=DTIME (TA)
PRINT *,'CCGET time : ',TIME

c - - -
c - - - Zero values in compressed column data struture
c - - -

TIME=DTIME (TA)
CALL CCZERO (ICCPTR,NCOL,CCVAL)
TIME=DTIME (TA)
PRINT *,'CCZERO time : ',TIME

c - - -
C - - - A d d to data in compressed column data structure with CCADD
c - - -

TIME=DTIME (TA)
DO I=l,NE
A=CCADD (IROW(I),ICOL(I),VAL(I),ICCPTR,ICCROW,CCVAL,NCOL~

ENDDO
TIME=DTIME (TA)
PRINT * , 'CCADD time : ',TIME

c - - -
C - - - End of tests
c - - -

ENDDO
END

C cczer0.f
C
C 03/13/2005 Rodney Jacobs
C

Set matrix element values of a matrix stored in compressed column
format to zero.

The non-zero elements in the FEM matrix have the same row and column
indices from iteration to iteration. Overhead is reduced by saving
the compressed column pointers and the row indices between
iterations and simply zeroing the matrix element values.

Input :
I CCPTR compressed column pointers
NCOL number of columns in matrix
CCVAL matrix element values in compressed column format

Side effects:
C CCVAL matrix elements are set to zero
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE CCZERO (ICCPTR, NCOL, CCVAL)
IMPLICIT REAL*8 (A-H,O-2)
include "ccparam.hV
DIMENSION ICCPTR(MAXCOL,~),CCVAL(MAXNZ)

C
DO I=l,NCOL
Jl=ICCPTR (I, 1)
J2=ICCPTR (I, 2)
DO WHILE (Jl.LE.J2)
CCVAL(J~)=O.DO
Jl=J1+1

ENDDO
ENDDO
END

matdump. c

Dump coefficients and righthand side of Ax = b from compressed
column data structure to a file.

This routine uses the same calling parameters as umfsolve- and
slusolve-. It can be inserted in place of either of these routines
to capture a disk file of the equations to be solved.

Input :
iccptr l:l
iccrow I:]
cca [I
b [I
x [I
ncol
n z
base

mode

debug

compressed column pointers
compressed column row indices
compressed column matrix elements of A
righthand side of Ax = b
solution vector
number of rows/columns of A
number of elements in iccrow [I and cca [I
index base for iccptr[l, ccarl, b [l , and x[l

0 = base 0 (C , C + +)
operation mode

1 = dump A and b arrays (solve)
2 = do nothing (deallocate memory)

debug messages
0 = do not print messages
1 = print debugging messages

Returns :
0 = OK
1 = Error

Side effects:
Creates output file with following format:

* Output filename is matrix# where " # " is one for the first call
* and increments by one for each subsequent call.
*
* Rodney Jacobs, University of Maine, 2005

* /

int matdump- (int iccptr I] , int iccrow [I , double cca [I , double b [I ,
double x [I , int *ncol, int *nz, int *base, int *mode, int *debug) {

static int fileno = 0 ;
char f ilenm [2 0 1 ;
FILE *fp;
int col, i;

if (*mode==2) return 0 ;

++f ileno;
sprintf(filenm,"matrix%i",fileno);
if (*debug) printf("MATDUMP: dump A and b to file %s\nU,filenm) ;

if ((fp=fopen(filenm, " w "))==NULL) (
printf("MATDUMP: open for output failure on %s\nU,filenm);

return 1;

1

fprintf (fp, "%d %d\nH, *nz, *ncol) ;

for (col=O; colc*ncol; col++) {
for (i=iccptr [col] ; iciccptr [col+ll ; i++) {

fprintf (fp, "%d %d %1g\nn, iccrow [il +l,col+l,cca [il) ;

for (i=O; i<*ncol; i++) {
fprintf (f p , "%d %1g\nn, i+l,b[il) ;

I

if (*base) ccbasel (*nz, *ncol, iccptr, iccrow) ;

fclose(fp) ;
return 0;

Appendix 2. Error Measures Routine

c -
C ccberr. f
C
C Compute backward error of Ax=b where A is in compressed column
C format.
C
C Input:
C I CCPTR
C I CCROW
C CCA
C B Right hand side of h = b
C X Vector x of Ax=b
C NCOL Number of columns or rows
C R Residual vector of Ax-b
C R 2 2-norm of R
C BERR Max over I (R(I)/S(I))
C S(I)=Sum on J (ABS(A(I,J)*X(J)) + ABS(B(1))
C RINF Infinity norm of R
C AINF Infinity norm of A
C XINF Infinity norm of X
C HINF Infinity norm of H
C LDISP .TRUE. => Display results
C
C Side effects:
C R, R2, BERR, RINF, AINF, XINF, and HINF are updated
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE CCBERR (ICCPTR,ICCROW,CCA,B,X,NCOL,R,R2,BERR,RINF,
& AINF,XINF,HINF, LDISP)
IMPLICIT REAL*8 (A-H,O-Z)
include "ccparam.hH
DIMENSION ICCPTR (MAXCOL, 2) , ICCROW (MAXNZ) , CCA (MAXNZ) , B (MAXCOL)
DIMENSION X (MAXCOL)
DIMENSION R(MAXCOL) , S (MAXCOL) ,AINFO (MAXCOL)
LOGICAL LDISP

c - - -
C - - - Compute error measures
c - - -

DO I=l,NCOL
R(I)=-B(1)
S(I)=ABS(B(I))
AINFO (I) =O .DO

ENDDO
c - - -

DO J=l,NCOL
DO K=ICCPTR(J,l) ,ICCPTR(J+l,l)-1

I=ICCROW (K)
TERM=CCA(K) *X (J)
R(I)=R(I)+TERM
S(I)=S(I) +ABS(TERM)
AINFO (I)=AINFO (I) +ABS (CCA(K))

ENDDO
ENDDO

c - - -

BERR=O . DO
RINF=O .DO
XINF=O .DO
AINF=O .DO
BINF=O .DO

DO I=l,NCOL
BERRO=ABS(R(I)/S(I))
IF (BERRO.GT.BERR) BERR=BERRO
IF (ABS (R (I)) . GT. RINF) RINF=ABS (R (I))
IF (ABS(X(1)) .GT.XINF) XINF=ABS(X(I))
IF (ABS(AINFO(1)) .GT.AINF) AINF=ABS(AINFO(I))
IF (ABS(B(I)) .GT.BINF) BINF=ABS(B(I))

ENDDO
HINF=RINF/ (AINF*XINF)

C - - -
C - - - Display error measures
c - - -

IF (.NOT. LDISP) RETURN
PRINT *, ' '
PRINT *,'Error Measures'
PRINT * , ' - I

. PRINT *,'BERR : ',BERR
. PRINT *,'I I R ~ linfinity : ',RINF

PRINT * , I I / H I linfinity (lower bound) : ',HINF
. PRINT *,'(I A(1infinity : ',AINF
. PRINT *,'I(BI [infinity : ',BINF
. PRINT * , I 11x1 linfinity : ',XINF

PRINT * , ' '
RETURN
END

Appendix 3. SuperLU Interface Routine and Demonstration Program

c -
C demo1.f
C
C Load and solve the set of linear equations Ax=b using SuperLU
C
c -

IMPLICIT REALX8(A-H,O-Z)
include "ccparam. h"
DIMENSION ICCPTR(MAXCOL,2) ,ICCROW(MAXNZ) ,CCA(MAXNZ) ,B(MAXCOL),
1 X (MAXCOL) , R (MAXCOL)
DIMENSION CCA2 (MAXNZ) ,B2 (MAXCOL)
REAL DTIME,TA(2)
PRINT * , 'SuperLU Demonstration'
PRINT *,'Rodney Jacobs, University of Maine, 2005'
PRINT * , ' '

c - - -

C - - - Initialize compressed column data structure
c --.

PRINT *,'Initialize compressed column data structures'
OPEN (l,FILE='matrix')
READ (1, *) NE, NCOL
PRINT * , I # Non-zero Elements : ',NE
PRINT * , I # Columns : ',NCOL
NBKTSZ=81
CALL CCINIT (ICCPTR,NCOL,NBKTSZ)
NZ=O

c - - -

C - - - Read matrix element values and store in compressed column format
c - - -

PRINT *,'Read and store matrix A'
DO I=l,NE

READ (I,*) IROW,ICOL,VAL
CALL CCPUT (IROW,ICOL,VAL,ICCPTR,ICCROW,CCA,NCOL)

ENDDO
CALL CCSQZ (ICCPTR,ICCROW,CCA,NCOL,NZ)

c - - -

C - - - Read and store righthand side values
c - - -

PRINT *,'Read and store righthand sidev
DO I=l,NCOL

READ (I,*) IROW,VAL
B (IROW) =VAL

ENDDO
c - - -

C - - - Make copies of A and B for CCBERR
c - - -

DO I=l,NCOL
B2(I)=B(I)

ENDDO
DO I=l,NE

CCA2 (I) =CCA(I)
ENDDO

c - - -

C - - - Solve the set of equations
c - - -

PRINT *,'Solve k = B '
IBASE=l
IMODE= 1

IDEBUG= 1
TIME=DTIME (TA)
CALL SLUXSOLVE (ICCPTR,ICCROW,CCA,B,X,NCOL,NE,IBASE,IMODE,

& IDEBUG)
TIME=DTIME (TA)
PRINT *,'Total CPU time (seconds) . . . :',TIME

c - - -
C - - - Print x()
c - - -

IF (.FALSE.) THEN
DO I=l,NCOL

PRINT * , 'X(',I, ') = ' , X (I)
ENDDO

ENDIF
c - - -

C - - - Compute and print error measures
c - - -

CALL CCBERR (ICCPTR,ICCROW,CCA2,B2,X,NCOL,R,R2,BERR,RINF,AINF,
& XINF,HINF, .TRUE.)

c - - -

C - - - Deallocate Symbolic and Numeric objects and stop
c - - -

PRINT *,'Deallocate memory'
IMODE=2
CALL SLUSOLVE (ICCPTR,ICCROW,CCA,B,X,NCOL,NE,IBASE,IMODE,IDEBUG)
CLOSE (1)
END

/ * s1uxso1ve.c
*
* Solve a set of simultaneous linear equations using SuperLU expert solver
*
* iccptr (input) int*
* compressed column pointers
*
* iccrow (input) int*
* compressed column row indices
*
* cca
*
*
*
* b
*
*
*
* X
*
*
* ncol
*
*
* nz
*
*
* base
*
*
*
*
* mode
*
*
*
*
* debug
*

(input/output) double*
compressed column matrix elements of A

values change when options.Equil=YES

(input/output) double*
righthand side of Ax = b

values change when options.Equil=YES

(output) double*
solution vector

(input) int*
number of rows/columns of A

(input) int*
number of elements in iccrowI1 and ccaIl

(input) int*
index base for iccptr [I , iccrow[] , cca [I , b[] , and xi]
0 = base 0 (C, C++)
1 = base 1 (Fortran)

(input) int*
mode of operation
1 = solve Ax = b
2 = end of program clean up: deallocate memory

(input) int*
debug messages

0 = do not print debugging messages
1 = print debugging messages

* Returns: (output) int
* 0 = OK
* 1 = Error
*
* Rodney Jacobs, University of Maine, 2005

* /

double wallclock (1 ;
void cbaseO(int,int,int*,int*);
void cbasel(int,int,int*,int*);

int sluxsolve- (int iccptr[], int iccrow[l, double cca[], double b[l,
double x[], int *ncol, int *nz, int *base, int *mode, int *debug) {

static superlu-options-t opt ions ;

static int *etree;
static int *perm-r;
static int *perm-c ;
static double * R ;
static double *C;
static int pass = 0;

SuperMatrix
char
void
int
int
SuperLUStat-
double
double
mem-usage-t
double
double
f lops-t

As, Bs, Xs, Ls, Us;
equed [ll ;
*work;
lwork;
info;

t stat;
ferr, berr;
rpg, rcond;
mem-usage;
to, tl;
*utime;
*ops ;

/ * -
* SuperLU initialization
* - - - - - - - - - - - - - - - - _ -
* /

if (pass==O) {
if (*debug) {

puts("SLUXS0LVE: SuperLU Expert Solver initialization");
}

/ * Set SuperLU default options
options.Fact = DOFACT;
options.Equi1 = YES;
options.ColPerm = COLAMD;
options.Trans = NOTRANS;
options.1terRefine = NOREFINE;
options.PrintStat = NO;
options.SymmetricMode = NO;
options.DiagPivotThresh = 1.0;
options.PivotGrowth = NO;
options.ConditionNurnber = NO;

* /
set-default-options(&options) ;

/ / Set specific options
options.Equil=YES;
options.ColPerm=NATURAL;
options.DiagPivotThresh=O.l;
options.IterRefine=DOUBLE;
options.PrintStat=YES;
options.PivotGrowth=YES;
options.ConditionNumber=YES;

/ / Print options chosen
if (*debug) {
tO=wallclock 0 ;
puts("");

if (options.Fact==DOFACT)
puts("Fact=DOFACT : Factor matrix A from scratch");

else if (options.Fact==SamePattern)

puts("Fact=SamePattern : Reuse last column permutation
vector") ;

else if (options.Fact==SamePattern-SameRowPerm)
puts("Fact=SamePattern-SameRowPerm: Reuse last row & column

permutation & scaling") ;
else if (options.Fact==FACTORED)

. p~ts(~Fact=FAcT0RED : L, U, perm-r, and perm-c contain
factored form of An);

else
puts ("Fact=?invalid?") ;

if (options.Equil==NO)
. puts("Equil=~O : Do not scale A");

else if (options.Equil==YES)
. puts("Equil=YES : Scale A's rows and columns to have

unit norm") ;
else

puts ("Equil=?invalid?V ;

if (options.ColPerm==NATURAL)
. puts("ColPerm=NATURAL : Use natural column ordering");

else if (options. ColPerm==MMD-ATA)
. puts("ColPerm=MMD-ATA : Use minimum degree column ordering

on Aq*A");
else if (options.ColPerm==MMD-AT-PLUS-A)

~ U ~ S (~ C O ~ P ~ ~ ~ = M M D - A T - P L U S A : Use minimum degree column
ordering on A1+A") ;

else if (options.ColPerm==COLAMD)
. puts("ColPerm=COLAMD : Use approximate minimum degree

column ordering") ;
else if (options.ColPerm==MY-PERMC)

. . . . p~ts(~ColPerm=MU-PERMC : Use column order specified in
ScalePermstruct->perm-c") ;

else
puts ("ColPerm=?invalid?") ;

if (options.Trans==NOTRANS)
. puts("Trans=NOTRANS : Solve A * X = B (A is not

transposed] 'I) ;
else if (options.Trans==TRANS)

. puts("Trans=TRANS : Solve A**T * X = B (A is
transposed) ") ;

else if (options.Trans==CONJ)
puts("Trans=CONJ : Solve A**H * X = B (A is

transposed and conjugated) ") ;
else

puts ("Trans=?invalid?") ;

if (options.IterRefine==NO)
. puts("IterRefine=NO : Do not perform iterative

refinement ") ;
else if (options.IterRefine==SINGLE)

. . . puts("IterRefine=SINGLE : Perform single precision iterative
refinement") ;

else if (options.IterRefine==DOUBLE)
. . . puts("IterRefine=DOUBLE : Perform double precision iterative

refinement") ;
else if (options.IterRefine==EXTRA)

. . . . puts("IterRefine=EXTRA : Perform iterative refinement in
extra precision") ;

else
puts ("IterRef ine=?invalid?") ;

if (options.PrintStat==NO)
puts("PrintStat=NO : Do not print solver's

statistics1') ;
else if (options.PrintStat==YES)

puts("PrintStat=YES : Print solver's statistics");
else

puts("PrintStat=?invalid?");

if (options.SymmetricMode==NO)
put~(~SymrnetricMode=NO : Assume A is not diagonally

dominant") ;
else if (options. SymmetricMode==YES)

p~ts(~SymmetricMode=YES . . . : Assume A is diagonally dominant or
nearly so") ;

else
puts(~SymmetricMode=?invalid?");

printf("Diag Pivot Threshold: %e\n",options.DiagPivotThresh);

if (options.PivotGrowth==NO)
puts("PivotGrowth=NO : Do not compute reciprocal of pivot

growth") ;
else if (options.PivotGrowth==YES)

puts("PivotGrowth=YES : Compute reciprocal of pivot
growth") ;

else
puts("PivotGrowth=?invalid?");

if (options.ConditionNumber==NO)
puts("ConditionNumber=NO.. : Do not compute reciprocal of

condition number") ;
else if (options.ConditionNurnber==YES)

puts("ConditionNumber=YES.: Compute reciprocal of condition
number") ;

else
puts ("ConditionNumber=?invalid?") ;

/ / Allocate memory
if (! (etree=intMalloc (*ncol)))

ABORT (llSLUXSOLVE : Maloc fails for etree [1 . ")
if (! (perm-r=intMalloc(*ncol)))

ABORT (ltSLUXSOLVE: Malloc fails for perm-r [I . " 1 ;
if (! (perm c=intMalloc (*ncol)))

ABORT ("FLUXSOLVE: Malloc fails for perm-c [I . ") ;

if (! (R= (double *) SUPERLU-MALLOC (*ncol*sizeof(double))))
ABORT(uSLUXSOLVE: SUPERLU-MALLOC fails for R[] . " I ;

if (!(C=(double *) SUPERLU~MALLOC(*ncol*sizeof(double))))
ABORT ("SLUXSOLVE : SUPERLU-MALLOC fails for C [1 . ") ;

/ * - . - - - - - - - . -
* Solve Ax = b
* -
* /

/ / Array base conversion from Fortran to C
if (*base) ccbaseO (*nz,*ncol,iccptr,iccrow);

/ / Debug 1/0 and initialize time stats
if (*debug) {

~u~s(~SLUXSOLVE: Solve Ax=bu);
1

/ / Create matrix structures

/ / ~nitialize SuperLU stats
StatInit (&stat) ;

/ / Solve the system, compute condition number and error bounds
lwork=O;
dgssvx(&options,&As,perm-c,permmr,etree,equed,R,C,&Ls,&Us,

work, lwork, &Bs, &Xs, &rpg , &rcond, &f err, &berr , &mem-usage,
&stat, &info) ;

/ / Print statistics
if (info==O I I info==*ncoltl) {

if (*debug) {
. printf("# columns (rows) : %d\nU,*ncol);

. print£("# non-zero elements : %d\n",*nz);
if (options.PivotGrowth==YES)

. printf("Pivot growth : %e\nU,l./rpg);
if (options.ConditionNumber==YES)

. printf("Condition number : %e\n",l./rcond);
if (options.IterRefine ! = NOREFINE)

printf("1terative Refinement Steps..: %d\nU,
stat .Ref inesteps) ;

. printf("BERR : %e\nq1,berr);

. printf("FERR : %e\n",ferr);
. printf("# nonzeros in L %d\nU,

((SCformat *) Ls.Store) ->nnz) ;
. print£("# nonzeros in U %d\nW,

((SCformat *) Us.Store)->nnz);
. printf("# nonzeros in LtU : %d\nn,

((SCformat *) Ls.Store) ->nnz+
((SCformat *) Us. Store) ->nnz) - *ncol;

. printf (I1L\\U memory (MB). . : %.3f\n1',
mem-usage.for-lu/l.O48576e6);

printf("Tota1 memory needed (MB) : %.3f\nN,
mem-usage.tota1-needed/l.O48576e6);

printf("# memory explansions : %d\nU,
mem-usage.expansions) ;

utime=stat.utime;
ops=stat.ops;
puts("");
puts ("Timings Time FLOPS MFLOPs/secu) ;

(" - - - - - . - - - - - - - - - - - - - - - - - - - - _ _ _ _ _ . _ _ _ _ _ n) ;
timing("Factor",utime[~~~~] ,ops [FACT]) ;
timing ("Solve", ut ime [SOLVE] , ops [SOLVE]) ;
timing ("Etree" , utime [ETREE] , ops [ETREE]) ;
timing ("Equil" ,utime [EQUILI ,ops [EQUILI) ;
timing ("Rcond" ,utime [RCOND] ,ops [RCOND]) ;
timing ("Refine" , utime [REFINE] , ops [REFINE]) ;
puts (" _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ - _ - - - - - - _ _ _ _ - I -) ;
timing ("Total", utime [FACT] +utime [SOLVE] +utime [ETREE] +

utime [EQUIL] +utime [RCOND] +utime [REFINE] ,
ops [FACT] +ops [SOLVE] tops [ETREE] +ops [EQUIL] +
ops [RCOND] +ops [REFINE]) ;

puts("");
tl=wallclock () ;

printf("Wal1 clock time (seconds) . . . : %f\nH,tl-to) ;
1

/ / Unsuccessful
} else if (infoso) {

printf("SLUXS0LVE: Estimated memory: %d bytes\nU,info-*ncol) ;
ABORT (" ") ;

1

/ / Deallocate statistics
StatFree(&stat) ;

/ / Array base conversion from C to Fortran
if (*base) ccbasel (*nz, *ncol, iccptr, iccrow) ;
return 0;

/ * -
* Free dynamic memory
*-_--_-----------------____---

* /

if (*mode==2) {
if (*debug) puts("SLUXS0LVE: free dynamic memory") ;
if (pass==l) {

SUPERLU-FREE (perm-r) ;
SUPERLU-FREE (perm-c) ;
SUPERLU-FREE (R) ;
SUPERLU-FREE (C) ;

I
pass=O ;
return 0 ;

1

* Unrecognized mode value
* - - _ - - - - - - - - - _ _ -
* /

printf ("SLUXSOLVE: invalid: mode = %d\nU,*mode);
return 1;

1
/ * -

* Report timings
* - - - - - - - - - _ - - - - - - - - _ -
* /

int timing(char *s,double t,double f) {
printf("87s %7.2f %10e %12.2f\nU,s,

t,f, (f/t)*le-6) ;

Appendix 4. UMFPACK Interface Routine and Demonstration Program

c -
C demo. f
L'

C Load and solve the set of linear equations Ax=b using UMFPACK
C
c -

IMPLICIT REAL*8 (A-H, 0-Z)
include "ccparam. h"
DIMENSION ICCPTR (MAXCOL, 2) , ICCROW (MAXNZ) , CCA (MAXNZ) , B (MAXCOL) ,
1 X (MAXCOL) , R (MAXCOL)
REAL DTIME , TA (2)
PRINT * , 'UMFPACK Demonstration'
PRINT *,'Rodney Jacobs, University of Maine, 2005'
PRINT * , ' '

c - - -

C - - - Initialize compressed column data structure
c - - -

PRINT *,'Initialize compressed column data structures'
OPEN (1, FILE='matrixr)

READ (1, *) NE,NCOL
PRINT * , I # Non-zero Elements : ',NE
PRINT * , I # Columns : ',NCOL
NBKTSZ=81
CALL CCINIT (ICCPTR,NCOL,NBKTSZ)
NZ=O

c - - -

C - - - Read matrix element values and store in compressed column format
c - - -

PRINT *,'Read and store matrix A'
DO I=l,NE

READ (I,*) IROW,ICOL,VAL
CALL CCPUT (IROW,ICOL,VAL,ICCPTR,ICCROW,CCA,NCOL)

ENDDO
CALL CCSQZ (ICCPTR,ICCROW,CCA,NCOL,NZ)

c - - -

C - - - Read and store righthand side values
c - - -

PRINT *,'Read and store righthand side'
DO I=l,NCOL

READ (I,*) IROW,VAL
B (IROW) =VAL

ENDDO
c - - -

C - - - Solve the set of equations
c - - -

PRINT *,'Solve Ax=B1
I BASE= 1
IMODE=l
IDEBUG=l
TIME=DTIME (TA)
CALL UMFSOLVE (ICCPTR,ICCROW,CCA,B,X,NCOL,NE,IBASE,IMODE,IDEBUG~
TIME=DTIME (TA)
PRINT *,'Total CPU time (seconds) . . . :',TIME

c - - -

C - - - Print x 0
c - - -

IF (.FALSE.) THEN
DO I=l,NCOL

PRINT *,'X(',I,') = ' , X (I)
ENDDO

ENDIF
c - - -

C - - - Compute and print error measures
c - - -

CALL CCBERR (ICCPTR,ICCROW,CCA,B,X,NCOL,R,R2,BERR,RINF,AINF,XINF,
& HINF, .TRUE.)

c - - -

C - - - Deallocate Symbolic and Numeric objects and stop
c - - -

PRINT *,'Deallocate memory'
IMODE=2
CALL UMFSOLVE (ICCPTR,ICCROW,CCA,B,X,NCOL,NE,IBASE,IMODE,IDEBUG)
CLOSE (1)
END

Solves a set of simultaneous linear equations using UMFPACK.

See UMFPACK/Demo/umf4.c for guidance.

Input :
iccptr [I
iccrow [I
cca [I
b [I
x[l
ncol
n z
base index

mode

debug

Returns :
0 = OK
1 = Error

compressed column pointers
compressed column row indices
compressed column matrix elements of A
righthand side of Ax = b
solution vector
number of rows/columns of A
number of elements in iccrow[l and cca[l
base for iccptr[], iccrow[l, cca[l, b[l, and x[l

0 = base 0 (C, C++)
1 = base 1 (Fortran)

operat ion mode
1 = solve Ax = b
2 = end of program clean up: deallocate memory

for Symbolic and Numeric objects
debug messages

0 = do not print debugging messages
1 = print debugging messages

Side effects:
1. x[l set to solution of Ax = b
2. The Symbolic object needs to be created whenever the pattern

of non-zero elements of A changes. The Symbolic object is
created on the first call of UMFPACK-solve and on every call
that follows a call with mode=2. Otherwise, the previously
created Symbolic object is used.

Rodney Jacobs, University of Maine, 2005'

#define FALSE 0

double wallclock () ;

void ccbase0 (int, int, int*, int*) ;
void ccbasel(int,int,int*,int*);

int umf solve- (int iccptr [I , int iccrow [I , double cca [I , double b [I ,
double x[],int *ncol, int *nz, int *base, int *mode, int *debug) {

static double Control[UMFPACK-CONTROL], Info[UMFPACK-INFO];
static void *Symbolic, *Numeric;
static int pass = 0;

int status;
double to, tl;

/ * -
* UMFPACK initialization
* _ - _ _ _ - _ -
* /

if (pass==O) {
if (*debug) {

~ ~ ~ S (~ U M F S O L V E : initialization") ;
printf (" ncol = %d\nU , *ncol) ;
printf (" nz = %d\nw , *nz) ;
printf (I t base = %d\nV , *base) ;
printf (I 1 mode = %d\nl', *mode) ;

1
/ / Set UMFPACK control parameters here
umfpack-di-defaults(Contro1);
Control [UMFPACK-PRL] = 3 ;
Control [UMFPACK-BLOCK-SI ZE] = 3 2 ;
Control[UMFPACK-STRATEGY]=UMFPACK-STRATEGY-AUTO ;

/ / Control [UMFPACK-IRSTEP] =O ;

if (*debug) umfpack-di-report-control (Control) ;

/ * -
* Fortran base 1 to C base 0 conversion
* _ -
* /

if (*base) ccbaseO (*nz, *ncol, iccptr, iccrow) ;

* Symbolic factorization
* _ _ _ - - - - - - - - - - - - - - - - - - _ -
* /

if (*debug) {
puts ("UMFSOLVE: Symbolic factorization") ;
t0=wallclock~);

1
status=umfpack-di-symbolic (*ncol,*ncol,iccptr,iccrow,cca,

&Symbolic,Control,Info) ;
if (*debug) {

tl=wallclock () ;
printf("%f secs for symbolic factorization\nU,tl-to);

}
if (status ! = UMFPACK-OK) {

umfpack~di~report~status(Contro1,status);
printf(oumfpack-di-sumbolic failed: %d\nU,status);
if (*base) ccbasel (*nz, *ncol, iccptr, iccrow) ;
return 1;

1
} / / if (pass == 0)

* Numeric factorization
* . _ _ -
* /

if (*debug) {
puts ("UMFSOLVE: Numeric factorization") ;
t0=wallclock (1 ;

1
if (pass==O)

pass=l;
else

if (*base) ccbaseO (*nz, *ncol, iccptr, iccrow) ;
status=umfpack-di-numeric (iccptr,iccrow,cca,Symbolic,&Numeric,

Control, Info) ;
if (*debug) {

tl=wallclock~);
printf("%f secs for numeric factorization\n",tl-to) ;

1
if (status c UMFPACK-OK) {

umfpack-di-report-info(Contro1,Info);
umfpack~di~report~status(Contro1,status) ;

printf("umfpack-di-numeric failed: %d\nU,status);
if (*base) ccbasel (*nz, *ncol, iccptr, iccrow) ;
return 1;

1
/ * - . -

* Sovle A X = ~
* - - - - - . - . -
* /

if (*debug) {
puts (ooUMFSOLVE : Solve Ax=bn) ;
tO=wallclock~) ;

1
status=umfpack-di-solve (UMFPACK~A,iccptr,iccrow,cca,x,b,

Numeric, Control, Info) ;
if (*debug) {

tl=wallclock () ;
printf (I 1 % f secs to solve\nl',tl-to);

1
if (status < UMFPACK-OK) {

printf ("umfpack-di-solve failed: %d\nU,status);
if (*base) ccbasel (*nz, *ncol, iccptr, iccrow) ;
return 1;

1
/ * -

* Free Numeric factorization
* _ - _ _ _ - - - - - - - - - - - - _ - . -
* /

/ * -
* Additional reporting
* _ _ _ - - - - - - - - - - - - - - _ -
* /

if (*debug) umfpack-di-report-info(Contro1,Info);
if (*base) ccbasel (*nz, *ncol, iccptr, iccrow) ;
return 0 ;

} / / if (*mode == 1)

/ * -
* Free Symbolic factorization
* - _ - _ -
* /

if (*debug) puts ("UMFSOLVE: free Symbolic object") ;
umfpack-di-free-symbolic (&Symbolic) ;

pass=O;
return 0;

}

/ * - - - - - . -
* Unrecognized mode value

* /

printf ("UMFSOLVE: invalid: mode = %d\nH,*mode);
return 1;

1

Appendix 5. Simple Banded Gaussian Elimination Program

c -
C bgO.f
C
C Load and solve the set of linear equations Ax=b using banded Gaussian
C elimination.
C
c -

IMPLICIT REAL*8(A-H,O-2)
PARAMETER (MAXROW=24000,MAXBW=1241)
DIMENSION A(MAXBW,MAXROW) ,Al(MAXBW,MAXROW) ,B(MAXROW) ,Bl(MAXROW)
DIMENSION X(MAXR0W)
SAVE A,Al,B,Bl,X
REAL DTIME , TA (2)
INTEGER*8 NFLOPl,NFLOP2

c - - -
PRINT *,'Banded Gaussian Elimination (BGO) '
PRINT * , ' Assume Constant Upper Bandwidth'
PRINT *,'Rodney Jacobs, University of Maine, 2005'
PRINT * , ' '

c - - -
C - - - Determine lower and upper bandwidth of data
c - - -

PRINT *,'Bandwidth determination'
OPEN (1, FILE='matrix1)
READ (1, *) NE,NROW
PRINT * , I # Non-zero Elements : ',NE
PRINT * , ' # Rows . : ',NROW
NBWL=O
NBWU= 0
DO I=l,NE
READ (1, *) IROW, ICOL,VAL
IF (1COL.LT.IROW) THEN
IF (IROW-1COL.GT.NBWL) NBWL=IROW-ICOL

ELSE
IF (ICOL-1ROW.GT.NBWU) NBWU=ICOL-IROW

END1 F
ENDDO
CLOSE (1)
PRINT *,'Lower Bandwidth : ',NBWL
PRINT *,'Upper Bandwidth : ',NBWU
NBWLl=NBWL+l
IF (NROW.GT.MAXROW) THEN
PRINT *, 'MAXROW = ' ,MAXROW,' exceeded'
STOP

ENDIF
IF (NBWLl+NBWU.GT.MAXBW) THEN
PRINT *,'MAXBW = ',MAXBW,' exceeded'
STOP

ENDIF
c - - -
C - - - Read matrix element values and store in banded format
c - - -

PRINT *,'Read and store matrix A'
DO J=l,NROW
DO I=l,NBWLl+NBWU
A(1, J)=O.DO
A1 (I, J) =O .DO

ENDDO
B(J)=O.DO
Bl(J)=O.DO

ENDDO
OPEN (l,FILE='matrixl)
READ (I,*) NE,NROW
DO I=l,NE

READ (I,*) IROW,ICOL,VAL
A(IC0L-IROW+NBWLl,IROW)=VAL
Al(IC0L-IROW+NBWLl,IROW)=VAL

ENDDO
c - - -

C - - - Read and store righthand side values
c - - -

PRINT *,'Read and store righthand side'
DO I=l,NROW

READ (I,*) IROW,VAL
B (IROW) =VAL
B1 (IROW) =VAL

ENDDO
c - - -

C - - - Reduce A to upper triangular form using Gaussian elimination
c - - -

PRINT *,'Reduce A to upper triangular form'
NFLOPl=O
Tl=DTIME (TA)
DO NR=l,NROW

K=NR+NBWL
IF (K.GT.NROW) K=NROW
DO MR=NR+l , K

XMULT=A(NBWL~-MR+NR,MR)/A(NBWL~,NR)
DO NC=NBWLl+l,NBWLl+NBWU

MC=NC-MR+NR
A(MC,MR) =A(MC,MR) -XMULTkA(NC,NR)

ENDDO
B (MR) =B (MR) -XMULT*B (NR)
NFLOPl=NFLOPl+NBWU+NBWU+3

ENDDO
ENDDO
Tl=DTIME (TA)

c - - -

C - - - Solve for x
c -.-

PRINT *,'Solve for x using backward substitution'
NFLOP2=O
DO NR=NROW,l,-1

XSUM=B (NR)
K=NR+NBWU
IF (K.GT.NROW) K=NROW
DO J=NR+l, K

NC=J-NR+NBWLl
XSUM=XSUM-A (NC, NR) *X (J)

ENDDO
X (NR) =XSUM/A(NBWLl,NR)
NFLOP2=NFLOP2+2* (K-NR) +l

ENDDO
T2=DTIME (TA)

c --.
C - - - Print x
c - - -

IF (.FALSE.) THEN
DO NR=l,NROW

PRINT * , 'X(' ,NR, ') = ' ,X(NR)
ENDDO

END1 F
c - - -

C - - - Report results
c - - -

PRINT *,'Triangular Reduction Time (sec) . : ',TI
PRINT *,'Backward Substitution Time (sec) : ',T2
PRINT *,'Total Solve Time (sec) : ',Tl+T2
PRINT *,'Triangular Reduction FLOPS : ',NFLOPl
PRINT *,'Backward Substitution FLOPS : I.NFLOP2
PRINT *,'Total Solve FLOPS : ',NFLOPl+NFLOP2

C - - -
C - - - Compute backward error
c - - -

BERR=O . DO
DO NR=1, NROW
R=O.DO
S=O .DO
NCL=NR-NBWL
IF (NCL.LT.l) NCL=l
NCU=NR+NBWU
IF (NCU . GT . NROW) NCU=NROW
DO NC=NCL, NCU

K=NC-NR+NBWLl
TERM=Al (K,NR) *X (NC)
R=R+TERM
S=S+ABS (TERM)

ENDDO
R=R-B1 (NR)
S=S+ABS (B1 (NR))
BERRO =ABS (R / S)
IF (BERRO . GT . BERR) BERR=BERRO

ENDDO
PRINT *,'BERR . : ',BERR

c - - -
C - - - End program
c - - -

CLOSE (1)
END

Appendix 6. Banded Gaussian Elimination Routines

C bandparam. h
C
C Define prarameters, control values, and statistical information storage
C for the banded matrix subroutine library.
C
c--
c - - -

C - - - MAXROW is the number of rows allocated to store the banded matrix. It
C - - - must be at least as large as the number of rows in the matrix.
c - - -

C - - - MAXBW is the number of columnms allocated to store the banded matrix.
C - - - If partial pivoting is not used, it must be at least as large as the
C - - - bandwidth of the the matrix. If partial pivoting is used, it must
C - - - be at least as large as the matrix bandwidth plus the upper bandwidth
C - - - of the matrix to allow for row interchanges.
c - - -

PARAMETER (MAXROW=24000,MAXBW=1241)
c - - -

C - - - BCTL contains the following control values used by the subroutine
C - - - library. Be sure to call BINIT to initialize this array before calling
C - - - any other library routines.
c - - -

c - - - BCTL (1) : Reporting
c - - - 0 = Display severe error messages only
c - - - 1 = Display warning messages and severe error messages

2 = Display progress, warning, and severe error messages
3 = Display statistics and all other messages

BCTL(2) : Print solution vector
0 = Do not print
1 = Print

BCTL(3): Scale matrix before reducing or factoring it
0 = Do not scale
1 = Scale each row by sum of absolute values of

coefficients and right hand side value in the row
BCTL(4) : Matrix permutations

c - - - 0 = Do not perform any matrix permutations
c - - - 1 = Partial pivoting by row interchange using BCTL(5)
c - - - BCTL(5) : Partial pivoting threshold
c - - - Must satisfy 0 < BCTL(4) c = 1. A potential pivot a(i,j) is
c - - - acceptable if abs(a(i,j)) >= BCTL(5)*abs(a(*,j)).
c - - - If a(i,j) is not an acceptable pivot, then it is interchanged
c - - - with the row having max(abs(a(*,j))).
c - - - BCTL(6): Iterative refinement (For LU factorizations only)
c - - - If positive, perform iterative refinement until there is
c - - - no improvement in the solution, but iterate no more than
c - - - BCTL(6) times.
c - - - If zero, do not perform iterative refinement.
c - - - If less than zero, perform iterative refinement ABS(BCTL(6))
c - - - times .
c - - - BCTL(7) : Print solution vector after performing iterative refinement
c - - - 0 = Do not print
c - - - 1 = Print
c - - -

DIMENSION BCTL(7)
C - - -

C - - - BINFO contains the following information and statistics
c - - -

c - - - BINFO(1): Non-zero elements in matrix. Set by BLOAD
c - - - BINFO(2): Number of rows in matrix. Set by BLOAD
c - - - BINFO(3) : Lower bandwidth of matrix. Set by BLOAD
c - - - BINFO(4) : Upper bandwidth of matrix. Set by BLOAD
C - - - BINFO(5): Gaussian elimination reduction floating point operations.
c - - - Set by BGE
c - - - BINFO(6): Gaussian elimination reduction wall clock time (seconds).
c - - - Set by BGE
c - - - BINFO(7): Gaussian elimination substitution floating point operations.
c - - - Set by BGE
C - - - BINFO(8): Gaussian elimination substitution wall clock time (seconds).
c - - - Set by BGE
c - - - BINFO(9): LU factorization floating point operations
c - - - Set by BLUFAC
c - - - BINFO(10): LU factorization wall clock time (seconds)
c - - - Set by BLUFAC
c - - - BINFO(11): LU forward+backward substitution floating point operations.
c - - - Set by BLUSOLVE
c - - - BINFO(12): LU forward+backward substitution wall clock time (seconds).
c - - - Set by BLUSOLVE
c - - - BINFO(13) : LU factorization: Non-zeros in L excluding diagonal.
c - - - Diagonal elements of L implicitly have value = 1.
c - - - Set by BLUSTATS
c - - - BINFO(14): LU factorization: Non-zeros on diagonal of U.
c - - - Set by BLUSTATS
C - - - BINFO(15): LU factorization: Non-zeros in U exluding diagonal.
c - - - Set by BLUSTATS
c - - - BINFO(16): BERR Backward error. Set by BERROR
c - - - BINFO(17) : I (R I /infinity R is residual vector Set by BERROR
c - - - BINFO(18): I / H I linfinity (lower bound) H is perturbation of A to
c - - - produce x as the exact solution of (A+H)x=b.
c - - - Set by BERROR
c - - - BINFO(19): I IAl linfinity A is matrix in Ax=b Set by BERROR
c - - - BINFO(20) : I I B I I B is rhs in Ax=b Set by BERROR
c - - - BINFO(21): 11x1 linfinity X is solution vector Set by BERROR
c - - - BINFO(22): Number of iterative refinement steps performed
c - - - Set by BREFINE
c - - - BINFO(23): Number of row permuations performed
c - - - Set by BGE
c - - -

DIMENSION BINFO (23)

C bc0py.f
C
C Copy a set of arrays representing a banded matrix to another set of
C arrays.
C
C Input:
C A Matrix to copy

NCOLL
NCOLU
B

Column index of leftmost non-zero term in row of array A
Column index of rightmost non-zero term in row of array A
Right hand side to copy

Side effects:
A copied to A1
NCOLL copied to NCOLLl
NCOLU copied to NCOLUl

Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE BCOPY (A,NCOLL,NCOLU,B,A~,NCOLL~,NCOLU~,B~,BCTL,BINFO)
IMPLICIT REAL*E(A-H,O-Z)
INCLUDE "bandpararn.hM
DIMENSION A (MAXBW, MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW) , B (MAXROW)
DIMENSION Al(MAXBW,MAXROW),NCOLLl(MAXROW),NCOLU1(MAXROW),

& B1 (MAXROW)
c - - -

C - - - Copy arrays
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BCOPY: Copy arrays representing a banded matrix'
NROW=BINFO (2)
NBW=BINFO (3) +l+BINFO (4)
IF (BCTL(4) . EQ. 1) NBW=NBW+BINFO (3)
DO I=l,NROW
DO J=l,NBW
A1 (J, I) =A(J, I)

ENDDO
ENDDO
DO I=l,NROW
B1 (I) =B(I)
NCOLLl (I) =NCOLL (I)
NCOLUl (I) =NCOLU (I)

ENDDO
END

C -

C berror . f
C
C Compute error measures for banded LU factorization and solve
C
C Input:
C A Matrix of Ax=b in banded storage format
C NCOLL Column index of leftmost non-zero term in row of array A
C NCOLU Column index of rightmost non-zero term in row of array A
C X Solution vector of Ax=b
C B Right hand side of Ax=b
C R Residual vector Ax-b
C BCTL See bandparam.h
C BINFO See bandparam. h
C
C Side effects:
C Set error measures in BINFO
C Compute residual vector R
C
C Rodney Jacobs, University of Maine, 2005
C -

SUBROUTINE BERROR (A,NCOLL,NCOLU,X,B,R,BCTL,BINFO)
IMPLICIT REAL"8 (A-H,O-Z)
INCLUDE "bandparam.hW
DIMENSION A (MAXBW, MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW) , X (MAXROW) ,

& B(MAXR0W) ,R(MAXROW)
c - - -
C - - - Compute error measures
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BERROR: Compute error measures'
NROW=BINFO (2)
NBWL=BINFO (3)
NBWLl=NBWL+l
BERR=O .DO
RINF=O .DO
XINF=O .DO
AINF=O .DO
BINF=O .DO
DO NR=l,NROW
R1=-B (NR)
Sl=ABS (B (NR))
Al=O .DO
NCL=NR-(NBWLI-NCOLL(NR))
NCU=NR+NCOLU (NR) -NBWLl
DO NC=NCL,NCU

K=NC-NR+NBWLl
TERM=A (K, NR) *X (NC)
Rl=Rl+TERM
Sl=Sl+ABS(TERM)
Al=Al+ABS (A(K,NR))

ENDDO
R (NR) =R1
BERRO=ABS (Rl/Sl)
IF (BERRO.GT.BERR) BERR=BERRO
IF (ABS (Rl) . GT. RINF) RINF=ABS (Rl)
IF (ABS (X (NR)) . GT. XINF) XINF=ABS (X (NR))
IF (A1.GT.AINF) AINF=Al
IF (ABS(B(NR)) .GT.BINF) BINF=ABS (B(NR))

ENDDO
HINF=RINF/ (AINF*XINF)

C - - - Update B I N F O error measures
c - - -

B I N F O (1 6) =BERR
B I N F O (1 7) = R I N F
B I N F O (1 8) = H I N F
B I N F O (1 9) = A I N F
B I N F O (2 0) = B I N F
B I N F O (2 1) = X I N F

c - - -
C - - - Display e r r o r measures
c - - -

I F (B C T L (1) . G E . 3) THEN
P R I N T * , ' E r r o r Measures'
P R I N T * , ' -

P R I N T * , ' B E R R
P R I N T * , ' I I R I
P R I N T * , I I I H I
P R I N T *, ' I IA l
P R I N T * , ' I I B I
P R I N T * , I 11x1

END1 F
END

. : ' , B E R R
. infinity : ' , R I N F

infinity (lower bound): ' , H I N F
infinity : ' , A I N F

. infinity : ' , B I N F
infinity : ' , X I N F

C bgauss. f
C
C Load and solve the set of linear equations Ax=b using banded
C Gaussian elimination
C
C Rodney Jacobs, University of Maine, 2005

IMPLICIT REAL*8 (A-H,O-Z)
INCLUDE "bandparam.hU
DIMENSION A (MAXBW, MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW) , B (MAXROW)
DIMENSION A~(MAXBW,MAXROW),NCOLL~(MAXROW),NCOLU~(MAXROW),

& B1 (MAXROW)
DIMENSION X (MAXROW) , R (MAXROW)
SAVE A,NCOLL,NCOLU,B,A1,NCOLL1,NCOLUl,B1,X,R

c - - -
C - - - Initialization
c - - -

PRINT *,'Banded Gaussian Elimination'
PRINT *,'Rodney Jacobs, University of Maine, 2005'
CALL BINIT (BCTL, BINFO)
CALL BUSER (BCTL, BINFO)

c - - -
C - - - Read and scale data and load arrays.
c - - -

CALL BLOAD (A,NCOLL,NCOLU,B,BCTL,BINFO)
CALL BCOPY (A,NCOLL,NCOLU,B,A1,NCOLL1,NCOLU1,B1,BCTL,BINFO)
CALL BSCALE (A,NCOLL,NCOLU,B,BCTL,BINFO)

c - - -

C - - - Reduce and solve A X = ~
c - - -

CALL BGE (A,NCOLL,NCOLU,X,B,BCTL,BINFO)
c - - -
C - - - Print x. This code was moved from bge-f because of its detrimental
C - - - affect on performance.
c - - -

I F (BCTL(2) .EQ.l) THEN
DO I=l,BINF0(2)

PRINT * , 'X(',I, ') =',X(I)
ENDDO

END IF
c - - -
C - - - Compute error measures and residual vector R
c - - -

CALL BERROR (Al,NCOLLl,NCOLUl,X,Bl,R,BCTL,BINFO)
END

L

C Reduce and solve a set of linear equations Ax=b using banded Gaussian
C elimination.
C
C Input:
C A Matrix of Ax=b in banded storage format
C NCOLL Column index of leftmost non-zero term in row of array A
C NCOLU Column index of rightmost non-zero term in row of array A
C B Right hand side of Ax=b
C BCTL See bandparam. h
C BINFO See bandparam.h
C
C Side effects:
C Set A to row echolon form
C NCOLU may be updated to reflect the changed contents of A
C Set X to solution of Ax=b
C Set FLOP count and execution time in BINFO
C Set count of row interchanges in BINFO
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE BGE (A,NCOLL,NCOLU,X,B,BCTL,BINFO)
IMPLICIT REAL*8(A-H,O-2)
INCLUDE " bandparam. h"
DIMENSION A (MAXBW, MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW) ,B (MAXROW) ,

& X(MAXR0W)
DIMENSION ATEMP(MAXBW)
REAL DTIME, TA (2)

C - - -

C - - - Reduce A to upper triangular form using Gaussian elimination
c - - -

IF (BCTL(1) .GE.2) THEN
PRINT *,'BGE: Reduce A to upper triangular form'
IF (BCTL(3) .EQ.l)

& PRINT *,'BGE: Partial pivoting enabledu
ENDIF
NROW=BINFO (2)
NBWL=BINFO (3)
NBWLl=NBWL+l
FLOP=O .DO
BINFO(23) =O .DO
TIME=DTIME (TA)
DO NR=l,NROW

C - - - Compute upper limit of rows affected
K=NR+NBWL
IF (K.GT.NROW) K=NROW

C - - - Pivot test
IF (BCTL(4) .EQ.l) THEN
PABS=ABS (A (NBWL1, NR))
NPROW=NR
DO MR=NR+ 1, K

MC=NBWLl-MR+NR
IF (NPROW.EQ.NR) THEN

IF (BCTL(S)*ABS(A(MC,MR)) .GT.PABS) THEN
PABS=ABS (A (MC, MR))
NPROW=MR

END1 F
ELSE

IF (ABS(A(MC,MR)) .GT.PABS) THEN

PABS=ABS (A(MC, MR))
NPROW=MR

ENDI F
ENDIF

ENDDO
c - - - Swap rows if the current row does not contain the chosen pivot

IF (NPROW . NE . NR) THEN
DO I =NBWL1 , NCOLU (NR 1
ATEMP(I)=A(I,NR)

ENDDO
NDELTA=NPROW-NR
DO I=NBWLl-NDELTA,NCOLU(NPROW)
A(I+NDELTA, NR) =A (I ,NPROW)

ENDDO
DO I=NCOLU(NPROW)+NDELTA+l,NCOLU(NR)
A(I,NR)=O.DO

ENDDO
DO I=NBWLl,NCOLU(NR)
A (I-NDELTA, NPROW) =ATEMP (I)

ENDDO
DO I=NCOLU(NR) -NDELTA+l,NCOLU(NPROW)
A(1,NPROW) =O .DO

ENDDO
BTEMP=B (NR)
B (NR) =B (NPROW)
B (NPROW) =BTEMP
NTEMP=NCOLU(NR)
NCOLU (NR) =NCOLU (NPROW) +NDELTA
NCOLU(NPROW)=NTEMP-NDELTA
BINFO(23) =BINFO(23) +1 .DO

ENEIF
C - - - End pivot test

ENDI F
C - - - Check for zero pivot

PIVOT=A(NBWLl,NRI
IF (PIVOT.EQ.O.DO) THEN
PRINT *,'BGE: Pivot = O.DO'
STOP

ENDI F
C - - - Elimination step

DO MR=NR+ 1, K
XMULT=A (NBWL1-MR+NR, MR)
IF (XMULT . NE . o . DO) THEN
XMULT=XMULT/PIVOT
MC= 0
DO NC=NBWL~+ 1, NCOLU (NR)
MC=NC-MR+NR
A(MC,MR) =A(MC,MR) -XMULT*A(NC,NR)

ENDDO
B (MR) =B (MR) -XMULT*B (NR)
IF (NCOLU(MR) .LT.MC) NCOLU(MR)=MC
NCNT=NCOLU (NR) -NBWLl
IF (NCNT . LT. 0) NCNT=O
FLOP=FLOP+2*NCNT+3

ENDI F
ENDDO

ENDDO
BINFO (5) =FLOP
BINFO (6) =DTIME (TA)

c - - -
C - - - Solve for x
c - - -

IF (BCTL(1) .GE.2)

& PRINT *,'BGE: Solve for x using backward substitution'
FLOP=O
DO NR=NROW, 1, - 1
XSUM=B (NR)
K=NR+ (NCOLU (NR) -NBWLl)
DO J=NR+l , K
NC=J-NR+NBWLl
XSUM=XSUM-A(NC,NR) *X (J)

ENDDO
X (NR) =XSUM/A (NBWL1, NR)
NCNT=K-NR
IF (NCNT.LT.0) NCNT=O
FLOP=FLOP+2*(NCNT)+l

ENDDO
BINFO (7) =FLOP
BINFO (8) =DTIME (TA)

C - - -

C - - - Print x
C - - -

c IF (BCTL(2) .EQ.l) THEN
C DO NR=l,NROW
C - - - The following print line reduces the performance of the reduction
C - - - loop by approximately 16%!
C PRINT * , 'X(',NR,') =',X(NR)
c ENDDO
C ENDIF
c - - -

C - - - Report results
C - - -

IF (BCTL(1) .GE.3) THEN
PRINT *,'Gaussian Elimination Statistics'
PRINT * , ! - I

IF (BCTL(4) .EQ.l) THEN
PRINT *,'Row interchange threshold..: ',BCTL(5)
PRINT *,'Row interchanges : ',BINF0(23)

ELSE
PRINT *,'No row interchanges'

ENDIF
PRINT *,'Reduction Time (sec) : ',BINFO(6)
PRINT *,'Substitution Time (sec) : ',BINF0(8)
PRINT *,'Total Solve Time (sec) : ',BINF0(6)+BINF0(8)
PRINT *,'Reduction FLOPS : ',BINF0(5)
PRINT *,'Substitution FLOPS : ',BINF0(7)
PRINT *,'Total Solve FLOPS : ',BINF0(5)+BINF0(7)

END1 F
END

C binit. f
C
C Initialize BCTL and BINFO arrays. See bandparam.h for definitions.
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE BINIT (BCTL,BINFO)
IMPLICIT REAL*E(A-H,O-2)
INCLUDE "bandpararn.hl'

C - - - Reporting and progress messages
BCTL (1) =3

C - - - Print solution vector
BCTL (2) =O

C - - - Scale matrix before reducing or factoring
BCTL(3)=0

C - - Matrix permutation method
BCTL(4) =O

C - - - Partial pivoting threshold
BCTL(5)=O. 1DO

C - - - Iterative refinement
BCTL(6) =O

C - - - Print solution vector at each step of iterative refinement
BCTL(7) =O

C - - - Initialize statistics
DO I=1,23
BINFO(I)=O.DO

ENDDO
END

c -
C bload. f
C
C Read and load banded matrix A and right hand side b into arrays from
C data file named "matrix".
C
C Input:
C BCTL See bandparam.h
C
C Side effects: The following variables are updated:
C A Matrix A in Ax=b. Banded storage format is used.
C NCOLL Column index of leftrnost non-zero term in row of array A
C NCOLU Column index of rightmost non-zero term in row of array A
C B Right hand side in Ax=b
C BINFO See bandparam.h
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE BLOAD (A,NCOLL,NCOLU,B,BCTL,BINEO)
IMPLICIT REAL*8 (A-H, 0-Z)
INCLUDE "bandparam. h"
DIMENSION A (MAXBW, MAXROW) , B (MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW)

c - - -
C - - - Determine lower and upper bandwidth of matrix
c - - -

IF (BCTL(1) .GE.2)
& PRINT * , 'BLOAD: Bandwidth determination'
OPEN (l,FILE='matrixl)
READ (1, *) NE,NROW
NBWL=O
NBWU=O
DO I=l,NE

READ (1,") IROW,ICOL,VAL
IF (1COL.LT.IROW) THEN

IF (IROW-1COL.GT.NBWL) NBWL=IROW-ICOL
ELSE

IF (ICOL-1ROW.GT.NBWU) NBWU=ICOL-IROW
ENDI F

ENDDO
CLOSE (1)
IF (BCTL(1) .GE.3) THEN
PRINT *,'BLOW: # Non-zero Elements.: ',NE
PRINT *,'BLOAD: # Rows : ',NROW
PRINT * , 'BLOAD: Lower Bandwidth : ',NBWL
PRINT * , 'BLOAD: Upper Bandwidth : ',NBWU
PRINT *,'BLOAD: MAXROW : ',MAXROW
PRINT *,'BLOW: MAXBW : ',MAXBW

ENDI F
IF (NROW.GT.MAXROW) THEN
PRINT *,'BLOW: MAXROW = ',MAXROW,' exceeded'
STOP

ENDI F
NBW=NBWL+l+NBWU
IF (BCTL(4) .EQ.l) THEN
NBW=NBW+NBWL
IF (BCTL(1) .GE.l) PRINT *, 'BLOAD: Bandwidth required..: ',NBW,

& I (Partial pivoting row interchanges) '
ENDI F
IF (NBW . GT . MAXBW 1 THEN
PRINT * , 'BLOAD: MAXBW = ',MAXBW, ' exceeded'
STOP

END1 F
BINFO (1) =NE
BINFO (2) =NROW
BINFO (3) =NBWL
BINFO (4) =NBWU
NBWLl=NBWL+l

c - - -

C - - - Initialize arrays
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BLOAD: Initialize arrays'
DO J=1, NROW

DO I=l,NBWLl+NBWU
A(1, J)=O.DO

ENDDO
B(J) =O.DO
NCOLL (J) =NBWLl
NCOLU (J) =NBWLl

ENDDO
c - - -

C - - - Read and store matrix element values in banded format
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BLOW: Read and store matrix A'
OPEN (1, FILE='matrixl)

READ (1, *) NE, NROW
DO I=l,NE

READ (I,*) IROW,ICOL,VAL
NC=ICOL-IROW+NBWLl
A(NC, IROW) =VAL
IF (NC.LT.NCOLL(IROW)) NCOLL(IROW)=NC
IF (NC.GT.NCOLU(IROW)) NCOLU(IROW)=NC

ENDDO
c - - -

C - - - Read and store righthand side values
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BLOAD: Read and store righthand side'
DO I=1, NROW

REAC (I,*) IROW,VAL
B (IROW) =VAL

ENDDO
c - - -

C - - - End of routine
c - - -

CLOSE (1)
END

bscale . f

Perform LU factorization of a banded matrix A without partial pivoting.

Input :
A Matrix to be factored in banded storage format
NCOLL Column index of leftmost non-zero term in row of array A
NCOLU Column index of riqhtmost non-zero term in row of array A
B Right hand side of Ax=b
BCTL See bandparam.h
BINFO See bandparam. h

Side effects:
For each row, A and B are scaled by the sum of the absolute values of

C the coefficients of A and the absolute value of B in that row
C
C Rodney Jacobs, University of Maine, 2005

SUBROUTINE BSCALE (A,NCOLL,NCOLU,B,BCTL,BINFO)
IMPLICIT REAL*8 (A-H, 0-2)
INCLUDE "bandparam. h"
DIMENSION A(MAXBW,M?XROW),NCOLL(MAXROW),NCOLU(MAXROW),B(MAXROW)
REAL DTIME,TA(2)

c - - -

C - - - Scale rows
c - - -

IF (BCTL(3) .EQ.l) THEN
NROW=BINFO (2)
IF (BCTL(1) .GE.2)

& PRINT *,'BSCALE: Scale rows of A'
DO I=l,NROW
xSUM=ABS (B (I))
DO J=NCOLL(I),NCOLU(I)
XSVM=XSVM+ABS(A(J, I))

ENDDO
DO J=NCOLL (I) , NCOLU (I)
A(J,I)=A(J, I)/XSUM

ENDDO
B(I)=B(I)/xSUM

ENDDO
END1 F
END

c -
C buser. f
C
C Let the user specify BCTL parameter values.
C
C Input:
C BCTL See bandparam.h
C BINFO See bandparam.h
C
C Side effects:
C Updates BCTL and BINFO
C Rodney Jacobs, University of Maine, 2005
c - . - - - - - - . - - - - - - -

SUBROUTINE BUSER (BCTL,BINFO)
IMPLICIT REAL*8 (A-H, 0-2)
INCLUDE "bandparam.h"
LOGICAL DONE
DONE=.FALSE.
DO WHILE (.NOT. DONE)

I=-l
DO WHILE (I.NE.0)

CALL BDISPLAY (BCTL)
I=-l
DO WHILE (I.LT.0 .OR. I.GT.7)

PRINT *,'Enter # to change or 0 : '
READ *,I

ENDDO
IF (I.EQ.1) THEN
CALL BCTLl (BCTL (1))

ELSE IF (I.EQ.2) THEN
CALL BCTL2 (BCTL (2))

ELSE IF (I.EQ.3) THEN
CALL BCTL3 (BCTL (3))

ELSE IF (I.EQ.4) THEN
CALL BCTL4 (BCTL (4))

ELSE IF (I.EQ.5) THEN
CALL BCTL5 (BCTL (5))

ELSE IF (I.EQ.6) THEN
CALL BCTL6 (BCTL (6))

ELSE IF (I.EQ.7) THEN
CALL BCTL7 (BCTL (7))

END1 F
ENDDO
CALL BVALID (DONE,BCTL)

ENDDO
DO I=1,23
BINFO(I)=O.DO

ENDDO
END

c
c - - -

C - - - BDISPLAY: Display BCTL settings
c - - -

SUBROUTINE BDISPLAY (BCTL)
IMPLICIT REAL*8 (A-H, 0-2)
INCLUDE "bandparam.hW
PRINT * , ' '
PRINT *,'Control Settings'
PRINT * , ' - - - - - - - - - - - - - - - - - - . - . -

& - - - - - - - - - - - - - - - - I

c - - -

IF (BCTL(1) .EQ.O) THEN
PRINT * , I 1. Display only severe errorsv

ELSE IF (BCTL(1) .EQ.l) THEN
PRINT * , I 1. Display severe errors and warning messages'

ELSE IF (BCTL(1) .EQ.2) THEN
PRINT * , I 1. Display severe errors, warnings, and progress messa

&ages
ELSE IF (BCTL(1) .EQ.3) THEN
PRINT * , I 1. Display all messages plus statistics'

ELSE
PRINT * , I 1. Invalid value!'

ENDI F
c---

IF (BCTL(2) .EQ.O) THEN
PRINT * , I 2. Do not print solution vectorq

ELSE IF (BCTL(2) .EQ.1) THEN
PRINT *, ' 2. Print solution vector'

ELSE
PRINT * , I 2. Invalid value!'

ENDIF
c - - -

IF (BCTL(3) .EQ.O) THEN
PRINT * , I 3 . Do not scale matrix'

ELSE IF (BCTL(3) .EQ.l) THEN
PRINT * , ' 3. Scale matrix'

ELSE
PRINT * , I 3. Invalid value! '

ENDIF
c - - -

IF (BCTL(4) .EQ.O) THEN
PRINT * , I 4 . Do not perform any matrix permutations'

ELSE IF (BCTL(4) .EQ.1) THEN
PRINT * , I 4. Perform partial pivoting by interchanging rows'

ELSE
PRINT * , ' 4. Invalid value! '

ENDIF
c - - -

IF (BCTL(5) .GE.O.DO .AND. BCTL(5) .LE.l.DO) THEN
PRINT * , I 5 . Partial pivoting threshold =',BCTL(5)

ELSE
PRINT * , I 5 . Invalid value! '

ENDIF
c - - -

IF (BCTL(6) .EQ.O) THEN
PRINT * , ' 6. Do not perform iterative refinement with LU factori

&zationt
ELSE IF (BCTL(6) .LT.O) THEN
PRINT * , I 6. Perform1,ABS(BCTL(6)) , ' iterative refinement steps

&with LU factorization'
ELSE
PRINT * , I 6 . Perform at rnost1,BCTL(6),' iterative refinement ste

&ps with LU factorization'
ENDI F

c - - -
IF (BCTL(7) .EQ.O) THEN
PRINT * , I 7. Do not print solution vector after each iterative r

&efinement step'
ELSE IF (BCTL(7) .EQ.l) THEN
PRINT * , ' 7. Print solution vector after each iterative refineme

&nt step'
ELSE
PRINT * , ' 7. Invalid value! '

ENDI F

c - - -

PRINT * , ' '
END

c - - -
C - - - BCTL1: Get reporting option
c - - -

SUBROUTINE BCTLl (CTL)
IMPLICIT REAL*8(A-H,O-Z)
N=-1
DO WHILE (N.LT.0 .OR. N.GT.3)

PRINT *,'BCTL(l)=',CTL,' : Reporting'
PRINT * , I 0 = Display only severe errors'
PRINT * , ' 1 = Display severe errors and warnings'
PRINT * , I 2 = Display severe errors, warnings, and progress mess

&ages '
PRINT * , ' 3 = Display all messages plus statistics'
PRINT *,'Enter value:'
READ *,N

ENDDO
CTL=N
END

c -.-
C - - - BCTL2: Print solution vector?
c - - -

SUBROUTINE BCTL2 (CTL)
IMPLICIT REAL*E(A-H,O-2)
N=-l
DO WHILE (N.LT.0 .OR. N.GT.1)

PRINT *,'BcTL(~)=',CTL,' : Print solution vector'
PRINT * , ' 0 = NO'
PRINT * , ' 1 = Yes'
PRINT *,'Enter value:'
READ * ,N

ENDDO
CTL=N
END

c - - -

C - - - BCTL3: Scale matrix before reducing or factoring it?
c - - -

SUBROUTINE BCTL3 (CTL)
IMPLICIT REAL*E(A-H,O-Z)
N=-l
DO WHILE (N.LT.0 .OR. N.GT.l)

PRINT *,'BCTL(3)=',CTL,' : Scale matrix before reducing or facto
&ring it'

PRINT * , ' 0 = No'
PRINT * , I 1 = Yes'
PRINT *,'Enter value:'
READ *,N

ENDDO
CTL=N
END

c --------------------------- . - ------------ . - ----------------------------------

c - - -

C - BCTL4: Matrix permutations
c - - -

SUBROUTINE BCTL4 (CTL)
IMPLICIT REAL*€! (A-H, 0-2)
N=-l
DO WHILE (N.LT.0 .OR. N.GT.1)

PRINT *,'B~TL(~)=',~TL,' : Matrix permutations'
PRINT * , ' 0 = Do not perform any permutations'
PRINT * , I 1 = Partial pivoting by interchanging rows'
PRINT *,'Enter value:'
READ *,N

ENDDO
CTL=N
END

c -
c - - -
C - - - BCTLS: Partial pivoting threshold
c - - -

SUBROUTINE BCTL5 (CTL)
IMPLICIT REAL*8 (A-H, 0-Z)
T=-1 .DO
DO WHILE (T.LT.O.DO .OR. T.GT.1.DO)

PRINT *,'BCTL(5)=',CTL,' : Partial pivoting thresholdq
PRINT * , ' Must be between O.DO and 1.DO inclusive.'
PRINT *,'Enter value:'
READ * , T

ENDDO
CTL=T
END

c .
c - - -
C - - - BCTL6: Iterative refinement
c - - -

SUBROUTINE BCTLG (CTL)
IMPLICIT REAL*8 (A-H, 0-Z)
PRINT * , 1 ~ ~ ~ ~ (6) = 1 , C T L , 1 : Perform iterative refinement (LU soluti
&ons only) '
PRINT * , I 0 = No iterative refinement'
PRINT * , I > O = Number of refinement steps. Stop early if no furth
&re improvement '
PRINT * , I < O = -1 * exact number of refinement steps1
PRINT *,'Enter value:'
READ * ,N
CTL=N
print *,'ctl=',ctl
END

c .
c - - -
C - - - BCTL7: Print iterative refinement solution vector
c - - -

SUBROUTINE BCTL7 (CTL)
IMPLICIT REAL*8(A-H,O-Z)
N= - 1
DO WHILE (N.LT.0 .OR. N.GT.l)

PRINT *,'BCTL(7)=',CTL,' : Print iterative refinement solution v
&ectorU

PRINT * , ' 0 = NO'
PRINT * , I 1 = Yes'
PRINT *,'Enter value:'
READ *,N

ENDDO
CTL=N
END

c .
c - - -
C - - - BVALID: Validate BCTL settings
c - - -
C This routine insures that invalid values do not enter BCTLO through
C - - - the BINIT routine.

c - - -

SUBROUTINE BVALID (DONE,BCTL)
IMPLICIT REAL*8(A-H,O-Z)
INCLUDE " bandparam. h"
LOGICAL DONE
DONE=.TRUE.
IF (BCTL(1) .NE.O .AND. BCTL(l).NE.l .AND. BCTL(1) .NE.2 .AND

& BCTL (1) . NE .3) DONE= . FALSE.
IF (BCTL(2).NE.O .AND. BCTL(2).NE.l) DONE=.FALSE.
IF (BCTL(3) .NE.O .AND. BCTL(3) .NE.l) DONE=.FALSE.
IF (BCTL (4) .NE . 0 .AND. BCTL (4) . NE .1) DONE=. FALSE.
IF (BCTL (5) .LT. 0 .DO .OR. BCTL (5) .GT. 1 .DO) DONE=. FALSE.
IF (BCTL (7) . NE . 0 .AND. BCTL (7) . NE .1) DONE=. FALSE.
END

Appendix 7. Banded LU Factorization Routines

C--.-----

C blu. f
L

C Load and solve the set of linear equations Ax=b using banded LU
C factorization and iterative refinement.
L

C Rodney Jacobs, University of Maine, 2005
c -

IMPLICIT REAL*8(A-H,O-Z)
INCLUDE "bandparam.hn
DIMENSION A (MAXBW, MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW) , B (MAXROW)
DIMENSION Al(MAXBW,MAXROW) ,NCOLLl(MAXROW),NCOLUl(MAXROW),

& Bl(MPXR0W)
DIMENSION X (MAXROW) , DX (MAXROW) , R (MAXROW)
SAVE A,NCOLL,NCOLU,B,A1,NCOLL1,NCOLU1,B1,X,DX,R

c - - -

C - - - Initialization
c - - -

PRINT *,'Banded LU Factorization with Iterative Refinement'
PRINT *,'Rodney Jacobs, University of Maine, 2005'
PRINT * , ' '
CALL BINIT (BCTL,BINFO)
CALL BUSER (BCTL, BINFO)

C - - -

C - - - Read and scale data and load arrays.
C - - -

CALL BLOAD (A,NCOLL,NCOLU,B,BCTL,BINFO)
CALL BSCALE (A,NCOLL,NCOLU,B,BCTL,BINFO)
CALL BCOPY (A,NCOLL,NCOLU,B,A1,NCOLL1,NCOLU1,B1,BCTL,BINFO)

c - - -

C - - - Factor A to LU in place
c - - -

CALL BLUFAC (A,NCOLL,NCOLU,BCTL,BINFO)
c - - -

C - - - Solve L U X = ~ for x
c - - -

CALL BLUSOLVE (A,NCOLL,NCOLU,X,B,BCTL,BINFO)
C -.-

C - - - Report statistics
C - - -

CALL BLUSTATS (A,BCTL,BINFO)
c - - -

C - - - Compute error measures and residual vector R
c - - -

CALL BERROR (A1,NCOLL1,NCOLU1,X,B1,R,BCTL,BINFO)
C - - -

C - - - Iterative refinement
C - - -

CALL BREFINE (A,NCOLL,NCOLU,A1,NCOLL1,NCOLU1,X,B1,R,.TRUE.,
& BCTL,BINFO)
END

c - . - - - - - -
C bluf ac . f
C
C Perform LU factorization of a banded matrix A without partial pivoting.
C
C Input:
C A Matrix to be factored in banded storage format
C NCOLL Column index of leftmost non-zero term in row of array A
C NCOLU Column index of rightmost non-zero term in row of array A
C BCTL See bandparam.h
C BINFO See bandparam. h
C
C Side effects:
C Array A contains L and U factors. Diagonal elements of L implicitly
C have value = 1.
C NCOLU may be updated
C Set FLOP count and execution time in BINFO
C
C Rodney Jacobs, University of Maine, 2005
c - - - - - - - - - - - - - - - . -

SUBROUTINE BLUFAC (A,NCOLL,NCOLU,BCTL,BINFO)
IMPLICIT REAL*8 (A-H, 0-2)
INCLUDE "bandparam.hU
DIMENSION A (MAXBW , MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW)
DIMENSION ATEMPJMAXBW)
REAL DTIME, TA (2)

c - - -

C - - - Initialization
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BLUFAC: Factor A to LU form'
IF (BCTL(4) .EQ.l) THEN
PRINT *,'BLUFAC: Partial pivoting is not compatible with LU fact

&orizationl
STOP

ENDI F
NROW=BINFO (2)
NBWL=BINFO (3)
NBWLl=NBWL+l
FLOP= 0. DO
TIME=DTIME (TA)
DO NR=l,NROW

C - - - Compute upper limit of rows affected
K=NR+NBWL
IF (K . GT . NROW) K=NROW

C - - - Check for zero pivot
PIVOT=A(NBWLl,NR)
IF (PIVOT. EQ . 0 . DO I THEN

PRINT * , 'BLUFAC: Pivot = O.DOt
STOP

ENDI F
C - - - Factorization step

DO MR=NR+l,K
XMULT=A(NBWLl-MR+NR,MR)
IF (XMULT.NE.O.DO) THEN
XMULT=XMULT/PIVOT
A(NBWL1-MR+NR,MR)=XMULT
MC= 0
DO NC=NBWLl+l,NCOLU(NR)

MC=NC-MR+NR
A (MC, MR) =A(MC, MR) -XMULT*A (NC, NR)

ENDDO
IF (NCOLU(MR) .LT.MC) NCOLU(MR)=MC
NCNT=NCOLU(NR) -NBWLl
IF (NCNT.LT.0) NCNT=O
FLOP=FLOP+2*NCNT+l

END1 F
ENDDO

ENDDO
BINFO (9) =FLOP
BINFO (10) =DTIME (TA)
END

C bref ine . f
C
C Banded iterative refinement. BLUSOLVE must be called before calling this
C routine.
C
C Input:
C A LU in banded storage format
C NCOLL Column index of leftmost non-zero term in row of array A
C NCOLU Column index of rightmost non-zero term in row of array A
C A1 Matrix of Ax=b in banded storage format
C NCOLLl Column index of leftmost non-zero term in row of array A1
C NCOLUl Column index of rightmost non-zero term in row of array A1
C X Solution vector of Ax=b
C B1 Right hand side of Ax=b
C R Residual vector r=Ax-b
C ERRSET .TRUE. = > Residual vector R computed by calling BERROR
C before calling this routine. If .FALSE., BERROR will
C be called by this routine to compute R
C BCTL See bandparam.h
C BINFO See bandparam. h
L

C Side effects:
c X updated
C R updated
C BINFO updated. See bandparam.h
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE BREFINE (A,NCOLL,NCOLU,A1,NCOLL1,NCOLU1,X,B1,R,
& ERRSET,BCTL,BINFO)
IMPLICIT REAL*8(A-H,O-2)
INCLUDE "bandparam. h "
DIMENSION A(MAXBW,MAXROW),NCOLL(MAXROW),NCOLU(MAXROW),

& A1 (MAXBW, MAXROW) , NCOLL1 (MAXROW) , NCOLU1 (MAXROW) , X (MAXROW) ,
& Bl(MAXROW),R(MAXROW)
DIMENSION DX (MAXROW) , X1 (MAXROW)
LOG I CAL ERRS ET

c - - -

C - - - Check to see if iterative refinement is to be performed
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BREFINE: Iterative refinement'
BINFO(22) =0
IF (BCTL(6) .EQ.O) THEN
IF (BCTL(1) .GE.l)

& PRINT *,IBREFINE: BCTL(6)=0: Iterative refinement disabled'
RETURN

ENDIF
c - - -

C - - - Compute residual vector and error measures if not previously done
c - - -

IF (.NOT. ERRSET)
& CALL BERROR (Al,NCOLL1,NCOLU1,X,Bl,R,BCTL,BINFO)

c - - -

C - - - Iterative refinement loop
c - - - 1. Solve LU(dx)=r for dx vector where is r is residual vector
c - - - 2. Compute new solution vector xl=x-dx
c - - - 3. Compute new error measures and residual vector
c - - - 4. If the solution improved, set x=xl and repeat loop
c - - -

BCTL2=BCTL (2)
BCTL (2) =O
NROW=BINFO (2)
BERR=BINFO (16)
DO N=l,ABS(BCTL(6))
CALL BLUSOLVE (A,NCOLL,NCOLU,DX,R,BCTL,BINFO)
DO I=l,NROW
Xl(I)=X(I) -DX(I)

ENDDO
CALL BERROR (Al,NCOLLl,NCOLUl,Xl,Bl,R,BCTL,BINFO)
IF (BCTL(6) .GT.O .AND. BINFO(16) .GE.BERR) THEN
IF (BCTL(1) .GE.2)

& PRINT *,'BREFINE: No further improvement'
GOT0 10

ENDI F
BERR=BINFO (16)
DO I=l,NROW
X(I)=Xl(I)

ENDDO
BINFO (22) =BINFO (22) +l

ENDDO
10 BCTL (2) =BCTL2

IF (BCTL(1) .GE.2) THEN
N=BINFO (22)
PRINT *,'BREFINE: ',N,' refinement step(s) performed'

ENDI F
c - - -
C - - - Print x
c - - -

IF (BCTL(7) .EQ.l) THEN
DO I=l,NROW

PRINT *,'BREFINE: X(',I,') = ' , X (I)
ENDDO

ENDI F
END

c -
C blusolve. f
C
C Solve LUx=b using forward and backward substitution where LU is in
C banded storage format.
L

C Input:
C A L and U matrices in banded storage format. Diagonal
C elements of L have implicit value = 1.
C B Right hand side of LUx=b
C NCOLL Column index of leftmost non-zero term in row of array LU
C NCOLU Column index of rightmost non-zero term in row of array LU
C NPERM Row permutation vector. NPERM(1) is the row of matrix A
C represented by row I of L and U.
C BCTL See bandparam.h
C BINFO See bandparam.h
C
C Side effects:
C Set X to solution vector
C Set FLOP count and execution time in BINFO
C
C Rodney Jacobs, University of Maine, 2005
c -

SUBROUTINE BLUSOLVE (A,NCOLL,NCOLU,X,B,BCTL,BINFO)
IMPLICIT REAL*E(A-H,O-2)
INCLUDE "bandparam.hn
DIMENSION A (MAXBW, MAXROW) , NCOLL (MAXROW) , NCOLU (MAXROW) , X (MAXROW) ,

& B(MAXR0W) ,Y(MAXROW)
REAL DTIME, TA(2)

c - - -

C - - - Solve Ly=b
c - - -

IF (BCTL(1) .GE.2)
& PRINT * , 'BLUSOLVE: Solve Ly=b using forward substitution'
NROW=BINFO (2)
NBWL=BINFO (3)
NBWLl=NBWL+l
FLOP=O . DO
TIME=DTIME (TA)
DO NR=1, NROW
XSUM=B (NR)
K=NR- (NBWL1 -NCOLL (NR))
DO J=K,NR-1
NC=J-NR+NBWLl
XSUM=XSUM-A(NC,NR) *Y (J)

ENDDO
Y (NR) =XSUM
NCNT=NR - K
IF (NCNT.LT.0) NCNT=O
FLOP=FLOP+2*NCNT

ENDDO
C - - -

C - - - Solve Ux=y
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BLUSOLVE: Solve Ux=y using backward substitution'
DO NR=NROW, 1, - 1

XSUM=Y (NR)
K=NR+ (NCOLU (NR) -NBWLl)
DO J=NR+l, K
NC= J-NR+NBWL1

XSUM=XSUM-A(NC, NR) *X (J)
ENDDO
X (NR) =XSUM/A (NBWLl, NR)
NCNT=K-NR
I F (NCNT . LT . 0) NCNT=O
FLOP=FLOP+2 * (NCNT) +1

ENDDO
BINFO (11) =FLOP
BINFO (12) =DTIME (TA)

c - - -
C - - - Print x
c - - -

IF (BCTL(2) .EQ.l) THEN
DO NR=l,NROW

PRINT *,'X(',NR,') =',X(NR)
ENDDO

END1 F
END

c -
C b1ustats.f
C
C Display LU factorization and solve statistics
C
C Input:
C A LU in banded storage format
C BCTL See bandparam.h
C BINFO See bandparam.h
C
C Side effects:
C Set L and U non-zero entry counts in BINFO
C
C Rodney Jacobs, University of Maine, 2005

SUBROUTINE BLUSTATS (A,BCTL,BINFO)
IMPLICIT REAL*8(A-H,O-Z)
INCLUDE "bandparam. h"
DIMENSION A(MAXBW,MAXROW)

c - - -

c - - - Count non-zero entries in L, U, and diagonal
c - - -

IF (BCTL(1) .GE.2)
& PRINT *,'BLUSTATS: Count non-zero entries in L and U'
NROW=BINFO (2)
NBWL=BINFO (3)
NBWLl=NBWL+l
NBWU=BINFO (4)
NZL= 0
NZD=O
NZU=O
DO I=l,NROW
DO J=l,NBWL

IF (A(J,I) .NE.O.DO) NZL=NZL+l
ENDDO
IF (A (NBWL1, I) . NE. 0 .DO) NZD=NZD+l
DO J=NBWLl+l,NBWLl+NBWU

IF (A (J, I) .NE . 0 . DO) NZU=NZU+l
ENDDO

ENDDO
BINFO (13) =NZL
BINFO (14) =NZD
BINFO (15) =NZU

c - - -

C - - - Print statistics
c .--

IF (BCTL(1) .GE.3) THEN
PRINT *,'LU Statistics'
PRINT * , I - . - - - - - - - - - !

PRINT *,lNon-zeros in L w/diagonal..: ',BINF0(13)+BINF0(2)
PRINT *,lNon-zeros in U w/diagonal..: ',BINF0(14)+BINF0(15)
PRINT *,'Nan-zeros in L+U : ',BINFO(13)+BINF0(14)+

& BINFO(15)
PRINT *,'LU Factorization Time (sec) : ',BINFO(lO)
PRINT *,'Substitution Time (sec) : ',BINF0(12)
PRINT */Total Solve Time (sec) : ',BINFO(lO)+BINFO(12)
PRINT *,'LU Factorization FLOPS : ',BINF0(9)
PRINT *,'Substitution FLOPS : ',BINFO(ll)
PRINT *,'Total Solve FLOPS : ',BINF0(9)+BINFO(11)

END1 F
END

BIOGRAPHY OF THE AUTHOR

Rodney Jacobs was born in Bangor, Maine on October 1, 1954. He was raised in Bucksport, Maine and

graduated from Bucksport High School in 1972. He attended the Massachusetts Institute of Technology

and graduated in 1976 with a Bachelor of Science degree in Electrical Engineering. After working in

Woburn, Massachusetts for a short while as a junior microwave design engineer, he returned to Maine and

was a computer programmer for Data Systems of Maine until 1978. He moved on to work at Great

Northern Paper Conlpany as a programmer/analyst until 1980. After leaving Great Northern Paper

Company he worked for 16 years as an independent software developer writing campaign and fund

accounting software For United Ways that has been used by over 200 organizations throughout the country,

as well as business software systems For automobile dealers, banking, retail and wholesale distribution,

agricultural nurseries, and others. For the past ten years he has worked for N. H. Bragg and Sons in

Bangor, Maine as a software developer and information systems manager. Rodney lives in Bangor with his

wife Susan and their daughter Rebecca.

Learning has been a life long passion for Rodney. His graduate work at The University of Maine has been

a source of professional development and personal reward. Rodney is a candidate for the Master of

Science degree in Computer Science from The University of Maine in December, 2005.

	The University of Maine
	DigitalCommons@UMaine
	2005

	Data Structures and Algorithms for Efficient Solution of Simultaneous Linear Equations from 3-D Ice Sheet Models
	Rodney A. Jacobs
	Recommended Citation

	tmp.1319814104.pdf.kZstV

