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Piles made of treated wood have been traditionally used for the construction of piers and 

other waterfront structures. The main concern related to wood piles is deterioration due to 

marine borers, which limits the lifespan and requires frequent repair and replacement. 

Furthermore, since the use of preservative treatments for wood piles has been reduced 

due to environmental concerns, there is a current need for efficient methods for wood pile 

protection. 

Marine borer activity in Maine coastal waters was assessed through a survey 

directed to harbor masters correlated with historic data. In order to illustrate the type and 

extent of wood pile deterioration, two case studies in Maine harbors are presented. 

A special prefabricated Fiber Reinforced Polymer (FRP) composite shield or 

jacket was developed to repair wood piles in the field. FRP composite shells or sleeves 

are bonded with an underwater curing adhesive to form a shield. The main concern for 

durability of the adhesive bond is the resistance to freeze-thaw cycles. To assess adhesive 

bond durability, single lap shear tests were performed after exposure to freeze-thaw 

cycles. 



Two types of load-transfer mechanisms between the wood pile and the FRP 

composite shield were developed and tested: (1) cement-based structural grout; and (2) 

steel shear connectors with an expanding polyurethane chemical grout. Push-out tests by 

compression loading were performed to characterize the interfaces and discriminate the 

effect of the design parameters. The outcome of the push-out tests was the evaluation of 

the shear force-slip non-linear response and the progressive failure mechanism. 

The structural response of full-size pre-damaged wood piles repaired with the 

FRP composite shield system was characterized. A three-point bending test procedure 

was used to simulate the response of a pile subjected to lateral loads. The load- 

deformation response, deflected shape profile, relative longitudinal displacements (slip), 

strain distribution, ultimate bending moment capacity and mode of failure were 

evaluated. Wood piles were pre-damaged by reducing approximately 60% of the cross- 

section over a portion of the pile. It was found that a pre-damaged wood pile repaired 

using the FRP composite shield with cement-based grout exceeded the bending capacity 

of a reference wood pile. The repair system using the FRP composite shield with steel 

shear connectors and polyurethane grout did not fully restore the bending capacity of a 

reference wood pile; however it can be used for marine borer protection when wood 

damage is not critical. 

A beam structural model to predict stiffness and strength properties of wood piles 

restored with FRP composite shells was developed. The model accounts for different pile 

dimensional properties and various amounts of pre-damage. The structural model was 

successfully correlated with experimental data from three-point bending tests of wood 

piles. 
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Chapter 1 

Executive Summary 

I .I Introduction 

Piles made of treated wood have been traditionally used for the construction of 

piers and other waterfront structures. The main concern related to wood piles is 

deterioration due to marine borers, which limits the lifespan and requires frequent repair 

and replacement. Furthermore, since the use of preservative treatments for wood piles has 

been reduced due to environmental concerns, there is a current need for efficient methods 

for wood pile protection. 

The objective of this thesis is to develop an efficient method for protection and 

structural restoration of deteriorated wood piles in situ. The method utilizes fiber- 

reinforced polymer (FRP) composite shells or sleeves that encapsulate the deteriorated 

wood pile section. 

The present thesis is organized in eight chapters. An executive summary of the 

thesis is presented in this chapter. The main conclusions are summarized in the last 

chapter. 

I .2 Assessment of Wood Pile Deterioration due to Marine Organisms 

In Chapter 2 a description of the major groups of marine organisms causing 

significant wood pile damage is presented. These organisms are divided into two groups: 



(a) h g i ,  and (b) marine borers. The basic physical and biological characteristics of these 

organisms are presented, as well as the type of damage that they cause in marine wood 

piles. The objective of Chapter 2 is to characterize deterioration of wood piles due to 

marine organisms, and to assess damage in the wood pile zones of a typical waterfront 

installation. Marine borer activity in Maine coastal waters was assessed through a survey 

directed to harbor masters correlated with historic data. In order to illustrate the type and 

extent of wood pile deterioration, two case studies in Maine harbors are discussed. 

1.3 Repair of Wood Piles with Prefabricated FRP Composite Shells 

An effective method for combined environmental protection and structural 

restoration of wood piles in waterfront facilities is not available. The objective of Chapter 

3 was to survey the available methods for wood pile protection and structural restoration 

with the intent of developing an effective method. In addition to reviewing the available 

repair methods, a field inspection of a harbor in Maine was conducted to assess existing 

technologies. A wood pile repair method that utilizes bonded FRP composite shells and a 

grouting material is proposed. Fiber, resin, adhesive, coatings and grouting materials 

were systematically analyzed to deliver the required system performance. Two 

fabrication methods for the FRP composite shells are discussed based on the experience 

gained in the fabrication of laboratory prototypes. Furthermore, a step-by-step procedure 

amenable for field installation is proposed. Finally, a preliminary cost analysis was 

conducted to assess the feasibility of the proposed system. 



1.4 Freeze-Thaw Resistance of FRP Composites Adhesive Bonds with 

Underwater Curing Epoxy 

The method developed for the protection and structural restoration of wood piles 

requires the field placement of FRP composite pre-manufactured shells around the piling. 

The FRP composite shells need to bC attached with an underwater curing adhesive that 

produces a satisfactory structural bond. The adhesively bonded shells develop "composite 

action" when supporting loads. The main concern for durability of the adhesive bond is 

the resistance to freeze-thaw cycles. To assess adhesive bond durability, single lap shear 

tests were performed after exposure to freeze-thaw cycles. These experiments presented 

in Chapter 4 served to characterize the loss of adhesive bond strength between FRP 

composite coupons representative of the shell material. It was found that the adhesive 

strength of the underwater curing epoxy tested in this work is severely reduced after 

exposure to freezing and thawing cycles. 

1.5 Experimental Characterization of FRP Composite-Wood Pile Interface 

by Push-Out Tests 

Structural restoration of spliced or damaged wood piles with FRP composite 

shells requires that shear forces be transferred between the wood core and the encasing 

composite shells. When a repaired wood pile is loaded, shear stress will develop between 

the wood pile and the FRP composite shell through the grouting material. Alternatively, 

shear force transfer is developed through shear connectors. The main objective of 

Chapter 5 was to characterize the interfaces in wood piles repaired with FRP composites 

shells and grout materials. Two interfaces were characterized: (a) wood pilelgrout 

3 



material and (b) grout material/innermost FRP composite shell. A set of design 

parameters that control the response of both interfaces were identified: (a) Extent of 

cross-section reduction of wood pile due to deterioration (necking); (b) Type of grout 

material (cement-based or polyurethane); (c) Use of shear connectors, and (d) Addition of 

a hctional coating on the innermost shell. Push-out tests by compression loading were 

performed to characterize the interfaces and discriminate the effect of the design 

parameters. The outcome of the push-out tests was the evaluation of the shear force-slip 

non-linear response and the progressive failure mechanism. A set of repair systems that 

represent different combinations of the design parameters were fabricated and the 

interfaces evaluated. It was found that the combination of cement-based grout and 

polymer concrete overlay on the innermost shell provided the most efficient shear force- 

slip response. Furthermore, normalized representations of shear stress transfer at the 

wood/grout/FRP composite interfaces and through shear connectors were developed to 

aid in the design process. 

1.6 Experimental Characterization of FRP Composite-Wood Pile Structural 

Response by Bending Tests 

A special prefabricated Fiber Reinforced Polymer (FRP) composite shield or 

jacket was developed to repair wood piles in the field. Two types of load-transfer 

mechanisms between the wood pile and the FRP composite shield were developed and 

tested: (1) cement-based structural grout; and (2) steel shear connectors with an 

expanding polyurethane chemical grout. The objective of Chapter 6 was to characterize 

the structural response of full-size pre-damaged wood piles repaired with the FRP 

4 



composite shield system. A three-point bending test procedure was used to simulate the 

response of a pile subjected to lateral loads. The load-deformation response, deflected 

shape profile, relative longitudinal displacements (slip), strain distribution, ultimate 

bending moment capacity and mode of failure were evaluated. Wood piles were pre- 

damaged by reducing approximately 60% of the cross-section over a portion of the pile. 

It was found that a pre-damaged wood pile repaired using the F W  composite shield with 

cement-based grout exceeded the bending capacity of a reference wood pile. The repair 

system using the FRP composite shield with steel shear connectors and polyurethane 

grout did not fully restore the bending capacity of a reference wood pile; however it can 

be used for marine borer protection when wood damage is not critical. 

1.7 Beam Model of Damaged Wood Pile Repaired with FRP Composite 

Shells 

A beam design model was developed to predict stifhess and strength properties 

of wood piles restored with a Fiber Reinforced Polymer (FW) composite shield or jacket. 

Two types of load-transfer mechanisms between the wood pile and the F W  composite 

slueld were studied: (1) cement-based structural grout; and (2) steel shear connectors with 

an expanding polyurethane chemical grout. The design model accounts for wood pile 

damage by reducing the cross-section over a portion of the pile length. Laminate analysis 

was applied to estimate F W  composite elastic and strength properties. The model allows 

computation of shear forces at the interfaces between three different materials (wood pile, 

grout, and F W  composite shield) present in a repaired wood pile. The beam model was 

correlated with experimental results fiom three-point bending tests of pre-damaged wood 



piles repaired with FRP composite shields. The model was applied to predict the 

maximum bending loads, modes of failure and mid-span deflections of pre-damaged and 

repaired wood piles. It was found that the proposed model equations have reasonable 

accuracy and they can be used as a design tool to determine the FRP composite 

reinforcement needed to restore the  structural capacity of a 'damaged wood pile. The 

proposed beam model can be applied to various boundary conditions representative of 

actual piles in waterfront structures (e.g., fixed-free supports). 



Chapter 2 

Assessment of Wood Pile Deterioration due to Marine 

Organisms 

2.1 Abstract 

In this chapter a description of the major groups of marine organisms causing significant 

wood pile damage is presented. These organisms are divided into two groups: (a) fungi, 

and (b) marine borers. The basic physical and biological characteristics of these 

organisms are presented, as well as the type of damage that they cause in marine wood 

piles. The objective of this chapter is to characterize deterioration of wood piles due to 

marine organisms, and to assess damage in the wood pile zones of a typical waterfront 

installation. Marine borer activity in Maine coastal waters is assessed through a survey 

directed to harbor masters correlated with historic data. In order to illustrate the type and 

extent of wood pile deterioration, two case studies in Maine harbors are discussed. 

2.2 Introduction 

The problem of deterioration of wood piles due to marine organisms dates back to 

the early use of wood in piers and other waterfront facilities. Even though wood pile 

deterioration has been prevented to some extent with the use of preservative treatments, it 

still remains a concern. Some of the chemicals used for wood preservation have been 

linked to human health hazards and, therefore, their use has been restricted. For these 

reasons, waterfront owners are looking for alternative solutions for wood pile protection. 



There are two major groups of organisms that deteriorate wood in waterfront structures. 

The most destructive group is marine borers; however fungi can cause significant damage 

over time as well. The different groups of marine organisms attack the wood in different 

zones of a pile. For example fungi are typically found above the waterline, while marine 

borers primarily attack wood in the tidal zone. 

Wood-boring organisms found in salt-water that cause damage to wood piles can be 

classified as: (1) molluskan borers (shipworms and pholads); and (2) crustacean borers 

(Gribble) (Goodell 2000). Both shipworm and Gribble attack the wood piles for shelter and, 

in the case of Gribble, excavated wood is digested through the aid of microbial synlbionts 

(Goodell 2000). 

Studies conducted in Maine over a period of 23 years (1936 - 1959) using wood test 

boards revealed problems associated with shipworms during certain years and at specific 

geographic locations (Wallour 1959). Gribble, and specifically Limnoria spp. were present in 

Maine waters every year during the period studied and caused significant damage. 

The objective of this chapter is to characterize deterioration of wood piles due to wood 

deterioration organisms, and to assess damage in the micro-environment zones of a typical 

waterfront installation. An early study on marine borer activity in Maine waters is reviewed. 

The results of a recent survey on wood pile deterioration in Maine harbors are discussed. 

Two case studies in Maine harbors that illustrate typical Gribble and shipworm damage are 

presented. 



2.3 Review of Wood Pile Deteriorating Organisms 

2.3.1 Fungi 

Wood decay fungi, which contain no chlorophyll, are found growing either as 

parasites on living plants or as saprophytes on the dead remains of plants (U.S. Army 1978). 
I 

Fungi reproduce by means of microscopic spores, which can be single or multi-cellular. 

Some of the symptoms of fungal decay are the following: (1) Change of color; advanced 

decay of wood by fungi is almost always accompanied by a change in color of the attacked 

wood (Cartwright and Findlay 1958; Kelly 1999), (2) Softening; the area where fungal decay 

has initiated appears to be soft in texture as the decay advances (Cartwright and Findlay 

1958; Kelly 1999), (3) Change in density; as the wood is decayed more and more it loses 

mass. Wood in advance stages of fungal decay will be extremely light when the wood is dry. 

(4) Change in odor; wood attacked by fungi will usually have a mushroom like smell but the 

presence of this smell does not necessarily mean that decay is present. 

Regular wood decay fungi cannot survive in salt water. However, it was found that 

some fungi species could grow on the above water portion of wood piles submerged in salt 

water. Although the damage caused by fungi on wood piles is relatively small compared to 

the damage caused by marine borers, such as Gribble and shipworms, it is of concern 

because fungal damage could prompt attack by Gribble (Cartwright and Findlay 1958). In 

addition, the portion of the wood pile that is in the atmospheric zone is not affected by salt 

water, but by fresh water coming from rain. This creates favorable conditions for the growth 

of conventional fungi (brown or white rot) that can cause considerable damage (U.S. A m y  

1978). 



2.3.2 Molluskan Borers: Shipworms 

One of the families of shipworms is the family of Teredinidae, which includes Teredo 

spp. and Bankia spp. This type of marine borer has a modified shell smaller than that of 

clams (Abood et al. 1995; Goodell 2000). Teredo is a wormlike borer with a slimy gray 

body (Chellis 1961; U.S. Anny 1990). Modified small shells near the head form a pair of 

abrasive plates that are used to burrow, producing wood particles that are ingested. 

External evidence of attack is hard to find because small siphons are the only portions 

extending to the wood surface. Initially Teredo larvae begin excavation with a 0.5 to 3 

mm diameter hole. The borer can extend its tunnel along the grain (Goodell 2000). The 

size of this type of marine borer varies ranging fi-om 150 mm to 1.8 meters length and 

diameters up to 25 mm (Chellis 1961). The length of the tunnels depends on the extent of 

the attack. When the attack is extensive the tunnels become crowded and their length is 

limited. Tunnels are lined with a white shell-like material that can be found mixed with 

shavings if the wood is bored with a drill during inspection (Highley 1999). Cellulosic 

portions of the wood are digested with the help of bacterial symbionts. Borer activity will 

turn the wood into a honeycomb-like matrix, which will lead to a severe reduction in 

strength even though the outer shell looks sound (Goodell 2000). A picture of Teredo 

navalis is shown in Figure 2,l(a). A sketch of a Teredo borer is shown in Figure 2.l(b). 

Bankia spp. is very similar to Teredo, but is usually larger (Chellis 1961). A Bankia borer 

is shown in Figure 2.2. 



(a) (b) 

Figure 2.1 - (a) Teredo navalis fiom (Gillis and Haro 2001); (b) Teredo navalis Sketch 

fiom (Klekowski and Klekowski 1997) 

Figure 2.2 - Bankia spp. fiom (Wilson 2001) 

Typical shipworm damaged wood pile sections extracted fiom Belfast Harbor, 

Maine are shown in Figure 2.3. 



Figure 2.3 - Typical Shipworm Damage, Belfast, Maine 

2.3.3 Molluskan Borers: Pholads 

Borers, such as Martesia spp. and Xylophaga spp., belong to the pholad family. They 

are similar to shipworms. The adult body of pholads, unlike shipworms, remains surrounded 

by shells as it grows in its burrow (Highley 1999). Pholad shells do not fit tightly but they 

have ridges which function as rasps for burrowing. Pholads also have up to four external 

plates in addition to the two primary plates covering their soft body parts. When pholads die, 

remnants of the primary plates remain in the burrow. Although pholads are particularly 

aggressive in tropical waters, deepwater species can operate in cold waters causing extensive 

damage to wood. The length of pholad tunnels is relatively small (up to 60-70 mm) and their 

diameters are up to 25 rnm. The tunnel opening could be smaller than the diameter of the 

borer (Chellis 1961; Goodell 2000). Since, pholads are usually found in waters deeper than 

33 m, they are not a main concern for wood piles. 



2.3.4 Crustacean Borers: Gribble 

Limnoria lignorum, is one species of Limnoria. Limnoria spp. are also known by the 

common names Gribble and sea louse. Gribble resemble the wood louse and have a length 

between 3 and 6 mm. Their width ranges from one-third to one-half of their length. They are 

often slipper-shaped with horny boring mandibles, two sets of antennae and seven sets of 

legs as can be seen in Figure 2.4(a). Their legs are equipped with sharp hooked claws. 

Gribble can roll themselves into a ball, swim, crawl, and jump (Chellis 1961). Gribble can 

swim throughout their lives and they can leave the attacked wood to tunnel at another 

location. They commonly attack in coastal regions making shallow burrows in the surface of 

the wood (Johnson 2002) as shown in Figure 2.4(b). When large numbers of Gribble attack, 

only a thin layer of wood is left between the burrows. The action of the waves and tidal 

currents wash away these thin layers exposing new surfaces for the Gribble fo attack. This 

causes extensive thinning of the wood section In wood piling, the damage caused by Gribble 

is typically greater in the tidal zone (Chellis 1961). 

Figure 2.4 - (a) Limnoria lignorum from (Aquascope 2000);(b) Limnoria Damaged Wood 

fiom (Aquascope 2000) 



2.4 Geographical Distribution of Marine Borers in U.S. Coastal Waters 

The distribution of marine borers along coastal waters in the United States is 

depicted in Figure 2.5. The absence of certain species from a region in the map shown in 

Figure 2.5 does not mean that this type of marine borer cannot be found there, but simply 

that it does not cause significant deterioration problems (AWPA 1999b). Solid lines 

indicate areas in which the designated marine borers are a hazard to wood without 

appropriate preservative treatment. Dashed lines designate areas where periodic attacks 

occur. It is worth noticing that changes in environmental conditions in a given area may 

affect marine borer activity significantly (AWPA 1999b). Therefore, the map shown in 

Figure 2.5 should be used as a general guide and should be supplemented with local 

information. 

Figure 2.5 - Distribution of Marine Borer Hazards in U.S. Coastal Waters (AWPA 1999a) 



Notation for Figure 2.5: 

L spp - Limnoria species other than L. tripunctana, including lingorum, 

quadlipunctana, pfegeri 

Lt - Limnoria tripunctana 

T - Teredinids or shipworms, kainly species of the genera Teredo and Bankia 

P - Pholads, mainly species of the genera Martesia and Xylophaga 

S - Sphaeroma, pdmadly, terebrans, mainly in brackish water 

2.5 Damage Zones in Wood Piles 

Wood piles that support piers or other marine structures are driven into the mud 

and extend above to the deck or structure they support. The vertical variation of exposure 

conditions of the wood pile allows the creation of different micro-environment zones, as 

shown in Figure 2.6 (US Army Corps of Engineers et al. 2001). 

ATYOGPHERIC ZONE 

PL*SW ZONE 

Figure 2.6 - Exposure Zones of Marine Wood Piles (US Army Corps of Engineers et al. 

200 1) 



This exposure variation affects the type and the extent of damage produced by 

marine organisms. A typical damage profile in the different zones of a wood pile is 

illustrated in Figure 2.7(a). Similar to the case of corroded steel piles in marine structures 

(Coburn 2000), inspection of marine wood piles indicate the presence of five different 

zones: Atmospheric, splash, tidal, continuously submerged, and soil. Wood pile damage 

due to marine organisms in each zone is assessed. 

- 
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- 

Splash 
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- 

Tidal 
Zone 

- 
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- 
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Zone 

Damage 

(a) 

Figure 2.7 - (a) Typical Damage Profile of a Wood Pile; (b) Wood Pile at Mudline in 

Portland Harbor, Maine. 

2.5.1 Atmospheric Zone 

The atmospheric zone is the top portion of the wood pile, which is above the 

splash zone. This zone is accessible for maintenance and repair. In this zone, the presence 

of fresh water fkom the rain and oxygen creates a favorable environment for the growth 



of fungi. Fungal spores could be inside the wood in an inert state for years. When the 

conditions in this zone are favorable, fungi will grow and start decaying the wood. Fungi 

will start decaying the wood fiom the inside and work their way to the outer surface. 

Wood piles are often vulnerable to fungal attack in their center portion because 

preservative treatment does not penetrate all the way into the wood section. Marine 

borers such as Gribble and shipworms will not attack the wood in the atmospheric zone, 

since they cannot survive in this environment. 

2.5.2 Splash Zone 

The mean high water level at the bottom and the atmospheric zone at the top 

delimit the splash zone. The wood pile surface is exposed to continuous water spray. This 

zone is accessible for maintenance and repair at low tide with some limitations. Although 

this zone is subjected to continued salt-water spray, it is possible for fungi to survive and 

damage the wood because there is adequate oxygen and the salinity is not very high. 

Fungal activity will probably be lower in this zone since the conditions are not the most 

favorable. 

2.5.3 Tidal Zone 

The tidal zone is delimited by the mean low water level and the mean high water 

level. This zone is exposed to cycles of water immersion. This zone is accessible for 

maintenance and repair at low tide with difficulty. The tidal zone is typically the most 

heavily attacked zone of a wood pile. In this zone, marine borers such as shipworms and 

Gribble attack the wood and cause significant damage. The conditions in this zone seem 



to be the most favorable for the marine borers to flourish. The presence of salt water and 

oxygen is a necessity for the survival of marine borers. If the mud line is above mean low 

water level then the attack is most severe at the mud line. In the case of Gribble, a 

significant reduction in the cross section at the mud line can be observed. 

2.5.4 Continuously Submerged Zone 

The continuously submerged zone extends between the mudline and the mean low 

water level. This zone is permanently under water. If the mudline is above the mean low 

water level, then this zone does not exist. This zone is only accessible for maintenance 

and repair with cofferdams or specialized underwater techniques. Marine borers such as 

shipworms and Gribble can attack the wood since salt water and oxygen are available at 

this zone. However, the attack and the extent of damage may not be as severe as the 

damage in the tidal zone. 

2.5.5 Soil Zone 

The soil zone is the zone below the mudline. In general, this zone does not require 

maintenance. In this zone there is no oxygen available, which prevents the survival of 

marine borers. For this reason, wood piles below the mud line are generally in good 

condition. In Figure 2.7(b) it can be observed that above the mud line some reduction in 

cross sectional area occurred, but below the mudline there is no visible reduction. 



2.6 Marine Borers in Maine Waters 

Between 1936 and 1959 W.F. Clapp Laboratories, Inc. of Duxbury, 

Massachusetts monitored the marine borer activity at different locations around the 

United States and the world by conducting wood test board studies. An assessment of 

Teredo and Limnoria activity on Maine harbors was reported (Wallour 1959). The report 

revealed the presence of Teredo at specific geographical locations along the coast of 

Maine. In order to identify the extent of the damage caused by either Teredo or Limnoria, 

keys were developed for each case. The key for Teredo activity is shown in Figure 2.8 

and the key for Limnoria activity is shown in Figure 2.9. 

Int. - Interrupted 
Disc. - Discontinued 
N. R. - Not received 

- Operated but showed no attack 

Figure 2.8 - Key to Determine Extent of Attack to Wood Test Boards by Teredo (Wallow 



Int. - Interrupted 
Disc. - Discontinued 
N. R. - Not received 

- Operated but showed no attack 

Figure 2.9 - Key to Determine Extent of Attack to Wood Test Boards by Limnoria 

(Wallour 1959) 

Although, in general the presence of Teredo was not accompanied by severe 

wood board destruction, certain years showed devastating damage to the wood test 

boards. Medium heavy and heavy damage was reported in places such as Searsport, 

Rockland, Thomaston, Scarborough and Portland. Typical wood test board results for 

Teredo attack in Searsport, Maine are shown in Figure 2.10 (Wallour 1959). 

Figure 2.10 - Typical Wood Test Board Results for Teredo, Searsport, Maine (Wallour 

1959) 



On the other hand, Limnoria was found to be widespread in Maine waters with 

significant activity in places such as Southwest Harbor, Rockland, Searsport, Wiscasset 

and Portland. Portland was especially affected by Limnoria damage with the amount of 

attack ranging from heavy to very heavy in most cases. Typical results of Limnoria attack 
I 

to wood test boards in Portland, Maine are shown in Figure 2.1 1 (Wallour 1959). 

Figure 2.1 1 - Typical Wood Test Board Results for Limnoria, Portland, Maine (Wallour 

1959) 

A survey conducted by the University of Maine between November and 

December of 2000 on shipworm damage in wood piles is summarized in Table 2.1. 

Responses from 13 harbor masters along the coast of Maine are correlated with the 

response from Boston harbor. The questions addressed in Table 2.1 are: (1) traditional 

extent of marine borer damage; (2) recent changes in the amount of marine borer attack; 

and (3) type of marine borer organism. The survey results revealed problems with 

shipworm damage in wood piles at the same geographic locations in Maine coastal 

waters reported 41 years earlier (Wallour 1959). 



Table 2.1 - Survey Responses on Traditional and Recent Marine Borer Attacks in Maine 

City or town harbor 

(from South to 

North) 

Boston, MA (out-of- 

state correlation) 

Traditional extent 

of marine borers 

damage 

Moderate 

Change in relative 

amount of attack in 

recent years 

No 

Type of marine 

borer 

Limnoria 

tripunctana 

Unknown 

Wells Harbor, ME unknown 

Gribble unknown 

Moderate Teredo 

Unknown 

Unknown 

Wiscasset, ME I Gribble Moderate 

Teredo and Gribble I Saint George, ME Moderate 

No 

Yes 

unknown 

Teredo I Belfast, ME 

Searsport, ME 7 Moderate Yes unknown 

Unknown 

Mount Desert, ME Unknown 

moderate 



2.7 First Case Study: Wood Pile Deterioration in Portland Harbor, Maine 

The condition of structural wood piles in Portland Harbor piers was visually 

inspected in May 2000. The objective of the inspection was to determine the type and 

extent of damage in structural wood piles. Wood pile damage in two piers was inspected 

during low-tide, Portland Pier (7) andl Custom House Wharf (6), as shown in Figure 2.12. 

Figure 2.12 - Piers Inspected in Portland Harbor, adapted from (Maine DOT 1986) 

The Portland Pier has a timber retaining wall with solid fill, wood piles and a 

wood deck supporting a parking lot (Maine DOT 1986). The Custom House Wharf has 

an earth-filled pier structure with wooden-timber and a steel crib bulkhead, wood piles 

and an asphalt paved wood deck. There are several marine type businesses operating on 

the pier (Maine DOT 1986). 

Damage was observed at the Portland pier in several wood piles, as shown in Figure 2.13. 

In some cases, a loss of cross section (necking) up to 70 percent was observed. It was 



noticed that several damaged old piles were left in place, and new wood piles were driven 

nearby. In other cases the damaged old piles were cut off, and a new pile portion was 

spliced on top. 

(4 (b) 

Figure 2.13 - (a) Damage by Gribble, Portland, Maine; (b) Damage by Fungi, Portland, 

Maine 

The observations made at the Custom House Wharf were similar to the ones made 

at Portland Pier. Several piles had reduced cross-sections in the tidal zone between low 

and high tide. Other piles had extensive damage at the butt, as well. A wood pile was 

measured at two locations: the diameter at the butt was 254 mm and the diameter at the 

mud line level (1.83 m below the butt) was only 165 mm. This loss of cross section 

represents about 50 percent reduction in the cross sectional area. To assess the condition 

of a wood pile below the mud line, a hole of approximately 130 mrn in depth was 



excavated in the surrounding soil. Visual inspection indicated that the wood pile had no 

reduction in cross-section or any apparent damage below the mud line. This observation 

confirms previous findings on the condition of extracted wood piles fiom the Portland 

Harbor. In general, the wood pile damaged observed in Portland harbor was attributed to 

Limnoria. This finding is in agreement with an earlier report (Wallour 1959). 

2.8 Second Case Study: Wood Pile Deterioration in Belfast Harbor 

Municipal Pier, Maine. 

Structural wood piles that had been damaged by marine borers were inspected in 

September 2000 by a team of scientists and engineers fiom the University of Maine. The 

wood piles at Belfast harbor were untreated and had been in service for approximately 

one to one and one-half years. 

Wood fender piles with diameters up to 380 mm that were extracted fiom the 

harbor revealed severed damage fiom shipworms. Typical shipworm damage to wood 

piles extracted fiom the harbor is shown in Figure 2.14. 

Figure 2.14 - Wood Piles with Shipworm Damage Extracted fiom Belfast Harbor, Maine 



Although the outside appearance of the wood pile did not show any signs of 

deterioration, the inside was severely deteriorated. The density of the channels made by 

the borers indicated a very large infestation of shipworms that did not have adequate 

space and time to grow to their full potential nor to orient along the grain of the wood. 

The short time span and the)extent of the damage illustrate the importance of 

protecting wood piles or providing the means to repair such structures. It is worth noting 

that the city of Belfast replaced the deteriorated wood piles with piles made of a tropical 

wood, called Greenheart, which was imported from Venezuela. The exploitation of 

naturally-durable tropical woods for piling can contribute to global environmental 

concerns. 

2.9 Conclusions 

Based on the survey of information presented in this chapter, the following 

conclusions are drawn: 

1. There is a serious problem with marine pile deterioration specifically in the state 

of Maine, and generally along the coastal waters of the United States. This 

problem is not new as the results from wood board tests conducted as far back as 

in the 1940's show. Both shipworms and Gribble were found to cause significant 

wood pile damage in Maine waters. 

2. The presence of shipworms at specific geographic locations in Maine coastal 

waters and their aggressiveness contradicts the general preconception that 

shipworms are not active in cold waters. 



3. Field observations indicate that marine borer organisms need to be characterized 

to understand the potential and nature of wood pile attack. Furthermore, 

classification of damage zones in wood piles serves not only to assess damage but 

also to develop a protection strategy. 

I 



Chapter 3 

Repair of Wood Piles with Prefabricated FRP Composite 

Shells 

I 

3.1 Abstract 

An effective method for combined environmental protection and structural restoration of 

wood piles in waterfront facilities is not available. The objective of this chapter is to 

survey the available methods for wood pile protection and structural restoration with the 

intent of developing an effective method. In addition to reviewing the available repair 

methods, a field inspection of a harbor in Maine was conducted to assess existing 

technologies. A wood pile repair method that utilizes bonded FFW composite shells and a 

grouting material is proposed. Fiber, resin, adhesive, coatings and grouting materials 

were systematically analyzed to deliver the required system performance. Two 

fabrication methods for the FFW composite shells are discussed based on the experience 

gained in the fabrication of laboratory prototypes. Furthennore, a step-by-step procedure 

amenable for field installation is proposed. Finally, a preliminary cost analysis is 

conducted to assess the feasibility of the proposed system. 

3.2 Introduction 

3.2.1 Scope and Objective 

An effective method for both protection and structural restoration of wood piles in 

waterfront facilities is not available in the literature. The objective of this chapter is to 



survey the available methods for wood pile protection and structural restoration with the 

intent of developing an effective combined method. To attain this objective, not only the 

literature was reviewed but also a field inspection of a harbor was conducted. A wood 

pile repair method that utilizes FRP composite shells and a grouting material is proposed. 

Materials were systematically analyzed to deliver the required system performance. Two 

fabrication methods for the FRP composite shells are discussed based on the experience 

gained fabricating laboratory prototypes. Furthermore, based on the findings of this 

study, a step-by-step procedure amenable for field installation is proposed. Finally, a 

preliminary cost analysis is conducted to assess the feasibility of the proposed system. 

3.2.2 Background 

Marine borers cause extensive damage to wood piling used to support piers, 

marinas or other waterfront structures and in many cases replacement of these pilings has 

been the only alternative. The use of preservative treatments prolongs the life of wood 

piles for many years and has previously been used extensively to protect piling in wooden 

waterfront structures. However, environmental concerns regarding the preservatives used 

for this purpose lead to restrictions in their use. For this reason some states, such as 

Maine, banned the use of creosote, one of the most common and most effective 

preservatives used for protection of wood piles from marine borers,. This, in turn, 

aggravated the problem of wood pile deterioration. Another preservative chemical used in 

wood piles, chromated copper arsenate (CCA), contains heavy metals and questions 

about its hazard to human health have been raised. The federal government has recently 

placed restrictions regarding the use of CCA preservative in residential applications. A 



study on CCA leaching of treated wood piles in seawater and in fresh water estimated 

long-term release of chemical elements (Lebow et al. 1999). 

The service life of deteriorated marine wood piles can be prolonged in some 

instances by repairing the pile. Repair methods include encasing of the damaged wood 

pile with some type of jacket or sheeting (e.g., plastic, steel or concrete), or removing the 

damaged portion and replacing it with a new piece that is spliced with the old wood pile. 

For example, a method for repairing damaged creosote treated wood piles using a wire- 

mesh reinforced shotcrete jacket was proposed (Chellis 1961). A method for ground 

repair of wood poles involving screwing a metal sleeve around the base of the pole and 

filling the space between the sleeve and the pole with aggregates and resin was presented 

(Douglas 1986; Shepard 1987). 

The Unified Facilities Criteria (UFC) handbook for operation and maintenance of 

waterfront facilities presents various repair methods for damaged wood piles (US Army 

Corps of Engineers et al. 2001). The first method discusses protection of wood piles by 

wrapping them with polyvinyl chloride or polyethylene wraps. Method two discusses 

partial posting of a damaged wood pile by joining a new pile butt with bolted pretreated 

timber fish plates. The third method discusses repair of wood piles by concrete 

encasement. Two types of forms can be used: (a) Flexible form (Sea form fabric fonn) 

and (b) Split fiberboard forms. These forms have no structural significance but they are 

used to keep the concrete contained until it hardens. The fourth method discusses repair 

or retrofit of timber piles with an underwater curing epoxy and fiber reinforced wraps. 

The fabrics are saturated with the epoxy and then applied to the wood pile. The fifth 

repair strategy discusses replacement of the damaged wood pile with a new wood pile. 



The sixth repair strategy discusses replacement of the damaged wood pile with a new 

concrete pile. 

3.2.3 Available Methods for Protection of Wood Piles 

One strategy for protection of wood piles from marine borer attack is encasing 

new piles with a plastic wrap or jacket (Baileys 1995; U.S. Navy 1987). Most of the 

methods available are only suitable for protection and provide no structural restoration 

capabilities. Therefore, they can only be used to protect new pilings, or pilings with 

minimal damage and adequate structural properties. Master Builders, Inc., of Cleveland, 

Ohio, developed a process (A-P-E, Advanced Pile Encapsulation) for protection of piles, 

risers, jackets and other marine structures. This method employs a molded fiberglass 

outer jacket that is used as a form for containing the grout. The grout used in this process, 

an aggregate epoxy mix, is pumped through injection ports from the bottom up (Doyle 

Publishing 1996; Master Builders 2001). This method uses an epoxy grout that is usually 

expensive and a non structural fiberglass jacket that is expensive and offers no structural 

restoration. Tapecoat Company, of Evanston, IL, developed a modular encapsulation 

system that provides protection to marine structures. The product trade name is TC 

Enviroshield and the series T is used for wood piles. This system consists of a flexible 

outer jacket that wraps the pile and restrains the flow of water. This system is reported to 

lower the dissolved oxygen content of the water inside the wrap, which prevents marine 

borers from attacking the wood pile (Doyle Publishing 1996; Tapecoat 2001). This 

product can only be used to protect structurally sound wood piles but not to restore 

structural capacity. Denso North America, of Houston, TX, also developed a line of 



products used for protection of wood piles. These include the Denso's SeaShield Series 

100 that encapsulates the pile and seals out oxygen and water providing protection fiom 

marine borers for timber piles. Denso also developed jackets, trade names SeaShield Fab- 

Form and Poly-Form, which are used as forms for concrete or epoxy encasement to 

structurally restore wood piles (Demo North America 2000; Doyle Publishing 1996). 

These jackets and encasements have no structural significance and cannot be used to 

repair deteriorated wood piles. Rockwater Manufacturing Corp. developed a marine pile 

system for marine borer protection of wood piles. This system is very similar to the other 

systems available in the sense that it is reported to reduce the oxygen levels of the water 

inside the wrap. The company also provides fiberglass pile jackets, that when used with 

underwater grouts, can provide structural support (Doyle Publishing 1996; Rockwater 

1999). The wraps and fiber glass pile jackets are non structural and they can not be used 

for wood pile restoration. Osmose Marine, based in Griffin, GA, developed a protection 

system for marine piles using a polyvinyl chloride (PVC) wrap, trade name Pile-Gard, 

which creates an airtight seal. This product, which reportedly limits the oxygen supply to 

marine borers, was invented in the 1950's and therefore has a long history of protecting 

piles (Doyle Publishing 1996; Liddell 1967; Osmose 2001). This method can only be 

used to protect undamaged wood piles or wood piles that have adequate structural 

capacity, since the method does not provide structural restoration. 

3.2.4 Available Methods for Structural Restoration of Wood Piles 

Hardcore Composites of New Castle, DE, developed a method, tradename 

Hardshell System, which is reported to protect as well as repair and restore timber piles. 



This system uses E-glass / vinyl ester composite shells fabricated by the vacuum assisted 

resin transfer molding (VARTM) process. The shells are manufactured in two halves and 

they are joined using bonded "H" connectors. The "H" connector is a female-male type 

of connector in which one of the half shells has the female end and the other acts as the 

male. Adhesive is applied to the female portion of the seam and straps are used to hold 

the two pieces together until the adhesive cures and the grout is pumped (Hardcore 

Composites 1999; Hardcore Composites 2000). The fact that the bond area of the " H  

connector is relatively small raises doubts about the ability of the system to provide 

structural continuity in the circumferential direction. The second company that has a 

system that rehabilitates wood piles is Fyfe Co. L.L.C., also known as "The ~ i b n v r a ~ ~ ~  

Company", based in San Diego, CA. This repair method uses a fabric reinforcement that 

is wrapped around the pile and then impregnated underwater with an epoxy resin 

providing a barrier against marine borers (Fyfe 1998). Since the fabric reinforcement 

impregnation is performed underwater, after the epoxy cures, the portion that is repaired 

is sealed fiom the surrounding environment. Impregnation of the fabric reinforcement 

underwater is difficult to execute and monitor. Even if the fibers are impregnated before 

they are introduced into the water, the resin may not cure properly. 

3.3 Assessment of Existing Wood Pile Repair Methods in Portland Harbor, 

Maine 

The condition of structural wood piles, repaired using various methods in Portland 

Harbor piers, was visually inspected in May 2000. The objective of the inspection was to 

assess methods currently used to repair damaged wood piles. Wood pile repair methods 



in three piers: Portland Pier (7), Custom House Wharf (6) and Maine Wharf (9, were 

inspected during low-tide, as depicted in Figure 3.1. 

Figure 3.1 - Piers Inspected in Portland Harbor, adapted from (Maine DOT 1986) 

The Portland Pier has a timber retaining wall with solid fill, wood piles and a 

wood deck supporting a parking lot (Maine DOT 1986). The Custom House Wharf has 

an earth-filled pier structure with wooden-timber and a steel crib bulkhead, wood piles 

and an asphalt paved wood deck. There are several marine-type businesses operating on 

the pier (Maine DOT 1986). The Maine Wharf pier has wood piles with a concrete deck 

(Maine DOT 1986). 

3.3.1 Inspection of Portland Pier 

The wood pile repair method used in this pier consisted of a corrugated (profile wall) 

high-density polyethylene (HDPE) pipe encasing (See Figure 3.2(a)). The corrugated 

HDPE pipe was split in two halves, which were placed around the wood pile and held 



together with circumferential metal straps. The metals straps were spaced approximately 

91 0 mm to 1220 mm. The space in-between the wood pile and the corrugated HDPE pipe 

was grouted with un-reinforced concrete. Typical dimensions of the corrugated HDPE 

pipe used were 686 mm for the external diameter and 584 mm for the internal diameter. 

The thickness of the corrugated profile wall was 51 mm. Several problems of this repair 

method were observed in individual piles: 1) The steel straps were cut and the corrugated 

HDPE pipe halves were opened as shown in Figure 3.2(b); 2) Wood damage was 

observed at pile sections above the repaired area; 3) The concrete fill was deteriorated 

and disintegrated with relative little effort; and 4) At the opened joint of the corrugated 

HDPE pipe the concrete was spalling and exposing the interior wood pile. 

Figure 3.2 - Repair Method using Corrugated HDPE Pipe Encasing: (a) Repaired Wood 

Pile; and (b) Failure of HDPE Pipe Encasing 



3.3.2 Inspection of Custom House Wharf 

Attempts to repair damaged wood piles were made on this pier, as well. The same 

repair method used at Portland Pier was used in this pier. However, some of the 

corrugated HDPE pipes were placed as a continuous section and not as two halves. This 

implies that the old pile was probably cut off and a new portion was connected to the old 

pile, encased with the corrugated HDPE pipe and grouted with concrete. The use of a 

continuous corrugated HDPE pipe eliminated the problem of concrete spalling observed 

at the joints. The wood piles at this structure were of smaller size and therefore a smaller 

size corrugated HDPE pipe was used (exterior diameter of 533 mm, interior diameter of 

457 mm and corrugated wall thickness of 38 mm). According to one of the workers in the 

business operation in the pier, the wood pile repairs were performed two years earlier. 

Another type of wood pile repair method observed was splicing. In this method 

the top portion of the old damaged pile was removed and a new wood pile portion was 

spliced using steel bolts, as shown in Figure 3.3. 

New wood pile 

I 
Steel bolts 

I 

Old wood pile 

Figure 3.3 - Splicing of Wood Piles with Steel Bolts 

For a wood pile with an approximate diameter of 254 mm, the steel bolts were 

spaced 203 mm apart. A problem that was observed in the splices was a gap between the 
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horizontal surfaces of the two wood pile portions, which does not allow for proper 

vertical load transfer by bearing. The splice also allows water to contact the untreated 

center of the wood pile. 

3.3.3 Inspection of Maine Wharf 

At the Maine wharf, repair methods were also applied to several damaged wood 

piles. Several piles were repaired using splicing, as shown in Figure 3.3. Corrugated 

HDPE pipes were also used at this facility. The pipes were placed around the pile in two 

halves and metal straps were used to hold them together. At the vertical joints metal 

plates were used to close the gap and contain the concrete. The concrete was in good 

condition. A combination of corrugated HDPE pipes and the splicing method with steel 

bolts was observed. Part of the splice length was buried in concrete and part was exposed 

as shown in Figure 3.4. 

Figure 3 .4  - Repair Method using of HDPE Pipe Encasing and Splicing with Steel Bolts. 



3.4 Proposed Repair Method using FRP Composite Shells 

The available protection or restoration methods have limited applicability in most 

cases. Plastic wraps can protect against marine borers but cannot be used to restore 

structural capacity. Steel jackets can corrode especially in the marine environment and 

concrete encasement can develop ptoblems with spalling. Fiber reinforced composite 

jackets that are installed in halves with an "H" connector have limited bonded area and 

premature failure of the bond is possible. Impregnation of the fibers underwater can be 

difficult and proper curing of the resin may not be achieved. 

The proposed wood pile repair method utilizes a fiber-reinforced polymer (FRP) 

composite encasement, or shield, that encapsulates and splices the deteriorated portion of 

the pile. The encasement was developed based on experience with appropriate 

technologies in the structural FRP composites (Kshirsagar et al. 2000; Lopez-Anido 

2000a; Lopez-Anido 2000b; Lopez-Anido and Xu 2002) field combined with the needs 

for wood pile reinforcement and protection observed in the field observations, survey, 

and literature review The shield is made of bonded thin and flexible FRP composite 

cylindrical shells that deliver the required strength to repair damaged wood piles. The 

cylindrical shells had a slit or opening along their length, which enabled them to be 

opened and placed around the deteriorated wood pile. Since it was advantageous to 

encase the pile with a series of overlapping shells, the minimum number of FRP 

composite shells required is two; however additional shells can be added depending on 

the structural restoration needs. The slit of each cylindrical shell is staggered to avoid 

lines of weakness through the entire shield (See Figure 3.5). 



In the proposed method, the space between the FRP composite shield and the 

wood pile is filled with a grouting material. The grouting material does not provide a 

structural bond with the wood pile but rather provides interlocking (friction) between the 

wood pile and the FRP composite shells. Since the grout is not expected to completely 

seal the wood core, seawater saturates the pile creating a layer of stagnant water, 

potentially with limited oxygen supply. 

,FRP composite shells 

Figure 3.5 - Cross-Section of Wood Pile Repaired with FRP Composite Shells 

Assuming a lack of oxygen, marine borers already inside the wood pile would be 

expected to die and new borers would be prevented from attacking the wood pile. A 

schematic of the proposed repair system is depicted in Figure 3.6. 



Figure 3.6 - Schematic of Wood Pile Repair with FFW Composite Shells 

FFW composite shells need to be driven 0.3 to 0.6 meters below the mud line to 

avoid secondary attack by marine borers (Baileys 1995; Chellis 1961). Extending the 

FRP composite shells 0.6 m above the high water level could prevent secondary attack by 

marine borers in the splash zone (Baileys 1995; Chellis 1961). The proposed structural 

restoration method utilizes the un-damaged zone of the existing wood pile by encasing 

and splicing the damage portion plus the required development length (i.e., partial length 

reinforcement). 



3.5 Material Selection - Prototype Development 

3.5.1 FRP Composite Shell 

A unidirectional woven E-glass fabric with a weight of 880 dm2, trade name 

VEW 260, was selected as the primary continuous reinforcement. The fabric 

reinforcement is delivered in rolls with a width of 1.22 m and an approximate weight of 

105 kg. This type of fabric reinforcement was selected because of adaptable directional 

properties (e-g., continuous fiber reinforcement in selected orientations), ease of 

fabrication (e.g., cutting and placement) and cost competitiveness. This particular fabric, 

depending on the fiber architecture that was developed, provides most of the strength in 

each direction that is placed. The amount of reinforcement in each direction depends on 

the loading and therefore the stresses imposed on the part. Chopped Strand Mat (CSM) 

weighing 305 dm2,  trade name MAT 113, was used as secondary non-continuous and 

randomly oriented reinforcement. 

The proposed fiber architecture for the FRP composite shell consisted of three 

layers of unidirectional continuous fabric reinforcement in the longitudinal or axial 

direction (0°), one layer of unidirectional continuous fabric reinforcement in the hoop or 

circumferential direction (90°), and two outer CSM layers (See Figure 3.7). 
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Figure 3.7 - Fiber Reinforcement of FRP Composite Shell 

The fiber architecture design is based on maximizing fiber reinforcement in the axial 

direction with a minimum amount of fibers oriented in the hoop direction. Axial fiber 

reinforcement contributes to both bending and axial stiffness and strength of the shell, 

which is required to splice the damage portion of the wood pile. Hoop fiber 

reinforcement provides adequate integrity to the flexible shell with the required shear 

strength and mechanical fastener support. One CSM layer was placed on each face of the 

shell laminate to provide improved bonding to the substrate and to develop a resin rich 

area for environmental protection. The resulting laminate lay-up of the FRP composite 

shell is [CSM, 0, 90,0,O, CSM] (See Figure 3.8). 

A low viscosity epoxy-based vinyl ester resin, Derakane 41 1-C50, was selected as 

the matrix for the composite shells (Dow 1999). The epoxy-based vinyl ester resin was 

selected because of its high flexibility and impact resistance, its lower cost compared to 

other resin systems, such as epoxies, and its good performance in harsh marine 

environments. This resin has a viscosity of 0.15 Pa.s and is well suited for  SCRIMP^^ 



processing. The high flexibility and impact resistance allows the manufactured part to 

easily absorb impact loads from approaching vessels. 
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Figure 3.8 - FRP Composite Shell Laminate Lay-Up 

3.5.2 Grouting Systems 

The criteria used to select the grouting system were: (a) ability to be applied 

underwater, (b) pumping ability, (c) minimal shrinkage, (d) commercial availability, and 

(e) cost competitiveness. Research conducted on concrete columns suggests that the grout 

material used has fewer voids when pumped from the bottom up, rather than dropped 

from the top (Snow 2000). Two different types of grouting systems were selected and 

evaluated: (1) cement-based structural grout, and (2) expanding polyurethane chemical 

grout. 

The cement-based grout can be pumped in place using conventional concrete 

pumps and cures underwater (Five Star 2001; NBEC 2000). This grout has minimal 

shrinkage and high compressive strength at early stages. The typical, one day, 



compressive strength of this material at 2 3 ' ~  is 35 MPa, while at twenty-eight days it 

reaches compressive strengths up to 52 MPa. 

The expanding polyurethane chemical grout, trade name SikaFix HH, is a two- 

part material system: component A is the polyurethane and component B is an accelerator 

(Sika 1998). This grout is a fluent material and can be easily pumped to place. The curing 

reaction is triggered when the grout comes in contact with moisture, with less than one 

hour curing time. The polyurethane grout system results in a flexible layer with high- 

energy absorption capabilities. However, the polyurethane grout does not have any 

significant compression or bearing strength and, therefore, is non-structural. The cost of 

the polyurethane grout is relatively high compared to the cement-based grout. 

3.5.3 Underwater Curing Adhesive 

An underwater curing adhesive was required to bond the FRP composite shells 

together and provide "composite action". The selection criteria for the adhesive were: (a) 

ability to cure underwater, (b) ability to be applied underwater, (c) ability to bond well to 

vinyl ester composites, and (d) durability in waterfront environments (See Chapter 4). 

The adhesive selected was Hydrobond 500: an underwater curing two-part epoxy 

adhesive: part A is the epoxy resin and part B is the hardener (Superior Polymer 2000). 

Part A, which is modified Bisphenol-A Polyglycidyl Ether, is a viscous light amber liquid 

with mild odor that comes in various consistencies. Part B, which is a modified 

Polyamine, is a viscous liquid with a fishy odor and comes in various colors and 

consistencies. Blue color was selected for the pile repair application because it is visible 

through the FRP composite shells and, therefore, it was possible to visually inspect the 



adhesive spread area between shells. For underwater applications, a paste consistency 

applied with a trowel is recommended. In the laboratory prototypes, the adhesive was 

applied around the circumference and along the length of the FRP composite cylindrical 

shells covering all the contact area between two shells. 

3.5.4 Polymer Concrete Coating 

A polymer concrete coating or overlay was required to develop fiction between 

the FRP composite shell and the cement-based structural grout. The polymer concrete 

selected, trade name T-48, is a two-component low modulus polysulphide epoxy-based 

wearing course (TRANSPO 2000). Components A (resin) and B (hardener) are mixed in 

a 2:l volume ratio. The selected polymer concrete is an impervious overlay that is 

typically used for restoring bridge decks and other pavements and applied with a 

thickness of 6 to 12 mm. (TRANSPO 2000) In the wood pile repair application a polymer 

concrete layer with a thickness of 3 rnrn was applied on the interior surface of the 

innermost shell. First, the epoxy was applied using rollers and then standard basalt sand 

was broadcast as the aggregate. The epoxy bonded well to the vinyl ester composite shell. 

The aggregate created a rough surface, which provided adequate interlocking with the 

cement-based grout. It was found that the shear strength at the interface between the 

cement-based grout and the innermost FRP composite shell was highly increased due to 

the polymer concrete coating (See Chapter 5). 



3.6 Fabrication of FRP Composite Shells 

The first manufacturing process used to fabricate the FRP composite cylindrical 

shells with the longitudinal slit was wet lay-up with vacuum bagging compaction. In this 

fabrication process the fabric reinforcement is impregnated with resin, placed on the 

mold, sealed using a plastic bag ahd compacted by drawing a vacuum. The vacuum 

pressure also removes part of the excess resin fi-om the part into the breederbleeder 

layers. One problem found with this fabrication method was the limited pot life of the 

resin used, i.e., when long shells were manufactured the resin gelled before all of the 

fabric reinforcement layers were impregnated. This fabrication process delivered a 

composite shell with relatively low fiber volume content and a consolidated thickness of 

approximately 4.5 rnrn. The relatively high thickness of the consolidated part was an 

obstacle for installation, since the cylindrical shell lacked the required flexibility to let 

one worker open it around a wood pile. 

To overcome the fabrication problems encountered, a variation of the Vacuum 

Assisted Resin Transfer Molding (VARTM) process, the licensed Seemann Composites 

Resin Inhsion Process  SCRIMP^^) (TPI 2001), was selected for fabricating the FRP 

composite cylindrical shells with the longitudinal slit. A polyvinyl chloride (PVC) pipe 

rated for 900 kPa internal pressure was used as a mold or tool. The fabric reinforcement 

was placed on the cylindrical mold dry (See Figure 3.9). Then, the fabric reinforcement 

was sealed with a tubular vacuum bag (See Figure 3.10). 

Vacuum pressure of -102 kPa was applied with a vacuum pump and resin was 

inhsed through a resin pot. The pressure differential between the atmosphere and the 

applied vacuum allowed inhsion of the resin into the fabric reinforcement lay-up. Once 



the resin completely impregnated the fiber reinforcement, the vacuum pressure was 

reduced to -5 1 kPa until the resin gelled. The vacuum pressure debulked (compacted) the 

dry fiber reinforcement. After the resin gelled, vacuum pressure was removed and the 

part was allowed to cure. A cured partially exposed cylindrical shell is shown in Figure 

3.1 1.  The FRP composite shell was then removed by pulling open the longitudinal slit. 

Figure 3.9  - Dry Fabrics and Peel Ply on the PVC Mold 

Figure 3.10  - Tube Vacuum Bag Placed over the System 
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The S C R ~ M P ~  process delivered FRP composite shell with relatively high fiber 

volume content, and a consolidated thickness of approximately 3.3 mm. The shells 

fabricated by the S C R ~ M P ~  process had adequate flexibility to be pulled open and 

placed around the wood pile prototypes. 

Figure 3.11 - De-molding of Cured FRP Composite Shell 

The FRP composite shields are expected to be exposed to ultraviolet radiation 

(W), where the weathering effects are expected to be more important in the piles located 

on the perimeter of the waterfront facility. Weathering and UV protection of the FRP 

composite shells can be efficiently attained with a surface layer containing a pigmented 

gel coat or by incorporating an W inhibitor as an additive to the polymer matrix 

(Haeberle et al. 2002). 



3.7 Laboratory Prototypes - Fabrication 

The feasibility of the repair method was demonstrated in the Laboratory by 

fabricating FFW composite shells and restoring "damaged" wood pile prototypes (See 

Figure 3.12). 

Figure 3.12 - Application of FRP Composite Shells to a Pre-Damaged Wood Pile 

Marine borer damage was simulated by reducing the cross sectional area of the 

pile. The space between the wood core and the FFW composite shells was filled with a 

grouting system. Two different grouting materials were used: (1) Portland cement-based 

(inorganic) structural grout (See Figure 3.13); and (2) Polyurethane-based (organic) non- 

structural grout with shear connectors that transfer loads from the wood pile to the FRP 

composite shells (See Figure 3.14). 

Laboratory prototypes were fabricated for two types of experiments: (1) Push-out 

tests by compression loading to characterize the interface response (wood/grout/FRP 



composite) (Figure 3.15), and (2) Full-size bending tests to characterize the overall 

structural response (Figure 3.16). 
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Figure 3.13 - Repair System B with the Cement-Based Grout 
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Figure 3.15 - Push-Out Test Configuration 
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Figure 3.16 - Full Size Bending Test Configuration 



3.8 Installation Procedure 

To implement the repair method in waterfront applications, a possible step-by- 

step installation procedure was developed and is presented next. 

3.8.1 Step 1: Clean the old Wood pile 

Wood piles usually have marine organisms growing on them. Even though good 

bonding between the grout and the wood core is not expected to be achieved, cleaning 

will be helpful. The marine organisms are organic matter and their presence creates voids 

in the grout, making it weaker and reducing the interlocking that is required for the repair 

system to work efficiently. Cleaning can be performed using a water jet without 

excessive pressure (US Army Corps of Engineers et al. 2001). Excessive pressure can 

cause more damage to the already vulnerable wood pile. Cleaning can also be achieved 

by scrapping off the marine organisms with a modified scraper that conforms to the shape 

of the wood pile (Hardcore Composites 1999). 

3.8.2 Step 2: Place shear connectors at the wood-grout interface 

If shear connectors, such as lag screws, at the wood-grout interface are required, 

then they have to be driven in the wood pile deep enough to be effective. The connectors 

need to extend as much as the thickness of the grout to serve as spacers. 

3.8.3 Step 3: Position the first FRP composite shell around the wood pile 

The longitudinal slit along the length of the FRP composite shell is opened and 

the shell is placed around the damaged wood pile. 



3.8.4 Step 4: Apply adhesive on first shell 

A coat of underwater epoxy adhesive is applied on the interior surface of the 

second shell and on the exterior surface of the first shell, if possible. The use of trowels is 

recommended to help spread the adhesive. 

I 

3.8.5 Step 5: Position the second shell 

The second shell is slid around the first one with the longitudinal slits or gaps 

staggered (preferably 180") to avoid lines of weakness. This step is repeated for 

additional shells staggering the longitudinal slits. 

3.8.6 Step 6: Strap the shells together 

It is necessary to use straps or other means to apply pressure on the FRP 

composite shells to hold them in place until the adhesive cures and also forcing any 

trapped water between them out. Straps should be spaced approximately at 0.6 m 

intervals for satisfactory pressure to be applied to the adhesive contact area. 

3.8.7 Step 7: Drive the FRP composite shield to the required depth into mud 

line 

After curing of the adhesive, the FRP composite shield can be driven into the mud 

line, which needs to be loosened. This can be achieved either by using a water jet that 

stirs and loosens the mud or by digging around the wood pile to the required depth and 

then backfilling the hole. 



3.8.8 Step 8: Drill holes and place shear connectors 

If shear connectors are required for the transfer of loads from the wood pile to the 

FRP composite shield, then holes need to be drilled and the shear connectors placed 

before grouting. This will ensure that any possible voids are filled by the grout and no 

possible entry points remain for marine borers to enter and damage the wood pile. If the 

holes are to be drilled underwater, then an air drill will be necessary. In the laboratory, 

regular steel threaded rods were used; however, in field applications galvanized steel rods 

should be used to avoid corrosion. 

3.8.9 Step 9: Prepare grout and pump it into place 

After the FRP composite shield is driven in the mud, then the grout material can 

be pumped. Grout needs to be pumped from the bottom up to avoid segregation. 

3.9 Cost Analysis 

To assess the commercial feasibility of the wood pile repair method a preliminary 

cost analysis was conducted. For this purpose, the cost of repairing full size wood piles in 

the laboratory was calculated. The cost was divided into the following items: (a) 

materials, (b) fabrication supplies and (c) labor for preparation and application. Material 

costs included the cost of the fiber reinforcement, resin and catalyst. The fiber 

reinforcement cost for a typical composite shell, which has a diameter of 394 mm and a 

length of 4.88 m, was $101. The fiber reinforcement cost included the CSM mat cost, $1 7 

per shell, and the woven unidirectional fabric cost, $84 per shell. 



The resin cost for a typical composite shell was $70 and the catalyst cost was $8. 

The cost of fabrication supplies per shell included peel ply, $40, release film, $25, 

distribution media, $16, plastic tubing, $8.5, bagging film, $12, sealant tape, $7, and 

vacuum line, $5.5. The labor cost to prepare materials, supplies and the mold for 

 SCRIMP^^ fabrication of one shell~was based on the time required, three and a half 

hours, for two student workers to complete the task at a wage rate of $10 per hour. 

Therefore, the total cost for labor application was $70 per shell. The labor application 

cost was based on the time required for one student worker to mix the resin and infuse the 

part. In the laboratory one and a half hours were spent to complete the infusion process. 

Therefore, the total labor application cost was $15. The total cost for one shell was $378, 

where the cost items are summarized in Table 3.1. 

Table 3.1 - Cost Items for FRP Composite Shells Fabricated in the Laboratory 

I I shell ($) 

Item Cost per FRP Composite 

Fiber reinforcement 101 

Resin 

I Fabrication supplies 114 

7 0 

Catalyst 8 

Labor preparation 

I 

Total I 378 

70 

Labor application 

Note: The above prices are for shells having a diameter of 

394 mm and a length of 4.88 m. 

15 



The total cost for repairing a typical wood pile with a diameter of 335 mm using 

4.88 m long FRP composite shells can be determined by adding the cost of the 

underwater epoxy adhesive, $200, and the cement based grout with a thickness of 50 rnm, 

$220. The labor cost for the application of the adhesive and the grout, $100, was 

estimated assuming that two and a half hours are required for four student workers to 

complete these tasks. The cost of any equipment needed, such as concrete mixing trucks 

and pumps is expected to exceed $200. The total cost for a typical wood pile repair was 

$1475 (approximately $1500), where the cost items are summarized in Table 3.2. 

Table 3.2 - Cost Items for Wood Pile Repair with FRP Composite Shells 

I FRP composite shell 1 378 1 756 1 
Item # Items 

Adhesive 

1 

Grout 

Cost per item ($) 

4 gal 

Labor 

Total cost ($) 

20 bags 

Equipment 

Note: The above prices are for wood piles with a diameter of 335 mm repaired 

with 4.88 m long FRP composite shells. 

It is worth noting that additional cost items such as the shear connectors and the 

polymer concrete coating are not included in this estimate. Some costs would be expected 

to decrease if multiple piles at the same site were reinforced. Actual worker rates will be 

higher than student worker labor rates assumed in this study; however it is expected that 

5 0 

10 hrs 

Total 

200 

11 

I 

1476 

220 

10 100 

I 200 



fabrication and installation time will be reduced with practice and expertise partially 

compensating changes in the overall labor cost. 

In the cost analysis of the repair method, no cost item for the extraction of the 

existing damaged wood pile is needed. This represents a cost saving compared to the 

alternative of pile removal, since the cost for extracting and disposing the old treated 

wood piles, including the disruption to the pier facility, is eliminated. The disturbance to 

the normal operation of the waterfront facility is expected to be minimal. Most of the 

repair work can take place beneath the pier facility; no heavy or large equipment is 

necessary to complete the task. 

3.1 0 Conclusions and Recommendations 

The study presented in this chapter allows the following conclusions to be drawn: 

1. Lay-up of wet fabric reinforcement with vacuum bagging compaction proved to 

be an ineffective method for the fabrication of FRP composite shells. 

2. The  SCRIMP^^ fabrication process proved to be a satisfactory method for the 

fabrication of FRP composite shells. 

3. The repair method is environmentally friendly since no new chemicals are 

introduced to the surrounding marine environment. The encasement with the FRP 

composite shield will also attenuate further leaching of chemicals from treated 

wood piles into the water. 

4. The proposed FRP composite shield with the grouting system has a dual function: 

environmental protection and structural restoration of the wood pile. 



5. The repair method can be cost competitive compared to damaged pile extraction 

and new pile installation in cases where disruption to the waterfront facility (e.g., 

pier or wharf) are of concern. 

The following commentary and practical recommendations are proposed: 

1. Modifications and improvements are expected to take place when the technology 

is implemented in the field. 

2. For extended protection of wood piles in service without marine borer damage, 

the use of the polymer grout with only two FFW composite shells may be 

advantageous. 

3. For structural restoration of wood piles with damage (e.g., necking with reduction 

in cross-sectional area), the use of the cement-based structural grout combined 

with polymer concrete overlay and the required number of FFW composite shells 

may provide the requisite load bearing capacity. 

4. It should be noted that the labor rate used for determination of labor cost is low 

($10 per hour) since it is the rate for a student worker. In real applications the rate 

is expected to be approximately $40-$50 per hour. The total time for a typical 

repair to be performed by professionals is expected to be less and therefore a 

portion of the cost will be balanced. 



Chapter 4 

Freeze-Thaw Resistance of FRP Composites Adhesive 

Bonds with Underwater Curing Epoxy 

I 

4.1 Abstract 

A proposed method for the protection and structural restoration of wood piles developed 

at the University of Maine requires the field placement of FRP composite pre- 

manufactured shells around the piling. The FRP composite shells need to be attached 

with an underwater curing adhesive that produces a satisfactory structural bond. The 

adhesively bonded shells develop "composite action" when supporting loads. The main 

concern for durability of the adhesive bond is the resistance to freeze-thaw cycles. To 

assess adhesive bond durability, single lap shear tests were performed after exposure to 

freeze-thaw cycles. The experiments served to characterize the loss of adhesive bond 

strength between FRP composite coupons representative of the shell material. It was 

found that the adhesive strength of the underwater curing epoxy tested in this work is 

reduced 43 % after exposure to standard twenty freezing and thawing cycles. 

4.2 Introduction 

The climate of Maine and other states in the New England area imposes cycles of 

freeze-thaw during winter. The method for protection and structural restoration of wood 

piles presented in Chapter 3 requires field installation of FRP composite pre- 

manufactured shells around the piles. During field placement, FRP composite shells need 



to be attached with an underwater curing adhesive that produces a satisfactory structural 

bond. The adhesively bonded shells need to develop "composite action" to serve as a load 

bearing structural component. The main concern for durability of the adhesive bond 

between the shells is the resistance to freeze-thaw cycles. 

A procedure for exposure to1 freeze-thaw cycling of FRP composites bonded to 

concrete substrates was developed (ICBO 2001). This procedure was adapted to evaluate 

freeze-thaw exposure of four different FRP composite materials including an E- 

glasslvinyl ester composite fabricated by the  SCRIMP^ process (Wood 2000). Standard 

tensile tests and short-beam shear tests were used to evaluate residual mechanical 

properties. 

In this work, the available procedure for freeze-thaw cycling exposure (ICBO 

2001) was adopted. To assess adhesive bond durability, single lap shear tests were 

performed after exposure to freeze-thaw cycles following the ASTM D5868 standard test 

procedure (ASTM 1995). The experiments were designed to allow the loss of adhesive 

bond strength between FRP composite coupons representative of the shell material used 

for wood pile restoration to be characterized. The objective of this chapter is to evaluate 

the residual adhesive shear strength of FRP composite specimens bonded with 

underwater curing epoxy after exposure to freezing and thawing cycles. 



4.3 Materials and Methods 

4.3.1 Composites Fabrication 

FRP composite plates made of E-glass fiber reinforcement and a vinyl ester 

matrix were fabricated using the1 scFUMPTM resin infusion process (TPI 2001). 

Unidirectional woven fabric reinforcement and chopped strand mat (CSM) layers were 

placed dry on a steel base mold and then sealed with a vacuum bag. The fiber architecture 

of the plates was: [CSM, 0, 90, 0, 0, CSM], which corresponds to the actual FRP 

composite shells used for wood pile restoration (See lay-up in Figure 4.1). 

I CSM 

0 

3.5 mm -.-.-.-. 0 

90 

0 
CSM 

Figure 4.1 - Fiber Lay-up (cross-section) of FRP composite plates 

The criteria for material selection and fiber lay-up are discussed in Chapter 3. It is 

worth noting that one CSM layer was added on each surface of the laminate to improve 

bonding properties and to create a resin rich area that may provide environmental 

protection. An Epoxy based vinyl ester resin was selected as the matrix for the composite 

shells (Dow 1999). 



A vacuum pressure of -102 kPa was applied with a vacuum pump. The applied 

vacuum pressure not only debulked (compacted) the dry fiber reinforcement, but also 

removed all the entrapped air from the fiber lay-up. Once the required vacuum level was 

attained, resin was infused through a system of resin feed lines and flow distribution 

media. The pressure differential between the atmosphere and the applied vacuum allowed 

infusion of the resin into the fiber lay-up. After the resin impregnated the fiber 

reinforcement, the vacuum pressure was reduced to -51 kPa until the resin gelled. Once 

the resin gelled, the vacuum pressure was removed and the composite part was allowed to 

cure. From the manufactured FRP composite plates, pieces of 280 mrn x 102 mm were 

cut using a precision wafering machine available in the laboratory (Figure 4.2). 

Figure 4.2 - Precision Wafering Machine 

4.3.2 Adhesive Bonding 

The FRP composite plate surfaces were wetted with water and then bonded 

together using an underwater curing epoxy adhesive, Hydrobond 500 (Superior Polymer 

2000). This epoxy adhesive is specified for applications with a water temperature of at 



least 5OC. The epoxy adhesive was applied on one plate and then the other plate was 

placed over the covered area creating an overlap of 25 mm. At the two edges, 25 mm 

wide strips, cut from the FRP composite plates, were bonded to compensate for the 

greater thickness created by the bond with the second plate. This also helped in aligning 

the specimen with the line of loading during the test. No preparation or cleaning of the 

plate surfaces was done prior to the application of the adhesive. The bonded plates were 

then placed under water for curing of the adhesive. A schematic of the bonded FF2P 

composite plates is provided in Figure 4.3. The vertical dashed lines represent the 

location of the lap shear specimens cut fiom the FF2P composite plates. 

v I l l  Lap shear specimens 

- 

Figure 4.3 - Schematic of Adhesively Bonded FF2P composite plates 

4.3.3 Underwater Conditioning 

The F W  composite specimens were placed in a tap water bath at a temperature of 

38OC with an accuracy of *0.5OC. In this way, the epoxy adhesive cured in an underwater 

environment. The water was heated by one submersible 250-watt heater and was 

circulated by a four-literlmin circulator pump (See Figure 4.4). 



Figure 4.4 - Bonded FRP Composite Plates in the Hot Water Bath 

The water was checked periodically with an electronic thermometer to verify that 

it was maintaining the proper temperature. The control coupons were removed from the 

water bath after 14 days, while the plates used for the freeze-thaw exposure were left for 

an additional seven-day period to complete the three weeks required by ICBO AC125 

(ICBO 2001). 

4.3.4 Freeze-Thaw Exposure 

A minimum number of 20 freeze-thaw cycles is specified by ICBO AC 125 (ICBO 

2001). The specified cycles consist of a minimum of 4 hours in the freezer and a 

minimum of 12 hours in the hot water bath. In order to meet the ICBO AC125 

requirements and have a repeatable daily schedule (i.e., 24 hour cycle), 8 hours in the 

freezer and 16 hours in the hot water immersion bath with a total of 20 cycles were 

selected. The heaters were set to maintain the immersion bath at 38OC and the freezer was 

set to -18OC, as specified by ICBO AC125. Before placing the plates in the freezer, a 

clean rag was used to dry the plates in order to remove the surface water. FRP composite 



plates in the water bath and in the freezer are shown 

respectively. 

in Figure 4.4 and Figure 4.5, 

Figure 4.5 - Bonded FRP Composite Plates in the Freezer 

4.3.5 Single Lap Shear Test Evaluation 

After conditioning and freeze-thaw exposure, the FRP composite plates were cut 

into coupons according to ASTM D5868 (ASTM 1995) using a precision wafering 

machine (Figure 4.2). The machine had a water pump system that watered the cutting 

blade to avoid excessive heat and to prevent FRP composite dust from getting airborne. 

The lap shear test coupon dimensions were 179 mm by 25 mm in agreement with ASTM 

D5868 (Figure 4.3). Lap shear test coupons are shown in Figure 4.6 and Figure 4.7. 

Figure 4.6 - Shear Lap Test Coupons 

65 



I 

Figure 4.7 - Side View of a Lap Shear Test Coupon 

The lap shear tests were conducted using a 100 kN servo-hydraulic loading frame 

(Instron 1998) in a controlled ambient environment with a temperature of 22OC and a 

relative humidity of 45% (See Figure 4.8). A total of 18 specimens were tested, 9 control 

and 9 exposed to freeze-thaw cycles. The specimens were loaded in tension in the 

displacement controlled mode at a rate of 13 mm per minute. The maximum applied load 

and the mode of failure were recorded. 

Figure 4.8 - Lap Shear Test Setup 

4.4 Results and Discussion 

The standard practice for classifying adhesive failures in FRP composite joints 

was applied (ASTM 1994). Adhesive failure (ADH) is defined as: "rupture of the 



adhesively bonded joint, such that the separation appears to be at the adhesive-adherend 

interface" (ASTM 1994). Cohesive failure (COH) is defined as: "rupture of an adhesively 

bonded joint, such that the separation is within the adhesive" (ASTM 1994). 

Experimental data fiom single lap shear tests of control specimens is presented in 

Table 4.1. I 

Table 4.1 -Single Lap Shear Experimental Results for Controlled Specimens 

Maximum 

Load P 

(W 

16.2 1 Adhesive 

Apparent 

Shear 

Strength S 

( m a )  

Adhesive 1 

Mode of Failure 

1 40 % Cohesive 

15.1 60 % Adhesive / 

15.8 1 90 % Adhesive / 

16.6 

1 10 % Cohesive 

Adhesive 

15.0 1 Adhesive 

Adhesive & 
85 O h  Adhesive 1 

16.8 

1 15 % Cohesive 

Adhesive 



The predominant mode of failure of the control coupons was adhesive failure, 

with minimal or no cohesive failures. Only one shear lap control specimen had a 

significant amount of cohesive failure. Typical adhesive failure fiom one of the control 

specimens is depicted in Figure 4.9. 

Figure 4.9 - Typical Adhesive Failures in Control Specimens 

Experimental data fiom single lap shear tests of fieeze-thaw exposed specimens 

are presented in Table 4.2. Most shear lap specimens demonstrated an adhesive mode of 

failure with a significant amount of cohesive failure. In some cases, cohesive failure 

accounted for 50 % of the total overlap bonding area. A typical shear lap specimen 

subjected to fi-eeze-thaw cycles showing a combination of adhesive and cohesive failure 

is depicted in Figure 4.10. 

The overlap bonding area, Ab, was calculated by multiplying the specimen width, 

b, by the overlap length, L (See Table 4. land Table 4.2). 

Figure 4.10 - Typical Adhesive-Cohesive Failures in Freeze-Thaw Specimens 



Table 4.2 - Single Lap Shear Experimental Results for Freeze-Thaw Specimens 

Width 

b (mm) 

Length 

L (mm) 

Overlap Peak 

Load P 

(W 

Apparent 

Shear 

Mode of Failure 

Strength S 

Adhesive 

50 % Adhesive / 

50 % Cohesive 

Adhesive 

80 % Adhesive / 

20 % Cohesive 

60 % Adhesive / 

40 % Cohesive 

50 % Adhesive / 

50 % Cohesive 

80 % Adhesive / 

20 % Cohesive 

90 % Adhesive / 

10 % Cohesive 

80 % Adhesive / 

20 % Cohesive 



The apparent shear strength, S, of the adhesive bond was determined by dividing 

the peak load, P, by the overlap area, Ab, as follows 

Comparative results for control and freeze-thaw exposed specimens are shown in 
I 

Table 4.3. The mean shear strength for the control specimens was 16.2 MPa, while the 

respective value for the freeze-thaw specimens is 9.2 MPa. Therefore, there was a 

reduction in the mean shear strength after 20 freeze-thaw cycles of approximately 43%. 

From the values of the coefficient of variance (COV), it was observed that the test results 

had relatively low variability (e.g., COV of 4.9 % and 2.4 %, respectively). 

Table 4.3 - Single Lap Shear Comparison 

Exposed to Freeze-Thaw Cycles Type of Specimen 

Composite Substrate 

Control 

Adhesive 

I I Immersion at 38OC ( 38OC and 20 Freeze-Thaw cycles I 

I 

Conditioning 

E-Glass / Vinyl Ester 

Underwater Epoxy 

E-Glass / Vinyl Ester 

Underwater Epoxy 

14-Day Water 

Mean Shear Strength 

2 1 -Day Water Immersion at 

Standard Deviation (STD) 

16.2 MPa 

COV 

9.2 MPa 

0.80 MPa 

Mode of Failure 

0.24 MPa 

4.9 % 

I 

I 
2.4 % 

Adhesive Failure 

( Significant Cohesive Failure 

Mostly Adhesive with 



A statistical analysis of the apparent shear strength was performed using one-way 

analysis of variance (ANOVA) for the controlled and fi-eeze-thaw exposed data sets. The 

analysis was conducted using the SYSTAT software package (SPSS 1999). The 

ANOVA analysis determined if the shear strength response was a function of fi-eeze-thaw 

exposure. The model for a one-way ANOVA is represented symbolically as follows: 

Y, = B, +B,  .X* + E ,  (4.2) 

where 

yn = observed apparent shear strength for the data sets 

B ,  BI = coefficients of the model 

Xn = code associated with the treatment under study (e.g., fi-eeze-thaw cycles) 

En = random unit variation within the block of data. 

The null hypothesis and alternative hypothesis are 

Post hoc analysis of type Bonferroni was used for pair-wise comparisons with a 

confidence level of 95% ( a  = 0.05). In order for the two data sets not to be significantly 

different, thep value, which is the probability of the coefficient BI to be zero, has to be 

greater than 0.05 ( p  >0.05). In this case the two sets are statistically different and have a 

very low probability of overlap with a p  value = 0.000. 

It is speculated that the reduction in the bond shear strength is due to the presence 

of voids in the adhesive layer that facilitate water ingress. The void content in the 

adhesive layer is associated with the uneven spread of the adhesive on the FRP composite 

substrate combined with the lack of applied clamping pressure. During freezing, water 



expansion in the voids and crevices deteriorates the epoxy adhesive bond line leading to a 

loss in cohesive strength. 

4.5 Conclusions and Recommendations 

The experimental study presented in this chapter allows the following conclusions to 

be drawn: 

The shear strength of the Hydrobond 500 underwater curing epoxy studied is 

sensitive to freezing and thawing cycles. 

Exposure to freeze-thaw cycles leads to a change in the mode of failure from 

predominantly adhesive type to combined adhesive/cohesive type. 

The retention of mean shear strength after freeze-thaw exposure was only 57%. 

However, the residual shear strength (9.2 MPa) is still adequate to transfer shear 

stresses between FRP composite shells in wood pile repair applications as 

discussed in Chapter 5. 

The relatively low COV obtained in the experiments indicates that repeatability of 

the fabrication process, the testing protocol and the shear strength measurement is 

satisfactory. 

It is worth noting that in marine applications, where the adhesive layer is exposed 

to brackish or ocean water, the freezing point is lowered below 0°C due to the 

presence of salts. Therefore, the probability of exposure to freeze-thaw cycles for 

the same climate region may be reduced compared to fresh water. For this reason, 

the freeze-thaw cycling effect studied in this chapter is expected to be more 

critical in fresh water. However, it is unknown how salt water may affect the bond 



or whether chemical interactions with the salt at lower temperabes may affect 

bond durability or curing. 

The following practical recommendations are proposed: 

1. In field applications of FRP composite shells around wood piles, closely spaced 

straps can be used to increase clamping pressure and, therefore, reduce voids in 

the adhesive layer. 

2. Alternative underwater curing adhesives resistant to freeze-thaw cycles should be 

sought. 

3. In the design of FRP composite bonded shells a knock-down factor for apparent 

shear strength needs to be introduced to account for the loss of strength that can 

occur during exposure to freeze-thaw cycles with certain adhesive systems. 

4. The effect of increasing the number of freezing and thawing cycles (beyond the 

standard twenty cycles) on the strength of the underwater epoxy adhesive should 

be studied. 

4.6 Notation 

The following symbols are used in this chapter: 

S - - Bond shear strength 
P - - Peak load value 

A b  
- - Overlap bonding area 

Subscripts 



Chapter 5 

Experimental Characterization of FRP Composite-Wood 

Pile Interface by Push-Out Tests 

I 

5.1 Abstract 

Structural restoration of spliced or damaged wood piles with FRP composite shells 

requires that shear forces be transferred between the wood core and the encasing 

composite shells. When a repaired wood pile is loaded, shear stress will develop between 

the wood pile and the FRP composite shell through the grouting material. Alternatively, 

shear force transfer is developed through shear connectors. The main objective of this 

chapter is to characterize the interfaces in wood piles repaired with FRP composites 

shells and grout materials. Two interfaces were characterized: (a) wood pilelgrout 

material and (b) grout materialhnnermost FRP composite shell. A set of design 

parameters that control the response of both interfaces were identified: (a) Extent of 

cross-section reduction of wood pile due to deterioration (necking); (b) Type of grout 

material (cement-based or polyurethane); (c) Use of shear connectors, and (d) Addition of 

a frictional coating on the innermost shell. Push-out tests by compression loading were 

performed to characterize the interfaces and discriminate the effect of the design 

parameters. The outcome of the push-out tests was the evaluation of the loadfslip non- 

linear response and the progressive failure mechanism. A set of repair systems that 

represent different combinations of the design parameters were fabricated and the 

interfaces evaluated. The general finding was that the combination of cement-based grout 



and polymer concrete overlay on the innermost shell provided the most efficient shear 

force-slip response. Furthermore, normalized representations of shear stress transfer at 

the wood/grout/FRP composite interfaces and through shear connectors were developed 

to aid in the design process. 

I 

5.2 Introduction 

Marine wood piles supporting waterfront structures are designed to support 

vertical gravity loads from the pier structure, top-side facilities, and from mobile 

equipment and vehicles. Horizontal loads due to wind pressure, wave action, ice 

formation and eventual vessel impact are exerted on wood piles and need to be 

considered in the design process. When extensive damage is imposed on the wood piles 

by marine organisms or mechanical action (e.g., drifting ice, floating debris or docking 

vessels) the ability of the wood piling system to support the vertical and horizontal design 

loads is compromised. 

In structural restoration of wood piles with fiber reinforced polymer (FRP) 

composite shells, shear transfer capability between the wood core and the encasing 

composite shells is required to splice the damaged portion. When a wood pile repaired 

with FRP composite shells is subjected to bending moment, shear forces or axial forces, 

shear stress will develop between the wood pile and the FRP composite shell through the 

grouting material. Alternatively, shear force transfer between the wood pile and the FRP 

composite shells can take place at the discrete location of shear connectors when these 

are present. A representative test method is required to assess the shear force and 

deformation response between wood piles and FRP composite shells. 



Push-out tests (British Standards Institution 1979; European Committee for 

Standardization 1997) are utilized to characterize shear force transfer and slip response in 

structural connections. For example, a push-out test configuration for shear connectors in 

steel-concrete composite beams was developed to assess the strength and loadslip 

characteristics of the connectors embedded in concrete (Menzies 1971). The test 

specimen configuration, effectively characterized the connection interface between the 

concrete slab and the steel girder. Push-out tests were also performed to investigate the 

feasibility of using a new type of steel shear connectors called perforbond rib in 

composite beams (Veldanda and Hosain 1992). The influence of the shape of the deck 

profile on the shear resistance of connectors (studs) used in composite construction was 

investigated through push-out tests (Lawson 1996). Push-out tests were performed to 

evaluate the strength and the loadslip characteristics of a new shear stud connector 

(Arroyo and Francois 1996). A push-out test setup applied to column-beam connections 

of FFW composite pultruded profiles was developed to evaluate adhesive and bolted 

joints (Lopez-Anido et al. 1999). A push-out test set up to investigate strength, stiffness, 

slip capacity and fatigue endurance of shear connections with a full-depth precast slab 

was presented (Shim et al. 2000). Alternatively, the load transfer mechanism between 

fiber-reinforced polymer (FRP) composite-glulam beams and concrete slabs using lag 

screws was studied using short-span bending tests (Brody et al. 2000). A test protocol for 

push-out tests of FRP composite bridge decks connected to supporting beams was 

proposed (Karbhari 2001). 

The main objective of this chapter is to characterize the interfaces in wood piles 

repaired with FFW composites shells and grout materials. Two interfaces need to be 



characterized: (a) wood pilelgrout material and (b) grout materiallinnermost FRP 

composite shell. A set of design parameters that control the response of both interfaces 

were identified: (a) Extent of cross-sectional reduction of the wood pile due to 

deterioration; (b) Type of grout material; (c) Use of shear connectors, and (d) Addition of 

frictional coating on innermost shell To discriminate the effect of the identified design 

parameters on the two interfaces, push-out tests by compression loading were performed 

(See Figure 5.1). 

FRP 

Figure 5.1 - Schematic of the Push-Out Specimens for Repair Systems A, B and D 

The expected outcome of the push-out tests was the characterization of the 

loadlslip non-linear response and the progressive failure mechanism. For this reason a set 

of repair systems that represented different combinations of the design parameters were 

fabricated and the interfaces evaluated through push-out tests. Results of this work were 

also expected to be used in the development of phenomenological models of shear stress 



transfer at the woodlgrout/FRP composite interfaces and through shear connectors as a 

means to predict the structural response of a wood pile repaired with FRP composite 

shells, as shown in Chapter 7. 

5.3 Repair Systems Studied I 

Five different repair systems (A, B, C, D and E) that represent relevant 

combinations of the proposed design parameters were investigated. Two specimens were 

fabricated and evaluated for each repair system with the exception of repair system E 

where only one specimen was available. Wood pile sections made of copper chromated 

arsenate (CCA) treated southern yellow pine were encased with prefabricated FRP 

composite shells using different variations of the design parameters identified. A total of 

nine specimens were fabricated and evaluated by conducting push out tests (Table 5.1). 

Table 5.1 - Design Parameters Evaluated through Push-Out Tests 

Repair 

system 

Intact I Cement I Yes I I 2 

Intact I Cement I No I yes I 1 

# Specimens 

2 

2 

2 

Wood pile 

Intact 

Damaged 

Intact 

Dimensions and configuration of the specimens fabricated and evaluated are 

provided in Table 5.2. The specifics of each repair system are provided in the following 

sub-sections. 

Grout 

Cement 

Cement 

Polyurethane 

Shear connectors 

No 

No 

Yes 

PC coating 

No 

No 

No 



Table 5.2 - Specimen Configuration and Dimensions 

Number of 

threaded 

rods 

Repair 

system 

specimen 

A1 

A2 

B1 

B2 

C1 

C2 

Dl 

D2 

El  

5.3.1 Repair System A 

This system consists of an intact (undamaged) wood pile section encased with 

FRP composite shells and a structural cement-based grout. The cement-based grout (Five 

Star 2001; NBEC 2000) was selected based on the performance requirements for a wood 

pile repair system, as discussed in Chapter 3. This system helped evaluate the effect of 

necking damage because the results obtained were compared with the results of system B. 

Undamaged wood pile sections are shown in Figure 5.2(a). A wood section encased with 

FRP composite shells and a cement-based grout is shown in Figure 5.2(b). 

Length of 

wood 

prototype 

(mm) 

680 

768 

864 

85 1 

648 

762 

610 

800 

660 

Diameter 

of wood 

prototype, 

2 -  d m m )  

229 1 

254 

235 

254 

330 

318 

248 

317 

356 

Length of 

FRP 

shield, h 

(mm) 

521 

61 0 

737 

737 

546 

648 

499 

648 

635 

Number of 

shells in 

FRP 

shield 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Thickness 

of grout t, 

(mm) 

57 

63 

57 

5 1 

20 

13 

46 

46 

38 



Figure 5.2 - (a) Undamaged Wood Pile Sections, (b) Undamaged Wood Pile Section with 

FRP Composite Shells and Cement-Based Grout (Repair System A) 

A schematic of the repair system A is depicted in Figure 5.3. 

shell-grout interfa 

T - slotted table 

Figure 5.3 - Schematic of Test Set-Up for Repair System A 

5.3.2 Repair System B 

Repair system B consists of a damaged (approximately 6 2  % reduction in cross 

sectional area) wood pile section encased with FRP composite shells and a structural 

cement-based grout. This cross-section reduction simulated Gribble damage or necking 



(See Chapter 2). A damaged wood pile section before repair is shown in Figure 5.4(a). 

The wood pile after repair is shown in Figure 5.4(b). 

Figure 5.4 - (a) Damaged Wood Pile Section (62% reduction), (b) Damaged Wood Pile 

Section with FRP Composite Shells and Cement-Based Grout (Repair System B) 

A schematic of the repair system B is shown in Figure 5.5. 

X , LvDT unit 

shells 

Figure 5.5 - Schematic of Test Set-Up for Repair System B 

5.3.3 Repair System C 

Repair system C consists of an intact (undamaged) wood pile section encased 

with FRP composite shells, a no-structural polyurethane grout and shear connectors. The 



polyurethane grout, trade name SikaFix HH (Sika 1998), was selected based on the 

performance requirements for a wood pile repair system, as discussed in Chapter 3. A 

close up picture of the repair system after failure is provided in Figure 5.6(a). The 

threaded rod arrangement is shown in Figure 5.6(b). 

Figure 5.6 - (a) Failed Wood Pile Section with FRP Composite Shell, Polyurethane Grout 

and Threaded Rods (Repair System C), (b) Threaded Rod Arrangement 

5.3.4 Repair System D 

Repair system D consists of an intact (undamaged) wood pile section encased 

with FRP composite shells, a cement-based grout and shear connectors. A picture of the 

repair system is provided in Figure 5.7. 

Figure 5.7 - Undamaged Wood Pile Section Encased with FRP Composite Shell, Cement- 

Based Grout and Threaded Rods (Repair System D) 



A schematic applicable to both repair systems C and D is shown in Figure 

P composite shells 

T-slotted table A interface 

Figure 5.8 - Schematic of Test Set-Up for Repair Systems C and D 

5.3.5 Repair System E 

Repair system E consists of an intact (undamaged) wood pile section encased with 

FRP composite shells, a cement-based grout and polymer concrete coating on the interior 

surface of the innermost shell. The polymer concrete coating or overlay, trade name T-48 

(TRANSPO Industries 2000), was selected based on the performance requirements for a 

wood pile repair system, as discussed in Chapter 3. The total thickness (epoxy resin and 

aggregates) of one layer of the coating was approximately 3 mm. The polymer concrete 

coating applied on the interior surface of a shell is shown in Figure 5.9(a). The repair 

system E is depicted during testing in Figure 5.9(b). 



(a) (b) 
Figure 5.9 - (a) Applied Polymer Concrete Overlay on the Innermost Shell, (b) 

Undamaged Wood Pile Section with FRP Composite Shell, Cement-based Grout and 

Polymer Concrete Coating (Repair System E). 

5.4 Specimen Fabrication 

Cylindrical FRP composite shells with a longitudinal opening or slit were 

fabricated in the laboratory using the licensed Seemann Composites Resin Infusion 

Molding Process  SCRIMP^^) (TPI 2001). A detailed description of the materials and 

process used in the shell fabrication are presented in Chapter 3. A total of 18 FRP 

composite shells were fabricated for the push-out tests as shown in Figure 5.10. 

Figure 5.10 - Cylindrical Shell Fabrication Setup showing Resin Flow through 

Distribution Media 



Two consolidated shells were bonded together with an adhesive to form the FRP 

composite shield or jacket that encased the wood pile section. The underwater curing 

epoxy adhesive, trade name Hydrobond 500 (Superior Polymer 2000), was selected based 

on the performance requirements for a wood pile repair system, as discussed in Chapter 

3. Durability of this underwater epoxy adhesive to freeze-thaw cycles was studied in 

Chapter 4. The longitudinal gaps were staggered at an angle of 180' to avoid lines of 

weakness in the FFW composite shield. 

The space between the wood pile and the FFW composite shield was filled with a 

grouting material. Grouting was conducted with the specimens placed upside down, since 

it was easier to support the relatively light FFW composite shield than the wood pile on a 

wood form with sealing. The spacing needed for the push out test at the bottom between 

the FFW composite shield and the wood pile was easily adjusted by vertically adjusting 

the wood form. The wood form also provided support until the grouting materials cured. 

After curing, the form was removed. For the cement-based structural grout at least three 

days were allowed for curing before testing to develop satisfactory strength gain W E C  

2000). 

5.5 Push Out Test Method 

5.5.1 Set Up and Procedure 

The push-out tests were conducted using a 500 M Instron servo hydraulic testing 

system with a T-slotted table (See Figure 5.1). One of the repair systems, which exceeded 

500 kN load capacity, was tested on a 1400 kN Instron actuator mounted on a loading 

frame. The tests were conducted in load control mode, i.e., a constant load rate was 



applied independently of the amount of relative displacement between the wood pile and 

the FRP composite shield. Load control mode was selected because the repair systems 

had no relative movement between the wood pile and the FRP composite shield until the 

shear strength of the interface between the cement-based grout was exceeded. If the 

displacement mode was applied, then the load needed to exceed the shear strength of the 

interface would be reached in a very short period of time and it would be difficult to 

determine the real shear strength of the interface. A loading rate that allowed the test to 

be completed between 10 and 20 minutes was selected depending on the specific repair 

system. The first specimens tested, Al,  C1 and Dl ,  were loaded at a rate of 17 kNlmin. 

The rest of the specimens were loaded at a rate of 27 kNlmin. Loading was applied in 

cycles using a dual ramp generator (i.e., loading and unloading of the specimen as a 

single step) available from the controller of the servo-hydraulic testing system (Instron 

1998). The maximum load and loading rate are specified in the first ramp and the 

unloading rate and minimum load in the second ramp. Typically, five or six loading 

cycles were applied for each specimen to evaluate residual displacement or slip. If the 

relative displacement between the wood pile and the FRP composite shield recovered 

after unloading, the system was considered linear elastic. The push-out tests were 

conducted in an environmentally controlled room, with an ambient temperature of 22 * 
1 "C and a relative humidity of 45 * 1 %. 

The compression load was applied to the wood pile, and it was transferred to the 

grouting material and the FRP composite shield through shear stresses at the interfaces 

and shear force, depending on the repair set-up, at the connectors (See Figure 5.3, Figure 



5.5 and Figure 5.8). The FFW composite shield and grouting material were supported by 

the T-slotted table of the testing system. 

5.5.2 Instrumentation 

Linear Variable Differential Transducer (LVDT) units were used to measure the 

relative movement (slip) between the wood pile and the FFW composite shield. One 

LVDT unit was mounted on the wood pile with a reference point, bonded aluminum 

angle, on the FFW composite shield. A schematic of the test set-up with the LVDT unit 

mounted for repair system B is shown in Figure 5.5. All test data was collected using Lab 

View 6.0 software and data acquisition system (National Instruments 2000). 

On some of the specimens, with the cement-based grout, strain gages (type CEA- 

06-250UW-350) were surface mounted on the FFW composite shield (Measurements 

Group 1997). Three strain gages were bonded on one side at three different locations to 

determine hoop strains along the length of the FFW composite shield (See Figure 5.1). 

Another strain gage was bonded on the opposite side of the shield at the same height as 

the middle gage to determine whether bending stresses were present due to load 

eccentricity. The test set up with the LVDT unit and attached strain gages for one 

specimen of repair system D is shown in Figure 5.1 1. 



Figure 5.1 1 - Test Set-Up of Specimen Repaired with System D. 

5.6 Results and Discussion 

In the case of repair systems with cement-based structural grout (A, B, D and E), 

the wood pilelgrouting and grouting1FRP composite shell interfaces were characterized. 

The effect of necking damage on the behavior of the system was also evaluated. In the 

case of the polyurethane grout (repair system C) shear force transfer by shear connectors 

was characterized. The shear transfer response with the combination of structural cement- 

based grout and shear connectors was also evaluated (repair system D). For all repair 

systems the load-displacement curves were obtained. 

A summary of experimental results obtained fiom the 9 specimens evaluated is 

presented in Table 5.3. 



Table 5.3 - Summary of Push Out Tests by Compression Loading 

Repair I Slip 

system I compressive 

specimen I load PO (kN) 

compressive maximum 

288.7 Yes Grout - FRP interface 

295i2 No Grout - FRP interface 

I I At ultimate: Wood - 

Grout interface 

315.8 Grout - FRP interface 

433.4 Yes Grout - FRP interface 

370.8 I I FRP crushing by shear 

connectors 

364.8 No FRP crushing by shear 

I I connectors 

453.4 Yes Signs of FRP crushing 

I I by shear connectors 

FRP crushing by shear 

connectors 

402.3 Yes Wood - Grout 

interface 

The mode of failure for repair systems A and B was failure of the structural grout- 

FRP composite interface (Figure 5.12). The addition of a polymer concrete coating in 

repair system E provided interlocking between the grout and the innermost FRP 

composite shell and forced the failure to occur at the wood-grout interface at a much 

higher load level (Figure 5.13). 



Figure 5.12 - Failure at the Interface between FRP Composite Shield and Cement-Based 

Grout 

Figure 5.13 - Failure at the Interface between Wood Pile and Cement-Based Grout 

The hour-glass shape (necking) of the pre-damaged wood pile in repair system B 

prevented the wood-grout interface from brealung since for such a failure to occur it 

would be necessary to shear through the concrete. Repair systems C and D employed 

shear connectors for transfer of shear forces to the FRP composite shield. Although these 

repair systems employed different grout materials, the mode of failure was similar: 

crushing of the FRP composite shield at the bolt location (See Figure 5.14). 



Figure 5.14 - Crushing of FRP Composite Shield by the Shear Connectors 

An increase in the peak load of approximately 44% for repair system D compared 

to repair system C was attributed to the contribution of the cement-based grout. 

To compare the performance of the different repair systems the results were 

normalized by computing the apparent interface shear strength (See Table 5.4). 

Table 5.4 - Normalized Experimental Results for Repair Systems A, B, D and E 

Repair 

system 

specimen 

Slip interface 

apparent shear 

strength to (kPa) 

Interface 

Grout - FRP 

Interface 

overlap contact 

area (m2) 

Wood -Grout 

0.5623 

Grout - FRP 

210 

0.3749 

Grout - FRP 

Ultimate interface 

apparent shear 

strength tp (kPa) 

- 

0.4800 

Wood -Grout 

381 

0.63 10 41 5 

0.4247 425 



The apparent slip-shear strength of the grout-FRP composite interface, to, was 

calculated by dividing the vertical compressive load, PO, at the onset of relative 

displacement (slip) by the interface overlap contact area as follows 

I 

where r  is the inner radius of the F& composite shield (Figure 5.1) and h  is the height of 

the overlap interface (Figure 5.3). The apparent ultimate-shear strength of the grout-FRP 

composite interface, t,, was calculated as 

Similarly the slip and ultimate apparent shear strength of the wood-grout 

interface, t o  and t,, respectively, were calculated as 

Z, = PP (5.4) 
2 . z . r w - h  

where r ,  is the radius of the wood pile as shown in Figure 5.1. The normalized load 

displacement responses of repair systems A, B, D and E are depicted in Figure 5.15 

through Figure 5.18. 
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Figure 5.15 - Load-Displacement Response for Repair System A 
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Figure 5.16 - Load-Displacement Response for Repair System B 
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Figure 5.17 - Load-Displacement Response for Repair System D 
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Figure 5.18 - Load-Displacement Response for Repair System E 
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For repair system C, the slip and ultimate interface shear force per bolt, So and Sp, 

respectively, were computed as: 

where n is the number of shear connector rods. Shear force per rod versus displacement 

response for repair system C (n = 3) is shown in Figure 5.19. 
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Figure 5.19 - Load-Displacement Response for Repair System C 

Each 19 rnrn diameter threaded rod was able to transfer approximately Sp = 122 

kN of force before crushing of the FRP composite shield. The required length for FRP 

composite shells can be calculated by multiplying the number of rods, n, by the rod 



spacing, s, as shown in Figure 5.8. The end distance adopted was equal to the rod spacing 

(s = 102 mm) (See Figure 5.8). 

The hoop strain profile along the height of the F W  composite shield for repair 

systems A and B was evaluated by bonding strain gages at different locations (See Figure 

5.1 and Table 5.5). I 

The strain profiles for repair system A (specimen A l )  and B (specimen B2) are 

depicted in Figure 5.20 and Figure 5.2 1, respectively. 

Table 5.5 - Hoop Strains on Outer F W  Composite Shell 

Wood 

pile 

intact 

Strain gage location Slip load 

level 

Ultimate load 

level 

Repair 

system 

specimen 

A1 

(h= 521 

mm) 

Hoop 

strain 

Ee (I4 

1929 

1798 

Hoop 

angle 

(degrees) 

Distance 

from 

shell 

bottom 

(mm) 

damage 
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Figure 5.20 - Hoop Strain Distribution on outer FRP Composite Shell for Different Load 

Levels for Repair System A (Specimen Al)  

Position of strain gage from bottom of FRP composite shield (mm) 

Figure 5.21 - Hoop Strain Distribution on outer FRP Composite Shell for Different Load 

Levels for Repair System B (Specimen B2) 



In the case of specimen A1 (undamaged wood pile), an almost uniform strain 

distribution was observed for initial loading (See Figure 5.20). When slip developed at 

the interface between the grout and the innermost FRP composite shell, hoop strains 

increased markedly with the height (i.e., the upper portion of the shell was subjected to 

greater hoop strain). By correlatin~ the center strain gages at opposite circumferential 

locations, strain gages 2 and 4, a strain difference that was attributed to unavoidable load 

eccentricity was observed (See Figure 5.22). 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 

Hoop strain (micro strains) 

Figure 5.22 - Hoop Strain versus Applied Compressive Load at Opposite Circumferential 

Locations for Specimen A1 

In the case of specimen B2 (damaged wood pile), an almost uniform strain 

distribution was also observed for initial loading (See Figure 5.21). When slip developed 

at the interface between the grout and the innermost FRP composite shell, hoop strain 

increased markedly in the lower strain gage. It is speculated that the observed hoop strain 

peak toward the bottom of the shell was due to an increase in interior confinement. Since 



the wood pile specimen was tapered with the higher diameter on the top, the vertical 

movement of the pile produced a wedge effect on the grouting material that increased 

interior confinement pressure on the FRP composite shield. It is assumed that the increase 

in interior confinement on the bottom portion of the shield was favored by the 

interlocking between the wood pile lwith necking and the grout, which differentiates the 

specimen B2 response with respect to the specimen A1 response. The maximum hoop 

strain recorded, 2750 micro strains for specimen B2, did not produce failure of the FRP 

composite material. 

The apparent interface shear stress versus slip response was represented by step- 

wise linear curves, as shown in Figure 5.23 and Figure 5.24. 

60 6 ,  6" 5 (nlm) 

Figure 5.23 - Shear Stress-Slip Preliminary Design Chart for Repair Systems A, D and E 
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Figure 5.24 - Shear Stress-Slip Preliminary Design Chart for Repair System B 

Similarly, the interface shear force per rod versus slip response was represented in 

Figure 5.25. 

60 6, 6, 6 (mm) 

Figure 5.25 - Shear Force per Rod-Slip Preliminary Design Chart for Repair System C 



The interface parameters that define the shear stress-slip and shear force-slip step- 

wise linear curves for each repair system are summarized in Table 5.6. 

Table 5.6 - Design Parameters for Repair Systems 

Interf. 

grout- 

FRP 

grout- 

FRP 

grout- 

FRP 

grout- 

FRP 

wood 

-grout 

G2 

( H a  / 

mm) 

5.4 

5.7 Proposed Design Method 

The step-wise linear curves for shear stress-slip and shear force-slip can be 

conveniently used as preliminary guiding charts in combination with Table 5.6, as 

follows: (1) For repair systems A, D and E (undamaged wood pile) apply curve in Figure 

5.23; (2) For repair system B (damaged wood pile) apply curve in Figure 5.24; and (3) 

For repair system C (undamaged wood pile with shear connector rods) apply curve in 

Figure 5.25. 



The preliminary or putative design process is illustrated for repair system E by computing 

the height of the overlap interface, h, whlch corresponds to the FRP composite shell 

length. The following design data is considered: r, = 140 mm and t, = 50 mm. The 

required vertical load to be transferred through the repair is: P = 160 kN, with a safety 

factor SF = 2 to prevent slip. I 

From Table 5.6, the repair system E shear strength corresponding to slip at the 

wood-grout interface is: TO = 390 kPa. Substituting Po = SF . P in Eq. (5.3) and solving 

for h results in 

The required shell length is h = 933 mm. Based upon the preliminary test data, 

this design will result in a safety factor for interface ultimate shear strength of 

It should be cautioned that additional replicate specimens should be tested before 

actual design curves and values can be recommended in work beyond the scope of this 

thesis. 

5.8 Conclusions and Recommendations 

Based on the results presented in this chapter the following conclusions are drawn: 

1. The proposed push out test method served to characterize the shear versus slip 

response of the wood-grout and grout FRP composite interfaces. 



2. Damaged in the wood pile in the form of necking, which simulates Gribble attack 

as discussed in Chapter 2, provided interlocking with the grout increasing the 

interface slip shear strength. 

3. The application of the polymer concrete coating layer on the interior surface of 

the innermost shell prevented slip at the grout-FFW composite interface in our 

tests. 

4. The cement-based grout provided lateral support to the rod-FFW composite bolted 

connection compared to the polyurethane grout, which resulted in higher interface 

ultimate shear strength. 

The following commentary and proposed practical recommendations are offered: 

1. Design of the FFW composite shell shall be based on the interface slip shear 

strength as illustrated in the example presented. 

2. The use of the polymer concrete coating (overlay) on the interior surface of the 

inner shell is recommended. 

3. The use of shear studs or other shear connectors, such as lag screws, embedded in 

the wood pile and extending through the thickness of the cement-based grout, but 

not through the FRP composite shield, is recommended. These connectors can 

increase the wood-grout interface slip strength and also serve as spacers. 

4. In field repair of wood piles, it is recommended that the pile surface be cleaned 

with water or a scraper to eliminate the presence of marine organisms that may 

affect the interface properties. 



5.9 Notation 

The following symbols are used in this chapter 

h 
n 
P 
Po 
PP 
r 
rw 

S 

SF 
so 
SP 
9 
t ,  
&e 
To 

TP 

Subscripts 

W 

f 
g 

Height of the overlap interface (FFW composite shell length) 
Number of shear connector rods 
Applied compressive load 
Slip vertical compressive load 
Ultimate vertical compressive load 
Inner radius of FFW composite shield 
Radius of wood pile 
Spacing of shear connector rods 
Safety factor 
Slip interface shear force per rod 
Ultimate interface shear force per rod 
Thickness of FFW composite shield 
Thickness of grout 
Strain in FFW composite shield in the hoop direction 
Slip interface apparent shear strength 
Ultimate interface apparent shear strength 

Wood pile 
FFW composite shield 
grout 
Hoop direction 



Chapter 6 

Experimental Characterization of FRP Composite-Wood 

Pile Structural Response by Bending Tests 

6.1 Abstract 

A special prefabricated Fiber Reinforced Polymer (FRP) composite shield or jacket was 

developed to repair wood piles in the field. Two types of load-transfer mechanisms 

between the wood pile and the FRP composite shield were developed and tested: (1) 

cement-based structural grout; and (2) steel shear connectors with an expanding 

polyurethane chemical grout. The objective of this chapter is to characterize the structural 

response of full-size pre-damaged wood piles repaired with the FRP composite shield 

system. A three-point bending test procedure was used to simulate the response of a pile 

subjected to lateral loads. The load-defamation response, deflected shape profile, 

relative longitudinal displacements (slip), strain distribution, ultimate bending moment 

capacity and mode of failure were evaluated. Wood piles were pre-damaged by reducing 

approximately 60% of the cross-section over a portion of the pile. It was found that a 

pre-damaged wood pile repaired using the FRP composite shield with cement-based 

grout exceeded the bending capacity of a reference wood pile. The repair system using 

the FRP composite shield with steel shear connectors and polyurethane grout did not 

fully restore the bending capacity of a reference wood pile; however it can be used for 

marine borer protection when wood damage is not critical. 



6.2 Introduction 

6.2.1 Background 

Wood piles have been traditionally used in many marine locations for piers and 

one to two story waterfront buildings, especially when loose granular materials are 

present. Locally available wood piles provide a low-cost foundation system. Untreated 

wood piles are subjected to deterioration from marine borers, fimgi and other sources as 

discussed in Chapter 2. For this reason many wood piles have been treated in the past 

with preservatives, like creosote or chromated copper arsenate (CCA). With time, 

preservatives will be leached from the wood, and thus deterioration will begin in treated 

wood piles similar to that of untreated wood piles. 

When wood piles deteriorate, the conventional repair is to dismantle the pier, 

extract the deteriorated piles, drive new piles and rebuild the pier over the new piles. Ln 

addition, treated extracted piles may need special disposal. For some facilities, especially 

when buildings sit on piers, extraction of all piles and driving of new piles can be 

difficult and costly. In these cases repair becomes a viable alternative. Repairs are 

possible since the portion of the pile below the mudline is normally hl ly  intact. The 

major deterioration occurs in the portion of the pile in the inter-tidal zone and in the 

splash zone (above high-tide). The repair system can also reduce the rate of future 

deterioration by introducing a barrier that protects the wood pile from marine borer 

attacks. 



6.2.2 Structural Integrity 

Structural wood piles are designed to withstand driving forces, axial gravity loads 

from the pier structure (sometimes tensile loads) and lateral loads imposed by wind 

pressure, wave action, ice formation or vessel docking impact. Lateral loads impose 

bending moments and shear forces on the pile. 

When a wood pile has deteriorated, it typically loses cross-section and thus loses 

capacity to sustain design loads. In this chapter only the capacity for lateral loading of a 

repaired pile will be covered. The lateral capacity has the most unknows in repair. 

Driving stresses are not a repair concern. The capacity for compressive vertical loading is 

related to the cross-sectional area, and tensile vertical loading is less common. 

The test method for piles subjected to lateral loads requires the driving of the 

wood pile into the ground followed by application of a lateral or a combination lateral 

and axial load as per ASTM D3966 (ASTM 1990). However, in the repair case, a pile 

will not be re-driven and all the work is conducted above the ground surface, thus the 

structural integrity of the repaired pile is most important. 

Thus it is possible to evaluate a repaired wood pile by conducting a bending test 

with controlled loading and support conditions. In (EDM 1995) a repair system for wood 

poles was evaluated by conducting bending tests in accordance to ASTM Dl036 (EDM 

1995). Decay damage was simulated by mechanically modifying the wood pole section at 

the ground line. 



6.2.3 Objective of the Chapter 

The objective of this chapter is to characterize the structural response in bending 

of full-size pre-damaged wood piles repaired with a specially developed FFW composite 

shield. The FFW composite shield was designed to fit around installed wood piles in the 

field. Two types of repair system! were designed, installed and tested: (1) An FFW 

composite shield with cement-based grout between the shield and the wood pile; and (2) 

An FFW composite shield with shear connectors through the pile and shield and with 

polyurethane grout between the wood and the shield. 

A three-point bending test procedure was used to test the response of a 

subjected to lateral loads The proposed test set-up was designed using ASTM D 

pile 

1036 

(ASTM 1999b), a standard test procedure for poles, as a guide. The load-deformation 

response, deflected shape profile, relative longitudinal displacements (slip), strain 

distribution, ultimate bending moment capacity and the mode of failure were evaluated. 

6.3 Materials and Methods for Pile Repair 

6.3.1 Pile Prototype Specimens 

Commercial piles were utilized for all testing. Nine meter long, class B, southern 

yellow pine wood piles treated with CCA preservative were selected (ASTM 1999a). 

Intact piles were tested to compare to repaired damaged piles. Damaged piles were 

obtained by cutting the pile to a reduced cross-section near the center of the pile. 

Pre-damage to three wood piles was achieved by reducing the diameter of the 

cross section over a segment of length Ld = 900 mm from the center span toward the pile 



tip. The reduction in radius simulated the type of Limnoria damage found in a field 

inspection of the Portland, Maine harbor (See Chapter 2). A 62% reduction of the total 

cross sectional area was applied in the laboratory to simulate Limnoria spp. necking 

damage. The extent of pre-damage was selected based on the requirement that any wood 

piles losing 50% of their cross sectional area or more be replaced (U.S. Army 1978). 

Two wood piles were used as reference and control specimens. The reference 

wood pile (IW) was tested undamaged or intact. The control wood pile (DW) was pre- 

damaged prior to the bending test. The specimen selection served to: 1) quantify the 

bending stiffness and strength increase resulting from the proposed repair systems by 

comparing with the reference pile, IW; and 2) establish if the capacity of a damaged 

wood pile, DW, can be restored with the proposed repair systems. 

Cylindrical fiber reinforced polymer (FRP) composite shells or sleeves with a 

longitudinal opening or gap along their length were fabricated using the licensed 

Seemann Composites Resin Infusion Molding Process (scRIMPTM) (TPI 2001). These 

especially constructed shells can be applied over existing damaged piles in the field. Two 

FRP composite shells with a thickness of approximately 3.3 mm were used in encasing 

each of two pre-damaged wood piles, B and C, as presented in Chapter 3. The two 

fabricated shells were bonded together with an adhesive to form the FRP composite 

shield or jacket that encased the wood pile section. An underwater curing epoxy 

adhesive, trade name Hydrobond 500 (Superior Polymer 2000), was selected based on the 

performance requirements for a wood pile repair system, (See Chapter 3). Durability of 

this underwater epoxy adhesive to fi-eeze-thaw cycles was tested (See Chapter 4). The 

longitudinal gaps of each shell were staggered at an angle of 180' to avoid lines of 



weakness in the FRP composite shield. The space between the wood and the FRP 

composite shells was filled with one of the grouting systems (See Figure 6.1). 

Figure 6.1 - Wood Pile with FRP Composite Shield during Grouting Operation 

The first repair system, B, used a cement-based underwater structural grout (Five 

Star 2001) with a specified compressive strength at 28 days of 51.7 MPa to provide 

contact between the FRP composite shield and the wood pile, as well as to complete the 

isolation of the damaged wood portion from marine borers. The second repair system, C, 

used shear connectors (steel threaded rods) through the shield and the pile to transfer 

shear forces and used an expanding polyurethane non-structural grout (Sika 1998) to 

complete the isolation of the damaged wood portion from marine borers. Both repair 



systems used two adhesively bonded shells to encapsulate the pre-damaged full-size 

wood pile using the repair method outlined in Chapter 3. 

The cement-based grout used in repair system B was placed fiom the bottom up to 

avoid segregation of the materials and air entrapment. A concrete mixer was applied to 

prepare the grout mix, and a 50 mtn diameter discharge hose was used for filling the 

space. The thickness of the grout was approximately 60 mm. In the grouting operation for 

the polyurethane chemical grout used for repair system C, the two-part grout was mixed 

according to the supplier specifications and pumped from the bottom of the repaired 

section using a paint pot and pressurized air. As the mixture reacted with water, it 

expanded to fill the space between the wood pile and the inner FRP composite shell with 

a final thickness of approximately 13 mm. Four steel threaded rods with a diameter of 19 

mrn were used at each end of the FRP composite shield as shear connectors in repair 

system C. The steel threaded rods were spaced along the pile axis approximately 102 mrn 

and rotated approximately 30" in the circumferential direction. 

A summary of the four pile specimens tested is summarized in Table 6.1. The 

wood piles, graded according to ASTM D25 (ASTM 1999a), had variable diameters and 

taper as shown in Table 6.2. 



Table 6.1 Wood Pile Systems Configuration 

System 

Intact 

Reference 

(W 

Damaged 

Control 

(DW) 

Repair 

system B 

Repair 

system C 

Wood pile I FRP 

Intact 

Composite 

Shield 

I 

N. A. 

Pre- 

damaged 

Grout 

N. A. 

N.A. 

Yes 

Pre- 

damaged 

Cement- 

based 

Yes 
Poly- 

urethane 

Shear 

Connector 

S 

Yes 

Pile length, 

(L) 

m 



Table 6.2 Wood Pile Systems Pre-Damage and Bending Test Results 

6.3.2 Three-Point Bending Test Method 

To test the structural response of the repaired wood piles, three point bending tests 

were performed using ASTM Dl036 (ASTM 1999b) for wood poles as a guide. The 

simply-supported test method was selected to simplify the experimental setup. The wood 

piles were supported at the butt and the tip, and the load was applied at the center. 



The span length between the two end supports was Ls = 8.84 m, while the total 

length of the piles was L = 9.14 m. Each steel end support had a roller mounted on a 

hinge that was resting on a concrete block (See Figure 6.2 and Figure 6.3) ,  which 

provided enough space under the pile to accommodate deflection. 

Concre 
1.. ..\ 

te grout 1, ( 

I Pile butt + + - 
.LVDT unit 

Pile 

I 
1 

1 b * dooden saddle ' \-\ i pin 4 
Roller FRP composite shells i 

L, = 4540 mm 

Concrete blocks L r = 9 0 0 m m '  L,12-L, 

L, = 8840 mm 

Figure 6.2 Schematic of test set-up for repair system B. 

n P (applied load) 
Polyurethane grout 

FRP composite she1 

1 yj, Concrete blocks 

Figure 6.3 Schematic of test set-up for repair system C. 
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Since the wood piles are circular in cross-section, wooden saddles and straps were 

placed on top of the end supports to avoid lateral movements (See Figure 6.4). Another 

saddle with a length of 305 rnrn was used at mid-span for load transfer from the actuator 

to the pile without slippage. Load was applied with an Instron servo-hydraulic actuator 

mounted underneath the structural floor using a steel frame placed on top of the wooden 

saddle, which resulted in a stable loading configuration (See Figure 6.5). 

Figure 6.4 Test set-up for repair system C. 

Wood saddle' 

9 

Load cell 

P (applied load) B 

:> Steel plates 

Steel 
Frame 

Figure 6.5 - Schematic of Loading Device. 



Testing was conducted in a displacement control mode with a constant deflection 

rate. The peak or maximum load was anticipated based on a beam structural model 

presented in Chapter 7. Loading was applied in cycles with increasing amplitude to assess 

residual deformation. A dual ramp generator available from the Instron control software 

was used to apply a constant deflection rate. Load cycles that represented 10,20 and 40% 

of the expected failure load were applied to each specimen. Finally, the pile specimen 

was loaded to failure, which is defined by the peak load. After the failure load was 

reached, the repaired specimens, B and C, were reloaded to evaluate the behavior of the 

system after it was load damaged. 

Vertical deflections were measured at three different locations along the length of 

the pile using Linear Variable Differential Transducer (LVDT) units to obtain the 

deflected shape. Deflections were measured at mid-span, and at the two ends of the FRP 

composite shield. Horizontal movement (slip) between the wood pile and the FRP 

composite shield was measured on the top and bottom at the ends of the encasing shield 

using LVDT units. Strain gages (CEA-06-250UW-350) were bonded (Measurements 

Group 1997) on the top and bottom of the FRP composite shield, in the longitudinal 

direction, to monitor strains during the test (See Figure 6.2 and Figure 6.3). Lab View 6.0 

(National Instruments 2000) was used to collect deflections, load and strain data. 



6.4 Results and Discussion 

6.4.1 Intact Reference Pile (IW) 

The reference wood pile, IW, was tested intact to provide the baseline response. 

The load-deflection response of the reference pile was linear to failure, as shown in 

Figure 6.6. The peak load reached by the reference pile was 79 kN. The wood pile under 

bending failed in tension at the mid span location where the load was applied. After 

failure, re-loading was not possible for the reference pile. 

:.I 

0 50 100 150 200 250 300 350 400 450 500 550 

Deflection at mid-span (mm) 

Figure 6.6 Load-deflection response for intact reference pile (IW) and damaged control 

pile (DW). 



6.4.2 Pre-Damaged Control Pile @W) 

The control pile, DW, was pre-damaged with its cross sectional area reduced by 

63%. This pile was tested to characterize the behavior of a damaged wood pile. The load- 

deflection response of the control pile is shown in Figure 6.6. The peak load 

corresponding to the control pile ww 8.2 kN. The 63% reduction in cross sectional area 

diminished the wood pile bending capacity to one-sixth of the intact reference pile (IW) 

value. Under bending, the damaged control pile failed in tension at the damaged section. 

After failure, re-loading was not possible for the control pile. 

6.4.3 Repair System B (FRP Composite ShieldICement Grout) 

A pre-damaged pile with its cross-sectional area reduced by 62% over a portion of 

the pile was repaired using system B (FRP Composite ShieldJCement Grout). The 

response of the repair system B was linear to failure (See Figure 6.7). 

0 50 100 150 200 250 300 350 400 450 500 550 

Deflection at midspan (mm) 

Figure 6.7 Load-deflection response for repair systems B and C. 
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Under bending, the wood pile failed at a peak load of 115 kN (see Table 6.2) in 

tension at the end of the FRP composite shield, as shown in Figure 6.8(a). 

Figure 6.8 Failure modes: (a) Tension failure in wood pile at shield end (repair system 

B); (b) Compression failure in FRP composite shield (repair system C). 

After unloading, approximately 15% of the total deflection was not recovered, 

which was attributed to damage accumulation. The specimen was reloaded after failure 

(See second loading curve depicted in Figure 6.7). The re-loading curve was also linear 

with approximately the same load-deflection slope as the peak loading curve. Failure 

occurred in the wood pile outside the segment encased with the FRP composite shield. It 

was hypothesized that the FRP composite shield restored enough bending capacity to the 

wood pile pre-damaged section to prevent failure at this location. 

Two LVDT units (LH1 and LH2) that measured the horizontal differential 

movement (slip) between the wood pile and the FRP composite shield were located close 

to the end of the shield, as shown in Figure 6.2. Load-slip curves are presented in Figure 

6.9. Positive slip, which was measured on the bottom side, indicates that the wood 



surface moved out of the shield, and thus the shield was subjected to tension stresses. The 

negative slip at the top indicates that the shield was subjected to compressive stresses. 

-6 -4 -2 0 2 4 6 

Horizontal slip (mm) 

Figure 6.9 Load-slip response for repair system B (load cycle to failure). 

The maximum slip value recorded was approximately 5 mm for both LVDTs. 

The load-slip curve indicates that there is partial interaction between the wood pile and 

the FRP composite shield. Since top and bottom slip values are similar, this indicates that 

the FRP composite shield bent about the same neutral axis as the wood pile. Having the 

two components, shield and wood pile, bending about one single neutral axis validates 

the design basis that the repaired pile under lateral loads behaves as a beam system. 

During re-loading, a shear crack initiated at the edge of the FRP composite shield 

and started propagating in the FRP composite shield towards mid-span (Figure 6.10). The 

crack was located at the position where the slit of the inner shell was placed. The load 

capacity of the repaired system was drastically reduced when the crack initiated. After the 



crack reached mid-span, the wood pile section at the pre-damaged location failed. This 

was attributed to the observation that the pre-damaged wood pile section had no load 

bearing contribution from the cracked FRP composite shield. This secondary failure of 

the wood pile diminished the ability of the system to firther support any significant 

lateral loads. I 

Figure 6.10 - Crack Propagation fiom Edge of FRP Composite Shield (Repair System B) 

6.4.4 Repair System C (FRP Composite ShieldIShear 

ConnectorsIPolyurethane Grout) 

A pre-damaged pile with its cross-sectional area reduced by 61 % over a portion of 

the pile was repaired using system C (FRP Composite ShieldlShear 

Connectors/Polyurethane Grout). The load-deflection response of system C was linear up 

to failure, as shown in Figure 6.7. The peak load for the pile specimen was 52 kN. At the 

peak load, the FRP composite shield failed in compression in the axial direction at mid- 

span (end of wood saddle), as depicted in Figure 6.8 (b). This damage was attributed to 

the observation that the compressible polyurethane grout did not provide load bearing 



support between the wood pile and the FRP composite shield. Approximately 16% of the 

total deflection was non-recoverable (inelastic). 

The pile specimen was re-loaded after reaching the peak load. The pile was able 

to support approximately 70% load of the peak load during reloading with a lower load- 

deflection slope. As more damage *as introduced to the FRP composite shield, the load 

capacity of the system was reduced (see Figure 6.7). The flexibility of the system using 

shear connectors was illustrated by the fact that the pile was loaded until reaching the 

maximum stroke of the servo-hydraulic actuator (500 rnm) without catastrophic failure. 

Maximum relative horizontal movement (slip) between the wood pile and the 

FRP composite shield measured with two LVDT units (LH2, and LH3) is presented in 

Figure 6.1 1. The maximum horizontal slip recorded was approximately 5 rnm for the 

bottom LVDT (LH2), and less than half of that value for the top LVDT (LH3). The 

difference in horizontal slip at the top and the bottom indicates that the FRP composite 

shield does not bend about the same neutral axis as the wood pile does. 

-6 -4 -2 0 2 4 6 

Horizontal slip (mm) 

Figure 6.11 Load-slip response for repair system C (load cycle to failure). 
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The observed failure mode, localized FRP composite compression failure, also 

supports the observation that the shield does not behave in beam bending with the wood 

pile. 

6.4.5 Deflected Profile Assessment 

The deflected profiles at peak load for all pile systems are depicted in Figure 6.12. 

It was found that the repair system B with the cement-based grout resulted in a maximum 

mid-span deflection of 196 mm, which is similar to the corresponding value for the 

reference intact wood pile IW, 205 mm. The repair system B resulted in a decrease in 

curvature in the maximum bending moment region compared to the reference and control 

piles (i.e., smoother change in deflection slope along the pile axis). This is a consequence 

of the increase in bending stifhess over the repaired length of the pile. 

Distance from Left Support (mm) 

Figure 6.12 Deflected shape at peak load for all pile systems. 



6.4.6 Strain Distribution in the FRP Composite Shield 

Longitudinal strains at the top and bottom of the FRP composite shield were 

monitored during the load test for repair systems B and C. Load-strain distribution for 

both repair systems are presented in Figure 6.13 (see Figure 6.2 and Figure 6.3 for strain 

gage locations). The axial strains at peak load for the repair system with the cement- 

based grout, B, were -3800 micro strains on the top and 6700 micro strains on the bottom 

of the FRP composite shield. Axial strains at peak load for the repair system with the 

steel shear connectors, C, were -2760 micro strains on the top and 2710 micro strains on 

the 

-6000 -4000 -2000 0 2000 4000 6000 8000 

Strain (micro strains) 

Figure 6.13 Load-strain response for repair systems B and C. 

The difference in axial strains between the two repair systems was attributed to 

the different load transfer mechanisms and flexibility. The cement-based grout in repair 

system B transferred stresses between the FRP composite shield and the wood pile 

resulting in higher strains before failure compared to repair system C. In repair system C, 
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the flexibility resulting from using the steel shear connectors between the shield and the 

wood pile was much greater than the repair system B with the cement-based grout 

system. The polyurethane grout did not contribute to reducing the overall flexibility in 

repair system C. 

6.5 Load and Deflection Normalized Parameters 

To provide a meaningful comparison among the different piles evaluated (with 

different diameters and taper) the experimental load-deflection response was normalized. 

The expression for the maximum deflection of a simply supported beam with constant 

cross-section is considered for normalizing load and deflection values, as follows: 

where ( E ,  I,) is the product of the modulus of elasticity by the moment of inertia of the 

wood pile at the design section. The design section is defined as the section of the wood 

pile at mid-span. The value of E, was obtained fiom the timber poles and piles 

supplement of the LRFD Manual for Engineered Wood Construction. (AF&PA 1996) 

The moment of inertia of the circular cross section was calculated as follows: 

where d, is the design diameter of the wood pile. Rearranging equation (6.1) results in 



From this equation, the applied load, P, was normalized by the bending stiffness and the 

span length, as follows: 

where p is the normalized (dimensidpless) applied load. Similarly, the deflection at mid- 

span was normalized by dividing by the span length, as follows 

where 6 is the normalized (dimensionless) deflection. 

The normalized load-deflection response for all four specimens is shown in 

Figure 6.14. The normalized maximum load and deflection for all pile specimens is 

summarized in Table 6.3. 

Pre-damaged control pile (DW) 

System B (Cement) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 

Normalized Deflection 

Figure 6.14 - Normalized Load-Deflection Responses for all Wood Pile Systems 



The normalized load capacity of the damage specimen, DW, was approximately 

15% of the intact reference wood pile, W.  Repair system B exhibited the highest load- 

deflection slope of all the tested pile systems due to the stiffness and quasi-integral 

response provided by the cement-based grout. For example, repair system B had a 

normalized peak load of 2.93 and :a normalized maximum deflection at mid-span of 

0.022, while repair system C with a normalized peak load of 0.87 had a normalized 

maximum deflection of 0.018. Bending of the shear connectors in repair system C with 

the non-structural polyurethane grout resulted in a relatively flexible response. 

Table 6.3 Normalized Load and Deflection 

System 

Intact Wood (IW) 

Damaged Wood 

(DW) 

Repair system B 

Repair system C 

Normalized 

peak load 

0.97 

0.15 

2.93 

0.87 

Normalized 

max. 

deflection 

0.023 

0.021 

0.022 

0.018 

Moment of 

inertia, (I,) 

1 o4 m4 

6.56 

4.42 

3.19 

4.83 

Span length, 

(Ls) 

m 

8.84 

8.84 

8.84 

8.84 

MOE, (EJ 

GPa 

9.65 

9.65 

9.65 

9.65 



6.6 Conclusions 

Based on the results presented in this chapter the following conclusions are drawn: 

1. A reduction in cross-sectional area of approximately 60% on a portion of the 

wood pile length decreased the wood pile bending capacity to one-sixth of the 

intact value. This demonstrated the importance of repairing damaged wood piles. 

2. Use of FRP composite shells with slit openings can be applied over damaged piles 

and can serve as part of a system to fully restore the bending strength of a 

damaged wood pile. 

3. A pre-damaged wood pile with approximately 60% reduction in cross-section on 

a portion of the length was repaired using the FRP composite shield with cement- 

based structural grout. It exceeded the bending capacity of an intact reference 

wood pile. 

4. A pre-damaged wood pile with approximately 60% reduction in cross-section on 

a portion of the length was repaired using the FRP composite shield with shear 

connectors and polyurethane grout. It only restored the bending capacity to two- 

thirds of an intact reference wood pile. 

5. Transfer of stresses from the FRP composite shield to the wood pile is better 

accomplished using cement-based grout than with more flexible steel shear 

connectors. The bending strength of the FRP composite shieldlcement grout 

repair system is more than double the bending strength of the FRP composite 

shield with steel shear connectors repair system. 

6. The FRP composite shield combined with grouting provides a strong impervious 

containment of a damage pile section. Currently existing systems of repair do not 
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have impervious containment or the containment shell does not have sufficient 

strength. Impervious containment of the damaged pile section discourages further 

marine borer damage to the pile. 

6.7 Notation 

The following symbols are used in this chapter: 

a 
d w  

E w  
Iw 

L 

L, 

Lf 
L, 
P 

P 
6 
A 

Subscripts 
W 

Distance from support to FRP composite shield 
Wood pile design diameter at the mid-span section 
Modulus of elasticity of the wood pile 
Moment of inertia of the wood pile 
Total pile length 
Pre-damaged length 
FRP composite shield length 
Simply-supported span length 
Lateral load applied on the wood pile 
Norrnalized (dimensionless) applied load 
Norrnalized (dimensionless) deflection 
Maximum deflection of a simply supported beam 

Wood 



Chapter 7 

Design of FRP Composite Shield for Repairing Damaged 

Wood Piles 

7.1 Abstract 

A beam design model was developed to predict stiffness and strength properties of wood 

piles restored with a Fiber Reinforced Polymer (FRP) composite shield or jacket. Two 

types of load-transfer mechanisms between the wood pile and the FRP composite shield 

were studied: (1) cement-based structural grout; and (2) steel shear connectors with an 

expanding polyurethane chemical grout. The design model accounts for wood pile 

damage by reducing the cross-section over a portion of the pile length. Laminate analysis 

was applied to estimate FRP composite elastic and strength properties. The model allows 

computation of shear forces at the interfaces between three different materials (wood pile, 

grout, and FRP composite shield) present in a repaired wood pile. The beam model was 

correlated with experimental results fiom three-point bending tests of pre-damaged wood 

piles repaired with FRP composite shields. The model was applied to predict the 

maximum bending loads, modes of failure and mid-span deflections of pre-damaged and 

repaired wood piles. It was found that the proposed model equations have reasonable 

accuracy and they can be used as a design tool to detennine the FRP composite 

reinforcement needed to restore the structural capacity of a damaged wood pile. The 

proposed beam model can be applied to various boundary conditions representative of 

actual piles in waterfront structures (e.g., fixed-free supports). 



7.2 Introduction 

7.2.1 Background 

Structural wood piles installed in waterftont facilities are designed to withstand 

axial gravity loads ftom the pier structure (sometimes tensile loads) and lateral loads 

imposed by wind pressure, wave action, ice formation or vessel docking impact. Lateral 

loads impose bending moments and shear forces on the pile. When a wood pile has 

deteriorated, it typically loses cross-section and thus loses capacity to sustain design 

loads. 

A special prefabricated Fiber Reinforced Polymer (FRP) composite shield or 

jacket was developed to repair installed wood piles in the field (See Chapter 3). Two 

types of repair system were designed, installed in full-size pre-damaged wood piles and 

tested in bending (See Chapter 6):  (1) An FFW composite shield with cement-based grout 

between the shield and the wood pile; and (2) An FRP composite shield with shear 

connectors through the pile and shield and with polyurethane grout between the wood 

and the shield. 

7.2.2 Objective 

The objective of this chapter is to present a beam design model to predict the 

bending response of full-size pre-damaged wood piles repaired with an FFW composite 

shield. Two types of load-transfer mechanisms between the wood pile and the FRP 

composite shield are studied: (1) cement-based structural grout; and (2) steel shear 

connectors with an expanding polyurethane chemical grout. The proposed model 



accounts for wood pile damage by reducing the cross-section over a portion of the pile 

length. 

7.3 Material Properties and Cross-Section Dimensions 

7.3.1 Repair Systems 

Cylindrical FRP composite shells or sleeves with a longitudinal opening or gap 

along their length were fabricated using the licensed Seemann Composites Resin Infusion 

Molding Process (scIUMPTM) (TPI 2001). These especially constructed shells can be 

applied over existing damaged piles in the field. 

The first repair system, B, used a cement-based underwater structural grout (Five 

Star 2001b) to provide contact between the FRP composite shield and the wood pile, as 

well as to complete the isolation of the damaged wood portion from marine borers. The 

second repair system, C, used shear connectors (steel threaded rods) through the shield 

and the pile to transfer shear forces and used an expanding polyurethane non-structural 

grout (Sika 1998) to complete the isolation of the damaged wood portion from marine 

borers. Both repair systems used two adhesively bonded shells to encapsulate the pre- 

damaged full-size wood pile using the repair method outlined in Chapter 3. 

7.3.2 FlRP Composite Shell 

7.3.2.1 Materials and Fabrication Process. Two FRP composite shells with a 

thickness of approximately 3.3 mm were used in encasing each of two pre-damaged 

wood piles for both repair systems B and C. The two fabricated shells were bonded 



together with an underwater curing epoxy adhesive (Superior Polymer 2000) to form the 

FRP composite shield or jacket that encased the wood pile section. 

A unidirectional woven E-glass fabric with a weight of 880 g/m2, trade name 

VEW 260, was selected as the primary continuous reinforcement for the F W  composite 

shell. Chopped Strand Mat (CSM) weighmg 305 g/m2, trade name MAT 113, was used 

as secondary non-continuous and randomly oriented reinforcement on the surfaces. The 

proposed fiber architecture for the F W  composite shell consisted of three layers of 

unidirectional continuous fabric reinforcement in the longitudinal or axial direction (O"), 

one layer of unidirectional continuous fabric reinforcement in the hoop or circumferential 

direction (90°), and two outer CSM layers (See Figure 7.1). 

Hoop fibers 
(go0) 

Figure 7.1 - F W  Composite Shell: Geometry and Continuous Fiber Directions 

The fiber architecture design is based on maximizing fiber reinforcement in the 

axial direction with a minimum amount of fibers oriented in the hoop direction. Axial 

fiber reinforcement contributes to both bending and axial stiffness and strength of the 

shell, which is required to splice the damage portion of the wood pile. Hoop fiber 

reinforcement provides adequate integrity to the flexible shell with the required shear 



strength and mechanical fastener support. One CSM layer was placed on each surface of 

the shell laminate to provide improved bonding to the substrate and to develop a resin 

rich area for environmental protection. The resulting laminate lay-up of the FRP 

composite shell is [CSM, 0, 90, 0, 0, CSM] (See Figure 7.2). An epoxy-based vinyl ester 

resin, Derakane 41 1-C50, was selected as the matrix for the composite shells (Dow 

Chemical 1999). This resin has a viscosity of 0.15 Pa.s and is well suited for sclUh4pTM 

processing. 

Figure 7.2 - FRP Composite Shell Laminate Lay-Up 

7.3.2.2 Lamina Elastic Properties. Micromechanics equations were used to 

determine the elastic properties of each lamina modeled as a composite with fibers with a 

resin matrix. The thickness of each lamina or layer was determined from Equations (7.1) 

and (7.2). The weight fraction of the CSM was set at 0.50 based on prior experience. 



where, pf is the density of the fibers, p, is the density of the matrix. t,, is the thickness 

of the CSM lamina in millimeters and w,, is the weight per unit area of the CSM in 

g/m2. 

W 
t = (h, - t a m ) .  - 

wdir 

where, t is the thickness of the lamina in millimeters, hf is the thickness of the cured 

composite shell in millimeters, w is the weight per unit area of the lamina in g/m2, and 

wdi, is the weight per unit area of the continuous directional fibers in the fabric. The fiber 

volume fraction, 5, for each individual lamina was then calculate as 

The properties of each lamina such as the modulus of elasticity, Poisson's ratio 

and inplane shear modulus were determined based upon the properties calculated 

previously. These properties were calculated for each unidirectional lamina with respect 

to its material reference axes. 

Assumed properties of the composite constituents, fiber and the resin matrix, are 

reported in Table 7.1. 

Table 7.1 - Fiber Reinforcement and Resin Matrix Properties 

I (Barbero 1998) 1 (Dow Chemical 1999) 

Vinly Ester Resin Matrix Property E-Glass Fiber 

Elastic modulus, E 

Poisson's ratio, v 

72.3 GPa 3.4 GPa 

0.22 0.38 



The computed fiber volume fraction for each composite lamina is reported in 

Table 7.2. 

Table 7.2 - Laminate Lay-up and Fiber Reinforcement 

Fiber 

I angle I (BTI 2000) 1 fraction 

Reinforcement I 

Fiber 

orientation volume 

Unidirectional 

Fiber weight 

Unidirectional 

Fiber 

0 

Unidirectional 

90 

Unidirectional 

Elastic properties of a composite lamina were calculated using micromechanics 

equations. Rule of Mixture (ROM) and Halpin-Tsai equations were used to predict 

lamina elastic moduli in both material directions (El, E2), Poisson's ratio (~12) and in 

plane shear modulus (GI2) (Mallick 1993) (Barbero 1998). The longitudinal elastic 

modulus was calculated using the following rule of mixtures equation: 

E, =Ef  .Vf +Em .V,  (7.4) 

880 

0 

CSM I random 

where the matrix volume fraction Vm z 1 - Vf assuming that the composite laminate has 

45 

880 

0 

305 I 3 2 

negligible void content. 

45 

880 45 

880 45 



The transverse elastic modulus was obtained using the Halpin-Tsai semi- 

empirical formula 

where q and Care empirical parametsrs, as follows: 

It is assumed that C = 2 for circular fibers. 

Since a CSM lamina has short fibers, which are randomly distributed between 0" 

and 18O0, the modulus of elasticity, is approximated by Equation (7.7) as an equivalent 

isotropic material (Barbero 1998). 

3 5 
E,, =-E,  +-E,  

8 8 

where, El and E2 are values of a unidirectional lamina calculated with the same fiber 

volume fraction as the CSM lamina. Other lamina elastic properties, GI2 and y 2 ,  are 

computed in a similar manner. 

The computed elastic moduli in material coordinates of the composite lamina are 

reported in Table 7.3. 



7.3.2.3 Laminate Elastic Parameters. The FRP composite shell was modeled as 

a laminate using classical lamination theory (Barbero 1998). The inplane compliance 

matrix, [a], was determined as follows 

Table 7.3 - Elastic Moduli of Composite Lamina 

[a] = [A]-' (7.8) 
where [A] is the inplane stifhess matrix. Finally, the inplane laminate moduli were 

Modulus in 

material 

coordinates 

E 1 

E2 

calculated. The laminate longitudinal and transverse modulus of elasticity in global 

coordinates, x and y, were computed as 

Units 

GPa I 

GPa 

The computed longitudinal and circumferential elastic moduli of the FRP composite shell 

are shown in Table 7.4. 

CSM 

(Layers 1 & 6) 

13.6 

13.6 

Unidirectional fiber 

reinforcement 

(Layers 2 ,3 ,4  &5) 

34.4 

10.0 



Table 7.4 - Longitudinal and Circumferential Elastic Modulus of FFW Composite Shell 

7.3.3 Cement-Based Grout Properties 

The cement-based grout compressive strength at twenty-eight days was specified 

as f ' ,  = 51.7 MPa (Five Star 2001a). The cement-based grout elastic modulus (Ec) was 

calculated based on the following equation for normal weight concrete (Nawy 2000): 

E, = 4700. where f: in MPa (7.1 1) 

For the specifie value off', the resulting modulus is E, = 33.8 GPa. It should be noted 

that the confinement effect of the FFW composite shield on the grout properties was 

neglected (Kshirsagar et al. 2000). The calculated modulus therefore would represent a 

conservative value, and the authors felt this was appropriate given the need for a 

conservative design in practice. 

Property 

Ex 

EY 

7.3.4 Wood Pile Properties 

A procedure to generate member design resistance for wood piles based on the 

Load and Resistance Factor Design (LRFD) method was applied (AF&PA 1996b). Wood 

pile bending strength, Fb, and modulus of elasticity (MOE), E, were obtained from the 

Manual for Engineered Wood Construction (AF&PA 1996~). For a cantilever pile the 

Units 

GPa 

GPa 

Value 

25.4 

15.6 



design diameter can be determined using the equation for a tapered circular column given 

in Section 4.3.4 of the ASCE Standard 16-95 (AF&PA 1996a): 

D, =D, +X.(D,  -D2) (7.12) 

where Dl and D2 are the tip and but diameters respectively. The value of X can be 

calculated as follows, Table 4.3-1 of fAF&PA 1996a): 

This expression is valid for the case of an inverted "flagpole" pile with the small 

end (tip) fixed and the large end (butt) free. If the end conditions are different, then other 

cases in Table 4.3-1 of (AF&PA 1996a) should be considered. 

The design moment of inertia of the intact portion of the wood pile, I,, was 

calculated as follows: 

Then, the moment capacity, M,, of the intact wood portion is calculated using the 

following equation: 

where Fb is the bending strength and c is the distance of the extreme wood fiber from the 

neutral axis. 

Properties of the damaged wood pile section were based on the reduced diameter, 

Dred. The reduced moment of inertia, Ired, and the corresponding moment capacity of the 

damaged section, Mred, are calculated by substituting the properties of the reduced section 

in Equations (7.14) and (7.19, respectively. 



It should be noted that the proposed beam design model neglects the taper of the 

wood pile. However, the definition of the design diameter attempts to account for the 

typical cross-section variation in wood piles. This is a simplification consistent with the 

objective of developing a simple design model. 

7.4 Beam Design Model 

7.4.1 Beam Model of Wood Pile Encased with FRP Composite Shield 

A practical beam model to predict the response of pre-damaged and repaired 

wood piles under bending loads was developed. The geometric input data required are 

span length, wood pile diameters at butt, tip and load point, grout thickness and F W  

composite shield thickness. The bending stiffness, (EI),, of the repaired FRP composite- 

wood pile section before any damage is imposed to any of the materials (wood, grout and 

F W  composite), was determined as follows 

(EI), = fly2 Ei -dA 

where y is the vertical distance fiom a horizontal line passing through the center of the 

cross-section to the point of interest, Ei is the modulus of elasticity of each materials and 

dA is the differential of cross-sectional area (See Figure 7.3). Since the F W  composite 

shield and the wood pile are assumed to be concentric, polar coordinates are introduced 

as depicted in Figure 7.3 

y = r - s i n e  

where r is the radius and B is the angle. Then, the differential area results in 

dA=r .dr -dB 



where dr is the differential radius and d e  is the differential angle. 

Figure 7.3 - Partial Cross-Section Schematic of Wood Pile and FRP Composite Shield 

Substituting y and dA into equation (7.16) 

2x  

( E l ) ,  = j(r sin BYE, r d 0 dr 
0 0 

Integrating over the radii of the different materials the stiffness of the repaired composite 

section can be expressed as 

K 
( E l ) ,  = - ( r , ' ~ ~ , + ( r ~ - r ~ ) ~ ~ , + ( r ~ - r ~ ) ~ ~ , )  4 

where r, is the outer radius of the wood pile, r, is the outer radius of the cement-based 

grout, and rfis the outer radius of the FRP composite shield. 

Force equilibrium of a section cut fiom the FRP composite shield with length Ax 

is considered based on the free body diagram shown in Figure 7.4. The section is cut on 

one side of the neutral axis of the beam; therefore the only external loads applied are 

axial stresses at both ends and shear stresses at the interface with the cement-grout 

material. 

The differential of axial force, AF, , acting on ends of the FRP composite shield is 

computed by integrating bending stresses over the FRP composite shield cross-section, as 

follows 



where AM is the change in applied bending moment over the length Ax. 

side view cross-section 

Figure 7.4 - Section of FRP Composite Shield 

After solving the double integral, the expression of AFx results in: 

The average shearing force at the interface between the FRP composite shield and 

the cement-based grout can be computed as the differential force over the contact area of 

the interface, as follows 

where the shear force is V = dM/h d,- &f/Ax for a section of infinitesimal length (Gere 

2000). 

Following a similar approach the average shear stress at the interface between the 

wood and cement-based grout interface can be determined as follows: 



2 Ex . ( r j  - rc3) + Ec . (rc3 - r:) 
z;~ = - - .v 

3 (7.24) (m3 a . r," 

It should be noted that since the FRP composite shield and the wood pile bend 

about the same neutral axis only the average shear stresses computed in equations (7.23) 

and (7.24) develop at the interface. , 

The FRP composite shield is not fully effective at the two edges. Shear stresses 

need to develop at the interface over a length to fully develop axial stresses in the FRP 

composite shield. The length over whlch the FRP composite shield becomes effective is 

known as the development length. 

7.4.2 Application to Three-Point Bending Configuration 

7.4.2.1 Computation of Development Length. In this application, the wood pile 

was treated as a simply supported beam partially reinforced along the length with a 

concentrated load applied at midspan. A segment with a length Lfwas reinforced with an 

FRP composite shield (See Figure 7.5).  The beam design model was applied to predict 

maximum bending moments, average shear stresses at the interfaces, deflections at mid- 

span and mode of failure. 

The diameter at the point of load was considered to be the design diameter, D ,  

and it was used to calculate cross sectional properties such as moment of inertia, I,, of the 

intact portion of the wood pile. 



Figure 7.5 Three-Point Bending Experimental Setup 

The bending moment, M, for a simply supported beam at a distance x=a+ldf from 

the left support is 

where, a is the distance between the support and the edge of the FRP composite shield 

and, Idf is the development length of the FRP composite shield. Over the development 

length, the resultant of shear stresses at the interface should be equal to the axial force in 

the FRP composite shield when the section is filly effective, as follows: 

Ti )  . Idf . . rc = Fx=.+ldf (7.26) 

where TO is the apparent slip-shear strength of the grout-FRP composite interface, which 

was obtained from push-out tests (See Chapter 5). Substituting the known parameters in 

equation (7.26) the expression for the development length is obtained: 



3 . z,, . (n) rc - (EI), 
lay = P.a.Ex.(r;-rc3) I ) '  

A similar procedure is followed to determine the development length for the 

cement-based grout (Idc) as follows: 

where, TO, is the apparent shear strength of the wood-grout interface, which was obtained 

from push-out tests (See Chapter 5). 

In the case of the shear connectors (repair system C) the development length was 

determined by considering that the total force transferred by shear connectors should be 

equal to the axial force in the FRP composite shield, as follows: 

where P, is the force transferred by each shear connector obtained from push-out tests, n 

is the number of shear connectors, ldb is the development length of the FRP composite 

shield for repair system B (see Chapter 5) and s is the spacing of the shear connectors. 

Then, the development length becomes: 

7.4.2.2 Ultimate Moment Capacity. The moment capacity of the FRP composite 

shield is determined as 



where 4 is the moment of inertia of the FRP composite shield, r~ is the distance of 

the extreme FRP composite shield fiber fiom the neutral axis and Fxc is the longitudinal 

compressive strength of the FRP ,composite shield. For the FRP composite shield 

considered, Fxc was estimated as 280 MPa. 

The ultimate moment capacity of the repaired section is computed as the sum of 

the moment capacity of the FRP composite shield and the moment capacity of the wood 

pile. This approach assumes that both materials reach the ultimate moment capacity 

simultaneously. It should be noted that this is an approximation that only provides an 

upper bound for the moment capacity of the repair wood pile. However, if an accurate 

characterization of the moment capacity of the FRP composite shield and the wood pile is 

available, then the corresponding ultimate values can be utilized. 

A graphical representation of the ultimate moment capacity of the wood pile 

repair with system B (cement-based grout) and the applied moment along the length of 

the pile is shown in Figure 7.6. The damaged segment corresponds to the drop observed 

in the moment capacity. The point at which the applied moment exceeds the moment 

capacity is the point at which the repaired wood pile fails. In the example shown in 

Figure 7.6 the wood pile fails at the edge of the FRP composite shield and the failure 

occurs in the wood. This response was verified by experimental results (See Chapter 6). 
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Figure 7.6 - Moment Capacity of Repaired Pre-Damaged Wood Pile and Applied 

Moment for Simply Supported Beam (Repair System B) 

In the case of the repair system C with shear connectors and polyurethane grout, it 

was found experimentally (see Chapter 6) that the FRP composite shield fails due to local 

buckling. This mode of failure was attributed to the inability of the polyurethane grout to 

provide lateral support to the FRP composite shield. To account for this type failure, the 

moment capacity of the FRP composite shield was determined based on buckling of thin- 

walled circular cylinders under applied bending moment (Barbero 1998): 

where K=0.72 is a constant that can be obtained from theory or experiments, and 

v, = 0.34 is the assumed Poisson's ratio of the FRP composite shield (Barbero 1998). It 



should be noted that this equation is only applicable to quasi-isotropic laminates (Barbero 

1998); therefore it is an approximation to use this equation for the laminate considered 

for the FRP composite shield. 

The moment capacity of the repaired wood pile with shear connectors, and the 

applied moment along the length of the pile are shown in Figure 7.7. 

D 

- 

of Repaired Pile 
+Apphed Moment 
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Figure 7.7 - Moment Capacity of Repaired Pre-Damaged Wood Pile and Applied 

Moment for Simply Supported Beam (Repair System C) 

Failure was predicted at one end of the damaged section close to the beam 

midspan. This predicted failure location was in agreement with the predicted failure 

location in the bending tests (see Chapter 6) .  



7.4.2.3 Computation of Beam Deflections. The principle of virtual work was 

applied to calculate the midspan deflection. This approach accounts for the difference in 

stiffness of the pre-damaged and repaired wood pile along the length. 

where M is the applied moment, m is the virtual moment or unit moment, and EI 

is the product of the elastic modulus and the moment of inertia at each section. 

7.4.3 Installed Wood Pile Application 

7.4.3.1 Cantilever Column Configuration. A typical installed wood piles was 

modeled as a cantilever column. The point of fixity was assumed to be at a given depth 

below the mud line, Djk (See Figure 7.8) (Alpin and Lepper 2000; U.S. Navy 2000). End 

boundary conditions were assumed as follows: (a) Top end condition: Rotation fixed, 

translation free, and (b) Bottom end condition: Rotation fixed, translation fixed. If 

different end conditions exist, then the appropriate changes can be done to the model to 

account for that. The wood species considered was southern yellow pine (SYP). 

The cantilever column was modeled similarly to the simply supported beam with 

the major change being the moment distribution from the applied load, as follows 

M = P . x  (7.34) 

where P is the applied load at the free end and x is the distance from the free end. The 

shear force in the cantilever column is equal to the applied concentrated load, P. 

The moment considered in the cantilever column model, for developnlent length 

calculations, was the moment at a distance ar+14from the fixed end (See Figure 7.8). 



Fixi Level Y ----- - - - - - - - - - - - - - .  

Figure 7.8 - Schematic of Cantilever Model of Typical Wood Pile 

7.4.3.2 Design Example. The beam equations were applied to design the FRP 

composite shield to repair a typical damaged wood pile with a total length L = 12.2 m, 

diameter at tip DI = 300 mm, and diameter at butt D2 = 370 mm. The embedment length 

of the pile into the soil was Lemb = L - Le + Lfm= 6.1 m. The point of fixity was assumed 

to be at a depth fi-om the mud line Lf, = a2 + e = 1.5 m as shown in Figure 7.8 (Alpin and 

Lepper 2000; U.S. Navy 2000). The wood pile was damaged over a length L, = 800 mm 

(70 % loss of cross sectional area) and the bottom of the damaged area was located at a 

distance Ldom = 700 mm fi-om the mud line. The FRP composite shield encased the wood 

pile fiom a distance e = 600 mm below the mud line to a distance fiom the top of the pile 



(butt) a1 = 1.83 m. The total length of the FRP composite shield was Lf = 4.9 m. The 

wood pile was repaired using both systems B and C and the design solutions are 

compared. 

The design diameter was calculated using equations (7.12) and (7.13). The elastic 

properties of the FRP composite were calculated using the equations based on laminate 

analysis. The cement based grout elastic modulus was determined from equation (7.11). 

Wood pile properties were calculated based on the equations provided. The beam design 

model was applied to the wood pile assuming a cantilever column configuration. The 

results from the design example are shown in Table 7.5. 

Table 7.5 - Results from Design Example 

Repair 

System 

B (cement- 

based grout) 

C (shear 

connectors) 

Ultimate 

load, kN 

Development I Free end Mode of failure 

length, mm 

Wood tension failure 

at fixed location 

displacement at 

ultimate load, mm 

Wood tension failure 

at fixed location 

The moment capacity of the wood pile repaired with system B (cement-based 

grout) and the applied moment are shown in Figure 7.9. 

The moment capacity of the wood pile repaired with system C (shear connectors) 

and the applied moment are shown in Figure 7.10. 
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Figure 7.9 - Moment Capacity of Repaired Damaged Wood Pile and Moment at Peak 

Load for Cantilever Beam Model (Repair System B) 

300 -r 
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Figure 7.10 - Moment Capacity of Repaired Damaged Wood Pile and Applied Moment 

for Cantilever Beam Model (Repair System C) 



7.5 Correlation with Experimental Results 

The results from the beam model with the three-point configuration were 

correlated with the experimental results obtained from the bending tests (See Chapter 6). 

The correlation for peak load is shown in Table 7.6. The beam model peak load for the 

intact reference pile (IW) was approximately 20% lower than the experimental value. 

This was due to the fact that the reported bending strength for wood piles was 15% lower 

than the strength obtained from the bending test. The peak load for the pre-damaged 

control pile (DW) was well predicted with a difference of approximately 1 %. 

Table 7.6 - Peak Load Correlation between Beam Model and Experimental Results 

System I Failure load (including self I Difference, 

Intact reference wood pile 

(W 
- 

Pre-damaged control wood 

pile (DW) 

Repair system B 

model results 

For the wood piles repaired with both systems B (cement-based grout) and system 

C (shear connectors) the bending strength obtained from the intact reference pile was 

used. The peak load predicted by the beam design model for the pile repaired with system 

B (cement-based grout) was lower by approximately 21%. The predicted peak load for 

Repair system C 64 58.5 9.4 



the pile repaired with system C (shear connectors) was approximately 9% higher than the 

experimental. 

It is assumed that the beam model predictions for peak load for the intact 

reference pile (IW) and the pile repaired with system B (shear connectors) were not well 

correlated with the experimental values because the predicted peak load was based on 

wood bending strength that has high variability. 

The correlation for mid-span deflection at peak load is shown in Table 7.7. The 

beam model mid-span deflection for the intact reference pile (IW) was approximately 8% 

lower than the experimental value. The mid-span deflection for the pre-damaged control 

pile (DW) had a difference of approximately 1 %. 

Table 7.7 - Mid-Span Displacement Correlation between Beam Design Model and 

Experimental Results 

Difference, 

% 

System 

Intact reference wood pile 

(IW) 
Pre-damaged control 

wood pile (DW) 

Mid-span deflections, 

rnrn 

Beam design 

model 

188 

178 

Repair system B 

Repair system C 

Experimental 

results 

204 

182 

132 

7.8 



The mid-span deflection at peak load predicted by the beam model for the pile 

repaired with system B (cement-based grout) was lower by approximately 8%. The 

predicted mid-span deflection at peak load for the pile repaired with system C (shear 

connectors) was approximately 17% lower than the experimental. The deflection of the 

pile repaired with system C (shear connectors) was not well correlated. It is assumed that 

this difference is due to bending in the shear connectors (not accounted for in the design 

model), which allowed greater flexibility of the system. 

The modes of failure for all tested piles predicted by the beam design model correlated 

well with the experimental response, as shown in Table 7.8. 

Table 7.8 - Failure Mode Correlation between Beam Design Model and Experimental 

Results 

Intact reference 

wood pile (IW) 

System 

Beam 

Failure mode and location 

model 

I mid-span 
- 

Pre-damaged Tension failure in wood at 

control wood pile damaged location 

( D W  

Repair system B Tension failure in wood at 

edge of FRP composite shield 

Repair system C FRP composite shield 

longitudinal compressive 

failure at mid-span 

Experimental results 

Tension failure in wood at 

mid-span 

Tension failure in wood at 

damaged location 

Tension failure in wood edge 

of FRP composite shield 

FRP composite shield 

longitudinal compressive 

failure at mid-span 



7.6 Conclusions and Recommendations 

Based on the results presented in t h s  chapter the following conclusions are drawn: 

1. The proposed beam design model predicted, with reasonable accuracy, the peak 

load within 21% and the mid-span deflections at peak load within 17% for three- 

point bending tests (See Chapter 6). The failure modes were captured by the 

model. 

2. The design example showed that an installed damaged wood pile repaired with 

both system B (cement-based grout) and system C (shear connectors) can be 

restored. The mode of failure remains the same as for an intact installed wood 

pile, which is wood failure at the fixed end. 

The following commentary and proposed practical recommendations are offered: 

1. The equations presented can be used to design the FIW composite shields for both 

repair systems B and C (see Chapter 5) and for various end supporting conditions. 

2. Future work is needed to obtain the strength properties of the FIW composite 

shield. 

3. The cement-based grout enclosed by the wood pile and the FRP composite shield 

develops limited confinement. The beam design model does not account for this 

confinement. The confinement of the cement-based grout if included in the beam 

model may result in better prediction of the bending moment capacity of the 

encased portion of the wood pile. 



7.7 Notation 

The following symbols are used in this chapter 

a = Distance of FRP composite jacket edge from the support (simply 

supported beam) 

a I = Distance of F W  composite jacket edge from the butt of the wood 
pile 
a2 = Distance of FRP composite jacket edge from the level of fixity of 
the wood pile 
C - - Distance of the extreme wood fiber from the neutral axis 
Cf = Distance of the extreme FRP composite jacket fiber from the 
neutral axis 
cu - - Empirical reduction coefficient 
e = Distance the FRP conlposite shield is embedded into mud and 
distance it extends above high tide 
DI  = Tip diameter of a tapered wood pile 
D2 = Butt diameter of a tapered wood pile 
Lfu. = Depth below the mud line at which the wood pile is assumed to be 
fixed 
Dred = Diameter of wood pile at damaged location 
Dw - - Design diameter of tapered wood pile 
Ef = Modulus of elasticity of the fibers 
(E~)cs  = Stiffness of repaired wood composite section 
Ec = Cement-based grout modulus of elasticity 
Em = Modulus of elasticity of the matrix 
Ew = Wood pile modulus of elasticity 
Ex = Longitudinal modulus of elasticity of FRP composite shield 
4 = Transverse modulus of elasticity of FRP composite shield 
El = Modulus of elasticity in the fiber direction 
E2 = Modulus of elasticity in the transverse direction of the fiber 
Fb = Reference bending strength of wood pile 
f'c = Compressive strength of cement-based grout obtained from 
cylinder tests 

Longitudinal compressive strength of FRP composite shell 
Thickness of FRP composite shell 
Moment of inertia of FRP composite jacket 
Moment of inertia of wood pile at damaged location 
Moment of inertia of intact wood pile 
Length of wood pile embedded into mud 
Distance between the bottom of the damaged area and the mud line 
Development length of FRP composite shield with shear 

Development length of cement-based grout 



1 4  
- - 

based grout 
Development length of FRP composite shield when using cement- 

Length of FRP composite shield 
Length of damaged portion of the wood pile 
Moment from applied load 
Moment capacity of FRP composite shield 
Moment capacity of damaged portion of wood pile 
Moment capacity of intact wood pile 
Number of shear connectors 
Applied load , 

Force transferred by each shear connector 
Outer radius of cement based grout 
Outer radius of FRP composite jacket 
Outer radius of wood pile 
Spacing of shear connectors 
Thickness of CSM layer 
Shear force 
Fiber volume fraction 
Force difference in the equilibrium section 
Maximum deflection 
Empirical parameter 
Empirical parameter 
Angle formed by the radius of a point and the horizontal passing 

through the center of the section 
v - - Poisson's ratio of the FRP composite 
7 'xr  = Average shear stress of wood pile and cement-based grout 
interface 
z xr = Average shear stress at FRP composite jacket and cement-based 
grout interface 
'50 

- - Apparent slip-shear strength of the interface 

Subscripts 

cs = Composite section 
f - - Fiber 
m - - Matrix 
W - - Wood 
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APPENDICES 



APPENDIX A 

Detailed procedure for the fabrication of Fiber Reinforced 

Composite shells using the SCRIMPTM fabrication process 

Summary of Fabrication Method 

Cylindrical Fiber Reinforced Polymer (FRP) composite shells with a longitudinal 

opening along their length were fabricated in the laboratory using the Seemann 

Composites Resin Inhsion Molding Process  SCRIMP^^). The fiber reinforcement was 

placed dry on the mold and then sealed with a tube vacuum bag. Vacuum pressure of - 

102 kPa was applied with a vacuum pump and resin was pulled through a resin pot. The 

reason for the selection of -102 kPa of vacuum pressure instead of -85 H a  that others 

use was the following: It is suggested that vacuum lines are spaced every 0.914-1.2 19 m 

but for the 4.878 m long shells we only had two and we thought -102 H a  would help 

keep the vacuum at the high twenties in between the two vacuum lines. Once the resin 

impregnated the fiber reinforcement the vacuum pressure was reduced to -5 1 kPa till the 

resin gelled. The vacuum pressure compacted the dry fiber reinforcement. The vacuum 

also removed all the air fi-om the fiber lay-up before and during resin inhsion. The 

pressure differential between the atmosphere and the applied vacuum allowed inhsion of 

the resin into the fiber lay-up. After the resin gelled vacuum pressure was removed and 

the part was allowed to cure. The part was then removed by pulling open the longitudinal 

opening. 

Apparatus 

Sixteen inch diameter PVC pipe used as a mold 



Two end supports for the PVC pipe 

Vacuum pumps and tubing 

Resin pot 

Coil and sisal rope 

Materials I 

E-Glass unidirectional woven fabric. It comes in rolls of 1.219 m width and has a 

weight of 880 g/m2. 

Chopped Strand Mat. It has a width of 1.270 m and a weight of 305 g/m2. 

Vinyl ester resin. It is an Epoxy based resin from DOW Chemicals known as 

Derakane 411-C-50 and it suitable for  SCRIMP^^ because of its low viscosity (0.15 

Pa.s). 

Sealant tape 

0 Plastic tubing, connectors and valves 

Coil and sisal rope 

Release film 

Peel ply 

Flow media 

Tube vacuum bag 

Fabrication Procedure 

Fabrication Set-Up 

1. Cut fabrics and other materials to the appropriate dimensions 

2. Clean the mold thoroughly. 



Apply mold release agent and release film. Use tape to hold release film in 

place. 

Place a layer of peel ply. Use spray adhesive to hold it in place. Care should 

be taken to use minimal amount of adhesive because of potential void pockets 

in the part. I 

Place E-glass fabrics in the appropriate sequence to build your lamina on top 

of the peel ply. In the case of wood pile repair the fiber stacking sequence is 

[CSM, oO, 90°, oO, oO, CSM]. Use spray adhesive to prevent the fabric layers 

fiom shifting. The Fiber Volume Fraction (FVF) that this process yields is 

about 45%. 

Place a layer of peel ply on top of the fibers. 

Place the sisal rope at the bottom where the longitudinal opening will be 

located. Use sealant tape to attach it to the mold. The sisal rope should be 150 

mrn shorter than the part and placed 75 mm fi-om each edge of the shell. 

At the two ends of the sisal rope attach the vacuum hoses using sealant tape 

and dug tape. 

Bring together the peel ply in such way as to cover the rope in order to 

maintain uniform vacuum during fabrication. Stable the edges of the peel ply 

together to hold them in place. 

10. Place the flow media on top of the peel ply. The flow media should be 75 mm 

fiom the edges of the part. 

11. Place the resin tube 50 to 70 mm in the coil and then wrap the coil with the 

same material as the flow media. The coil should be the same length as the 



flow media, which in this case is 150 mm shorter than the length of the part. 

Place the coil on the top and use pieces of sealant tape to hold it in place 

12. Place the whole system into the tube vacuum bag and use sealant tape to seal 

the system. At the bottom and top where the rope and the coil are, create a 

fold to the vacuum bag to accommodate the extra space needed for those not 

to cause any distortion to the fabricated part. 

13. Connect the vacuum tubing (vacuum lines) to the vacuum pump. Clamp the 

resin tubing (feed line) to prevent air from entering the system. 

Vacuum of Dry Reinforcement Lay-Up 

14. Turn on the vacuum pump and draw vacuum pressure. Check for any leaks 

and seal them. When no more leaks can be found make sure the indicator on 

the resin pot is reading -102 kPa. 

15. Close the valve in order to isolate the system from the vacuum pump and then 

turn off the pump as well. Record the indication immediately after you turn 

off the valve. 

16. Watch the indicator on the resin pot to see if how much vacuum is lost in 5 

minutes. If less than -3.4 kPa is lost in that period the system is ready for 

impregnation. If not then look for more leaks and seal them. Then run the test 

for another 5 minutes to make sure you are not still loosing vacuum 

Resin Mix 

17. Mix the appropriate amount of resin. For a 4.877 m long shell 16 kg of the 

resin are needed while for a 0.864 m long one 4.5 kg. Add 1% catalyst by 



weight to the resin and mix thoroughly for 5 minutes. Mixing should be done 

under the ventilation hood. The resin has a pot life of 1.5 hours when mixed 

with 1 % catalyst (at ambient temperature of 2 1 "C). 

18. Let the resin sit for an hour under the hood. This is necessary since the time 

that the part is impregnated is 25 to 30 minutes. If the resin is used right away 

then resin will be pulled out of the part and possibly go into the vacuum 

tubing blocking it and vacuum pressure will drop. 

Resin Infusion 

19. When is time for impregnation turn the pump on and then place the resin 

tubing in the bucket the resin was mixed in. 

20. Unclamp the resin tubing and allow resin to flow through and into the coil. 

The distribution media will allow it to be distributed around the part. 

21. When the part is completely impregnated clamp the resin tubing and turn off 

the valve to isolate the system fiom the pump. This will maintain the pressure 

till another pump is connected to the system. 

22. Connect a pump to the system that is able to yield -51 kPa or that has the 

ability to regulate the amount of vacuum with a valve. 

23. Drop the pressure to -51 kPa of Hg and let it run till the resin in the part gels. 

Although the resin in the bucket gels really fast due to the high concentration 

of resin the resin in the part usually takes about 35 to 40 minutes to gel. 

24. Turn off the pump after the resin gels and let the part cure on the mold. 

25. Allow any excess resin that was left in the bucket to cure under the hood. 



Removal of Part, Disposal of Materials and Cleaning of Set-Up 

26. After curing of the resin, remove scRIMPTM materials (plastic bag, peel ply, 

distribution media, coil and rope). 

27. Remove the FRP shell from the PVC pipe my pulling open the longitudinal 
I 

opening and sliding it off. 

28. Dispose of all the scRIMPTM materials and any cured resin in a trash bin 

since after curing the resin material becomes toxicologically and ecologically 

inert. 

29. Clean the PVC pipe and get it ready for the next shell. 

Specimen Size 

FRP composite shells with a diameter of 406 mm and two different lengths 

ranging from 0.864 m to 4.877 m were fabricated. The thickness of the FRP composite 

shells is typically 3.3 rnm. 



APPENDIX B. 

Detailed cost analysis for FRP shell manufacturing and bonding 



Table B.2 - Material Fabrication Supplies and Labor Preparation and Application Cost 

Material cost items 
UMaine 

8-May42 
Length of FRP shell (ft) 16 
Number of shells 4 

Fabrication supplies Cost per ft Total cost 

Release film ' $1.47 $24.99 
Sisal rope $0.35 $5.60 
Sealant tape $0.42 $6.72 
Bagging film $0.70 $1 1.90 
Distribution media $0.30 $15.98 Note: The unit price is per sq. foot 
Peel ply $2.35 $39.95 
Total cost per shell $105.14 

The following items can be used for all shells not just one 
Tubing $0.95 $23.75 
Fittings $1 0.00 
Total cost $33.75 
Total cost per shell $8.44 

Total fabrication supplies cost for shell $113.58 

Labor cost items 
UMaine 

#Laborers # Hours Cost Total cost 
($lhr) ($) 

Labor Preparation 
Labor Application 

Table B. 1 - Calculation of Fiber Reinforcement Cost 

Table B. 1 - Calculation of Fiber Reinforcement Cost 



Table B.3 - Total FRP Shell Cost 

Calculation of Total FRP Shell Cost 
UMaine 

8-May-02 

Shell width (ft.) 
Shell length (ft.) 
Number of shells 

Cost per shell 
Fiber reinforcement 
Resin Derakane C-50 
Catalyst DHD-9 
Fabrication supplies 

Cost Source 
$1 00.72 UMaine - BTI 
$70.00 Umaine 
$8.00 Umaine 

$1 13.58 Umaine 
Labor preparation $70.00 Umaine 
Total material Cost $362.30 

Labor application $15.00 Umaine 
Total cost per shell $377.30 

Cost per square foot of shell $5.90 

Total cost for 4 FRP shells $1,509.21 

Adhesive cost per ft of shell 
# of hours 

Total 
$12.50 $200.00 

1.5 
Application cost per hour $10 $15 
Total cost for adhesive application $215.00 

Cost for 2 bonded shells 



APPENDIX C. 

Analysis of variance results for control and freeze-thaw 

specimens from SYSTAT 

Table C. 1 - Paired Samples t-Test Results 

CONTROL FREEZETHAW 
N of cases 9 9 
Minimum 
Maximum 
Range 
Sum 
Median 
Mean 

95% CI Upper 
95% C1 Lower 

Std. Error 
Standard Dev 
Variance 
C.V. 
Skewness(G1) 
SE Skewness 
Kurtosis(G2) 

Paired samples t test on CONTROL vs FREEZETHAW with 9 cases 

MeanCONTROL = 16.204 
Mean FREEZETHAW = 9.193 
Mean Difference = 7.01 1 95.00% CI = 6.337 to 7.686 
SD Difference = 0.878 t = 23.957 

df = 8 Prob = 0.000 
Dunn-Sidak Adjusted Prob = 0.000 
Bonferroni Adjusted Prob = 0.000 



Table C.2 - Two Sample t-Test on Strengths Grouped by GROUPVAR 

SYSTAT Rectangular file C:\Program Files\SYSTAT 9\Data\Research Data\Tony's stuff.SYD, 
created Thu May 09, 2002 at 14:13:06, contains variables: 

CONTROL FREEZETHAW 

Two-sample t test on STRENGTHS grouped by GROUPVAR 

Group N Mean SD 
0 9 16.204 0.795 

Separate Variance t = 25.497 df = 9.2 Prob = 0.000 
Dunn-Sidak Adjusted Prob = 0.000 
Bonferroni Adjusted Prob = 0.000 

Difference in Means = 7.01 1 95.00% CI = 6.391 to 7.631 

Pooled Variance t = 25.497 df = 16 Prob = 0.000 
Dunn-Sidak Adjusted Prob = 0.000 
Bonferroni Adjusted Prob = 0.000 

Difference in Means = 7.01 1 95.00% CI = 6.428 to 7.594 

Paired samples t test on CONTROL vs FREEZETHAW with 9 cases 

Mean CONTROL = 16.204 
Mean FREEZETHAW = 9.193 

Mean Difference = 7.01 1 95.00% CI = 6.337 to 7.686 
SD Difference = 0.878 t = 23.957 

d f =  8 Prob = 0.000 
Dunn-Sidak Adjusted Prob = 0.000 
Bonferroni Adjusted Prob = 0.000 
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