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People sometimes misunderstand each other, even when they use the same language to

communicate. Often these misunderstandings happen when people use the same words to

mean different things, in effect disagreeing about meanings. This thesis investigates such

disagreements about meaning, considering them to be issuesof semantic interoperability.

This thesis explores semantic interoperability via a particular formal framework used to

specify people’s conceptualizations of a given domain. This framework is called an ‘ontology,’

which is a collection of data and axioms written in a logical language equipped with a model-

theoretic semantics. The domain under consideration is thegeospatial domain.

Specifically, this thesis investigates to what extent two geospatial ontologies are semanti-

cally interoperable when they ‘agree’ on the meanings of certain basic terms and statements,

but ‘disagree’ on others. This thesis defines five levels of semantic interoperability that can

exist between two ontologies. Each of these levels is, in turn, defined in terms of six ‘com-

patibility conditions,’ which precisely describe how the results of queries to one ontology are

compatible with the results of queries to another ontology.



Using certain assumptions of finiteness, the semantics of each ontology is captured by a

finite number of models, each of which is also finite. The set ofall models of a given ontology

is called its model class. The five levels of semantic interoperability are proven to correspond

exactly to five particular relationships between the model classes of the ontologies.

The exact level of semantic interoperability between ontologies can in some cases be com-

puted; in other cases a heuristic can be used to narrow the possible levels of semantic interop-

erability.

The main results are: (1) definitions of five levels of semantic interoperability based on

six compatibility conditions; (2) proofs of the correspondence between levels of semantic

interoperability and the model-class relation between twoontologies; and (3) a method for

computing, given certain assumptions of finiteness, the exact level of semantic interoperability

between two ontologies.

These results define precisely, in terms of models and queries, the often poorly defined no-

tion of semantic interoperability, thus providing a touchstone for clear definitions of semantic

interoperability elsewhere.
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Chapter 1

INTRODUCTION

Practically everywhere software is used, it interacts withother software. For instance, one

company’s Web browser might run on another company’s operating system, and it may con-

nect to a third company’s Web server. A meta-search engine onthe Internet might exchange

data with multiple search engines in order to answer a user’squery. Even seemingly stand-

alone programs must interact with the operating systems on which they run. Much of the time

this interaction goes smoothly.

Sometimes, however, problems occur. For instance, a document written using a partic-

ular word processor on one operating system may, for no apparent reason, change its for-

matting when it is opened with the “same” word processor running on a different operating

system. This problem reveals a certain lack of interoperability between word processors: the

formatting of the document is not preserved between the “same” word processor on different

operating systems.

Interoperability, in the field of information science, refers to “the ability of various systems

to interact with each other no matter the hardware or software being used” Taylor (2004).
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When two information systems fail to interoperate, one wouldlike to know why. What is it

about the systems and their interactions that causes the problem? A satisfactory explanation

would take into account both the nature of the systems themselves and the relevant principles

governing their interactions.

For instance, in the above example concerning word processors, one explanation for the

inconsistency of formatting might be that one word processor does not have all the fonts that

the other one has. This fundamental limitation on the availability of fonts imposes certain

constraints on the interoperability of the two systems. These constraints are built into the

nature of the each system, and they govern any interaction that deals with conversion of fonts,

though they may not become problematic in all these interactions.

In this example, the problem is easily identifiable: the document has one formatting on

one operating system (OS), but another formatting on a different OS, even though the ‘same’

word processing software is being used. One can also clearlydescribe the desired kind of

interoperability: each system (OS and word-processing program) should work with the other

so that any document passed between them preserves its formatting. And, assuming that the

formatting problem is due to one system’s lack of certain fonts, the interoperability problem

could be solved by giving both systems identical sets of fonts.

In other cases, even when it is clear that an interoperability problem exists, it may not be

easy toidentifythe problem clearly, or tospecifyprecisely the desired kind of interoperability,

or to assessto what extent two systems are interoperable. Even when these challenges can be

met, however, it may not be possible toobtain the desired interoperability. Nevertheless, we

can increase our understanding of the issues involved by exposing the fundamental principles

that govern the particular ways that the two systems could, potentially, interoperate.
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1.1 Example Showing a Lack of Semantic Interoperability

Figure 1.1: Ball in pool. Pool in yard. Therefore, ball in yard?

Suppose John and Mary are looking in their back yard during the summer, and they observe

the ball, the pool, and the yard. (That is, they see these objects and agree on the real-world

referents of the terms ‘the ball,’ ‘the pool,’ and ‘the yard.’) And suppose that they both agree

that ‘The ball is in the pool’ and ‘The pool is in the yard.’

Suppose that John claims that the statement ‘The ball is in the yard’ follows from these

agreements about meanings, whereas Mary claims that it doesnot. Specifically, Mary main-

tains that simply because the ball is in the pool and the pool is in the yard, it does not follow

that the ball is therefore in the yard.

This example shows that although John and Mary share a commonunderstanding of some

basic aspects of their world, this understanding does not extend to other areas. In particular, it

does not extend to what these agreed-upon factsmean, where, as the example shows, ‘mean-

ing’ has to do with logical consequence. One can say that sucha difference in understanding

reveals a certain lack ofsemantic interoperabilitybetween John and Mary. This lack of seman-

tic interoperability would reveal itself in any situation that required an answer to the question,

‘Is the ball in the yard?’, to which John would answer unequivocally ‘Yes,’ but Mary would
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not. This example thus illustrates the essential issue of semantic interoperability treated in this

thesis: when the meanings implicit in different conceptualizations of a common scenario yield

different answers to specific questions, to what extent are the conceptualizations semantically

interoperable?

Consider, in the case of John and Mary, how one could identify the problem of interop-

erability, specify the desired kind of interoperability, and assess the extent to which John and

Mary are interoperating semantically. The problem can be identified as follows: John and

Mary disagree about certain fundamental meanings of their scenario, even though they use

the same terms to communicate and they agree on other basic meanings associated with these

terms. The desired semantic interoperability could be specified as: John and Mary agree on

all meanings related their scenario that. And a rough assessment of the extent to which John

and Mary are interoperating semantically could be “somewhat, but not completely.”

To this point, the foregoing analysis has

• established that problems of semantic interoperability can exist even when people use

the same language to describe a scenario;

• identified a particular lack of semantic interoperabilityas a disagreement about logical

consequence;

• specified one possible kind of desired semantic interoperability; and

• assessed very roughly the extent of semantic interoperability between John and Jane.

In particular, the analysis has not yet dealt with the fundamental constraints in this scenario

that govern the semantic interactions between John and Mary. Those constraints are discussed
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in Section 1.4. But first, the next two sections provide some overall context for the thesis and

discuss the questions that motivated it.

1.2 Context

The context for the research in this thesis is recent work in several related areas: ontologies,

Geographic Information Science (GIScience), and the Semantic Web.

1.2.1 Ontologies

The word ‘ontology’ has acquired a distinctive meaning in the last decade or so, especially

in the research literature in computer and information science (Guarino, 1998; Smith and

Welty, 2001; McGuinness, 2002; Taylor, 2004; Obrst, 2003),where, rather than referring to

the philosophical discipline that studies the categories of things that exist (Casati et al., 1998;

Sowa, 2000), ‘ontology’ has come to refer to a certain type ofwritten artifact that describes

a particular conceptual domain, usually with the intent that it be processable by computers

(Guarino, 1998).

1.2.2 GIScience

The University Consortium of Geographic Information Science (UCGIS) has recently identi-

fied ontologies as one focus in its research agenda (Egenhofer, 2004). Ontologies have been

seen as a tool that might enable the interoperability of Geographic Information Systems (GISs)

(Fonseca et al., 2002; Agarwal, 2005). The main purpose of using ontologies in GIScience
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is “to define a common vocabulary that will allow inter-operability and minimize any prob-

lems with data integration, both between different systemsand between users and systems”

(Agarwal, 2005, pg. 508). Additionally, government agencies responsible for geospatial data

are exploring and developing ontologies (e.g., USGS and theNational Geospatial Intelligence

Agency (NGA) in the US, and the UK Ordnance Survey (UKOS) in the UK). Issues of seman-

tic interoperability have also been of recent concern to several researchers in GIScience, e.g.,

Egenhofer (1999); Kuhn (2005a); Hobbs (2006); Agarwal (2005).

Additionally, at least one recent proposal (Egenhofer, 2003) attempts to bridge the research

interests of GIScience in ontologies with those of the community of researchers involved in

what is becoming known as the Semantic Web (Berners-Lee et al., 2001).

1.2.3 The Semantic Web

‘The Semantic Web’ is a phrase that, unsurprisingly, means different things to different people.

A well-known article from 2001 describes it as an extension of the then current Web, “in which

information is given well-defined meaning, better enablingcomputers and people to work in

cooperation” (Berners-Lee et al., 2001, pg. 35). A follow-uparticle has acknowledged the

need “for shared semantics and a web of data and information derived from it” (Shaboldt

et al., 2006, pg. 96). Both these articles acknowledge the importance of using ontologies on

the Semantic Web, with the latter article declaring flatly: “In the past five years, the argument

in favor of using ontologies has been won...” (Shaboldt et al., 2006, pg. 96).

In an effort to endow Web markup languages with unambiguous semantics, so that com-

puters can draw valid inferences about tagged Web resources, the World Wide Web Consor-

tium (W3C) has recently developed the markup languages RDF (Klyne and Carroll, 2004) and
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OWL (Patel-Schneider et al., 2004). Each of these languages has a model theory that supplies

its semantics (Hayes, 2004; Patel-Schneider et al., 2004),and each potentially supports pieces

of the vision of the Semantic Web (Berners-Lee et al., 2001; Shaboldt et al., 2006).

A key part of that vision is the expectation that ontologies will be able to “interoperate

semantically” without the need for humans in the loop. One early definition of semantic

interoperability on the Web is given in Heflin and Hendler (2000), where the authors say: “To

achieve semantic interoperability, systems must be able toexchange data in such a way that

the precise meaning of the data is readily accessible and thedata itself can be translated by

any system into a form that it understands” Heflin and Hendler(2000, pg. 111). This approach

describes, somewhat generally, semantic interoperability in terms of some kind of translation

of meanings. Such a ‘translation approach’ to semantic interoperability, though interesting

and potentially useful, is not the approach taken in this thesis.

A different and more recent view of the Semantic Web might be summarized as “the

meaning of a Web resource or term is whatever a collection of people say it is.” Sites that

let users tag resources with free-form vocabulary (e.g., Amazon.com and librarything.com)

help to create a linked network of human-generated and human-understandable meanings

that is amenable to certain kinds of machine processing, though not to the kind of machine-

understandable processing envisioned in Berners-Lee et al.(2001), for instance. There are

good arguments supporting the ‘human-understandable’ approach to semantics on the Web.

However, such arguments are not considered here, since thisthesis deals with machine ‘un-

derstanding’ of semantics, not people’s understandings ofwhat particular tags mean to them.
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1.2.4 This Thesis in Context

Given these related research activities in ontologies, GIScience, and the Semantic Web, the

time is ripe for foundational research into the semantic interoperability of geospatial ontolo-

gies. This thesis defines ageospatial ontologyto be a collection of data and axioms (about a

geospatial domain) written in a logical language equipped with a model-theoretic semantics.

This definition of an ontology, though perhaps not the first definition that most researchers in

GIScience would think of — see, however, e.g., Casati et al. (1998); Smith (1996); Cohn and

Varzi (2003) for noteworthy exceptions — is, nonetheless, well established in the computer-

science and Semantic-Web research communities. Sowa (2000), for instance, calls this kind

of ontology an axiomatic ontology. Such an ontology is also,depending on the complexity

of the relationships it seeks to specify, amenable to specification in Web markup languages

like RDF and the Web Ontology Language OWL, but not in a languagelike GML (Cox et al.,

2003), since RDF and OWL have an associated model theory, whereas GML does not.

The research in this thesis seeks to fill a particular hole in current research and practice in

GIScience (and more broadly in information science): the lack of a clear operational defini-

tion, with worked-out examples, of what it means to say that two formal geospatial ontologies

are semantically interoperable. The lack of such a definition leads to ambiguities and a lack

of clarity when people discuss semantic interoperability,which in turn leads to a lack of con-

sensus on how to recognize and deal with problems of semanticinteroperability. The research

in this thesis is central to the intersection of research in ontologies, the Semantic Web, and

semantic interoperability issues in GIScience (Figure 1.2).
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Figure 1.2: Thesis Research in Context

This thesis’s approach to semantics is consonant with the judgment of Kuhn (2005b), that:

“[t]he only sensible use of the term ‘semantics’ refers toexpressions in a language” (Kuhn,

2005b, pg. 50) (italics in original). Kuhn explains that there are many different languages

used by information systems, and that “[c]oping with geospatial semantics means, eventually,

building ontologies specifying the meaning of expressionsin most or all of these languages”

(Kuhn, 2005b, pg. 50). The research in this thesis is in keeping with this sentiment, but its

focus differs from Kuhn’s. Whereas for Kuhn, it is theservice interfaces(the interfaces among

software components that are captured by a particular signature) that need to interoperate

semantically, for this thesis, it is the ontologies themselves and the inferential software that

supports them that need to interoperate semantically.

The particular line of research in this thesis is not meant todeny that people and machines

disagree about meanings in a multitude of different, sometimes disconcerting or fascinating

ways, not all of them related to issues of logical consequence. In a geospatial context, dis-

agreements about meanings of spatial relationships arise from issues of scale (e.g., a person
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being ‘in’ a building, versus a province being ‘in’ a country), imprecise information (e.g., be-

ing ‘near’ a restaurant), boundaries (e.g., is the boundary‘part of’ the object or region which

it bounds), etc. These potential sources of semantic discrepancies about spatial relationships

are real, but they are not the central focus of this research.Rather, this thesis addresses what

it means for two geospatial ontologies, which specify the meanings of spatial relations via

model-theoretic semantics, to be semantically interoperable.

Semantic interoperability, in the context of logic, has been addressed by researchers in

the areas of logic and computer science (Meseguer, 1998; Carnielli and D’Ottaviano, 1997;

Goguen, 2005), ontologies and the Semantic Web (e.g., Obrst(2003); Gr̈uninger (2004);

Grüninger and Kopena (2005); Schorlemmer and Kalfoglou (2004)), as well as by researchers

in geospatial semantics (e.g., Hobbs (2006); Adams (2006)), but not in the same way, or with

the same kind of detail, as is done in this thesis (Chapters 2 and 3). Specifically, assuming the

specification of spatial relations in two axiomatic geospatial ontologies, this thesis addresses

a process for determining the level of semantic interoperability between the two ontologies,

based on particular considerations of semantics and queries (Section 1.6).

1.3 Motivating Questions

The questions that motivated this research are:

1. What does ‘semantic interoperability’ mean?

2. How can the claim that two geospatial ontologies are, or are not, semantically interop-

erable be understood?
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3. What is the connection between the results of queries to twogeospatial ontologies and

whether or not these ontologies are semantically interoperable?

4. Is there anything “special about spatial” when considering the semantic interoperability

of geospatial ontologies?

The whole thesis is an investigation into question 1. The second and third questions are

answered by the theoretical framework developed in Chapters3 and 4, an implementation of

which is given in Chapter 5. The fourth question is addressed in Section 2.6.

The specific research question of this thesis (Section 1.7.1) came about after considering

certain details in the framework developed in Chapter 3. An overview of some of these details,

sufficient for framing the research question, is given in thenext three sections.

1.4 Implicit Meanings, Logical Consequence, and Semantic

Interoperability

The example from Section 1.1 showed that John and Mary agree on two basic statements of

their pool scenario, but disagree on whether a particular third statement followed as a logical

consequence of the agreed-upon two.

Logical consequenceis a formal relationship between formulas (in a formal language) that

is intended to capture the intuitive notion of one statementfollowing logically from others

((Ebbinghaus et al., 1994; Etchemendy, 1990)). The disagreement between John and Mary

about whether ‘The ball is in the yard’ is, when formulated appropriately, a disagreement

about logical consequence: John’s claim that ‘The ball is inthe yard’ follows from (i.e., is a
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logical consequence of, is entailed by) ‘The ball is in the pool’ and ‘The pool is in the yard.’

But Mary claims that the former statement is not entailed by the latter two. For John, part of

what ‘in’ meansin this scenario is the entailment that ‘The ball is in the yard.’

Note that John’s and Mary’s disagreement about whether the ball is in the yard occurs in

spite of the fact that they use the same language and terms to describe their scenario. That

is, on the surface it appears that there is no ‘heterogeneity’ to their semantics, and thus one

might conclude that there should be no lack of semantic interoperability. However, as has been

show, the lack of semantic interoperability can still take place. In this case, one could attribute

this lack of semantic interoperability to an axiom that Johnholds to be true but fails to make

explicit (i.e., that ‘in’ is transitive), rather than to anysuperficial difference in the vocabulary

used to describe the scenario.

Computers working from formal specifications can exploit both explicitly stated assertions

and derived implicit meanings in their analysis of semantics and semantic interoperability.

One way they accomplish this is by considering the various possible truth values, stated or

implied, of the set of possible statements about a given scenario. This thesis uses such an

approach.

In the pool example there are three entities and one relation. Considering just simple

statements like ‘The ball is in the pool,’ there can be nine such statements in this scenario, and

each can be assessed as true or false.

A specification of the conceptualization of this scenario would thus implicitly consider

29 or 512 cases. Mary explicitly acknowledges 2 of the 9 statements to be true; thus, in the

specification of Mary’s conceptualization just27 or 128 different possibilities are left implicit.

In Figure 1.3 these cases are collapsed into one 3x3 table, but it is useful to think of each
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case as its own 3x3 table with definite values of T or F for each cell. The T/F in seven of

the nine cells in Figure 1.3 indicates that Mary has left these values unspecified and that any

combination of T’s or F’s in these cells is consistent with her view of the pool scenario.

ball

pool

yard

ball pool yard
in

T/F T/FT

TT/F T/F

T/F T/F T/F

Figure 1.3: Interpretations Consistent with Mary’s Conceptualization

To specify John’s conceptualization, there also appear to be 128 different cases to consider.

However, recall that John also claims that ‘The ball is in theyard’ (i.e., that for him this claim

follows logically from ‘The ball is in the pool’ and ‘The poolis in the yard.’) Therefore John’s

specification shows a T in the ball/yard cell (Figure 1.4). Thus there are 64 possible 3x3 tables

with T’s in the ball/pool, pool/yard, and ball/yard cells. Another way to consider this third

claim of John’s is to say that ‘The ball is in the yard’ is true in any case (i.e., in any 3x3 table)

that is consistent with ‘The ball is in the pool’ and ‘The poolis in the yard.’

This kind of analysis of logical consequences underlies thedefinitions and computations

of semantic interoperability used in this thesis.

One reason John says that ‘The ball is in the yard’ follows from ‘The ball is in the pool’

and ‘The pool is in the yard’ might be that he considers it to beaxiomatic that for all entities

X, Y, and Z in the domain of interest, ‘If X is in Y and Y is in Z, then X is in Z.’ If this axiom

were codified and made part of John’s explicit specification of his conceptualization (i.e., part
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ball

pool

yard

ball pool yard
in

T/F T

TT/F T/F

T/F T/F T/F

T

Figure 1.4: Interpretations Consistent with John’s Conceptualization

of John’s ontology) a computer could derive his implicit entailment that ‘The ball is in the

yard.’ Once that entailment is derived, it can be compared tothose statements that follow

logically from Mary’s specification of her conceptualization (i.e., Mary’s ontology).

The nature of the discrepancy between the sets of entailed statements of two different on-

tologies reveals fundamental constraints on the semantic interoperability of the two ontolo-

gies.

1.5 Same Symbols, But Different Meanings

1.5.1 Need for Formalism

Sections 1.1 and 1.4 discussed implicit meanings and logical consequences, but to treat these

topics in a way that is amenable to machine processing, some formal machinery is needed to

handle the formal counterparts of implicit meanings and logical consequences.

This thesis assumes information systems can encode conceptualization like those of John

and Mary in the above example, and it investigates precise descriptions for the semantic inter-

operability between such conceptualizations.
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To identify the fundamental constraints on interoperability, one needs to describe precisely

the differences in meaning that underlie the lack of semantic interoperability and indicate the

kind of semantic interoperability at issue. This capability is established through an appropriate

choice of formalisms (Chapter 3), which allows the rigorous treatment of the scenarios posed

in this thesis. Specifically, because the scenarios involvelogical consequences and entailment

as fundamental aspects of semantics, and because the aim is to understand semantic interop-

erability via automated means, the choice of formalism mustbe one that machines can use

to compute logical consequences. This approach yields unambiguous definitions of different

levels of semantic interoperability (Chapter 3), which in turn facilitate the calculation of the

degree of semantic interoperability between two geospatial ontologies.

As mentioned in Section 1.2.4, for the purposes of this thesis, ageospatial ontologyis

a collection of data and axioms concerning the spatial properties of geographic objects and

relations. The semantics of a geospatial ontology is specified by model-theoretic semantics

(Hodges, 1997; Manzano, 1999), where the meanings of the symbols in the ontology are given

by models, in the way this term is used in database theory (Vianu, 1997)and logic (Manzano,

1999). In this thesis,modelsare sets with certain relations defined on them.

The next two sections describe in some detail the particularkind of semantic heterogeneity

studied in this thesis: that of geospatial ontologies differing only in the semantics of their

spatial relation symbols (the common symbols used to denotespatial relations, such asin or

through). Nevertheless, the approach used can be generalized — within the setting of formal

ontologies — toanysemantic differences that are reflected in the models of the ontology.
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This last remark deserves to be amplified. First, the approach used in this thesis analyzes

an ontology’s semantics in terms of its models (Chapter 3); therefore, any differences in se-

mantics that are reflected as in the models of the ontology areamenable to the kind of analysis

used in this thesis. Many such differences, however, lie outside the scope of the present in-

vestigation. For example, a difference in semantics that isdue to two different words being

used to name the spatial relation ‘in’ (e.g.,in andinside) lies outside the scope of this thesis,

though one could still conduct an analysis of semantic differences based on the differences in

the models of the ontologies. Second, even though all the examples in this thesis deal with

so-called ‘populated ontologies,’ (i.e., ontologies thatinclude instance data like ‘the pool,’ ‘the

ball,’ etc.), the analysis done in Chapters 3-5 is still applicable for ontologies that lack such

instance data, i.e., ontologies that consist of just relationships between classes, and axioms.

The semantic heterogeneity between two geospatial ontologies is reflected directly in the

degree or level of semantic interoperability between theseontologies (Chapter 3). A detailed

specification of different levels of semantic interoperability is postponed until the necessary

formalisms and examples have been presented (Chapters 2 and 3).

What follows is a consideration of models in the context of simple relational databases:

collections of data tuples without any axioms. Afterward, the basic concepts of semantics and

models are extended to apply to ontologies (which contain both data tuples and axioms).
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1.5.2 Database Examples

Consider two very simple relational databases, where the only relation that is modeled is

the spatial relationin, the only entities under consideration are Route 2, Orono, Bangor, and

Maine, and there are no attributes for any of these entities.We assume the databases have the

following information in common:

1. the ‘real-world’ domain, whose entities are Route 2, Orono, Bangor, and Maine;

2. the data domain:{Route2, Orono,Bangor, andMaine};

3. the data model — in this case, the relational data model;

4. the database schema, which consists of a single binary relation ‘in’, without attributes

(i.e., there is no special name given to the set of elements that could be in the first or

second position of the tuples forin); and

5. the type of the data (character data).

Two different people might plausibly create the databasesDB1 andDB2 (Figure 1.5),

according to their understandings of what the spatial relation in means. The reader should

not consider these databases to be simplified versions of Geographic Information Systems

(GISs) or spatial databases (Rigaux et al., 2002), which specify or derive spatial relations via

coordinate systems or via topological relations of spatialparts.

The examples in this section serve to illustrate the centralways in which an ontology

differs from a conventional database: (1) the ontology specifies axioms in addition to data; (2)

the semantics of an ontology typically commits to more than one fixed ‘way the world could
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be’; and (3) the analysis of the semantics of an ontology is inextricably linked to the idea of

‘more than one way that the world could be.’

ConsiderDB1 (Figure 1.5). The person who createdDB1 has a notion ofin that does not

include either the relationship “Route 2 is in Orono” or that “Route 2 is in Bangor,” although

this person’s notion ofin does include the relationships “Orono is in Maine,” “Bangor is in

Maine,” and “Route 2 is in Maine.” (Such an argument glosses over considerations of the open-

world and closed-world assumptions (Reiter, 1978), which are discussed further in Chapters

2 and 3.)

DB1: Tuples forin(x, y) DB2: Tuples forin(x, y)
(Route2, Orono)
(Route2, Bangor)

(Orono, Maine) (Orono, Maine)
(Bangor, Maine) (Bangor, Maine)
(Route2, Maine) (Route2, Maine)

Figure 1.5: Two databases that modelin differently

The difference in the two persons’ notions ofin is thus reflected, albeit imperfectly, by

the different sets of tuples used to populate their respective databases. More specifically, the

elements in the domain of the database, plus the data tuples in the in relation constitute a

model(Manzano, 1999; Vianu, 1997) of the part of the real world under consideration. Once

people create these tuples in the database, they effectively turn over any treatment of the

meaning ofin to the system that works with these tuples. Consequently, from the perspective

of the database management system, the two different meanings of in are determinedsolely

by the data elements and the tuples themselves. Whether or notthe resulting databases can

interoperate semantically is thus a function of the tuples they contain for the relationin.
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Regardless of whether the two people who createdDB1 andDB2 have accurately captured

their intended meanings ofin, so far as the two databases are concerned, the meaning ofin is

determined solely by the set of tuples in their respective relational tables forin, i.e., by their

modelsof in. In this example, the tuples themselves, along with relational symbolin, comprise

the only machine-processable information available for processing the meaning ofin. There

may be myriad other senses of ‘in’ that are not captured by this specification, but the point

here is that the only thing a computer has to work with is the specification it is given, along

with the rules for processing it.

Saying that two databasesmeandifferent things by the same relational symbol amounts

to saying that the databases have different sets of tuples intheir respective tables for this

relational symbol. Schematically, this situation is depicted in Figure 1.6.

same relational symbol: in 

my idea
of in

single set of
tuples

DB 1

same external reality

my idea
of in

different notions of in

different 
models of in 

DB 2

single set of
tuples

Figure 1.6: Same symbol, different meanings
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The following assumptions underlie the framework of the above analysis of differences

betweenDB1 andDB2.

• The two people are modeling the “same” external reality.

• The two people have their own individual notions of what thespatial relationin means.

• They use the same symbol—in—to represent this spatial relation in their databasesDB1

andDB2.

• The set of tuples in one database may or may not overlap with the set of tuples from the

other database. In the example of Figure 1.5,DB1 andDB2 have different, overlapping

sets of tuples, which reflect the different notions their creators have of the spatial relation

in.

• When one considers the differences in the specifications of the databases, one is no

longer dealing with the notions ofin that the two human modelers have. Rather, the

only information that is available about the meaning ofin is that which can be gleaned

solely from the databases themselves. When the focus is on thedatabases themselves

and not on what the human modelers may have intended, the set of tuples from thein

table becomes the only tangible artifact available to determine whatin means. That

is, once the human modeler is out of the picture, the set of data tuples of a database

essentiallyis the meaning of the relationin.

• The set of tuples inDB1 or DB2 is themodelof the world that each person has created,

whether or not this model faithfully depicts all the nuancesof the relationin that the

database creator might have.
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DB1 andDB2 aresemantically heterogeneousbecause even though they use the same

symbol to describe the relationin, they mean different things by it. Given thatDB1 and

DB2 are semantically heterogeneous, to what extent might thesedatabases nevertheless be

semantically interoperable? There are many plausible waysto answer this question, among

which are that

• their sets of tuples overlap;

• they give the same answers to the same questions;

• queries to the databases do not involve Route 2; and

• queries to the databases do involve Maine.

What these plausible answers show is thatin assessing to what extent two such databases

might be semantically interoperable, it makes sense to consider both the sets of tuples in the

databases and the queries put to the databases.

To determine to what extent twoontologies(as opposed to two databases) are semantically

interoperable, one also needs to consider the axioms of the ontologies and the models that re-

sult from including axioms along with data. The next sectionintroduces these considerations.

A fuller discussion of some needed technical background is given in Chapter 2.

1.5.3 Ontology Examples

Consider again two people modeling the relationin over the four entities of Route 2, Orono,

Bangor, and Maine. Instead of explicitly providing all the tables of data via tuples, they now

also specify axioms that they thinkin should satisfy. These axioms enhance the explicit data
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tuples forin by adding other conditions thatin must satisfy. Such a combination of data and

axioms is an example of an axiomatic ontology. Assume further that the two people use the

same language (e.g., the language of first-order logic) to specify the axioms forin.

Schematically, these assumptions are represented in Figure 1.7. Note the three major

differences between this figure and Figure 1.6. First, Figure 1.6 deals with databases; second,

it makes no mention of a logical language; and third, it showsjust one model (i.e., set of

tuples) for each database. By contrast, Figure 1.7 deals withontologies, it mentions the logical

language (used for specifying axioms and for drawing inferences), and it shows more than one

model (set of tuples) for each ontology.

same nonlogical vocabulary
and same logical language

A's idea
of in

multiple sets
of tuples

Ontology 1

same external reality

B's idea
of in

different notions of in

different 
models of in 

multiple sets
of tuples

Ontology 2

Figure 1.7: Same symbols and logical language, different meanings

Consider the following points.

• The two people are modeling the same external reality.

• The two people have their own individual notions of what thespatial relationin means.

22



• They use the same symbol—in—to represent this spatial relation.

• This same symbol and the same logical language are used by both ontologies.

• Each ontology has multiple sets of tuples, each of which is amodel of the spatial relation

in, reflecting the individual’s notion ofin.

• Once the focus is on the ontologies (as machine-processable written artifacts), one is no

longer dealing with exactly which notions ofin the two human modelers have had in

mind. Instead, the ontology is taken to be the best availableapproximation to their no-

tions, and the focus is on the meaning ofin as that meaning is specified via the semantics

of the ontologies themselves.

In the case of the example databases (Figure 1.6),the modelof a given database consists of

just the data elements along with a single set of tuples for the relationin. Under the viewpoint

taken this thesis, this unique model defines whatin means in that database.

In the case of an ontology,a modelalso consists of the data elements along with a single

set of tuples for the relationin. The significant difference between an ontology and a simple

database is that an ontology usually has multiple models, expressed implicitly by the combi-

nation of data and axioms, whereas a database has just a single model, specified exactly by the

data tuples.

Each of the ontologies in Figures 1.8 and 1.9, for instance, has more than one model,

because the axioms and the data of the ontology do not uniquely constrain the set of tuples

that specify the semantics of the relationin. The fact that ontologies in general typically

have more than one model is central to any definition of semantic interoperability between

ontologies. This is so in spite of the fact there may be other,human-significant aspects of the
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relation in that are not captured by the ontology. But because ontologiesdo not capture any

aspects of meaning outside the data and the axioms (and the formal framework of reasoning

in which they are embedded), such meanings are not amenable to the formal analysis used in

this thesis.

Axioms for in Data Tuples forin
(Route 2, Orono)

∀x, in(x, x) (Orono, Maine)

Figure 1.8: OntologyO1 for in

Axioms for in Data Tuples forin
(Route 2, Orono)

∀xyz, in(x, y) ∧ in(y, z) → in(x, z) (Bangor, Maine)
(Orono, Maine)

Figure 1.9: OntologyO2 for in

Consider the ontologiesO1 andO2 specified in Figures 1.8 and 1.9 above. Each contains

a single axiom and some tuples of data. The axiom ofO1 states that every entity is in itself,

and the axiom ofO2 states that the relationin is transitive. More significantly, the particular

axioms and data tuples of the ontologies combine to specify (implicitly) the modelsof each

ontology.

A model for a given ontologyis a depiction of how the world could be configured that

conforms to the data and the axioms. (Chapter 3 gives a more precise definition.) For instance,

in any model ofO1 the following relationships must hold: “Route 2 is in Route 2,”“Orono is

in Orono,” “Bangor is in Bangor,” and “Maine is in Maine”, because these relationships are

dictated by the axiom. Similarly, in any model ofO1 the relationships “Route 2 is in Orono”

and “Orono is in Maine” must hold, because these relationships are dictated by the data.
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A convenient way to picture the models ofO1 is to use graphs, since the entities of Route

2, Orono, Bangor, and Maine can be represented by vertices in agraph, and the single binary

relationin can be depicted by the directed arrows in the graphs. In the top half of Figure 1.10,

two of the models ofO1 are shown as graphs, where the vertices labeled ‘R2,’ ‘O,’ ‘B’,and

‘M’ stand for Route 2, Orono, Bangor, and Maine, respectively.Similarly, the bottom half of

Figure 1.10 shows two models ofO2.

Figure 1.10 suggests thatO1 andO2 do not have the same sets of models (because model

1 of O1 is different from model 1 ofO2). This turns out to be the case, since model 1 ofO2

could never be a model ofO1 (since thein relation in model 1 ofO2 is not reflexive), and so

the sets of models of the two ontologies cannot be the same. BecauseO1 andO2 have different

sets of models, they have different semantics, in particular, different semantics for the spatial

relationin.

Even though bothO1 andO2 use the same relation symbol, and the same logical language

to express axioms, themeaningsthat the two ontologies give to the symbolin are different.

This is true in spite of the fact that the ontologies have at least one model in common — the

the right-hand model in Figure 1.10.

Figure 1.10 exemplifies another important difference between the semantics of databases

and the semantics of ontologies. Although in both cases the meaning of symbols is formalized

via models, if twodatabaseshave a model in common, then they have the same semantics

(based on the discussion in the previous section), because the model for a given database is

unique. Twoontologies, however, may have one or more models in common and yet have

differentsemantics, since an ontology generally has more than one model.

25



One might suppose that the difference in the semantics ofin betweenO1 andO2 is due

to the fact thatO1 has one axiom andO2 has a different axiom. But that fact provides only

a partial explanation for the different semantics ofO1 andO2. A fuller explanation is that

the different meanings are due to each ontology’s particular combinations of axioms and data

that result in different sets of models for the two ontologies. There are three ways that two

ontologies might have different sets of models: (1) they have the same data and different

axioms; (2) they have the same axioms but different data; or (3) they have different axioms

and different data, which is the case ofO1 andO2. What is significant about the semantics of

an ontology is not the data tuples or axioms considered individually, but rather the way that

the data and axioms collectively determine the models of theontology (see Section 3.1).

R2

BM

O R2

BM

O

model 1 of O1 model 2 of O1

R2

BM

O

model 1 of O2

R2

BM

O

model 2 of O2

Figure 1.10: Two models of Ontology 1 and of Ontology 2

Since the semantics of the ontologies is determined by theirmodels, and sinceO1 andO2

have different sets of models, one can say that they aresemantically heterogeneous. Given this

particular view of semantic heterogeneity, to what extent might the ontologies nonetheless be

semantically interoperable?
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To answer this question, consider the following. The semantic interoperability of ontolo-

gies has to do with implicit logical consequences. These consequences can be probed by

determining whether a given query (statement in the same logical language used to specify the

ontology) evaluates to True in all models of the ontology. So, it makes sense that an analysis

of semantic interoperability takes into account both models and queries.

Thus, among the plausible answers to the above question are that

• the sets of models ofO1 andO2 overlap;

• queries to each ontology target one or more of the models they have in common;

• a given queryQ posed toO1 gives the same answer when posed toO2.

Chapter 3 explores in-depth an answer to this question based on the sets of models of the

two ontologies and the queries put to the ontologies.

1.6 Assessing Semantic Interoperability

Three points emerge from the analysis in Sections 1.3 - 1.5.

1. Two geospatial ontologies that deal with the same domain and use the same language to

describe this domain can nevertheless differ in their semantics.

2. Because the semantics of these ontologies is defined via model-theoretic semantics, the

differences in meanings between the ontologies are reflected in differences between the

sets of models of the two ontologies.
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3. Analysis of the semantic interoperability of two ontologies should take into account

both the connections between the models of two ontologies and the results of queries

put to these two ontologies. These connections relate the semantics of the ontologies

(i.e., the models of the ontologies) to the implicit logicalconsequences specified by

the ontologies, which can be probed by evaluating particular queries in the ontologies.

That is, whether or not two ontologies interoperate semantically is a function of the

relationship between their models and their logical consequences (statements satisfied

by all models of a given ontology), and these relationships can be probed via queries.

Assessment of semantic interoperability of geospatial ontologies in this thesis is therefore

based on:

1. two similar (but not identical) geospatial ontologies that deal with the same domain

using the same language to describe this domain, but differing in the semantics of the

spatial relation symbols used to describe this domain;

2. the models of these ontologies, because the semantics of the spatial relations in these

ontologies are defined via their models; and

3. the queries that can be put to the ontologies, for two reasons. First, ontologies are used

(at least in part) to answer queries. Second, the result of a query to an ontology depends

on the models of the ontology in the sense that a query evaluates to true if it is true in all

models of the ontology (Section 3.1).
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1.7 Research Question and Goal

1.7.1 Research Question

The research question addressed in this thesis is:

When two geospatial ontologies use the same language to describe the same domain, but

differ in the model-theoretic semantics of their primitivespatial-relation symbols, in what

sense and to what extent are the ontologies semantically interoperable?

Our focus on one specific kind of semantic heterogeneity (differences in the interpretation

of primitive spatial relation symbols) presupposes a largeamount of similarity between the

two ontologies. Section 4.1 explains exactly what is assumed to be common between the

ontologies.

Note that the terms ‘meaning’ and ‘semantics’ are used in this thesis in a very particular

way. The reader should understand that the meanings considered here are ‘internal’ to some

computer-based information system (Lipski, 1981), but notnecessarily internal to the minds

of the human beings who design and use these information systems.

1.7.2 Research Goal

The research goal is to create a method to assess the extent ofsemantic interoperability be-

tween two geospatial ontologies, based on the considerations given at the end of Section 1.6.

This research goal is achieved by:

1. defining six semantic compatibility conditions between ontologies (Chapter 3);

2. using the six compatibility conditions to specify, in terms of models and queries, under
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what conditions two geospatial ontologies are: (1) completely semantically interopera-

ble; (2) partially semantically interoperable; or (3) not at all semantically interoperable

(Chapter 3); and

3. developing (Chapter 4) and implementing (Chapter 5) an algorithmic and a heuristic

procedure that allow, under suitable assumptions and in certain cases, the calculation of

a unique level of semantic interoperability between two ontologies.

1.8 Intended Audience and Scope

1.8.1 Intended Audience

This thesis is intended for researchers, software developers, and users of geospatial ontolo-

gies of the kind that might soon be available on the Web. It is of potential interest to non-

commercial developers of spatial and terminological ontologies, as well as commercial spatial

database vendors. It is also of potential interest to computer scientists, knowledge engineers,

and database specialists. In particular, those researchers working in the areas of ontologies,

semantics, and semantic interoperability, and the Semantic Web can find in this thesis the clar-

ification of several fundamental notions dealing with semantic interoperability of ontologies.
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1.8.2 Scope

The scope of this thesis is limited as follows.

• This thesis does not consider the psychology behind the modeling of the semantics of

spatial relations. Instead, the point of departure for the analysis conducted here is the

existence of geospatial ontologies, processable by computers.

• This thesis does not consider, except as background information, the many different

ways there are to classify semantic heterogeneities in ontologies. Instead, the investiga-

tion is narrowed to focus on the ramifications of one kind of semantic heterogeneity.

• This thesis does not consider the semantics of traditionalGISs or other ontological se-

mantics that are not based on model-theoretic semantics.

• This thesis does not aim to create methods to align, integrate, or merge ontologies.

• This thesis does attempt to pursue the most abstract formulations (e.g., (Schorlemmer

and Kalfoglou, 2004; Gr̈uninger, 2004)) of the issues investigated here.

1.9 Results and Contributions

1.9.1 Results

1. A formal analysis of the semantic interoperability of geospatial ontologies based on

models and queries—a unique research contribution;

2. The creation of six semantic compatibility conditions between ontologies; each compat-

ibility condition is defined in terms of models and queries;
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3. Definitions, in terms of compatibility conditions, of fivespecific levels of semantic in-

teroperability of geospatial ontologies;

4. An algorithm for computing, given certain assumptions, the exact level of semantic

interoperability between two ontologies;

5. An method for computing, given certain other assumptions, the possible levels of se-

mantic interoperability between two geospatial ontologies; and

6. Implementations of these two algorithms using SEM (Zhangand Zhang, 1995) and

Perl. SEM is used as a black box to generate the models of each ontology, once these

ontologies are specified in the appropriate format (see Chapter 5.) Perl is then used on

the sets of models generated for the ontologies, to determine what relation (e.g., overlap,

contains) holds between the model classes of the ontologies.

1.9.2 Contributions

The chief research contribution of this thesis isthe novel analysis—in terms of models and

queries—of semantic interoperability.

Additional contributionsare:

• Conceptual clarity. By narrowing the focus to ontologies that use the same language and

symbols to specify constraints on a given geospatial domain, this thesis establishes with

detailed examples a conceptual foundation for the analysisof semantic interoperability,

based on models and queries.
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• Foundation for further study. Taking advantage of the conceptual clarity achieved by

narrowing the focus to ontologies that use the same languageand symbols to specify

constraints on a given geospatial domain, this thesis positions researchers to undertake

additional analyses of semantic interoperability for cases where other aspects of the

formal setup are different, e.g., the signatures of the ontologies differ, or the logical

languages themselves are different.

The research contributions give researchers and users of geospatial ontologies sufficient

background to be able to:

• understand the role of models and queries in the definition of semantic interoperability;

• appreciate the issues involved in formalizing intuitive notions like ‘semantic interoper-

ability’;

• scrutinize claims of semantic interoperability of geospatial ontologies;

• define ‘semantic interoperability’ in a way that is appropriate for formal geospatial on-

tologies (i.e., via models and queries);

• create a definition of semantic interoperability that actually takes into account the dif-

ferent (model-theoretic) semantics of spatial relations;and

• understand the relationships between different levels ofsemantic interoperability and

the patterns of possible query results.
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1.10 Summary

People sometimes mean different things when they use the same words to describe what ap-

pears to be the same objective reality. Such differences in meaning can arise if people differ in

the implicit meanings they assign to certain words. If people can codify in a formal ontology

their explicit conceptualizations then the implicit differences in meanings of their conceptual-

ization, and the ramifications of these differences, can be analyzed computationally.

This thesis explores differences in the meaning of basic spatial relations (e.g., ‘in’ and

‘through’) as these differences are specified in geospatialontologies. It considers two similar

geospatial ontologies that differ in the semantics of theseprimitive spatial relation symbols

(e.g.,in or through) and asks to what extent the two ontologies are ‘semantically interopera-

ble.’

To assess to what extent two such geospatial ontologies are semantically interoperable,

this thesis focuses on the models of the ontologies and on thequeries that can be put to the

ontologies. It develops the notion of ‘compatibility conditions’ in terms of models and queries

and uses these compatibility conditions to define differentlevels of semantic interoperability

between two ontologies. It develops an algorithm and a heuristic for determining the level

of semantic interoperability between sample geospatial ontologies. Finally, it connects the

results of this thesis to possible jumping-off points for further research.

Chapter 1 has shown that even when two ontologies are identical in everything but the

model-theoretic semantics of their spatial-relation symbols, the question of in what sense, or

to what extent they are semantically interoperable is stillan open one. This thesis answers that

question (Chapters 3-5, Section 6.2).
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1.11 Organization of Remaining Chapters

Chapter 2 reviews related work and provides the technical foundations needed to understand

the subsequent analyses in Chapter 3. Chapter 3 defines semantic heterogeneity of geospatial

ontologies in terms of models, and defines six compatibilityconditions that characterize the

semantic interoperability between ontologies. Chapter 3 then uses these compatibility condi-

tions to specify under what conditions two geospatial ontologies are completely semantically

interoperable, partially semantically interoperable, ornot at all semantically interoperable.

Chapter 4 develops procedures for determining the level or levels of semantic interoperability

between two ontologies. Chapter 5 implements these procedures, and Chapter 6 provides a

summary, conclusions, and directions for future work.
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Chapter 2

PERSPECTIVES ON SEMANTIC

INTEROPERABILITY

Chapter 1 framed the research question of this thesis: When twogeospatial ontologies use

the same language to describe the same domain, but differ in the model-theoretic semantics of

their spatial-relation symbols, in what sense and to what extent are the ontologies semantically

interoperable?

In framing this research question, Chapter 1

• explored a particular kind of semantic heterogeneity between formal geospatial ontolo-

gies, namely, that of using the same spatial-relation symbol to mean different things,

where meaning comprises explicit data and axioms, as well astheir logical conse-

quences;

• showed how this kind of semantic heterogeneity is reflectedin themodelsof the ontolo-

gies; and
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• argued that to answer the research question appropriatelyone needs to consider both the

models of the ontologies and the queries posed to the ontologies.

Chapter 2 fills out this framework by providing the definitionsand context needed for the

approach used in Chapters 3-5 to answer the research question. Section 2.1 discusses the

modern notion ofontologiesand their uses in helping come to terms with different semantic

conceptualizations of the ‘same’ objective reality. Section 2.2 discusses the nature and role

of ontologies in GIScience (i.e., geospatial ontologies).Section 2.3 focuses on how geospa-

tial ontologies are used to model geospatial relations. Section 2.4 zeros in on the particular

semantic difference (heterogeneity) treated in this thesis: the case of two ontologies that have

different semantics for the same primitive spatial-relation symbols. The chapter is rounded

out by two additional context-setting sections: Section 2.5, which discusses relevant related

approaches to semantic interoperability, and Section 2.6,which discusses to what extent the

spatial nature of the conceptual domain studied here is ‘special’ for the treatment of semantic

interoperability given in this thesis.

2.1 Ontologies

The word ‘ontology’ has acquired a distinctive meaning in the last decade or so, especially

in the research literature in computer and information science (Guarino, 1998; Smith and

Welty, 2001) The word ‘ontology,’ rather than referring just to the philosophical discipline

that studies the categories of things that exist (Casati et al., 1998; Sowa, 2000), has come to

refer to a certain type of artifact written in natural language or in a particular formal notation,

usually with the intent that it be processable by computers (Guarino, 1998).
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One of the most commonly quoted definitions of an ontology is that it is “an explicit

specification of a conceptualization” (Gruber, 1993, pg. 199).

The unifying ideas behind this definition and the many other similar ones used in computer

and information science are:

• an ontology describes what some person or group of people thinks are essential cate-

gories, entities, features, properties, or relations in some domain of interest;

• an ontology does not exist solely in people’s heads; it can also be, and is most often used

as, a written artifact;

• an ontology is usually created so that it can be manipulatedby computers, with the goal

that implicit information in the ontology can be extracted and used; and

• an ontology may or may not use axioms to describe a particular domain of interest.

The philosophical discipline of ontology deals with categories of things that exist and rela-

tionships among these categories. Naturally, people will often disagree about these categories

and relationships. However, even when people agree on the fundamental categories and rela-

tionships under consideration, and when they specify thesecategories and relationships in the

same language (natural or artificial), they can still misunderstand each other.

One widely recognized way that people misunderstand each other is by using different

terms to denote the same modeling constructs. For instance,depending on the modeling lan-

guage used, a ‘category’ might be termed a ‘kind,’ a ‘class,’a ‘concept,’ or a ‘unary relation.’

Similarly, a relationship between categories might be termed a ‘(binary) relation,’ a ‘slot,’ a

‘role,’ or a ‘property’ (Gomez-Perez et al., 2004, pg. 203).A useful discussion of how differ-

ent terms are used to refer to the same notion is given in Lassila and McGuinness (2001). This
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thesis uses a common language and modeling constructs, so that when it examines the seman-

tic interoperability between two ontologies, this extra source of variability (different ways of

modeling ontologies) does not cloud the issue.

A second widely recognized way that people can misunderstand each other even when they

agree on the basic categories and relationships under consideration is by using the same words

to mean different things. This thesis studies this second kind of potential misunderstanding,

which the development and use of ontologies was largely designed to overcome.

Modeling constructs such as ‘class’ or ‘role,’can be considered to be the tools people use

to build ontologies (Beard-Tisdale, 2006). These constructs shouldbe distinguished from

the relationsdescribed byontologies that use these tools. For example, a binary relation

(sometimes termed a ‘slot,’ a ‘role,’ or a ‘property’) is an ontological modeling tool (one

could call it a modeling primitive) that can be used in a givenontology to model any number

of domain-specific relations that happen to be binary. In thespatial domain, for example,

a binary relation can be used to model a variety of common spatial relations (e.g., ‘meets’

or ‘overlaps’, or ‘in’ or ‘through’). A ternary relation canbe used to model other spatial

relations, like ‘between’ (as in ‘A is between B and C’). If an ontology does not have an

appropriate modeling tool (e.g., a binary relation), then it will not be able to model certain

domain-specific notions.

Since ontologies deal with categories of things that exist and the relationships between

these categories, most if not all ontology modeling languages have the ability to model classes,

the subclass relation, and an instance-of-a-class. As a result, a main use of ontologies is to

organize knowledge hierarchically and to determine whether a given class is a subclass of

another class, or whether a given entity is an instance of a particular class (Sowa, 2000).
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In the last few years some relatively sophisticated languages have been used to model

ontologies, with the result that instead of serving as simple classification tools, ontologies can

now specify information about the attributes of classes andinstances, as well as cardinality

constraints on members of the domain (Gomez-Perez et al., 2004). According to Gomez-

Perez et al. (2004, pg. 203), ontology languages usually allow the expression of: (1)concepts,

(2) attributes, which can be divided into instance attributes and class attributes, (3)taxonomies

of concepts, (4)relations, (5) axioms, and sometimes (6)functions. (The ontology language

L used in this thesis (Chapter 3) allows the expression of concepts, relations, and axioms.)

Ontologies exist across a range of complexity (Lassila and McGuinness, 2001) from tax-

onomies that allow the modeling of class-subclass relations to knowledge bases that allow

certain kinds of inferences (Guarino and Giaretta, 1995). Correspondingly, ontology model-

ing languages range in complexity with respect to the modeling constructs they can specify

(Gomez-Perez et al., 2004). On the expressive end of the range are languages that can spec-

ify a wider breadth of explicit and implicit knowledge of a domain and can use automated

reasoning tools to obtain inferences (Obrst, 2003).

That is, ontologies can allow more kinds of inferences aboutthe classes and elements in

a domain than simply whether classA is a subclass of classB, or whetherx is an instance

of a classC. Exactly which inferences can be made for a given ontology isa function of

the logical language used to specify the constructs of the ontology and the semantics used to

assign a formal meaning to these constructs.

The languages used to specify axiomatic ontologies typically have a model-theoretic se-

mantics that gives the modeling primitives and language statements a well-defined semantics.

These languages also permit: (1) relatively complex constraints on the categories and entities
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in a given domain to be specified via axioms; (2) inferences tobe carried out via automated

reasoning; and (3) the specification of queries that can go beyond questions of class-subclass or

class-instance relationships. These three capabilities are characteristic of ‘knowledge bases.’

Thus, the line is blurred between ontologies as classification aides and ontologies as knowl-

edge bases that can support more complex kinds of constraints and queries. For a further

discussion of the relationship between ontologies and knowledge bases, see Guarino and Gia-

retta (1995).

2.2 Ontologies in GIScience: Geospatial Ontologies

The use of ontologies in GIScience (Casati et al., 1998; Smithand Mark, 1998; Mark et al.,

1999; Fonseca, 2000) has come about in recent years to deal with certain problems of interop-

erability (Sondheim et al., 1999; Egenhofer, 1999; Goodchild et al., 1999) having to do with

the semantics (Sheth, 1999; Egenhofer, 2003) of spatial data (Shekar and Chawla, 2002).

The focus on ontologies to help solve interoperability problems in GIScience has its roots

in research efforts involving interoperating Geographic Information Systems (GISs) (Good-

child et al., 1999). According to one researcher, the goal ofinteroperating GISs is “to achieve

an automated process that will allow us to use data and software services across the bound-

aries that their collectors and designers envisioned” (Egenhofer, 1999). Egenhofer goes on

to note that the difficulties “are primarily in the semanticsof the diverse applications,” that

“[c]ompatible semantics of geospatial information are a key characteristics of interoperating

GISs,” and that “powerful methods to capture and describe geospatial semantics are critical”

(Egenhofer, 1999, pg. 1).
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One recent article summarizes: “The primary purpose of using ontology in GIScience is to

define a common vocabulary that will allow inter-operability [sic] and minimize any problems

with data integration, both from different systems and between users and systems” (Agarwal,

2005, pg. 508). Yet, as the examples in Chapters 1, 3, and 5 show, even when people use a

common vocabulary, they can still fail to interoperate semantically.

Ontologies have been identified as a research area by the University Consortium of Geo-

graphic Information Science (Egenhofer, 2004), and by several governmental agencies (e.g.,

the National Geospatial Intelligence Agency (NGA) and the USGS in the United States, and

the UK Ordnance Survey in the UK).

Yet, in spite of this recent research activity in GIScience on ontologies and interoperability,

the notion of semantic interoperability is avowedly “hard to pin down,” because it is “some-

what redundant, there is no accepted formal definition, there are no benchmarks or commonly

agreed challenges, the role of humans in the loop is unclear,and the acronym inflation around

the semantic web obscures rather than highlights the deeperresearch issues” (Kuhn, 2005a,

pages. 1-2).

Further, as of August, 2006 NGA has no standard geospatial ontology with which to inter-

operate semantically (Adams, 2006).

That dealing with semantic interoperability of geospatialontologies should prove to be

challenging is not surprising. There are many different ways to understand, and potentially

resolve, various kinds of semantic heterogeneity that can stand in the way of semantic interop-

erability. Following is a discussion of the approaches to semantic interoperability in GIScience

most relevant to the approach taken in this thesis.
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Bishr (1998) distinguishes two kinds of semantic heterogeneity: cognitive heterogeneity,

which is due to differences in the mental models being represented in information systems, and

naming heterogeneity, which occurs when different words refer to the same real-world entity.

Bishr creates a framework for comparison of the interoperability of Geographic Information

Systems that consists of different levels, ranging from thelowest level of network protocols

to the highest levels of data models and application semantics (Bishr, 1998, pg. 300). He then

proceeds to analyze the problems of heterogeneity and interoperability at the levels of data

models and application semantics, and he offers some solutions for these problems.

The issue of resolving semantic heterogeneities in ontologies for geographic information

processing has also been discussed in Visser et al. (2002). The authors use “the termsemantic

integrationor semantic translationto denote the resolution of semantic conflicts that disable

a one-to-one mapping between concepts or terms” (Visser et al., 2002, pg. 7). The authors’

approach considers contextual information related to the concepts or classes to which entities

belong, and they seek to explicate this context by defining the necessary and sufficient condi-

tions for an entity to belong to a given class. A further consideration in their approach is “how

and what kind of context knowledge has to be considered in thetranslation process because

the choice of the representation has mayor[sic] impacts on the classification method to choose

and the expected results” Visser et al. (2002, pg. 8).

Hakimpour and Timpf (2002) also deal with semantic interoperability of geospatial ontolo-

gies. Their approach discusses how to merge ontologies based on the semantic similarity of

intensional definitions ofterms. Their analysis of semantic similarity in terms of set-theoretic

relations (e.g., overlap, contains) appears somewhat similar to our analysis of the 5 model-

class relations introduced in Chapter 3.
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The classification of semantic heterogeneity by Bishr is not applicable to this thesis, for

three reasons. First, although it could be argued that the heterogeneity exhibited in the sample

ontologiesO1 andO2 from Chapter 1 (Figures 1.8 and 1.9) is an example of Bishr’s cognitive

heterogeneity, Bishr’s approach offers no way to assess the level of semantic interoperabil-

ity of systems that exhibit such kind of heterogeneities. This thesis, by contrast, does offer

a framework (Chapter 3) for assessing the level of semantic interoperability between ontolo-

gies. Second, the kind of semantic heterogeneity exhibitedby O1 andO2 is clearly not Bishr’s

‘naming heterogeneity,’ where different words refer to thesame real-world entity. Rather, this

thesis considers the situation in which thesameword hasdifferentmeanings. Third, Bishr’s

classification of semantic heterogeneity is connected to the different levels of abstraction peo-

ple use to model the conceptual and symbolic worlds. The focus in this thesis, by contrast,

is on differences in the actual specifications of ontologies(and their models), rather than on

issues relating to how people conceptualize their worlds.

Visser et al. (2002) do deal with differences of semantics inthe framework they use; how-

ever, their framework is not easily comparable to our approach, for three reasons. First, their

approach deals with mappings between ontologies that matchconcepts or terms, whereas our

approach does not involve any mappings between ontologies.Second, under their approach it

is not clear which components of different ontologies (e.g., languages, vocabulary, semantics)

they consider to be the same for two given ontologies and which they consider to be different.

In our approach, on the other hand, these similarities and differences are made explicit (see

Figure 2.2 and Section 4.1). Third, their notions of semantic integration and semantic trans-

lation are not based, or at least not obviously based, on the models of the ontologies, whereas

this thesis uses models directly to define and calculate levels of semantic interoperability.
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Although Hakimpour and Timpf (2002) deal with semantic interoperability of geospatial

ontologies and although they use an approach based on set-theoretic relations like overlap and

contains, it is not clear that models and model classes are the basis of their analysis.

2.3 Semantics of Spatial Relations

Within the realm of spatial data, researchers have paid particular attention to representing

and reasoning with spatial relations (e.g., Cohn and Hazarika (2001)). Approaches to spatial

relations have fallen into two major areas: topological representations and algebraic manip-

ulations (e.g., Egenhofer and Franzosa (1991)), and logical treatments (e.g., Randell et al.

(1992)). Cohn and Hazarika (2001) provide a recent overview of these broad areas of qualita-

tive spatial reasoning, as well as references to additionalwork by Egenhofer and Cohn.

Common to both these veins of research are the two fundamentalideas ofconstraintsand

consequences. For instance, when using topological representations andalgebraic manipu-

lations to represent and reason about spatial relations, researchers make their treatments of

spatial relations precise byconstraining, via a topological specification, ‘what it means’ for

one spatial region to becontainedin another. Then, theconsequencesof these constraints

are worked out via algebraic manipulations, so that, for example, if region A is contained by

region B and region B is contained by region C, then region A is also contained by region C.
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The ideas of constraints and consequences also apply to the kinds of qualitative reasoning

in the second research vein mentioned above (e.g., Renz (2002)). In this approach, logical for-

mulations are provided toconstrain‘what it means’ for, say, one region to be a non-connected

proper part of another region. Then, the machinery of logical inference is brought to bear to

determine theconsequencesof the given constraints.

This thesis similarly treats the semantics of spatial relations from within the framework of

‘constraints and consequences.’ Under this view, theconstraintson the semantics of spatial

relations are given by the data tuples and axioms in an ontology. For example, if one data tuple

of one ontology represents the claim that ‘the ball is in the pool,’ this data tuple effectively

constrainsthe meaning of the spatial relationin in such a way that (for this ontology) the

ball is indeedin the pool. (In subsequent examples in Chapter 3, we shall see that axioms

of an ontology also constrain the semantics of the spatial relations.) As for theconsequences

associated with the spatial relations, these, too, must be considered ‘part of’ their meaning.

For instance, the discussion in Chapter 1 about whether the ball is in the yard dealt with the

(implicit) consequences of what itmeansto say that the ball is in the pool and the pool is in

the yard.

Following is a brief overview of the formal apparatus used inthis thesis to treat the con-

straints and consequences that together determine the semantics of spatial relations.

For the purposes of this thesis, ageospatial ontologyis an axiomatized ontology of the

geospatial domain. A geospatial ontology differs from a conventional Geographic Information

System (GIS) in four fundamental ways.

1. A conventional GIS is a software system that contains dataabout geographic entities

and relations that are tied to one or more coordinate systems(Rigaux et al., 2002),
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whereas a geospatial ontology is a collection of axioms and geospatial data, which is

often assumed to be supported by querying and inferencing software, but whose entities

and relations are not necessarily tied to a particular coordinate system. (The geospatial

ontologies in this thesis do not use a coordinate system.)

2. Even when a conventional GIS does use constraints on geographic entities and relations,

these constraints are not subsequently interpreted in models (Section 3.1), whereas in a

geospatial ontology they are.

3. A geospatial ontology (of the kind dealt with in this thesis) uses a logical language to

specify its data and axioms.

4. A geospatial ontology can use an automated reasoner to carry out inferences from its

axioms and data.

By the definition above, the sample ontologies in Chapter 1 are geospatial ontologies. The

language they use is a subset of the language of first-order logic. Their axioms are expressed

via two kinds of vocabulary: a logical vocabulary, and a non-logical vocabulary. The logical

vocabulary consists of a finite set of variables (e.g.,x, y, z, etc.), logical operators∨, ∧, and

¬, the universal quantifier (∀) (‘for all’), and the existential quantifier (∃) (‘there exists’).

The non-logical vocabulary consists of a finite set of constant symbols and a finite set of

relation symbols. In the examples of Chapter 1, the constant symbols areRoute 2, Orono,

Bangor, andMaine that denote Route 2, Orono, Bangor, and Maine, respectively. The sole

relation symbol in the non-logical vocabulary isin. In general, a nonlogical vocabulary can

also include function symbols, although for the ontologiesin this thesis no function symbols
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are used. (See Chapter 3 for a more detailed discussion of the logical language used in the

analyses of this thesis.)

The language used in the examples of Chapter 1 is capable of expressing certain claims

about the four geographic entities under consideration: Route 2, Orono, Bangor, and Maine.

In particular, that language allows us to express various claims about, or constraints on, how

those entities are related to each other via the spatial relation ‘in.’ These claims are expressed

by axioms written in the language, as well as by the data tuples that specify (the extension of)

the relationin (Figures 1.8 and 1.9).

The geospatial nature of the ontologies comes from the fact that the entities in the ontology

are geographic entities, and the relation in the ontology isthe spatial relationin. This spatial

relation can be axiomatized to have various properties, such as the antisymmetry of ‘in’: ‘If X

is in Y, and Y is in X, then X equals Y’.

Two people who create ontologies specifying spatial relations can legitimately differ on

which properties that they believe these spatial relationsshould satisfy. These differences in

properties are reflected in the different axioms and data tuples that the two people or groups

use to create their ontologies, and the differences in data and axioms are further reflected in

the (possibly) differentsemanticsof the two ontologies, which are specified in the (possibly)

different modelsof the ontologies. Thus, the ‘semantic consequences’ of thelegitimate dif-

ferences that people may have about the properties of spatial relations can be explained by

examining the models of the ontologies. One such ‘semantic consequence’ is whether or not

the resulting ontologies can interoperate semantically, in some specified sense.

This thesis is not concerned with finding a ‘correct’ characterization of in or any other

spatial relations. Rather, given that two people can legitimately create different ontologies for
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spatial relations, it investigates to what extent these ontologies could be semantically interop-

erable (in the precise sense specified in Chapter 3).

2.4 Our Target: Different Semantics of Primitives

The treatment of semantic interoperability most directly relevant to this thesis is that of Klein

(2001). Klein’s classification scheme identifies a specific semantic heterogeneity dealt with

in this thesis: two ontologies differing (only) in their semantics of primitives (Figure 2.1).

Klein does not, however, discuss how to ascertain or computeany degree or level of semantic

interoperability between two such ontologies.

The kind of semantic heterogeneity dealt with in this thesis, where the same spatial-relation

symbol used in two ontologies has a different formal semantics, appears to be exactly what

Klein describes as a language-level mismatch that deals with different semantics of primi-

tives. In describing this mismatch Klein says: “Despite thefact that sometimes the same name

is used for a language construct in two languages, the semantics may differ; e.g., there are

several interpretations ofA equalTo B.” It is possible that Klein may have implicitly con-

sidered the case in which the two languages are different; inthis thesis, however, we explicitly

state that the languages themselves (and the symbols used inthem) are the same for the two

ontologies; only the model-theoretic semantics of the spatial relation symbols differs.

Klein begins by distinguishing two broad types of mismatches and several subtypes within

each type (Figure 2.1).

His two broad types of mismatch arelanguage-level mismatchesandontology-level mis-

matches. At the language level, the mismatches are “between themechanismsto define
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Figure 2.1: Types of ontology mismatches (from Klein, 2001)

classes, relations and so on.” These mismatches are at “the level of the language primitives

that are used to specify an ontology.” At the ontology level,the mismatches are differences

in the way the domain is modeled and occur when two or more ontologies describe “(partly)

overlapping domains” (Klein, 2001).

Of course, Klein’s classification is in some sense arbitrary. What makes his classification

relevant to and useful for this thesis, though, is that thereis a strong correspondence between

his categories and the framing of the research question in Chapter 1 (Section 1.7). We do not

repeat Klein’s explanations of his categories and subcategories, but focus on one particular

category of mismatch that he identifies: — a difference in thesemantics of primitives, which

in this thesis translates to a difference in the semantics ofprimitive spatial relation symbols

used to model binary spatial relations.

In this thesis, a ‘primitive spatial relation symbol’ is a text string (e.g., ‘in,’ ‘on,’ ‘through,’

‘between,’ ‘meets,’ ‘overlaps,’ ‘connected to,’ etc.) used as a predicate symbol in the logical
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language used to specify the ontology. This symbol is ‘primitive’ in the following senses.

First, it is treated as a single symbolic unit (a predicate symbol) in the logical language. Sec-

ond, as a single unit, it is intended to capture the meaning ofa basic (i.e., a primitive) relation.

It ‘captures’ this meaning by means of its semantic specification in the ontology. This seman-

tic specification is achieved through the conjunction of data and axioms in which the symbol

plays some role. Third, the axioms that help specify the semantics of this symbol do not

contain any other spatial relation symbols. Thus, by ‘semantics of a primitive spatial relation

symbol’ we mean the semantics (i.e., the models) that resultfrom the use of this symbol in the

data and axioms of the ontology.

In describing this form of semantic heterogeneity, Klein says: “Despite the fact that some-

times the same name is used for a language construct in two languages, the semantics may

differ; e.g., there are several interpretations ofA equalTo B.”

Figure 2.3 illustrates how the general framework of this thesis (depicted in Figure 2.2)

corresponds to Klein’s framework (Figure 2.1).

O1 O2

{models of O1} {models of O2}=

same 
domains,

languages,
symbols,

inference rules

different semantics

Figure 2.2: The framework assumed in this thesis

To that the ontologies use the same language is essentially to say that there are no differ-

ences in what Klein calls the language-level logical representation and language expressivity.
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Figure 2.3: Comparison of the classification used in this thesis with Klein’s

Similarly, when we say that the ontologies have the same domain, we are essentially saying

that there are no differences in what Klein calls the ontology-level category of conceptualiza-

tion, which has the sublevels of scope and model coverage.

Further, when we say that the ontologiesdo differ in their semantics, we are saying that

there are differences in the language level of what Klein calls the semantics of primitives,

and which we take to mean different model-theoretic semantics for the primitives. We mean

by ‘different model-theoretic semantics for the primitives’ the different model sets that result

from the different ways two ontologies specify constraints(via axioms and data tuples) on the

primitive spatial-relation symbols in the ontologies.

Three points should be made here: (1) some subtleties were glossed over in making the

correspondences above; and (2) one of Klein’s subcategories of mismatch cannot quite be

squeezed into or out of our framework: the paradigm mismatch. From what Klein says,
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paradigm mismatches would seem to deal with differences in representational primitives for a

given domain (such as points versus regions for the spatial domains, or points versus intervals

for the temporal domain). Although we assume in this thesis that the ontologies do not differ in

this regard, it is hard to state this using just our categories of domains, languages, symbols, and

inference rules (Figure 2.2); and (3) Klein’s classification (rightly, we would argue) does not

treat possible differences in inference rules, since they are beyond the scope of his concerns.

Finally, although there can clearly be many different ways to classify semantic hetero-

geneities in ontologies, we are not concerned in this thesiswith comparing the strengths and

weaknesses of different classifications. Rather, the primary purpose of this section has been

to make clear—by situating the thesis in the context of a similar framework—which pieces

of our framework are assumed to be the same across ontologiesand which are assumed to be

different.

2.5 Semantic Interoperability: Other Views

The phrase ‘semantic interoperability’ does not mean the same thing to everyone across differ-

ent communities. Even within the same community, the meaning of this term can vary widely.

Fortunately, though, researchers use a similar approach inframing their discussions of seman-

tic heterogeneity and semantic interoperability. After describing this approach, we provide a

context for the above discussions of semantic interoperability in GIScience by presenting an

overview of related work on semantic interoperability in fields other than GIScience.
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2.5.1 A Common Approach

In framing their discussion of semantic heterogeneity and semantic interoperability, researchers

typically do the following.

1. They narrow the scope of issues under consideration. In GIScience, for instance, one

might limit one’s scope to models of the geographical world that are based on fields,

or to models that are based on objects. (Note: the word ‘model’ is used here and in

the next two paragraphs in a general sense; not in the specificsense of model-theoretic

semantics.)

2. They create models within that scope that are somehow comparable. So, they might

create a field-based model and an object-based model for a given part of the geospatial

world.

3. They identify a certain kind of semantic heterogeneity (e.g., differences in meaning that

result from field-based versus object-base models of the “same” geographical reality).

4. They specify a desired kind of semantic interoperabilityand then try to discover to what

extent the ontologies are already semantically interoperable in order to manipulate the

ontologies, or force them to be semantically interoperablein a certain way. For exam-

ple, a researcher might define the field-based and object-based models to be completely

semantically interoperable if there is a way of converting data, queries, and query results

from the field-based model to “equivalent” data, queries, and query results in the object-

based model, and vice versa. Then, the researcher might develop either an algorithm
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that ascertains whether the two models are already completely semantically interopera-

ble, or an algorithm that operates on the two models and forces them to be completely

semantically interoperable.

The first two of these steps are often taken jointly, by focusing on particular problems of

semantic heterogeneity that arise when different information systems handle meanings differ-

ently.

There are many ways in which ontologies can be, in a broad sense, semantically het-

erogeneous. Among these are: (1) whether they are general or“upper-level” ontologies or

lower-level, domain-specific ontologies; (2) whether theyconsider the most elementary com-

ponents to be the same kinds of entity (e.g., points versus regions in ontologies of space); (3)

whether they treat the same domains, (4) whether they treat agiven domain at the same level

of granularity; (5) whether they use the same ontology language to model their domain(s),

and so on. Under a broad interpretation of the word ‘semantics,’ an ontology’s semantics is

affected by all of the above choices.

One can begin to understand repercussions of these choices by exploring some of the

treatments and classifications of semantic heterogeneity that have been proposed in various

related areas: databases, GIScience, and information/computer sciences.

2.5.2 Database Interoperability

In 1990, Sheth and Larson acknowledged that the problem of semantic heterogeneity was

“poorly understood” and that there was “not even an agreement regarding a clear definition

of the problem” (Sheth and Larson, 1990, pg. 187). Since then, some progress has been

made in identifying certain types of semantic heterogeneity, in specifying the desired kind of
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semantic interoperability, and in manipulating databasesto achieve certain degrees of semantic

interoperability. Yet significant problems remain.

Representative Approach: Merging Schemas. Substantial progress on treating semantic

heterogeneities has been made in the area of database schemas, which specify the vocabulary

and structures used to describe a given domain. Research has shown that certain semantic

heterogeneities among databases that use different schemas can be resolved by matching the

compatible components of their schemas and then integrating these components into a global

schema (Rahm and Bernstein, 2001; Hakimpour and Geppert, 2001, 2002).

Because a database schema deals with vocabulary for talking about a given domain, the

schema has a direct effect on how the database deals with meanings. To the extent that prob-

lems with schema heterogeneities are overcome, one can say that the databases have been

made more semantically interoperable. But, although the kind of interoperability achieved at

the schema level does enable users to employ a common vocabulary to ask and get answers to

questions, it suffers from several shortcomings.

First, simply because two databases have had their schemas merged or mediated and so can

be queried with the same vocabulary, does not mean that they are semantically interoperable,

in the sense that theirmeaningsare now compatible with each other. To suppose so is akin

to supposing that because two people speak the same language, they therefore mean the same

things by the words they use.

Second, semantic interoperability at a schema level is justone of several kinds of semantic

interoperability that merit investigation.

Third, this kind of interoperability is not complete in the sense that it is not generally pos-

sible to automatically determine “all matches between two schemas, primarily because most
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schemas have some semantics that affects the matching criteria but is not formally expressed

or even documented” (Rahm and Bernstein, 2001, pg. 337).

Fourth, resolving schema heterogeneities sheds no light onhow query results depend on

the different semantics. That is, even if queries can now beposedusing a common vocabulary,

schema integration by itself says nothing about how theanswersto queries are related to the

semantics of the databases.

Fifth, the semantics of a conventional database is determined by the unique model of that

database, whereas the semantics of an ontology (which includes axioms as well as data tuples)

is determined by (most often) multiple models of the ontologies. In the case of ontologies,

therefore, more is needed to achieve semantic interoperability than just a common framework

for asking and answering queries. Specifically, what is needed is a detailed analysis of the

differences in semantics between two ontologies, an analysis that considers both the models

of each ontology and possible queries to them.

In 2006, all of these issues and more still confront researchers in semantic interoperability.

2.5.3 Information Science

The classification of ontology mismatches by Visser et al. (1998) and the framework for under-

standing differences between ontologies created by Klein (2001) demonstrate that, as recently

as a few years ago, researchers were still trying to clarify their understandings of the differ-

ent kinds of heterogeneity between ontologies. As Schorlemmer and Kalfoglou (2004) state,

“Semantic interoperability and semantic integration are much contested and fuzzy concepts,

which have been used over the past decade in a variety of contexts and works” (Schorlem-

mer and Kalfoglou, 2004, pg. 46). Recent work by the European Knowledgeweb project does

57



provide an “[i]ntegrated view and comparison of alignment semantics“ (Hitzler et al., 2006),

although at a level of abstraction that is higher than that used in this thesis.

Translational Approach to Semantic Interoperability. The notion of semantic interoper-

ability that underlies most discussions in the research literature can be gleaned from the fol-

lowing quotation from Heflin and Hendler (2000): “To achievesemantic interoperability, sys-

tems must be able to exchange data in such a way that the precise meaning of the data is readily

accessible and the data itself can be translated by any system into a form that it understands”

Heflin and Hendler (2000, pg. 111).

In this context, achieving semantic interoperability requires that data in one system be

translated to another system such that the translated meaning in the second system means “es-

sentially the same thing” as the original meaning does in thefirst system. Let us agree to call

this approach to semantic interoperability the “translational approach” to semantic interoper-

ability.

Grüninger and Kopena (2005) follow this approach. Their goal is to develop technol-

ogy supporting semantic integration: “two software systems can be semantically integrated

through a shared understanding of the terminology in their respective ontologies” Grüninger

and Kopena (2005, pg. 11).

The notion at play in the translational approaches to semantic interoperability appears to

be based on the notion of isomorphism: a one-to-one and onto (hence, invertible) mapping

of elements between two structures such that certain significant properties are preserved by

the mapping (and its inverse). A classic kind of isomorphismis that which occurs between

two graphs, where the mapping takes vertices of one graph into vertices of the second graph

in such a way that the adjacency relationship that exists among vertices of the first graph is
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“preserved” by the isomorphism: i.e., the mapped vertices in the second graph have the same

adjacency relationships as do the original vertices in the first graph. When two graphs are

isomorphic, they are “essentially the same graph” except for the labeling of their vertices.

The translational notion of semantic interoperability hasbenefits and drawbacks. One

benefit is that it offers a specific view of when two ontologiesare semantically interoperable:

namely, when there exists an isomorphism between them. Another benefit is thatif such an

isomorphism exists, then the ontologies are “fully” semantically interoperable, in the sense

that all relevant meaning is preserved by the isomorphism.

But along with these benefits come several drawbacks. First, there are quite a few ways to

define an isomorphism between ontologies, and one needs to becareful to specify exactly the

domain and range of the mapping, and exactly what propertiesremain preserved by this map-

ping. For instance, in trying to create an isomorphism between ontologies, should the mapping

be between elements in the ontologies’ signatures, or between the entities in the conceptual

domain? And, in either case, what is it that is preserved by the mapping (isomorphism)? Is it

the model classes of the ontologies?

Second, even if a careful and sensible specification could bemade of the mapping, and

even if it is the model classes of the ontologies that are preserved by the mapping, such a

mapping reveals only “perfect matches” or full semantic interoperability. It ignores finer-

grained issues, about the relationship between queries andthe models of the ontologies. These

finer-grained issues help explain certain relationships between model classes that govern query

results (Chapter 3).

Other Approaches to Semantic Interoperability. Other approaches to defining and achiev-

ing semantic interoperability that merit discussion include Euzenat (2001) and Masolo (2000).
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Euzenat (2001) takes what he calls a “principled approach” to semantic interoperability.

He defines semantic interoperability as “the faculty of interpreting knowledge imported from

other languages at the semantic level, i.e. to ascribe to each imported piece of knowledge the

correct interpretation or set of models” (Euzenat, 2001, pg. 19). His work considers “several

proposals for expressing semantic interoperability across different languages as it shall happen

on the semantic web” (Euzenat, 2001, pg.22). In this thesis,by contrast, we address the

more basic challenge of understanding semantic interoperability when ontologies use thesame

language but with different semantics for the primitive relation symbols.

The work by Masolo (2000) discusses set-theoretic relations between theories and mod-

els. In terms of theories, Masolo considers relations like “theoryA is a subset of theoryB”

(where the theory ofA in a languageL is the set of all the sentences inL that are provable

from the sentences inA). Masolo explicates his ideas using different kinds of order relations

(e.g., partial orders and dense linear orders) and different kinds of mereological relations (e.g.,

proper part of ). From a syntactical and proof-theoretic viewpoint, he shows how the set-

theoretic relation between theories can be determined in certain special cases based on which

axioms (e.g., reflexivity, transitivity) comprise the theory. So for instance, if theoryA contains

just the one axiom of reflexivity and theoryB contains the two axioms of reflexivity and tran-

sitivity, then theoryB will be a subset of theoryA. That is, anyL-formula that can be proved

in theoryB can also be proved in theoryA. Masolo uses models in two ways. First, he uses

the model-class relations of equals, subset, and superset to define, respectively, one theory

being equal to, a subtheory of, or a supertheory of another (Masolo, 2000, pg. 123). Second,

he uses models, along with a translation between the languages of two theories, to determine

when two theories are “translationally equivalent” (my term, not his) (Masolo, 2000, pg. 128).
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Yet, Masolo apparently does not take the further step of actually working with specific

models of two theories, in order to determine the relation between the sets of models, or to

comment on what might be the semantic interoperability between the two theories.

2.6 Is Spatial Special?

Is the treatment in this thesis of semantic interoperability of geospatial ontologies particularly

‘spatial’? The answer is ‘Yes and no,’ and it points to the generalizability of this research.

On the one hand, in the actual specifications of the differentconceptualizations of, for in-

stance, the spatial relation ‘in,’spatial is special, in that the spatial properties of the objects and

relations under consideration are exactly what the human modelers who construct the speci-

fications of their conceptualizations (i.e., their ontologies) are trying to understand, capture,

and exploit. The same would be the case for other spatial relations, be they ‘on,’ ‘through,’

‘connected to,’ ‘between,’ ‘meets,’ ‘inside,’ ‘contains,’ ‘part,’ or ‘complement’ (Stell, 2004),

etc. The same kind of specialness would also apply to other kinds of properties, which, though

not unique to spatial information, are often treated in spatial information science. Such prop-

erties include the granularity of the domain under question(Hobbs, 1985), or the vagueness,

uncertainty, or imprecision often found in descriptions ofgeospatial phenomena (Burrough

and Frank, 1996; Clementini and Di Felice, 1997).

The key principle is: whatever aspect of ‘spatial’ is being dealt with (e.g., granularity,

processes, spatiotemporal events, topology, orientation, geometry, coordinates, vagueness,

imprecision, uncertainty), if the concepts can be described in a logical language with a model-

theoretic semantics, then the analysis used in this thesis applies at least in principle.
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In some cases, the analysis might apply, but with appropriate limitations. Often, for ex-

ample, axioms in mathematical theories are very straightforward (e.g., group theory), and the

intuition of the implicitly specified models is somewhat clear. But when these axioms are

used to derive logical consequences — i.e., to decide whether the mathematical structures so

axiomatized have a given property — the arguments are made via proof theory rather than

model theory. That is, one proves logical consequences via syntax, not semantic, and relies on

the soundness of the logic involved, which says that if a result can proved syntactically, it is

true semantically. Thus, where the emphasis is on proofs by syntax, the analysis used in this

thesis is not particularly applicable.

In the special case of geospatial ontologies, though, if thedomains can reasonably be

assumed to be finite, the models can at least in principle be calculated, and the model classes

of two ontologies can then in principle be compared. Note that the model-theoretic approach

taken in this thesis depends for its computational results on the assumptions of finiteness of

the conceptual domain and the related assumption that the number of constant symbols is the

same as the number of entities in the conceptual domain. If these assumptions of finiteness

are relaxed, so that the conceptual domain and the size of thenon-logical vocabulary could be

infinite, theprinciplesof the model-theoretic analysis in this thesis remain unchanged, though

the computations may be intractable. Note also that with thefiniteness assumptions, a proof

calculus for the logical language used could determine,for a given query, whether that query

is a logical consequence of the ontology. If the assumptionsof finiteness were relaxed, so that

the language used is first-order logic with equality, the proof calculus would not in general be

able to decide whether a query is a logical consequence of an ontology.
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To consider the matter from another angle, suppose thatdimensionis a spatial property that

varies between two geospatial ontologies. For example, suppose that in ontology A everything

is being considered in two dimensions, whereas in ontology Beverything is considered in three

dimensions.

In this case, spatialis special, because the meanings of spatial relations like ’in’ and ’be-

tween’ can clearly be different, depending on whether one isconsidering a 2-dimensional or

a 3-dimensional world.

On the other hand, spatial isnot special in this thesis, because the analysis of semantic

interoperability presented here does not directly depend on any differences in the spatial prop-

erties (e.g., dimension, topology, metrics, coordinatization, or orientation) of the geographic

domain under consideration. Thus, even though the analysisof semantic interoperability in

this thesis focuses on different conceptualizations of spatial relations—as these conceptual-

izations are specified in the data and axioms of the ontologies and interpreted in the models of

the ontologies—themethodof the analysis is independent of the spatial propertiesper seof

the spatial relations under consideration.

That is, the fact that ‘in’ may capture certain topological or geometrical properties of spa-

tial objects does not affect the method of analysis, which exploits the abstract logical frame-

work of a formal ontology specified in a language that has a model-theoretic semantics. The

relevant aspect of geospatial ontologies, as far as the analysis goes, is that they are axiomatiz-

able in such a logical framework.

The method employed in this thesis is generalizable to other, non-spatial relations, such as

‘is the parent of’, or ‘is employed by,’ since the functioning of this method is tied to the formal

specification in terms of data tuples and axioms, rather thanto a given conceptual domain.
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It can be the case, from the appropriate point of view, that what appear to be fundamentally

spatial issues are seen to be simply particular domain-specific issues of a particular domain.

That is, the axiomatization of the dimensionally dependentproperties of the spatial relations

‘in’ and ‘through’ proceeds without special regard to the spatial domain. And the subsequent

analysis of semantics in terms of models, and of semantic interoperability in terms of model

classes (Chapter 3) would be the same for the entities and relations in the geospatial ontologies

as it would be for other entities and relations in say, an employee ontology.
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Chapter 3

SEMANTIC INTEROPERABILITY:

MODEL CLASSES AND QUERIES

Recall from Chapter 1 that the research question is: “When two geospatial ontologies use the

same language to describe the same domain, but differ in the model-theoretic semantics of

their primitive spatial-relation symbols, in what sense and to what extent are the ontologies

semantically interoperable?” Recall from Chapter 2 that although there is significant related

research on the issue of semantic interoperability, there has been no detailed analysis of the

semantic interoperability of two geospatial ontologies inwhich the semantics of the ontologies

is specified by model-theoretic semantics. This chapter presents such an analysis.

3.1 Language, Queries, and Truth Values

As mentioned in Chapters 1 and 2, in order to specify a formal geospatial ontology one needs

to specify both its axioms and its data. To specify its axioms, we use a logical language that
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is described in the next section. To specify its data, we use tuples like(Route2,Maine)

to indicate that for a particular relation in question, say the spatial relationin, Route 2 is in

Maine. These tuples will not be described further.

3.1.1 Logical Language

We use a languageL that is a subset of the language of first-order logic (Ebbinghaus et al.,

1994; Boolos et al., 2002). The vocabulary ofL consists of two parts, a logical vocabulary

and a non-logical vocabulary.

Thelogical vocabularyof L consists of a finite set of variables (e.g.,x, y, z, etc.), the logi-

cal operators∨ and∧ (corresponding roughly to natural-language ‘and’ and ‘or’, respectively),

the universal quantifier (∀) (read ‘for all’), and the existential quantifier (∃) (read ‘there ex-

ists’), the negation symbol¬, and the equality symbol =. Also included inL are the following

grouping symbols: the comma, and the left and right parentheses.

Thenon-logical vocabularyof L consists of a finite set of constant symbols and a finite set

of relation symbols (each with a finite arity). The non-logical vocabulary used in this thesis

is special in the sense that the constant symbols are not onlyfinite in number, but they equal

in number the number of entities in the ontology under consideration. Further, every constant

symbol in the non-logical vocabulary refers to a unique entity in the conceptual domain. This

restriction on the constant symbols is made for two reasons.First, one supposes that creators

of ontologies would use only as many names as there are entities under consideration. Sec-

ond, by limiting the number of constant symbols to be the sameas the number of entities in

the conceptual domain, the number of models of a given ontology is also limited; thus, the

computations comparing model classes of two ontologies canin some cases be tractable.
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We make the explicit assumptionthat the size of the logical domain is the same size as the

conceptual domain for each ontology. That is, the number of entities that can be considered

in the language (via its variables, constants, and relationsymbols) is the same as the number

of real-world entities (e.g., Bangor, Maine, Route 2, and Orono) that exist in the domain

under consideration. Thus, logical inferences are carriedout on a finite domain, and this finite

domain is assumed to be fixed in advance and to be the same across models within a given

ontology, as well as across models between different ontologies.

Thesyntactic rulesfor L are the same as those for first-order logic, and they allow us to

combine the symbols from the logical and non-logical vocabularies to create statements (well-

formed formulas with no free variables) that are used both todescribe the domain (as axioms

in the ontologies) and to form queries about the domain, which will be evaluated against the

ontologies.

Thesemanticsof L are specified via model-theoretic semantics (Manzano, 1999; Hodges,

1997; Farrugia, 2003), which uses models (here, essentially, just sets with relations defined on

them) and which assigns formal meanings to legitimate statements ofL by interpreting them

in set-theoretical structures (e.g., relations). See Section 3.1 for more details on the models of

some sample geospatial ontologies.

For a proof theoryassociated withL, one may assume any of several equivalent proof

theories of first-order logic. The proof theory ofL is not directly relevant to this thesis and

will not be dealt with in any detail. As will be mentioned in Chapter 6, for certain languages a

proof theory could be used to calculate whether or not a givenquery, or a set of given queries,

follows as a logical consequence of the statements in the ontology (Patel-Schneider, 2006).

But this capability falls short of the kind of analysis that isneeded to determine the level of
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semantic interoperability between two ontologies, since that determination is made, in part,

by considering whetherall queries that are a logical consequence of one ontology are also a

logical consequence of the other ontology. A proof theory for the language we use (with its

restriction of finiteness on its non-logical vocabulary) can determine, for any particular query

that we specify, whether that query is a logical consequenceof the data and axioms of an

ontology. But it cannot give us this determination for all queries that we might specify, which

is what we need for our analysis.

In the examples of Chapter 1 (Figures 1.8 and 1.9), the non-logical vocabulary consists of

four constant symbols (Route2, Orono, Bangor, andMaine, which denote the entities Route

2, Orono, Bangor, and Maine, respectively), and one binary spatial relation symbolin, which

denotes the the binary relation ‘in.’ The geospatial natureof these ontologies is reflected by

the facts that: (1) the entities are geographic entities; (2) the relation is a spatial relation; and

(3) the axioms using the spatial relation describe certain plausible spatial properties of the

relation ‘in.’

The constant symbols and relations symbols of the non-logical vocabulary together com-

prise thesignatureof an ontology. (Whenever two ontologies are compared in thisthesis,

they both have the same signature; thus differences in signature are eliminated as potential

sources of variability between the ontologies.) The signature, along with the syntactic rules

for L, allow us to express claims (in the form of queries, i.e., statements) about the spatial

configuration of these entities, e.g., which entities are inwhich other entities.

Certain of these claims are taken to beaxiomsof the ontologies, which are explicitly given

statements that are True in all models of the ontology (see Section 2.2.2).
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Other claims are put to the ontologies asqueries, which are then evaluated against the

models of the ontologies to see whether the claims are True inall, some, or no models of the

ontologies.

Since the symbols ofL and the queries formulated inL are interpreted via models,any

question about the meaning of the symbols of a given query is appropriately treated as a

question about the models of that ontology. Queries to these ontologies will be evaluated as

True or False according to whether the state of affairs they describe does or does not hold in

one or more models of the ontology. More details on queries and truth values are provided in

the next section.

3.1.2 Queries and Truth Values

As noted above, statements inL can serve not only as axioms, but also as queries. For example,

the statementin(Route2, Orono) can be used to ask whether, according to a given ontology,

Route 2 is in Orono.

In this thesis, the truth value of a queryQ evaluated against an ontologyO is determined by

the model-theoretic semantics ofL, which is essentially the same semantics used to determine

whether a statement is True in first-order logic with equality (Ebbinghaus et al., 1994; Boolos

et al., 2002), the only differences being due to the various assumptions of finiteness regarding

L (Section 2.2.1). Thus, the constant symbols have a fixed semantics, where each constant

symbol denotes the corresponding geographical object in the domain. The binary relation

symbols are interpreted as binary relations on this domain.Finally, any variables inQ (which

is finite and assumed to be the same size as the domain of quantification) receive variable as-

signments only from the elements in the geographic domain. The assumption of finiteness for
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the conceptual domain (the elements in the geographic domain) makes sense, because geospa-

tial ontologies are likely to deal with only a finite number ofgeospatial elements, assuming

that there is no practical need, for instance, to consider time and space as domains of infinite

size. The assumption that the logical domain (the domain over which variables can range) is

the same size as the conceptual domain is made to remove from consideration those models

containing elements that have no counterpart in the conceptual domain. Using this semantics,

Q is interpreted as referring to a particular state of affairsthat may or may not hold in one or

moremodelsof the ontology.

There are different ways to evaluate a query against an ontology, which depend among

other things on the number and kinds of truth values available. A conventional database, for

example, uses just the two truth values, True and False. So for instance, in theDB1 of Section

1.5.1, the queryin(Orono,Maine) (Is Orono in Maine?) would evaluate to True, since the

tuple (Orono,Maine) is in the database. On the other hand, the queryin(Route2, Orono)

(Is Route 2 in Orono?) would evaluate to False, since the tuple(Route2, Orono) is not in

the database. This example illustrates the conventional use of the closed-world assumption

(Reiter, 1978), which says that the truth value of a query thatcannot be verified to be True is

taken to be False. In this example, since the desired tuple isnot in the database, the value of

in(Route2, Orono) cannot be verified to be True; thus, it is assigned a truth value of False.

On the other hand, an ontology of the kind discussed in this thesis needs, in effect, three

truth values for queries, with a correspondingopen-world assumption (Baader and Nutt, 2003):

True, False, and a value that may be called ’Other.’ The reason is that the situation with on-

tologies is complicated by the fact that, unlike databases,they generally will have more than
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one model. For a query evaluated against an ontology, ‘True’will mean that the query is sat-

isfied by all models of the ontology. ‘False’ will mean that the query is satisfied by no models

of the ontology. And ‘Other’ will mean that the query evaluates to True in some models of

the ontology, and it evaluates to False in other models of theontology. In all these cases, we

are assuming that the ontology is consistent, i.e., that it has at least one model, so these three

“values” suffice.

The model-theoretic semantics described in this thesis is of the latter type, and the conven-

tions for naming the relevant truth values are as follows.

• EO(Q) = (T/F )S means the evaluation of queryQ in ontologyO yields a truth value

of True in some models ofO and a truth value ofFalse in other models ofO.

• EO(Q) = TA means the evaluation of queryQ in ontologyO yields a truth value ofTrue

in all models ofO.

• EO(Q) = FA means the evaluation of queryQ in ontologyO yields a truth value of

False in all models ofO.

3.2 Similar Ontologies with Different Semantics

Figures 3.1 and 3.2 show two similar geospatial ontologies,O1 andO2, that deal with the

spatial relationin. In these ontologies, the constant symbolsRoute2, Orono, Bangor, and

Maine, refer to the real-world entities Route 2, Orono, Bangor, and Maine, respectively. The

sole relation symbol isin.
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Each of these two ontologies has the same two axioms. The firstof these axioms says that

each entity is in itself, and the second says that for any two distinct entitiesx andy, if x is

in y, theny is not inx. The intended interpretation of the tuples are the obvious ones, e.g.,

(Route2,Maine) is intended to mean that Route 2 is in Maine.

In addition to using the same axioms,O1 andO2 have three data tuples in common. Thus

the two ontologies appear, at first glance, to be very similar, since they differ only in their

fourth data tuple. Yet in terms of their semantics they are considerably different. The differ-

ences in semantics are revealed by the differences in themodelsof each ontology.

Axioms for in Data Tuples forin
(Route2, Orono)

∀x, in(x, x) (Route2, Bangor)
∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Route2, Maine)

(Bangor, Maine)

Figure 3.1: OntologyO1 for in

Axioms for in Data Tuples forin
(Route2, Orono)

∀x, in(x, x) (Route2, Bangor)
∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Route2, Maine)

(Orono, Maine)

Figure 3.2: OntologyO2 for in

The models ofO1 andO2 are specified using the abbreviations of R2 forRoute2, O for

Orono, B for Bangor, and M forMaine. A modelfor one of these ontologies consists of (1)

the individual elements of the domain, and (2) the tuples (ordered pairs in this case) that are in

the binary relationin. As noted in Chapter 1, a convenient way to picture models is asgraphs

(e.g., Figure 3.3 and Figure 3.4).
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For a given ontology, any such collection that contains the data tuples and that does not

violate any of the constraints imposed by the axioms is amodelof that ontology. We recall

for the reader two key assumptions discussed in Chapter 2, Section 2.2.1. First, each ontology

considers the same finite number of real-world entities. Second, the number of available

referents for the constant symbols of the ontologies is the same as this finite number of real-

world entities.

Any model ofO1 must contain the following elements:

• R2, O, B, and M (because these are elements of the domain)

• (R2,R2), (O,O), (B,B), (M,M) (because of axiom 1)

• (R2,O), (R2,B), (R2, M), and (B,M) (because these are tuples in the data)

Further, no model ofO1 can contain any of the following tuples: (O,R2), (B,R2), (M,R2),

or (M,B), because axiom 2, along with the tuples in the data, eliminates these tuples as candi-

dates in any model.

Finally, a model ofO1 can contain: either (O,B) or (B,O) but not both; and either (M,O)

or (O,M) but not both.

The models ofO1 are essentially just a set with a single binary relation defined on them.

The 9 models ofO1 are depicted as graphs in Figure 3.3.

Similarly, any model ofO2 must contain the following elements:

• R2, O, B, and M (because these are elements of the domain)

• (R2,R2), (O,O), (B,B), (M,M) (because of axiom 1)

• (R2,O), (R2,B), (R2, M), and (O,M) (because these are tuples in the data)
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Figure 3.3: The 9 models of ontologyO1

Further, no model ofO2 can contain any of the following tuples: (O,R2), (B,R2), (M,R2),

or (M,O), because axiom 2, along with the tuples in the data, eliminates these tuples as candi-

dates in any model.

Finally, a model ofO2 can contain: either (O,B) or (B,O) but not both; and either (M,B)

or (B,M) but not both.

Thus, there are only 9 models ofO2, and they, too, can be depicted as graphs (Figure 3.4).

Themodel classof an ontologyO, MC(O), is the set of models of that ontology.

We can list the nine models in the model class ofO1 asMC(O1) = { M1O1
, M2O1

, M3O1
,

M4O1
, M5O1

, M6O1
, M7O1

M8O1
, M9O1

}.

Similarly, the model class ofO2 is MC(O2) = { M1O2
, M2O2

, M3O2
, M4O2

, M5O2
,

M6O2
, M7O2

M8O2
, M9O2

}.
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Figure 3.4: The 9 models of ontologyO2

The semantics of the ontology essentiallyis the model class of that ontology. In other

words, if you accept the axioms and data tuples of an ontology, then the semantics that you

are committing yourself to is revealed precisely in the model class of that ontology.

As Figures 3.3 and 3.4 demonstrate, an ontology can have morethan one model. Thus,

when you commit yourself to a given ontology and its semantics(as revealed through its col-

lection of models), you are generally committing yourself to more than one fixed possible way

that the world might be.

This fact helps explain why defining semantic interoperability of ontologies is so challeng-

ing. Since ontologies generally have multiple models, and there are different relationships that

could hold between their model classes, the analysis of semantic interoperability must consider

not only the multiple models in each model class but also the different possible relationships

between model classes. Different possible relationships between model classes form the basis

of our definition (Section 3.3) of different ‘levels’ of semantic interoperability.
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Because the specification of ontologiesO1 and O2 are very similar, one might expect

that these ontologies are also ‘very’ semantically interoperable. After all, they refer to the

same domain, they use the same symbols, they have the same axioms, and they even have

three of their four data tuples in common. Yet, when one considers the differences between

the ontologies in terms of their different semantics (as revealed through their model classes),

one can see that the ontologies are not ‘very’ semantically interoperable, at all. A precise

characterization, in terms of models and queries, of the semantic interoperability of these

ontologies is given in Section 3.3.

Given two ontologies with similar specifications but possibly substantially different model

classes, one wants to be able to assess the degree to which theontologies are ‘semantically

interoperable.’ Before doing this, though, we explain semantic interoperability in terms of

model classesand the queries that we put to them. In the next section we explainthis view-

point, using ontologiesO1 andO2 as examples.

3.3 Semantic Interoperability

The phrase ‘semantic interoperability,’ whatever other meanings it might take on, should, in-

tuitively, have something to do with ‘working between meanings’ or ‘working together with

meanings,’ or ‘working together meaningfully.’ One can extract from these intuitive notions

the idea that if two ontologies are semantically interoperable, then their meanings somehow

work together with, ‘get along with,’ or are compatible witheach other. Since the semantic

framework used in this thesis is model-theoretic semantics, and since ‘semantic’ in this frame-

work practically refers tomodel classes, the ‘semantic interoperability’ of two ontologies must
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have something to do with how the ontologies’model classeswork together. We describe this

‘working together’ in terms of ‘compatible’ query results.

3.3.1 Intuition: Compatible Query Results

How well the model classes of two ontologies work together isdetermined by the results of

queries to the ontologies, because the queries are the devices that probe the structures of the

model classes for similarities and differences. The following analogy may be helpful.

This thesis analyzes pairs of ontologies with much in common: their domain, their logical

language, their non-logical vocabulary, etc. These commonelements are like the common

tools and building materials that each ontology creator canuse to build ontologies. The two

different ontologies are thus at the outset perfectly compatible with each otherinsofar as

their tools and building materials are concerned. Where they differ, and where they may

be incompatible, is in the actual buildings (i.e., the models) that are constructed using the

available tools. So, any potential semanticincompatibility between ontologies lies in the

differences between the actual buildings built, not in the tools or materials used to build them.

Or, looked at in a different way, the possible semanticinteroperabilitybetween the ontologies

lies in the ‘compatibility’ of the buildings (the models) ofeach ontology. Some way to define

and assess this compatibility is needed; this is where queries come in.

Queries help define and assess the compatibility of the modelclasses of two ontologies. In

a sense, a query is like a probe that is sent to a city of buildings (a model class) and sends an

answer of True or False, depending on what it finds there. The answer returned by the probe

may be True or False in some, none, or all of the buildings (Section 3.1.2). The query, or

probe, has accesses to the entire state of affairs that are explicitly or implicitly specified by the
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collection of models of an ontology, and the result of evaluating a query in this state of affairs

may be True or False in some, none, or all of the models.

Thus, the question of to what extent two ontologies are semantically interoperable is in

essence a question of the degree to which their model classes‘work together,’ which in turn

reduces to a question of whether the ontologies exhibitcompatible query results. To explain

exactly what we mean by ‘compatible query results,’ we need to discuss the different ways a

query put to an ontology can evaluate to True or False.

3.3.2 Evaluating Queries in Ontologies

Recall from Section 3.1.1 that a ‘query,’ as used in this thesis, is statement in the logical

language used to specify the ontology (i.e., a well-formed formula with no free variables).

Further recall that the ontologies under consideration areassumed to be consistent (i.e., they

each have at least one model).

When a query is evaluated against an ontologyO, the query could evaluate to:

• True in some model(s) ofO, and false in othersO;

• True in all models ofO;

• False in all models ofO;

For convenience in discussing truth values we provide the following notation.

• EO(Q) = (T/F )S means that the evaluation of queryQ against ontologyO yields a

truth value ofTrue in some models ofO and False in other modelsof O.
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• EO(Q) = TA means that the evaluation of queryQ against ontologyO yields a truth

value ofTrue in all modelsof O.

• EO(Q) = FA means that the evaluation of queryQ against ontologyO yields a truth

value ofFalse in all modelsof O.

3.3.3 Possible Query Results

To begin to understand the notion of ‘compatible query results,’ and to gain some idea of the

relationship among queries, models, and semantic interoperability, consider Figure 3.5 below,

where the second column,EO1
(Qi), refers to the evaluation in Ontology 1 of queryi, and the

third column,EO2
(Qi), refers to the evaluation in Ontology 2 of queryi.

Query EO1
(Qi) EO2

(Qi) Compatibility Condition
Q1: ¬in(Orono, Bangor) (T/F )S (T/F )S
Q2: in(Orono, Maine) (T/F )S TA

Q3: ¬in(Orono, Maine) (T/F )S FA

Q4: in(Bangor, Maine) TA (T/F )S
Q5: in(Route2, Orono) TA TA

Q6: *** TA FA 1
Q7: ¬(Bangor, Maine) FA (T/F )S
Q8: *** FA TA 2
Q9: ¬in(Orono, Orono) FA FA

Figure 3.5: Sample Queries and Results forO1 andO2

This table shows some sample queries to the two example ontologiesO1 andO2. A query

put to either ontology will evaluate to one of the three truthvalues(T/F )S, TA, or FA. Thus,

the analysis of compatible query results will center on a consideration of the nine possible

combinations of query results for a single query put to two ontologies.

For a given pair of ontologies, it may or may not be possible tofind example queries for

each of the nine possibilities. In the case of the ontologiesfrom Figures 3.1 and 3.2, for
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instance, the asterisks in the first column of Figure 3.5 indicate that one cannot find queries

for aQ6 or aQ8 that would result in the indicated pairs of truth values. (This fact is proved in

Section 3.4.2).

Though it may sound odd, it is precisely on the basis of certain impossible combinations

of query results that different levels ofcompatiblequery results are defined. That is, the

fact that onecannotfind queries that correspond to the asterisked rows in Figure3.5 actually

demonstrates a certain minimum level ofcompatibility of query results. To see why, consider

the following argument.

The asterisks in row 6 of Figure 3.5 indicate that no query evaluates to True in all models

of O1 but to False in all models ofO2. Similarly, the asterisks in row 8 indicate that no query

evaluates to False in all models ofO1 but to True in all models ofO2.

Intuitively, one might say that it is never the case that, loosely speaking, ‘white’ inO1

means ‘black’ inO2, or vice versa. These two conditions, taken together, constitute the mini-

mal requirements for compatible query results (and of semantically interoperable ontologies),

because without them, it is possible to find some query that returns ‘opposite’ (i.e., contra-

dictory) results for the two ontologies. Because no such query can be found forO1 andO2,

these two compatibility conditions rule out the grossest kind of incompatibility of query re-

sults, where some query could generate diametrically opposite results in the two ontologies.

In terms of the analogy of sending a probe to a city of buildings, we rule out the possibility that

whatever the probe is looking for, it will find it in all buildings of one city and in no buildings

of the other city.

The above result — that for a queryQ, we cannot haveEO1
(Q) = TA andEO2

(Q) = FA, or

EO1
(Q) = FA andEO2

(Q) = TA — holds foranyquery that can be formulated in the language
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L (Section 3.1.1). As such, it guarantees a minimal level of compatible query results for

any query expressible inL, not just for some queries we think we may be interested in at a

particular time. The importance of this fact is that if we cannot in advance think of all the

queries we may want to ask, we are nevertheless ‘safe’ if the two compatibility conditions

hold, in the sense that there cannot be contradictory results from the same query to the two

ontologies.

This minimal level of compatibility of query results, in turn, is the basis for the defini-

tion of Level 1 Semantic Interoperabilitybetween ontologies (L1SI), and we refer to the two

ontologies as being Level 1 Semantically Interoperable (L1SI).

TheL1SI compatibility conditions, along with similar conditions given below, function in

sort of a ‘double negative’ sense: a certain degree of semantic interoperabilityis achieved by

removing from considerationparticular combinations of query results that would indicate a

lack of such interoperability.

3.4 Levels of Semantic Interoperability

The above discussion describes the level of semantic interoperability between example ontolo-

giesO1 andO2 from Figures 3.1 and 3.2. This section gives explicit definitions of this level

and 4 other levels of semantic interoperability defined in our framework. We present these 5

levels ‘out of order,’ to aid the exposition. A final subsection gives a summary of all five levels

of semantic interoperability.
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3.4.1 Level 1 Semantic Interoperability

Definition 1An ontologyOi is Level 1 Semantically Interoperable(L1SI) with another ontol-

ogyOj if and only if Oi andOj meet the following two compatibility conditions:

• it is not possible to have a query that evaluates to True in all models ofOi but to False

in all models ofOj (compatibility condition 1);

• it is not possible to have a query that evaluates to False in all models ofOi but to True

in all models ofOj (compatibility condition 2).

The discussion in Section 3.3.3 shows that ontologyO1 of Figure 3.1 isL1SI with ontology

O2 of Figure 3.2. This result follows immediately from the above definition, which also shows

that ontologyO2 is L1SI with ontologyO1 (reading the truth values from right to left instead

of left to right). Thus, we have also shown that the relation of L1SI is symmetric. A detailed

demonstration will be given Section 3.5 of why both conditions of the definition hold for each

of the ontologiesO1 andO2. This demonstration is based on the relationship between the

model classes of the ontologies.

So, L1SI is the minimum level of semantic interoperability that we define. What is the

maximum level?

3.4.2 Level 3 Semantic Interoperability

Consider ontologiesO3 andO4 in Figures 3.6 and 3.7. These ontologies have just two entities,

Bangor and Maine, and use one relation,in. Although the ontologies themselves differ in their

syntactical specification (i.e., they do not have identicalsets of axioms and data tuples), their

model classes are the same set, which contains two modelsM1 andM2, where, using the
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obvious abbreviations,M1 = {{B,M}, {in(B,B), in(B,M),¬in(M,B), in(M,M)}}, and

M2 = {{B,M}, {in(B,B), in(B,M), in(M,B), in(M,M)}}.

Axioms for in Data Tuples forin
in(x, x) (Bangor, Maine)

∀xy (¬(x = y) ∧ ¬in(x, y)) → in(y, x)

Figure 3.6: OntologyO3 for in

Axioms for in Data Tuples forin
∀xy ¬in(x, y) → in(y, x) (Bangor, Maine)

Figure 3.7: OntologyO4 for in

Consider a table of possible query results forO3 andO4. Figure 3.8 shows that no queries

can be found that correspond to what would be queriesQ2, Q3, Q4, Q6, Q7, or Q8.

Query EO3
(Qi) EO4

(Qi) Compatibility Condition
Q1: in(Maine, Bangor) (T/F )S (T/F )S —
Q2: *** (T/F )S TA 5
Q3: *** (T/F )S FA 6
Q4: *** TA (T/F )S 3
Q5: in(Bangor, Bangor) TA TA —
Q6: *** TA FA 1
Q7: *** FA (T/F )S 4
Q8: *** FA TA 2
Q9: ¬in(Maine, Maine) FA FA —

Figure 3.8: Sample Queries and Results forO3 andO4

For queriesQ1, Q5, andQ9, there is no compatibility condition given. The reason is that

for each of these queries, it makes no sense to connect the impossibility of query results to a

compatibility condition. Such a compatibility condition would say that no query correspond-

ing to aQ5 can evaluate to True in all models ofO3 and to True in all models ofO4. But this

condition says nothing of positive value about semantic interoperability, since it says that no

query is entailed by both ontologies.
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On the other hand, consider compatibility condition 5. Thiscondition says that no query

can be found that evaluates to True in some models ofO3 and to False in other models ofO3,

but that evaluates to True in all models ofO4. This makes sense, because, sinceO3 andO4

have the same model class, if a query evaluated to False in some models ofO3, it would have

to evaluate to False in some models ofO4; that is, it could not evaluate to True in all models

of O4.

Similar reasoning shows that forO3 andO4, the six compatibility conditions are all met.

This fact leads us to the next definition.

Definition 2An ontologyOi is Level 3 Semantically Interoperable(L3SI) with another

ontologyOj if and only if Oi andOj meet the following six compatibility conditions:

• it is not possible to have a query that evaluates to True in some models ofOi and to

False in other models ofOi, but to True in all models ofOj (compatibility condition 5);

• it is not possible to have a query that evaluates to True in some models ofOi and False

in other models ofOi, but to False in all models ofOj (compatibility condition 6);

• it is not possible to have a query that evaluates to True in all models ofOi but to True in

some models ofOj and to False in other models ofOj) (compatibility condition 3);

• it is not possible to have a query that evaluates to True in all models ofOi but to False

in all models ofOj (compatibility condition 1);

• it is not possible to have a query that evaluates to False in all models ofOi, but to True

in some models ofOj and False in other models ofOj (compatibility condition 4).
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• it is not possible to have a query that evaluates to False in all models ofOi but to True

in all models ofOj (compatibility condition 2).

Intuitively, two ontologies are completely semantically interoperable when ‘the same queries

give the same results’ for all queries and for all models. This requirement is fulfilled when the

six compatibility conditions are met. These six compatibility conditions are met when the two

ontologies have identical model classes (Section 3.4.2).

As is the case withL1SI , theL3SI relation is also symmetric.

Three additional levels of semantic interoperability remain to be dealt with: two interme-

diate levels of semantic interoperability, as well as a level that indicates no semantic interop-

erability (in the framework we have established).

3.4.3 Level 2A Semantic Interoperability

Consider the ontologiesO5 andO6 in Figures 3.9 and 3.10. Note the similarity with ontologies

O1 andO2. OntologyO5 is just ontologyO1 minus the data tuple (Bangor, Maine), while

ontologyO6 is the same as ontologyO2. These similarities are exploited to ease the exposition.

The critical feature of these ontologies is, as before, the relationship between their model

classes.

Axioms for in Data Tuples forin
(Route2, Orono)

∀x, in(x, x) (Route2, Bangor)
∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Route2, Maine)

Figure 3.9: OntologyO5 for in
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Axioms for in Data Tuples forin
(Route2, Orono)

∀x, in(x, x) (Route2, Bangor)
∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Route2, Maine)

(Orono, Maine)

Figure 3.10: OntologyO6 for in

The table of possible query results for these two ontologiesis given in Figure 3.11. In

addition to meeting compatibility conditions 1 and 2, ontologiesO5 andO6 also meet compat-

ibility conditions 3 and 4 (proved in Section 3.4.2). ButO5 andO6 do not meet compatibility

conditions 5 and 6. This latter fact is demonstrated by the queriesQ2 andQ3 in Figure 3.11.

Query EO5
(Qi) EO6

(Qi) Compatibility Condition
Q1: ¬in(Orono, Bangor) (T/F )S (T/F )S —
Q2: in(Orono, Maine) (T/F )S TA

Q3: ¬in(Orono, Maine) (T/F )S FA

Q4: *** TA (T/F )S 3
Q5: in(Route2, Orono) TA TA —
Q6: *** TA FA 1
Q7: *** FA (T/F )S 4
Q8: *** FA TA 2
Q9: ¬in(Orono, Orono) FA FA —

Figure 3.11: Sample Queries and Results forO5 andO6

It turns out that the model class ofO5 contains 27 models, and the model class ofO6

contains 9 models. What’s more, the model class ofO5 contains the model class ofO6 as a

proper subset.

Definition 3An ontologyOi is Level 2A Semantically Interoperable(L2ASI) with another

ontologyOj if and only if Oi andOj meet the following four compatibility conditions:

• it is not possible to have a query that evaluates to True in all models ofOi, but to True

in some models ofOj and to False in other models ofOj (compatibility condition 3);
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• it is not possible to have a query that evaluates to True in all models ofOi but to False

in all models ofOj (compatibility condition 1);

• it is not possible to have a query that evaluates to False in all models ofOi, but to True

in some models ofOj and to False in other models ofOj (compatibility condition 4);

• it is not possible to have a query that evaluates to False in all models ofOi but to True

in all models ofOj (compatibility condition 2).

TheL2ASI relation between two ontologies is antisymmetric; that is,if O1L2ASIO2, then

the only way that we can haveO2L2ASIO1 is if the model classes ofO1 andO2 are the same

(based on results in Section 3.4.2).

A similar, but ‘reversed’ situation, is obtained by reversing the roles of ontologiesO5 and

O6.

3.4.4 Level 2B Semantic Interoperability

Consider the ontologiesO7 andO8 in Figures 3.12 and 3.13.

Axioms for in Data Tuples forin
(Route2, Orono)

∀x, in(x, x) (Route2, Bangor)
∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Route2, Maine)

(Orono, Maine)

Figure 3.12: OntologyO7 for in

The table of possible query results for these two ontologiesis given in Figure 3.14. In

addition to meeting compatibility conditions 1 and 2, ontologiesO7 andO8 also meet compat-

ibility conditions 5 and 6. ButO7 andO8 do not meet compatibility conditions 3 and 4. This

latter fact is demonstrated by the existence of queriesQ4 andQ7 in Figure 3.14.
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Axioms for in Data Tuples forin
(Route2, Orono)

∀x, in(x, x) (Route2, Bangor)
∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Route2, Maine)

Figure 3.13: OntologyO8 for in

Query EO7
(Qi) EO8

(Qi) Compatibility Condition
Q1: ¬in(Orono, Bangor) (T/F )S (T/F )S —
Q2: *** (T/F )S TA 5
Q3: *** (T/F )S FA 6
Q4: in(Orono, Maine) TA (T/F )S
Q5: in(Route2, Orono) TA TA —
Q6: *** TA FA 1
Q7: ¬in(Orono, Maine) FA (T/F )S
Q8: *** FA TA 2
Q9: ¬in(Orono, Orono) FA FA —

Figure 3.14: Sample Queries and Results forO7 andO8

The model class ofO7 contains 9 models, and the model class ofO8 contains 27 models.

In addition, the model class ofO7 is a proper subset of the model class ofO8.

Definition 4An ontologyOi is Level 2B Semantically Interoperable(L2BSI) with another

ontologyOj if and only if Oi andOj meet the following four compatibility conditions:

• it is not possible to have a query that evaluates to True in some models ofOi and to

False in other models ofOi, but to True in all models ofOj (compatibility condition 5);

• it is not possible to have a query that evaluates to True in some models ofOi and to

False in other models ofOi, but to False in all models ofOj (compatibility condition 6);

• it is not possible to have a query that evaluates to True in all models ofOi but to False

in all models ofOj (compatibility condition 1);
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• it is not possible to have a query that evaluates to False in all models ofOi but to True

in all models ofOj (compatibility condition 2).

As the case withL2ASI , theL2BSI relation between two ontologies is antisymmetric; that

is, if O1L2BSIO2, then it is not the case thatO2L2BSIO1, unless the model classes of the two

ontologies are the same.

3.4.5 Level 0 Semantic Interoperability

Consider the sample ontologiesO9 andO10 and the table of possible query results in Figures

3.15 through 3.17. One can verify by inspection that the model classes forO9 andO10 are dis-

joint, since all models ofO9 satisfy the axiomin(x, x) (i.e., every entity is in itself), whereas

all models ofO10 satisfy¬in(x, x) (i.e., no entity is in itself). Thus no model ofO9 can be a

model ofO10, and no model ofO10 can be a model ofO9.

These two ontologies meet none of the 6 compatibility conditions, as can be seen by the

fact (Figure 3.17) that there do exist queries corresponding toQ2, Q3, Q4, Q6, Q7, andQ8.

That is, for these two ontologies one cannot restrict any undesirable combinations of query

results, which would in turn result in some level of semanticinteroperability. This fact leads

to the following definition.

Definition 5An ontologyOi is Level 0 Semantically Interoperable(L0SI) with another

ontologyOj if and only if noneof six compatibility conditions given in Definition 2 holds for

Oi andOj.
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Axioms for in Data Tuples forin
∀x, in(x, x) (Route2, Orono)

∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Orono, Maine)

Figure 3.15: OntologyO9 for in

Axioms for in Data Tuples forin
∀x, ¬in(x, x) (Route2, Orono)

∀xy (x 6= y) → (in(x, y) → ¬in(y, x)) (Orono, Maine)

Figure 3.16: OntologyO10 for in

3.4.6 Summary: The 5 Levels of Semantic Interoperability

Figure 3.18 illustrates the 5 levels of semantic interoperability. Each node in the figure shows

the level of semantic interoperability, the compatibilityconditions met at that level, and the

symmetry or antisymmetry of the relation. The figure shows clearly that while Level 1 is the

lowest level and Level 3 is the highest level, there is no unique ‘middle level’ between these

two levels. In fact, both Levels 2A and 2B are situated in somesense at a middle level. The

figure also shows the relationships between levels in terms of compatibility conditions.

It may be asked why only six compatibility conditions have been defined. The answer has

to do with the discriminatory power of the nine possible query results that are defined in our

framework. The reason there are six, and not more, compatibility conditions is that the pairs

of query results corresponding to queries of typeQ1, Q5, andQ9 provide no constraints on

the relationship of the model class of the ontologies (see Section 3.4.2). Further, there are

no fewer than six compatibility conditions, because each ofthe six conditions given provides

some insight (because it provides a constraint on possibilities) into the relation that can hold

between the model classes of the ontologies.
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Query EO9
(Qi) EO10

(Qi) Compatibility Condition
Q1: in(Route2, Maine) (T/F )S (T/F )S —
Q2: in(Bangor, Maine) (T/F )S TA

Q3: ¬in(Bangor, Maine) (T/F )S FA

Q4: in(Route2, Orono) TA (T/F )S
Q5: in(Orono, Maine) TA TA —
Q6: in(Orono, Orono) TA FA

Q7: ¬in(Route2, Orono) FA (T/F )S
Q8: ¬in(Orono, Orono) FA TA

Q9: ¬in(Orono, Maine) FA FA —

Figure 3.17: Sample Queries and Results forO9 andO10

It may also be asked what is special about the five levels of semantic interoperability

shown in Figure 3.18. Certainly, one is free to declare as manyor as few levels of semantic

interoperability as one wishes. In the framework for this thesis, however, these five levels are

special for three reasons. First, that they correspond exactly to the five relations that exist

between the model-classes of the ontologies (Section 3.5).Second, these five model-class

relations are pairwise disjoint and mutually exhaustive, as can be seen from their definitions in

Section 3.5.1. Thus, the five levels of semantic interoperability correspond to a partition of the

possible model-class relations. Third, the five levels of semantic interoperability correspond to

the six compatibility conditions in a hierarchical way thatreflects the underlying connections

between query results and model-class relations (Figures 3.18 and 1.9).

3.5 Proving Semantic Interoperability

Section 3.3 made several claims about certain example ontologies satisfying particular com-

patibility conditions (Figure 3.19).

These claims rested on intuitive arguments about the impossibility of certain query results,

given a particular relationship between the model classes of the ontologies in question. In
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Level 0
none

symmetric

no
semantic 

interoperability

full
semantic 

interoperability

Level 1
1,2

symmetric

Level 3
1,2,3,4,5,6
symmetric

Level 2B
1,2,5,6

antisymmetric

Level 2A
1,2,3,4

antisymmetric

Figure 3.18: 5 levels of semantic interoperability, and compatibility conditions

Model Class Relation Compatibility Conditions
Disjoint
Overlap 1,2
Contains 1,2,3,4
Contained by 1,2,5,6
Equals 1,2,3,4,5,6

Figure 3.19: Relation Between Model Classes and Compatibility Conditions

this section, we state these claims more precisely, in theirgeneral form, and we prove each of

them. Before proving these claims, we state more precisely what we mean by each of the five

model-class relations.

3.5.1 Definitions

Disjoint. Two model classesMCOi
andMCOj

areDisjoint if and only ifMCOi
∩MCOj

= ∅.

Overlap. Two model classesMCOi
andMCOj

Overlap if and only if they meet the

following three conditions: (1) they contain at least one model in common; (2) there is at
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least one model inMCOi
that is not inMCOj

; and (3) there is at least one model inMCOj

that is not inMCOj
.

Contains.The model classMCOi
Containsthe model classMCOj

if and only ifMCOj
⊂

MCOi
, that is, if and only ifMCOj

is a proper subset ofMCOi
.

Equal. Two model classesMCOi
andMCOj

areEqual if and only if MCOi
= MCOj

,

that is, if and only if they are equal as sets.

Contained by.The model classMCOi
is Contained bythe model classMCOj

if and only

if MCOi
⊂ MCOj

, that is, if and only ifMCOi
is a proper subset ofMCOj

.

3.5.2 Proofs

All of the proofs below deal with ontologiesOi andOj and with their respective model classes,

MCOi
andMCOj

, which are assumed to be non-empty.

Claim 1: If MCOi
andMCOj

overlap, then the ontologiesOi andOj meet compatibility

conditions 1 and 2.

Proof: BecauseMCOi
andMCOj

overlap, they have at least one model in common.

Therefore if a queryQ evaluates to True in all models ofOi, it also evaluates to True in at

least one model that is common toMCOi
andMCOj

. Thus it is not possible thatQ evaluates

to False in all models ofOj. Hence, ontologiesOi andOj meet compatibility condition 1.

Similarly, if a queryQ evaluates to False in all models ofOi, it also evaluates to False in at

least one model that is common toMCOi
andMCOj

. Thus it is not possible thatQ evaluates

to True in all models ofOj. Hence, ontologiesOi andOj meet compatibility condition 2.

Claim 2: If MCOi
containsMCOj

, then the ontologies meet compatibility conditions 1,

2, 3, and 4.

93



Proof: BecauseMCOi
containsMCOj

there is at least one model inMCOj
that is also in

MCOi
. Thus, by the arguments used in Proof 1, the ontologiesOi andOj meet compatibility

conditions 1 and 2.

Suppose that a queryQ evaluates to True in all models ofMCOi
. Then, becauseMCOj

is

a subset ofMCOi
, it is not possible thatQ evaluates to False in any model ofMCOj

. Thus,

Oi andOj meet compatibility condition 3.

Similarly, suppose that a queryQ evaluates to False in all models ofMCOi
. Then, because

MCOj
is a subset ofMCOi

, it is not possible thatQ evaluates to True in any model ofMCOj
.

Thus,Oi andOj meet compatibility condition 4.

Claim 3: If MCOi
is contained byMCOj

, then the ontologiesOi andOj meet compati-

bility conditions 1, 2, 5, and 6.

Proof: BecauseMCOj
containsMCOi

there is at least model inMCOi
that is also in

MCOj. Thus, by the arguments used in Proof 1, the ontologiesOi andOj meet compatibility

conditions 1 and 2.

Suppose that a queryQ evaluates to True in all models ofMCOj
. Then, becauseMCOi

is

a subset ofMCOj
, it is not possible thatQ evaluates to False in any model ofMCOi

. Thus,

Oi andOj meet compatibility condition 5.

Similarly, suppose that a queryQ evaluates to False in all models ofMCOj
. Then, because

MCOi
is a subset ofMCOj

, it is not possible thatQ evaluates to True in any model ofMCOi
.

Thus,Oi andOj meet compatibility condition 6.

Claim 4: If MCOi
EqualsMCOj

then the ontologiesOi and Oj meet compatibility

conditions 1, 2, 3, 4, 5, and 6.
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Proof: BecauseMCOi
equalsMCOj

(and because we assume that each ontology has at

least one model, i.e., the ontologies are consistent) thereis at least one model inMCOi
that

is also inMCOj
. Thus, by the arguments used in Proof 1, the ontologiesOi andOj meet

compatibility conditions 1 and 2.

Because the models ofOi are the same as the models ofOj, it is not possible that a query

Q evaluates to True in all models ofOi but to False in some model ofOj. ThusOi andOj

meet compatibility condition 3.

Because the models ofOi are the same as the models ofOj, it is not possible that a query

Q evaluates to False in all models ofOi but to True in some model ofOj. ThusOi andOj

meet compatibility condition 4.

Because the models ofOi are the same as the models ofOj, it is not possible that a query

Q evaluates to True in all models ofOj but to False in some model ofOi. ThusOi andOj

meet compatibility condition 5.

Because the models ofOi are the same as the models ofOj, it is not possible that a query

Q evaluates to False in all models ofOj but to False in some model ofOi. ThusOi andOj

meet compatibility condition 6.

Claim 5: If MCOi
is Disjoint from MCOj

, then the ontologiesOi andOj meet none of

compatibility conditions 1, 2, 3, 4, 5, or 6.

Proof: To show thatOi andOj do not meet a particular compatibility condition, it suffices

to construct a single counterexample. For instance, to showthat if MCOi
is Disjoint from

MCOj
, thenOi andOj do not meet compatibility condition 1, it suffices to give examples of

two ontologiesOi andOj such that there is some queryQ that evaluates to True in all models

of O1 but to False in all models ofO2. Let Oi andOj be ontologies with only 2 constant
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symbols,a andb, and with a single binary relation symbolR. Suppose that the only data tuple

in Oi is (c,d)and that the only data tuple inOj is (d,c). Suppose further that inOi the relation

R is axiomatized to be reflexive, but that inOj the relationR is axiomatized to be irreflexive.

Let Q be the queryR(a,a).

MCOi
is disjoint fromMCOj

, since every model inOi contains the tuplesR(c,c), R(d,d)

but no model inOj contains these tuples. Further,Q evaluates to True in all models ofOi but

to False in all models ofOj. Thus,Oi andOj do not meet compatibility condition 1, because

we have found a queryQ that evaluates True in all models ofOi but to False in all models of

Oj.

The creation of other counter-examples that show thatOi andOj do not meet compatibility

conditions 2-6 is left to the reader.

The next chapter discusses computational issues in calculating the relationship between

model classes of two ontologies and determining their levelof semantic interoperability.
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Chapter 4

COMPUTING MODEL-CLASS

RELATIONS

This chapter describes one exact method and one heuristic method for determining the relation

between the model classes of two ontologies. The implementations of these methods are

documented in Chapter 5.

From sections 3.4 and 3.5, it is assumed that all the models inthe model classes of two

ontologiesOi andOj are available for computation and that the set-theoretic relation holding

between the model classes (e.g., overlaps, contains) can becalculated. From such a calculation

and the results in Sections 3.3 and 3.4, the level of semanticinteroperability betweenOi and

Oj could then be determined.

However, even when the model classes of two ontologies are finite, they may have such a

large number of models that it is not feasible to calculate all of them. Or, if all the models of

each ontology can be calculated and stored on disk, it still may not be feasible, due to memory

limitations, to determine the exact model-class relation that holds between the two ontologies.
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In this latter case, a heuristic procedure can be used to narrow down the number of model-class

relations that could possibly hold.

Section 4.3 discusses one such heuristic, which, since it isuses incomplete information

(i.e., subsets of the model classes, rather than entire model classes), is not guaranteed to de-

termine the single model-class relation that holds betweenthe two ontologies. The use of this

heuristic is therefore a trade-off: when computational costs make it impractical to compare the

complete model classes directly and so obtain the exact model-class relation holding between

the two ontologies, a heuristic can be used to do an incomplete comparison of model classes

that will narrow down the possibilities of which model-class relation holds.

The heuristic discussed in Section 4.3 will always narrow down the outcome to 2 model-

class relations that could hold, and it may narrow down to just one (Section 4.3).

MC(O1) MC(O2) MC(O1) MC(O2) MC(O1) MC(O2)
MC(O2)

MC(O1)

Disjoint Overlap Contains Equal Contained by

MC(O1)

MC(O2)

Figure 4.1: 5 possible relations between model classesMC(O1) andMC(O2)

4.1 Review of Assumptions

The ontologiesOi andOj are assumed each to be consistent (i.e., each has at least onemodel)

and to have the following in common:
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1. Both ontologies are specified with the same logical languageL, which is a subset of the

language of first-order logic.

2. Both ontologies refer to the same finite (conceptual) domain, and they use the same finite

set of constant symbols to refer to elements in this domain. The number of constant

symbols is assumed to be identical to the number of elements in the conceptual domain.

Further, if a constant symbolc used inOi denotes an objectX in the domain, then the

same constant symbolc used inOj denotes the same objectX.

3. No model contains more elements than the finite number of entities in the conceptual

domain.

4. The ontologies are assumed to be non-empty (i.e., they each have at least one data tuple

and at least one axiom).

5. The ontologies use the same relation symbols.

The ontologies are assumed to differ in:

1. their data tuples (i.e., at least one of the ontologies hasat least one data tuple not in the

other ontology), and

2. their axioms (i.e., each ontology has at least one axiom, and at least one of the ontologies

includes an axiom that is not included in the other).
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These differences will generally result indifferent semanticsfor the ontologies, i.e., differ-

ent model classes for the ontologies.

The languageL has the following characteristics.

1. L contains finitely many variables, finitely many constant symbols (one for each element

of the finite domain), finitely many relation symbols (each ofwhich has a finite arity),

and no function symbols.

2. The syntax and semantics ofL are that of first-order logic with the restrictions that result

from the various assumptions of finiteness just given.

3. L is used both to specify the ontologies and to formulate queries that are put to the

ontologies.

4. Each ontology is specified usingL via finitely many axioms and finitely many data

tuples.

Finally, from an implementation point of view, we assume that finitely many models of

each (consistent) ontology can be generated by a software program. The particular program

we use for the implementations in Chapter 5 is SEM (Zhang and Zhang, 1995), which is an

efficient generator of models for relatively small specifications. The translation from an ontol-

ogy in the languageL (which is used for illustration in the first four chapters) toa specification

in the format required for SEM is done manually. Further details on the use of SEM are given

in Chapter 5.
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4.2 Four Computational Scenarios

4.2.1 What They Are

Figure 4.2 describes the four computational scenarios discussed in this thesis, whereM refers

to the number of models of ontologyOi, andN refers to the number of models of ontology

Oj. For simplicity, we do not treat the cases where it is practical to computeM but notN , or

practical to computeN but notM .

impractical to
compute M and N,

so M and N are
unknown

practical to
compute M and N,

so M and N are
known

practical to compare the
two model classes

4

3
2

1

impractical to compare
the two model classes

practical to store all models impractical to store all models

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 4.2: Feasibility of comparingM models ofOi andN models ofOj

1. Scenario 1: It is practical to compute bothM andN and to store all models on disk.

It is also practical to compare the two model classes completely and so determine the

exact relation that holds between them.
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2. Scenario 2: It is practical to compute bothM andN and to store all models on disk,

but it is impractical (e.g., due to memory or time limitations) to compare the two model

classes completely in order to determine the unique relation that holds between them.

3. Scenario 3: It is practical to compute bothM andN , but it is impractical to store all the

models on disk or in memory. Thus, only certain subsets of models can be generated in

this scenario. The models in these subsets will be generatedin the order determined by

the particular model-generating software that is used.

4. Scenario 4: It is impractical to computeM andN (e.g., due to memory or hard disk

limitations), and it is impractical to store all models on disk or in memory. Thus, only

certain subsets of models can be generated in this scenario.The models in these subsets

would be generated in the order determined by the particularmodel-generating software

that is used.

4.2.2 How They Are Treated

In Scenario 1, it is always possiblein practiceto compute all the models from each ontology,

store each of these on disk, and algorithmically to determine which particular relationship

(e.g., overlaps, contains) holds between the model classes. Thus, for Scenario 1 the exact level

of semantic interoperability between the two ontologies can always be determined. Chapter

5 describes an implementation for Scenario 1 that uses the model-generator SEM (Zhang and

Zhang, 1995) and the programming language Perl (Sections 5.1 and 5.2).

Scenario 2is treated with a heuristic procedure (Section 4.3) that narrows down the possi-

ble relations from Figure 4.1 that could hold between the twomodel classes.
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Chapter 5 presents implementations of an algorithm for Scenario 1 and an implementation

of a heuristic for Scenario 2.

Scenarios 3 and 4 are not coveredin this thesis, because it is impractical to store all the

models in those scenarios: thus, these two scenarios cannoteffectively illustrate the three

central concepts used to define semantic interoperability:compatibility conditions (Sections

3.3 and 3.4), model-class relations (Section 3.5), and the connection between compatibility

conditions, levels of semantic interoperability, and model-class relations (Section 3.5). Note,

however, the following points concerning Scenario 3. First, since M and N are assumed known

in this scenario, the possible model-class relations can bereduced from five to three, by the

same arguments used in Section 4.3 (see Figure 4.3). Second,assuming that one could gener-

ate and store on disk at leastsomeof the models of each ontology, certain comparisons could

still be made. For instance, suppose that a million models ofeach ontology could be stored

on disk. Then, if comparing those two subsets of models, it isfound that there is at least one

model in common, we can reduce the possible model-class relations to just two, regardless of

the relative sizes of M and N. Of course the drawback to such anapproach is that if findno

models in common, that does not necessarily mean that the model classes actually have no

models in common. They may simply not appear in our subsets. Thus, we are limited both

by the manner in which models are generated by the model-generating software (in our case,

SEM, which we treat as a black box), and by the fact that by looking at just subsets of the

full model class, we cannot be sure, even if we detect no models in common, that the model

classes really have no models in common.
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Note that in some cases, with a decidable language, a proof calculus that is complete with

respect to a given semantics of the language, and a prover such as RACER (http://www.sts.tu-

harburg.de/∼r.f.moeller/racer/), it may be possible to determine, forparticular queries, whether

a query that evaluates to true in all models ofOi also evaluates to true in all models ofOj

(Patel-Schneider, 2006). Such proof-theoretic means of getting at certain issues of compatible

query results (and hence at certain issues of semantic interoperability), while interesting in

and of themselves, lie outside the scope of this thesis.

4.3 Scenario 2, a Heuristic Method

The heuristic for Scenario 2 works by combining two pieces ofinformation, one old and one

new. The old piece of information, from the assumptions of Scenario 2, is that the sizes of both

model classes are known. Given this information, the numberof possible relations between

the model classes of the ontologies is reduced immediately from five to three (Figure 4.3),

whereM is the number of models inMCOi
andN is the number of models inMCOj

.

MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

M = N M > N M < N

Figure 4.3: Constraints on model-class relations from sizesof M andN

The new piece of information is obtained by choosing a certain number of arbitrary models

from one model class and testing whether those models are also in the other model class. For
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instance, choose an arbitrary modelp from MCOi
and an arbitrary modelq from MCOj

.

Independent of the relative sizes ofM andN , testing whetherp is in MCOj
, lets us narrow

down the number of possible model-class relations to four orthree (Figure 4.4). Similar

results apply after testing whetherq is inMCOi
(Figure 4.5). Combining both tests, and again

independent of the relative sizes ofM andN , the picture of possible model-class relations is

as shown in Figure 4.6.

Combining both pieces of information—the relative sizes ofM andN , along with the

testing for membership ofp in MCOq
and ofq in MCOi

—yields the possibilities depicted in

Figure 4.7. This figure shows that after selecting just one arbitrary model from each ontology,

the number of relations that could hold between the model classes of the ontologies is just two,

though which two depends on the relative sizes of the model classes of the two ontologies.

The above observations lead to the following heuristic procedure, which for Scenario 2

will always narrow down the number of possible model-class relations to at most two.

MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

p in MC(Oj)

p not in MC(Oj)
MC(Oi)

MC(Oj)

Figure 4.4: Possible model-class relations, checkingp againstOj
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q in MC(Oi) q not in MC(Oi)

MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

MC(Oj)

MC(Oi)

Figure 4.5: Possible model-class relations, checkingq againstOi

MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

p in MC(Oj)

p not in MC(Oj)

q in MC(Oi) q not in MC(Oi)

MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

Figure 4.6: Possible relations, checkingp againstOj andq againstOi

The steps of the heuristic are as follows.

1. Obtain the values of M (number of models inMCOi
) and N (number of models in

MCOj
).

2. Pick an arbitrary modelpi fromMCOi
and test whetherpi is in MCOj

.

3. Pick an arbitrary modelqj fromMCOj
and test whetherqj is inMCOi

.

4. Use results of steps 1-3 to determine which two model classrelations could hold.

5. Repeat steps 2-4 for a predetermined number of iterations.
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MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

M = N M > N M < N
q in 

MC(Oi)
q not in
MC(Oi)

p in 
MC(Oj)

p not in
MC(Oj)

MC(Oi)

MC(Oj)

q in 
MC(Oi)

q not in
MC(Oi)

q not in
MC(Oi)

q in 
MC(Oi)

MC(Oj)

MC(Oi)

Figure 4.7: Checkingp againstOj, q againstOi, and sizes ofM andN

To see how this heuristic works, start at Step 1 and suppose that the result isM < N .

Then, as can be seen from Figure 4.3, only three model-class relations could possibly hold:

(1) MCOi
is contained byMCOj

; (2) MCOi
andMCOj

overlap; or (3)MCOi
andMCOj

are disjoint.

Suppose that at Step 2 it is found thatpi is not inMCOj
. Then, as can be seen from

Figure 4.4, only three model-class relations could possibly hold: (1)MCOi
containsMCOj

;

(2)MCOi
andMCOj

overlap; or (3)MCOi
andMCOj

are disjoint.

Now suppose that at Step 3 it is found thatqj is inMCOi
. Then, as can be seen from Figure

4.5, four of the five model-class relations could possibly hold: (1)MCOi
containsMCOj

; (2)

MCOi
is contained byMCOj

; (3) MCOi
andMCOj

overlap; or (4)MCOi
andMCOj

are

identical.

In Step 4 we combine the information from Steps 1, 2, and 3, with the result that there is

only one model-class relation that could hold: overlaps (Figure 4.7).

107



Note that although Step 1 needs to be done only once (sinceM andN do not change),

nevertheless it may pay to iterate Steps 2 and 3, if the resultat Step 4 is not a single model-

class relation.

After each iteration of Steps 2 and 3, the end result will be that at most two model-classes

relations could hold. It is possible that subsequent iterations can reduce the number of possible

model classes to just one: Overlap. Consider, for instance, Figure 4.8, which shows different

quadrants for each test of whetherpi is in MCOj
and qj is in MCOi

. Figure 4.9 shows

which model-class relations could hold after a second iteration of testingpi in MCOj
andqj

in MCOi
.

For instance, the third row of Figure 4.10 shows that for all relative values ofM and

N , if the first iteration yieldsA (p1 is in MCOj
and q1 is also inMCOi

) and the second

iteration yieldsC (p2 is not inMCOj
but q2 is in MCOi

), then the model-class relation must

be Overlap.

In this case, with just two iterations, the heuristic has determined the unique relation that

exists between the model classes of the ontologies, even though, by assumption, it is not

feasible to use an algorithm to make this determination.

Note that this heuristic is not guaranteed to narrow the possibilities down to just one model-

class relation. In fact, the heuristic will give this resultonly when the relation between model

classes is Overlap.
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p in MC(O2)

p not in MC(O2)

q in MC(O1) q not in MC(O1)

A B

C D

Figure 4.8: The four quadrants of possible results for each iteration

The different possible outcomes of using this heuristic are:

1. The heuristic narrows down the possible model-class relations to just one: Overlap.

2. The heuristic narrows down to just two possible model-class relations, which could

be: 1) Overlap or Contains; 2) Overlap or Contained by; 3) Overlap or Disjoint; or 4)

Overlap or Identical.

The heuristic always narrows down either to the single relation Overlap or to one of the 4

pairs of model-class relations just mentioned.

In terms of semantic interoperability, the heuristic will allow us to draw one of the follow-

ing conclusions:

1. The two ontologies are semantically interoperableexactlyat Level 1.

2. Oi is semantically interoperable withOj at Levels 1 and 2A.

3. Oi is semantically interoperable withOj at Levels 1 and 2B.

109



4. The two ontologies are semantically interoperableat mostat Level 1.

5. The two ontologies are semantically interoperable at Level 1 or at Level 3.

Or, in terms of the compatibility conditions that underlie our definitions of semantic inter-

operability, calling our ontologiesOi andOj,

1. it is not possible to have a query that evaluates to True in all models ofOi but to False

in all models ofOj (compatibility condition 1); and it is not possible to have aquery

that evaluates to False in all models ofOi but to True in all models ofOj (compatibility

condition 2).

2. it is not possible to have a query that evaluates to True in all models ofOi, but to True in

some models ofOj and to False in other models ofOj (compatibility condition 3); and

it is not possible to have a query that evaluates to True in allmodels ofOi but to False in

all models ofOj (compatibility condition 1); and it is not possible to have aquery that

evaluates to False in all models ofOi, but to True in some models ofOj and to False

in other models ofOj (compatibility condition 4); and it is not possible to have aquery

that evaluates to False in all models ofOi but to True in all models ofOj (compatibility

condition 2).

3. it is not possible to have a query that evaluates to True in all models ofOj, but to True in

some models ofOi and to False in other models ofOi (compatibility condition 5); and

it is not possible to have a query that evaluates to True in allmodels ofOi but to False in

all models ofOj (compatibility condition 1); and it is not possible to have aquery that

evaluates to False in all models ofOj, but to True in some models ofOi and to False
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in other models ofOi (compatibility condition 6); and it is not possible to have aquery

that evaluates to False in all models ofOi but to True in all models ofOj (compatibility

condition 2).

4. Either it is not possible to have a query that evaluates to True in allmodels ofOi but

to False in all models ofOj (compatibility condition 1) and it is not possible to have

a query that evaluates to False in all models ofOi but to True in all models ofOj

(compatibility condition 2);or none of the six compatibility conditions given in Section

3.4.2, Definition 2 (for Level 3 Semantic Interoperability)holds betweenOi andOj.

5. Either it is not possible to have a query that evaluates to True in allmodels ofOi but to

False in all models ofOj (compatibility condition 1) and it is not possible to have a query

that evaluates to False in all models ofOi but to True in all models ofOj (compatibility

condition 2);or all six of the compatibility conditions given in Section 3.4.2, Definition

2 (for Level 3 Semantic Interoperability) hold betweenOi andOj.

4.4 How the Heuristic Performs

The discussion in the previous section of the workings of theheuristic showed that it will

always, in a single pass through steps 1-4, reduce the numberof possible model-class relations

from five to at most two. One might still question, ‘how well the heuristic performs,’ in the

sense of asking what is the likelihood of obtaining any of theparticular outcomes listed in the

previous section.

To answer this question, we consider basic empirical probabilities associated with steps

1 through 4 for the case whereM > N . The other two cases (M = N andM < N ) can
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be analyzed similarly. Assuming thatM > N , we ask and answer the following questions

related to the different possible outcomes of the heuristic.

If the model-class relation is overlap, what is the probability that one pass through steps 1

through 4 will show that:

• the model-class relation betweenOi andOj is exactly overlap?

• the model-class relation betweenOi andOj is either overlap or contains?

• the model-class relation betweenOi andOj either overlap or disjoint?

The pattern for asking and answering other questions of thistype (e.g., ‘If the model-class

relation is disjoint, what is the probability that one pass through steps 1 through 4 will show

that the model-class relation betweenOi andOj is either disjoint or overlaps?) is the same.

To take a simple numerical example, which is generalized below, let M = 1000 be the

number of models in the model class ofOi, N = 500 be the number of models in the model

class ofOj, andK = 100 be the number of models that the model classes have in common.

Then, the probability that, in one pass through steps 1 through 4, the heuristic shows that

the model-class relation betweenOi andOj is exactly overlap (Figure 4.7) is the probability

that a randomly selected modelp from Oi is in MCOj
and a randomly selected modelq from

Oj is not in MCOi
(Figure 4.10). Call this probabilityP1. ThenP1 = (100/1000)*(400/500)

= (.1)(.8) = 0.08.

Similarly, the probabilityP2 that in one pass through steps 1 through 4, the heuristic shows

that the model-class relation betweenOi andOj is either overlap or contains(Figure 4.7) is

the probability that a randomly selected modelp from Oi is in MCOj
and a randomly selected

modelq from Oj is in MCOi
, plus the probability that a randomly selected modelp from Oi
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is not in MCOj
and a randomly selected modelq from Oj is in MCOi

(Figure 4.10). ThenP2

= (100/1000)*(100/500) + (900/1000)*(100/500) = (.02) + (.18) = 0.20.

Similarly, the probability that, in one pass through steps 1through 4, the heuristic shows

that the model-class relation betweenOi andOj is either overlap or disjoint(Figure 4.7) is

the probability that a randomly selected modelp from Oi is not in MCOj
and a randomly

selected modelq from Oj is not in MCOi
(Figure 4.10). Call this probabilityP3. ThenP3 =

(900/1000)*(400/500) = (.9)*(.8) = 0.72.

In general, givenM,N , andK as above,

• P1, the probability that in one pass through steps 1 through 4 the heuristic shows that the

model-class relation betweenOi andOj is exactly overlap, is((K/M)∗ ((N −K)/N)).

• P2, the probability that in one pass through steps 1 through 4 the heuristic shows that

the model-class relation betweenOi andOj is either overlap or contains, is ((K/M) ∗

(K/N)) + (((M − K)/M) ∗ (K/N)).

• P3, the probability that in one pass through steps 1 through 4 the heuristic shows that the

model-class relation betweenOi andOj is either overlap or disjoint, is (((N −K)/N)∗

((N − K)/N).

The above analysis of the performance of the heuristic made use of the values of M and

N, which are assumed known in scenario 2, but also of the valueK ( the number of models in

common to the ontologies’ model classes), which in Scenario2 is unknown. So the question

may be asked, “How do you know K?” to which the answer is “We don’t.” Then the question

becomes, “So of what use is the above analysis if you don’t know K?” The answer is that the

above analysis shows the constraints that operate when trying to assess the performance of the

113



heuristic. That the heuristic performs according to the probabilities given: in any instance of

scenario 2, probabilities of the kinds given above are at theones in play.

The above analysis shows that the performance of the heuristic depends on K, and it shows

exactly how. What one can take away from this analysis is that the performance of the heuris-

tic, for any given pair of ontologies that fall into Scenario2, depends on the relative amount of

overlap between the model classes (with the details spelledout by probabilities like the ones

above).

4.5 Finite versus Tractable

One consequence of the assumptions given in Section 4.1 is that every model of each ontology

is finite. A second consequence of these assumptions is that the model class of each ontology

is also finite, i.e., there are only finitely many models in each model class. This fact follows

from two other facts: (1) the signature of each ontology is finite, and therefore, since we also

assume the size of the logical domain is equal to the number ofentities in the conceptual

domain, the number of “possible realizations” (Suppes, 2002, pg. 26) of this finite signature is

finite; and (2) the model class of an ontology is a subset of thenumber of possible realizations

of the signature of the ontology.

Even though each ontology’s model class will be finite, thesemodel classes may still be

too large to be practically computable. To gain some idea of how large the size of a model class

might be, consider the upper bound on the number of possible models of a given ontology.

This upper bound is obtained by calculating how many models could possibly be con-

structed based on the signature alone, disregarding any possible axioms or data tuples. For an

114



ontologyOi, call this numberUOi
. An actual ontologyOi will contain axioms and data tuples,

which constrain the number of models in the model class of theontology, so the number of

possible models ofOi should generally be at least several orders of magnitude smaller than

UOi
. It is nevertheless instructive to see how rapidlyUOi

grows as the number of constant

symbols and relation symbols increases.

Consider the ontologyO1 from Chapter 3 (Figure 3.1) that contains 4 constant symbols

and 1 binary relation symbol. There are42 = 16 possible binary relations that could be in any

realization of this signature. Since a given model could contain anywhere from 0 through 16

of these relations, the total number of models possible is the sum of all the different ways that

a model could contain0, 1, 2, . . . 16 of these relations. That sum is given by:
∑

16

i=0
C(16, i) =

65, 536, whereC(16, i) is the number of ways of choosingi objects from 16 objects.

Note that each of the ontologies in Figures 3.1 and 3.2 has only 9 models. Thus, the data

and axioms of those ontologies constrain the model classes sharply, from a possible 65,536

models to just 9.

Consider now an ontology with 6 domain elements, 4 unary relations (classes), and 2

binary relations (e.g., any of the four sample ontologies inAppendix A).

Without any axioms or data tuples specified in the ontology, amodel for such an ontology

could contain4 ∗ 6 = 24 1-tuples for the6 entities and the4 unary relations (i.e., each of

the six entities could be a town, a road, a river, or a state). In addition, considering the

signature alone, a model of the ontology could contain6 ∗ 6 = 36 2-tuples for one of the

binary relations (e.g.,in(Bangor,Maine)) and6 ∗ 6 = 36 2-tuples for the other binary relation

(e.g.,through(I95,Bangor)). Taken together, then, any model for such an ontology couldhave

from 0 to 4∗61 +2∗62 = 96 tuples. That is, the model class of such an ontology could contain
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∑
96

i=0
C(96, i) structures that could be models. In other words, the potential size of the model

class of this ontology is
∑

96

i=0
C(96, i) or more than79 ∗ 1027.

In general, for an ontologyO with d domain elements andji relations of arityi > 0, the

number of tuples that could be in any model isP =
∑

i ji(d
i). Any model could have from 0

to P of these relations. Thus, the upper bound on the number of possible models (assuming

the ontology has no axioms and no data tuples) isUO =
∑P

i=0
C(P, i).

Each of the four sample ontologies in Appendix A actually hasmany fewer models, by or-

ders of magnitude. Specifically, the ontology with the most models is ch5O4.in, with187, 392

models, is about18 orders of magnitude smaller than79 ∗ 1027.

Yet, for ontologies that describe dozens or hundreds of entities, classes, and relations, even

when these have many axioms and data tuples, the finite numberof models in their model

classes may still be too large to be practically computed. Thus, “finite” does not always mean

“practically computable.” So, in practice, it may not always be possible to compare the two

model classes directly, in order to determine the model-class relation that holds between the

ontologies. Whether or not it is possible depends on several factors, including the number of

axioms and data tuples relative to the number of constant andrelation symbols in the domain,

the detail with which a given domain is modeled, and the computational resources available

to compute the model classes. An investigation into these factors lies outside the scope of this

thesis.

116



MC(Oj)

MC(Oi)(A,A)

(A,B)

(A,C)

(A,D)

(B,A)

(B,B)

(B,C)

(B,D)

(C,A)

(C,B)

(C,C)

(C,D)

(D,A)

(D,B)

(D,C)

(D,D)

MC(Oi)

MC(Oj)

M = N M > N M < N

MC(Oi)

MC(Oj)
MC(Oj)

MC(Oi)

MC(Oi)

MC(Oj)

MC(Oi)

MC(Oj)

MC(Oj)

MC(Oi)

MC(Oj)

MC(Oi)

Figure 4.9: Possible model-class relations after 2 checks of p andq
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Figure 4.10: Example where model-class relation is Overlap
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Chapter 5

IMPLEMENTATIONS

This chapter implements one algorithm and one heuristic that test for the model-class relation

that exists between two example geospatial ontologiesOi andOj. The algorithm determines

exactly which one of the five model-class relations (Figure 4.1) holds, and based on the results

of Sections 3.4 and 3.5, the level at which the two ontologiesare semantically interoperable.

The heuristic (Section 4.3) is not guaranteed to identify a single model-class relation that

holds. This heuristic could identify a single relation if that relation is Disjoint, or it could

identify two possible model-class relations (Section 4.3). Thus, the heuristic, though it is not

guaranteed to produce a definitive level of semantic interoperability of the ontologies, will

always reduce the number of possible model-class relationsthat could hold from five to at

most two (Figure 4.7).

The models for all the ontologies in this chapter were generated using SEM (Zhang and

Zhang, 1995), with source code at:ftp://ftp.cs.uiowa.edu/pub/hzhang/sem/sem.tar.Z. Some

changes were needed to get the source code to compile. Permission was granted by the code’s

author (J. Zhang) to make these changes and to modify it as needed for research purposes.
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5.1 Implementation for Scenario 1, Exact

In this Scenario, the full model classes of both ontologies can be calculated, stored on disk,

and compared to determine the exact model-class relation that holds between them. From the

results of Section 3.4, the exact level of semantic interoperability is determined.

In the two ontologies that follow, there are six entities (Route2, Orono, Bangor, Maine,

I95, and river1), four classes (state, town, road, and river), and two binary spatial relations

(‘in’ and ‘through’). Each ontology contains a number of axioms and data tuples. Instead

of presenting these ontologies in the style of previous chapters, we present English-language

summary statements of the axioms and data used in the SEM filesthemselves,ch5O1.in

andch5O2.in (Appendix A). Note that these English-language summary statements are just

approximations to the exact formulations given in the.in files. They are provided for the

reader’s convenience.
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The following statements provide an English-language version of the ontology that is spec-

ified in the file ch5O1.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

• IN is reflexive, antisymmetric, and transitive.

• THROUGH is antisymmetric and transitive.

• Towns, roads, rivers, and states are all pairwise disjoint.

• if x and y are different roads/rivers/towns/states, then xis not IN y

• if x is a town/state/river and y is a road, then x is NOT IN y

• if x is a road/town/state and y is a river, then x is NOT IN y

• if x is a state and y is a town, then x is NOT IN y

• if x is a state and y is a town, then x does NOT go THROUGH y

• if x is a town/state/river and y is a road, then x does NOT go THROUGH y

• if x is a town/state and y is a river, then x does NOT go THROUGHy

• if x is a town/state and y is a town, then x does NOT go THROUGH y

• if x goes THROUGH y, then y is NOT IN x

• Orono and Bangor are towns.

• Route2 and I95 are roads.

• Maine is a state.
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• River1 is a river.

• Route2 is IN Orono and IN Bangor.

• Orono, Bangor, and River1 are IN Maine.

• River1 goes THROUGH Bangor, Orono, and Maine.

• I95 goes THROUGH, Bangor, Orono, and Maine.

• Route2 goes THROUGH Bangor, Orono, and Maine.
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The following statements provide an English-language version of the ontology that is spec-

ified in the file ch5O2.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

• IN is reflexive, antisymmetric, and transitive.

• THROUGH is antisymmetric and transitive.

• Towns, roads, rivers, and states are all pairwise disjoint.

• If x and y are different roads/rivers/towns/states, then xis NOT IN y.

• If x is a town/state/river and y is a road, then x is NOT IN y

• If x is a road/town/state and y is a river, then x is NOT IN y.

• If x is a state and y is a town, then x is NOT IN y.

• If x is a state and y is a town, then x does NOT go THROUGH y.

• If x is a town/state/ and y is a road, then x does NOT go THROUGHy.

• If x is a town/state/road and y is a river, then x does NOT go THROUGH y.

• If x is a town/state and y is a town, then x does NOT go THROUGH y.

• If x goes THROUGH y, then y is not IN x.

• Orono and Bangor are towns.

• Route2 and I95 are roads.

• Maine is a state.
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• River1 is a river.

• Orono and Bangor are IN Maine.

• River1 is IN Maine.

• River1 goes THROUGH Bangor, Orono, and Maine.

• I95 goes THROUGH, Bangor, Orono, and Maine.

• Route2 goes THROUGH Bangor, Orono, and Maine.

• Orono does NOT go THROUGH Maine.

• Bangor does NOT go THROUGH Maine.
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5.2 Discussion: Scenario 1, Exact

The two ontologies specified inch5O1.in andch5O2.in are very similar, differing only in

a few axioms and data tuples. There are 800 models of the ontology ch5O1.in, and 1250

models of the ontology inch5O2.in.

The SEM program was used to generate all the models (having six entities, four classes,

and two binary relations) for the ontologies inch501.in andch5O2.in. The resulting SEM

output files (see Appendix A for what these SEM output files contain) were processed by a

Perl program (Appendix B) to determine exactly which model-class relation holds between

the two ontologies.

The output from this Perl program was:

number of models in ontology 1 is: 800

number of models in ontology 2 is: 1250

number of models in ontology 2 but not in ontology 1: 1190

number of models in ontology 1 but not in ontology 2: 740

number of models in both ontology 1 and ontology 2 is: 60

Thus, because there are some models in the intersection of the two model classes, and

because each model class also contains models that are not inthe other model class, the

unique model-class relation holding between the model classes of the two ontologies isover-

lap. Therefore, based on the arguments in Sections 3.3.1 and 3.4, the ontology inch5O1.in is

Level-1 semantically interoperablewith the ontology inch5O2.in. What this means in terms

of the compatibility conditions that underlie our definitions of different levels of semantic

interoperability (Section 3.4.1, Definition 1) is that
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• it is not possible to have a query that evaluates to True in all models ofch5O1.in but to

False in all models ofch5O2.in (compatibility condition 1);

• it is not possible to have a query that evaluates to False in all models ofch5O1.in but to

True in all models ofch5O2.in (compatibility condition 2).

5.3 Implementation for Scenario 2, Heuristic

In this scenario, we use two ontologies in the filesch5O3.in andch5O4.in (Appendix A).

Each of these ontologies uses the same six entities, four classes, and two binary spatial rela-

tions as the two ontologies in the previous section. Recall (Section 4.2.1) that by assumption

in Scenario 2: (1) the model classes of the ontologies can be computed and stored on disk, (2)

the number of models in each model class is known, and (3) the computing resources (e.g.,

time, memory) are not available to implement an algorithm that determines exactly which

model-class relation holds. Thus for Scenario 2 we implement a heuristic (Section 4.3) that

narrows down the possibilities of which model-class relations could hold.
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The following statements provide an English-language version of the ontology that is spec-

ified in the file ch5O3.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

• IN is reflexive, antisymmetric, and transitive.

• THROUGH is antisymmetric.

• Towns, roads, rivers, and states are all pairwise disjoint.

• If x and y are different roads/rivers/towns/states, then xis NOT IN y.

• If x is a town/state/river and y is a road, then x is NOT IN y

• If x is a road/town/state and y is a river, then x is NOT IN y.

• If x is a state and y is a town, then x is NOT IN y.

• If x is a state and y is a town, then x does NOT go THROUGH y.

• If x is a town/state/river and y is a road, then x does NOT go THROUGH y.

• If x is a town/state/road and y is a river, then x does NOT go THROUGH y.

• If x is a town/state and y is a town, then x does NOT go THROUGH y.

• Orono and Bangor are towns.

• Route2 and I95 are roads.

• Maine is a state.

• River1 is a river.
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• Orono and river1 are IN Maine.

• River1 goes THROUGH Bangor and Orono.

• I95 goes THROUGH, Bangor and Orono.

• Route2 goes THROUGH Bangor and Orono.

• Bangor does NOT go THROUGH Maine.

• Orono does NOT go THROUGH Maine.
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The following statements provide an English-language version of the ontology that is spec-

ified in the file ch5O4.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

• IN is reflexive, antisymmetric, and transitive.

• THROUGH is antisymmetric.

• Towns, roads, rivers, and states are all pairwise disjoint.

• If x and y are different roads/rivers/towns/states, then xis NOT IN y.

• If x is a town/state/river and y is a road, then x is NOT IN y

• If x is a road/town/state and y is a river, then x is NOT IN y.

• If x is a state and y is a town, then x is NOT IN y.

• If x is a state and y is a town, then x does NOT go THROUGH y.

• If x is a town/state/river and y is a road, then x does NOT go THROUGH y.

• If x is a town/state and y is a river, then x does NOT go THROUGHy.

• If x is a town/state and y is a town, then x does NOT go THROUGH y.

• Orono and Bangor are towns.

• Route2 and I95 are roads.

• Maine is a state.

• River1 is a river.
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• Orono and River1 are IN Maine.

• River1 goes THROUGH Bangor and Orono.

• I95 goes THROUGH, Bangor and Maine.

• Route2 goes THROUGH Bangor, Orono, and Maine.

• Bangor does NOT go THROUGH Maine.

• Orono does NOT go THROUGH Maine.
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5.4 Discussion: Scenario 2, Heuristic

The ontologies specified inch5O3.in andch5O4.in are very similar to each other, differing

only in a few of their axioms and data tuples. There are 93,696models of the ontology

specified inc5O3.in and 187,392 models of the ontology specified inc5O4.in.

The SEM program was used to generate all the models (having six entities, four classes,

and two binary relations) for the ontologies inch503.in andch5O4.in. The resulting SEM

output files,c53.out andc54.out, were processed by a Perl program (Appendix B) to deter-

mine which model-class relation(s) between the two ontologies could hold.

The output from one run of this Perl program was:

p1 is 25015; p2 is 22703

q1 is 12731; q2 is 154842

model 25015 in c53.out found as model 47829 in c54.out

model 22703 in c53.out not found in c54.out

model 12731 in c54.out not found in c53.out

model 154842 in c54.out not found in c53.out

The heuristic finds that model 25015 ofc53.out occurs inc54.out (as model 47829), but

that model 12731 ofc54.out does not occur inc53.out. Thus, in the language of Section 4.3,

when testingp1 for membership inOj andq1 for membership inOi, we are in the upper-left

quadrant of Figure 4.8, the quadrant labeledA.
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The above results also show that the heuristic finds that model 22703 ofc53.out does not

occur inc54.out, and that model 154842 ofc54.out does not occur inc53.out. Thus, in the

language of Chapter 4, when testingp2 for membership inOj andq2 for membership inOi,

we are in the lower-right quadrant of Figure 4.8, the quadrant labeledD.

Putting together this information we find that the appropriate row and column of Figure

4.8 is the row for the pair(A,D) and the column forM < N . Thus, according to Figure 4.9,

we have determined that the unique model-class relation between the model classes of the two

ontologies isoverlap.

Therefore, based on the arguments in Sections 3.3.1 and 3.4,the ontology inch5O3.in is

Level-1 semantically interoperablewith the ontology inch5O4.in.

What this means in terms of the compatibility conditions thatunderlie our definitions of

different levels of semantic interoperability (Section 3.4.1, Definition 1) is that

• it is not possible to have a query that evaluates to True in all models ofch5O3.in but to

False in all models ofch5O4.in (compatibility condition 1);

• it is not possible to have a query that evaluates to False in all models ofch5O3.in but to

True in all models ofch5O4.in (compatibility condition 2).
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Chapter 6

SUMMARY, CONCLUSIONS, AND

FUTURE WORK

6.1 Thematic Summary

Chapter 1 began with a simple example (Sections 1.1 and 1.3) that provided the intuition

and motivation for the treatment of semantic interoperability in Chapters 3-5. That example

(Figures 1.3 and 1.4) highlighted how people can disagree about what certain agreed-upon

statements actuallymean. It was suggested that at the root of such disagreements are often

different implicit assumptions people have about what the agreed-upon statementsentail, i.e.,

what does or does not follow logically from those statements.

Ontologies can help get to the bottom of such disagreements,because they allow people to

specify their conceptualizations of a given domain in a machine-processable way. In particular,

when formal ontologies are used in conjunction with reasoning software that can compute

inferences, queries can be put to these ontologies to test whether certain statements follow as
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logical consequences from the ontologies. Using ontologies as specifications in this way will

not eliminate any disagreements that the people who write them may have about meanings,

but it will allow, under appropriate assumptions, machinesto probe the implicit information

in these specifications and so be able to make explicit the entailments (logical consequences)

that are implicit in the specifications.

In particular, if the ontologies are specified using a logical language whose semantics is

given by models (sets with a certain structure), it is possible in some cases to compute all the

models of a given ontology and so get a handle on its semantics. In these cases, questions about

whether a given statement follows as a logical consequence of the (statements of the) ontology

can then be analyzed directly in terms of models. A statementis a logical consequence of (the

statements of) an ontology if it is true in all models of the ontology.

In cases where not all the models of the ontologies can be computed (e.g., for infinite

domains, or for finite domains but intractable model classes), an alternate way to analyze

questions of logical consequence can be found through prooftheory. With suitable assump-

tions — dealing with the decidability of the logical language, the computational properties of

the proof calculus employed, and the connection between theresults of syntax and semantics

(i.e., completeness) for the given proof calculus — a computer can determine via proof theory

whether a given statement is a logical consequence (syntactic and, by soundness, semantic) of

the statements in the ontology.

For questions dealing with semantics, though, the arguments based on models (and se-

mantic logical consequence) are often more intuitive than the arguments based on proofs (and

syntactic logical consequence). For this reason, in this thesis, questions about semantic inter-

operability were asked and answered in terms of models, not proofs. That is, in explaining
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what the explicit statements of an ontology collectively ‘mean,’ models were used as the intu-

itive background that could accommodate notions of implicit meanings, as well as the multiple

possible ‘worlds’ that are consistent with a given ontology.

This model-based analysis of semantics connects the motivating example in Chapter 1 to

the more detailed analyses in Chapters 3-5, via the followingsteps.

1. Geospatial ontologies are used to specify two plausible conceptualizations of a given

geographic domain.

2. Certain assumptions of finiteness are imposed on the ontologies, and all the models of

each ontology are computed.

3. A query to an ontology is a statement (written in the language of the ontology specifi-

cation) that evaluates to true or false (see Section 3.1.2),according to whether or not it

follows as a logical consequence of the statements of the ontology.

4. A query follows as a logical consequence of an ontology if it is true in all models of the

ontology.

5. The test for semantic interoperability employs the notion of ‘compatible query results,’

which considers whether a query that is entailed by (followsas a logical consequence

of) one ontology is also entailed by another ontology.

6. Different kinds of compatible query results are defined, indicating greater or lesser de-

grees of interoperability between two ontologies.

7. Different degrees of semantic interoperability aredefinedin terms of different kinds of

compatible query results.
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8. Mathematical results connect the different kinds of compatible query results to the set-

theoretic relationship (e.g., Overlaps) between the modelclasses of the ontologies.

9. These mathematical results are used in conjunction with the calculated models of each

ontology tocomputethe degree of semantic interoperability of the two ontologies in

terms of the set-theoretic relation that holds between their model classes.

10. In some cases, when the model classes are extremely large(on the order of billions or

more models in each class), the exact level of semantic interoperability may not be able

to be determined.

6.2 Answer to the Research Question

The research question posed in Chapter 1, Section 1.7.1 is:When two geospatial ontologies

use the same language to describe the same domain, but differin the model-theoretic semantics

of their primitive spatial-relation symbols, in what sense and to what extent are the ontologies

semantically interoperable?

Chapter 3 created the framework (formal ontologies with their semantics specified by

model-theoretic semantics, Sections 3.1 and 3.2) and the new constructs (compatibility condi-

tions, Section 3.3.1) to answer this research question.

The answer to the research question is as follows:

When two geospatial ontologies use the same language to describe the same domain, but

differ in the model-theoretic semantics of their primitivespatial-relation symbols, they are

semantically interoperablein the sense thatthe evaluations of arbitrary queries put to each

ontology are ‘compatible’ as determined by the six compatibility conditions (Figure 3.19).
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When two geospatial ontologies use the same language to describe the same domain, but

differ in the model-theoretic semantics of their primitivespatial-relation symbols, they are

semantically interoperableto the extent thatthey meet the different groups of compatibility

conditions that correspond to the five model-class relations between ontologies (Figures 3.19

and 3.18).

6.3 Results Summary

In answering this research question, this thesis has met itsresearch goal set forth in Sec-

tion 1.7.2: “to create a method to assess the extent of semantic interoperability between two

geospatial ontologies” (based on the requirements in Section 1.6), which are to take into ac-

count both the models of the ontologies and the queries that can be put to the ontologies.

In meeting this research goal, this thesis has:

1. investigated the notion of semantic interoperability between two geospatial ontologies

when these ontologies differ only in the semantics of their primitive spatial relations

(Figure 2.1). Two geospatial ontologies aredifferent“in the semantics of their primitive

spatial relations” when the models of the ontologies differ, i.e., when the sets of models

of the two ontologies are not equal as sets.

2. defined different degrees ofpartial semantic interoperabilityof geospatial ontologies

in terms ofcompatibility conditions, which in turn are defined in terms of models and

queries.

136



3. demonstrated that the different levels of semantic interoperability that exist between two

ontologies can be determined based on the set-theoretic relation (e.g., disjoint, overlaps)

that holds between the sets of models of the two ontologies.

4. implemented two procedures for determining the relationthat holds between the sets of

models of the ontologies. The first procedure calculates exactly which relation holds.

The second procedure uses weaker assumptions and is guaranteed only to narrow down

the possibilities of which relations could hold from five to two.

What was called in Section 3.4.1 ‘Level 1 semantic interoperability’ between ontologies

is the most fundamental level of semantic interoperabilitybecause it guarantees that for no

query Q will Q be entailed by one ontology while¬Q is entailed by the other ontology.

This condition thus represents a minimum ‘safety’ condition between ontologies. Given that

one of the goals of using ontologies is to have machines process meanings without input

from people, it is essential to know when the ontologies might give different results to the

same query. Level 1 semantic interoperability insures a basic degree of compatibility between

query results, without which it is unlikely that people would want to trust the interpretations

of meanings to machines.

The definitions in Chapter 3 of five different levels of semantic interoperability make sense

even when certain finiteness assumptions (Section 4.1) do not hold, though the actual compu-

tation of the level of semantic interoperability may not be possible in these cases. In this sense,

this thesis has provided a platform upon which further discussions of semantic interoperability

can be based.

137



This thesis also showed that for the kind of geospatial ontologies considered here, the

question of whether there is anything “special about spatial” has two answers: No and Yes.

No, in the sense that the method of analysis of semantic interoperability between ontologies

remains the same whether spatial properties are present in the ontologies or not. Yes, in

the sense that one supposes that ingeospatialontologies, particular spatial properties will be

specified in the ontologies.

6.4 Significance of the Research Contributions

As was shown in Chapters 4 and 5, given certain finiteness assumptions, the levels of semantic

interoperability defined in Chapter 3 can be computed. However, as was noted in Section 4.5,

when the total number of entities, unary relations, and binary relations exceeds more than a

few dozen, the number of possible models becomes very large:even with appropriate axioms

and data tuples constraining the space of possible models, the computations — at least given

the algorithms used in SEM — are quickly rendered intractable.

Therefore, one might ask, “What is the value of this research if, for realistic ontologies of

hundreds or thousands of entities, classes, and binary relations, it cannot guarantee an effective

mechanism to compute the actual level of semantic interoperability between two ontologies?”

To answer this question, recall the research contributionsmentioned in Section 1.9.2: the

novel analysis of semantic interoperability in terms of models and queries; the conceptual

clarity achieved by narrowing the focus to one small kind of difference between ontologies;

and a foundation for further study.
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The research presented in this thesis is significant for two major reasons that are inde-

pendent of whether the actual level of semantic interoperability can be computed in a given

case.

The first reason is that the novel analysis of semantic interoperability in terms of models

and queries can serve as a touchstone to assess claims about semantic interoperability, in two

ways.

First, if a claim of semantic interoperability is being madein the context of formal ontolo-

gies with model-theoretic semantics, this thesis providesa basis for evaluating whether such

a claim has standing. One is now in a position to challenge anysuch claims: “Since for your

ontologies, semantics has something to do with models, can you explain how your definition

of semantic interoperability relates to the models of the ontologies?”

Second, if a claim of semantic interoperability is being made in a context that isnot con-

cerned with formal ontologies and model-theoretic semantics, this thesis provides the basis

to question the underlying notion of semantic interoperability. One is now in a position to

ask: “Can you explain in detail exactly what you mean by ‘semantics’ and in exactly what

sense your two ontologies are semantically interoperable according to your understanding of

semantics?”

The research presented here also makes a contribution in that that readers of this research

are equipped ask probing, detailed questions about semantic interoperability thatthey might

never before have been able to, or thought to, ask. Thus, the research presented here serves

not only as a touchstone for assessing claims of semantic interoperability, but also asa spring-

board for launching new research questionsabout exactly what it means for two ontologies to

be semantically interoperable.
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6.5 Conclusions

When two geospatial ontologies are formulated in a sublanguage of the language of first-order

logic, and certain assumptions can be made about the finiteness of the individual models of

the ontologies and of their model classes, then it is possible to compute the level of semantic

interoperability between these ontologies. Regardless of whether or not the level of semantic

interoperability between ontologies can be computed, the definitions of these different levels

in terms of compatibility conditions between queries and models provides information and

insights that have not appeared previously in the literature.

This study is foundational in that it provides base-level results of semantic interoperability

for the case where two ontologies are the same in everything but the model-theoretic seman-

tics of their primitive relation symbols. These base-levelresults are the sharpest that can be

obtained, in the sense that relaxing any other assumptions of similarity—the number or names

of elements and relations on the domain, the logical languages used, etc.—would increase (or

at least not reduce) the variability between the ontologies, and so would make conclusions

about semantic interoperability harder to draw.

Thus, any analysis of semantic interoperability that considers models and model classes

would need to take the results of this thesis into account.
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6.6 Future Work

Among several promising areas for future work are the following.

6.6.1 Incorporating Additional Heterogeneities

This thesis focused in detail on one particular difference between ontologies (a difference in

the semantics of primitive relations). We have seen that theframework by Klein (2001) is

closest in spirit to the analysis of this thesis. It is likelythat further insights into semantic

interoperability can be gained by considering other heterogeneities described by Klein, not

just the differing semantics of primitives.

6.6.2 Explicating the Semantics in Methods for Integrating Ontologies

Much of the existing research on semantic heterogeneity andsemantic interoperability is car-

ried out so that different operations like integration or merging (Gomez-Perez et al., 2004;

Kalfoglou and Schorlemmmer, 2003) can be accomplished, with ‘good’ results as far as the

semantics goes.

Yet, in these operations, the most that is usually discussedare some kind of term-by-

term equivalences, or inclusion relations. It would be interesting to consider the connections

between:

1. the operations of integration and merging;

2. term-by-term equivalences and inclusion relations in carrying out these operations;
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3. what happens to the semantics of the individual ontologies when they are merged using

these equivalences and inclusion relations; and

4. a model-theoretic analysis of semantic interoperability.

6.6.3 Considering Infinite Rather than Finite Domains

Earlier chapters argued for the appropriateness of the assumptions of finiteness (of the con-

ceptual domain and of the corresponding non-logical vocabulary) used in this thesis. It was

also noted that these assumptions can render tractable for certain small ontologies the model-

theoretic computations described in Chapter 5. Further, analysis of individual queries by

proof-theoretic means is also decidable under these assumptions. That is, a terminating al-

gorithm can always be found to decide the question of whethera query is a logical conse-

quence of the ontology. It would interesting to investigatewhethertractablealgorithms could

be developed for certain special cases if the finiteness assumptions are relaxed.

6.6.4 Considering Finer Distinctions Between Model Classes

There are more subtle kinds of analyses that one could make ifone has available all models

of each model class. For instance, even with disjoint model classes, one could consider the

tuplesthat are common to both model classes. In this way, one could perhaps say something

worthwhile about certain queries and their satisfaction insome or all models of the ontologies,

even though such claims would not extend toall queries. Such an approach focuses directly

on the models and the tuples that make them up.
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A slightly different perspective would change the initial focus from the models to the

ontologies themselves, focusing on partitioning the ontologies and considering the kinds of

semantic interoperability that result from the partitioning. From this perspective one might

ask whether a partition of the ontologies into subgroups of entities, relations, and axioms

(e.g., just those entities ‘Bangor,’ ‘Orono,’ and ‘Maine,’ just the relation ‘in,‘ and just the

axioms of transitivity) results in a different level of semantic interoperability than that which

holds for the full ontologies.

6.6.5 Exploring Relation to Translational Approach

It would be useful and informative to carefully trace out thedifferent possible translational

approaches of semantic interoperability that are based on notions like that of isomorphism.

One focus of such an investigation could be on whether Level 3semantic interoperability, as

discussed in this thesis, is related to certain translational approaches. On the surface, Level 3

(or full) semantic interoperability would appear to be exactly what any translational approach

to semantic interoperability seeks to find. Detailed examples need to be developed and worked

out in order to verify whether or not this is indeed the case. Further, distinctions need to be

drawn between the analysis in this thesis, which seeks to ascertain a given level of semantic

interoperability, and the use of the translational approach, which seeks to create conditions

on languages and their interpretationsso thata certain kind of semantic interoperability is

guaranteed to exist. Additionally, one might study under what circumstances (i.e., given what

kinds of logical systems) such guarantees of semantic interoperability could be made.
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6.6.6 Exploring Relation to More Abstract Approaches

It would be useful and informative to relate the rather focused analysis of this thesis to the

broader and more abstract notions of semantic interoperability and ontology alignment pre-

sented in other works (e.g., Hitzler et al. (2006)).

6.6.7 Connecting to Ongoing Developments

The potential revival of OWL Space (Hobbs, 2006) could provide fundamental spatial con-

structs that could be broadly used in the geospatial community. In particular, it might be able

to be employed in whatever ontology or ontologies NGA decides to create. If so, the notions

of model classes and semantic interoperability will have role to play.

It would also be useful to explore how the ideas of semantic interoperability explicated

in this thesis correspond to the ideas of semantic interoperability intimated in Kuhn (2005b),

where the focus is on the semantics of service interfaces. Inthis vein, a useful stepping-off

point could be the research begun in Farrugia (2002).
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Appendix A

SAMPLE ONTOLOGIES AND PROGRAM OUTPUT

A.1 ch5O1.in

The SEM file forch5O1.in follows.

%% Chapter 5 Ontology 1

%% Sorts
( thing : Route2, Orono, Bangor, Maine, I95, river1 )

%% Functions

{ state : thing -> BOOL }
{ town : thing -> BOOL }
{ road : thing -> BOOL }
{ river : thing -> BOOL }

{ in : thing thing -> BOOL }
{ through : thing thing -> BOOL }

%% Clauses (Axioms)

% IN is reflexive, antisymmetric, and transitive

[ in(x,x) ]
[ x=y | -in(x,y) | -in(y,x) ]
[ -in(x,y) | -in(y,z) | in(x,z)]

% THROUGH is antisymmetric and transitive

[ x=y | -through(x,y) | -through(y,x) ]
[ -through(x,y) | -through(y,z) | through(x,z)]
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% towns, roads, rivers, and states are all
% pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]
[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x can’t be IN y

[ x=y | -road(x) | -road(y) | -in(x,y) ]
[ x=y | -road(x) | -road(y) | -in(y,x) ]

[ x=y | -river(x) | -river(y) | -in(x,y) ]
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y,x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
% then x is NOT IN y

[ -town(x) | -road(y) | -in(x,y) ]
[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN y

[ -road(x) | -river(y) | -in(x,y) ]
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[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x is NOT IN y

[ -state(x) | -town(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x does NOT go THROUGH y

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state/river and y is a road,
% then x does NOT go THROUGH y

[ -town(x) | -road(y) | -through(x,y) ]
[ -state(x) | -road(y) | -through(x,y) ]
[ -river(x) | -road(y) | -through(x,y) ]

% if x is a town/state and y is a river,
% then x does NOT go THROUGH y

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) ]

% if x is a town/state and y is a town,
% then x does NOT go THROUGH y

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% if x goes THROUGH y, then y is NOT IN x
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[ -through(x,y) | -in(y,x) ]

% data

[ town(Orono) ]
[ town(Bangor) ]
[ road(Route2) ]
[ road(I95) ]
[ state(Maine) ]
[ river(river1) ]

[ in(Route2, Orono) ]
[ in(Route2, Bangor) ]
[ in(Orono, Maine) ]
[ in(Bangor, Maine) ]
[ in(river1, Maine) ]

[ through(river1, Bangor) ]
[ through(river1, Orono) ]
[ through(river1, Maine) ]

[ through(I95, Bangor) ]
[ through(I95, Orono) ]
[ through(I95, Maine) ]

[ through(Route2, Bangor) ]
[ through(Route2, Orono) ]
[ through(Route2, Maine) ]

There are 800 models ofch5O1.in. A model forch5O1.in as it is produced by SEM looks
like the following, which is the first model in SEM’s output for ch5O1.in.

******** Model 1 ********

state(Route2) = $F
state(Orono) = $F
state(Bangor) = $F
state(Maine) = $T
state(I95) = $F
state(river1) = $F

town(Route2) = $F
town(Orono) = $T
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town(Bangor) = $T
town(Maine) = $F
town(I95) = $F
town(river1) = $F

road(Route2) = $T
road(Orono) = $F
road(Bangor) = $F
road(Maine) = $F
road(I95) = $T
road(river1) = $F

river(Route2) = $F
river(Orono) = $F
river(Bangor) = $F
river(Maine) = $F
river(I95) = $F
river(river1) = $T

in(Route2,Route2) = $T
in(Route2,Orono) = $T
in(Route2,Bangor) = $T
in(Route2,Maine) = $T
in(Route2,I95) = $F
in(Route2,river1) = $F
in(Orono,Route2) = $F
in(Orono,Orono) = $T
in(Orono,Bangor) = $F
in(Orono,Maine) = $T
in(Orono,I95) = $F
in(Orono,river1) = $F
in(Bangor,Route2) = $F
in(Bangor,Orono) = $F
in(Bangor,Bangor) = $T
in(Bangor,Maine) = $T
in(Bangor,I95) = $F
in(Bangor,river1) = $F
in(Maine,Route2) = $F
in(Maine,Orono) = $F
in(Maine,Bangor) = $F
in(Maine,Maine) = $T
in(Maine,I95) = $F
in(Maine,river1) = $F
in(I95,Route2) = $F
in(I95,Orono) = $F
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in(I95,Bangor) = $F
in(I95,Maine) = $F
in(I95,I95) = $T
in(I95,river1) = $F
in(river1,Route2) = $F
in(river1,Orono) = $F
in(river1,Bangor) = $F
in(river1,Maine) = $T
in(river1,I95) = $F
in(river1,river1) = $T

through(Route2,Route2) = $F
through(Route2,Orono) = $T
through(Route2,Bangor) = $T
through(Route2,Maine) = $T
through(Route2,I95) = $F
through(Route2,river1) = $F
through(Orono,Route2) = $F
through(Orono,Orono) = $F
through(Orono,Bangor) = $F
through(Orono,Maine) = $F
through(Orono,I95) = $F
through(Orono,river1) = $F
through(Bangor,Route2) = $F
through(Bangor,Orono) = $F
through(Bangor,Bangor) = $F
through(Bangor,Maine) = $F
through(Bangor,I95) = $F
through(Bangor,river1) = $F
through(Maine,Route2) = $F
through(Maine,Orono) = $F
through(Maine,Bangor) = $F
through(Maine,Maine) = $F
through(Maine,I95) = $F
through(Maine,river1) = $F
through(I95,Route2) = $F
through(I95,Orono) = $T
through(I95,Bangor) = $T
through(I95,Maine) = $T
through(I95,I95) = $F
through(I95,river1) = $F
through(river1,Route2) = $F
through(river1,Orono) = $T
through(river1,Bangor) = $T
through(river1,Maine) = $T
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through(river1,I95) = $F
through(river1,river1) = $F

Subsequent models in this section have a similar form. The only differences between
models are the values of$T (for True) and$F (for False) assigned to the relations.

A.2 ch5O2.in

The SEM file forch5O2.in follows.

%% Chapter 5 Ontology 2

%% Sorts
( thing : Route2, Orono, Bangor, Maine, I95, river1 )

%% Functions

{ state : thing -> BOOL }
{ town : thing -> BOOL }
{ road : thing -> BOOL }
{ river : thing -> BOOL }

{ in : thing thing -> BOOL }
{ through : thing thing -> BOOL }

%% Clauses (Axioms)

% IN is reflexive, antisymmetric, and transitive

[ in(x,x) ]
[ x=y | -in(x,y) | -in(y,x) ]
[ -in(x,y) | -in(y,z) | in(x,z)]

% THROUGH is antisymmetric and transitive

[ x=y | -through(x,y) | -through(y,x) ]
[ -through(x,y) | -through(y,z) | through(x,z)]
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% towns, roads, rivers, and states are
% all pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]
[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x is NOT IN y

[ x=y | -road(x) | -road(y) | -in(x,y) ]
[ x=y | -road(x) | -road(y) | -in(y,x) ]

[ x=y | -river(x) | -river(y) | -in(x,y) ]
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y,x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
% then x is NOT IN y

[ -town(x) | -road(y) | -in(x,y) ]
[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN y

[ -road(x) | -river(y) | -in(x,y) ]
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[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x is NOT IN y

[ -state(x) | -town(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x does NOT go THROUGH y

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state and y is a road,
% then x does NOT go THROUGH y

[ -town(x) | -road(y) | -through(x,y) ]
[ -state(x) | -road(y) | -through(x,y) ]

% if x is a town/state/road and y is a river,
% then x does NOT go THROUGH y

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) ]
[ -road(x) | -river(y) | -through(x,y) ]

% if x is a town/state and y is a town,
% then x does NOT go THROUGH y

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% if x goes THROUGH y, then y is NOT IN x
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[ -through(x,y) | -in(y,x) ]

% data

[ town(Orono) ]
[ town(Bangor) ]
[ road(Route2) ]
[ road(I95) ]
[ state(Maine) ]
[ river(river1) ]

[ in(Orono, Maine) ]
[ in(Bangor, Maine) ]

[ through(river1, Bangor) ]
[ through(river1, Orono) ]
[ through(river1, Maine) ]

[ through(I95, Bangor) ]
[ through(I95, Orono) ]
[ through(I95, Maine) ]

[ through(Route2, Bangor) ]
[ through(Route2, Orono) ]
[ through(Route2, Maine) ]

[ -through(Orono, Maine) ]
[ -through(Bangor, Maine) ]

There are 1250 models ofch5O2.in.

A.3 Program Output

The first Perl program in AppendixB produced the following output:

number of models in ontology 1 is: 800
number of models in ontology 2 is: 1250
number of models in ontology 2 but not in ontology 1: 1190
number of models in ontology 1 but not in ontology 2: 740
number of models in both ontology 1 and ontology 2 is: 60
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A.4 ch5O3.in

The SEM file forch5O3.in follows.

%% Chapter 5 Ontology 3

%% Sorts
( thing : Route2, Orono, Bangor, Maine, I95, river1 )

%% Functions

{ state : thing -> BOOL }
{ town : thing -> BOOL }
{ road : thing -> BOOL }
{ river : thing -> BOOL }

{ in : thing thing -> BOOL }
{ through : thing thing -> BOOL }

%% Clauses (Axioms)

% IN is reflexive, antisymmetric, transitive

[ in(x,x) ]
[ x=y | -in(x,y) | -in(y,x) ]
[ -in(x,y) | -in(y,z) | in(x,z)]

% THROUGH is antisymmetric

[ x=y | -through(x,y) | -through(y,x) ]

% towns, roads, rivers, and states are
% all pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]
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[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x is NOT IN y

[ x=y | -road(x) | -road(y) | -in(x,y) ]
[ x=y | -road(x) | -road(y) | -in(y,x) ]

[ x=y | -river(x) | -river(y) | -in(x,y) ]
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y,x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
% then x is NOT IN y

[ -town(x) | -road(y) | -in(x,y) ]
[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN y

[ -road(x) | -river(y) | -in(x,y) ]
[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x doesn’t be IN y

[ -state(x) | -town(y) | -in(x,y) ]
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% if x is a state and y is a town,
% then x does NOT go THROUGH y

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state/river and y is a road,
% then x does NOT go THROUGH y

[ -town(x) | -road(y) | -through(x,y) ]
[ -state(x) | -road(y) | -through(x,y) ]
[ -river(x) | -road(y) | -through(x,y) ]

% if x is a town/state/road and y is a river,
% then x does NOT go THROUGH y

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) ]
[ -road(x) | -river(y) | -through(x,y) ]

% if x is a town/state and y is a town,
% then x does NOT go THROUGH y

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% data

[ town(Orono) ]
[ town(Bangor) ]
[ road(Route2) ]
[ road(I95) ]
[ state(Maine) ]
[ river(river1) ]

[ in(Orono, Maine) ]
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[ in(river1, Maine) ]

[ through(river1, Bangor) ]
[ through(river1, Orono) ]
%[ through(river1, Maine) ]

[ through(I95, Bangor) ]
[ through(I95, Orono) ]
%[ through(I95, Maine) ]

[ through(Route2, Bangor) ]
[ through(Route2, Orono) ]
%[ through(Route2, Maine) ]

[ -through(Bangor, Maine) ]
[ -through(Orono, Maine) ]

There are 93,696 models ofch5O3.in.

A.5 ch5O4.in

The SEM file forch5O4.in follows.

%% Chapter 5 Ontology 4

%% Sorts
( thing : Route2, Orono, Bangor, Maine, I95, river1 )

%% Functions

{ state : thing -> BOOL }
{ town : thing -> BOOL }
{ road : thing -> BOOL }
{ river : thing -> BOOL }

{ in : thing thing -> BOOL }
{ through : thing thing -> BOOL }

%% Clauses (Axioms)
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% IN is reflexive, antisymmetric, transitive

[ in(x,x) ]
[ x=y | -in(x,y) | -in(y,x) ]
[ -in(x,y) | -in(y,z) | in(x,z)]

% THROUGH is antisymmetric

[ x=y | -through(x,y) | -through(y,x) ]

% towns, roads, rivers, and states are
% all pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]
[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x is NOT IN y

[ x=y | -road(x) | -road(y) | -in(x,y) ]
[ x=y | -road(x) | -road(y) | -in(y,x) ]

[ x=y | -river(x) | -river(y) | -in(x,y) ]
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y,x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
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% then x is NOT IN y

[ -town(x) | -road(y) | -in(x,y) ]
[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN y

[ -road(x) | -river(y) | -in(x,y) ]
[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x doesn’t be IN y

[ -state(x) | -town(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x does NOT go THROUGH y

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state/river and y is a road,
% then x does NOT go THROUGH y

[ -town(x) | -road(y) | -through(x,y) ]
[ -state(x) | -road(y) | -through(x,y) ]
[ -river(x) | -road(y) | -through(x,y) ]

% if x is a town/state and y is a river,
% then x does NOT go THROUGH y

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) ]
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%[ -road(x) | -river(y) | -through(x,y) ]

% if x is a town/state and y is a town,
% then x does NOT go THROUGH y

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% data

[ town(Orono) ]
[ town(Bangor) ]
[ road(Route2) ]
[ road(I95) ]
[ state(Maine) ]
[ river(river1) ]

[ in(Orono, Maine) ]
[ in(river1, Maine) ]

[ through(river1, Bangor) ]
[ through(river1, Orono) ]
%[ through(river1, Maine) ]

[ through(I95, Bangor) ]
%[ through(I95, Orono) ]
[ through(I95, Maine) ]

[ through(Route2, Bangor) ]
[ through(Route2, Orono) ]
[ through(Route2, Maine) ]

[ -through(Bangor, Maine) ]
[ -through(Orono, Maine) ]

There are 187,392 models ofch5O4.in.
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A.6 Program Output

Below is the output of the second Perl program (Appendix B), used to implement the
heuristic for Scenario 2.

p1 is 25015; p2 is 22703
q1 is 12731; q2 is 154842
model 25015 in c53.out found as model 47829 in c54.out
model 22703 in c53.out not found in c54.out
model 12731 in c54.out not found in c53.out
model 154842 in c54.out not found in c53.out
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Appendix B

PERL CODE FOR SCENARIOS 1 AND 2

B.1 Perl Code for Scenario 1, Exact

#!/usr/bin/perl -w
use strict;
###########
# ------------------------------------------------------
#
# Purpose: Find the model-class relation (overlaps,
# contains, contained_by, disjoint, or
# identical) between two geospatial
# ontologies, using SEM output files for
# similar ontologies -- ontologies with the
# same signature, but different data or axioms.
#
# Method:
# Parse SEM files and store models as arrays
# @models1 and @models2, where elements of
# the arrays are strings of 1’s and 0’s
# corresponding to truth values of SEM output.
# This can be done easily, because SEM outputs
# the truth values in so that if two ontologies
# have the same signature, then truth values of
# the models of one ontologies can be read in
# the same way as the truth values for the
# models of the other ontology.
# -----------------------------------------------------
###########

my $i;
my $line = ’’;
my $model = ’’;

my $file1="c51.out";
my $file2="c52.out";

173



my @models1 = ();
my @models2 = ();;

my $numModels1;
my $numModels2;
my $inOnt1Only;
my $inOnt2Only;
my $inBothOnts;

my $junk;
my %seen;
my $item;
my @keys;
my $key;

# my $elt;
# $elt = $array[ rand @array ];

# -----------------------------------------------------
#
# build @models1, each element a string of 1’s and 0’s
#
# -----------------------------------------------------

open(INFILE1, "$file1") or die "Cant’ open $file1 $!\n";

while ($line = <INFILE1>) {

# when hit one of these lines, will have full
# model, except for 1st time which will be
# null, so shift it away after the loop

if ( ($line =˜ (/\ * Model /)) ||
($line =˜ /Number of models/) ) {

$model =˜ s/. * (\$F)/0/g;
$model =˜ s/. * (\$T)/1/g;
$model =˜ s/\n//g;
push(@models1,$model);
$line = ’’;

}
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if ( $line =˜ (/ˆ \w+/) ) {
$model .= $line;

}

} # end while ($line = <INFILE1>)

close(INFILE1);

shift @models1; # since first element is null

$model = ’’;
$line = ’’;

# -----------------------------------------------------
#
# build @models2, each element a string of 1’s and 0’s
#
# -----------------------------------------------------

open(INFILE2, "$file2") or die "Cant’ open $file2 $!\n";

while ($line = <INFILE2>) {

if ( ($line =˜ (/\ * Model /)) ||
($line =˜ /Number of models/) ) {

$model =˜ s/. * (\$F)/0/g;
$model =˜ s/. * (\$T)/1/g;
$model =˜ s/\n//g;
push(@models2,$model);
$line = ’’;

}

if ( $line =˜ (/ˆ \w+/) ) {
$model .= $line;

}

} # end while ($line = <INFILE1>)

close(INFILE1);
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shift @models2; # since first element is just null

$numModels1 = $#models1 + 1;
$numModels2 = $#models2 + 1;
print "number of models in ontology 1 is: $numModels1\n";
print "number of models in ontology 2 is: $numModels2\n";

# -----------------------------------------------------
# find those items in @Models2 but not in @Models1
# -----------------------------------------------------

%seen = ();
my @models2Only = ();
my $j = 0;

foreach $model (@models1) {$seen{$model} = 1; }

foreach $model (@models2) {
unless ($seen{$model}) {

push(@models2Only,$model);
$j++;

}
}

$inOnt2Only = $#models2Only + 1;
print "number of models in ontology 2";
print " but not in ontology 1: $inOnt2Only\n";

#---------------------------------------------
$model = ’’;
%seen = ();
my @models1Only = ();
$j = 0;
#---------------------------------------------

foreach $model (@models2) {$seen{$model} = 1; }
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foreach $model (@models1) {
unless ($seen{$model}) {

push(@models1Only,$model);
$j++;

}
}

$inOnt1Only = $#models1Only + 1;
print "number of models in ontology 1";
print " but not in ontology 2: $inOnt1Only\n";

my @union = ();
my @intersection = ();
my @diff = ();
my %union = ();
my %intersection = ();
my %count = ();

foreach $model (@models1) {$union{$model} = 1; }

foreach $model (@models2) {
if ( $union{$model} ) { $intersection{$model} = 1;}
$union{$model} = 1;

}

@intersection = keys %intersection;

$inBothOnts = $#intersection + 1;
print "number of models in both ontology 1";
print " and ontology 2 is: $inBothOnts\n";

#-----------------------------------------------
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B.2 Perl Code for Scenario 2, Heuristic

The Perl code for implementing the heuristic in Scenario 2 is:

#!/usr/bin/perl -w
use strict;
use locale;

#########
#-------------------------------------------------------
#
# Purpose: test whether random models from one ontology
# are in the model class of another ontology
#
#
#
# Method: hard-code values $M and $N, the values
#
#
#-------------------------------------------------------
#########

my $i;
my $line = ’’;
my $model = ’’;

my $file1="c53.out";
my $file2="c54.out";
#my $file1="c51.out";
#my $file2="c52.out";

my $M = 93696;
my $N = 187392;

#my $M = 800;
#my $N = 1250;

my @M = (1..$M);
my @N = (1..$N);

my @p;
my $p;

my $randomp1 = $M[ rand @M ];
my $randomp2 = $M[ rand @M ];
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push(@p, $randomp1, $randomp2);

my $pInOj = 0;
my $qInOi = 0;

my @q;
my $q;

my $randomq1 = $N[ rand @N ];
my $randomq2 = $N[ rand @N ];
push(@q, $randomq1, $randomq2);

#@p = (195,189);
#@q = (1239,1245);

print "p1 is $p[0]; p2 is $p[1]\n";
print "q1 is $q[0]; q2 is $q[1]\n";

my $next;

foreach $p (@p) {

$next = $p + 1;

open(INFILE1, "$file1") or die "Can’t open $file1\n";
my $foundFlag = 0;

while ($line = <INFILE1>) {

# leaves last model hanging,
# to be picked up outside while loop

if ( $line =˜ /\ * Model $p/ ) {

#print "\nCURRENT is $p\n";
$foundFlag = 1;
$line = ’’;
$model = ’’;
next;

}

if ( ($line =˜ /\ * Model $next/) ||
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($line =˜ /ˆ\ * {10}/) ) {
$foundFlag = 2;
#print "\n\ncurrent is $p \n$model\n\n";
last;

}

if ($foundFlag == 1) {
$model .= $line;
$model =˜ s/\n//g;

}

} # end while ($line = <INFILE1>)

my $modelInHand = $model;
close(INFILE1);

#print "\n\nmodel in hand is $p\n";

$line = ’’;
$model = ’’;

$i = 0;
open(INFILE2, "$file2") or die "Can’t open $file2\n";

while ($line = <INFILE2>) {

if ( $line =˜ /\ * Model / ) {

if ($model eq $modelInHand) {
print "model $p in $file1 found as";
print" model $i in $file2\n";
$pInOj = 1;
last;

}

if ($model ne ’’) {
# print " ********** $i *********** \n$model\n";

}
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$i++;
$line = ’’;
$model = ’’;
next;

}
if ( $line =˜ /ˆ \w+/ ) {

$model .= $line;
$model =˜ s/\n//g;

}

} # end while ($line = <INFILE2>)

close(INFILE2);

if (!$pInOj) {
print "model $p in $file1 not found in $file2 \n";

}

$pInOj = 0;

} # end foreach

# now test to see if model q in $file2 is in $file1

foreach $q (@q) {

$next = $q + 1;

open(INFILE2, "$file2") or die "Can’t open $file2\n";
my $foundFlag = 0;

while ($line = <INFILE2>) {

# leaves last model hanging,
# to be picked up outside while loop

if ( $line =˜ /\ * Model $q/ ) {

#print "\nCURRENT is $q\n";
$foundFlag = 1;
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$line = ’’;
$model = ’’;
next;

}

if ( ($line =˜ /\ * Model $next/) ||
($line =˜ /ˆ\ * {10}/) ) {

$foundFlag = 2;
#print "\n\ncurrent is $q \n$model\n\n";
last;

}

if ($foundFlag == 1) {
$model .= $line;
$model =˜ s/\n//g;

}

} # end while ($line = <INFILE2>)

my $modelInHand = $model;
close(INFILE2);

# print "\n\nmodel in hand $q is \n\n $modelInHand\n\n";

$line = ’’;
$model = ’’;

$i = 0;
open(INFILE1, "$file1") or die "Can’t open $file1\n";

while ($line = <INFILE1>) {

if ( $line =˜ /\ * Model / ) {

if ($model eq $modelInHand) {
print "model $q in $file2 found as";
print" model $i in $file1\n";
$qInOi = 1;
last;

182



}

if ($model ne ’’) {
# print " ********** $i *********** \n$model\n";

}

$i++;
$line = ’’;
$model = ’’;
next;

}
if ( $line =˜ /ˆ \w+/ ) {

$model .= $line;
$model =˜ s/\n//g;

}

} # end while ($line = <INFILE1>)

close(INFILE1);

if (!$qInOi) {
print "model $q in $file2 not found in $file1 \n";

}

$qInOi = 0;

} # end foreach
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