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The use of composites in engineered wood products has recently led to the use of 

fiber-reinforced polymers (FRP) as a reinforcing for glued-laminated (glulam) beams. 

Bridge girders are among the more common applications of FRP-reinforced glulam 

beams and therefore the beam is subject to millions of load cycles as well as moisture 

fluctuations. Significant flexural strength can be gained through the use of such 

reinforcing, however, the behavior of the wood composite when subject to repeated load 

cycles and hygrothemal effects is not well understood. 

In this study, eighteen glulam beams were reinforced in tension with 1.93% E- 

glass/epoxy reinforcing (defined as the volume of reinforcing fiber divided by the volume 

of wood) and tested in flexural fatigue at stress levels corresponding to 1 .OFb and 1 .3Fb, 

where Fb is the allowable flexural capacity. Both full length and partial length reinforced 

specimens were tested. The FRP sheet was terminated at the theoretical cut off point (or 

the point at which the reinforcing is no longer needed to sustain the applied loads) with 



the partial length reinforcing and was explored with and without end restraints on the 

reinforcing. Unrestrained terminations were beveled to alleviate peeling stresses while 

restrained terminations were confined by a steel plate and lag screws. 

Fatigue testing of all specimens cycled the beams in four-point bending for a total 

of two million cycles with static bending tests performed periodically to track changes in 

stiffness. Specimens were then broken in static bending to determine residual strength. 

Loading at 1.OFb fatigued the specimens at a stress ratio of R=0.333 while loading at 

1.3Fb produced a stress ratio of R=0.255. Load heads were spaced to produce flexural 

stress-to-shear stress ratios consistent with those seen by typical in-service timber bridge 

girders. However, the flexural capacity of the reinforced beams was over-estimated due 

to lower than expected lamstock properties and the use of a transformed section modulus 

where the wood section modulus was required. The cumulative effect of this resulted in a 

conservative testing program where the specimens fatigued at 1.OFb were actually 

stressed to 1 .52Fb and the specimens fatigued at 1 .3Fb were actually stressed at 1 .98Fb. 

The results of these tests showed that the full length reinforced beams fatigued at 

l.OFb were not prone to fatigue failures. At the higher stress level of 1 .3Fb, specimens 

failed prematurely and exhibited fatigue failures causing bending stiffness losses. The 

results also showed that with adequate confinement of the FRP terminations, partial 

length reinforcing may be structurally feasible. Beams with unconfined terminations 

fared poorly in fatigue. 

In addition, the effects of hygrothermal stresses in combination with mechanical 

fatigue are of particular concern. To better understand the effect, both finite difference 

and finite element modeling was done to quantify the stresses due to hygrothermal 



fluctuations that are typical over the life span of a timber bridge girder. A kiln schedule 

was designed to subject beams to extreme high and low moisture contents to reproduce 

the cumulative damage occurring over a 50 year life span of a timber bridge girder in a 

New England environment. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

In spite of the many improvements and advancements in concrete and steel 

construction, timber remains a popular construction material because of its relatively low 

cost, ease of construction, and low maintenance after construction. A significant portion 

of the timber construction market belongs to the glued-laminated (glulam) beam industry. 

Glulam beams are manufactured from smaller pieces of wood, called lamina, which are 

glued and laminated together to form larger dimension beams. The main advantage of a 

glulam beam is that defects in the laminations are dispersed throughout the beam, which 

significantly lessens their effect on beam strength. By laminating the thinner pieces, the 

one large defect that might weaken a piece of solid sawn lumber will be cut up and 

spread out over the entire beam in the form of smaller defects. Because of this 

laminating effect, the strength of glulam beams can be more than twice as high as 

conventional timber strength values. Other advantages of glulam include the availability 

in large dimensions, dimensional stability, its high strength-to-weight ratio, chemical 

resistance because it does not rust or corrode and fire resistance due to a slow char rate. 

One method of improving the strength of a glulam beam is to reinforce the beam 

with fiber reinforced polymer (FRP) to decrease member size and enable the use of lower 

grade wood. A relatively small amount of FRP is needed (usually 1%-3% of the beam 

volume for various types of FRP) when reinforcing for tension capacity and this fiber 

reinforcing can be easily bonded to the wood to provide a significant strength gain. The 



fibers are typically unidirectional, and help make efficient use of materials since the 

required depth of the beam will be much shallower with the addition of reinforcing. 

Taking this concept one step hrther, higher grade wood can be strategically located to 

provide extra capacity in only the places where it is needed, while lower grade wood can 

be substituted in areas where the reinforcing provides the strength. 

Although the reinforced glulam holds much potential, there is still little known 

about how this innovative material will perform in-service under repetitive loading. One 

issue concerning the applications of reinforced glulam beams is their behavior in fatigue. 

This is especially true for bridge structures, which are subjected to millions of live load 

cycles over their design life. In structural design, glulam strength is generally assumed to 

be unaffected by fatigue. However, by laminating FRP to a glulam, the allowable 

flexural capacity is greatly increased but the allowable shear capacity remains the same 

as the unreinforced beam. Unreinforced glulam bridge girders are unintentionally over- 

designed in shear in order to meet flexural capacity requirements. In contrast, an FRP- 

wood composite beam can have both the shear and tensile stresses very close to allowable 

capacity under live load conditions. Shear failures due to fatigue may therefore be a 

concern, since under repeated loading, the fatigue performance of an FRP-reinforced 

glulam under these conditions is unknown. 

Another area of concern is the fatigue performance of the wood-FRP bond line. 

This is especially critical when partial-length FRP reinforcing is used, i.e. the FRP is 

terminated somewhere in the clear span. A third area of concern is the behavior of the 

wood and FRP under hygrothermal fluctuations. The two materials react very differently 

to changes in moisture content. The wood shrinks and swells with respect to the changes 



in ambient moisture content. FRP, on the other hand, exhibits relatively little shrinkage 

or swelling, if any at all. A glulam beam exposed to exterior conditions will exhibit 

cyclical shrinkage and swelling annually with the changing weather patterns. This will 

induce stresses on the bond line between the FRP and wood. The magnitude of these 

stresses and how they will affect the performance of the reinforcing is of particular 

concern. These stresses pose the potential to cause debonding over time and separate the 

FRP from the wood, introducing delaminations. Obviously, this problem is coupled with 

the fatigue performance of the wood-FRP bond line, and warrants investigation. 

1.2 Objective 

The objective of this research is to evaluate the fatigue durability of FRP- 

reinforced glued laminated bridge girders and help determine the effectiveness of FRP as 

a reinforcing material. Preliminary research on this matter had been conducted which 

provided a good basis to form a plan of action for conducting the fatigue tests (Gamache 

2001). 

1.3 Scope of Work 

The focus of this research is centered on the fatigue behavior of structural-scale 

FRP-reinforced bridge girders. The research focused on mechanical fatigue due to 

vehicular loading as well as the combined effect of stress cycling due to hygrothermal 

fatigue from environmental fluctuations in temperature and relative humidity. Effects of 

preservative treatment were not included in this research and the specimens used were 

untreated. 



To explore the mechanical fatigue behavior of the FRP-reinforced girder, a 

program was developed to repeatedly load the specimens in a configuration that closely 

replicates the stresses due to a design live and dead loads on a bridge girder. Eighteen 

glulam specimens reinforced with 1.93% E-glass FRP by volume were fatigued at two 

different stress levels and the results analyzed. The details of this portion of the research 

are presented in chapters 3-5. 

The second portion of the research focused on developing a process to replicate 

the effects of hygrothermal cycling experienced by an FRP-reinforced glulam bridge 

girder over its design life. This required both finite-difference and finite-element 

modeling to produce moisture movements and resultant shrinkage- and swelling-induced 

stresses at the wood-FRP bond line. A quantitative stress history parameter is proposed, 

and a kiln schedule was developed to reproduce the cumulative damage caused by in- 

service hygrothermal fluctuations over a 50 year girder life span in a period of 54 days. 

1.4 Organization 

The remainder of this thesis consists of six chapters. Chapter 2 is a literature 

review discussing research and publications relevant to the topic of research. Chapter 3 

presents the design and details of the testing program developed for mechanical fatigue. 

Chapter 4 discusses the construction of the specimens and Chapter 5 presents the results 

of the mechanical fatigue tests. Chapter 6 details the development of the hygrothermal 

weathering program and the kiln schedule for evaluation of hygrothermal fatigue. 

Finally, Chapter 7, gives a summary of the work completed, conclusions and 

recommendations for future work. References used in this study are listed at the end of 



Chapter 7. Supporting data and calculations are presented in the three appendices at the 

end of the thesis. 



Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

The increasingly scarce supply of high-grade structural wood and competition 

from steel and concrete has forced the wood industry to engineer more marketable wood 

products (MDA 2003). The many forms of engineered wood products include wood I- 

joist, oriented strand board, plywood, rim board, parallel strand lumber, laminated veneer 

lumber and glued laminated lumber and are used in many aspects of construction ( M A  

2003). In recent years, efforts have been made to improve upon these products through 

the use of non-wood materials. 

From these efforts, a new field of study has emerged which focuses on wood 

composites, which are wood products which benefit in some way from non-wood 

components. Since the early 1990s there has been significant interest in developing wood 

composites. Research on development of these wood composites has focused on making 

a product with more desirable properties than those of either material alone, including 

increased structural properties, reduced labor costs or more efficient use of materials 

(Youngquist 1995). 

Most recently, developments in the engineered wood products sector include the 

use of fiber reinforced polymers (FRP) composites. In structural applications, FRP 

typically refers to composites made of glass, carbon, graphite, and aramid. FRP fiber 

orientations come in a variety of configurations including continuous rovings, woven 

rovings, textiles and chopped stand mats. Some recent innovations in FRP-wood hybrid 



composites include FRP-overlaid plywood (APA 1998), FW-wood guardrails and rail 

posts (Dickson 1996), FRP-composite wood piles (Lopez-Anido et a1 2003), FW-glulam 

ocean piers (Coger 1997; Dagher and Bragdon 2001), FW-glulam panels for bridge 

decks (Lopez-Anido and Xu 2002), and also FW-glulam bridge girders (Dagher and 

Lindyberg 2003). 

The specific focus of this chapter is to present an overview of some of the past 

research pertaining to reinforced glulam beams and the durability issues surrounding 

them. The glulam industry has been operating on a commercial basis since the early 

1900s but has just recently expanded to include benefits of composite technology. 

Research with glulam technology has recently focused on improving strength capacity 

through the use of composites. Composite reinforcing materials, specifically FRP, have 

shown promise for significantly strengthening glulam and making it a more competitive 

product. 

Mention must be made here that the literature review builds on that done by 

Christopher Gamache in his MS thesis (Gamache 2001). 

2.2 FRP-Glulam Technology 

A glulam beam is a structural component constructed from individual lengths of 

lumber, called laminations, that are bonded together to form deeper members. The 

individual lengths are typically finger-jointed to form longer members. The glulam beam 

excels over solid-sawn lumber by making possible longer, deeper and wider members 

with cambered, curved and tapered configurations not possible with solid sawn lumber 

(APA 2003). The beams are also engineered with efficient use of wood by organizing 



lower grade laminations in areas of lower stress (APA 1998) where the strength of the 

higher quality lumber is not needed. 

One of the most interesting advantages of using glulam comes from a case study 

performed by Petersen and Solberg (2002). The study compared the environmental 

benefits of using glulam over structural steel in the construction of a new airport outside 

of Oslo, Norway Taking into account the differences in the manufacturing process and 

construction with the two materials, the report showed that, depending on the method of 

waste handling, the greenhouse gas (GHG) emissions are 6-12 times as high as with steel 

than glulam. Converting the avoided GHG emissions into dollar amounts using the price 

of the COz-tax on gasoline in Norway, glulam was found to be the economical choice 

when the initial cost of glulam was no more than 1-6% more expensive than steel. 

Perhaps the most important advantage with glulam, though, is the increased 

strength over solid sawn lumber due to the laminating effect. Serrano (1997) described 

this laminating effect as stemming from a dispersion of defects as well a reinforcing of 

defects. When cut into laminates, the large defects present in a piece of solid sawn 

lumber become smaller defects that are dispersed throughout the glulam, lessening their 

effect. The clear wood in adjacent laminations then reinforces the surrounding defects by 

redistributing the induced stresses. The combined effect is an increase in the capacity of 

the cross section. The outer laminations on the top and bottom, however, benefit from 

this defect-reinforcing phenomenon on only one side (Falk and Colling 1995). Building 

on this reinforcing idea, composites have most recently been used as a reinforcement 

material for engineered wood products. 



Galloway et a1 (1996a) noted that in a glulam beam tested in static bending, the 

ultimate strength becomes more dependent on tensile strength, rather than compressive 

strength, as the grade of wood decreases. Martinez and Cali1 (2002) state that glulam 

beams are most prone to failure modes in the form tensile ruptures in the outer-most 

tensile lamination. They also noted that these ruptures initiated at a finger joint or defect, 

which is also consistent with findings published by Dagher and Lindyberg (2003) and 

Romani and B l d  (2001). Therefore, the use of FRP reinforcing would be beneficial in 

the tensile stress region of the beam. In this case, not only would the reinforcing act to 

increase the ultimate strength by providing added tensile strength but would also act to 

reinforce defects present in the critical tensile region. 

Using an FRP reinforcing for structural wood components has been studied by 

many researchers (Plevris and Triantafillou 1992; Triantafillou and Desovic 1992; 

Kimball 1995; Galloway 1996a; Galloway 1996b; Davids 2000; Dagher et a1 1998; 

Romani and BlaR 2001; Dagher and Bragdon 2002; Lopez-Anido and Xu 2002; Dagher 

and Lindyberg 2003; Lopez-Anido Michael and Sanford 2003). Commonly used 

reinforcing materials include E-glass (Dagher and Lindyberg 2003), Kevlarlaramid 

(Galloway et a1 1996a), and carbon fiber (Meierhofer 1995). FRP-glulam products are 

even being produced on a commercial basis by companies such as American Laminators 

(American Laminators 2003). 

The most notable advantage of reinforced glulam beams is the gain in flexural 

strength from tensile reinforcing. Previous testing has shown that flexural strength can be 

increased by 50-100% over the unreinforced strength with the use of tensile reinforcing 

(Plevris and Triantafillou 1992; Kimball 1995; Dagher et a1 1998). The use of FRP 



reinforcing can also decrease variation in modulus of elasticity and strength by reducing 

the effect of defects (Lindyberg 2000). 

In addition to the increased strength and decreased material property variability, 

other notable advantages have been documented. Tingley et a1 (1996) cited several 

advantages noted in the case of a FRP-reinforced glulam bridge built over the Clallam 

River in near Sekiu, WA. The beams used in this bridge utilized lower grade wood 

which also lead to reduced costs, lower treatment costs, and decreased dead weight for 

easier construction. Dagher et a1 (1996) also found that FRP tensile reinforcing can be 

used to produce higher strength glulam beams using under utilized species such as 

Eastern Hemlock. 

2.3 Durability Issues 

With all the desirable advantages pushing reinforced glulam technology to the 

forefront, several issues restrain it from more widespread use, the most prominent of 

which is durability. The long term durability of the product raises many concerns 

(Dagher et a1 1996). The FRP and the wood have very different material properties, but 

are dependent on a strong bond between two for full composite action. The effects of 

repeated loading and fluctuating environmental conditions on the wood-FRP bond line 

are not well understood. 

Fatigue, in reference to structural applications, is a term used to describe the 

permanent changes that occur in a material as result of fluctuating or cyclic applied stress 

and strain conditions (ASTM 1987). Mechanical fatigue, combined with the effects of 

temperature and moisture fluctuations could lead to wood-FRP bond line failures. The 



long term durability of structural components is typically determined from mathematical 

models that are derived from long-term testing (Liu, Zahn and Schaffer 1994), thus to 

develop accurate models to predict life spans, fatigue testing of FRP-glulam beams must 

be performed. 

2.3.1 Background on Fatigue Testing 

Fatigue testing is designed to determine the maximum number of load cycles a 

component can sustain under a given stress before failing. However, changes in material 

properties in specimens are rarely noted during fatigue testing and therefore failures often 

occur suddenly without warning. Fatigue properties cannot be reliably determined from 

other mechanical properties and can only be quantified through direct testing. 

Furthermore, it is commonly accepted that full-scale testing is necessary to ensure 

accurate results and even then results can vary significantly (Bodig and Jayne 1982). 

Fatigue testing of wood and other materials is performed under a number of 

conditions. With the advent of computers and feedback loops, more sophisticated and 

accurate testing is now available and most fatigue testing is done under constant load 

amplitude. Equipment limitations required that early fatigue tests be run at constant 

displacement amplitude where creep and fatigue would reduce the applied stresses over 

time (Tsai and Ansell 1990). 

The type of loading is usually defined as either "low-cycle-fatigue" or "high- 

cycle-fatigue". In low-cycle-fatigue, higher loads are applied for number of load cycles 

typically between 10-100,000 cycles. High-cycle-fatigue is just the opposite, 

characterized by lower loads over a period of greater than 100,000 cycles. The most 



common method of loading in both cases is sinusoidal, however loading can be in the 

form of square waves, triangular waves, saw-tooth, etc. (MSC 2003). 

Typical fatigue testing programs seek to establish S-N curves, or plots of stress, S, 

versus the logarithm of the number of cycles to failure, N. These curves are used to 

establish a fatigue limit or fatigue strength specific to a material. The fatigue limit is the 

maximum stress that can be applied over an infinite number of cycles and is taken as the 

stress at the point when the S-N curve becomes horizontal (Bagdahn et a1 2003). Stress 

levels below the fatigue limit can be applied for an infinite number of cycles with no 

failures. The fatigue strength is the failure stress at a given number of cycles (Gere and 

Timoshenko 1997). 

The stress ratio, or R, is most commonly used to characterize the type of fatigue 

loading. The stress ratio is defined as the ratio of the minimum applied load to the 

maximum applied load (Bodig and J a p e  1982). A positive R indicates that the loading 

in non-reversed, i.e. the specimen is only loaded in compression or tension. A negative 

stress ratio would indicate reversed loading, i.e. the specimen is loaded in compression 

and then tension, or vice versa, in the same cycle (Paepegem and Degrieck 2002). 

2.3.2 Mechanical Fatigue of Wood and FRP-Reinforced Glulam Beams 

Fatigue in wood is not a well defined parameter. With less than fifty publications 

on the matter from 1940-1 990 (Tsai & Ansell 1990), there is an evident lack of research 

regarding on this matter. Tsai and Ansell (1990) call attention to the fact that other 

design factors such as deflection and creep tend to control design to the point where 

fatigue in wood is a non-issue. However, with the use of tensile reinforcing, the flexural 



capacity of the glulam beam is significantly increased while the shear capacity remains 

unchanged from the capacity of the unreinforced section (Dagher & Lindyberg 2003). 

Increasing the applied flexural stress will simultaneously increase the applied shear 

stress. The effects of fatigue loading on beams with high shear stress is not well 

understood. In addition, the durability of the wood-FRP bond line is also a concern for 

glulams subjected to fatigue loadings. 

Martinez and Cali1 (2003) reported that the fatigue strength of wood is largely 

characterized by the species and origin of the wood, the dimensions of the specimen, the 

temperature and moisture content, and type of loading. Chemical treatments, the bonding 

adhesives used, and the type of joints can also affect the fatigue performance of wooden 

members. Gong and Smith (2000) found that failure in wood specimens loaded 

cyclically parallel-to-grain were caused by kinks in the cell walls. This phenomenon was 

also noted by Hoffmeyer (1993) and Scurfield et a1 (1972). 

Past research has shown conflicting finding about the fatigue properties of 

softwood glularn and solid sawn wood. Studies have concluded that the low material 

variability of laminated wood products improves fatigue performance (Marusceac and 

Verdes 1984), while others concluded that laminated wood does not perform better than 

solid sawn in under fatigue loading (Bond and Ansell 1998). Hansen (1991) stated that 

the species of wood plays a vital role in fatigue performance while Tsai and Ansell 

(1990) give a refuting opinion that species does not matter when test data is normalized 

by static strength. 

Establishing full S-N curves can entail applying millions of fatigue cycles at a 

variety of stress levels, which is a long and costly process. This makes running the test at 



a higher frequency desirable. The loading frequency at which the fatigue test is run also 

produces conflicting opinions. However, Martinez and Cali1 (2003) noted that the higher 

frequency increased the number of fatigue cycles to failure in individual horizontally 

finger jointed laminations. But, with metals, it has been shown that the frequency was 

independent of crack growth rate (Singh et a1 2001) that could cause fatigue failure. Liu 

et al. (1994) modeled the effects of cyclic loading of wood as independent of the loading 

frequency. Liu and Ross (1996) reported that for Douglas Fir, for a given mean stress, 

fatigue life increases with a decrease in stress amplitude. 

Despite the contradictions, studies have provided important insight into the 

fatigue behavior of wood. Lewis (1960) noted, that in his study of laminated beams, 

static and fatigue failure occurred exclusive of the bond line. Lewis (1962) also reported 

that quarter-scale bridge stringer specimens of Southern Pine and Douglas Fir loaded to 

55% of the static strength survived two million fatigue cycles without failure. Elmendorf 

(1918) found that the fatigue strength for reversed loading of wood specimens was 

approximately 25% of the static strength. Tingley et a1 (1996) found no appreciable 

creep or fatigue effects with FRP-reinforced bridge girders in a bridge in Sekiu, WA after 

a year of traffic loading. 

2.3.2.1 Full Length Reinforcing 

Full length reinforced beams have been tested and shown to have benenficial 

properties. In-service uses have also showed promise (Tingley et a1 1996; Dagher and 

Lindyberg 1999). The FRP reinforcing in full length reinforced beams is confined at its 

terminations by the supports. The force exerted by the supports and by extension of the 

reinforcing to regions of low moment in simply supported structures helps to reduce any 



peeling stresses and other fatigue effects. Partial length reinforcing, however, does not 

share in this advantage. 

2.3.2.2 Partial Length Reinforcing 

The FRP terminations of partially reinforced beams undergo complex stress states 

of shear and tension which can produce delamination (Chawla 1987), and therefore a 

moment must be applied to counteract the peeling stresses (Cheng et a1 1991). Kirlin 

(1 996) found that thicker tensile reinforcing resulted in higher stress concentrations at the 

FRP terminations. Work done by Hong (2003) with FRP-wood composites has shown 

that single-lap shear joints, such as the detail at the partial length reinforcing termination, 

are prone to fatigue failures. Possible methods used to compensate for the stress 

concentrations include beveled terminations (AASHTO 1996) and extending the 

reinforcing beyond the point where it is no longer necessary (American Laminators 

2003). 

Other areas of related work have been done on steel plate reinforcing bonded to 

the soffits of concrete beams. Harnoush and Ahrnad (1990) and Oehlers (1992) have 

published data which helps define failure modes that exist due to the peeling forces at the 

plate ends. Saadatmanesh and Ehsani (1990) reported that steel and FRP reinforcing 

display very similar behavioral characteristics with regard to flexural loading. 

2.3.3 Hygrothermal Effects in FRP-Reinforced Glulam Beams 

The movement of water through wood is governed by diffusion. A surface 

emission coefficient and a diffusion coefficient are generally held as the two factors that 



characterize movement of a substance through a material (Liu and Simpson 1996). 

Moisture diffusion through a material with a constant diffusion coefficient is governed by 

the following a partial differential equation in the form: 

Eqn 1.1 

In the above equation, C is the moisture content, t is time, D is the diffusion coefficient 

and x is the space coordinate (Siau 1996). A consideration when dealing with wetting 

and drying of wood is that the rate of moisture absorption in wood is always less than the 

rate of drying (Forest Products Laboratory 1999). This process is referred to as hysteresis 

(Stamn and Loughborough 1935). With FRP, behavior under fluctuating moisture 

conditions is very different. The moisture absorption rate is on the order of 85% of the 

drying rate. 

A major concern involving the use of FRP-reinforced glulam beams in long term 

structural applications is the effects of hygrothermal stresses on the wood-FRP bond line 

and their interaction with mechanically-induced fatigue stress (Dagher et a1 1996; 

Tascioglu et a1 2003). Hygrothermal stresses are a direct result of a difference in 

coefficients of moisture expansion between the FRP reinforcing and the wood. These 

stresses are induced because the expansion and contraction of the wood far exceeds that 

of the FRP. The FRP restrains the wood from expanding and contracting along bond line 

and produces stress conditions that could compromise the reinforcing (Sanchez 2002). 

Modeling done by Garnache (2001) and Sanchez (2002) have shown that high stress 

conditions can occur at the outer edge of the wood-FRP interface where moisture 

penetration is highest. 



When compared to wood, the dimensional changes in FRP with regard to 

moisture changes are negligible, however, composites are not completely immune to 

moisture. Carbon, for example is prone to moisture absorption and subsequent 

dilatational expansion in humid conditions (Vaddadi et a1 2003). This fact does not affect 

the hygrothermal stresses in FRP-glulam beams and dimensional changes in the FRP are 

therefore ignored. The hygrothermal effects combined with long term loading, such as in 

the case of bridge girders, pose a threat to the durability of FRP-glulam beams and need 

to be better quantified. 



Chapter 3 

DESIGN OF MECHANICAL FATIGUE TESTING PROGRAM 

3.1 Introduction 

In this study, eighteen glulam beams were reinforced on their tension side with an 

E-glass Fiber Reinforced Plastic (FRP) and tested in fatigue to determine the fatigue 

durability of FRP reinforced glulam when used as bridge girders. All testing was done 

using hydraulic actuators to repeatedly load the specimens. This chapter discusses the 

facility, environmental conditions, and equipment used for this research, the material 

properties of the FRP-reinforced glulam specimens, and the development of the fatigue 

testing program. Detailed calculations of the quantities presented in this chapter are 

located in Appendix B. Chapter 4 describes the process of reinforcing the glulam 

specimens and Chapter 5 presents the results of the fatigue tests. 

3.2 Specimen Properties 

Material properties for the unreinforced and reinforced glulam beams and the FRP 

reinforcing are given in the following sections. 

3.2.1 Unreinforced Glulam Beams 

The specimens tested in fatigue were a combination of fully and partially 

reinforced 6,700 mm and 11,278 mm long Douglas-Fir glued laminated beams of a 

custom lay-up fabricated by Willarnette Industries, h c .  based in Albany, OR. The 

glulam combination was made up of visually graded L1 compression laminations in the 



upper twenty-five percent of the cross section and a random mix of L2/L3 laminations in 

the bottom seventy-five percent of the cross-section. Figure 3.1 shows the layup of the 

unreinforced glulam beam. 

The L1 and L2/L3 laminations are grades of visually inspected wood reserved for 

use in glulam applications. According to the Wood Handbook (1999) published by the 

Forest Products Laboratory, the specific grade given to the individual lamination is 

characterized by maximum allowable knot size, grain slope and wane. An L1 lamination 

cannot have knots larger than one-quarter the width of the lamination, an L2 lamination 

has knots no larger than one-third the lamination width, and an L3 lamination has a 

maximum allowable knot size of one-half the width of the lamination. Since the multiple 

laminations in a glulam reduce the effects of edge knots, the locations of the knots within 

the lamination have no bearing on the grade. 

Figure 3.1 Typical cross section of an unreinforced glulam beam specimen. 

In a typical unreinforced glulam beam, lower grade laminations would not be 

used in the tension region of the beam. In the case of reinforced glulam, the FRP 

provides the majority of the tensile strength, and therefore the lower grade L2/L3 is 



economical on the tension side. As the tensile capacity of the beam is increased through 

the use of FW, the compressive stresses in the top laminations are also increased when 

the beam is loaded to capacity. The L1 laminations were used in the top to provide extra 

compressive strength where there was no reinforcing. 

3.2.2 FRP-Reinforced Glulam Beams 

All of the specimens tested were reinforced with Gordon Composite, Inc. 

unidirectional E-glass using an epoxy adhesive. The allowable stress and modulus of 

rupture (MOR) of the FRP-reinforced glulam beams was predicted using the ReLAM 

program (Lindyberg, 2000). ReLAM is a software program that returns glulam design 

strengths and modulus of rupture based on the size, strength, loading characteristics and 

lay-up of the laminations (Lindyberg and Dagher 2000). The design strengths used to 

develop the testing program are given in Table 3.1 below. 

Table 3.1 Allowable Flexural Stress (Fb) of reinforced and unreinforced glulam beams. 
Beam Size and Type Fb MOR 

Original / Updated Original / Updated 
Lamstock Database Lamstock Database 

(MPa) ( M W  
6700 mm Unreinforced 10.7 1 10.3 - 
6700 mm Reinforced 23.6 / 17.5 56.9 / 45.6 

1 1278 mm Unreinforced 10.2 / 10.3 
1 1278 mm Reinforced 24.8 / 17.7 58.2 / 44.2 

The table also includes a the strengths based on updated lamstock data. The 

lamstock data used by ReLAM to generate the design strength values for the reinforced 

specimens was based on testing done on an earlier sample of lamstock. A second sample 

of lamstock from which the specimens used in this research were fabricated was taken 



directly from the glulam assembly line. This sample was tested and found to be of 

significantly lower average strength. The fact that the actual strengths were lower than 

originally thought resulted in a more conservative testing program. The updated 

lamstock design strengths, which are almost 26% less than the older strengths, are a more 

accurate representation of the strength of the specimens tested because they were sampled 

directly from the wood used to fabricate the beams tested. However, the testing program 

had already been developed and several specimens had been tested when this was 

realized, therefore the test protocols were not changed to reflect the lower lamstock 

strengths. 

3.2.3 Gordon Composites FRP 

The FRP used to reinforce the all of the glulam beams tested was a unidirectional 

E-glass barstock from Gordon Composites, Inc. in Colorado (product designation GC-67- 

UB). The individual pieces of reinforcing were cut to fit the required length and 

measured 120.6 mm x 6.35 mm width and thickness for the 6700 mm beams and 120.6 

mm x 12.7 mm for the 11278 mm beams. A few of the physical and mechanical 

properties are listed below in Table 3.2. These and several other material properties and 

physical characteristics can be found on the Gordon Composites website 

Table 3.2 Gordon Composites FRP material properties. 
Glass Content by Weight 67% 
Density 1.86 x ~ / m m ~  
Modulus of Elasticity 41230 MPa 
Poisson's Ratio 0.30 



3.3 Fatigue Testing Program 

The original work plan for this research required the development of full S-N 

curves for a sample of structural-scale FRP-reinforced glulam beams. Developing a full 

S-N curve involves fatiguing specimens until failure at a number of different stress levels 

to determine number of cycles to failure at a given stress level. However, based on 

preliminary investigations done by Gamache (2001), this was not feasible and the plan 

was revised to evaluate the durability of the reinforcing over a shortened fatigue testing 

period. Instead, the fatigue tests were changed to reflect a loading schedule consistent 

with a full life cycle of an in-service timber bridge girder and were loaded for two million 

cycles, or until failure, at 100% and 130% of the allowable design stress, Fb. It is 

commonly accepted that two million fatigue cycles at the allowable flexural stress of a 

specimen is a good representation of the damage due to vehicular loads over the life span 

of a bridge girder. An in-service girder would see far more than two million cycles of 

fatigue, however, most cycles do not stress the girder to its allowable design strength. 

This method has been employed by other fatigue researchers such as Senthilnath et a1 

(2001) who studied fatigue of CFRP strengthened reinforced concrete bridge beams and 

also by Fieder et a1 (2003) who studied the fatigue of carbon shell composite bridge 

panels. 

The fatigue tests conducted were a modified ASTM Dl98 procedure (ASTM 

2000), and designed to load the beams at two different stress levels, 1 .OFb and 1 .3Fb. The 

stress ratio, R, for the tests was derived from live load to dead load ratios for typical 

timber bridges. Load head spacing was design to produce an applied shear to applied 

moment ratio the same as that seen in typical timber bridge girders. 



Mention should be made here that the testing program used specimens that were 

not preservative treated. Glulam beams used in-service have preservative treatment 

which could have detrimental effects on the reinforcing and/or the wood-FRP bond line. 

Very few treatments are acceptable for wood laminates and research done by Tascioglu et 

a1 (2002) found that water-borne preservative treatment reduced the tensile strength and 

interlaminar shear strength of E-glass/phenolic composites. 

3.3.1 Flexural Stress Calculations 

A significant mistake was made regarding the calculations of flexural stress which 

resulted in an unintentionally conservative testing program. The flexural stress 

calculation presented here were based on a transformed section that included the FRP 

reinforcing whereas ReLAM is designed to be used with just the wood cross section 

modulus. This mistake, coupled with the low lamstock properties discussed in Section 

3.3.2, resulted in the application of a flexural stress 52% higher than the allowable stress 

for the beams fatigued at l.OFb and 98% higher for the beams fatigued at 1.3Fb. 

However, the desired shear stress to flexural stress ratio of 0.81 (discussed later in this 

chapter) was still produced in the specimens fatigued at 1 .OFb. 

3.3.2 Development of Loads and Load Head Positions 

The position of the load heads on the specimens was based on a four-point 

bending setup that would cycle the beams between an appropriate minimum and 

maximum load. The maximum load was designed to produce a flexural stress of either 

1 .OFL, or 1 .3Fb as discussed earlier. The minimum load represented a typical dead load 



for a typical in-service timber bridge girder equivalent to the specimen tested, and was 

calculated based on ratios of dead load to dead-plus-live load. 

Defining the stress ratio, R, was necessary to determine the minimum fatigue 

load. Load head spacing for a four point bending test more commonly places the load 

heads at the third points of the beam. However, using typical moment-to-shear ratios is 

more conservative and would more accurately represent in-service bridge girder loading. 

To determine the required R, a timber bridge girder design example found in the 

Timber Bridge Design Manual (Ritter, 1990) was used as a guideline for designing a 

beam with the properties of the unreinforced and FRP-reinforced glulam beams being 

tested. The example was followed as it appears in the manual with two exceptions: the 

live load was increased to HS-25-44 loading instead of the HS-20-44 loading, and the 

glulam allowable flexural stress values were replaced with the values for the unreinforced 

and reinforced test specimens given in Table 3.1 (original lamstock data). Then beam 

was then redesigned once using the unreinforced section properties and once for the 

reinforced section properties. Both the unreinforced and reinforced allowable stress 

values were reduced by the same 32% as the glulam section in the design example to 

account for allowable stress design reduction factors due to duration of load, wet use, etc. 

Using values from the two resized sections, the live load to dead load ratios were then 

calculated for applied shear and moment. 

Figure 3.2 shows a cross section of the timber bridge used in the design example. 

The example in the manual followed the design of a simply supported girder with a span 

of 14,630 mm center-to-center of bearings. The bridge was designed to carry one lane of 

traffic with a 4,268 mm roadway width. The required girder depth was determined using 



a fixed width of 130 mm and subjecting it to loading from an AASHTO HS-20-44 design 

truck. 

Center Line 

Curb 

Figure 3.2 Cross section of the timber bridge used in the design example. 

The live load moments in the example were taken from a table of design values 

for maximum moment due to a wheel line and the appropriate distribution factor applied. 

The distribution factor was also applied to the maximum shear. The worst-case live load 

to dead load ratios for moment ( M L J M ~ ~ )  and shear (VL JVDL) were then calculated for 

unreinforced and reinforced girders. These values, presented in Table 3.3, show that a 

live-to-dead load ratios of 2: 1, for both moment and shear, is a reasonable approximation. 

Thus an R of 0.333 was used determine the stress range for fatigue cycling at a stress 

level of 1 .OFb. 

Table 3.3 Typical dead load to live load ratios. 
M L L ~ D L  VLLNDL 

Reinforced 2.27 1.70 
Unreinforced 1.97 1.55 



In addition, the combined live load plus dead load (LL+DL) ratio for applied 

flexural stress to unfactored allowable flexural stress, fdFb, was determined. This ratio 

was calculated as the value of the applied stress under worst case DL+LL conditions 

divided by the unfactored allowable reinforced strength. In the same manner, the applied 

shear stress to unfactored design shear stress ratio fJF,, and the ratio (fJFv)/CfdFb) were 

also determined for the reinforced section designed with the timber bridge example. 

These values, listed in Table 3.4, show that the applied shear stress is increased 

significantly for the reinforced girders. The ratio fflb in the table is not 1.0 because the 

unreduced allowable flexural stress, Fb, is used in the calculations. Further, for the 

reinforced girder, 8 1 % of the allowable shear stress is produced by the DL + LL, versus 

the 56% for the unreinforced girder. This increase in shear stress must be accounted for 

in the fatigue testing program. 

Table 3.4 Ratios of applied stress to design stress. 
fJFv fdFb vJFv)IVb/Fb> 

Reinforced 0.54 0.67 0.8 1 
Unreinforced 0.37 0.66 0.56 

From the ratio of total shear to total moment, the load heads were positioned to 

produce 81% of the design allowable shear stress simultaneously with 100% of the 

design allowable flexural stress. At the higher stress level of 1.3Fb, the same load head 

distances as with the l.OFb tests were used, which produced 104% of the allowable shear 

stress. The load head spacing calculated for the 6,700 mm and 11,278 mm long 

specimens are given below in Table 3.5. Detailed calculations of these values are given 

in Appendix B. 



Table 3.5 Calculated values for load head s ~ a c i n ~ .  
Beam Length (mm) Distance from End of Specimen to Load Head (mm) 

6700 1986 

3.4 Testing Facility 

All structural testing and specimen construction for the fatigue durability research 

was conducted in the structural testing laboratory at the Advanced Engineering Wood 

Composites (AEWC) Center. The testing frames and actuators are located on the 376 m2, 

356 mm thick concrete reaction floor. The reaction floor contained anchor points on a 

610 mm grid which allows a number of different configurations for the testing frames and 

actuators which can load specimens from either above or below the floor. Each 

individual anchor point has a capacity of 1,717 kN. 

The structural testing area of the laboratory is an uncontrolled environment 

subject to relative humidity changes due to weather fluctuation. During the winter 

months the relative humidity in the laboratory ranged from 20-30% and the temperature 

was consistently between 20-24°C. In the summer, the relative humidity fluctuated 

between 40% and 60% and the temperature ranged from 21 -3 1°C. 

3.5 Equipment 

The testing apparatus consisted of a testing frame, actuator, end supports, a 

spanner beam with load heads and lateral bracings. Each item is discussed in more detail 

below. 



3.5.1 Testing Frame and Actuators 

The equipment used to load the specimens was a steel frame which housed a 

vertically mounted hydraulic actuator. The frames were custom built for the University 

of Maine and designed according to the use and capacity of the actuators (Gamache 

2001). 

There were two different actuators used to load the specimens, an Instron 244 kN 

dynamic and 490 kN dynamic actuator. The 6,700 rnm beams were tested with both the 

244 kN and 490 kN actuators while the 11,278 mm beams were tested only in the 490 kN 

actuator because their ultimate capacity was close to that of the 244 kN actuator. 

3.5.2 End Supports and Lateral Bracing 

The specimens were simply supported at each end, with a pinned connection at 

one support and roller connection at the other. These connections were mounted on 

concrete pedestals and the centerline of the reaction was located 152 mm from the end of 

the beam. Figure 3.4 shows a typical beam with boundary conditions in the testing set- 

up. 
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Figure 3.3 A typical test specimen in the testing frame. 

During fatigue, the beams were supported against lateral torsional buckling by 

steel bracing anchored to the floor. Lateral bracing was placed near the third points of 

the beam and a system of casters attached to the lateral bracing provided low-friction 

contact between the bracing and the sides of the beam. 

3.6 Data Acquisition 

Data was acquired during the periodic static tests (discussed later in this chapter) 

where the load cycling was stopped and the beam was loaded to its design strength at a 

slow rate. During the static test, deflection data was recorded via LVDTs and load data 

was recorded via the load cell on the actuator. Only data regarding the number of elapsed 

cycles was recorded while the beams were cycling. 



3.6.1 Instrumentation of Specimen 

The instrumentation scheme for the static tests is shown in Figure 3.4. A total of 

six Linear Variable Differential Transformers (LVDTs) measured displacement on the 

specimen. Two LVDTs were located at center span to measure maximum deflection 

while two LVDTs located at the centerline of the reactions at each end of the beam 

measured uplift. The LVDTs at center span (LVDT 3 and 4 in Figure 3.3) had a range of 

+I- 125 mm for a total range of 250 mm and the four LVDTs at the ends of the beam 

(LVDT 1, 2, 5, and 6) had a range of +I- 12 mm for a total range of 25 mm. All six 

LVDTs recorded displacement from the specimens at the neutral axis. 

I 0 LVDT 1 
I 

CL Support CL Beam CL Support 

Figure 3.4 Top view of beam showing the instrumentation scheme of a typical specimen. 

All LVDTs used had a maximum linearity error of 0.25% of their full range and 

were calibrated to ensure accurate readings. Each LVDT was calibrated at the end of 

each fatigue test before the next test was performed. Calibration was performed in 

accordance with AEWC work instructions on a calibration table fabricated specifically 

for LVDTs. 



3.6.2 LabVIEW Program 

Deflection and load data was recorded using the program LabVIEW 5.0.1 

(National Instruments, 1998). 1,abVIEW is a software program designed for data 

acquisition and comes with several preprograrnmed applications that can be customized 

to the user's individual needs. The specific LabVIEW program used was the built-in 

"simple data logger" application that is provided with the software package. The data 

logger read a total of seven channels of input, one channel for the applied load and six 

channels from the LVDTs. The was recorded in the form of a voltage and was then 

converted to load and displacement readings using the appropriate conversion 

coefficients obtained from calibration. 

3.7 Test Protocol 

The specimens were fatigued in four-point bending according to ASTM Dl98 

(ASTM 2000), with a minor modification. The standard calls for a radius of curvature 

for the load heads to be between two and four times the depth of the beam, however, the 

load heads used for this research had a radius of curvature of 1.33 times the depth of the 

beam. 

Two different loading schedules were developed for the testing. The first loading 

schedule stressed the beam to the design bending strength (l.OFb) based on the ReLAM 

simulations (Lindyberg 2001). The second was developed to study the durability of the 

beams as they would be loaded by trucks heavier than the design truck. In this case the 

live load was increased by 130% (1.3Fb), a value used to represent an extreme loading 

case. Table 3.6 below shows the loading schedules for tests run at stress levels of 1.OFb 



and 1.3Fb. As a conservative approach, the minimum fatigue cycling value was 

unchanged from the l.OFo to 1.3Fo, giving a stress ratio of R=0.255 at the highest load 

level. The positon of the load heads also remained unchanged which produced a shear of 

104% of the allowable shear strength. 

Table 3.6 Cvcling ulan for reinforced svecimens. 
Stress Level Beam Size Dead Load Dead + Live Load 

(1.93% FRP) (kN) (kips) 
1 .OFo 6700 mm 19.6 58.7 

3.7.1 Fatigue Cycling Frequency 

Before starting the fatigue tests, it was necessary to determine the maximum 

frequency the beams could be cycled at without introducing dynamic effects and 

exceeding the capacity of the hydraulic system. The goal was to run the beams at the 

highest possible frequency to decrease the testing time for each specimen. The cycling 

rate was governed by the hydraulic demand and the capacity of the pumps driving the 

actuator. 

To determine the upper limit on the cycling rate, a load cell was placed under one 

of the reactions and load was recorded from both the load cell and dynamic actuator 

while the beam cycled at different frequencies. The two data series were then plotted to 

see that the two curves were in phase and that the load cell was consistently reading half 

the load from the actuator. 

For the 6,700 mm long beams, frequencies of 1.0, 1.5, 2.0, 2.5 and 3.0 Hz were 

checked in the 244 kN actuator. At the higher frequencies of 2.5 and 3.0 Hz, the actuator 

could not fully meet the demands of the required loading and the peak load was not 



reached. The maximum rate at which the tests could be run without sacrificing accuracy 

was 2.0 Hz. The actuator and the load cell loads are plotted against time in Figure 3.5 for 

a frequency of 2.0 Hz. The maximum and minimum loads were being met with reliable 

accuracy and therefore the slight distortion in the peak of the actuator loads was 

acceptable. As can be seen, the plot from the load cell is in phase and half that of the 

actuator load. All of the 6,700 mm beams were fatigued at a frequency of 2.0 Hz in the 

244 kN actuator. Testing was run 24-hours per day constantly and each test took 

approximately 13 days to complete. 
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Figure 3.5 Load cell and actuator load versus time for a frequency of 2.0 Hz. 



The same procedure was performed before fatiguing the larger 11,278 mm long 

beams in the 490 kN actuator, checking frequencies of 0.5 Hz to 2.0 Hz in increments of 

0.1 Hz. The larger deflection from the longer specimens combined with the larger piston 

in the 490 kN actuator required a significant increase the volume of hydraulic flow and 

limited the rate of cycling to 1.0 Hz. Frequencies higher than 1.0 Hz created too much 

demand on the hydraulic system and the pumps could not meet the desired amplitude. 

All of the 11,278 mm beams were fatigued at a frequency of 1.0 Hz in the 490 kN 

dynamic actuator. Testing was run 24-hours per day constantly and each test took 

approximately 24 days to complete. 

3.7.2 Periodic Static Tests 

At every 150,000 to 250,000 cycles during the fatigue tests, load cycling was 

stopped and the specimen was loaded to its allowable flexural capacity in a static test to 

track stiffness degradation. Data acquisition equipment recorded the load-deflection 

plots for each test and the deflection at the design load for each test was used to plot the 

stiffness over time. 

3.8 Summary 

A testing program was developed to evaluate the fatigue durability of structural 

scale FRP-reinforced glulam beams. The test involved cycling specimens in four-point 

bending for a total of two million cycles, or until failure. Specimens were cycled 

between a minimum and maximum load at two different stress levels: 1 .OFb and 1 .3Fb. 

Loading at 1 .OFb fatigued the specimens at a stress ratio of R=O.333, which was based on 



a typical value for in-service timber bridge girders. For the stress level of 1.3Fb, the 

minimum load was held constant while the maximum load was increased to 130% of the 

allowable flexural stress. This produced a stress ratio of R=O.255. 

Load heads were spaced to produce a shear stress to flexural stress ratio consistent 

with that seen in in-service timber bridge girders. This spacing yielded 81% of the 

allowable shear stress at 1 .OFb and 104% at 1 .3Fb. 

The cycling frequency was limited by the capacity of the actuators used to apply 

the loads and was found to be 2.0 Hz for the 6,700 mm long beams and 1.0 Hz for the 

1 1,278 mm long beams. 

An important note in the design of the testing program is that the lamstock data 

used to generate an estimate of the reinforced strength of the specimens was significantly 

higher than that of the lamstock used in the glulam specimens tested. In the future, more 

accurate allowable strength data needs to be established for designing with this visually 

graded lamstock to avoid this sort of problem. Also, the transformed section properties 

of the specimens were erroneously used in place of the wood section properties to 

calculate flexural stress. The cumulative effect of these inconsistencies resulted in a 

conservative testing program, where the specimens fatigued at 1 .OFb were in reality being 

stressed at 1 .52Fb, while the specimens fatigued at 1 .3Fb were being loaded to 1 .98Fb. 



Chapter 4 

CONSTRUCTION OF FRP-REINFORCED GLUED LAMINATED SPECIMENS 

4.1 Introduction 

The FRP-glulam specimens used in this research were reinforced in the AEWC 

laboratory. The procedure involved priming the surface of the glulam with a bonding 

agent and gluing the FRP reinforcing with an epoxy. A cold press applied pressure to the 

bond line while the epoxy cured. Beams with both full length and partial length 

reinforcing were constructed. 

A total of nine full length reinforced specimens were constructed, six of which 

measured 130 mm x 305 mm x 6700 mm and three measured 130 mm x 533 mm x 11278 

mm. A second set of nine specimens were constructed with partial length reinforcing all 

of which measured 130 mm x 305 mrn x 6700 mm. Three of the partial length reinforced 

specimens were constructed with a beveled FRP termination and six were constructed 

with a mechanical restraint to confine the FRP terminations. The construction procedure 

along with the equipment used is discussed in greater detail in the following sections. 

The testing program is discussed in detail in Chapter 3, and the results of the fatigue tests 

are presented in Chapter 5 of this thesis. 

4.2 Fabrication of FRP-Reinforced Beams 

Although the FRP and unreinforced glulam beams were purchased from 

Willamette Industries, the process of reinforcing the specimens had to be performed at 

the AEWC laboratory. Reinforcing the glulam beams with the FRP was a relatively 



straightforward process, which consisted of preparing the wood application surface with a 

coupling agent, applying the epoxy and clamping the FRP-glulam beam in a set of cold 

clamps and allowing the epoxy to cure. The glulam beams and FRP were purchased from 

manufacturers, while the coupling agent and epoxy were made in-house. 

4.2.1 HMR Pretreatment 

The first step in reinforcing the beams was to apply a coupling agent t :o the wo od 

surface. Approximately eighteen to twenty-four hours prior to lay-up, all of the glulam 

beams were treated with a hydroxymethylated-resorcinol (HMR) coupling agent on the 

side that the E-glass was to be applied. The purpose of the HMR is to prime the beam 

surface and facilitate a better bond between the wood and the epoxy adhesive. Typically, 

epoxies are not used as structural adhesives. While the shear strength of epoxies under 

dry conditions can exceed the shear strength in the wood, epoxy bonds are very prone to 

delamination under shrinkage and swelling induced by variable hygrothermal conditions 

(Vick, et a1 1997). HMR was developed by the Forrest Products Laboratory and is an 

organic compound which enhances the durability of wood-FRP bonds exposed to exterior 

or wet conditions (Chnstiansen and Vick 2000). One side of the compound forms a 

strong bond with the wood while the other side bonds well with the epoxy. When the 

epoxy is spread on and the FRP applied, the end result is a more durable bond between 

the two materials (Tascioglu 2001). 

The HMR treatment required painting the surface of the beam with the solution 

for a number of applications using entire quantity of HMR. The application rate for the 

HMR was 463 g/m2, which yielded a batch size of 404 g for the 6,700 mrn full-length 



reinforced specimens, 296 g for the 6,700 mm long partial-length reinforced specimens 

and 679 g for the 11,278 rnm long full-length reinforced specimens. Once the HMR was 

applied, the beam was stored for eighteen to twenty-four hours to allow all the water to 

evaporate from the application surface. The HMR solution was mixed according to the 

standard operating procedures on file in the AEWC. The formula used to mix the HMR 

is given in Table 4.1 

Indgedient Percent by Weight 
Water, deionized 
Resorcinol, crystalline 
Formaldehyde, 37% formalin 
Sodium Hydroxide, 3 Molar 
Dodecvl Sulfate Sodium Salt 

4.2.2 FPL 1A Epoxy Adhesive 

After the water was allowed to evaporate from the HMR, the FRP was ready to be 

bonded the glulam. FPL 1A Epoxy Resin was used as the bonding agent. Both the HMR 

and FPL 1A Epoxy Resin were developed by Dr. Charles B. Vick of the Forest Products 

Lab. Testing done by Vick and Okkonen (1997) on four different species of aircraft 

wood showed this epoxy formulation fared the best out of three common epoxies and was 

tested for resistance to delamination shear and deformation under ASTM D2559. This 

formula, detailed in Table 4.2 has also been used with good success in the past on several 

other applications at the AEWC, where the fatigue testing for this project took place 

(Dagher and Lindyberg 2003; Hong 2003). 



Table 4.2 Formula for FPL 1A eDoxv adhesive. 
Indgedient Percent by Weight 

DGEBA Resin (Diglycidyl ether of bisphenol A) 79.3 
Benzyl Alcohol 9.9 
Hydrophobic Fumed Silica 2.0 
Triethvlenetetramine Hardener 8.8 

Using a plastic spatula, the FPL 1A was then spread evenly by hand to the bottom 

of the glulam beam on the HMR treated surface. The F W  was put in place on the beam 

and the two were clamped together in the cold press and allowed to cure for a minimum 

of 12 hours. The beams were clamped at a pressure of 0.345 MPa. The optimum 

clamping pressure was determined experimentally through earlier testing done by 

Lindyberg (2002). The FPL 1A has a useable pot life of between thirty and forty 

minutes. This time constraint and the limited number of available workers kept the 

maximum number of beams laid-up to two at a time. The beams that were not in use 

were stored in the laboratory at ambient conditions until they were reinforced for testing. 

The FPL 1A was mixed according to the standard operating procedures on file in the 

AEWC. The application rate for FPL 1A is 538 g'm2, which yielded a batch size of 470 g 

for the 6,700 mm full-length reinforced specimens, 344 g for the 6,700 mrn long partial- 

length reinforced specimens and 790 g for the 11,278 mm long full-length reinforced 

specimens. 

4.2.3 FRP Preparation 

The E-glass reinforcing was cut to the desired length and cleaned with acetone on 

the bonding side. Because the beams were slightly wider than the reinforcing, special 

attention was paid during fabrication to ensure that the F W  stayed centered on the beam. 



In most cases, duct tape was used to secure the FRP on the beam by taping the FRP to the 

side of the glulam while the epoxy cured. 

4.2.4 Cold Press 

The last step in reinforcing the beams was to clamp the FRP and glulam together 

to apply pressure to the bond line. The cold press used to clamp the FRP to the glulam 

was a large I-beam with threaded rods spaced evenly through the top flanges of the beam. 

The glulam beam was then placed between the treaded rods and clamped to a pressure of 

0.345 MPa. Figure 4.1 shows a reinforced beam in the cold press. The threaded rods 

were calibrated using a load cell and torque wrench to obtain a tension value based on 

applied torque. This was done for a number of rods and the average value was used to 

calculate the appropriate torque needed in each rod given the number of rods, the rod 

spacing and the required bond line pressure. The appropriate torque for each rod was 

determined by the total number of rods used to clamp the specimen. 

Figure 4.1 A 6700 mrn Beam in cold press. 



4.2.5 Treatment of Defects 

Several of the beams came from the Willamette plant with knotholes that had not 

been plugged. Many of the unplugged knots were on the tension side of the beams where 

the FRP was applied. Before the beams were reinforced, these holes were plugged with 

an epoxy resin, the same FPL-1 epoxy used to bond the FRP to the glulam. This ensured 

that there would be at least some bond between the wood and FRP at these knotholes. 

The pictures in Figure 4.2 show one such knothole, before and after it had been filled 

with epoxy resin. Defects such as cracks and checking in the beams were not treated. 

Beams not suitable for partial length reinforcing (as discussed later in this chapter) were 

used for full-length reinforced tests. 

Figure 4.2 The left side of the picture shows a knot, right side shows the same knot filled 
with epoxy. 

4.2.6 Storage of Specimens 

Unreinforced specimens were stored in the laboratory under ambient conditions 

until they were reinforced. Reinforced specimens that were removed from the cold press 

were stored for a period of at least five days prior to testing to allow the epoxy to fully 

cure to maximum strength. 



4.3 Full-Length Reinforced Specimens 

Twelve of the eighteen specimens tested were full-length reinforced beams. With 

full length reinforcing, the FRP ends are confined by the supports and therefore no 

special FRP-termination treatment was necessary. The FRP was cut at 90 degrees to the 

same overall length as the specimen. The reinforcing was bonded to the wood as 

previously described previously. 

4.4 Partial Length Reinforcing 

A total of nine partially reinforced beams were tested in fatigue. All nine partially 

reinforced beams were pretreated with HMR and bonded with FPL 1A epoxy resin in the 

same manner as the fully reinforced beams. Three of the nine beams were partially 

reinforced with no restraints on the FRP terminations and three had mechanical restraints 

to confine the FRP-terminations. 

Several full length specimens had been tested before the partial length reinforcing 

was designed and, from the results, it was noted that there was little or no bond between 

the wood and FRP at knots and certain grain defects. Therefore, during lay-up of the 

partially reinforced beams, special care was taken to ensure no knots, defects or 

potentially detrimental grain deviations were present within 150 mm of the FRP 

termination. Clear grain at the FRP termination would help clarify whether peeling of the 

FRP, if it occurred, was a result of the stress concentrations that exist at the FRP ends and 

not a result of poor bond at the terminations. 

The FRP reinforcing was terminated at the theoretical cut off point (TCOP), 

approximately 900 mm from each end of the beam as shown in Figure 4.3 and discussed 



in Chapter 3. This gave the maximum possible savings in reinforcing material, 26.8% for 

the 6700 mm specimens, without sacrificing the specimen's flexural strength. However, 

this also created the most critical situation for evaluating durability of partial length 

reinforcing. Typically, as in the case of reinforced concrete, tensile reinforcing is 

extended a certain distance beyond the point where it is theoretically no longer required 

(American Concrete Institute 1999). This is done to help minimize the effect of stress 

concentrations at the transition point. Terminating the FRP reinforcing at the TCOP 

would magnify any problems that might exist at the unconfined terminations and provide 

a better insight into the behavior of the FRP at unrestrained terminations. 

Figure 4.3 Typical partially reinforced beam. 

4.4.1 Partially Reinforced Specimens, Unrestrained Terminations 

For the three beams with no end restraints, the terminations of the FRP were 

beveled to an angle of 30 degrees with the horizontal (see Figure 4.4). Earlier research 

done by Gamache (2001) showed that higher stress concentrations exist at the FRP 

terminations of partially reinforced beams with 90 degree edges. The beveled edge of the 

FRP was used as one method of reducing the effects of the stress concentrations. The 

angle at which the FRP was beveled was chosen based on the Standard Specifications for 

Highway Bridges (AASHTO 1996), which specifies that steel cover plates welded to 



steel beams must be beveled at an angle no more than 30 degrees with the horizontal at 

their terminations. The beveled portion of the FRP was beyond the TCOP as shown in 

Figure 4.4. 

TCOP 

Figure 4.4 Beveled end detail for partial length reinforcing. 

4.4.2 Partially Reinforced Specimens, Mechanically Restrained Terminations 

The unrestrained ends of the specimens tended to debond at the FRP terminations 

and cause subsequent failure in the wood (see Chapter 5). Additionally, previous 

research done by Hong (2003) using the same materials as tested here also showed that 

small scale single-lap shear joints were prone to fatigue failures. Given this insight, the 

remaining six beams were fabricated with mechanical restraints to confine the FRP 

terminations and prevent peeling. 

The restraints used to confine the FRP terminations, shown in Figure 4.5, were 

fabricated from A36 steel plates measuring 130 mm x 75 mm x 9.5 mm, a neoprene pad 

of the same dimensions to provide better surface contact, and two 152 mm x 12.7 mm lag 

screws. This was an inexpensive and easily constructed detail that could be applied with 

common tools and no special experience. 



Figure 4.5 Mechanical restraint used to confine the FRP terminations of partial length 
reinforcing, shown here on an inverted beam. 

To determine the ultimate torque that could be applied to the lag screws in the 

Douglas-Fir glulam beams, ten lag screws were calibrated using a torque wrench, pieces 

of old glulam specimens and a load cell. Placing the doughnut-shaped load cell between 

the lag screw and wood, the lag screws were tightened with a torque wrench until they 

stripped the wood. Plots of tensile force versus torque for the ten lag screws were 

produced, and each lag screw was calibrated in wood cut from a different section of 

several different specimens. 

The average of these plots was a nearly linear relationship shown in Figure 4.6 

with the best-fit line through (0, 0). Each point on the plot represents an average value 

and this relationship was used to determine clamping force given the applied torque. All 

of the lag screws began to strip the wood at a torque greater than 108 kN-mm, and the 

average toque at stripping was 115 kN-mm. The maximum allowable torque, for the 

purpose of restraining the FRP terminations, was taken as 80% of the minimum torque at 

pull-out, or 86.4 kN-mm. Therefore, the clamping force in each lag screw used confine 



the FRP termination was approximately 18.1 kN. The thickness of the steel plate was 

designed so that at the applied clamping force, the stress in the cantilever portion of the 

plate (the portion from the center of the lag screw to the outer edge of the plate) would be 

half of the yield stress of the steel. While the specimens were being fatigued, the torque 

in the lag screws was checked during the periodic static tests, and re-torqued to 86.4 kN- 

mm if necessary as discussed in Chapter 5. 
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Figure 4.6 Relationship between averaged torque and pressure for ten lag screws. 

4.5 Summary 

A total of eighteen glulam beams were reinforced on the flexural tension side with 

an E-glass fiber reinforced polymer (FRP) for the purpose of fatigue testing. The glulam 

beams were purchased from a manufacturer and reinforced at the AEWC laboratory. Full 

length reinforcing was used on twelve beams while the remaining six were partially 



reinforced. Partial-length reinforcing was designed with and without restraints at the 

FRP terminations. 

For both the full-length and partial length reinforcing, the FRP was bonded to the 

glulam beams using the same procedure. Three of the partially reinforced specimens had 

unrestrained FRP terminations with a 30 degree bevel on the FRP to alleviate peeling 

stress that occur at the end of partial length reinforcing. The other set of six partially 

reinforced specimens utilized steel plates and lag screws to mechanically confine the 

terminations and prevent failure at this location. 



Chapter 5 

MECHANICAL FATIGUE TESTING OF FRP-REINFORCED GLUED 

LAMINATED BRIDGE GIRDERS 

5.1 Introduction 

A total of eighteen structural scale bridge girders were tested to evaluate the 

fatigue durability of Gordon Composites, Inc. unidirectional E-glass FRP as a reinforcing 

for glulam bridge girders. The specimens were tested at two different stress levels and 

with both full-length and partial-length reinforcing. This chapter outlines the results of 

the fatigue tests performed on the 18 FRP-reinforced glularn beam specimens. The 

results are grouped into full and partial length reinforcing and further broken into 

subgroups based on stress level, beam size and type of FRP termination restraints. More 

detailed descriptions of the testing program can be found in Chapter 3, and an account of 

the construction of the specimens is located in Chapter 4 of this thesis. 

A summary of the characteristics of all fatigue specimens is given in Table 5.1 on 

the following page. The specimens are designated S1-S18 and the table includes 

information on ultimate failure of the specimen as well as whether or not failures 

occurred during fatigue. Throughout the chapter, plots of beam stiffness versus number 

of fatigue cycles are given as a relative measure of stiffness changes. In these cases, 

stiffness is presented in the form of midspan displacement. 



Table 5.1 Summarv of the results of the mechanical fatime tests. 

Specimen 
Number 

S 1 

S2 

Reinforcing Type 

S3 

S4 

Full 

Full 

S5 

S6 

S 7 

S 8 

S9 

Applied 
Load 

Full 

Full 

S10 

S11 

S12 

1 .OFb 

1 .OFA 

Full 

Full 

PartialKJnrestrained 

PartialKJnrestrained 

PartialKJnrestrained 

S13 

S14 

S 15 

Number 
of 

Cycles 

1 .OFb 

1 .OFb 

1.3Fh 

PartialRestrained 

PartialRestrained 

Partialmestrained 

S16 

S17 

2000000 

2000000 

1 .OFb 

1 .OFb 

1 .OFb 

1 .OFb 

1 .OFb 

Full 

Full 

Full 

S 18 I PartialRestrained 1 1 .3Fb 1 19722 1 x 

Failure During 
Cycling? 

Yes 1 No 

2000000 

2000000 

1 .OFb 

1 .OFb 

1 .OFb 

Partialmestrained 

Partialmestrained 

Tension Failure 1 NIA I NIA I NIA 

x 

x 

2000000 

2000000 

1061 377 

5923 1 1 

2000000 

1.3Fb 

1.3Fb 

1.3Fb 

Failure Mode 
(Failure During 

Fatigue) 

x 

x 

2000000 

2000000 

2000000 

1.3 Fb 

1.3 Fb 

Static Bending -Tension 

Static Bending -Tension 

x 

x 

x 

31487 

1272585 

1109229 

Residual 
Strength 

(Idu) 

Static Bending -Tension 

Static Bending -Tension 

x 

953 845 

10 1647 

149.6 

12 1.4 

x 

x 

x 

x 

x 

Ultimate 
Deflection 

(mm) 

12 1.6 

199.30 

x 

x 

x 

x 

MOR 
(Mpa) 

126.0 

100.5 

Static Bending -Tension 

Static Bending -Tension 

Bond - FRP Termination 

Bond - FRP Termination 
Static Bending 
(Compression) 

Horizontal Shear 

Compression 

Compression 

68.0 

55.2 

110 

161.5 

Static Bending 
(Compression) 

Static Bending -Tension 

Static Bending -Tension 

Tension Failure 

Shear & Tension Failure 

55.3 

54.9 

169.2 

176.1 

NIA 
NIA 

96.0 

NIA 
NIA 
NIA 

112.3 

10 1.4 

1 10.3 

NIA 
NIA 

172.6 

163.7 

NIA 
N/ A 

81.3 

NIA 
NIA 
Nl A 

46.6 

48.5 

NIA 
NIA 

43.70 

149.6 

88.7 

96.1 

NIA 
NIA 
NIA 

NIA 
NIA 

5 1.10 

46.10 

50.2 

N/ A 
NIA 



5.2 Fatigue Testing Program 

All fatigue tests were run for 2 x lo6 cycles, or until failure, and then broken in 

static bending. The fatigue testing program was a modified ASTM Dl98 (ASTM 2000) 

four-point bending setup that cycled the beams between an appropriate minimum load 

and maximum load. The support length was 300 mm and lateral bracing was placed at 

the beam's third points. A picture of a 6,700 mm specimen in the testing appartatus can 

be seen in Figure 5.1. The dead load to live load ratios were calculated using typical 

unreinforced timber bridge design values, but substituting the flexural strengths of the 

reinforced beams. These FRP-reinforced design values were obtained from ReLam 

(Lindyberg, 2001), a computer program which returns glulam strengths based on 

larnstock data and probabilistic moment-curvature analysis. 

Figure 5.1 Picture shows a 6,700 mm specimen in the testing apparatus. 

The beams were cycled two different peak flexural stresses: 1 .OFb and 1.3Fb. For a 

typical in-service timber bridge girder, the dead load is about 113 the total service dead 



load plus live load. Design examples from the Timber Bridges: Design, Construction and 

Maintenance Manual (Ritter, 1990) were checked to verify this ratio as discussed 

previously in Chapter 3. Thus, for the beams loaded to l.OFb, a stress ratio of R=0.33 

was used for the fatigue tests. For the beams loaded to 1 .3Fb, the minimum load was held 

constant, giving an R=0.25. 

As discussed in Chapter 3, for the beams fatigued at l.OFb, the load heads were 

positioned on the beam to produce 100% of the allowable flexural design strength, Fb, 

simultaneously with 81% of the shear strength. These percentages were also derived 

from design examples given in the Timber Bridge: Design, Construction and 

Maintenance manual (Ritter, 1990). As a conservative approach, the load head spacing 

was unchanged for the beams fatigued at 1.3Fb, yielding 130% of the design moment 

capacity simultaneously with 104% of the shear capacity. Shear strength used in all 

calculations was obtained from the NDS (NDS 1997) and the Wood Handbook (Forest 

Products Laboratory 1999) as discussed in Chapter 3. 

Specimens were tested in subgroups of three with both full length and partial length 

reinforcing. The fully reinforced group of specimens consisted of two subgroups of 

6,700 mm long beams (6,400 mm span) tested at stress level of 1 .OFb, and 1 .3Fb and one 

subgroup of 11,278 mm long (10,973 rnm span) specimens to help identify size effects. 

The partially-reinforced group of specimens were tested both with and without 

mechanical restraints on the FRP terminations, however only the specimens with 

restraints were tested at the higher stress level of 1 .3Fb. 

During all fatigue tests, the cycling was stopped at increments of between 150,000 to 

250,000 cycles and a static bending test was performed to track stiffness changes over the 



testing period. During these periodic static tests, the beam was loaded to its allowable 

load based on design flexural stress while data acquisition equipment was set up to record 

the applied load and midspan deflection to give a plot of relative stiffness over time. 

5.3 Fatigue Testing at l.OFb 

A total of twelve specimens were tested at a stress level of 1 .OFb using 1.93% 

Gordon Composites E-glass reinforcing. Six of the twelve specimens were utilized full 

length reinforcing; three being 6,700 mm long beams and three 1 1,278 mm beams. Of 

the remaining six, three specimens were 6,700 mm long partially reinforced beams with 

unrestrained FRP terminations and three were 6,700 mm long partially reinforced 

specimens with mechanically restrained FRP terminations. 

5.3.1 Fully Reinforced Specimens, 1 .OFb 

Specimens S1, S2 and S3 were 130 mm x 305 mm x 6,700 mm fully-reinforced 

beams fatigued at 100% of the design strength. Specimens S4, S5 and S6 were also 

fatigued at 100% of the design strength, but measured 130 mm x 533 mm x 1 1,278 mm. 

All fully reinforced beams fatigued at 1 .OFb survived the 2 x lo6 cycles and were 

broken in static bending. Furthermore, none of the beams showed any significant 

stiffness loss over the duration of the testing period. The average modulus of rupture for 

the 6,700 mm specimens was 59.5 MPa (based on the wood section only) with an average 

maximum midspan deflection of 1 12 mm. For the 1 1278 mm specimens, the average 

modulus of rupture (MOR) was 50.0 MPa with an average maximum midspan deflection 

of 166 rnrn. 



5.3.1.1 Specimens S1, S2, and S3 (Fully Reinforced, l.OFb) 

Specimen S1 was fatigued at 100% of the design strength for 2 x lo6 cycles and 

showed no signs damage due to fatigue. Due to an unfortunate incident with the actuator 

bracing, the beam was loaded to 125.4 kN before the actuator bracing failed. While 

statically loading the beam to failure, the lateral bracing that held the actuator in place 

failed and caused the load heads to move sideways and fall off the beam. A static test 

and visual inspection was performed and there were no visible sign of damage or stiffness 

loss. Furthermore, the load-deflection plot of the beam up to the point of the bracing 

failure, showed no nonlinear characteristics, indicating that no permanent damage was 

done. 

Upon fixing the bracing the beam was then loaded again until failure at an 

ultimate load of 149.6 kN and an ultimate deflection of 126.0 mm. The modulus of 

rupture for specimen S1 was 68.0 MPa, the highest of any of the 6,700 mm long 

specimens tested. Figure 5.2 shows the results of the static tests in the form of a plot of 

midspan deflection at the time (number of cycles) that the test was performed, shows that 

there was actually a slight decrease in beam stiffness, most notably toward the end of the 

testing period. However, at an decrease of around five percent, the overall change was 

negligible. The load-displacement plot of specimen S1 as it was loaded to failure is given 

in Figure 5.3 below. The mode of failure was a tensile failure at a finger joint near 

midspan, which pried the FRP reinforcing off the bottom and all the way down one side 

of the beam. The picture in Figure 5.4 is a close up shot of the tension side of the beam 

where the failure in specimen S 1 initiated. 
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Figure 5.2 Stiffness vs Time plot for specimens S 1, S2 and S3. 
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Figure 5.3 Load vs Displacement plot for specimens S 1, S2 and S3. 



Figure 5.4 Failure at a finger joint near midspan in specimen S 1. 

Beam S2 failed at a finger joint at an ultimate load of 12 1.4 kN and a deflection of 

100.5 mm. The modulus of rupture for specimen S2 was 55.2 MPa. Beam S3 failed at a 

knot in the bottom lamination at 121.6 kN at a deflection of 110.0 mm. The modulus of 

rupture specimen S3 was 55.3 MPa. 

Specimens S2 and S3 exhibited very similar behavior to S 1. No significant crack 

formation or propagation was noted during cycling, nor were any failures seen during the 

fatigue tests. Both beams showed little change in stiffness over the duration of the 

fatigue test, as can be seen in Figure 5.2, and lasted the full 2 x lo6 cycles. Beams S2 and 

S3 failed in tension near midspan at either a finger joint or knot very similar to that of S1 

shown in Figure 5.3. These failures were characteristic of static strength testing done by 

Lindyberg (2003) on beams of the same properties and reinforcing. 



The average MOR for the 6700 mm full length reinforced l.OFb specimens was 

59.5 MPa, which differed from the ReLAM predicted MOR by 30.5%. 

5.3.1.2 Specimens S4, S5 and S6 (Fully Reinforced, l.OFb) 

Specimens S4, S5 and S6 measured 130 mm x 533 mm x 11,278 mm with full- 

length reinforcing. The behavior during fatigue and also the ultimate failure mode of this 

group of specimens were very similar to the smaller S1, S2 and S3 specimens. None of 

the three specimens in this group showed significant stiffness degradation (see Figure 

5.5). However, a horizontal shrinkage crack at one end of specimen S5 was noted to be 

610 mm long at the start of testing and had propagated to 1,470 mm by the end of the 

fatigue test. The crack, located in the third lamination from the top, did not have any 

significant effects on stiffness. No other significant failures or damage were noted during 

cycling in this or any of the other beams. An interesting phenomenon with specimen S6 

was that the initial static test inexplicably showed the beam to be less stiff than all 

subsequent static tests. No definitive explanation for this is known. For all specimens 

S4-S6, failure occurred at either a finger joint or knot near midspan and, as seen in Figure 

5.6, the load-deformation curves remained linear until failure. The load deformnation 

plot for specimen S6 shows a slight nonlinearity in the second to last point plotted. This 

was due to the tensile lamination failing just prior to the FRP being torn fiom the beam. 

The beam loses load (second to last point in plot for specimen S6) when the lamination 

fails and then begins to hold load again as displacement increases. This phenomenon was 

largely due to the fact that the tests were run in position control and can be seen in several 

other specimen load-deformation plots. 
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Figure 5.5 Stiffness vs Time plot for specimens S4, S5 and S6. 
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Figure 5.6 Load vs Displacement plot for specimens S4, S5 and S6. 



The average MOR for the 11278 mm full length reinforced 1 .OFb specimens was 

50.0 MPa, which differed from the ReLAM predicted MOR by 13.1 %. 

5.3.2 Partially Reinforced Specimens, l.OFb 

Partial-length reinforcing can be advantageous over full-length reinforcing by 

reducing the amount of FRP needed, and also has implications for retrofitting existing 

structures. Partial-length reinforcing is at a disadvantage, however, because the FRP 

terminations are not confined by the supports as is the case with fully-reinforced girders. 

Significant stress concentrations can occur at the FRP terminations (Gamache, 2001), 

which could cause debonding of the reinforcing. In an attempt to prevent debonding at 

the FRP terminations beveled ends and mechanical restraints were implemented as two 

possible solutions. The possibility of using partial-length reinforcing was explored in six 

different beams both with and without FRP end-restraints. 

Specimens S7-S9 were tested without restraints on the FRP terminations and 

S 10-S12 were tested with mechanical restraints. In both cases the FRP was cut at the 

theoretical cutoff point, or the point where the applied moment was equal the moment 

capacity of the unreinforced specimen. The theoretical cut off point was 900 mm from 

the end of the 6,700 mm specimens (see Appendix B for calculations). The mechanical 

restraints for the FRP-terminations consisted of a neoprene pad sandwiched between a 

130 mm x 75 mm x 9.5 mm steel plate that was clamped to the beam with two 152 mm x 

12.7 mm lag screws (see Figure 5.7). For the specimens tested with mechanical 

restraints, the torque in the lag screws was checked, and retightened if necessary, at every 



periodic static test performed. Torque losses were between 4 and 7 kN-m per static test. 

Refer to Chapter 4 for more details on the construction of the partially-reinforced beams. 

Figure 5.7 View shows typical end restraint for partially-reinforced specimens. Beam is 
inverted for better perspective. 

5.3.2.1 Specimens S7, S8, and S9 (Partially Reinforced, l.OFb) 

Specimens S7, S8 and S9 were partially-reinforced beams with no end restraints 

on the FRP. The FRP terminations were beveled to an angle of 30 degrees with the 

horizontal in order to reduce the peeling stresses that result from the stress concentration 

at this point. 

Specimen S7 was the first partially reinforced beam with unconfined FRP 

terminations and failed during fatigue after 1.06 million cycles. A plot of the midspan 

deflection and corresponding cycle number is shown in Figure 5.8. Because the beam 

failed while cycling some time after the static test, the plot shows only stiffness data up 

until the time of the last static test. Total stiffness loss during the fatigue test was less 

than 2% and there were no visible sign of damage. The apparent source of failure for 

specimen S7 was loss of bond at the FRP termination which caused a subsequent wood 

failure that propagated the remaining length of the beam. This failure is shown in Figure 



5.9 with the beam still in the testing apparatus. The portion of the beam seen lying on the 

floor is the FRP termination where the failure initiated. 

- 
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Figure 5.8 Stiffness vs Time plot for specimens S7, S8 and S9. 

Specimen S8 lasted only 592,000 cycles and had the most significant stiffness 

loss of all beams tested. The relative stiffness loss was almost 38%, which can be seen in 

Figure 5.8. There were no outwardly visible signs of damage occurring in the beam, 

leading to the conclusion that the significant stiffness loss was due to internal damage 

that occurred somewhere after 30,000 cycles. The source of failure in specimen S8 was 

identical to that of S7 and S9, with a loss of bond at the FRP termination leading to a 

tension failure in the wood. 



Figure 5.9 Debonding failure of Specimen S7 during fatigue. Circles shows the FRP 
termination on the floor and the location of the termination before failure. This failure 

mode was typical of specimen S7, S8 and S9. 

Specimen S9 was the only beam of the three partially reinforced specimens to 

survive the full 2 million fatigue cycles. However, during testing a compression failure 

in the top lamination was noted around 1.2 million cycles. This compression failure 

occurred near a knot in the top lamination and was very close to midspan. As can be seen 

in Figure 5.8, noticeable stiffness loss did not occur until around 1.7 million cycles. The 

failure was initially seen as a buckling of the wood grain around the knot, shown in the 

circle in Figure 5.10. The crack, shown by the arrow in the same figure, occurred after 

the grain buckling and was first seen 1.8 million cycles and propagated significantly 

during the remainder of the fatigue test. 

The compression failures did not seem to affect the linear elasticity of the beam 

when failed in static bending, although specimen S9 was substantially less stiff than S7 

and S8. Figure 5.1 1 shows that the load-deflection curve stays almost linear until failure 



of the specimen. Although the beam did not fail during fatigue, the failure was similar to 

specimen S7 in that the failure initiated as a loss of bond at the FRP termination and 

ultimately led to a tension failure in the wood. Failure looked very similar to that of 

specimen S7 seen in Figure 5.9. 

Figure 5.10 Compression failure in specimen S9. 
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Figure 5.11 Load vs Displacement plot for specimen S9. 

The average MOR for the 6700 mm partial length reinforced, unrestraned l.OFb 

specimens was 43.7 MPa, which differed from the ReLAM predicted MOR by -4.2%. 

5.3.2.2 Specimens S10, S11, and S12 (Partially Reinforced, l.OFb) 

Specimen S10 was the first beam to have mechanical restraints used to confine 

the ends of the partial length reinforcing. A description of these end restraints is given in 

section 5.3.2 and also in Chapter 4. This specimen was fatigued for 2 million cycles and 

broken in static bending. The plot of the midspan deflections over time in Figure 5.12 

shows a steady and significant decrease in beam stiffness. This decrease in beam 

stiffness was due to the severe compression failure that appeared early into the first day 

of fatigue cycling. This compression failure, a picture of which can be seen in Figure 

5.13, formed in the full depth of the top lamination. When the failure appeared, it formed 



two cracks, separating the top lamination into thirds along the grain and thus substantially 

reducing the contribution of the top lamination to the beam's stiffness. 
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Figure 5.12 Stiffness vs Time plot for specimens S 10, S 1 1 and S 12. 



Figure 5.13 Compression failure in top lamination of specimen S10. View is looking down the length of 
the beam. 
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Figure 5.14 Load vs Displacement plot for specimens S10, S11 and S12. 



While the beam was being loaded to failure in static bending, there was 

significant crushing seen in the top laminations. This crushing correlates with the 

nonlinear portion of the load-deflection curve beginning around 90 kN in Figure 5.14 and 

was most likely was caused by the compression failure during fatigue. The ultimate 

mode of failure, however, was in tension at a region in the specimen where the bottom 

three tension laminations contained a large knot and two finger joints in very close 

proximity and less than 500 rnm from midspan. 

Specimen S11 was fatigued for the full 2 million cycles with a stiffness loss of 

around 6%. This can be seen in the plot of the midspan deflections over time shown in 

Figure 5.12. There were no visibly notable failures or damage during the fatigue testing. 

The beam was loaded to failure in static bending after the fatigue testing was 

completed. Figure 5.14 shows the load-deflection curve for specimen S 1 1. At failure, 

the beam developed a horizontal shear failure that ran the entire length of the beam (see 

Figure 5.15). The shear cracks initiated under the load heads near the neutral axis and 

propagated down the length of the beam toward the supports. This was the only beam to 

fail in shear while being broken in static bending. 



Figure 5.15 Shear failure in specimen S l  1. 

Specimen S12 survived the 2 million cycles and was failed in static bending. 

There was a steady decrease in beam stiffness of around 4%, seen in Figure 5.12, 

however there were no outwardly visible sign of damage occurring during the fatigue 

test. 

During the static bending test to failure, Figure 5.14 shows there was a slight loss 

of stiffness at around 92 kN of applied load. This corresponded to a crushing of the top 

compression lamination that was observed just prior to failure. The ultimate failure mode 

for this beam was not in compression, however, but rather was a tensile failure at finger 

joint near midspan similar to those seen in the fully reinforced specimens fatigued at 

1 .OFb. 

The average MOR for the 6700 mm partial length reinforced, mechanically 

restrained 1 .OFb specimens was 49.1 MPa, which differed from the ReLAM predicted 

MOR by 7.7%. 



5.4 Fatigue Testing at 1.3Fb 

The possibility exists that overloaded trucks, and trucks larger than the design 

truck, may travel the bridge and exceed the girder's design capacity. To understand the 

effects of overstressing the girder in fatigue, six specimens were fatigued at a higher 

stress level equivalent to 130% of the allowable moment strength. A complete fatigue 

cycle in this case started at the same dead load used for the fatigue tests at l.OFb and 

cycled up to 130% of the design moment capacity and back to the dead load giving a 

stress ratio of R=O.Z. Three of the six specimens had full length reinforcing and three 

had partial length reinforcing with mechanical end restraints. Due to the poor 

performance of the partially-reinforced specimens at 1 .OFb, none were tested at the higher 

stress. 

5.4.1 Fully Reinforced Specimens, 1.3Fb 

All of the fully reinforced specimens fatigued at 1.3Fb failed premature to the 

intended two million cycles. Local failures during fatigue occurred in the form of both 

tension and compression failures and were followed by significant stiffness losses and 

ultimately failure of the specimens. 

5.4.1.1 Specimens S13, S14 and S15 (Fully Reinforced, 1.3Fb) 

Specimen S13 was fatigue at 130% of the design strength for less than a full day 

because of a horizontal shear failure that appeared at 31,487 cycles and ran the entire 

length of the beam. The shear failure was sudden and split the beam into two pieces very 

close to the neutral axis location. The failure, shown in Figure 5.16, ran entirely in the 



wood and was mostly along the wood-wood bond line of the laminations indicating that it 

was not a bond line failure, but rather a wood failure. After examining the failed beam, a 

knot was found on one side of the beam, which had been completely blown out by the 

shear failure. This knot ran the full depth of the lamination and penetrated approximately 

45 mm into the width of the cross section. Because of the very short duration of the 

fatigue cycling period, only an initial static test was run and therefore there is no record 

of stiffness change over time. 

Figure 5.16 Shear failure in specimen S13 (shear crack highlighted by two horizontal 
marker lines). 

Specimen S14 was fatigued at 1.3Fb and broke during testing at 1.27 million 

cycles. A compression failure was noted in the beam during fatigue between 500,000 and 

600,000 cycles. The compression failure occurred in the top lamination and extended 



through the entire depth of the lamination. Propagation of the compression failure was 

noted during the remainder of the fatigue test as the failure more than doubled in size 

from when it was first noted. 

This compression failure corresponds well with what is seen in the plot of 

midspan deflection versus number of fatigue cycles in Figure 5.17. There is a definite 

trend of stiffness loss after 400,000 cycles, just before the failure was noticed and this 

stiffness loss continued as the crack propagated further. 
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Figure 5.17 Stiffness vs Time plot for specimens S14 and S15. 

Also around the same time frame, a tension failure was noted at a knot near mid 

span, which occurred in the bottom most lamination. The tension crack did not penetrate 

the entire width of the cross section and did not show any noticeable signs of 

propagation. However, this tension crack was the ultimate source of failure for S14, 



which failed in tension at 1.27 million cycles. Failure in this beam appeared to be similar 

to those failed in static bending in which the tension failure pries the FRP off the beam 

along its bondline and there is subsequent wood failure after loss of bond. 

Specimen S15 also broke during testing at 1.1 1 million cycles. Failure 

characteristics exhibited in S15 were very similar to that of S14. A compression failure 

much like that of specimen S14 was noted in the beam during fatigue at around 650,000 

cycles. After this failure, subsequent static tests revealed significant stiffness loss. This 

is seen as a sharp increase in midspan deflection shown in Figure 5.17. The compression 

crack occurred at a knot and penetrated the entire depth of the top lamination. 

Propagation of the crack was seen throughout the remainder of the test. After 1.1 million 

cycles a tension failure occurred at a knot near midspan on the bottom lamination. 

5.4.2 Partially Reinforced Specimens, 1.3Fb 

The poor performance of the unrestrained partially reinforced specimens led to 

only the mechanically restrained beams being tested at the higher stress level of 1.3Fb. 

Three specimens, S 16-S18, were tested and all failed prematurely during fatigue. 

5.4.2.1 Specimens S16, S17 and S18 (Partially ReinforcedIRestrained, 1.3Fb) 

Specimen S 16 developed a significant tension failure around 400,000 cycles. The 

tensile crack, shown before and after failure in Figure 5.18a and 5.18b, formed around a 

knot in the wood near midspan, starting out at around 100 mm in length and propagating 

to over 1200 mm. The crack formed in the tension region of the beam and propagated 

into the wood along the grain. There was no bond failure between the laminations or 



between the wood and the FRP. The beam continued to cycle until ultimately failing at 

953,845 cycles due to the local tension failure at the knot. Figure 5.19 shows a 

significant stiffness loss of almost 14% between the periods when the tensile failure was 

first noted to when the beam ultimately failed. The same knot where the tensile failure 

formed was the ultimate source of failure in the beam. 

Figure 5.18 (a) Local tension failure near midspan at 953845 cycles. (b) The same local 
tension failure after ultimate failure of specimen at 953845 cycles. 
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Figure 5.19 Stiffness vs Time plot for specimen S16. 

Specimen S17 cycled for 101,000 cycles and failed in fatigue. No one was 

present to witness the failure, however, the conclusions drawn from examining the 

broken beam was that the failure initiated as a shear crack under the load head and 

propagating to the end of the beam. Figure 5.20 shows the beam post-failure, still in the 

testing apparatus. The cracked section of the beam between the end of the beam and the 

load head then failed in tension, pulling the lags screws out and cracking the beam in the 

compression region. Because of the short life span of the beam only an initial static test 

was performed and therefore there is no plot of stiffness degradation over time. 



Figure 5.20 Specimen S17, post-failure. Top circle highlights point of initial shear 
failure and subsequent tensile failure. Bottom circle shows the lag screws. 

Specimen S18 failed after only 19,722 cycles, the shortest period of any of the 

beams tested. The failure was primarily a tension failure at a finger joint which occurred 

in the second lamination from the bottom near the center span of the beam. The failure 

caused the FRP to peel off and pull out of the restraints in a block shear fashion (see 

Figure 5.21). Because of the short life span of the beam only an initial static test was 

performed and therefore there is no plot of stiffness degradation over time. 



Figure 5.21 Block shear failure of termination of partial length reinforcing 

5.5 Summary of Fatigue Testing Results 

To evaluate the fatigue durability of FRP as a reinforcing for glulam bridge 

girders, eighteen structural-scale specimens were tested with varying stress levels and 

reinforcing lengths. Beams were fatigued at stress levels corresponding to 100% and 

130% of the design flexural strength. Twelve beams were tested at l.OFb with full length 

reinforcing and six were tested with partial length reinforcing. Of the six beams tested at 

1 .3Fb, three were fully reinforced and three were partially reinforced. Table 5.1 gives a 

summary of the results of all of the fatigue tests performed. 

The six specimens that were fatigued at 1 .OFb with full-length reinforcing showed 

good fatigue durability. Three of the specimens tested were 6,700 mm in length (6,400 

mm span) and the other three were 11,278 mm long (10,970 mm span). All six 

specimens were fatigued for the full 2 million cycle regimen with no significant stiffness 

loss or visible signs of damage. The average modulus of rupture for the three 11,278 

mm long specimens was approximately 18% less than the 6,700 mm specimens. 

However, the average MOR of the 6700 mm specimens is significantly higher due to the 



very high failure load of specimen S1. All six specimens failed in tension at a knot or 

finger joint near midspan. 

The six partially reinforced 6,700 mm long beams were tested at l.OFb, three of 

which had unrestrained FRP terminations and three had mechanically restrained 

terminations. Only one of the unrestrained specimens lasted the full 2 million cycles and 

failed at a load almost 28% less than the average capacity of the fully reinforced 

specimens of the same size. Problems arose with the unrestrained FRP terminations and 

it was found that the terminations needed to be otherwise confined. The two specimens 

that failed during fatigue failed due to a loss of bond at the FRP termination which caused 

a subsequent tensile failure in the beam. The mechanical restraints seemed to solve this 

problem by adequately confining the terminations during fatigue. All three of the 

mechanically restrained partially, reinforced specimens lasted the full 2 million cycles 

and broke at a load 17% less than the fully reinforced specimens of the same size. 

Compression failures during fatigue were seen in one specimen from each of the 

unrestrained and restrained groups. In each case the compression failure caused a 

significant loss of stiffness which worsened with fatigue. 

A group of six specimens were tested at a higher stress level of 1 .3Fb to evaluate 

the effects of vehicular traffic overloading the bridge girders. Three of the six were fully 

reinforced and three were partially reinforced beams with mechanically restrained FRP 

terminations. The three fully reinforced beams all failed in fatigue at an average of 

800,000 cycles. Two of the specimens exhibited compression failures during fatigue but 

ultimately failed in tension, and one failed in horizontal shear. The three partially 

reinforced specimens fared similarly to their fully reinforced counterparts, but lasted less 



than half the time at an average of 360,000 cycles. The three partially reinforced 

specimens failed in tension with one failing in a combination of shear and then a 

subsequent tension failure. 



Chapter 6 

EVALUATING THE EFFECTS OF HYGROTHERMAL FLUCTUATIONS 

6.1 Introduction 

Temperature and relative humidity fluctuate significantly on an annual basis, 

affecting the equilibrium moisture content of wood. These naturally occurring 

hygrothermal (i.e. temperature and moisture related) fluctuations that are seen by in- 

service bridge girders can change the moisture profile in a glulam beam and cause 

significant shrinking and swelling in the wood. Due to different material properties, the 

FRP reinforcing is not subject to the same dimensional changes under variable moisture 

conditions. The shrinking and swelling of the wood produces peeling and shear stresses 

along the wood-FRP bond line. The effects of these stresses combined with the repeated 

loading seen by bridge girders may compromise the bond line of the reinforced glulam 

beams. 

This chapter outlines the development of a study done to evaluate the effects of 

moisture cycling on the wood-FRP interface due to moisture cycling. Six of the 130 mrn 

x 305 mm x 6700 mm beams using the 1.93% Gordon Composites E-glass reinforcing 

will be subjected to accelerated moisture and temperature cycling, reproducing the bond 

line stress history occurring during the design service life of a typical bridge girder. The 

goal of the cycling will be to evaluate the potential for possible delamination in the FRP- 

wood interfacehond line. The tests were to be conducted in a kiln with moisture 

generation capabilities. The beams were to be cycled in the kiln and then subjected to 

fatigue loading at stress levels corresponding to 100% and 130% of the allowable flexural 



strength. The focus of this chapter is on the development of the procedure used to 

develop the kiln schedule, using coupled moisture transport and finite-element 

simulations of beam response. 

6.2 Evaluating In-Service Hygrothermal Conditions 

The first step in developing the kiln schedule was to evaluate the conditions that 

exist in the real-world for in-service bridge girders. Since there was a lack of previous 

work done in this area, much time was spent determining how to accurately replicate the 

moisture changes seen in a typical bridge girder under exterior conditions. These 

conditions were to be reproduced at an accelerated rate for a typical girder life of 50 years 

and condensed into the shortest workable time period. This was done by modeling the 

annual moisture diffusion through the cross section of a typical in-service specimen, 

using these moisture profiles to evaluate the stresses induced in the wood at the wood- 

FRF' interface and then working those results around the limits of the kiln. 

6.2.1 One-Dimensional Moisture Transport Model 

A one-dimensional time dependent moisture diffusion model was written in 

MATLAB to model the change in moisture content in the beam over time. The model 

followed Fick's Law of Diffusion and returned moisture values at user specified locations 

along the cross section of the beam. Based on prior analyses done by Garnache (2001), it 

was determined that for the purposes of these hygrothermal conditioning tests a one- 

dimensional model would be sufficient to provide the necessary moisture profile data 

needed to develop a test procedure. This model was used to run simulations on the 130 



mm wide cross section using equilibrium moisture contents (EMC) as boundary 

conditions. Input for the model included width of the cross section, number of divisions 

of the cross section, time that the model was to be run, number of time steps, the 

diffusion coefficient, the initial moisture conditions in the beam and the boundary 

conditions. The model returned a matrix of moisture values at every time step at each 

division across the width of the beam. 

The model was governed by Fick's Law of Diffusion and was a one-dimensional 

linear solution to the governing partial differential equation (PDE). The governing PDE 

takes the form of  

Eqn 6.1 

where C is the moisture content, t is time, D is the diffusion coefficient and x is the space 

coordinate. In reality, the diffusion coefficient is a finction of the moisture content. 

Therefore D in the equation would change for every new value of C, making the problem 

nonlinear. However, the equation for the diffusion coefficient used in the model was the 

same equation used by Gamache (2001), which was taken from Toratti (1992) and is 

given below in Equation 6.2. 

D = 0.01 607[e(0.0228C)] Eqn 6.2 

In the diffusion coefficient equation, C is the moisture content and D is given in 

units of in2/day. Because of the significant amount of variability in wood and the 

variablility in published diffusion coefficients, the accuracy of using a nonlinear model to 

recalculate D for every new C i s  questionable. Also, the value of the diffusion coefficient 

for moisture contents between 5% and 15% varies by at most 12% from the difhsion 

coefficient at a mean moisture content of 10%. The graph in Figure 6.la below is a plot 



of the diffusion coefficient for moisture contents of 0% to 100% and Figure 6.lb shows 

the linearity of D between 5% and 15%. For these reasons, a diffusion coefficient of 

12.903 mm2/day, which corresponds to a moisture content of lo%, was used for all 

simulations. 

Figure 6.1 (a) Plot of Diffusion Coefficient for Moisture Content range of 0-100% 
(b) Plot of Diffusion Coefficient for Moisture Content range of 5-15%. 

6.2.2 Annual Weather Data 

The annual fluctuations in temperature and relative humidity in several cities in 

the New England region were examined to determine the most severe conditions a beam 

would be subjected to under environmental conditions. Values for these properties were 

obtained from The Weather Handbook (1990). This reference contains average data for 

the morning and evening relative humidity and the minimum and maximum normal daily 

temperature among other information. These temperature and relative humidity values 

were averaged and then converted to equilibrium moisture contents in the beam. The 

equation for converting a given temperature in Fahrenheit and a given relative humidity 

was found in the Wood Handbook and is in the form: 



Eqn 6.3 

In the above equation, EMC is the equilibrium moisture content, and h is the 

relative humidity (%/loo). W, K, K1, and K2 are constants that vary with temperature, 1". 

According to the Wood Handbook, this relationship is applicable to any wood species. 

Severity, in terms of EMC fluctuations, was based on the range of moisture 

contents throughout the year. The most severe case for the New England area presented 

in the Weather Handbook (1990) was that of Caribou, Maine where the EMC ranged 

from 12.5% to 16.1 %, and the decision was made to base the procedure on this data set in 

order to be conservative with the testing. Table 6.1 shows the weather data obtained for 

Caribou, Maine. 

Table 6.1 Temperature, RH and EMC data for Caribou, ME (Conway and Liston, 1990). 
Jan Feb Mar April May Jun Jul Aug Sep Oct Nov Dec 

RH am 74% 75% 76% 79% 79% 84% 84% 89% 89% 86% 85% 79% 

RH pm 66% 63% 61% 57% 53% 56% 58% 59% 60% 62% 72% 71% 
Ave RH 70% 69% 69% 68% 66% 70% 71% 74% 75% 74% 79% 75% 
AveTemp 10.7 13 24.3 37.3 50.2 60.3 65.1 62.5 53.6 43.1 31.1 15.7 
EMC Ave 13.4 13.2 13.3 13.1 12.5 13.3 13.4 14.3 14.6 14.6 16.1 14.8 

Annual fluctuations of this data fit roughly to a sinusoidal function. Figure 6.2 is 

a plot of the change in equilibrium moisture content over the year. The lowest annual 

equilibrium moisture content occurs around day 120 while the annual high occurs around 

day 300. 
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Figure 6.2 Plot of annual EMC fluctuation. 

6.2.3 Convergence of Diffusion Model 

To establish that the model was returning reliable results, convergence had to be 

established for the number of cross-sectional divisions and the number of time steps. 

Also, the initial conditions for the specimens needed to be determined along with the 

period of time necessary for the specimens to reach equilibrium with the environment. 

6.2.3.1 Convergence for the Number of Cross-Sectional Divisions 

In order to determine the appropriate number of divisions in the cross section and 

appropriate size time step, a convergence study was done. The model was run holding 

the time step constant and changing the number of divisions in the cross section, Ax, for 



several incrementally small values until there was little evidence of change between 

iterations. A plot of the solutions to the model as Ax varied with changes in the number 

of cross sectional division can be seen below in Figure 6.3 below. The model was tested 

with 15, 50, 75 and 100 divisions of the cross section, and convergence was achieved 

after 50 divisions in the cross section. The dashed line in the plot below represents 15 

divisions of the cross section. The segmented nature of the line indicates that more 

divisions are necessary to fill in the values between segments and smooth out the line. A 

smoother function is desired to give a more accurate representation of the moisture 

profile. The plots for 50, 75, and 100 divisions are almost coincident and therefore 

anything over 50 divisions was deemed acceptable for use as input for the model. These 

plots all show much smoother functions than the plot of 15 divisions and the difference in 

the shape of the plots is negligible. 
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Figure 6.3 Convergence of cross-sectional divisions, Ax. 

6.2.3.2 Convergence for the Number of Time Steps 

Once a reliable value for the number of divisions in the width of the cross section 

was established, another convergence study was done for the size of the individual time 

steps. Holding the number of divisions constant at 50, the time step was varied and the 

solutions plotted. Time step values of 2 day, 1 day, !4 day, and '/4 day were used and 

their plots can be seen in Figure 6.4 below. As can be seen the plots of all 4 time step 

values are almost coincident. A time step of 1 day was convenient to work with in terms 

of calculation time and was found to be sufficiently small, and was thus selected. 
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Figure 6.4 Convergence of time step value, time-step. 

6.2.3.3 Initial Conditions 

The next issue to be resolved was that of the initial conditions in the beam. The 

initial conditions were entered as an initial moisture content value for every point in the 

cross section. During the daily static tests of the beams tested in fatigue, moisture 

readings were taken using an electric moisture meter. The beams tested in the laboratory 

fluctuated between an average of 7% and 12% moisture content, depending on the time 

of year. This reading gave only an average moisture content for the outer edge of the 

beam. To get a more accurate reading the moisture profile throughout the cross section, 

an oven-dry test was conducted on several sections of a previously tested beam. This test 

was performed during the month of January, under relatively dry laboratory conditions. 



The oven dry test followed the protocol outline in ASTM D 4442-92 and D 4933-99 

(ASTM 2000). Three sections were cut from the mid span of three different beams. 

These were then cut into small blocks resulting in two sets of blocks; one set of the outer 

third of the beam and the other set from the inner third of the beam. 

The oven dry test was conducted and the results showed that the average moisture 

content in the outer third of the beam was 7.45% and 8.23% in the inner third of the cross 

section. From these results, a constant moisture profile of 7% moisture content was used 

as the initial conditions for the model. This represents a conservative approach to the 

developing a hygrotherrnal testing procedure. The 7% is on the low end of the moisture 

contents observed in the beams and thus will give the greatest difference in moisture 

content between the manufacturing stage and environmental conditions, leading to the 

highest stresses due to differential shrinkage and swelling at the wood-FRP interface. 

6.2.3.4 Boundary Conditions 

The last variable in the model was the boundary conditions. These represented 

the external moisture conditions that the beam would be faced with on an annual basis. 

The boundary conditions were based on the Caribou, Maine data discussed earlier. This 

data was interpolated to give a moisture content value for every single-day time step. 

6.2.3.5 Establishing an Equilibrium Point for In-Service Beams 

With all of the variables established, the model was then run for several 

simulations to see where the annual fluctuations in moisture content reached equilibrium 

with the inner core of the cross section. This was done by running the model for several 



annual cycles and examining the results to see when the core seemed to no longer be 

affected by the moisture fluctuations. The input variables discussed earlier were used in 

this analysis and the plots can be seen in Figure 6.5 below. Plots were generated for the 

January moisture profile in the cross section for a period of one year, two years, four 

years, five years and eight years. After a period of four years, the moisture content of the 

core is stable and any changes are due to the monthly changes of the boundary 

conditions. The line denoted by circles and the line denoted with triangles are the 

profiles after one annual cycle and two annual cycles, respectively. The line marked with 

x's at the top of the plot represents the profile after four years and is coincident with the 

plotted lines for five years and for eight years. 
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Figure 6.5 Moisture Profile for month of January after I ,  2,4,  5, and 8 years. 



Determining when the core of the beam would reach equilibrium was needed in 

order to determine where to start running the model for the hygrothermal stress analysis. 

Although initial shrinkage and swelling may cause the highest stress concentrations in the 

bond line of the reinforced beam, the period of time that the specimen is exposed to this 

higher stress level is relatively insignificant compared to the entire service life of the 

beam. Therefore, it was decided that the best way to model the cycling in the beam 

would be to try to reproduce the monthly changes a beam would see when exposed to 

these exterior conditions. 
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Figure 6.6 Plot of moisture profile for 12 months data after initial 4 years. 

Figure 6.6 shows the variation in moisture profiles in the beam over a twelve 

month period, after the core has reached equilibrium. Over the middle 54 mm of the 



cross section, the core moisture content changes only about 1% over the year. The 

stresses developed in this section due to shrinkage and swelling are less significant than 

the stresses developed on the outer 38 mm of either side of the beam. This outer 38 rnrn 

on either side of the cross section was identified as the "critical stress region" and was 

used later to help evaluate the magnitude of the cumulative stress history due to cyclic 

moisture change and develop a justifiable kiln schedule. The maximum range of 

moisture contents in this critical stress region is approximately 3.6%. This critical stress 

region is unique to this case and specific to this wood species and specimen dimensions. 

To develop the same parameter for other species of wood with different dimensions, the 

same technique as described above should be followed. 

The moisture contents displayed in Figure 6.6 were not used directly to evaluate 

the stress conditions that result from the changes in moisture content. Instead, an average 

moisture content was determined, which was approximately 13.93%, and the change in 

moisture content, above or below this average, was used as input into a finite element 

model to evaluate the stress conditions resulting from the highest and lowest annual 

moisture contents. 

6.3 Kiln Conditioning Limits 

Ideally, the kiln conditioning would reproduce the cumulative stress history seen 

with the in-service beams at a highly accelerated rate, meaning the cumulative stress 

history occurring in one kiln cycle would be much greater than that of one cycle under in- 

service conditions. The most efficient way to achieve this was to cycle the equilibrium 



moisture content between the upper and lower limits of the capabilities of the kiln and 

moisture generator. 

Based on testing performed by laboratory personnel, the kiln and moisture 

generator were capable of producing equilibrium moisture contents ranging from 0.4% to 

21.3%. The total time to needed to equilibrate from one extreme to the other was 

approximately five hours. Using these limits, the diffusion model was run for several 

different lengths of exposure time to see the degree of moisture penetration into the cross 

section. From the results, an exposure time of 60 hours showed reasonable penetration of 

moisture (about 15 mm) and was used for subsequent finite element modeling. Figure 

6.7 compares the high and low moisture profiles for both the kiln conditioning limits and 

the in-service conditions. 

Using moisture profiles from the kiln conditioning and in-service simulations, 

changes in moisture content were determined and finite element models using the 

ANSYS program were required to evaluate the stresses that develop due to the moisture 

changes over the year. The changes in moisture content were found in the same manner 

as described previously for the environmental conditions. 
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Figure 6.7 Extreme kiln limits overlaid on in-service high and low conditions 

6.4 ANSYS Modeling 

ANSYS, a finite element software package was used to model the stresses that 

develop at the wood-FRP interface. ANSYS does not have specific moisture analysis 

capabilities, however, the moisture profiles can be entered as temperature profiles and the 

thermal expansion coefficient becomes the moisture expansion coefficient. The 

temperature profile for this study was entered as changes in moisture content from an 

established average value. The modeling procedure used was performed in a similar 

manner to prior research done by both Gamache (2001) and Sanchez (2002). The goal of 

the model was to quantify the stresses that develop in the beam's cross section due to 

moisture fluctuations for the purpose of developing an accelerated conditioning schedule 



that reproduces the effects of cumulative hygrothermal stress history over the life of a 

typical bridge girder. 

6.4.1 Model Properties and Assumptions 

A plane stress ANSYS finite element model was built using the cross-sectional 

properties of the 6700 mm specimens. The cross section of the glulam measured 305 mm 

by 130.2 mm and the FRP measured 6.35 mm by 130.2 mm. The FRP-wood interface 

was modeled as a completely fixed bond and the properties of the FRP were taken 

directly from the manufacturers published values (Gordon Composties, Inc, 2002). The 

properties of a glulam are often hard to characterize as radial and tangential due to the 

sometimes random order of the grain orientations between the different laminations. The 

glulam properties for the model were an average value of both radial and tangential 

values taken from the Wood Handbook (Forest Products Lab, 1999). The moisture 

expansion coefficient for the Douglas-fir glulam was calculated as outlined by Breyer, 

Fridley and Cobeen (1998). Table 6.2 list the properties used in the model for the FRP 

and glulam. The glulam beam and FRP were modeled as linear elastic, isotropic 

materials, which is a reasonable assumption for modeling the cross section of a beam. 

Table 6.2 Model Pro~erties for ANSYS finite element model. 
Property Glulam (Douglas-Fir) FRP (Unidirectional E- 

glass) 
Elastic Modulus 96 170 psi 598000 psi 
Poisson's Ratio 0.382 0.3 

Moisture Expansion Coefficient 0.0020667 0 



The element used to evaluate the model was the ANSYS PLANE42 2-D structural 

solid plane stress element. The four noded element has two degrees of freedom at each 

node (x and y translation) and has swelling capabilities (ANSYS 2000). 

6.4.2 Finite Element Modeling Procedure 

Significant stress concentrations occur at the interface of the FRP and wood due 

to the different behavior of the two materials under hygrothermal fluctuations (Gamache, 

2001). To evaluate the hygrothermal shear and peeling stresses, the high and low 

moisture profiles from the kiln conditioning data were entered as a temperature profiles 

in the model. The temperature profile entered was actually a temperature change profile, 

taken by subtracting the temperature value at each point in the cross section from the 

average annual equilibrium moisture content, which was found to be approximately 14%. 

Several models were built using different mesh densities in order to check for 

stress convergence in the model. Models were built with mesh sizes corresponding to 50, 

60, 75 and 100 divisions along the width of the cross section. These divisions 

corresponded to a mesh density of approximately 6000, 8600, 13500 and 23900 nodes 

per model, respectively. Figure 6.8 shows the convergence of the model for both the 

tensile and shear stresses. Convergence was based on a cumulative stress history 

calculation, explained in more detail later, and the mesh density. 
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Figure 6.8 Mesh Convergence for Hygrothermal Finite Element Model 

As can be seen from the above figure, the stress history is convergent with about 

13500 nodes, or 75 divisions of the cross section for both tensile and shear stresses. For 

the purpose of evaluating the stresses that occurs at the wood-FRP interface, a mesh 

consisting of approximately 24000 nodes, or 100 divisions of the cross section was used 

in the models. This made each element a square with sides of a length of 1.3 mm. A 

screen image of this mesh can be seen in Figure 6.9. 



Figure 6.9 Mesh used for finite element model. The darker color on the bottom 
represents FRP, the lighter color represents the wood. Close-up of bottom quarter of 

cross section. 

6.4.3 Results of ANSYS Finite Element Model 

Finite element models were run for the annual high and low moisture profiles 

seen in a 305 mm by 130 mm FRP-reinforced glularn cross section to quantify the 

peeling stresses at the wood-FRP interface. Figures 6.9 through 6.12 show the contour 

plots of the results of the finite element models for the cyclic high point for the real-world 

and the kiln conditions, respectively. Figure 6.9 and 6.10 compare the normal (y- 

direction) tensile stresses and XY-shear stresses resulting from the cyclic high moisture 

profile conditions for the in-service and kiln parameters. Figure 6.11 and 6.12 shows the 

tensile stresses for the low moisture conditions for the in-service and kiln parameters. As 

expected, the highest stresses occur on the outside edge of the wood-FRP interface. 

ANSYS reports user specified stresses at each node and the stresses along the bond line 

were then used to make an estimate of the cumulative stress history occurs in one annual 

cycle. 



Figure 6.10 (a) Tensile stresses for annual high moisture profile, in-service conditions. 
Close-up of bottom left corner of cross section. (b) Tensile stresses for cyclic high 
moisture profile, kiln conditions. Close-up of bottom left corner of cross section. 



Figure 6.1 1 (a) XY-shear stresses for annual high moisture profile, in-service 
conditions. Close-up of bottom half of cross section. (b) XY-shear stresses for cyclic 

high moisture profile, kiln conditions. Close-up of bottom half of cross section. 



Figure 6.12 (a) Tensile stresses for annual low moisture profile, in-service conditions. 
Close-up of bottom left comer of cross section. (b) Tensile stresses for cyclic low 
moisture profile, kiln conditions. Close-up of bottom left comer of cross section. 
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6.5 Defining Cumulative Stress History 

In order to compare the stress states that occur for the in-service annual high and 

low moisture profiles and the kiln-conditioned high and low moisture profiles, some 

estimate was needed to quantify the cumulative stress history that occurs during each 

cycle. A single cycle would consist of both a high and low moisture condition. In the 

case of in-service bridge girders, one cycle would represent one year of hygrothermal 

changes. For the kiln-conditioned beams, one cycle consists of some predetermined 

period of time where the beam is subjected to both a period high and low moisture 

contents. Making an estimate of the cumulative stress history due to one cycle 

established a commonality with which the kiln-conditioned beams could be compared to 

the real-world moisture fluctuations and a kiln schedule could be developed. 

The four key assumptions made in quantifying the cumulative stress history were 

as follows: 

1. All significant stresses occurs over the critical stress region (see section 6.1.3.5), 

denoted as length a in the equations to follow. Stresses in the center portion of 

the beam are insignificant and do not affect the performance of the reinforcing. 

2. The stress history accumulates in a linear fashion, meaning the amount of 

cumulative stress history is directly proportional to the number of cycles. 

3. The cumulative stress history is proportional to the magnitude of the stress 

reversal. The stress range resulting from the difference in the high and low 

moisture conditions is directly related to the cumulative stress history. 

4. The stress history along the bond line is caused by peeling stresses (i.e. tensile 

stresses in the y-direction) andlor shear stresses. 



Using those four assumptions, the following three methods were used to quantify the 

stress history occumng along the bond line of the reinforced girders: 

6.5.1 Cumulative Stress History - Method 1 

Eqn 6.4 

Method 1 for defining cumulative stress history uses Equation 6.4, above, to define 

stress history in terms of peeling stress. In Equation 6.4, n represents the number of total 

cycles, a,,, and a,,, are the peeling stresses at the respective high and low moisture 

conditions and a is the critical stress region as defined earlier. This calculation takes into 

account the magnitude of the stress range involved and integrates it over the critical stress 

region in order to give a more accurate, averaged stress range and a basis for comparison 

between the kiln and real world conditions. This equation was implemented numerically, 

using a trapezoidal rule to integrate the stresses over the critical zone. Equation 6.2 

below shows the numerical discretization of the stress history equation that was used to 

evaluate the results of the ANSYS finite element models. The value of Aa in the 

discretized equation represents the distance between points, or in this case the distance 

between nodes since stress values came directly from the nodal solution to the finite 

element models. The value of j represents the number of points or nodes in the critical 

stress region. 

StressHistory = n '=' 
a 

Eqn 6.5 



Using the discretized equation, the cumulative stress history was calculated for 

the kiln and real-world simulations, with the number of cycles, n,  for the kiln conditioned 

beams being an unknown. Using an average service life of 50 years for the beams, the 

unknown number of kiln cycles needed to reproduce the stress history occurring in the in- 

service beams was solved for and the kiln schedule was established. The kiln schedule 

for Method 1, based solely on tensile stresses in the y-direction, yielded a total of 7.2 kiln 

cycles at 120 hours per cycle, or approximately 36 days in the kiln. 

6.5.2 Cumulative Stress History - Method 2 

I l r m a x  - 'mi" I da StressHistory = n Eqn 6.6 

Method 2, seen above in Equation 6.5, utilizes the range of shear stress as a means 

of defining the cumulative stress history. In the equation for Method 2, zmaX and z,, 

represent the shear stress for the high and low moisture conditions. This equation was 

also implemented numerically using the results of the finite element analyses in a manner 

very similar to Method 1, only replacing the peeling stresses with the shear stresses. 

Method 2 resulted in a kiln schedule of 14.2 kiln cycles at 120 hours per cycles, or 

approximately 7 1 days in the kiln. 

6.5.3 Cumulative Stress History - Method 3 

I o m a x  - o m i n  / da + r, j I'mx 'min 1 StressHistory = n[r, da] Eqn 6.7 
a a 

Method 3 used a weighted combination of Method 1 and Method 2. Stress 

History in Method 3 is defined by Equation 6.7 and takes into account the relative 



contribution of both the peeling and shear stresses to the cumulative stress history. The 

values of rl and r2 in Equation 6.7 are ratios used to define the relative contribution of 

peeling and shear stresses, respectively. The ratios were calculated as shown in 

Equations 6.8a through 6.8d. The values of Rl and R2 give the ratio of average maximum 

applied stress to allowable stress, where FTperp is the value of the tensile strength 

perpendicular to grain and FRS is the rolling shear strength. The value for FrPerp came 

from the National Design Specifications for Wood Construction (American Forest and 

Paper Association 1997) and was 2.30 MPa. The value for FRS came from page 4-24 of 

the Wood Handbook (Forest Products Laboratory 1999) which states that there are very 

few test values for rolling shear, however, rolling shear strengths have averaged 18-28% 

of the shear parallel to grain values. From this, the rolling shear strength for the 

specimens was calculated as an average 23% of the shear parallel to grain, or 

approximately 3.01 MPa. Rl and R2 were calculated for both the high and low moisture 

conditions and the maximum values were used in the equation. 

Where R, = a 
Fperp 

Eqn 6.8a 

Eqn 6.8b 

Eqn 6 . 8 ~  

,Irmax 1 da 

and R, = a Eqn 6.8d 

Calculating stress history using this method was also implemented numerically 

using a trapezoid rule, as in Methods 1 and 2. The ratios r ,  and r2 were calculated based 



on real-world conditions and were used to calculate both the stress history for the real- 

world conditions and the kiln conditions. The rationale behind using the peeling and 

shear stress ratios from the real-world conditions is to more accurately reproduce the 

conditions seen in beams in-service. This would give a kiln-conditioned relationship 

between the peeling and shear stresses that more closely reflected that seen by in-service 

beams. 

When calculating the stress history, special note was taken to check that the stress 

states for both the high and low moisture conditions did not produce stresses that were 

both positive or negative (i.e. both high and low moisture conditions produce tension or 

compression). If this were the case, the value for a,,, or rmi, was taken as zero. In 

cycling from the low moisture condition to the high moisture condition or vice versa, the 

beam would, in theory, pass through the initial stress state where no hygrothermal effects 

are present. 

Assuming the stress history affecting the bond line is a combination of the applied 

peeling and shear stresses, just the stress history due to peeling or shear cannot by itself 

quantify the cumulative stress history. Thus, Method 3 was used to develop the kiln 

schedule for the beams subjected to hygrothermal weathering. 

6.6 Kiln Schedule 

To reproduce the estimated cumulative stress history occurring over a 50 year 

service life for the FRP-reinforced glulam beams, the kiln had to be run at its extreme 

limits for a period of 60 hours at the high and low limits, giving a total cycle time of 120 

hours. The cumulative stress history was calculated using Method 3 combining both the 



tensile stresses and the xy-shear stresses in the wood along the bond line. A total of 11 

cycles in the kiln was needed to reproduce the stress history of a 50 year service life. 

Eleven cycles in the kiln at 120 hours per cycle translates to a total of 54 days of 

hygrothermal cycling. The weighted average used in Method 3 resulted in a kiln 

schedule very close to that of an straight average of Method 1 and 2 which give a kiln 

schedule of 53.2 days. However, the results from Method 3 were used for the kiln 

schedule. 

6.7 Summary 

A procedure was developed to reproduce the cumulative stress history due to 

hygrothermal changes seen in the service life of bridge girders in the New England area. 

The climactic conditions of one of the more extreme New England environments was 

used to model the moisture profiles for the annual high and low moisture conditions. The 

profiles were then incorporated into finite element models to quantify the induced peeling 

and shear stresses. The peeling and shear stresses were then used to evaluate the 

cumulative stress history over an annual hygrothermal cycle via a method that 

incorporates the relative contribution of both stresses. Following this procedure, the 

stress history produced by one kiln cycle was determined and the total number of number 

of kiln cycles necessary to match the stress history of 50 years of environmental cycling 

was found to be 11 cycles, or 54 days of hygrothermal fatigue. 

Inherent conservatism is built into this testing procedure in a number of ways. 

The first and most conservative aspect is that all of the hygrothermal cycling will be done 

prior to the specimens being fatigued. Bridge girders in-service are being fatigued at the 



same time they are undergoing moisture content fluctuations. Second, the modeling done 

did not account for creep in the wood, which would tend to alleviate the hygrothermally 

induced stresses. Also, the more extreme climatic data for the New England area was 

used for modeling the real-world moisture fluctuations and stresses. 

The kiln schedule outlined in this chapter will be implemented on six reinforced 

glulam bridge girders and the effects of this carefully recorded. The beams will then be 

fatigued at stress levels of 100% of the design strength and 130% of the design strength. 

The specimens will be fatigued for 2 x lo6 cycles or until failure, which ever occurs first, 

and then broken in static bending to determine the residual strength. 



Chapter 7 

SUMMARY AND CONCLUSIONS 

7.1 Introduction 

The objective of the completed research was to evaluate the fatigue durability of 

FW-reinforced glued laminated bridge girders and to help determine the effectiveness of 

F W  as a reinforcing material. Preliminary research on this matter had been conducted 

which provided a good basis to form a plan of action for conducting the fatigue tests. 

The following chapter provides summaries of the work completed, as well as the 

conclusions drawn fiom the test results and recommendations for topics of future 

research. 

7.2 Summary of Testing Program 

A testing program was developed to evaluate the fatigue durability of structural 

scale FRP-reinforced glulam beams. The test involved cycling specimens in four-point 

bending for a total of two million cycles, or until failure. Specimens were sinusoidally 

cycled between a minimum and maximum load to produce two different flexural stress 

levels: 1 .OFb and 1 .3Fb, where Fb is the allowable bending stress. Loading at 1 .OFb 

fatigued the specimens at a stress ratio of R=0.333, which was based on a design of a 

typical 14,630 mm timber bridge girder. For the stress level of 1.3Fb, the minimum load 

was held constant while the maximum load was increased to produce 130% of the 

allowable flexural stress. This produced a stress ratio of R=O.255. 



Load heads were spaced to produce a shear stress to flexural stress ratio consistent 

with that seen in in-service timber bridge girders. Using this spacing, the peak loads 

produced 81% of the allowable shear stress simultaneously with l.OFb and 104% at 

1 .3Fb. 

The cycling frequency was limited by the capacity of the hydraulic system and 

actuators used to apply the loads and was found to be 2.0 Hz for the 6,700 mm long 

beams and 1 .O Hz for the 1 1,278 mm long beams. 

An important note in the design of the testing program is that the lamstock data 

used to generate an estimate of the allowable flexural stress of the reinforced specimens 

was significantly higher than that of the lamstock used in the glulam specimens tested. 

Also, the transformed section properties of the specimens were erroneously used in place 

of the wood section properties to calculate flexural stress. The cumulative effect of these 

inconsistencies resulted in a conservative testing program, where the specimens fatigued 

at 1 .OFb were in reality being stressed at 1.52Fb, while the specimens fatigued at 1 .3Fb 

were being stress at 1.98Fb. 

7.3 Summary of Specimen Construction 

A total of eighteen glulam beams were reinforced on the flexural tension side with 

an E-glass fiber reinforced polymer (FRP) for the purpose of fatigue testing. The glularn 

beams were purchased from a manufacturer and reinforced at the AEWC laboratory. Full 

length reinforcing was used on twelve beams while the remaining six were partially 

reinforced. Partial-length reinforcing was designed with and without restraints at the 

FRP terminations. 



For both the full-length and partial length reinforcing, the FRP was bonded to the 

glulam beams using the same procedure. Three of the partially reinforced specimens had 

unrestrained FRP terminations with a 30 degree bevel on the FRP to alleviate peeling 

stress that occur at the end of partial length reinforcing. The other set of six partially 

reinforced specimens utilized steel plates and lag screws to mechanically confine the 

terminations and prevent the FRP from peeling off the glulam. 

7.4 Summary of Mechanical Fatigue Testing 

To evaluate the fatigue durability of FRP as a reinforcing for glulam bridge 

girders, eighteen structural-scale specimens were tested with varying stress levels and 

reinforcing lengths. Beams were fatigued at stress levels corresponding to 100% and 

130% of the design flexural strength. Twelve beams were tested at 1 .OFb with full length 

reinforcing and six were tested with partial length reinforcing. Of the six beams tested at 

1 .3Fb, three were fully reinforced and three were partially reinforced. Table 5.1, located 

in Chapter 5, gives a summary of the results of all of the fatigue tests performed. 

The six specimens that were fatigued at 1 .OFb with full-length reinforcing showed 

good fatigue durability. Three of the specimens tested were 6,700 mm in length (6,400 

mm span) and the other three were 11,278 mm long (10,970 mm span). All six 

specimens were fatigued for the full 2 million cycle regimen with no significant stiffness 

loss or visible signs of damage. The average modulus of rupture for the three 11,278 

mm long specimens was approximately 18% less than the 6,700 mm specimens. 

However, the average MOR of the 6,700 mm specimens was significantly higher due to 



the very high failure load of specimen S 1. All six specimens failed in tension at a knot or 

finger joint near midspan. 

The six partially reinforced 6,700 rnrn long beams were tested at 1 .OFb, three of 

which had unrestrained FRP terminations and three had mechanically restrained 

terminations. Only one of the unrestrained specimens lasted the full 2 million cycles and 

failed at a load almost 28% less than the average capacity of the fully reinforced 

specimens of the same size. Problems arose with the unrestrained F W  terminations and 

it was found that the terminations needed to be otherwise confined. The two specimens 

that failed during fatigue failed due to a loss of bond at the F W  termination which caused 

a subsequent tensile failure in the beam. The mechanical restraints seemed to solve this 

problem by adequately confining the terminations during fatigue. All three of the 

mechanically restrained partially, reinforced specimens lasted the full 2 million cycles 

and broke at a load on average 17% less than the fully reinforced specimens of the same 

size. Compression failures during fatigue were seen in one specimen from each of the 

unrestrained and restrained groups. In each case the compression failure caused a 

significant loss of stiffness which worsened with fatigue. 

A group of six specimens were tested at a higher stress level of 1.3Fb to evaluate 

the effects of vehicular traffic overloading the bridge girders. Three of the six were fully 

reinforced and three were partially reinforced beams with mechanically restrained F W  

terminations. The three fully reinforced beams failed in fatigue at an average of 800,000 

cycles. Two of the specimens exhibited compression failures during fatigue but 

ultimately failed in tension, and one failed in horizontal shear. The three partially 

reinforced specimens fared similarly to their fully reinforced counterparts, but failed 



during fatigue at 360,000 cycles on average, about half as many cycles as the fully 

reinforced specimens loaded to the same level. The three partially reinforced specimens 

failed in tension with one failing in a combination of shear and then a subsequent tension 

failure. 

7.5 Summary of Hygrothermal Fatigue Evaluation 

A procedure was developed to reproduce the cumulative damage due to 

hygrothermal changes seen in the service life of bridge girders in the New England area. 

The climatic conditions of one of the more extreme New England environments was used 

to develop the moisture profiles across the glulam width corresponding to the annual high 

and low moisture conditions. The profiles were then incorporated into finite element 

models to quantify the induced peeling and shear stresses. The peeling and shear stresses 

were then used to evaluate the cumulative damage over an annual hygrothermal cycle via 

a method that incorporates the relative contribution of both stresses. Following this 

procedure, the damage produced by one kiln cycle was determined and the total number 

of number of kiln cycles necessary to match the damage of 50 years of environmental 

cycling was found to be 11 cycles, or 54 days of hygrothermal fatigue. 

Inherent conservatism is built into this testing procedure in a number of ways. 

The first conservative aspect is that all of the hygrothermal cycling will be done before 

any mechanical fatigue cycling, which will maximize damage due to hygrothermal 

effects prior to fatigue. Bridge girders in-service are being fatigued at the same time they 

are undergoing moisture content fluctuations. Second, the modeling done did not account 

for creep in the wood, which would tend to alleviate the hygrothermally induced stresses. 



Also, the more extreme climatic data for the New England area was used as input for 

modeling the real-world moisture fluctuations and stresses. 

The kiln schedule will be implemented on six reinforced glulam bridge girders 

and the effects of this carefully recorded. The beams will then be fatigued at stress levels 

of l.OFb and 1.3Fb in the same manner as those specimens tested to date, and will be 

fatigued for 2 x lo6 cycles or until failure, which ever occurs first, and then broken in 

static bending to determine the residual strength. 

7.6 Conclusions 

The results of this research provided valuable insight into fatigue durability of 

FRP-reinforced glulam bridge girders. Failure modes and durability issues have been 

better identified which provide insight into the long-term in-service behavior of 

reinforced glulam. 

The full length reinforcing yielded good durability results under the administered 

testing program. One of the main conclusions drawn from full length reinforcing testing 

is that glulam beams with approximately 2% full length GFRP reinforcing do not seem to 

be prone to fatigue failures. Given the fact that the full length reinforced specimens were 

able to withstand two million fatigue cycles at 152% of the allowable design bending 

strength with no significant stiffness or strength losses indicates that there are no 

significant fatigue durability issues with the reinforced beams regarding their use in 

structural applications. This conclusion is exclusively with respect to the mechanical 

fatigue of the reinforced glulam and does not consider hygrothermal effects. 

Additionally, the study did not include the testing of preservative-treated girders, and 



prior research has shown that preservatives may have detrimental effects on the 

reinforcing andlor the FW-wood bond line. 

The partial length reinforcing was a more complicated issue than the full length 

reinforcing. The necessity of restraints on the F W  terminations is the one definitive 

conclusion that can be drawn from the results of the testing performed. The poor 

performance of the partial length reinforced specimens with unrestrained terminations 

gave little confidence in their practicality in construction uses in bridges, or any 

application where the member would be subject to repeated loading and unloading. The 

specimens with mechanical restraints far outperformed the unrestrained specimens. The 

added material and labor costs may prohibit the use of partial length reinforced girders in 

new construction, however, this does not exclude their use in retrofitting applications. 

The results showed positive strength benefits from the reinforcing, which indicates the 

possibility for their use in reinforcing damaged or otherwise compromised members. 

Retrofitting with the same materials used in this research would require clamping the 

FRP to the existing structure, which could be a significant hindrance, therefore other 

methods of confining the reinforcing should be explored. 

7.7 Design Recommendations 

With regard to AASHTO design specifications, recommendations for untreated 

FW-reinforced glulam beams stemming from this study include the following: 

1. Full length reinforcing does not appear to be prone to fatigue failures. 

2. For partial length reinforcing, adequate end restraints must be used to 

mechanically confine the FRP termination. 



3. Knots should not be present near FRP termination of partial length reinforced 

beams (this study used a distance of 150 mm either side of the FRP 

termination). 

4. The applied shear stress should be limited to 80% of the allowable design 

shear stress, F,. 

7.8 Recommendations for Future Work 

The research presented in this thesis has helped provide justification for the use of 

FRP-reinforced glulam beams. There are several areas of research that would further 

justify their use and clarify lingering concerns. Future work in the area of fatigue 

durability of FRP-reinforced glulam beams should focus on better establishing the effects 

of hygrothermal fluctuations in the environment, the effects of fractures, delaminations 

and crack propagation, improving reinforcing techniques, and also the effect of common 

preservative treatments. 

The potential for delaminations exists both in the manufacturing process and 

while the beam is in service. Many factors like knots in the wood and improper quality 

control contribute to delaminations in the manufacturing process while environmental 

factors such as hygrothermal stresses and ice flows can cause debonding in the field. A 

delamination can compromise the ability of the reinforcing to properly strengthen the 

beam and increases the likelihood of premature failure. A particularly important issue is 

the propensity of these delaminations to propagate under repeated loading and the effect 

this will have on the strength and life span of the beam. 



Aside from the behavioral concerns, the reinforcing process holds much room for 

improvement. The process of bonding the FRP to the wood, while relatively simple, can 

be time consuming and labor intensive. The FPL 1A epoxy used to bond the FRP to the 

glulam required a minimum of eight hours under pressure for proper curing and strength. 

This process could be improved upon by integrating the reinforcing step into the 

manufacturing process of the glulam beams. If the FRP and bonding agent were 

compatible with the wood laminating process, it would save time and money. 

In addition, the steel plate and lag screw method of confining the FRP termination 

served its purpose for the testing conducted here but is clearly not a viable option for 

construction. Testing showed that creep and hygrothermal fluctuations caused significant 

tension loss in the lag screws. Therefore, an improved method of confinement is 

necessary for commercial use of partial length reinforcement. More research could be 

done to better evaluate the stress condition at the FRP termination. 

Further, in-service bridge girders are almost always preservative-treated, and the 

potentially detrimental effects of treatment on fatigue life should be considered in future 

studies. 

Finally, this study considered only a single FRP-adhesive combination, while 

many such combinations exist. Future research should examine the effectiveness of a 

variety of commercially viable FRP reinforcing systems. 
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Appendix A 

DATA SHEETS FROM PERIODIC STATIC TESTS 

Relative Ambient Moisture Content Cycle 
Day # Humidity Temp (F) (6 readings, 3 from each side) Number 

1 20% 71.9 6.9 7 7.2 7.3 6.9 7.5 0 
2 20% 71.8 7.4 7.7 7.3 7.2 6.9 7.6 38002 
3 20% 71.2 6.4 6.8 7 7 6.5 6.8 761 85 
4 20% 72 6.8 6.9 7.1 7 6.7 7.1 183238 
5 39% 71.9 6.7 6.7 6.9 6.8 6.7 6.9 209532 
6 20% 66.5 7.1 7.6 7 7.3 7.8 7.3 275964 
7 21 % 70.3 7.6 7.7 7.6 7.7 7.8 7.4 394422 
8 20% 70.8 6.9 7 7.5 7.7 7.2 7.1 556518 
9 20% 71.8 7.5 8.1 7.3 7.6 7.2 7.4 728745 
10 20% 73.1 6.8 7.4 7.6 7.8 7.1 7.6 910146 
11 20% 72.9 7.4 8.1 7.2 7.5 7 7.5 1061602 
12 20% 70.5 7.1 7.6 7.4 6.9 8 7.1 1210750 
13 25% 70.2 7.5 8 7.6 8.1 6.5 6.9 1263054 
14 28% 72 7.6 8.2 7.7 8.1 6.6 7.4 1397444 
15 20% 71.9 7.5 8.1 7.3 8 7.2 7.3 1567447 
16 22% 69.2 7.4 7.8 7.4 7.9 7.3 6.9 1762898 
17 21 % 70.7 7.1 7.6 8 7.8 7.6 7.2 1929030 

Specimen S2 
Day # Relative Ambient Moisture Content Cycle 

Humidity Temp (F) (6 readings, 3 from each side) Number 

1 44% 79.5 10.2 10.4 10.6 10.2 10.5 10.6 0 
2 49% 75 10.3 10.2 10.5 10.7 10.4 10.4 151213 
3 62% 75.9 10.4 10.6 10.4 10.7 10.2 10.7 332574 
4 61 % 82 10.5 10.6 10.4 10.7 10.2 10.4 602324 
5 63% 84.1 10.6 10.7 10.8 10.6 10.1 10.4 789372 
6 39% 83.1 10.7 10.5 10.7 10.5 10.7 10.1 961997 
7 48 % 78.3 11.1 10.9 10.8 10.7 10.6 11.3 1092717 
8 64% 75.2 11.3 11.2 11 11.4 10.7 10.9 1266120 
9 48% 76.6 11.2 11.4 10.8 11.1 11.1 10.7 1459399 
10 37% 75.6 11.3 11.3 11.5 10.8 11.2 11.3 1686024 
11 45% 71 . I  11.4 11.2 11.4 11.3 11.3 11.5 1839133 
12 72% 71.6 11.5 11.3 10.9 10.9 11.2 11.1 2000000 



Relative Ambient Moisture Content Cycle 
Day # Humidity Temp (F) (6 readings, 3 from each side) Number 

1 29% 62.6 11.5 11.8 12 12.1 11.5 10.8 0 
2 28% 72.1 11.2 11.7 11.9 12 11.5 11 152034 
3 26% 69.8 11 10.8 11.4 11.1 11.6 11 336722 
4 28% 68.7 11 10.9 11.8 11.8 11.6 11.5 491114 
5 28% 68.9 11 10.2 11.7 10.3 10.4 10.5 662118 
6 29% 72.1 12.5 11.8 11 11.2 11.2 10.9 837998 
7 26% 70.3 12.1 9.6 10.5 10.6 9.7 11.5 1006498 
8 26% 71.6 11.7 10.6 10.4 11 10.5 10.7 1164147 
9 26% 70.8 11.4 10.9 11.1 10.6 10.9 11.2 1329215 
10 23% 70.3 11 11 11 11 12 10 1489564 
11 24% 71.1 12 12 10 10 9.9 9.7 1614001 
12 24% 70.7 11 12 11 10 10 10 1760019 
13 21 % 7 1 12 11 11 10 10 9.7 2000000 

Relative Ambient Moisture Content Cycle 
Day # Humidity Temp (F) (6 readings, 3 from each side) Number 

1 20% 73.7 7.3 7.4 7.4 6.7 7.5 7.5 0 
2 21% 72.1 7.2 7.4 7.4 6.9 7.2 7.7 231525 
3 18% 74 7.1 7.4 7.5 6.8 7.6 7.6 464500 
4 18% 73.8 6.8 7.2 7 7.1 6.6 6.4 622760 
5 18% 73.4 6.7 6.9 6.7 6.5 6.9 7 799099 
6 20% 72.2 6.8 6.7 6.7 6.4 7.1 7 9742 1 5 
7 19% 72.7 6.9 7.1 6.8 6.7 6.7 6.5 7277576 
8 18% 73.6 6.7 7 6.9 6.4 7.3 7.1 1437506 
9 21 % 74.5 7.2 7.1 6.8 6.8 7 6.7 1609405 
10 19% 72.7 6 6.1 6.3 6.2 6.2 6.4 1751864 
11 19% 72.2 6.2 6.4 6.4 6.6 6 6.1 2000000 

Specimen S5 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 23% 71.3F 6.8 7.1 6.8 7.3 7.3 6.9 0 
2 26% 75.1F 7.2 6.8 7.3 7.3 7.3 7 86754 
3 26% 72.5F 7 7.1 7.4 6.8 7.1 6.9 179732 
4 28% 73.2F 7.2 7.4 6.8 7.3 7.3 7.1 437289 
5 34% 73.1 F 7.6 6.8 7.1 6.8 6.9 7 762351 
6 25% 70.1F 7.3 7.4 6.8 7.2 7.2 7.1 1057684 
7 24% 74.1F 7.5 6.8 7.5 7.1 7.5 7.5 1325298 
8 26% 68.7F 7.6 7.1 7.2 7.2 6.8 7.5 1653275 
9 26% 72.1 F 7.2 7 7.4 7.1 7.4 7.6 1938257 
10 25% 74.0F 7.3 6.9 7.4 7.3 8.1 7.6 2000000 



Specimen S6 
Relative Ambient Moisture Content Cvcle 

Day # Humidity Temp (F) (6 readings, 3 from each side) 
1 30 % 70.9 7.1 7 7.3 6.7 6.8 7.1 

Specimen S7 
Relative Ambient Moisture Content Cvcle 

Day # Humidity Temp (F) (6 readings, 3 from each side) ~ u h b e r  
1 56% 86 9.8 9.8 9.9 9.6 10.3 10.5 0 
2 56% 80.6 10 10.1 11 10.4 9.4 9.9 186466 
3 40% 79.9 9.5 9.6 11 10.4 9.3 9.8 301705 
4 27% 80.8 9.7 9.4 10.6 9.6 9.7 10 505988 
5 40 % 76 9.7 9.4 10.6 9.7 9.5 9.8 654742 
6 43% 81.6 9.8 9.6 9.9 10.1 9.6 9.7 816523 

Failure at 1061 377 

Snecimen S8 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 



Seecimen S9 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 52 % 79.2 10.3 11 11.2 11.5 11.4 11.6 0 
2 44% 81.3 10.2 10.8 10.7 10.6 11.1 11.4 177335 
3 62% 77.2 10.6 11.4 11.7 11.8 11.1 11.5 210022 
4 53% 90 11.2 11.9 11.5 12.1 12.5 12.3 360157 
5 36% 76 10.8 11.6 11.4 11.7 11.7 11.6 505079 

Failure at 5923 1 1 

Seecimen S 10 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 42% 82.1 11.6 11.7 11.3 10.9 11.4 11.3 0 
2 35% 81.2 10.5 10.8 11.2 10.3 11.2 11.1 159708 
3 38% 78.3 10.7 10.6 10.4 10.2 10.7 10.6 307324 
4 49% 86.2 10.3 10.6 10.8 10.4 11.2 11.4 489065 
5 43% 88.1 10.6 10.8 10.7 10.3 11.1 11.2 651247 
6 40 % 76 10.4 10.3 10.5 10.2 10.8 10.7 824037 
7 41 % 77.8 10.2 10.4 10.1 10.1 10.6 10.8 1174268 
8 39% 77.8 10.3 10.1 9.8 10 10.5 10.7 1359026 
9 39 % 78.5 10.1 10.5 10.6 9.7 9.9 10.8 1526889 
10 36% 75.1 10.3 10.2 9.3 9.8 9.2 10.5 1689270 
11 41 % 77 10.3 10 9.7 9.6 10.4 10.6 18677945 
12 56% 75.1 10.4 9.7 9.8 10.1 10.6 10.8 2000000 

Seecimen S l  1 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 41 % 77.4 10.6 10.1 10.6 10.9 10.5 11.8 0 
2 41 % 83.7 10.5 10.2 10.5 10.9 10.7 11.1 99763 
3 36% 79.2 10.6 9.8 10.3 10.9 10.8 11.4 269323 
4 36% 75.1 9.8 10.2 9.8 10.3 10.1 10.2 446336 
5 66% 74.3 9.9 10.3 9.7 10.5 10.3 9.8 696436 
6 50% 75.4 10.5 10.7 10.7 10.8 11.5 10.7 866069 
7 45% 84.1 10.5 10.6 10.8 10.7 11 10.5 1045720 
8 52% 72.7 10.4 10.2 10.6 10.5 11.1 10.7 1210164 
9 41 % 83.2 9.7 9.8 10.4 10.6 10.9 11 1397210 
10 49% 72.7 9.5 9.5 9.8 9.9 10 9.7 1564382 
11 44% 75.8 9.4 9.6 9.7 9.9 9.8 9.9 1636926 
12 41 % 76.3 9.3 9.5 9.9 9.7 9.6 9.7 1876322 
13 56% 75.1 9.2 9.2 9.6 9.4 9.3 9.6 2000000 



Soecimen S 12 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 58% 77.4 11.2 11.4 11.4 11.2 9.6 10.8 0 
2 72% 77.6 11.1 11.5 11.4 11.3 9.5 1.7 149137 
3 50% 75.4 10.9 11.6 11.2 11.1 9.7 10.5 360305 
4 32% 77.2 10.7 11.5 11.1 10.9 9.8 10.6 411325 
5 45% 84.1 10.6 11.1 10.8 10.9 9.9 10.8 747645 
6 27% 77.6 10.5 11.1 10.8 10.8 9.6 10.5 940308 
7 52% 72.7 10.4 10.9 10.9 10.9 10.1 10.9 1076957 
8 35% 73.6 10.3 10.8 10.8 10.7 10.3 10.8 1258785 
9 46% 82.4 10.4 10.2 9.8 9.8 9.7 9.8 1450079 
10 20% 78.3 10.8 11.5 11.1 10.4 10.6 9.9 1610846 
11 49% 72.7 10.8 10.6 10.4 10.4 9.9 9.7 1778567 
12 44% 75.8 10.5 10.7 10.5 9.9 10.1 9.8 1926014 
13 51 % 73.1 9.6 9.7 9.8 9.7 9.4 9.5 2000000 

Specimen S 13 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 30 72.8 8.4 8.5 8.4 7.9 8.2 8.2 0 

Failure at 3 1487 

Specimen S 14 
Relative Ambient Moisture Content Cycle 

Day # Humidity Temp (F) (6 readings, 3 from each side) Number 
1 21% 72.1 9.6 9.5 9.3 9.2 8.9 9.5 0 
2 21 % 73.4 9.8 9.1 9.6 9.4 9.3 9.4 84405 
3 20% 71.3 9.8 9.1 9.6 9.4 9.3 9.4 126798 
4 20% 72.4 9.4 9.8 9.3 9.9 9.6 9.2 319021 
5 40% 71.6 9.5 9.3 9.1 9.6 9.6 9.5 485020 
6 41 % 71.4 8.8 8.1 9.4 9.2 9.9 9.1 602035 
7 45% 71.1 9.2 9.5 9.6 9 9.1 9.7 754522 
8 45% 71.3 9.1 9.6 10 9.6 10 9.6 932088 
9 51 % 71.5 9.3 9.1 9.7 9.5 9.4 9.2 1061950 
10 38% 79.7 8.7 8.3 8.7 9.1 9.8 10 1182039 

Failure at 1272585 



Svecimen S 15 
Relative Ambient Moisture Content (6 Cycle 

Day # Humidity Temp (F) readings, 3 from each side) Number 
1 44% 76.5 10.5 9 9.3 9.4 9.5 9.7 0 
2 43% 71.6 9.3 8.3 9.6 9.7 9.6 8.9 152955 
3 45% 70.8 9.6 9.1 8.9 10.1 9.4 9.6 205129 
4 41 % 71.3 9.3 9.5 8.7 9.4 9.7 9.7 281457 
5 45% 71 .I 10.1 10 9.2 10 8.2 9.8 310802 
6 50% 71.5 9.7 9.2 9.8 9.5 8.6 8.2 394171 
7 29% 84.4 9 8.8 9.7 9.7 10.3 9.7 585014 
8 49% 75.4 9.3 8.7 9.7 8.6 9.8 7.9 645584 
9 40% 81.7 9.2 9.2 9.5 9 9.1 9.3 784867 
10 56% 80.6 10.3 10.3 10 10.1 10.2 9.1 974359 

Failure at 1 109229 

Svecimen S 16 
Relative Ambient Moisture Content (6 Cycle 

Day # Humidity Temp (F) readings, 3 from each side) Number 
1 57% 81.2 9.5 9.6 9.2 9.2 9.3 9 0 
2 38% 74.3 9.4 9.7 9.3 9.2 9.2 8.8 172437 
3 24 % 71.3 9.3 9.5 9.2 9 9.1 9.1 270878 
4 38% 70.2 9.1 9.4 9.3 9.1 8.8 9 398003 
5 40% 73.1 8.8 9.4 9.1 8.9 9.2 9.1 477552 
6 26% 73.8 8.7 8.8 9.1 8.8 8.8 8.9 751430 
7 21 % 74.5 8.6 8.7 8.9 8.9 8.1 8.9 828733 
8 22% 76 8.6 8.7 8.8 8.8 8.9 8.6 889890 
9 24% 74 8.7 8.9 8.6 8.9 8.7 8.9 952545 

Failure at 953845 

Specimen S 17 
Relative Ambient Moisture Content (6 Cycle 

Day # Humidity Temp (F) readings, 3 from each side) Number 
1 70% 9.6 9.7 9.9 9.8 9.7 9.7 0 70 

Failure at 10 1647 

Svecimen S 18 
Relative Ambient Moisture Content (6 Cycle 

Day # Humidity Temp (F) readings, 3 from each side) Number 
1 38% 70.2 9.3 9.5 9.1 9.7 9 9.2 0 

Failure at 19722 



Appendix B 

CALCULATIONS 

B.l Calculation for Design of Test Protocol 

Example followed from pages 7-26 - 7-40 of: 
Ritter, M.A. (1990) Timber Bridges.. Design, Construction, Inspection, and Maintenance. United States 

Department of Agriculture Forest Service Washington, DC 
Units are in English System to be consistent with those given in design example. 

For Unreinforced Glularn Section 

Example from Tlrnber Bridge Manual using 48 foot long glularn bridge girder: 

HS-25 Loading MLL:=245ft.kip VLL:=13.4kip 

24F-V4 

Try 8-112" x 55" 
b := 851-1 h := 55in L := 48ft 

Ibf 
WDL := 269- + (b .h )  

ft 

Ibf 
WDL = 43 1.33- 

ft 

Check Shear 

Check Bending 

fb := 
(MDL + MLL) 

fb = 1034psi less than F1b=1058 psi ... OK 
S 

Ratios: 



For Reinforced Glulam Section 

Example from Tlmber Bridge Manual using 48 foot long glulam bridge girder: 

HS-25 Loading MLL := 245ft.kip VLL:= 13.4kip 

Ibf 
WDL := 269- + ( b . h )  

ft 

lbf 
WDL = 375.25- 

ft 

Check Shear 

Check Bending 

fb := 
(MDL + MLL) 

fb = 2308psi less than F'b=2324 psi ... OK 
S 

Ratios: 



B.2 Calculations for 6700 mm Specimens - Untransformed Section 

Figure B.l Specimen with boundary conditions 

APPLIED LOADS & LOAD HEAD SPACING 
Cross-Sectional Properties 
Wood (Glulam Beam) 
b, := 130.175nm L:= 6705.6nm span := 6400.8nm 

4 2 
h, := 3 0 4 . h m  area, := b, . h, area, = 3 . 9 6 8 ~  10 mm 

Fiber Reinforcing (Gordon E-Glass) 
bf := 120.65nm 

hf := 6 . 3 h m  
2 

areaf := bf . hf areaf = 766.128mm 

Material Properties 
Fb := 23.594lPa (from ReLAM) 

F, := I .3 1MPa (from NDS) 
4 I& := 1.10310 MPa 

4 
Ef:=4.12310 MPa 

Neutral Axis (NA) Location from Top 

Reinforced (Glulam beam with FRP) 
moment of inertia of untranformed section 



For 1 .O'F, Fatiaue Testing 

Want fb:=Fb 

Want fv := 0.8. F, (based on typical Timber Bridge ratios) 

I .O*Moment capacity of Reinforced Beam 
y := NA 

Determine Load P (P is load from actuator) 

Determine Load Head Spacing a (distance from support to loadhead) 

2 . M ma, a := - 
P 

Distance from end of beam distance := a + 152.4nm 

Typical Cpoint bending a=1/3 (for comparison only) 

span -- 3 
- 2 . 1 3 4 ~  10 rnm 

3 

lnstron Fatigue Cycling Data (LL:DL = 2:l) set to cycle from DL to LL 

LL+ DL 
Amplitude := - 

2 

For 1.3*F, Faticlue Testing 

Using same loadhead spacing as l.O*Fb: 
Want fbl , j  := 1.3. Fb a = 67.54in 

1.3*Moment capacity of Reinforced Beam 

Applied Shear Stress, fv 

3 
a =  1 . 7 ~  10 mm 

3 
distance = 1 . 9 ~  10 mn 

Amplitude = 36.962kN 



PARTIAL LENGTH REINFORCING 
DEVELOPMENT LENGTH OF FRP REINFORCING 

Moment Capacities of Reinforced and Unreinfrced Sections 

Unreinforced (Glulam beam only) 
moment of inertia of unreinforced beams 

:= 155$si unreinforced allowable bending stress 

Reinforced (Glulam beam with FRP) 

F ~ , ~ ~  := 23.59NPa reinforced allowable bending stress 

Theoretical Cut-Off Point (TCOP) for FRP measured from support 

3 
a =  1 . 7 ~  10 rnrn 

Mu. = (4) TCOP 

CutOff := TCOP 

Total Length of FRP Reinforcing 

LFRP := span - 2 .  CutOff 

LFRP 
LdLtheoretical:' - 

2 
Stress in Wood-FRP Interface at Cut-Off 

Mcutoff ' Yinterface 
fcutoff := 

I 

TCOP = 78 1 . 0 5 h  

CutOff = 78 1.052mm 



Shear Stress in Wood-FRP lnterface at Cut-Off 

shear force at Cut-Off 
P v:= - 
2 

first moment Q of area above interface 

shear stress at interface in wood 

shear stress at interface in FRP 

bending stress in Wood-FRP lnterface at maximum moment 

Tension in FRP at Maximum Moment 

Allowable Shear Stresses (shear parallel to grain) 

F, := 1.3 wpa based on ReLAM 

Ldl,req = 427.5 lmm 



LOADS FOR FATIGUE CYCLING WITH 55k ACTUATOR 
Load from Actuator 
P = 55.442kN 

Load from each Loadhead 

Cycle Minimum (Design Dead Load, LL:DL = 2 : l )  

Cycle Maximum (Design Live Load) 

Pmax := P Pmax = 55.442kh 

Test Amplitude (Instron measures Amplitude as 112 distance from trough to peak of wave) 

Pmax - Pmin 
Amp := 

2 
Amp = 18.481kh 



B.3 Calculations for 6700 mm Specimens - Transformed Section 

APPLIED LOADS & LOAD HEAD SPACING 
Cross-Sectional Properties 
Wood (Glulam Beam) 
b, := 130.1 75nm L := 6705.6nm span := 6400.8nm 

4 2 
h, := 304 .hm area, := b, . h, area, = 3 . 9 6 8 ~  10 mm 

Fiber Reinforcing (Gordon E-Glass) 
bf := 120.6hm 

hf := 6.35mm 
2 

areaf := bf . hf areaf = 766.128mrn 

Material Properties 
Fb := 23.5961Pa (from ReLAM) 

4 
E, := 1.10310 MPa 

4 
Ef:=4.12310 MPa 

Ef n := - 
E, 

Transformed Section (subscript "tf' signifies "transformed fiber") 

btr 

Figure B.2 Transformed section 



Neutral Axis (NA) Location from Top 

h w 
CyA := (b, . h,) . - + ( b t f .  h f ) .  

2 

Reinforced (Glulam beam with FRP) 
moment of inertia of tranformed section 

Want fb := Fb 

Want fv := 0.8. F, (based on typical Timber Bridge ratios) 

I .O*Moment capacity of Reinforced Beam 
y := NA 

Y 
Determine Load P (P is load from actuator) 

P := 2 .  vmax 
Determine Load Head Spacing a (distance from support to loadhead) 

2 .  Mmax a := - 
P 

Distance from end of beam distance := a + 152.4nrn 

Typical 4-point bending a=1/3 (for comparison only) 

span 
-- 3 

- 2 . 1 3 4 ~  10 mm 
3 

lnstron Fatigue Cycling Data (LL:DL = 2:l) set to cycle from DL to LL 

a = 1833.4mm 

distance = 1985.8mn 

L L +  DL 
Amplitude := - 

2 Amplitude = 39.17kh 



For 1.3'F, Fatique Testing 

Using same loadhead spacing as l.O*Fb: 
3 

Want fh1,3 := 1.3. Fh a = 1 . 8 3 3 ~  10 mm 

1.3'Moment capacity of Reinforced Beam 

Applied Shear Stress, fv 



PARTIAL LENGTH REINFORCING 
DEVELOPMENT LENGTH OF FRP REINFORCING 

Moment Capacities of Reinforced and Unreinfrced Sections 

Unreinforced (Glulam beam only) 
moment of inertia of unreinforced beams 

3 
bw . hw I := ------ 

12 
8 4 

I = 3 . 0 7 2 ~  10 rnrn 

F ~ . ~ ~  := 10.74Mpa unreinforced allowable bending stress 

Reinforced (Glulam beam with FRP) 

F ~ , ~ ~  := 23.59wpa reinforced allowable bending stress 

Fb.re ' It 
Mre := - 

Y 
Theoretical Cut-Off Point (TCOP) for FRP measured from support 

M u  = ( )  TCOP 

CutOff := TCOP 

Total Length of FRP Reinforcing 

L F R ~  := span - 2 .  CutOff 

LFRP 
Ldl.theoretical := - 

2 
Stress in Wood-FRP Interface at Cut-Off 

Mcu,off := (q) . cutoff  

Mcutoff' Yinterface 
fcutoff := 

It  

TCOP = 736.965mm 

CutOff = 736.965mrn 



shear force at Cut-Off 

first moment Q of area above interface 

shear stress at interface in wood 

shear stress at interface in FRP 

bending stress in Wood-FRP Interface at maximum moment 

Mre . Y 
f ~ R p  := - . n 

It 
Tension in FRP at Maximum Moment 

Allowable Shear Stresses (shear parallel to grain) 

F, := 19wsi based on Relam (Lindyberg) 

%FRPsaved := 
12. hl- LI 

V = 29.4kN 

6 3 
Q = 6 x  10 rnrn 

Twood = 3.7MPa 

TFRp = 4 MPa 

f F ~ p  = 77 MPa 

J 
h l =  2.5 x 10 rnrn 

%FRPsaved = 26.5% 



LOADS FOR FATIGUE CYCLING WITH 110k ACTUATOR 
Load from Actuator 
P = 58.759kN 

Load from each Loadhead 

Cycle Minimum (Design Dead Load, LL:DL = 2 : l )  

Cycle Maximum (Design Live Load) 
Pm,:= P Pmax = 58.759kh 

Test Amplitude (Instron measures Amplitude as 112 distance from trough to peak of wave) 

Pmax - Pmin 
Amp := 

2 

BEAM LAY-UP 

Total Area of Glueline Aglue:= b, . L 
5 2 

Aglue= 9 x  10 mm 

Clamping Pressure Desired F~~~~~ := 0 . 3 4 m p a  

. Number of Frames Nframes := 1 2 

Total Number of Rods Nrods := 2Nframes Nrods = 24 

Total Clamping Load Ptotal := Aglue. Fclamp Ptotal = 301.151kN 

Load Per Rod Ptota~ 
Prod := - Prod = 13 kN 

Nrods 

Torque Coefficient k := 0.2 

Nominal Rod Diameter d := 19.05mm 

Amp = 19.586kh 

Tightening Torque Per Rod T := k .  d . prod T = 47.81kN. mm 



MOR CALCULATION 
All calculations for MOR based on wood section only 

Maximum Applied Moment at Failure 

3 
bw . hw h w 

I := y := - 
12 2 

Failure load for 6700 mm beams 

/ 149.6\ / S1 

Modulus of Rupture 

Actuator-load := 

M . Y  MOR := - 
I 

Percent difference in MOR - ReLAM prediction compared to test results 

\ 1 10.31 (S12 

121.4 

121.6 

96.0 

1 12.3 

101.4 

kN 

f 68 \ 

S2 

S3 

S9 

S10 

SI 1 

S l )  ( 6 8 )  

55.2 

55.3 

43.7 

5 1.1 

46.1 

MPa 

S2 

S3 

S9 

S10 

SI 1 

( 50.2) S12) \50.2/ 

:= 

55.2 

55.3 

43.7 

51.1 

46.1 

MPa 



B.4 Calculations for 11,278 mm Specimens -Transformed Section 

APPLIED LOADS & LOAD HEAD SPACING 
Cross-Sectional Properties 
Wood (Glulam Beam) 
b, := 130.1 7fnm L := 11277.6nm span := 10972.8nm 

4 2 
h, := 533.4nm area, := b, . h, area, = 6 . 9 4 4 ~  10 mm 

Fiber Reinforcing (Gordon E-Glass) 
bf := 130.17hm 

hf := 1 1.43nm 
3 2 

areaf := bf . hf areaf = 1 . 4 8 8 ~  10 mm 

4 
E, := 1.10310 MPa 

4 
Ef:=4.123x 10 MPa 

Ef n := - 
E, 

Transformed Section (subscript "tf" signifies "transformed fiber") 

Neutral Axis (NA) Location from Top 

CA := area, + n . areaf 

Reinforced (Glulam beam with FRP) 
moment of inertia of tranformed section 



For 1 .O*F, Fatiaue Testing 

Want fb := Fb 

Want fv := 0.8. F, (based on typical Timber Bridge ratios) 

I .O*Moment capacity of Reinforced Beam 
y := NA 

Determine Load P (P is load from actuator) 

Determine Load Head Spacing a (distance from support to loadhead) 

Distance from end of beam distance := a + 152.4nm 

For 1.3*F, Fatiaue Testing 

Using same loadhead spacing as I.OIFb: 
3 

Want f b 1 , 3 : = l . 3 . F b  a = 3 . 4 0 1 x 1 0 r n m  

1.3*Moment capacity of Reinforced Beam 

Applied Shear Stress, fv 

a = 340 1.4mm 

distance = 3553.8mm 



LOADS FOR FATIGUE CYCLING WITH 110k ACTUATOR 
Load from Actuator 

P = 103.305kN 

Load from each Loadhead 
P 
- = 5 I .653kN 
2 

Cycle Minimum (Design Dead Load, LL:DL = 2:l) 
P 

Pmin := - 
3 

Cycle Maximum (Design Live Load) 

P,,, := P P,,, = 103.305kh 

Test Amplitude (Instron measures Amplitude as 112 distance from trough to peak of wave) 

Pmax - Pmin 
Amp := 

2 
Amp = 34.435kN 



MOR CALCULATION 
All calculations for MOR based on wood section only 

3 
b w .  hw h w 

I := y  := - 
12 2 

Failure load for 6700 mrn beams 

Maximum Applied Moment at Failure 

Modulus of Rupture 

M . Y  MOR := - 
1 

Percent difference in MOR - ReLAM prediction compared to test results 



B.5 Hygrothermal Study Calculations 

EQUILIBRIUM MOISTURE CONTENT CALCULATIONS 

**Equation taken from FPL Wood Handbook 

INPUT 
Relative Humidity (%) 
RH := 93% 

Temperature (Degrees F) 
T := 100 

COEFFICIENTS 

W := 330+ 0.452.T + 0.0041 5T 
2 

K := 0.791 + 0.000463T - 0.00000084T 
2 

OUTPUT 
Equilibrium Moisture Content 

EMC = 2 I .39 

DIFFUSION COEFFICIENT 

D is linear for 5% to 15% MC - - assume 10% initial MC 

C:= 10 

D := 0.0160~exp(O.O228C)) 

D = 0.02 inA2/day 



HYGROTHERMAL CUMULATIVE STRESS HISTORY CALCULATIONS 

Method 1 
Stress History based on peeling stress (tension in the y-direction) 

Doyy = n .  
a 

Number of cycles 

.- 50 "real-world .- 

Total time in kiln 

Method 2 
Stress History based on shear stress in radial-tangential plane 

Number of cycles 

.- 50 "real-world .- 

"real-world' Dm~real-world 
"kiln := 

hykiln 

Total time in kiln 

T k i l n  := nkiln.60hr2 



Method 3 
Stress History based on ratios of contributions of peeling and shear stresses 

.- - 
R1 real-world-min .- 

F ~ ~ e r p  

3 
Dreal-world = 3.62 

Want to reproduce real-world damage in kiln therefore: 

Total time in kiln 

Tkiln := nk,ln.60hr.2 



Appendix C 

MATLAB CODE FOR 1D MOISTURE DIFFUSION MODEL 

function moisture = time-stepper-lD(width, x-div, time, num-time-steps, 
D, IC, BC) ; 

% This function calculates the variation in moisture content in 1D with 
time assuming 
% Fickian diffusion 
% 
% ttwidthn is the beam width 
% "x-div" is the number of divisions across the beam width 
% "timeu is the total simulation time 
% "num-time-stepsN is the number of divisions of time 
% "DU is the diffusion coefficient 
% "ICU is a row vector with the initial MC at each point across the 
section 
% "BCU is a nx2 array of boundary conditions, with the first column 
containing 
% discrete times from 0 to time and the second column containing 
corresponding 
% MC values 
% 
% "resultM is an array with x-div+l columns and num-time-steps+l rows. 
Each row contains 
% MC at every x location in the cross-section, and each column 
corresponds to a 
% discrete solution time from " 0 "  to "timeu. 
% 
% All units MUST be consistent 

tic; 
pts-x = x-div + 1; 
del-x = width/x-div; 
del-t = time/num-time-steps; 

moisture (1, : )  = IC; 

% loop over time 
for (i = 2 :num-time-steps+l) 

% interpolate boundary value 
current-bc = interpl(BC(:,l), BC(:,2), (i-l)*del_t); 
% generate RHS vector 
F = generate-F-lD(moisture(i-I,:), del-x, del-t, D, pts-x, 

current-bc) ; 
% generate coefficient matrix with current mc 
K = generate-K-1D (del-x, del-t, D, pts-x) ; 
moisture (i, : ) = (K\F) ; 
i ; 

end 

%Save moisture data to separate text file 
%save file.txt -ascii moisture 



%Plot Moisture Profile in cross section of beam at last time step 

figure (1) ; 
%clf 
hold on 
x= [O : del-x: width] ; 
plot (x,moisture (num-time-steps-1, : )  ) %,  ' - -  I ; 
title ( 'Moisture Profile' ) 
xlabel('Cross Section Width (inches) I) 
ylabel ( l~oisture Content ( % )  ' ) 

r = D*del t/(2*de1-xA2); - 
for (i = 2:pts-x-1) 

F(i, 1) = r*mc (i-1) + (1-2*r) *mc (i) + r*mc (i+l) ; 
end 

% now, boundaries 
F(1,l) = bc; 
F(pts-x, 1) = bc; 

function K = generate-K-lD(de1-x, del-t, D, pts-x) 

% loop by rows 
for (i = 2:pts-x-1) 

K(i,i-1) = -r; 
K(i,i) = 1 + 2*r; 
~(i,i+l) = -r; 

end 
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