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People sometimes misunderstand each other, even when sheye@l same language to
communicate. Often these misunderstandings happen wlaglepese the same words to
mean different things, in effect disagreeing about meaninghis thesis investigates such
disagreements about meaning, considering them to be ie§gemantic interoperability.

This thesis explores semantic interoperability via a paldr formal framework used to
specify people’s conceptualizations of a given domainsTit@mework is called an ‘ontology;’
which is a collection of data and axioms written in a logieaduage equipped with a model-
theoretic semantics. The domain under consideration igebspatial domain.

Specifically, this thesis investigates to what extent twospatial ontologies are semanti-
cally interoperable when they ‘agree’ on the meanings abaebasic terms and statements,
but ‘disagree’ on others. This thesis defines five levels ofas#ic interoperability that can
exist between two ontologies. Each of these levels is, in, tdefined in terms of six ‘com-
patibility conditions,” which precisely describe how thesults of queries to one ontology are

compatible with the results of queries to another ontology.



Using certain assumptions of finiteness, the semanticsaf eatology is captured by a
finite number of models, each of which is also finite. The setllahodels of a given ontology
is called its model class. The five levels of semantic interability are proven to correspond
exactly to five particular relationships between the motkdses of the ontologies.

The exact level of semantic interoperability between agm@s can in some cases be com-
puted; in other cases a heuristic can be used to narrow tisgopokevels of semantic interop-
erability.

The main results are: (1) definitions of five levels of sentamieroperability based on
six compatibility conditions; (2) proofs of the correspende between levels of semantic
interoperability and the model-class relation between dntologies; and (3) a method for
computing, given certain assumptions of finiteness, thetdeael of semantic interoperability
between two ontologies.

These results define precisely, in terms of models and gjéhie often poorly defined no-
tion of semantic interoperability, thus providing a toume for clear definitions of semantic

interoperability elsewhere.
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Chapter 1

INTRODUCTION

Practically everywhere software is used, it interacts witiier software. For instance, one
company’s Web browser might run on another company’s opgralystem, and it may con-
nect to a third company’s Web server. A meta-search engirtbemternet might exchange
data with multiple search engines in order to answer a ugeesy. Even seemingly stand-
alone programs must interact with the operating systemstochvthey run. Much of the time
this interaction goes smoothly.

Sometimes, however, problems occur. For instance, a dauuwréten using a partic-
ular word processor on one operating system may, for no eppaeason, change its for-
matting when it is opened with the “same” word processor imgnion a different operating
system. This problem reveals a certain lack of interopétalbetween word processors: the
formatting of the document is not preserved between the é&Savord processor on different
operating systems.

Interoperability, in the field of information science, refers to “the abilifivarious systems
to interact with each other no matter the hardware or soévieing used” Taylor (2004).
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When two information systems fail to interoperate, one wdiklel to know why. What is it
about the systems and their interactions that causes thdep18 A satisfactory explanation
would take into account both the nature of the systems thiggsand the relevant principles
governing their interactions.

For instance, in the above example concerning word procgssoe explanation for the
inconsistency of formatting might be that one word procedgses not have all the fonts that
the other one has. This fundamental limitation on the aldily of fonts imposes certain
constraints on the interoperability of the two systems. sEheonstraints are built into the
nature of the each system, and they govern any interactadr#als with conversion of fonts,
though they may not become problematic in all these intenast

In this example, the problem is easily identifiable: the doent has one formatting on
one operating system (OS), but another formatting on ardifteOS, even though the ‘same’
word processing software is being used. One can also cldadgribe the desired kind of
interoperability: each system (OS and word-processingnara) should work with the other
so that any document passed between them preserves itdtiogn&nd, assuming that the
formatting problem is due to one system’s lack of certairntgpthe interoperability problem
could be solved by giving both systems identical sets ofsfont

In other cases, even when it is clear that an interopenalpititblem exists, it may not be
easy tadentifythe problem clearly, or tepecifyprecisely the desired kind of interoperability,
or to asses$o what extent two systems are interoperable. Even whee tttegdlenges can be
met, however, it may not be possibledbtainthe desired interoperability. Nevertheless, we
can increase our understanding of the issues involved bysaxg the fundamental principles

that govern the particular ways that the two systems coultirially, interoperate.



1.1 Example Showing a Lack of Semantic Interoperability

Figure 1.1: Ball in pool. Pool in yard. Therefore, ball in yard

Suppose John and Mary are looking in their back yard duriagtimmer, and they observe
the ball, the pool, and the yard. (That is, they see thesectsbhgnd agree on the real-world
referents of the terms ‘the ball,” ‘the pool, and ‘the yardAnd suppose that they both agree
that ‘“The ball is in the pool’ and ‘“The pool is in the yard.’

Suppose that John claims that the statement ‘The ball iseiryéind’ follows from these
agreements about meanings, whereas Mary claims that itraae$pecifically, Mary main-
tains that simply because the ball is in the pool and the ol the yard, it does not follow
that the ball is therefore in the yard.

This example shows that although John and Mary share a comnaerstanding of some
basic aspects of their world, this understanding does rnieheixo other areas. In particular, it
does not extend to what these agreed-upon faetsn where, as the example shows, ‘mean-
ing’ has to do with logical consequence. One can say that autifierence in understanding
reveals a certain lack gemantic interoperabilithetween John and Mary. This lack of seman-
tic interoperability would reveal itself in any situatidmt required an answer to the question,
‘Is the ball in the yard?’, to which John would answer unequally ‘Yes, but Mary would

3



not. This example thus illustrates the essential issuernéséc interoperability treated in this

thesis: when the meanings implicit in different concepasdions of a common scenario yield
different answers to specific questions, to what extentrerednceptualizations semantically
interoperable?

Consider, in the case of John and Mary, how one could idertigyptroblem of interop-
erability, specify the desired kind of interoperabilitpdaassess the extent to which John and
Mary are interoperating semantically. The problem can leatiled as follows: John and
Mary disagree about certain fundamental meanings of tleeinario, even though they use
the same terms to communicate and they agree on other baaitngs associated with these
terms. The desired semantic interoperability could beifipdas: John and Mary agree on
all meanings related their scenario that. And a rough assagsof the extent to which John
and Mary are interoperating semantically could be “soméwha not completely.”

To this point, the foregoing analysis has

established that problems of semantic interoperabibty exist even when people use

the same language to describe a scenario;

identified a particular lack of semantic interoperabiliy a disagreement about logical

consequence;

specified one possible kind of desired semantic interdjléyga and

assessed very roughly the extent of semantic interogeyaietween John and Jane.

In particular, the analysis has not yet dealt with the funelatal constraints in this scenario

that govern the semantic interactions between John and. NTapse constraints are discussed



in Section 1.4. But first, the next two sections provide sonegall’context for the thesis and

discuss the questions that motivated it.

1.2 Context

The context for the research in this thesis is recent worleveal related areas: ontologies,

Geographic Information Science (GIScience), and the Seoafeb.

1.2.1 Ontologies

The word ‘ontology’ has acquired a distinctive meaning ia tast decade or so, especially
in the research literature in computer and information reme(Guarino, 1998; Smith and
Welty, 2001; McGuinness, 2002; Taylor, 2004; Obrst, 2008)ere, rather than referring to
the philosophical discipline that studies the categorfakings that exist (Casati et al., 1998;
Sowa, 2000), ‘ontology’ has come to refer to a certain typevitten artifact that describes
a particular conceptual domain, usually with the intent th&e processable by computers

(Guarino, 1998).

1.2.2 GIScience

The University Consortium of Geographic Information Sce(dCGIS) has recently identi-
fied ontologies as one focus in its research agenda (EgenB6f&4). Ontologies have been
seen as atool that might enable the interoperability of Ggayc Information Systems (GISs)

(Fonseca et al., 2002; Agarwal, 2005). The main purpose iafjumntologies in GIScience



is “to define a common vocabulary that will allow inter-opatigy and minimize any prob-
lems with data integration, both between different systamd between users and systems”
(Agarwal, 2005, pg. 508). Additionally, government agesaiesponsible for geospatial data
are exploring and developing ontologies (e.g., USGS andldt®nal Geospatial Intelligence
Agency (NGA) in the US, and the UK Ordnance Survey (UKOS) mtiK). Issues of seman-
tic interoperability have also been of recent concern tessvesearchers in GlScience, e.g.,
Egenhofer (1999); Kuhn (2005a); Hobbs (2006); Agarwal 800

Additionally, at least one recent proposal (Egenhofer3}@ftempts to bridge the research
interests of GlScience in ontologies with those of the comitguof researchers involved in

what is becoming known as the Semantic Web (Berners-Lee, @0811).

1.2.3 The Semantic Web

‘The Semantic Web' is a phrase that, unsurprisingly, me#fesent things to different people.
A well-known article from 2001 describes it as an extensitthe then current Web, “in which
information is given well-defined meaning, better enablioghputers and people to work in
cooperation” (Berners-Lee et al., 2001, pg. 35). A followarficle has acknowledged the
need “for shared semantics and a web of data and informagared from it” (Shaboldt
et al., 2006, pg. 96). Both these articles acknowledge theitapce of using ontologies on
the Semantic Web, with the latter article declaring flatlyr the past five years, the argument
in favor of using ontologies has been won...” (Shaboldt 2806, pg. 96).

In an effort to endow Web markup languages with unambigueunsastics, so that com-
puters can draw valid inferences about tagged Web resquhee$Vorld Wide Web Consor-

tium (W3C) has recently developed the markup languages RD&adynd Carroll, 2004) and



OWL (Patel-Schneider et al., 2004). Each of these languagea model theory that supplies
its semantics (Hayes, 2004; Patel-Schneider et al., 2@8d)each potentially supports pieces
of the vision of the Semantic Web (Berners-Lee et al., 200ap8Ht et al., 2006).

A key part of that vision is the expectation that ontologial e able to “interoperate
semantically” without the need for humans in the loop. Oneyedefinition of semantic
interoperability on the Web is given in Heflin and Hendler@@p where the authors say: “To
achieve semantic interoperability, systems must be abéxd¢bange data in such a way that
the precise meaning of the data is readily accessible andatzeitself can be translated by
any system into a form that it understands” Heflin and Hen@e00, pg. 111). This approach
describes, somewhat generally, semantic interopenrabiliierms of some kind of translation
of meanings. Such a ‘translation approach’ to semanticaptrability, though interesting
and potentially useful, is not the approach taken in thisithe

A different and more recent view of the Semantic Web might berearized as “the
meaning of a Web resource or term is whatever a collectioreopfe say it is.” Sites that
let users tag resources with free-form vocabulary (e.g.a2en.com and librarything.com)
help to create a linked network of human-generated and humdarstandable meanings
that is amenable to certain kinds of machine processingigthmot to the kind of machine-
understandable processing envisioned in Berners-Lee £041), for instance. There are
good arguments supporting the ‘human-understandablebapp to semantics on the Web.
However, such arguments are not considered here, sincthéss deals with machine ‘un-

derstanding’ of semantics, not people’s understanding#eat particular tags mean to them.



1.2.4 This Thesis in Context

Given these related research activities in ontologiesciétte, and the Semantic Web, the
time is ripe for foundational research into the semantierimperability of geospatial ontolo-
gies. This thesis definesgeospatial ontologyo be a collection of data and axioms (about a
geospatial domain) written in a logical language equippét & model-theoretic semantics.
This definition of an ontology, though perhaps not the firdingkon that most researchers in
GIScience would think of — see, however, e.g., Casati et 8B&); Smith (1996); Cohn and
Varzi (2003) for noteworthy exceptions — is, nonethelessl| established in the computer-
science and Semantic-Web research communities. Sowa)(Z00hstance, calls this kind
of ontology an axiomatic ontology. Such an ontology is atdepending on the complexity
of the relationships it seeks to specify, amenable to spatifin in Web markup languages
like RDF and the Web Ontology Language OWL, but not in a langliageGML (Cox et al.,
2003), since RDF and OWL have an associated model theory, ah&®IL does not.

The research in this thesis seeks to fill a particular holeiment research and practice in
GIScience (and more broadly in information science): tlok laf a clear operational defini-
tion, with worked-out examples, of what it means to say tatfiormal geospatial ontologies
are semantically interoperable. The lack of such a defmigads to ambiguities and a lack
of clarity when people discuss semantic interoperabiiyich in turn leads to a lack of con-
sensus on how to recognize and deal with problems of sematgroperability. The research
in this thesis is central to the intersection of researchntologies, the Semantic Web, and

semantic interoperability issues in GlScience (Figure.1.2



nteroperating
geospatial
ontologies

Interoperating GISs

GlScience

Figure 1.2: Thesis Research in Context

This thesis’s approach to semantics is consonant with tignpent of Kuhn (2005b), that:
“[t]he only sensible use of the term ‘semantics’ referexpressions in a languagéKuhn,
2005b, pg. 50) (italics in original). Kuhn explains thatrinere many different languages
used by information systems, and that “[c]oping with gedighaemantics means, eventually,
building ontologies specifying the meaning of expressionsost or all of these languages”
(Kuhn, 2005b, pg. 50). The research in this thesis is in keppiith this sentiment, but its
focus differs from Kuhn’s. Whereas for Kuhn, it is thervice interface@he interfaces among
software components that are captured by a particular wiggjathat need to interoperate
semantically, for this thesis, it is the ontologies themsgland the inferential software that
supports them that need to interoperate semantically.

The particular line of research in this thesis is not meadetoy that people and machines
disagree about meanings in a multitude of different, samegidisconcerting or fascinating
ways, not all of them related to issues of logical consegeemie a geospatial context, dis-

agreements about meanings of spatial relationships aoseissues of scale (e.g., a person



being ‘in’ a building, versus a province being ‘in’ a countrimprecise information (e.g., be-
ing ‘near’ a restaurant), boundaries (e.g., is the boungbeny of’ the object or region which
it bounds), etc. These potential sources of semantic giao@es about spatial relationships
are real, but they are not the central focus of this rese&ealther, this thesis addresses what
it means for two geospatial ontologies, which specify theaniggs of spatial relations via
model-theoretic semantics, to be semantically interdgera

Semantic interoperability, in the context of logic, hasrbeeldressed by researchers in
the areas of logic and computer science (Meseguer, 1998jellaamd D’Ottaviano, 1997;
Goguen, 2005), ontologies and the Semantic Web (e.g., @Po€3); Giininger (2004);
Gruninger and Kopena (2005); Schorlemmer and Kalfoglou (P0@4 well as by researchers
in geospatial semantics (e.g., Hobbs (2006); Adams (20B6)not in the same way, or with
the same kind of detail, as is done in this thesis (Chaptersl 3arSpecifically, assuming the
specification of spatial relations in two axiomatic geogpaintologies, this thesis addresses
a process for determining the level of semantic interopktyabetween the two ontologies,

based on particular considerations of semantics and gu@&eztion 1.6).

1.3 Motivating Questions
The questions that motivated this research are:
1. What does ‘semantic interoperability’ mean?

2. How can the claim that two geospatial ontologies are, @mnat, semantically interop-

erable be understood?
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3. What is the connection between the results of queries t@eespatial ontologies and

whether or not these ontologies are semantically inteedpe?

4. Is there anything “special about spatial” when considgthe semantic interoperability

of geospatial ontologies?

The whole thesis is an investigation into question 1. The@se@nd third questions are
answered by the theoretical framework developed in Chaftargl 4, an implementation of
which is given in Chapter 5. The fourth question is address&kction 2.6.

The specific research question of this thesis (Section Ylcarhe about after considering
certain details in the framework developed in Chapter 3. Aeraew of some of these detalils,

sufficient for framing the research question, is given inrtagt three sections.

1.4 Implicit Meanings, Logical Consequence, and Semantic

Interoperability

The example from Section 1.1 showed that John and Mary agréwmbasic statements of
their pool scenario, but disagree on whether a particuled gtatement followed as a logical
consequence of the agreed-upon two.

Logical consequends a formal relationship between formulas (in a formal laaxge) that
is intended to capture the intuitive notion of one statenfeldwing logically from others
((Ebbinghaus et al., 1994; Etchemendy, 1990)). The disageat between John and Mary
about whether ‘The ball is in the yard’ is, when formulategm@priately, a disagreement

about logical consequence: John’s claim that ‘The ball iheyard’ follows from (i.e., is a
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logical consequence of, is entailed by) ‘The ball is in thelpand ‘The pool is in the yard.
But Mary claims that the former statement is not entailed leyl#itter two. For John, part of
what ‘in” meandn this scenario is the entailment that ‘The ball is in thedyar

Note that John’s and Mary’s disagreement about whetherdhashn the yard occurs in
spite of the fact that they use the same language and termestwiloe their scenario. That
is, on the surface it appears that there is no ‘heterogéneityeir semantics, and thus one
might conclude that there should be no lack of semanticoptnability. However, as has been
show, the lack of semantic interoperability can still takecp. In this case, one could attribute
this lack of semantic interoperability to an axiom that Jblofds to be true but fails to make
explicit (i.e., that ‘in’ is transitive), rather than to asyperficial difference in the vocabulary
used to describe the scenario.

Computers working from formal specifications can exploitb@tplicitly stated assertions
and derived implicit meanings in their analysis of seman#tod semantic interoperability.
One way they accomplish this is by considering the varioussite truth values, stated or
implied, of the set of possible statements about a givenastenThis thesis uses such an
approach.

In the pool example there are three entities and one relat@onsidering just simple
statements like ‘The ball is in the pool, there can be ninghsstatements in this scenario, and
each can be assessed as true or false.

A specification of the conceptualization of this scenariaulslathus implicitly consider
2% or 512 cases. Mary explicitly acknowledges 2 of the 9 stares® be true; thus, in the
specification of Mary’s conceptualization jusStor 128 different possibilities are left implicit.

In Figure 1.3 these cases are collapsed into one 3x3 tabiet isuwuseful to think of each
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case as its own 3x3 table with definite values of T or F for eaath dhe T/F in seven of
the nine cells in Figure 1.3 indicates that Mary has left éheslues unspecified and that any

combination of T's or F's in these cells is consistent with Yiew of the pool scenario.

ball pool yard

ball TIF T TIF

pool | TF | TF T

yard | TF | TF | TF

Figure 1.3: Interpretations Consistent with Mary’s Concafization

To specify John’s conceptualization, there also appeas tt28 different cases to consider.
However, recall that John also claims that ‘The ball is inyhed’ (i.e., that for him this claim
follows logically from ‘The ball is in the pool’ and ‘The pod in the yard.’) Therefore John’s
specification shows a T in the ball/yard cell (Figure 1.4)u3there are 64 possible 3x3 tables
with T’s in the ball/pool, pool/yard, and ball/yard cells.ndther way to consider this third
claim of John’s is to say that ‘The ball is in the yard’ is trmeainy case (i.e., in any 3x3 table)
that is consistent with ‘The ball is in the pool’ and ‘The p®In the yard.

This kind of analysis of logical consequences underlied@fenitions and computations
of semantic interoperability used in this thesis.

One reason John says that ‘The ball is in the yard’ followsiff®@he ball is in the pool’
and ‘The pool is in the yard’ might be that he considers it t@k®matic that for all entities
X, Y, and Z in the domain of interest, ‘If X isin Y and Y isin Z,¢h X is in Z.' If this axiom
were codified and made part of John’s explicit specificatiom®conceptualization (i.e., part
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ball pool yard

bal | TF T T

pool | TF | TF

yard | TF | TF | TF

Figure 1.4: Interpretations Consistent with John’s Concazation

of John’s ontology) a computer could derive his implicitalment that ‘The ball is in the
yard.” Once that entailment is derived, it can be comparethdése statements that follow
logically from Mary’s specification of her conceptualizati(i.e., Mary’s ontology).

The nature of the discrepancy between the sets of entailezhstats of two different on-
tologies reveals fundamental constraints on the semantaraperability of the two ontolo-

gies

1.5 Same Symbols, But Different Meanings

1.5.1 Need for Formalism

Sections 1.1 and 1.4 discussed implicit meanings and Ibgicesequences, but to treat these
topics in a way that is amenable to machine processing, someaf machinery is needed to
handle the formal counterparts of implicit meanings andcaigconsequences.

This thesis assumes information systems can encode coadieption like those of John
and Mary in the above example, and it investigates precisergiions for the semantic inter-

operability between such conceptualizations.
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To identify the fundamental constraints on interoperaihibne needs to describe precisely
the differences in meaning that underlie the lack of semanteroperability and indicate the
kind of semantic interoperability at issue. This capapibtestablished through an appropriate
choice of formalisms (Chapter 3), which allows the rigoraesatment of the scenarios posed
in this thesis. Specifically, because the scenarios involyeal consequences and entailment
as fundamental aspects of semantics, and because the aimnddrstand semantic interop-
erability via automated means, the choice of formalism nb@sbne that machines can use
to compute logical consequences. This approach yields bigaiwus definitions of different
levels of semantic interoperability (Chapter 3), which imtfacilitate the calculation of the
degree of semantic interoperability between two geodpatialogies.

As mentioned in Section 1.2.4, for the purposes of this thesgeospatial ontologys
a collection of data and axioms concerning the spatial ptigseof geographic objects and
relations. The semantics of a geospatial ontology is sgeciiy model-theoretic semantics
(Hodges, 1997; Manzano, 1999), where the meanings of thbagrnm the ontology are given
by modelsin the way this term is used in database theory (Vianu, 188@)logic (Manzano,
1999). In this thesignodelsare sets with certain relations defined on them.

The next two sections describe in some detail the partiduharof semantic heterogeneity
studied in this thesis: that of geospatial ontologies difigg only in the semantics of their
spatial relation symbols (the common symbols used to despaBal relations, such as or
through. Nevertheless, the approach used can be generalized - Withsetting of formal

ontologies — taanysemantic differences that are reflected in the models ofribaagy.
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This last remark deserves to be amplified. First, the appraaed in this thesis analyzes
an ontology’s semantics in terms of its models (Chapter &ettore, any differences in se-
mantics that are reflected as in the models of the ontologgraemable to the kind of analysis
used in this thesis. Many such differences, however, lisidatthe scope of the present in-
vestigation. For example, a difference in semantics thdtiesto two different words being
used to name the spatial relation ‘in’ (e.op,andinsidg lies outside the scope of this thesis,
though one could still conduct an analysis of semantic diffees based on the differences in
the models of the ontologies. Second, even though all thepbess in this thesis deal with
so-called ‘populated ontologies,’ (i.e., ontologies thatude instance data like ‘the pool, ‘the
ball, etc.), the analysis done in Chapters 3-5 is still aggilie for ontologies that lack such
instance data, i.e., ontologies that consist of just refstiips between classes, and axioms.

The semantic heterogeneity between two geospatial onésag reflected directly in the
degree or level of semantic interoperability between tloedelogies (Chapter 3). A detailed
specification of different levels of semantic interopelibis postponed until the necessary
formalisms and examples have been presented (Chapters 2.and 3

What follows is a consideration of models in the context ofdarrelational databases:
collections of data tuples without any axioms. Afterwald basic concepts of semantics and

models are extended to apply to ontologies (which contaih Bata tuples and axioms).
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1.5.2 Database Examples

Consider two very simple relational databases, where thg m@hhtion that is modeled is
the spatial relatiomn, the only entities under consideration are Route 2, Oronog&amand
Maine, and there are no attributes for any of these ent¥ésassume the databases have the

following information in common:

1. the ‘real-world’ domain, whose entities are Route 2, Or@angor, and Maine;
2. the data domainf Route2, Orono, Bangor, andM aine};
3. the data model — in this case, the relational data model;

4. the database schema, which consists of a single binatyarelin’, without attributes
(i.e., there is no special name given to the set of elemeatsctiuld be in the first or

second position of the tuples for); and

5. the type of the data (character data).

Two different people might plausibly create the databalés and DB, (Figure 1.5),
according to their understandings of what the spatial imah means. The reader should
not consider these databases to be simplified versions ofr@gloic Information Systems
(GISs) or spatial databases (Rigaux et al., 2002), whichifyparcderive spatial relations via
coordinate systems or via topological relations of spaigats.

The examples in this section serve to illustrate the cenmtegls in which an ontology
differs from a conventional database: (1) the ontology gigscaxioms in addition to data; (2)

the semantics of an ontology typically commits to more thae fixed ‘way the world could
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be’; and (3) the analysis of the semantics of an ontologyesgticably linked to the idea of
‘more than one way that the world could be.’

ConsiderD B; (Figure 1.5). The person who creatBd; has a notion oin that does not
include either the relationship “Route 2 is in Orono” or thRbte 2 is in Bangor,” although
this person’s notion oin does include the relationships “Orono is in Maine,” “Bang®iri
Maine,” and “Route 2 is in Maine.” (Such an argument glosses ownsiderations of the open-
world and closed-world assumptions (Reiter, 1978), whiehdascussed further in Chapters

2 and 3.)

DBy Tuples forin(z,y) || DBs: Tuples forin(x, y)
(Route2, Orono)
(Route2, Bangor)

(Orono, Maine) (Orono, M aine)
(Bangor, M aine) (Bangor, M aine)
(Route2, Maine) (Route2, M aine)

Figure 1.5: Two databases that moatetlifferently

The difference in the two persons’ notionsiofis thus reflected, albeit imperfectly, by
the different sets of tuples used to populate their respedatabases. More specifically, the
elements in the domain of the database, plus the data tupld®in relation constitute a
model(Manzano, 1999; Vianu, 1997) of the part of the real worldemzbnsideration. Once
people create these tuples in the database, they effgctivel over any treatment of the
meaning ofin to the system that works with these tuples. Consequently) the perspective
of the database management system, the two different ngsaoftin are determinedolely
by the data elements and the tuples themselves. Whether thenotsulting databases can

interoperate semantically is thus a function of the tughey tontain for the relatiom.
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Regardless of whether the two people who creé&éd andD B, have accurately captured
their intended meanings of, so far as the two databases are concerrteée meaning oin is
determined solely by the set of tuples in their respectilaticmal tables foin, i.e., by their
modelsof in. In this example, the tuples themselves, along with ratatisymboiin, comprise
the only machine-processable information available focpssing the meaning of. There
may be myriad other senses of ‘in’ that are not captured g/ gpecification, but the point
here is that the only thing a computer has to work with is thecBjeation it is given, along
with the rules for processing it.

Saying that two databaseseandifferent things by the same relational symbol amounts
to saying that the databases have different sets of tuplésein respective tables for this

relational symbol. Schematically, this situation is déguicin Figure 1.6.

same external reality

() different notions of in

same relational symbol: in

SN

single set of | ~ different  (single set of
tuples models of in tuples

DB 1 DB 2

Figure 1.6: Same symbol, different meanings
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The following assumptions underlie the framework of thevabanalysis of differences

betweenD B, andD B,.

The two people are modeling the “same” external reality.

The two people have their own individual notions of what$patial relationn means.

They use the same symbolr—to represent this spatial relation in their databd3ég

andD B,.

The set of tuples in one database may or may not overlap hatket of tuples from the
other database. In the example of Figure 2%, and D B, have different, overlapping
sets of tuples, which reflect the different notions theiatoes have of the spatial relation

in.

When one considers the differences in the specificationbefdatabases, one is no
longer dealing with the notions ah that the two human modelers have. Rather, the
only information that is available about the meaningrois that which can be gleaned
solely from the databases themselves. When the focus is alatabases themselves
and not on what the human modelers may have intended, thé wgtles from thein
table becomes the only tangible artifact available to deitee whatin means. That

is, once the human modeler is out of the picture, the set @ tigtles of a database

essentiallyis the meaning of the relatian.

The set of tuples iD B; or D B, is themodelof the world that each person has created,
whether or not this model faithfully depicts all the nuanoéshe relationin that the

database creator might have.
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DB, and DB, aresemantically heterogeneobrecause even though they use the same
symbol to describe the relatian, they mean different things by it. Given thatB; and
DB, are semantically heterogeneous, to what extent might thiesdases nevertheless be
semantically interoperable? There are many plausible wagsiswer this question, among

which are that

their sets of tuples overlap;

they give the same answers to the same questions;

gueries to the databases do not involve Route 2; and

gueries to the databases do involve Maine.

What these plausible answers show is thassessing to what extent two such databases
might be semantically interoperable, it makes sense toidenboth the sets of tuples in the
databases and the queries put to the databases

To determine to what extent twantologiegas opposed to two databases) are semantically
interoperable, one also needs to consider the axioms oinflodogies and the models that re-
sult from including axioms along with data. The next sectidnoduces these considerations.

A fuller discussion of some needed technical backgroundsengn Chapter 2.

1.5.3 Ontology Examples

Consider again two people modeling the relatiover the four entities of Route 2, Orono,
Bangor, and Maine. Instead of explicitly providing all théles of data via tuples, they now

also specify axioms that they thimk should satisfy. These axioms enhance the explicit data
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tuples forin by adding other conditions that must satisfy. Such a combination of data and
axioms is an example of an axiomatic ontology. Assume furtiat the two people use the
same language (e.g., the language of first-order logic)eoigpthe axioms foin.
Schematically, these assumptions are represented ing-igdr Note the three major
differences between this figure and Figure 1.6. First, lidué deals with databases; second,
it makes no mention of a logical language; and third, it shavgs one model (i.e., set of
tuples) for each database. By contrast, Figure 1.7 dealsowitiiogies, it mentions the logical
language (used for specifying axioms and for drawing infees), and it shows more than one

model (set of tuples) for each ontology.

same external reality

(O different notions of in

same nonlogical vocabulary
and same logical language

multiple sets)  different multiple sets
of tuples models of in of tuples

Ontology 1 Ontology 2

Figure 1.7: Same symbols and logical language, differerimmngs

Consider the following points.

» The two people are modeling the same external reality.

» The two people have their own individual notions of whatspatial relationn means.
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» They use the same symbolr—to represent this spatial relation.

» This same symbol and the same logical language are usedibphimlogies.

» Each ontology has multiple sets of tuples, each of whicmi®del of the spatial relation

in, reflecting the individual's notion af.

» Once the focus is on the ontologies (as machine-processaliten artifacts), one is no
longer dealing with exactly which notions of the two human modelers have had in
mind. Instead, the ontology is taken to be the best availapeoximation to their no-
tions, and the focus is on the meaningroés that meaning is specified via the semantics

of the ontologies themselves.

In the case of the example databases (Figure thénodebf a given database consists of
just the data elements along with a single set of tuples ®rdhationin. Under the viewpoint
taken this thesis, this unique model defines whaheans in that database.

In the case of an ontologg, modelalso consists of the data elements along with a single
set of tuples for the relatiom. The significant difference between an ontology and a simple
database is that an ontology usually has multiple modejsessed implicitly by the combi-
nation of data and axioms, whereas a database has justasingkl, specified exactly by the
data tuples.

Each of the ontologies in Figures 1.8 and 1.9, for instanes, mhore than one model,
because the axioms and the data of the ontology do not ugigoelkstrain the set of tuples
that specify the semantics of the relation The fact that ontologies in general typically
have more than one model is central to any definition of seimarttroperability between
ontologies. This is so in spite of the fact there may be otl@man-significant aspects of the
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relationin that are not captured by the ontology. But because ontolalpigsot capture any
aspects of meaning outside the data and the axioms (andrthalframework of reasoning
in which they are embedded), such meanings are not amermatble formal analysis used in

this thesis.

Axioms for:n | Data Tuples foin
(Route 2, Orono)
YV, in(x, ) (Orono, Maine)

Figure 1.8: Ontology), for in

Axioms forin Data Tuples foin
(Route 2, Orono)
Vxyz, in(z,y) Ain(y, z) — in(z,z) | (Bangor, Maine)
(Orono, Maine)

Figure 1.9: Ontology), for in

Consider the ontologie®; andO- specified in Figures 1.8 and 1.9 above. Each contains
a single axiom and some tuples of data. The axiorpktates that every entity is in itself,
and the axiom of), states that the relatian is transitive. More significantly, the particular
axioms and data tuples of the ontologies combine to speiifglicitly) the modelsof each
ontology.

A model for a given ontologis a depiction of how the world could be configured that
conforms to the data and the axioms. (Chapter 3 gives a marspm@efinition.) For instance,
in any model ofO; the following relationships must hold: “Route 2 is in RouteZJrono is
in Orono,” “Bangor is in Bangor,” and “Maine is in Maine”, becaithese relationships are
dictated by the axiom. Similarly, in any model ©f the relationships “Route 2 is in Orono”

and “Orono is in Maine” must hold, because these relatigssare dictated by the data.
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A convenient way to picture the models©f is to use graphs, since the entities of Route
2, Orono, Bangor, and Maine can be represented by verticegrapd, and the single binary
relationin can be depicted by the directed arrows in the graphs. In thiedt of Figure 1.10,
two of the models of), are shown as graphs, where the vertices labeled ‘R2, ‘O, &84
‘M’ stand for Route 2, Orono, Bangor, and Maine, respectivBiynilarly, the bottom half of
Figure 1.10 shows two models ©6%.

Figure 1.10 suggests th@; andO, do not have the same sets of models (because model
1 of O is different from model 1 of),). This turns out to be the case, since model Degf
could never be a model @, (since then relation in model 1 ofD, is not reflexive), and so
the sets of models of the two ontologies cannot be the samauBe@; andO, have different
sets of models, they have different semantics, in particdlierent semantics for the spatial
relationin.

Even though botl); andO, use the same relation symbol, and the same logical language
to express axioms, thmeaningghat the two ontologies give to the symbolare different.
This is true in spite of the fact that the ontologies have asi®ne model in common — the
the right-hand model in Figure 1.10.

Figure 1.10 exemplifies another important difference betwihe semantics of databases
and the semantics of ontologies. Although in both cases #aning of symbols is formalized
via models, if twodatabasesave a model in common, then they have the same semantics
(based on the discussion in the previous section), bechasmadel for a given database is
unique. Twoontologies however, may have one or more models in common and yet have

differentsemantics, since an ontology generally has more than onelmod
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One might suppose that the difference in the semanti@és bétweenO, andO, is due
to the fact thatD; has one axiom an@, has a different axiom. But that fact provides only
a partial explanation for the different semantics(af and O,. A fuller explanation is that
the different meanings are due to each ontology’s partia@denbinations of axioms and data
that result in different sets of models for the two ontolsgidhere are three ways that two
ontologies might have different sets of models: (1) theyehthe same data and different
axioms; (2) they have the same axioms but different data3)othey have different axioms
and different data, which is the case®@f andO,. What is significant about the semantics of
an ontology is not the data tuples or axioms considered ithaially, but rather the way that

the data and axioms collectively determine the models obttielogy (see Section 3.1).

OO OO
RZ';O R:Z;O
M” B M4~B
O O U
model 1 of O1 model 2 of O1
OO
I72>20 RLZAO
M~B M~B
O O
model 1 of 02 model 2 of O2

Figure 1.10: Two models of Ontology 1 and of Ontology 2

Since the semantics of the ontologies is determined by thedels, and sinc®; andO,
have different sets of models, one can say that thegementically heterogeneauSiven this
particular view of semantic heterogeneity, to what exteigihtnthe ontologies nonetheless be

semantically interoperable?
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To answer this question, consider the following. The sermamteroperability of ontolo-
gies has to do with implicit logical consequences. Theseseguences can be probed by
determining whether a given query (statement in the samedblgnguage used to specify the
ontology) evaluates to True in all models of the ontology, iBmakes sense that an analysis
of semantic interoperability takes into account both meaeld queries.

Thus, among the plausible answers to the above questiohatre t
* the sets of models @, andO, overlap;
* queries to each ontology target one or more of the modejsttaee in common;

* agiven queryy) posed taD, gives the same answer when posedio

Chapter 3 explores in-depth an answer to this question bas#dtesets of models of the

two ontologies and the queries put to the ontologies.

1.6 Assessing Semantic Interoperability
Three points emerge from the analysis in Sections 1.3 - 1.5.

1. Two geospatial ontologies that deal with the same domadruae the same language to

describe this domain can nevertheless differ in their s¢icgn

2. Because the semantics of these ontologies is defined vial#tiabretic semantics, the
differences in meanings between the ontologies are refléctdifferences between the

sets of models of the two ontologies.
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3. Analysis of the semantic interoperability of two ontakgyshould take into account
both the connections between the models of two ontologidslan results of queries
put to these two ontologies. These connections relate tharstics of the ontologies
(i.e., the models of the ontologies) to the implicit logicainsequences specified by
the ontologies, which can be probed by evaluating partiayeries in the ontologies.
That is, whether or not two ontologies interoperate sernalyi is a function of the
relationship between their models and their logical consages (statements satisfied

by all models of a given ontology), and these relationshgrslee probed via queries.

Assessment of semantic interoperability of geospatiadlogtes in this thesis is therefore

based on:

1. two similar (but not identical) geospatial ontologiesattileal with the same domain
using the same language to describe this domain, but diffen the semantics of the

spatial relation symbols used to describe this domain;

2. the models of these ontologies, because the semantibg gpatial relations in these

ontologies are defined via their models; and

3. the queries that can be put to the ontologies, for two readeirst, ontologies are used
(at least in part) to answer queries. Second, the result oéeydqo an ontology depends
on the models of the ontology in the sense that a query eesdtatrue if it is true in all

models of the ontology (Section 3.1).
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1.7 Research Question and Goal

1.7.1 Research Question
The research question addressed in this thesis is:

When two geospatial ontologies use the same language toildeslbe same domain, but
differ in the model-theoretic semantics of their primitisqgatial-relation symbols, in what
sense and to what extent are the ontologies semanticallyppeeable?

Our focus on one specific kind of semantic heterogeneitye@inces in the interpretation
of primitive spatial relation symbols) presupposes a lamgmunt of similarity between the
two ontologies. Section 4.1 explains exactly what is assltoebe common between the
ontologies.

Note that the terms ‘meaning’ and ‘semantics’ are used mttiesis in a very particular
way. The reader should understand that the meanings coeditiere are ‘internal’ to some
computer-based information system (Lipski, 1981), butmextessarily internal to the minds

of the human beings who design and use these informatioaragst

1.7.2 Research Goal

The research goal is to create a method to assess the extshahtic interoperability be-
tween two geospatial ontologies, based on the considasagiven at the end of Section 1.6.

This research goal is achieved by:

1. defining six semantic compatibility conditions betweaitotogies (Chapter 3);

2. using the six compatibility conditions to specify, inrtex of models and queries, under
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what conditions two geospatial ontologies are: (1) congbhfetemantically interopera-
ble; (2) partially semantically interoperable; or (3) noad semantically interoperable

(Chapter 3); and

3. developing (Chapter 4) and implementing (Chapter 5) anrigigoic and a heuristic
procedure that allow, under suitable assumptions and taioerases, the calculation of

a unique level of semantic interoperability between twmtmgies.

1.8 Intended Audience and Scope

1.8.1 Intended Audience

This thesis is intended for researchers, software devedpped users of geospatial ontolo-
gies of the kind that might soon be available on the Web. Iffipatential interest to non-

commercial developers of spatial and terminological mygis, as well as commercial spatial
database vendors. It is also of potential interest to coermaientists, knowledge engineers,
and database specialists. In particular, those researalugking in the areas of ontologies,
semantics, and semantic interoperability, and the Sem#feb can find in this thesis the clar-

ification of several fundamental notions dealing with setigainteroperability of ontologies.
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1.8.2 Scope

The scope of this thesis is limited as follows.

» This thesis does not consider the psychology behind thesimadof the semantics of
spatial relations. Instead, the point of departure for theyesis conducted here is the

existence of geospatial ontologies, processable by cargput

 This thesis does not consider, except as background iafitom the many different
ways there are to classify semantic heterogeneities ilamigs. Instead, the investiga-

tion is narrowed to focus on the ramifications of one kind @hartic heterogeneity.

 This thesis does not consider the semantics of traditiGihd&k or other ontological se-

mantics that are not based on model-theoretic semantics.
» This thesis does not aim to create methods to align, integoa merge ontologies.

» This thesis does attempt to pursue the most abstract fations (e.g., (Schorlemmer

and Kalfoglou, 2004; Gminger, 2004)) of the issues investigated here.

1.9 Results and Contributions

1.9.1 Results

1. A formal analysis of the semantic interoperability of gpatial ontologies based on

models and queries—a unique research contribution;

2. The creation of six semantic compatibility conditionsAeen ontologies; each compat-
ibility condition is defined in terms of models and queries;

31



3. Definitions, in terms of compatibility conditions, of figpecific levels of semantic in-

teroperability of geospatial ontologies;

4. An algorithm for computing, given certain assumptiorg éxact level of semantic

interoperability between two ontologies;

5. An method for computing, given certain other assumptitims possible levels of se-

mantic interoperability between two geospatial ontolegand

6. Implementations of these two algorithms using SEM (Zhand Zhang, 1995) and
Perl. SEM is used as a black box to generate the models of edclogy, once these
ontologies are specified in the appropriate format (see @h&pt Perl is then used on
the sets of models generated for the ontologies, to deterwinat relation (e.g., overlap,

contains) holds between the model classes of the ontologies

1.9.2 Contributions

The chief research contribution of this thesighe novel analysis—in terms of models and
gueries—of semantic interoperability.

Additional contributionsare:

» Conceptual clarity By narrowing the focus to ontologies that use the same layeyaad
symbols to specify constraints on a given geospatial dontiaismthesis establishes with
detailed examples a conceptual foundation for the anabfsemantic interoperability,

based on models and queries.
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» Foundation for further study Taking advantage of the conceptual clarity achieved by
narrowing the focus to ontologies that use the same langaadesymbols to specify
constraints on a given geospatial domain, this thesisipaositesearchers to undertake
additional analyses of semantic interoperability for cagdere other aspects of the
formal setup are different, e.g., the signatures of thelogtes differ, or the logical

languages themselves are different.

The research contributions give researchers and usersospggal ontologies sufficient

background to be able to:

understand the role of models and queries in the definiti@emantic interoperability;

» appreciate the issues involved in formalizing intuitiveians like ‘semantic interoper-

ability’;

* scrutinize claims of semantic interoperability of gedsgantologies;

* define ‘semantic interoperability’ in a way that is apprepr for formal geospatial on-

tologies (i.e., via models and queries);

* create a definition of semantic interoperability that alljutakes into account the dif-

ferent (model-theoretic) semantics of spatial relati@msl

» understand the relationships between different levelseofiantic interoperability and

the patterns of possible query results.
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1.10 Summary

People sometimes mean different things when they use the samis to describe what ap-
pears to be the same objective reality. Such difference®ammg can arise if people differ in
the implicit meanings they assign to certain words. If peagan codify in a formal ontology
their explicit conceptualizations then the implicit dié&ces in meanings of their conceptual-
ization, and the ramifications of these differences, camiaéyaed computationally.

This thesis explores differences in the meaning of basitapalations (e.g., ‘in’ and
‘through’) as these differences are specified in geospailogies. It considers two similar
geospatial ontologies that differ in the semantics of th@smitive spatial relation symbols
(e.g.,in or through and asks to what extent the two ontologies are ‘semantiagairopera-
ble’

To assess to what extent two such geospatial ontologieseanardically interoperable,
this thesis focuses on the models of the ontologies and oguéges that can be put to the
ontologies. It develops the notion of ‘compatibility cotidins’ in terms of models and queries
and uses these compatibility conditions to define diffelevils of semantic interoperability
between two ontologies. It develops an algorithm and a kecirfior determining the level
of semantic interoperability between sample geospatitdlogies. Finally, it connects the
results of this thesis to possible jumping-off points forthfer research.

Chapter 1 has shown that even when two ontologies are idemtiexerything but the
model-theoretic semantics of their spatial-relation sgtapthe question of in what sense, or
to what extent they are semantically interoperable isatilbpen one. This thesis answers that

guestion (Chapters 3-5, Section 6.2).
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1.11 Organization of Remaining Chapters

Chapter 2 reviews related work and provides the technicaddations needed to understand
the subsequent analyses in Chapter 3. Chapter 3 defines seh&tetiogeneity of geospatial
ontologies in terms of models, and defines six compatibddgpditions that characterize the
semantic interoperability between ontologies. Chaptee8 tises these compatibility condi-
tions to specify under what conditions two geospatial agms are completely semantically
interoperable, partially semantically interoperablenot at all semantically interoperable.
Chapter 4 develops procedures for determining the levelbeidef semantic interoperability
between two ontologies. Chapter 5 implements these proesdand Chapter 6 provides a

summary, conclusions, and directions for future work.
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Chapter 2

PERSPECTIVES ON SEMANTIC

INTEROPERABILITY

Chapter 1 framed the research question of this thesis: Whem&ospatial ontologies use
the same language to describe the same domain, but diffee iImbdel-theoretic semantics of
their spatial-relation symbols, in what sense and to whigrgyare the ontologies semantically
interoperable?

In framing this research question, Chapter 1

» explored a particular kind of semantic heterogeneity eetwformal geospatial ontolo-
gies, namely, that of using the same spatial-relation syndbmean different things,
where meaning comprises explicit data and axioms, as wetheis logical conse-

quences;

» showed how this kind of semantic heterogeneity is refletéide modelsof the ontolo-
gies; and
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 argued that to answer the research question appropr@telpeeds to consider both the

models of the ontologies and the queries posed to the oméslog

Chapter 2 fills out this framework by providing the definiticaared context needed for the
approach used in Chapters 3-5 to answer the research queSemtion 2.1 discusses the
modern notion obntologiesand their uses in helping come to terms with different sernant
conceptualizations of the ‘same’ objective reality. Satt2.2 discusses the nature and role
of ontologies in GIScience (i.e., geospatial ontologi€¥gction 2.3 focuses on how geospa-
tial ontologies are used to model geospatial relationsti@e®.4 zeros in on the particular
semantic difference (heterogeneity) treated in this theke case of two ontologies that have
different semantics for the same primitive spatial-relatsymbols. The chapter is rounded
out by two additional context-setting sections: Sectidn 2hich discusses relevant related
approaches to semantic interoperability, and Sectionv#h@h discusses to what extent the
spatial nature of the conceptual domain studied here iciapéor the treatment of semantic

interoperability given in this thesis.

2.1 Ontologies

The word ‘ontology’ has acquired a distinctive meaning ia tast decade or so, especially
in the research literature in computer and information reme(Guarino, 1998; Smith and
Welty, 2001) The word ‘ontology,” rather than referring fjus the philosophical discipline
that studies the categories of things that exist (Casati e1298; Sowa, 2000), has come to
refer to a certain type of artifact written in natural langeaar in a particular formal notation,

usually with the intent that it be processable by comput@rsgafino, 1998).
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One of the most commonly quoted definitions of an ontologyhat it is “an explicit
specification of a conceptualization” (Gruber, 1993, pg)19
The unifying ideas behind this definition and the many otimailar ones used in computer

and information science are:

an ontology describes what some person or group of peojikstiare essential cate-

gories, entities, features, properties, or relations mesdomain of interest;

an ontology does not exist solely in people’s heads; it ¢smlze, and is most often used

as, a written artifact;

an ontology is usually created so that it can be manipulayezbmputers, with the goal

that implicit information in the ontology can be extractewlaised; and

an ontology may or may not use axioms to describe a partidaiaain of interest.

The philosophical discipline of ontology deals with catege of things that exist and rela-
tionships among these categories. Naturally, people Wéhodisagree about these categories
and relationships. However, even when people agree on tigafental categories and rela-
tionships under consideration, and when they specify tbatgories and relationships in the
same language (natural or artificial), they can still misarsthnd each other.

One widely recognized way that people misunderstand edudr @& by using different
terms to denote the same modeling constructs. For instdepending on the modeling lan-
guage used, a ‘category’ might be termed a ‘kind, a ‘class;oncept, or a ‘unary relation.’
Similarly, a relationship between categories might be &t ‘(binary) relation,” a ‘slot,” a
‘role,’ or a ‘property’ (Gomez-Perez et al., 2004, pg. 208)useful discussion of how differ-
ent terms are used to refer to the same notion is given inlazesd McGuinness (2001). This
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thesis uses a common language and modeling constructgtsettan it examines the seman-
tic interoperability between two ontologies, this extraime of variability (different ways of
modeling ontologies) does not cloud the issue.

A second widely recognized way that people can misunded&ach other even when they
agree on the basic categories and relationships undeidesason is by using the same words
to mean different things. This thesis studies this second &f potential misunderstanding,
which the development and use of ontologies was largelygdesito overcome.

Modeling constructs such as ‘class’ or ‘role,’can be coased to be the tools people use
to build ontologies (Beard-Tisdale, 2006). These constructs shioeldistinguished from
the relationsdescribed byontologies that use these tools. For example, a binaryioelat
(sometimes termed a ‘slot,” a ‘role, or a ‘property’) is antological modeling tool (one
could call it a modeling primitive) that can be used in a giesology to model any number
of domain-specific relations that happen to be binary. Ingpatial domain, for example,
a binary relation can be used to model a variety of commonapaiations (e.g., ‘meets’
or ‘overlaps’, or ‘in’ or ‘through’). A ternary relation cabe used to model other spatial
relations, like ‘between’ (as in ‘A is between B and C’). If antology does not have an
appropriate modeling tool (e.g., a binary relation), thewill not be able to model certain
domain-specific notions.

Since ontologies deal with categories of things that exust the relationships between
these categories, most if not all ontology modeling langsdtave the ability to model classes,
the subclass relation, and an instance-of-a-class. Asudt,rasmain use of ontologies is to
organize knowledge hierarchically and to determine whreshgiven class is a subclass of

another class, or whether a given entity is an instance oftecpkr class (Sowa, 2000).
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In the last few years some relatively sophisticated langadtave been used to model
ontologies, with the result that instead of serving as singfdssification tools, ontologies can
now specify information about the attributes of classesiasthnces, as well as cardinality
constraints on members of the domain (Gomez-Perez et &4)20According to Gomez-
Perez et al. (2004, pg. 203), ontology languages usuatiydhe expression of: (1goncepts
(2) attributeswhich can be divided into instance attributes and clasbates, (3)taxonomies
of concepts, (4yelations (5) axioms and sometimes (6unctions (The ontology language
L used in this thesis (Chapter 3) allows the expression of qgaaceelations, and axioms.)

Ontologies exist across a range of complexity (Lassila asGMnness, 2001) from tax-
onomies that allow the modeling of class-subclass relationknowledge bases that allow
certain kinds of inferences (Guarino and Giaretta, 1995)re&3pondingly, ontology model-
ing languages range in complexity with respect to the madetonstructs they can specify
(Gomez-Perez et al., 2004). On the expressive end of the ramgglanguages that can spec-
ify a wider breadth of explicit and implicit knowledge of ardain and can use automated
reasoning tools to obtain inferences (Obrst, 2003).

That is, ontologies can allow more kinds of inferences alloeitclasses and elements in
a domain than simply whether cladsis a subclass of clasB, or whetherz is an instance
of a classC. Exactly which inferences can be made for a given ontology fanction of
the logical language used to specify the constructs of thel@ygy and the semantics used to
assign a formal meaning to these constructs.

The languages used to specify axiomatic ontologies tylyitelve a model-theoretic se-
mantics that gives the modeling primitives and languagestants a well-defined semantics.

These languages also permit: (1) relatively complex caimgs on the categories and entities
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in a given domain to be specified via axioms; (2) inferencdset@arried out via automated
reasoning; and (3) the specification of queries that can gortztbquestions of class-subclass or
class-instance relationships. These three capabiliteestaaracteristic of ‘knowledge bases.’
Thus, the line is blurred between ontologies as classifinaides and ontologies as knowl-
edge bases that can support more complex kinds of constramt queries. For a further
discussion of the relationship between ontologies and letye bases, see Guarino and Gia-

retta (1995).

2.2 Ontologies in GIScience: Geospatial Ontologies

The use of ontologies in GIScience (Casati et al., 1998; SamthMark, 1998; Mark et al.,
1999; Fonseca, 2000) has come about in recent years to daaleviain problems of interop-
erability (Sondheim et al., 1999; Egenhofer, 1999; Godda#t al., 1999) having to do with
the semantics (Sheth, 1999; Egenhofer, 2003) of spatial(@iekar and Chawla, 2002).
The focus on ontologies to help solve interoperability peais in GIScience has its roots
in research efforts involving interoperating Geograpmfmimation Systems (GISs) (Good-
child et al., 1999). According to one researcher, the goaitefoperating GISs is “to achieve
an automated process that will allow us to use data and s&ftsexvices across the bound-
aries that their collectors and designers envisioned” ifEgeer, 1999). Egenhofer goes on
to note that the difficulties “are primarily in the semantafsthe diverse applications,” that
“[clompatible semantics of geospatial information are @ &karacteristics of interoperating
GISs,” and that “powerful methods to capture and descrilosggtial semantics are critical”

(Egenhofer, 1999, pg. 1).
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One recent article summarizes: “The primary purpose ofgusitiology in GlScience is to
define a common vocabulary that will allow inter-operapilgic] and minimize any problems
with data integration, both from different systems and leetvusers and systems” (Agarwal,
2005, pg. 508). Yet, as the examples in Chapters 1, 3, and 5 slvew when people use a
common vocabulary, they can still fail to interoperate setically.

Ontologies have been identified as a research area by thendiyvConsortium of Geo-
graphic Information Science (Egenhofer, 2004), and byrs¢gmvernmental agencies (e.g.,
the National Geospatial Intelligence Agency (NGA) and ti&G$ in the United States, and
the UK Ordnance Survey in the UK).

Yet, in spite of this recent research activity in GlIScieno®aotologies and interoperability,
the notion of semantic interoperability is avowedly “haodpin down,” because it is “some-
what redundant, there is no accepted formal definitiongthee no benchmarks or commonly
agreed challenges, the role of humans in the loop is un@edrthe acronym inflation around
the semantic web obscures rather than highlights the deepearch issues” (Kuhn, 2005a,
pages. 1-2).

Further, as of August, 2006 NGA has no standard geospatiallogy with which to inter-
operate semantically (Adams, 2006).

That dealing with semantic interoperability of geospatiatologies should prove to be
challenging is not surprising. There are many different sveoyunderstand, and potentially
resolve, various kinds of semantic heterogeneity that taamdsn the way of semantic interop-
erability. Following is a discussion of the approaches toaatic interoperability in GIScience

most relevant to the approach taken in this thesis.
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Bishr (1998) distinguishes two kinds of semantic heteroggneognitive heterogeneity
which is due to differences in the mental models being regmtesl in information systems, and
naming heterogeneityvhich occurs when different words refer to the same realehentity.
Bishr creates a framework for comparison of the interopétalof Geographic Information
Systems that consists of different levels, ranging fromldheest level of network protocols
to the highest levels of data models and application secg(Bishr, 1998, pg. 300). He then
proceeds to analyze the problems of heterogeneity andpeeability at the levels of data
models and application semantics, and he offers some @ofutdr these problems.

The issue of resolving semantic heterogeneities in ontedolpr geographic information
processing has also been discussed in Visser et al. (2082)adthors use “the tersemantic
integrationor semantic translatiomo denote the resolution of semantic conflicts that disable
a one-to-one mapping between concepts or terms” (Vissdr,&0®2, pg. 7). The authors’
approach considers contextual information related to timeepts or classes to which entities
belong, and they seek to explicate this context by definisgtcessary and sufficient condi-
tions for an entity to belong to a given class. A further cdesation in their approach is “how
and what kind of context knowledge has to be considered irréimeslation process because
the choice of the representation has mayor|[sic] impactieglassification method to choose
and the expected results” Visser et al. (2002, pg. 8).

Hakimpour and Timpf (2002) also deal with semantic interapdity of geospatial ontolo-
gies. Their approach discusses how to merge ontologiesl lmasthe semantic similarity of
intensional definitions aierms Their analysis of semantic similarity in terms of set-tletc
relations (e.g., overlap, contains) appears somewhatasitoi our analysis of the 5 model-

class relations introduced in Chapter 3.
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The classification of semantic heterogeneity by Bishr is pgiieable to this thesis, for
three reasons. First, although it could be argued that ttezdgeneity exhibited in the sample
ontologiesD; andO, from Chapter 1 (Figures 1.8 and 1.9) is an example of Bishr'siitivg
heterogeneity, Bishr’'s approach offers no way to assessttet bf semantic interoperabil-
ity of systems that exhibit such kind of heterogeneitiesisThesis, by contrast, does offer
a framework (Chapter 3) for assessing the level of semartgcdperability between ontolo-
gies. Second, the kind of semantic heterogeneity exhibiyed, andO is clearly not Bishr’s
‘naming heterogeneity,” where different words refer to $hene real-world entity. Rather, this
thesis considers the situation in which emeword hasdifferentmeanings. Third, Bishr’s
classification of semantic heterogeneity is connectedddliffierent levels of abstraction peo-
ple use to model the conceptual and symbolic worlds. Thesfatuhis thesis, by contrast,
is on differences in the actual specifications of ontologax®l their models), rather than on
issues relating to how people conceptualize their worlds.

Visser et al. (2002) do deal with differences of semantidbénframework they use; how-
ever, their framework is not easily comparable to our apgpéor three reasons. First, their
approach deals with mappings between ontologies that neatotepts or terms, whereas our
approach does not involve any mappings between ontolo§esond, under their approach it
is not clear which components of different ontologies (danguages, vocabulary, semantics)
they consider to be the same for two given ontologies andiwthiey consider to be different.
In our approach, on the other hand, these similarities affielreinces are made explicit (see
Figure 2.2 and Section 4.1). Third, their notions of sentaintiegration and semantic trans-
lation are not based, or at least not obviously based, on tuels of the ontologies, whereas

this thesis uses models directly to define and calculatésl®@fesemantic interoperability.
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Although Hakimpour and Timpf (2002) deal with semantic mogeerability of geospatial
ontologies and although they use an approach based oresgétic relations like overlap and

contains, it is not clear that models and model classes areasis of their analysis.

2.3 Semantics of Spatial Relations

Within the realm of spatial data, researchers have paidcpéat attention to representing
and reasoning with spatial relations (e.g., Cohn and Haa4#R01)). Approaches to spatial
relations have fallen into two major areas: topologicakespntations and algebraic manip-
ulations (e.g., Egenhofer and Franzosa (1991)), and Ibgeatments (e.g., Randell et al.
(1992)). Cohn and Hazarika (2001) provide a recent overvighease broad areas of qualita-
tive spatial reasoning, as well as references to additiwonat by Egenhofer and Cohn.
Common to both these veins of research are the two fundamdegs ofconstraintsand
consequencesFor instance, when using topological representationsadgebraic manipu-
lations to represent and reason about spatial relatiossarehers make their treatments of
spatial relations precise lponstraining via a topological specification, ‘what it means’ for
one spatial region to beontainedin another. Then, theonsequencesf these constraints
are worked out via algebraic manipulations, so that, fongda, if region A is contained by

region B and region B is contained by region C, then region Ass eontained by region C.
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The ideas of constraints and consequences also apply tinthe df qualitative reasoning
in the second research vein mentioned above (e.g., Renz)j20®this approach, logical for-
mulations are provided toconstrain‘what it means’ for, say, one region to be a non-connected
proper part of another region. Then, the machinery of Idgidarence is brought to bear to
determine th&onsequencesf the given constraints.

This thesis similarly treats the semantics of spatial i@testfrom within the framework of
‘constraints and consequences.” Under this view,dbestraintson the semantics of spatial
relations are given by the data tuples and axioms in an aygyoleor example, if one data tuple
of one ontology represents the claim that ‘the ball is in thelp this data tuple effectively
constrainsthe meaning of the spatial relation in such a way that (for this ontology) the
ball is indeedin the pool. (In subsequent examples in Chapter 3, we shall seée@xioms
of an ontology also constrain the semantics of the spatiaioas.) As for theconsequences
associated with the spatial relations, these, too, musbhsidered ‘part of’ their meaning.
For instance, the discussion in Chapter 1 about whether theslva the yard dealt with the
(implicit) consequences of whatneanso say that the ball is in the pool and the pool is in
the yard.

Following is a brief overview of the formal apparatus usedhis thesis to treat the con-
straints and consequences that together determine thesesnat spatial relations.

For the purposes of this thesisgaospatial ontologys an axiomatized ontology of the
geospatial domain. A geospatial ontology differs from avemtional Geographic Information

System (GIS) in four fundamental ways.

1. A conventional GIS is a software system that contains datat geographic entities
and relations that are tied to one or more coordinate sys{®gmux et al., 2002),
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whereas a geospatial ontology is a collection of axioms au$gatial data, which is
often assumed to be supported by querying and inferencibhgase, but whose entities
and relations are not necessarily tied to a particular éoate system. (The geospatial

ontologies in this thesis do not use a coordinate system.)

2. Even when a conventional GIS does use constraints ongeagrentities and relations,
these constraints are not subsequently interpreted inIsy¢8ection 3.1), whereas in a

geospatial ontology they are.

3. A geospatial ontology (of the kind dealt with in this trggises a logical language to

specify its data and axioms.

4. A geospatial ontology can use an automated reasoner iy @airinferences from its

axioms and data.

By the definition above, the sample ontologies in Chapter 1 @pspgatial ontologies. The
language they use is a subset of the language of first-ordex. [bheir axioms are expressed
via two kinds of vocabulary: a logical vocabulary, and a magical vocabulary. The logical
vocabulary consists of a finite set of variables (ewgy, 2, etc.), logical operators, A, and
-, the universal quantifie) (‘for all’), and the existential quantifierd) (‘there exists’).
The non-logical vocabulary consists of a finite set of camssymbols and a finite set of
relation symbols. In the examples of Chapter 1, the constanbsls areRoute 2 Orong,
Bangor, andMaine that denote Route 2, Orono, Bangor, and Maine, respectiveig sble
relation symbol in the non-logical vocabularyiis In general, a nonlogical vocabulary can

also include function symbols, although for the ontologrethis thesis no function symbols
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are used. (See Chapter 3 for a more detailed discussion obdieal language used in the
analyses of this thesis.)

The language used in the examples of Chapter 1 is capable odssipg certain claims
about the four geographic entities under considerationt&duOrono, Bangor, and Maine.
In particular, that language allows us to express varioasnd about, or constraints on, how
those entities are related to each other via the spatidloelan. These claims are expressed
by axioms written in the language, as well as by the data suplat specify (the extension of)
the relationin (Figures 1.8 and 1.9).

The geospatial nature of the ontologies comes from thelatthe entities in the ontology
are geographic entities, and the relation in the ontolodliesspatial relatiomn. This spatial
relation can be axiomatized to have various propertie$) aa¢he antisymmetry of ‘in’: ‘If X
isinY, and Y isin X, then X equals Y.

Two people who create ontologies specifying spatial refetican legitimately differ on
which properties that they believe these spatial relatghmild satisfy. These differences in
properties are reflected in the different axioms and datisupat the two people or groups
use to create their ontologies, and the differences in dadeagioms are further reflected in
the (possibly) differensemanticof the two ontologies, which are specified in the (possibly)
differentmodelsof the ontologies. Thus, the ‘semantic consequences’ ofetigmate dif-
ferences that people may have about the properties of spalaéions can be explained by
examining the models of the ontologies. One such ‘semantisequence’ is whether or not
the resulting ontologies can interoperate semanticallgpme specified sense.

This thesis is not concerned with finding a ‘correct’ chagaeation ofin or any other

spatial relations. Rather, given that two people can legitely create different ontologies for
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spatial relations, it investigates to what extent theselogtes could be semantically interop-

erable (in the precise sense specified in Chapter 3).

2.4 Our Target: Different Semantics of Primitives

The treatment of semantic interoperability most direatiigvant to this thesis is that of Klein
(2001). Klein’s classification scheme identifies a speciimantic heterogeneity dealt with
in this thesis: two ontologies differing (only) in their santics of primitives (Figure 2.1).
Klein does not, however, discuss how to ascertain or comgrutalegree or level of semantic
interoperability between two such ontologies.

The kind of semantic heterogeneity dealt with in this thaesisere the same spatial-relation
symbol used in two ontologies has a different formal sensanfippears to be exactly what
Klein describes as a language-level mismatch that deals diffterent semantics of primi-
tives. In describing this mismatch Klein says: “Despiteft that sometimes the same name
is used for a language construct in two languages, the sasanay differ; e.g., there are
several interpretations & equal To B.” It is possible that Klein may have implicitly con-
sidered the case in which the two languages are differettjsrthesis, however, we explicitly
state that the languages themselves (and the symbols usieehiy are the same for the two
ontologies; only the model-theoretic semantics of theiapaglation symbols differs.

Klein begins by distinguishing two broad types of mismatched several subtypes within
each type (Figure 2.1).

His two broad types of mismatch al@nguage-level mismatchesdontology-level mis-

matches At the language level, the mismatches are “betweenntleehanismdo define
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Language-level | Ontology-level

syntax conceptualization
scope

model coverage
and granularity

logical

representation explication
paradigm
| concept
anguage description
expressivity
terminological
_ synonyms
semantics of homonyms
primitives .
encodings

Figure 2.1: Types of ontology mismatches (from Klein, 2001)

classes, relations and so on.” These mismatches are ateftbedf the language primitives
that are used to specify an ontology.” At the ontology letleé mismatches are differences
in the way the domain is modeled and occur when two or morelagits describe “(partly)
overlapping domains” (Klein, 2001).

Of course, Klein’s classification is in some sense arbitré¥jpat makes his classification
relevant to and useful for this thesis, though, is that tieeestrong correspondence between
his categories and the framing of the research question ipt€ha (Section 1.7). We do not
repeat Klein’s explanations of his categories and suboaieg) but focus on one particular
category of mismatch that he identifies: — a difference insmantics of primitives, which
in this thesis translates to a difference in the semantiqwiafitive spatial relation symbols
used to model binary spatial relations.

In this thesis, a ‘primitive spatial relation symbol’ is xtstring (e.g., ‘in, ‘on,’ ‘through,

‘between,” ‘meets,’ ‘overlaps,’ ‘connected to, etc.) dsas a predicate symbol in the logical
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language used to specify the ontology. This symbol is ‘piv@i in the following senses.

First, it is treated as a single symbolic unit (a predicatalsyl) in the logical language. Sec-
ond, as a single unit, it is intended to capture the meanirgbafsic (i.e., a primitive) relation.
It ‘captures’ this meaning by means of its semantic spedifinan the ontology. This seman-
tic specification is achieved through the conjunction ohdatd axioms in which the symbol
plays some role. Third, the axioms that help specify the s¢icgof this symbol do not

contain any other spatial relation symbols. Thus, by ‘semaif a primitive spatial relation

symbol’ we mean the semantics (i.e., the models) that r&sait the use of this symbol in the
data and axioms of the ontology.

In describing this form of semantic heterogeneity, KleipsséDespite the fact that some-
times the same name is used for a language construct in twodges, the semantics may
differ; e.g., there are several interpretations &f equal To B.”

Figure 2.3 illustrates how the general framework of thissthédepicted in Figure 2.2)

corresponds to Klein’s framework (Figure 2.1).

01 same 02
domains,
languages,
symbols,
inference rules

different semantics l

{models of 01} # {models of 02}

Figure 2.2: The framework assumed in this thesis

To that the ontologies use the same language is essentiabytthat there are no differ-
ences in what Klein calls the language-level logical repnéstion and language expressivity.
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Figure 2.3: Comparison of the classification used in thisish@gh Klein’s

Similarly, when we say that the ontologies have the same tlgma are essentially saying
that there are no differences in what Klein calls the ontgleyel category of conceptualiza-
tion, which has the sublevels of scope and model coverage.

Further, when we say that the ontolog@sdiffer in their semanticswe are saying that
there are differences in the language level of what Kleitsdile semantics of primitives,
and which we take to mean different model-theoretic serogaritir the primitives. We mean
by ‘different model-theoretic semantics for the primigvéhe different model sets that result
from the different ways two ontologies specify constra{wia axioms and data tuples) on the
primitive spatial-relation symbols in the ontologies.

Three points should be made here: (1) some subtleties wessagl over in making the
correspondences above; and (2) one of Klein’s subcategofienismatch cannot quite be

squeezed into or out of our framework: the paradigm mismatéifom what Klein says,

52



paradigm mismatches would seem to deal with differencesgresentational primitives for a
given domain (such as points versus regions for the spatrabghs, or points versus intervals
for the temporal domain). Although we assume in this théssisthe ontologies do not differ in
this regard, it is hard to state this using just our categafelomains, languages, symbols, and
inference rules (Figure 2.2); and (3) Klein’s classificat{aghtly, we would argue) does not
treat possible differences in inference rules, since tineyoayond the scope of his concerns.
Finally, although there can clearly be many different waylassify semantic hetero-
geneities in ontologies, we are not concerned in this thesiscomparing the strengths and
weaknesses of different classifications. Rather, the pyinpparpose of this section has been
to make clear—by situating the thesis in the context of alamifamework—which pieces
of our framework are assumed to be the same across ontokngieshich are assumed to be

different.

2.5 Semantic Interoperability: Other Views

The phrase ‘semantic interoperability’ does not mean theeshing to everyone across differ-
ent communities. Even within the same community, the mepoiithis term can vary widely.

Fortunately, though, researchers use a similar approdchnmng their discussions of seman-
tic heterogeneity and semantic interoperability. Aftesa@ing this approach, we provide a
context for the above discussions of semantic interopksalii GlScience by presenting an

overview of related work on semantic interoperability indgeother than GlScience.
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2.5.1 A Common Approach

In framing their discussion of semantic heterogeneity @milantic interoperability, researchers

typically do the following.

1. They narrow the scope of issues under consideration. Stiéhce, for instance, one
might limit one’s scope to models of the geographical wondttare based on fields,
or to models that are based on objects. (Note: the word ‘maslelsed here and in
the next two paragraphs in a general sense; not in the spgeifge of model-theoretic

semantics.)

2. They create models within that scope that are somehow a@ble. So, they might
create a field-based model and an object-based model foea gast of the geospatial

world.

3. They identify a certain kind of semantic heterogeneity.(alifferences in meaning that

result from field-based versus object-base models of theésgeographical reality).

4. They specify a desired kind of semantic interoperabditg then try to discover to what
extent the ontologies are already semantically interdpera order to manipulate the
ontologies, or force them to be semantically interoperabke certain way. For exam-
ple, a researcher might define the field-based and objeetdbaedels to be completely
semantically interoperable if there is a way of convertiatpgdqueries, and query results
from the field-based model to “equivalent” data, queried, @urery results in the object-

based model, and vice versa. Then, the researcher mighiogesiher an algorithm
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that ascertains whether the two models are already comptetmantically interopera-
ble, or an algorithm that operates on the two models and $dieam to be completely

semantically interoperable.

The first two of these steps are often taken jointly, by fooggin particular problems of
semantic heterogeneity that arise when different infoilonagystems handle meanings differ-
ently.

There are many ways in which ontologies can be, in a broadesesssnantically het-
erogeneous. Among these are: (1) whether they are genetapper-level” ontologies or
lower-level, domain-specific ontologies; (2) whether tieepsider the most elementary com-
ponents to be the same kinds of entity (e.g., points verglisne in ontologies of space); (3)
whether they treat the same domains, (4) whether they trgiaea domain at the same level
of granularity; (5) whether they use the same ontology lagguto model their domain(s),
and so on. Under a broad interpretation of the word ‘semshfn ontology’s semantics is
affected by all of the above choices.

One can begin to understand repercussions of these chojcesploring some of the
treatments and classifications of semantic heterogertatyhiave been proposed in various

related areas: databases, GlScience, and informatiopldemsciences.

2.5.2 Database Interoperability

In 1990, Sheth and Larson acknowledged that the problemmastc heterogeneity was
“poorly understood” and that there was “not even an agreémegrarding a clear definition
of the problem” (Sheth and Larson, 1990, pg. 187). Since,tseme progress has been
made in identifying certain types of semantic heteroggneitspecifying the desired kind of
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semantic interoperability, and in manipulating datab&sashieve certain degrees of semantic
interoperability. Yet significant problems remain.

Representative Approach: Merging Schem&sibstantial progress on treating semantic
heterogeneities has been made in the area of database s¢chédnith specify the vocabulary
and structures used to describe a given domain. Researcihdas ghat certain semantic
heterogeneities among databases that use different ssteamde resolved by matching the
compatible components of their schemas and then integrttése components into a global
schema (Rahm and Bernstein, 2001; Hakimpour and Geppert, 2002).

Because a database schema deals with vocabulary for talkg a given domain, the
schema has a direct effect on how the database deals withmgeafo the extent that prob-
lems with schema heterogeneities are overcome, one caragathe databases have been
made more semantically interoperable. But, although the &frinteroperability achieved at
the schema level does enable users to employ a common vacabubhsk and get answers to
guestions, it suffers from several shortcomings.

First, simply because two databases have had their scheergsdror mediated and so can
be queried with the same vocabulary, does not mean that teeseanantically interoperable,
in the sense that themeaningsare now compatible with each other. To suppose so is akin
to supposing that because two people speak the same langjuagtherefore mean the same
things by the words they use.

Second, semantic interoperability at a schema level iopsiof several kinds of semantic
interoperability that merit investigation.

Third, this kind of interoperability is not complete in thernse that it is not generally pos-

sible to automatically determine “all matches between taltemas, primarily because most
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schemas have some semantics that affects the matchingechite is not formally expressed
or even documented” (Rahm and Bernstein, 2001, pg. 337).

Fourth, resolving schema heterogeneities sheds no lighbanquery results depend on
the different semantics. That is, even if queries can nopdsedusing a common vocabulary,
schema integration by itself says nothing about howath&wverso queries are related to the
semantics of the databases.

Fifth, the semantics of a conventional database is detexhty the unique model of that
database, whereas the semantics of an ontology (whictdieslaxioms as well as data tuples)
is determined by (most often) multiple models of the ontaeg In the case of ontologies,
therefore, more is needed to achieve semantic interopigydaban just a common framework
for asking and answering queries. Specifically, what is eddd a detailed analysis of the
differences in semantics between two ontologies, an aisadlyat considers both the models
of each ontology and possible queries to them.

In 2006, all of these issues and more still confront resesascim semantic interoperability.

2.5.3 Information Science

The classification of ontology mismatches by Visser et &89@8) and the framework for under-
standing differences between ontologies created by KB01) demonstrate that, as recently
as a few years ago, researchers were still trying to claniértunderstandings of the differ-
ent kinds of heterogeneity between ontologies. As Scharlenand Kalfoglou (2004) state,
“Semantic interoperability and semantic integration areincontested and fuzzy concepts,
which have been used over the past decade in a variety ofxtergerd works” (Schorlem-

mer and Kalfoglou, 2004, pg. 46). Recent work by the EuropeamvKedgeweb project does
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provide an “[ijntegrated view and comparison of alignmesrhantics” (Hitzler et al., 2006),
although at a level of abstraction that is higher than thadus this thesis.

Translational Approach to Semantic Interoperabilitfhe notion of semantic interoper-
ability that underlies most discussions in the researelditire can be gleaned from the fol-
lowing quotation from Heflin and Hendler (2000): “To achiesemantic interoperability, sys-
tems must be able to exchange data in such a way that thegoneeaning of the data is readily
accessible and the data itself can be translated by anynsyste a form that it understands”
Heflin and Hendler (2000, pg. 111).

In this context, achieving semantic interoperability negs that data in one system be
translated to another system such that the translated ngeerihe second system means “es-
sentially the same thing” as the original meaning does irfithesystem. Let us agree to call
this approach to semantic interoperability the “translai approach” to semantic interoper-
ability.

Gruninger and Kopena (2005) follow this approach. Their geatoi develop technol-
ogy supporting semantic integration: “two software systeran be semantically integrated
through a shared understanding of the terminology in tlesipective ontologies” @ninger
and Kopena (2005, pg. 11).

The notion at play in the translational approaches to semanteroperability appears to
be based on the notion of isomorphism: a one-to-one and betacé, invertible) mapping
of elements between two structures such that certain signifiproperties are preserved by
the mapping (and its inverse). A classic kind of isomorphisrthat which occurs between
two graphs, where the mapping takes vertices of one graplvartices of the second graph

in such a way that the adjacency relationship that existsngmertices of the first graph is
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“preserved” by the isomorphism: i.e., the mapped vertingbé second graph have the same
adjacency relationships as do the original vertices in tls graph. When two graphs are
isomorphic, they are “essentially the same graph” excaphilabeling of their vertices.

The translational notion of semantic interoperability henefits and drawbacks. One
benefit is that it offers a specific view of when two ontologies semantically interoperable:
namely, when there exists an isomorphism between them.h&ndkenefit is thaif such an
isomorphism exists, then the ontologies are “fully” sencaily interoperable, in the sense
that all relevant meaning is preserved by the isomorphism.

But along with these benefits come several drawbacks. ek tare quite a few ways to
define an isomorphism between ontologies, and one needscarékell to specify exactly the
domain and range of the mapping, and exactly what propediaain preserved by this map-
ping. For instance, in trying to create an isomorphism betwantologies, should the mapping
be between elements in the ontologies’ signatures, or leetee entities in the conceptual
domain? And, in either case, what is it that is preserved byrhpping (isomorphism)? Is it
the model classes of the ontologies?

Second, even if a careful and sensible specification coulshdde of the mapping, and
even if it is the model classes of the ontologies that areepvesl by the mapping, such a
mapping reveals only “perfect matches” or full semanti@iaperability. It ignores finer-
grained issues, about the relationship between queriethamdodels of the ontologies. These
finer-grained issues help explain certain relationshipséen model classes that govern query
results (Chapter 3).

Other Approaches to Semantic Interoperabili®ther approaches to defining and achiev-

ing semantic interoperability that merit discussion imidiEuzenat (2001) and Masolo (2000).
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Euzenat (2001) takes what he calls a “principled approaatsemantic interoperability.
He defines semantic interoperability as “the faculty ofipteting knowledge imported from
other languages at the semantic level, i.e. to ascribe toiegworted piece of knowledge the
correct interpretation or set of models” (Euzenat, 2001,118). His work considers “several
proposals for expressing semantic interoperability acdifferent languages as it shall happen
on the semantic web” (Euzenat, 2001, pg.22). In this thdsiscontrast, we address the
more basic challenge of understanding semantic interbpiéyavhen ontologies use treame
language but with different semantics for the primitiveatin symbols.

The work by Masolo (2000) discusses set-theoretic relatimtween theories and mod-
els. In terms of theories, Masolo considers relations likedry A is a subset of theory”
(where the theory ofd in a languagé. is the set of all the sentences inthat are provable
from the sentences iA). Masolo explicates his ideas using different kinds of orééations
(e.g., partial orders and dense linear orders) and difféiads of mereological relations (e.g.,
proper_part_of). From a syntactical and proof-theoretic viewpoint, hevehdow the set-
theoretic relation between theories can be determinedriainespecial cases based on which
axioms (e.qg., reflexivity, transitivity) comprise the tingoSo for instance, if theoryl contains
just the one axiom of reflexivity and theofy contains the two axioms of reflexivity and tran-
sitivity, then theoryB will be a subset of theoryl. That is, anyL-formula that can be proved
in theory B can also be proved in theory. Masolo uses models in two ways. First, he uses
the model-class relations of equals, subset, and supersifine, respectively, one theory
being equal to, a subtheory of, or a supertheory of anothas@®, 2000, pg. 123). Second,
he uses models, along with a translation between the laeguaigwo theories, to determine

when two theories are “translationally equivalent” (myntenot his) (Masolo, 2000, pg. 128).
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Yet, Masolo apparently does not take the further step ofadlgtuworking with specific
models of two theories, in order to determine the relatiovben the sets of models, or to

comment on what might be the semantic interoperability betwthe two theories.

2.6 Is Spatial Special?

Is the treatment in this thesis of semantic interoperatilitgeospatial ontologies particularly
‘spatial’? The answer is ‘Yes and no, and it points to theegahzability of this research.

On the one hand, in the actual specifications of the differenteptualizations of, for in-
stance, the spatial relation ‘irspatial is speciglin that the spatial properties of the objects and
relations under consideration are exactly what the humasteiecs who construct the speci-
fications of their conceptualizations (i.e., their ontaés) are trying to understand, capture,
and exploit. The same would be the case for other spatigiaea be they ‘on, ‘through,’
‘connected to, ‘between, ‘meets, ‘inside, ‘contaihfart, or ‘complement’ (Stell, 2004),
etc. The same kind of specialness would also apply to otineiskof properties, which, though
not unique to spatial information, are often treated inigpatformation science. Such prop-
erties include the granularity of the domain under quedfibobbs, 1985), or the vagueness,
uncertainty, or imprecision often found in descriptionsgebspatial phenomena (Burrough
and Frank, 1996; Clementini and Di Felice, 1997).

The key principle is: whatever aspect of ‘spatial’ is beirepli with (e.g., granularity,
processes, spatiotemporal events, topology, orientajeometry, coordinates, vagueness,
imprecision, uncertainty), if the concepts can be desdriba logical language with a model-

theoretic semantics, then the analysis used in this thppigea at least in principle.
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In some cases, the analysis might apply, but with appraphaditations. Often, for ex-
ample, axioms in mathematical theories are very straigvtiad (e.g., group theory), and the
intuition of the implicitly specified models is somewhataie But when these axioms are
used to derive logical consequences — i.e., to decide wh#éthenathematical structures so
axiomatized have a given property — the arguments are madpreof theory rather than
model theory. That is, one proves logical consequenceyutas, not semantic, and relies on
the soundness of the logic involved, which says that if altesun proved syntactically, it is
true semantically. Thus, where the emphasis is on proofyias, the analysis used in this
thesis is not particularly applicable.

In the special case of geospatial ontologies, though, ifddmains can reasonably be
assumed to be finite, the models can at least in principle loalated, and the model classes
of two ontologies can then in principle be compared. Not¢ tfhemodel-theoretic approach
taken in this thesis depends for its computational resultthe assumptions of finiteness of
the conceptual domain and the related assumption that théemof constant symbols is the
same as the number of entities in the conceptual domain.effetiaissumptions of finiteness
are relaxed, so that the conceptual domain and the size abtidogical vocabulary could be
infinite, theprinciplesof the model-theoretic analysis in this thesis remain ungkd, though
the computations may be intractable. Note also that witHithieness assumptions, a proof
calculus for the logical language used could deternfirea given querywhether that query
is a logical consequence of the ontology. If the assumptdfisiteness were relaxed, so that
the language used is first-order logic with equality, theopoalculus would not in general be

able to decide whether a query is a logical consequence afitatogy.
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To consider the matter from another angle, supposelihensions a spatial property that
varies between two geospatial ontologies. For examplgasgthat in ontology A everything
is being considered in two dimensions, whereas in ontologydBything is considered in three
dimensions.

In this case, spatias special, because the meanings of spatial relations likarid 'be-
tween’ can clearly be different, depending on whether ore@msidering a 2-dimensional or
a 3-dimensional world.

On the other hand, spatial rot special in this thesis, because the analysis of semantic
interoperability presented here does not directly deperahy differences in the spatial prop-
erties (e.g., dimension, topology, metrics, coordinditira or orientation) of the geographic
domain under consideration. Thus, even though the analysismantic interoperability in
this thesis focuses on different conceptualizations ofiabeelations—as these conceptual-
izations are specified in the data and axioms of the ontadamie interpreted in the models of
the ontologies—thenethodof the analysis is independent of the spatial propep&rsseof
the spatial relations under consideration.

That is, the fact that ‘in’ may capture certain topologicaeometrical properties of spa-
tial objects does not affect the method of analysis, whighlats the abstract logical frame-
work of a formal ontology specified in a language that has aghtigeoretic semantics. The
relevant aspect of geospatial ontologies, as far as thgsasgoes, is that they are axiomatiz-
able in such a logical framework.

The method employed in this thesis is generalizable to ptioer-spatial relations, such as
‘is the parent of’, or ‘is employed by, since the functiogiaf this method is tied to the formal

specification in terms of data tuples and axioms, rather thangiven conceptual domain.
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It can be the case, from the appropriate point of view, thatappear to be fundamentally
spatial issues are seen to be simply particular domainfgpesues of a particular domain.
That is, the axiomatization of the dimensionally depengeaperties of the spatial relations
‘in” and ‘through’ proceeds without special regard to thatsgd domain. And the subsequent
analysis of semantics in terms of models, and of semangcdperability in terms of model
classes (Chapter 3) would be the same for the entities artibredan the geospatial ontologies

as it would be for other entities and relations in say, an egg# ontology.
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Chapter 3

SEMANTIC INTEROPERABILITY:

MODEL CLASSES AND QUERIES

Recall from Chapter 1 that the research question is: “When twegial ontologies use the
same language to describe the same domain, but differ in tuelktheoretic semantics of
their primitive spatial-relation symbols, in what sensel &m what extent are the ontologies
semantically interoperable?” Recall from Chapter 2 thatoaltfin there is significant related
research on the issue of semantic interoperability, theselbeen no detailed analysis of the
semantic interoperability of two geospatial ontologiewimch the semantics of the ontologies

is specified by model-theoretic semantics. This chaptesgmts such an analysis.

3.1 Language, Queries, and Truth Values

As mentioned in Chapters 1 and 2, in order to specify a formagpatial ontology one needs

to specify both its axioms and its data. To specify its axiows use a logical language that
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is described in the next section. To specify its data, we upes like (Route2, M aine)
to indicate that for a particular relation in question, Sag spatial relationn, Route 2 is in

Maine. These tuples will not be described further.

3.1.1 Logical Language

We use a language that is a subset of the language of first-order logic (Ebbaughet al.,
1994; Boolos et al., 2002). The vocabularylotonsists of two parts, a logical vocabulary
and a non-logical vocabulary.

Thelogical vocabularyof L consists of a finite set of variables (e.g,y, z, etc.), the logi-
cal operators/ andA (corresponding roughly to natural-language ‘and’ and, ‘@spectively),
the universal quantifiervf) (read ‘for all’), and the existential quantifief)( (read ‘there ex-
ists’), the negation symbel, and the equality symbol =. Also included inare the following
grouping symbols: the comma, and the left and right pareethe

Thenon-logical vocabularpf L consists of a finite set of constant symbols and a finite set
of relation symbols (each with a finite arity). The non-lajigocabulary used in this thesis
is special in the sense that the constant symbols are noffiaityyin number, but they equal
in number the number of entities in the ontology under carsition. Further, every constant
symbol in the non-logical vocabulary refers to a uniquetgiti the conceptual domain. This
restriction on the constant symbols is made for two reasleinst, one supposes that creators
of ontologies would use only as many names as there areesntitider consideration. Sec-
ond, by limiting the number of constant symbols to be the samthe number of entities in
the conceptual domain, the number of models of a given ogyoi® also limited; thus, the

computations comparing model classes of two ontologiesrcaome cases be tractable.
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We make the explicit assumptithrat the size of the logical domain is the same size as the
conceptual domain for each ontology. That is, the numbentfies that can be considered
in the language (via its variables, constants, and relayombols) is the same as the number
of real-world entities (e.g., Bangor, Maine, Route 2, and ©jadhat exist in the domain
under consideration. Thus, logical inferences are caoigan a finite domain, and this finite
domain is assumed to be fixed in advance and to be the same acooels within a given
ontology, as well as across models between different ogiedo

The syntactic ruledor L are the same as those for first-order logic, and they allovo us t
combine the symbols from the logical and non-logical votates to create statements (well-
formed formulas with no free variables) that are used botietrribe the domain (as axioms
in the ontologies) and to form queries about the domain, whiitl be evaluated against the
ontologies.

Thesemantic®f L are specified via model-theoretic semantics (Manzano,;1988ges,
1997; Farrugia, 2003), which uses models (here, essanjiadt sets with relations defined on
them) and which assigns formal meanings to legitimate siaes of, by interpreting them
in set-theoretical structures (e.g., relations). Seei@e8t1 for more details on the models of
some sample geospatial ontologies.

For aproof theoryassociated with.,, one may assume any of several equivalent proof
theories of first-order logic. The proof theory bfis not directly relevant to this thesis and
will not be dealt with in any detail. As will be mentioned in Gitar 6, for certain languages a
proof theory could be used to calculate whether or not a gipemy, or a set of given queries,
follows as a logical consequence of the statements in th@agyt (Patel-Schneider, 2006).

But this capability falls short of the kind of analysis thaniseded to determine the level of
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semantic interoperability between two ontologies, sirtzd tletermination is made, in part,
by considering whetheall queries that are a logical consequence of one ontology soeaal
logical consequence of the other ontology. A proof theontlie language we use (with its
restriction of finiteness on its non-logical vocabularyh ceetermine, for any particular query
that we specify, whether that query is a logical consequefdbe data and axioms of an
ontology. But it cannot give us this determination for all gas that we might specify, which
is what we need for our analysis.

In the examples of Chapter 1 (Figures 1.8 and 1.9), the nandbgocabulary consists of
four constant symbold{oute2, Orono, Bangor, andM aine, which denote the entities Route
2, Orono, Bangor, and Maine, respectively), and one binaajiapelation symboin, which
denotes the the binary relation ‘in.” The geospatial natfrhese ontologies is reflected by
the facts that: (1) the entities are geographic entitiesth@ relation is a spatial relation; and
(3) the axioms using the spatial relation describe certéangible spatial properties of the
relation ‘in’

The constant symbols and relations symbols of the non-dbgmcabulary together com-
prise thesignatureof an ontology. (Whenever two ontologies are compared inttigsis,
they both have the same signature; thus differences intsignare eliminated as potential
sources of variability between the ontologies.) The sigregtalong with the syntactic rules
for L, allow us to express claims (in the form of queries, i.e.testeents) about the spatial
configuration of these entities, e.g., which entities anehirch other entities.

Certain of these claims are taken todb@omsof the ontologies, which are explicitly given

statements that are True in all models of the ontology (seed®e2.2.2).
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Other claims are put to the ontologies @series which are then evaluated against the
models of the ontologies to see whether the claims are Tra#,isome, or no models of the
ontologies.

Since the symbols of and the queries formulated ih are interpreted via modelany
guestion about the meaning of the symbols of a given querppsopriately treated as a
guestion about the models of that ontologyueries to these ontologies will be evaluated as
True or False according to whether the state of affairs tlesgiibe does or does not hold in
one or more models of the ontology. More details on queriéstiarth values are provided in

the next section.

3.1.2 Queries and Truth Values

As noted above, statements/ircan serve not only as axioms, but also as queries. For example
the statemenin(Route2, Orono) can be used to ask whether, according to a given ontology,
Route 2 is in Orono.

In this thesis, the truth value of a quepevaluated against an ontolo@yis determined by
the model-theoretic semantics bf which is essentially the same semantics used to determine
whether a statement is True in first-order logic with eqydibbinghaus et al., 1994; Boolos
et al., 2002), the only differences being due to the vari@ssiaptions of finiteness regarding
L (Section 2.2.1). Thus, the constant symbols have a fixed r#@sawhere each constant
symbol denotes the corresponding geographical objectardtdmain. The binary relation
symbols are interpreted as binary relations on this donkairally, any variables ird) (which
is finite and assumed to be the same size as the domain of figatidin) receive variable as-

signments only from the elements in the geographic domdie.a6sumption of finiteness for
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the conceptual domain (the elements in the geographic ammakes sense, because geospa-
tial ontologies are likely to deal with only a finite numberg#ospatial elements, assuming
that there is no practical need, for instance, to consides ind space as domains of infinite
size. The assumption that the logical domain (the domain widch variables can range) is
the same size as the conceptual domain is made to remove tnosideration those models
containing elements that have no counterpart in the conabgbmain. Using this semantics,
Q i1s interpreted as referring to a particular state of affdieg may or may not hold in one or
moremodelsof the ontology.

There are different ways to evaluate a query against anagypivhich depend among
other things on the number and kinds of truth values avalaBlconventional database, for
example, uses just the two truth values, True and False.rSustance, in the) B1 of Section
1.5.1, the queryn(Orono, Maine) (Is Orono in Maine?) would evaluate to True, since the
tuple (Orono, Maine) is in the database. On the other hand, the quetyRoute2, Orono)

(Is Route 2 in Orono?) would evaluate to False, since the tUpleite2, Orono) is not in
the database. This example illustrates the conventioreabtithe closed-world assumption
(Reiter, 1978), which says that the truth value of a query¢hanot be verified to be True is
taken to be False. In this example, since the desired tupletis the database, the value of
in(Route2, Orono) cannot be verified to be True; thus, it is assigned a truthevafuFalse.

On the other hand, an ontology of the kind discussed in tlasishneeds, in effect, three
truth values for queries, with a correspondopenworld assumption (Baader and Nutt, 2003):
True, False, and a value that may be called 'Other.” The reasthat the situation with on-

tologies is complicated by the fact that, unlike databattesy;, generally will have more than
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one model. For a query evaluated against an ontology, “Milemean that the query is sat-
isfied by all models of the ontology. ‘False’ will mean thag thuery is satisfied by no models
of the ontology. And ‘Other’ will mean that the query evaksto True in some models of
the ontology, and it evaluates to False in other models obtitelogy. In all these cases, we
are assuming that the ontology is consistent, i.e., thatstdt least one model, so these three
“values” suffice.

The model-theoretic semantics described in this thesistieedatter type, and the conven-

tions for naming the relevant truth values are as follows.

* £0(Q) = (T/F)s means the evaluation of que€yin ontologyO yields a truth value

of True in some models 6f and a truth value ofalse in other models a@.

» £0(Q) = T'4» means the evaluation of quefyin ontologyO yields a truth value ofrue

in all models ofO.

» £0(Q) = F4 means the evaluation of que€y in ontology O yields a truth value of

False in all models of).

3.2 Similar Ontologies with Different Semantics

Figures 3.1 and 3.2 show two similar geospatial ontologigsand O,, that deal with the
spatial relationin. In these ontologies, the constant symbBla:te2, Orono, Bangor, and
Maine, refer to the real-world entities Route 2, Orono, Bangor, armde, respectively. The

sole relation symbol isn.
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Each of these two ontologies has the same two axioms. Thefitis¢se axioms says that
each entity is in itself, and the second says that for any tistindt entitiesz andy, if x is
in y, theny is not inz. The intended interpretation of the tuples are the obvimespe.g.,
(Route2, Maine) is intended to mean that Route 2 is in Maine.

In addition to using the same axiont; andO, have three data tuples in common. Thus
the two ontologies appear, at first glance, to be very signgdisuce they differ only in their
fourth data tuple. Yet in terms of their semantics they amesmierably different. The differ-

ences in semantics are revealed by the differences imttelsof each ontology.

Axioms forin Data Tuples foin
(Route2, Orono)
Yz, in(x, ) (Route2, Bangor)

Vay (x # y) — (in(z,y) — —in(y,x)) | (Route2, Maine)
(Bangor, M aine)

Figure 3.1: Ontology), for in

Axioms forin Data Tuples foin
(Route2, Orono)
Yz, in(x, ) (Route2, Bangor)

Vey (v #y) — (in(x,y) — —in(y,x)) | (Route2, Maine)
(Orono, Maine)

Figure 3.2: Ontology), for in

The models ofD; and O, are specified using the abbreviations of R2 farute2, O for
Orono, B for Bangor, and M for M aine. A modelfor one of these ontologies consists of (1)
the individual elements of the domain, and (2) the tupleddmed pairs in this case) that are in
the binary relatiorin. As noted in Chapter 1, a convenient way to picture models ggashs

(e.g., Figure 3.3 and Figure 3.4).
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For a given ontology, any such collection that contains thi@a duples and that does not
violate any of the constraints imposed by the axioms imsaalelof that ontology. We recall
for the reader two key assumptions discussed in Chapter 8p8&c2.1. First, each ontology
considers the same finite number of real-world entities. oBecthe number of available

referents for the constant symbols of the ontologies is #imesas this finite number of real-

world entities.

Any model ofO; must contain the following elements:

* R2, O, B, and M (because these are elements of the domain)
* (R2,R2), (0,0), (B,B), (M,M) (because of axiom 1)
* (R2,0), (R2,B), (R2, M), and (B,M) (because these are tuplesaléta)

Further, no model of); can contain any of the following tuples: (O,R2), (B,R2), (M,R2),
or (M,B), because axiom 2, along with the tuples in the datajieétes these tuples as candi-

dates in any model.

Finally, a model ofO, can contain: either (O,B) or (B,O) but not both; and either (M,O

or (O,M) but not both.

The models oD, are essentially just a set with a single binary relation @efion them.
The 9 models 0, are depicted as graphs in Figure 3.3.

Similarly, any model oD, must contain the following elements:

* R2, O, B, and M (because these are elements of the domain)
* (R2,R2), (0,0), (B,B), (M,M) (because of axiom 1)
* (R2,0), (R2,B), (R2, M), and (O,M) (because these are tupldsamlata)
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Figure 3.3: The 9 models of ontology,

Further, no model of, can contain any of the following tuples: (O,R2), (B,R2), (M,R2),
or (M,0), because axiom 2, along with the tuples in the dditajmates these tuples as candi-
dates in any model.

Finally, a model ofO, can contain: either (O,B) or (B,O) but not both; and either (M,B)
or (B,M) but not both.

Thus, there are only 9 models 0f, and they, too, can be depicted as graphs (Figure 3.4).

Themodel clas®f an ontologyO, MC(0O), is the set of models of that ontology.

We can list the nine models in the model clas§pfasMC(O,) = { M1p,, M20,, M30,,
M4o,, M50,, M6o,, M7, M8o,, M9o, }.

Similarly, the model class af); is MC(Oy) = { M1o,, M20,, M30,, M4o,, M5o,,

M6o,, M70, M80,, M9, }.
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Figure 3.4: The 9 models of ontology,

The semantics of the ontology essentiafijthe model class of that ontology. In other
words, if you accept the axioms and data tuples of an ontolibgy the semantics that you
are committing yourself to is revealed precisely in the nhathess of that ontology.

As Figures 3.3 and 3.4 demonstrate, an ontology can have timaneone model. Thus,
when you commit yourself to a given ontology and its semafagsevealed through its col-
lection of models), you are generally committing yoursetbore than one fixed possible way
that the world might be

This fact helps explain why defining semantic interoperghilf ontologies is so challeng-
ing. Since ontologies generally have multiple models, aedd are different relationships that
could hold between their model classes, the analysis of sgenateroperability must consider
not only the multiple models in each model class but also iffierdnt possible relationships
between model classes. Different possible relationshepsden model classes form the basis

of our definition (Section 3.3) of different ‘levels’ of semi&c interoperability.
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Because the specification of ontologi®s and O, are very similar, one might expect
that these ontologies are also ‘very’ semantically interaple. After all, they refer to the
same domain, they use the same symbols, they have the saomesaxind they even have
three of their four data tuples in common. Yet, when one d®sithe differences between
the ontologies in terms of their different semantics (agaésd through their model classes),
one can see that the ontologies are not ‘very’ semanticatgroperable, at all. A precise
characterization, in terms of models and queries, of theaséiminteroperability of these
ontologies is given in Section 3.3.

Given two ontologies with similar specifications but possgubstantially different model
classes, one wants to be able to assess the degree to whichtthegies are ‘semantically
interoperable.’” Before doing this, though, we explain samanteroperability in terms of
model classeandthe queries that we put to them. In the next section we exptasnview-

point, using ontologie®; andO, as examples.

3.3 Semantic Interoperability

The phrase ‘semantic interoperability, whatever otheamiegs it might take on, should, in-
tuitively, have something to do with ‘working between mews’ or ‘working together with
meanings,’ or ‘working together meaningfully.” One canrext from these intuitive notions
the idea that if two ontologies are semantically interopkrathen their meanings somehow
work together with, ‘get along with, or are compatible wiach other. Since the semantic
framework used in this thesis is model-theoretic semaydingd since ‘semantic’ in this frame-

work practically refers tonodel classeghe ‘semantic interoperability’ of two ontologies must
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have something to do with how the ontologiesddel classework together. We describe this

‘working together’ in terms of ‘compatible’ query results.

3.3.1 Intuition: Compatible Query Results

How well the model classes of two ontologies work togethetetermined by the results of
gueries to the ontologies, because the queries are theedehiat probe the structures of the
model classes for similarities and differences. The follmrxanalogy may be helpful.

This thesis analyzes pairs of ontologies with much in comntiogir domain, their logical
language, their non-logical vocabulary, etc. These comelements are like the common
tools and building materials that each ontology creatorusto build ontologies. The two
different ontologies are thus at the outset perfectly cdiblgawith each otheinsofar as
their tools and building materials are concernedVhere they differ, and where they may
be incompatible, is in the actual buildings (i.e., the meji¢hat are constructed using the
available tools. So, any potential semanticompatibility between ontologies lies in the
differences between the actual buildings built, not in thedd or materials used to build them.
Or, looked at in a different way, the possible semamieroperabilitybetween the ontologies
lies in the ‘compatibility’ of the buildings (the models) each ontology. Some way to define
and assess this compatibility is needed; this is where ggieame in.

Queries help define and assess the compatibility of the nutakedes of two ontologies. In
a sense, a query is like a probe that is sent to a city of bgl{a model class) and sends an
answer of True or False, depending on what it finds there. Tewear returned by the probe
may be True or False in some, none, or all of the buildingst{@e8.1.2). The query, or

probe, has accesses to the entire state of affairs that plieitx or implicitly specified by the
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collection of models of an ontology, and the result of evahgaa query in this state of affairs
may be True or False in some, none, or all of the models.

Thus, the question of to what extent two ontologies are séoaly interoperable is in
essence a guestion of the degree to which their model clagsdstogether, which in turn
reduces to a question of whether the ontologies exbitrbpatible query resultsio explain
exactly what we mean by ‘compatible query results,” we needigcuss the different ways a

guery put to an ontology can evaluate to True or False.

3.3.2 Evaluating Queries in Ontologies

Recall from Section 3.1.1 that a ‘query, as used in this #heisi statement in the logical
language used to specify the ontology (i.e., a well-formauniula with no free variables).
Further recall that the ontologies under consideratioraaseimed to be consistent (i.e., they
each have at least one model).

When a query is evaluated against an ontologyhe query could evaluate to:

* True in some model(s) @, and false in other®;
* True in all models oD;

* False in all models oD;

For convenience in discussing truth values we provide thewing notation.

* &0(Q) = (T/F)4 means that the evaluation of quefyagainst ontology0 yields a

truth value ofTrue in some models 6f and False in other modelst O.
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» £0(Q) = T4 means that the evaluation of quapyagainst ontology) yields a truth

value of True in all modelf O.

* £0(Q) = F4 means that the evaluation of quefyagainst ontology0 yields a truth

value ofFalse in all model®f O.

3.3.3 Possible Query Results

To begin to understand the notion of ‘compatible query itsswdnd to gain some idea of the
relationship among queries, models, and semantic intembpity, consider Figure 3.5 below,
where the second columé, (Q;), refers to the evaluation in Ontology 1 of querand the

third column,&, (Q;), refers to the evaluation in Ontology 2 of query

Query Eo,(Qi) | £€0,(Q;) | Compatibility Condition
Q1: —in(Orono, Bangor) | (T/F)g | (T/F)g

Q2: in(Orono, M aine) (T/F)g Ta

Q3: —in(Orono, Maine) | (T/F)¢ Fy

Q4: in(Bangor, Maine) TA (T/F)g

Qs in(Route2, Orono) Ta Ta

Qg *** T, Fy 1

Q7: ~(Bangor, Maine) Fy (T/F)g

QgZ bkl Fy Ty 2

Qg: =in(Orono, Orono) Fy Fy

Figure 3.5: Sample Queries and Results@erandO,

This table shows some sample queries to the two exampleogntst); andO,. A query
put to either ontology will evaluate to one of the three trutltues(7'/F), T4, or F4. Thus,
the analysis of compatible query results will center on asweration of the nine possible
combinations of query results for a single query put to twtntmgies.

For a given pair of ontologies, it may or may not be possiblértd example queries for

each of the nine possibilities. In the case of the ontolofies Figures 3.1 and 3.2, for
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instance, the asterisks in the first column of Figure 3.5ca#i that one cannot find queries
for aQs or aQg that would result in the indicated pairs of truth values.i§fact is proved in
Section 3.4.2).

Though it may sound odd, it is precisely on the basis of certapossible combinations
of query results that different levels @bmpatiblequery results are defined. That is, the
fact that onecannotfind queries that correspond to the asterisked rows in Figir@ctually
demonstrates a certain minimum levelagimpatibility of query results. To see why, consider
the following argument.

The asterisks in row 6 of Figure 3.5 indicate that no queryuatas to True in all models
of O but to False in all models @?,. Similarly, the asterisks in row 8 indicate that no query
evaluates to False in all models@f but to True in all models of,.

Intuitively, one might say that it is never the case thatsklg speaking, ‘white’ in0O;
means ‘black’ inO,, or vice versa. These two conditions, taken together, datesthe mini-
mal requirements for compatible query results (and of séicelly interoperable ontologies),
because without them, it is possible to find some query thatne ‘opposite’ (i.e., contra-
dictory) results for the two ontologies. Because no suchyjoan be found foO; andO,,
these two compatibility conditions rule out the grossestikof incompatibility of query re-
sults, where some query could generate diametrically ofgooessults in the two ontologies.
In terms of the analogy of sending a probe to a city of buildirvge rule out the possibility that
whatever the probe is looking for, it will find it in all buildgs of one city and in no buildings
of the other city.

The above result — that for a quefy, we cannot havéy, (Q) = T4 and&p,(Q) = Fjy, or

&0,(Q) = F4 and&, (Q) = T4 — holds foranyquery that can be formulated in the language
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L (Section 3.1.1). As such, it guarantees a minimal level ohgatible query results for
any query expressible ik, not just for some queries we think we may be interested in at a
particular time. The importance of this fact is that if we wanhin advance think of all the
gueries we may want to ask, we are nevertheless ‘safe’ ifvtleecompatibility conditions
hold, in the sense that there cannot be contradictory sefultn the same query to the two
ontologies.

This minimal level of compatibility of query results, in tyris the basis for the defini-
tion of Level 1 Semantic Interoperabilityetween ontologies(ls;), and we refer to the two
ontologies as being Level 1 Semantically Interoperabli;f).

The L1g; compatibility conditions, along with similar conditiong/gn below, function in
sort of a ‘double negative’ sense: a certain degree of semateroperabilityis achieved by
removing from consideratioparticular combinations of query results that would inteca

lack of such interoperability.

3.4 Levels of Semantic Interoperability

The above discussion describes the level of semantic peeability between example ontolo-
giesO; andO, from Figures 3.1 and 3.2. This section gives explicit dabni of this level

and 4 other levels of semantic interoperability defined infoamework. We present these 5
levels ‘out of order, to aid the exposition. A final subseatgives a summary of all five levels

of semantic interoperability.
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3.4.1 Level 1 Semantic Interoperability

Definition 1An ontologyO; is Level 1 Semantically Interoperab{é1s;) with another ontol-

ogy O; if and only if O; andO,; meet the following two compatibility conditions:

* itis not possible to have a query that evaluates to Truelimatlels ofO; but to False

in all models ofO, (compatibility condition 1);

* itis not possible to have a query that evaluates to Fals# maels ofO; but to True

in all models ofO; (compatibility condition 2).

The discussion in Section 3.3.3 shows that ontologyf Figure 3.1 isL15; with ontology
O of Figure 3.2. This result follows immediately from the abalefinition, which also shows
that ontologyO; is L1g; with ontologyO; (reading the truth values from right to left instead
of left to right). Thus, we have also shown that the relatibrl.bs; is symmetric. A detailed
demonstration will be given Section 3.5 of why both condis@f the definition hold for each
of the ontologies); andO,. This demonstration is based on the relationship between th
model classes of the ontologies.

So, L1g; is the minimum level of semantic interoperability that wdidke. What is the

maximum level?

3.4.2 Level 3 Semantic Interoperability

Consider ontologie®; andO, in Figures 3.6 and 3.7. These ontologies have just two estiti
Bangor and Maine, and use one relation, Although the ontologies themselves differ in their
syntactical specification (i.e., they do not have identsedb of axioms and data tuples), their
model classes are the same set, which contains two madgland M2, where, using the

82



obvious abbreviations\/1 = {{B, M }, {in(B, B),in(B, M), —~in(M, B),in(M,M)}}, and

M2={{B, M}, {in(B, B),in(B, M), in(M, B),in(M, M)}}.

Axioms forin Data Tuples foin
in(z, x) (Bangor, Maine)
Vay (2(z = y) A ~in(z, y)) — infy, x)

Figure 3.6: Ontology); for in

Axioms forin Data Tuples foin
Vzy —in(x,y) — in(y,z) | (Bangor, Maine)

Figure 3.7: Ontology), for in

Consider a table of possible query results@grandO,. Figure 3.8 shows that no queries

can be found that correspond to what would be quepes)s, @4, Qs, @7, OF Qs.

Query E0,(Q;) | £0,(Q;) | Compatibility Condition
Q1: in(Maine, Bangor) | (T/F)g | (T/F)g —
Qq: *** (T/F)qg Ta 5
Q3: *** (T/F)g Fy 6
Qi *** Ty (T/F)g 3
Qs: in(Bangor, Bangor) Ta Ty —
Qg: *** Ty Fa 1
Qr:. *** EFy (T/F)g 4
QgZ *kk Fy Tx 2
Qo: —in(Maine, M aine) Fy Fu —

Figure 3.8: Sample Queries and Results@grandO,

For queries),, Q5, andQy, there is no compatibility condition given. The reason &tth
for each of these queries, it makes no sense to connect tlossibdity of query results to a
compatibility condition. Such a compatibility conditiorowld say that no query correspond-
ing to a@; can evaluate to True in all models ©f and to True in all models ad,. But this
condition says nothing of positive value about semantieroyperability, since it says that no
guery is entailed by both ontologies.
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On the other hand, consider compatibility condition 5. Tdosdition says that no query
can be found that evaluates to True in some mode(3;aind to False in other models 6%,
but that evaluates to True in all models@f. This makes sense, because, siGgeand O,
have the same model class, if a query evaluated to False ia smdels ofD3, it would have
to evaluate to False in some modelsf, that is, it could not evaluate to True in all models
of Oy.

Similar reasoning shows that fér; and O, the six compatibility conditions are all met.

This fact leads us to the next definition.

Definition 2 An ontology O; is Level 3 Semantically Interoperab(é.3s;) with another

ontologyO; if and only if O; andO; meet the following six compatibility conditions:

it is not possible to have a query that evaluates to True mesmodels ofO; and to

False in other models @;, but to True in all models of); (compatibility condition 5);

* itis not possible to have a query that evaluates to Truemmesmodels of); and False

in other models 00);, but to False in all models @, (compatibility condition 6);

* itis not possible to have a query that evaluates to Trud madlels ofO, but to True in

some models of); and to False in other models %) (compatibility condition 3);

* itis not possible to have a query that evaluates to Truelimatlels ofO; but to False

in all models ofO, (compatibility condition 1);

* it is not possible to have a query that evaluates to Fals# madels ofO;, but to True

in some models of); and False in other models of; (compatibility condition 4).
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* itis not possible to have a query that evaluates to Fals# madels ofO; but to True

in all models ofO, (compatibility condition 2).

Intuitively, two ontologies are completely semanticafiyaroperable when ‘the same queries
give the same results’ for all queries and for all modelssTaquirement is fulfilled when the
six compatibility conditions are met. These six compaitipitonditions are met when the two
ontologies have identical model classes (Section 3.4.2).

As is the case witll14;, the L3g; relation is also symmetric.

Three additional levels of semantic interoperability rémta be dealt with: two interme-
diate levels of semantic interoperability, as well as allévat indicates no semantic interop-

erability (in the framework we have established).

3.4.3 Level 2A Semantic Interoperability

Consider the ontologig3; andOg in Figures 3.9 and 3.10. Note the similarity with ontologies
O, andO,. OntologyOs is just ontologyO; minus the data tupleB@angor, Maine), while
ontologyOg is the same as ontolody,. These similarities are exploited to ease the exposition.
The critical feature of these ontologies is, as before, #iationship between their model

classes.

Axioms forin Data Tuples forn

(Route2, Orono)

Va, in(x, x) (Route2, Bangor)

Vay (2 # y) — (in(x,y) — —in(y,x)) | (Route2, Maine)

Figure 3.9: Ontology)s; for in

85



Axioms forin Data Tuples foin
(Route2, Orono)
Yz, in(x, ) (Route2, Bangor)
Vay (v #y) — (in(x,y) — —in(y,x)) | (Route2, Maine)
(Orono, Maine)

Figure 3.10: Ontology)s for in

The table of possible query results for these two ontologiegven in Figure 3.11. In
addition to meeting compatibility conditions 1 and 2, ontpesO; andOg also meet compat-
ibility conditions 3 and 4 (proved in Section 3.4.2). B andOg do not meet compatibility

conditions 5 and 6. This latter fact is demonstrated by thexiga(), and@); in Figure 3.11.

Query E0,(Qi) | €0,(Q;) | Compatibility Condition
Q1: ~in(Orono, Bangor) | (T/F)g | (T/F)g —

Q2: in(Orono, M aine) (T/F)g Ty

Q3: —in(Orono, Maine) | (T/F)q Fy

Qq: ™ TA (T/F)g 3

Q5 in(Route2, Orono) Ta Ta —

Qg *** Tx Fu 1

Q7 ** Fy (T/F)g 4

QgZ whk Fu Ty 2

Q9: —in(Orono, Orono) Fy Fy —

Figure 3.11: Sample Queries and ResultsigrandOg

It turns out that the model class 6f; contains 27 models, and the model classDgf
contains 9 models. What's more, the model clas®gtontains the model class 6f; as a

proper subset.

Definition 3An ontologyO; is Level 2A Semantically Interoperab{é.2 As;) with another

ontologyO; if and only if O; andO; meet the following four compatibility conditions:

* itis not possible to have a query that evaluates to Truelimatlels ofO;, but to True

in some models of); and to False in other models 6f (compatibility condition 3);
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* itis not possible to have a query that evaluates to Truelimatlels ofO; but to False

in all models ofO, (compatibility condition 1);

* itis not possible to have a query that evaluates to Falsé maels ofO;, but to True

in some models of); and to False in other models 6f (compatibility condition 4);

* itis not possible to have a query that evaluates to Fals# maels ofO; but to True

in all models ofO; (compatibility condition 2).

The L2 Ag; relation between two ontologies is antisymmetric; thaifi€); L2 As;0-, then
the only way that we can hav@, .2 As;0, is if the model classes @p; andO, are the same
(based on results in Section 3.4.2).

A similar, but ‘reversed’ situation, is obtained by revargsihe roles of ontologie®; and

Og.

3.4.4 Level 2B Semantic Interoperability

Consider the ontologie®; andOyg in Figures 3.12 and 3.13.

Axioms forin Data Tuples foin
(Route2, Orono)
Yz, in(x, ) (Route2, Bangor)

Vay (v #y) — (in(x,y) — —in(y,x)) | (Route2, Maine)
(Orono, Maine)

Figure 3.12: Ontology); for in

The table of possible query results for these two ontologagven in Figure 3.14. In
addition to meeting compatibility conditions 1 and 2, ontpesO; andOg also meet compat-
ibility conditions 5 and 6. Bu©; andOg do not meet compatibility conditions 3 and 4. This
latter fact is demonstrated by the existence of quepieand(); in Figure 3.14.
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Axioms forin Data Tuples foin
(Route2, Orono)

Yz, in(x, ) (Route2, Bangor)
Vay (v #y) — (in(x,y) — —in(y,x)) | (Route2, Maine)

Figure 3.13: Ontology)s for in

Query E0.(Qi) | £0,(Q;) | Compatibility Condition
1: ~in(Orono, Bangor) | (T/F)g | (T/F)g —

Qo: *** (T/F)g Ta 5

Q3: *** (T/F)q Fa 6

Q4: in(Orono, Maine) Ta (T/F)g

Qs in(Route2, Orono) Ta Ta —

Qg: ** T, Fi 1

Q7. ~in(Orono, Maine) Fy (T/F)g

QS: el F4 Ta 2

Q9: —in(Orono, Orono) Fy Fy —

Figure 3.14: Sample Queries and ResultsdgrandOg

The model class of); contains 9 models, and the model clasg)fcontains 27 models.

In addition, the model class @}; is a proper subset of the model class it

Definition 4An ontologyO; is Level 2B Semantically Interoperablé2Bs;) with another

ontologyO; if and only if O; andO; meet the following four compatibility conditions:

* it is not possible to have a query that evaluates to True mesmodels of0; and to

False in other models @;, but to True in all models af); (compatibility condition 5);

* it is not possible to have a query that evaluates to True mesmodels of0; and to

False in other models @¥;, but to False in all models @), (compatibility condition 6);

* itis not possible to have a query that evaluates to Truelimatlels ofO; but to False

in all models ofO; (compatibility condition 1);
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* itis not possible to have a query that evaluates to Fals# madels ofO; but to True

in all models ofO, (compatibility condition 2).

As the case with.2 Ag;, the L2 Bg; relation between two ontologies is antisymmetric; that
is, if O;L2Bs;0+, then it is not the case that, L2Bs;0;, unless the model classes of the two

ontologies are the same.

3.4.5 Level 0 Semantic Interoperability

Consider the sample ontologi€s andO,, and the table of possible query results in Figures
3.15 through 3.17. One can verify by inspection that the rhadsses folOy andO, are dis-
joint, since all models 0Oy satisfy the axiomin(z, z) (i.e., every entity is in itself), whereas
all models ofO,, satisfy—in(x,x) (i.e., no entity is in itself). Thus no model 6f, can be a
model ofO,(, and no model 0, can be a model ab,.

These two ontologies meet none of the 6 compatibility comolit, as can be seen by the
fact (Figure 3.17) that there do exist queries correspanttii)s, (3, Q4, Qs, @7, aNdQs.

That is, for these two ontologies one cannot restrict anysmdble combinations of query
results, which would in turn result in some level of semaitteroperability. This fact leads

to the following definition.

Definition 5An ontology O; is Level 0 Semantically Interoperab(é.0s;) with another
ontologyO; if and only if noneof six compatibility conditions given in Definition 2 holderf

O, and0;.
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Axioms forin Data Tuples foin
Va, in(x, ) (Route2, Orono)
Vay (z # y) — (in(x,y) — —in(y,z)) | (Orono, Maine)

Figure 3.15: Ontology), for in

Axioms forin Data Tuples foin
YV, min(x, x) (Route2, Orono)
Vay (z # y) — (in(x,y) — —in(y,x)) | (Orono, Maine)

Figure 3.16: Ontology);, for in

3.4.6 Summary: The 5 Levels of Semantic Interoperability

Figure 3.18 illustrates the 5 levels of semantic interopditp Each node in the figure shows
the level of semantic interoperability, the compatibildgnditions met at that level, and the
symmetry or antisymmetry of the relation. The figure shovesudy that while Level 1 is the
lowest level and Level 3 is the highest level, there is no uaigniddle level’ between these
two levels. In fact, both Levels 2A and 2B are situated in seemse at a middle level. The
figure also shows the relationships between levels in tefragrapatibility conditions.

It may be asked why only six compatibility conditions havembeefined. The answer has
to do with the discriminatory power of the nine possible guasults that are defined in our
framework. The reason there are six, and not more, compigtibonditions is that the pairs
of query results corresponding to queries of type )5, and()y provide no constraints on
the relationship of the model class of the ontologies (se#i@e3.4.2). Further, there are
no fewer than six compatibility conditions, because eadhmefsix conditions given provides
some insight (because it provides a constraint on pogskiliinto the relation that can hold

between the model classes of the ontologies.
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Query E0,(Q:) | £0,,(Q;) | Compatibility Condition
Q1: in(Route2, Maine) (T/F)g | (T/F)g —

Q2: in(Bangor, Maine) (T/F)g Ta
Q3: ~in(Bangor, Maine) | (T/F)q Fy

Q4 in(Route2, Orono) Ty (T/F)gq

Qs5: in(Orono, Maine) Ta Ta —
Qs: in(Orono, Orono) Ty Fy

Q7. ~in(Route2, Orono) Fa (T/F)g

Qs: —in(Orono, Orono) Fy Ta

Qg: —in(Orono, Maine) Fy Fy —

Figure 3.17: Sample Queries and ResultsgrandO;

It may also be asked what is special about the five levels ofaséminteroperability
shown in Figure 3.18. Certainly, one is free to declare as noamms few levels of semantic
interoperability as one wishes. In the framework for thissis, however, these five levels are
special for three reasons. First, that they correspondtlgx@acthe five relations that exist
between the model-classes of the ontologies (Section &bond, these five model-class
relations are pairwise disjoint and mutually exhaustigs;an be seen from their definitions in
Section 3.5.1. Thus, the five levels of semantic interopktyaborrespond to a partition of the
possible model-class relations. Third, the five levels ofaetic interoperability correspond to
the six compatibility conditions in a hierarchical way theflects the underlying connections

between query results and model-class relations (Figuiésahd 1.9).

3.5 Proving Semantic Interoperability

Section 3.3 made several claims about certain exampleamiés satisfying particular com-
patibility conditions (Figure 3.19).
These claims rested on intuitive arguments about the iniipbgsof certain query results,

given a particular relationship between the model clas§diseoontologies in question. In
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full
semantic
interoperability

Level 3
1,2,3,4,5,6
symmetric

Level 2A
1,2,3,4
antisymmetri

Level 2B
1,2,5,6
antisymmetri

Level 0
none
symmetric

no
semantic
interoperability

Figure 3.18: 5 levels of semantic interoperability, and patibility conditions

Model Class Relatiorj Compatibility Conditions
Disjoint

Overlap 1,2

Contains 1,2,3,4
Contained by 1,2,5,6

Equals 1,2,3,4,5,6

Figure 3.19: Relation Between Model Classes and Compatibilityd@ions

this section, we state these claims more precisely, in geieral form, and we prove each of
them. Before proving these claims, we state more precisefit we mean by each of the five

model-class relations.

3.5.1 Definitions

Disjoint. Two model classes1Co, andMCo, areDisjoint if and only if MCo,NMCop, = 0.
Overlap. Two model classes\ICo, and MCo, Overlapif and only if they meet the

following three conditions: (1) they contain at least onedelan common; (2) there is at
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least one model ibMCy, that is not iInMCo,; and (3) there is at least one modelACo,
that is not inMCo;, .

Contains.The model clasg1Cp, Containsthe model classCo, if and only if MCp, C
MCo,, thatis, if and only ifMCo, is a proper subset o¥1Co,.

Equal. Two model classed1Co, and MCo, are Equalif and only if MCo, = MCo,,
that is, if and only if they are equal as sets.

Contained byThe model clasd1Co, is Contained bythe model clasg\Co, if and only

if MCo, C MCo,, thatis, if and only ifMCo, is a proper subset 0¥1Co, .

3.5.2 Proofs

All of the proofs below deal with ontologi&s; andO, and with their respective model classes,
MCop, and MCo,, which are assumed to be non-empty.

Claim 1: If MCo, and MCy, overlap then the ontologie®; andO; meet compatibility
conditions 1 and 2.

Proof. BecauseMCp, and MCy, overlap, they have at least one model in common.
Therefore if a query) evaluates to True in all models @f;, it also evaluates to True in at
least one model that is commonAdCo, and MCop,. Thus it is not possible th&@} evaluates
to False in all models af;. Hence, ontologie®); andO,; meet compatibility condition 1.

Similarly, if a query(@ evaluates to False in all models@f, it also evaluates to False in at
least one model that is commonAdCo, and MCop,. Thus it is not possible th#@} evaluates
to True in all models 00;. Hence, ontologie®; andO; meet compatibility condition 2.

Claim 2: If MCop, containsMCy,, then the ontologies meet compatibility conditions 1,

2,3, and 4.
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Proof. BecauseMCy, containsMC, there is at least one model.m(Cy, that is also in
MCo,. Thus, by the arguments used in Proof 1, the ontolo@ieandO; meet compatibility
conditions 1 and 2.

Suppose that a quety evaluates to True in all models 8#(Co,. Then, becausd1Co, is
a subset ofMCop,, it is not possible tha) evaluates to False in any model.MCo,. Thus,
O, andO; meet compatibility condition 3.

Similarly, suppose that a que€yevaluates to False in all models.MCo,. Then, because
MCp, is a subset ofMCy,, itis not possible thaf) evaluates to True in any model 8f(Co, .
Thus,0; andO; meet compatibility condition 4.

Claim 3: If MCo, is contained byMC,, then the ontologie®; andO; meet compati-
bility conditions 1, 2, 5, and 6.

Proof: BecauseMCy, containsMCo, there is at least model iIMCop, that is also in
MCO;. Thus, by the arguments used in Proof 1, the ontolo@iesndO; meet compatibility
conditions 1 and 2.

Suppose that a quety evaluates to True in all models 8#(Co,. Then, becausg1Co, is
a subset ofMCyp, it is not possible thaf) evaluates to False in any model ®Co,. Thus,
0, andO; meet compatibility condition 5.

Similarly, suppose that a queyevaluates to False in all models.#Co,. Then, because
MCop, is a subset oMCy,, itis not possible thap evaluates to True in any model 8f(Co, .
Thus,0; andO; meet compatibility condition 6.

Claim 4: If MCo, Equals MCy, then the ontologie®); and O; meet compatibility

conditions 1, 2, 3, 4, 5, and 6.
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Proof. BecauseMCp, equalsMCo, (and because we assume that each ontology has at
least one model, i.e., the ontologies are consistent) ikaaeleast one model iMCo, that
is also inMCop,. Thus, by the arguments used in Proof 1, the ontologigand O; meet
compatibility conditions 1 and 2.

Because the models @f; are the same as the models(f, it is not possible that a query
() evaluates to True in all models 6f; but to False in some model ¢f;. ThusO; andO;
meet compatibility condition 3.

Because the models @f; are the same as the models(f, it is not possible that a query
() evaluates to False in all models ©f but to True in some model @;. ThusO; andO;
meet compatibility condition 4.

Because the models 6f; are the same as the models(f, it is not possible that a query
() evaluates to True in all models 6f; but to False in some model 6f;. ThusO; andO;
meet compatibility condition 5.

Because the models 6f; are the same as the models(f, it is not possible that a query
() evaluates to False in all models ©f but to False in some model 6f;. ThusO, andO;
meet compatibility condition 6.

Claim 5: If MCo, is Disjoint from MCy,, then the ontologie®; andO; meet none of
compatibility conditions 1, 2, 3, 4, 5, or 6.

Proof: To show thatD; andO; do not meet a particular compatibility condition, it suffice
to construct a single counterexample. For instance, to shawif MC, is Disjoint from
MCo,, thenO; andO; do not meet compatibility condition 1, it suffices to give eyges of
two ontologiesD; andO; such that there is some quepythat evaluates to True in all models

of O; but to False in all models ab,. Let O; andO, be ontologies with only 2 constant
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symbols,a andb, and with a single binary relation symhl Suppose that the only data tuple
in O; is (c,d)and that the only data tuple @, is (d,c). Suppose further that i@?; the relation
R is axiomatized to be reflexive, but thatdh the relationR is axiomatized to be irreflexive.
Let Q be the quenR(a,a)

MCo, is disjoint fromMCo,, since every model id); contains the tupleR(c,c), R(d,d)
but no model inD; contains these tuples. Furthérevaluates to True in all models 6f; but
to False in all models o,. Thus,0; andO; do not meet compatibility condition 1, because
we have found a querg that evaluates True in all models ©f but to False in all models of
0;.

The creation of other counter-examples that showdha@ndO; do not meet compatibility
conditions 2-6 is left to the reader.

The next chapter discusses computational issues in caigulhe relationship between

model classes of two ontologies and determining their lef/eemantic interoperability.
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Chapter 4

COMPUTING MODEL-CLASS

RELATIONS

This chapter describes one exact method and one heurigtiothi®r determining the relation
between the model classes of two ontologies. The implermensaof these methods are
documented in Chapter 5.

From sections 3.4 and 3.5, it is assumed that all the modelseimodel classes of two
ontologiesO; andO; are available for computation and that the set-theorekation holding
between the model classes (e.g., overlaps, contains) aaidudated. From such a calculation
and the results in Sections 3.3 and 3.4, the level of semitéimperability betweew,; and
O; could then be determined.

However, even when the model classes of two ontologies dte,fihey may have such a
large number of models that it is not feasible to calculdtefahem. Or, if all the models of
each ontology can be calculated and stored on disk, it stijyl not be feasible, due to memory
limitations, to determine the exact model-class relati@t holds between the two ontologies.
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In this latter case, a heuristic procedure can be used tomaaown the number of model-class
relations that could possibly hold.

Section 4.3 discusses one such heuristic, which, sinceuges incomplete information
(i.e., subsets of the model classes, rather than entire Intadses), is not guaranteed to de-
termine the single model-class relation that holds betvileetwo ontologies. The use of this
heuristic is therefore a trade-off: when computationatEosake it impractical to compare the
complete model classes directly and so obtain the exact lrotass relation holding between
the two ontologies, a heuristic can be used to do an incompltanparison of model classes
that will narrow down the possibilities of which model-cda®lation holds.

The heuristic discussed in Section 4.3 will always narrowmlthe outcome to 2 model-

class relations that could hold, and it may narrow down togag (Section 4.3).

M0y MC(02) - MC(Q1), MC(0) M MC(O&BAC(Oz)

Disjoint Overlap Contains Equal Contained by

Figure 4.1: 5 possible relations between model clad$€§0,) and M C(O)

4.1 Review of Assumptions

The ontologie®); andO; are assumed each to be consistent (i.e., each has at leasbdef

and to have the following in common:
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1. Both ontologies are specified with the same logical langdagvhich is a subset of the

language of first-order logic.

2. Both ontologies refer to the same finite (conceptual) dapaaid they use the same finite
set of constant symbols to refer to elements in this domaime ffumber of constant
symbols is assumed to be identical to the number of elemetite iconceptual domain.
Further, if a constant symbelused inO; denotes an objecX in the domain, then the

same constant symboelsed inO; denotes the same objext

3. No model contains more elements than the finite number tifesnin the conceptual

domain.

4. The ontologies are assumed to be non-empty (i.e., théyleae at least one data tuple

and at least one axiom).

5. The ontologies use the same relation symbols.

The ontologies are assumed to differ in:

1. their data tuples (i.e., at least one of the ontologiesah&=sast one data tuple not in the

other ontology), and

2. their axioms (i.e., each ontology has at least one axiathaaleast one of the ontologies

includes an axiom that is not included in the other).
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These differences will generally resultdifferent semantickor the ontologies, i.e., differ-
ent model classes for the ontologies.

The languagéd. has the following characteristics.

1. L contains finitely many variables, finitely many constant bgia (one for each element
of the finite domain), finitely many relation symbols (eachndifich has a finite arity),

and no function symbols.

2. The syntax and semanticsiofire that of first-order logic with the restrictions that riésu

from the various assumptions of finiteness just given.

3. L is used both to specify the ontologies and to formulate gsethat are put to the

ontologies.

4. Each ontology is specified using via finitely many axioms and finitely many data

tuples.

Finally, from an implementation point of view, we assumet tinaitely many models of
each (consistent) ontology can be generated by a softwagegm. The particular program
we use for the implementations in Chapter 5 is SEM (Zhang arah@h1995), which is an
efficient generator of models for relatively small spectimas. The translation from an ontol-
ogy in the languagé (which is used for illustration in the first four chaptersptspecification
in the format required for SEM is done manually. Further detan the use of SEM are given

in Chapter 5.

100



4.2 Four Computational Scenarios

4.2.1 What They Are

Figure 4.2 describes the four computational scenariosigs®d in this thesis, whend refers
to the number of models of ontolody;, and N refers to the number of models of ontology
O,. For simplicity, we do not treat the cases where it is prattic compute\/ but notV, or

practical to computév but not)M .

practical to store all models impractical to store all models

O)

practical to compare the
two model classes

practical to
compute M and N, @
so M and N are @
known

impractical to compare
the two model classes

impractical to
compute M and N,
soMand N are @
unknown

Figure 4.2: Feasibility of comparindy/ models ofO; and N models ofO,

1. Scenario 1 It is practical to compute bot/ and NV and to store all models on disk.
It is also practical to compare the two model classes comlgleind so determine the

exact relation that holds between them.
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2. Scenario 2 It is practical to compute both/ and N and to store all models on disk,
but it is impractical (e.g., due to memory or time limitat&)rio compare the two model

classes completely in order to determine the unique reldltiat holds between them.

3. Scenario 3ltis practical to compute both/ and/V, but it is impractical to store all the
models on disk or in memory. Thus, only certain subsets ofetsochn be generated in
this scenario. The models in these subsets will be geneirated order determined by

the particular model-generating software that is used.

4. Scenario 4 It is impractical to computé// and N (e.g., due to memory or hard disk
limitations), and it is impractical to store all models oskdor in memory. Thus, only
certain subsets of models can be generated in this sceffiganodels in these subsets
would be generated in the order determined by the particotatel-generating software

that is used.

4.2.2 How They Are Treated

In Scenario 1it is always possiblén practiceto compute all the models from each ontology,
store each of these on disk, and algorithmically to deteemwhich particular relationship
(e.g., overlaps, contains) holds between the model cla$bes, for Scenario 1 the exact level
of semantic interoperability between the two ontologies aivays be determined. Chapter
5 describes an implementation for Scenario 1 that uses tlelrgenerator SEM (Zhang and
Zhang, 1995) and the programming language Perl (Sectidrassl 5.2).

Scenario ds treated with a heuristic procedure (Section 4.3) thatowes down the possi-

ble relations from Figure 4.1 that could hold between thernveaalel classes.
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Chapter 5 presents implementations of an algorithm for Seehand an implementation
of a heuristic for Scenario 2.

Scenarios 3 and 4 are not coveredthis thesis, because it is impractical to store all the
models in those scenarios: thus, these two scenarios caffeotively illustrate the three
central concepts used to define semantic interoperabddynpatibility conditions (Sections
3.3 and 3.4), model-class relations (Section 3.5), and ¢tin@ection between compatibility
conditions, levels of semantic interoperability, and medass relations (Section 3.5). Note,
however, the following points concerning Scenario 3. Fsstce M and N are assumed known
in this scenario, the possible model-class relations cameddeced from five to three, by the
same arguments used in Section 4.3 (see Figure 4.3). Seassuining that one could gener-
ate and store on disk at leasimeof the models of each ontology, certain comparisons could
still be made. For instance, suppose that a million modeksagh ontology could be stored
on disk. Then, if comparing those two subsets of models,fausd that there is at least one
model in common, we can reduce the possible model-clagsoredao just two, regardless of
the relative sizes of M and N. Of course the drawback to suchpgmoach is that if finasho
models in common, that does not necessarily mean that thelrota$ses actually have no
models in common. They may simply not appear in our subséiss,Twe are limited both
by the manner in which models are generated by the modelggmg software (in our case,
SEM, which we treat as a black box), and by the fact that byilgplat just subsets of the
full model class, we cannot be sure, even if we detect no sadelommon, that the model

classes really have no models in common.
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Note that in some cases, with a decidable language, a primofigs that is complete with
respect to a given semantics of the language, and a proveastRACER (http://www.sts.tu-
harburg.detr.f.moeller/racer/), it may be possible to determine garticular querieswhether
a query that evaluates to true in all models(pfalso evaluates to true in all models Of
(Patel-Schneider, 2006). Such proof-theoretic meanstthget certain issues of compatible
qguery results (and hence at certain issues of semantiopegability), while interesting in

and of themselves, lie outside the scope of this thesis.

4.3 Scenario 2, a Heuristic Method

The heuristic for Scenario 2 works by combining two piecemfidirmation, one old and one
new. The old piece of information, from the assumptions @frteio 2, is that the sizes of both
model classes are known. Given this information, the nunob@ossible relations between
the model classes of the ontologies is reduced immediateiy five to three (Figure 4.3),

where)M is the number of models iMCp, and NV is the number of models iMCp, .

M =N M>N M<N
e MC(o-w M
o OB OO
O OO OO

Figure 4.3: Constraints on model-class relations from zdg and N

The new piece of information is obtained by choosing a certamber of arbitrary models

from one model class and testing whether those models aréndlise other model class. For
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instance, choose an arbitrary mogefrom MCp, and an arbitrary mode} from MCjp..
Independent of the relative sizes bf and IV, testing whethep is in MCp,, lets us narrow
down the number of possible model-class relations to fouthoee (Figure 4.4). Similar
results apply after testing whethgis in MCy, (Figure 4.5). Combining both tests, and again
independent of the relative sizesf and N, the picture of possible model-class relations is
as shown in Figure 4.6.

Combining both pieces of information—the relative sizes\dfand NV, along with the
testing for membership ofin MCy, and ofq in MCp,—yields the possibilities depicted in
Figure 4.7. This figure shows that after selecting just obérary model from each ontology,
the number of relations that could hold between the modsteksof the ontologies is just two,
though which two depends on the relative sizes of the modskeks of the two ontologies.

The above observations lead to the following heuristic pdotce, which for Scenario 2

will always narrow down the number of possible model-cladations to at most two.

@ "Won >
p in MC(Gj) . MC

OO &S

"o ®

Figure 4.4: Possible model-class relations, checkingainstO;,

p not in MC(O;j)
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g in MC(Oj) g not in MC(G;j)
C(Os
@ "Bom D | OO @
MC(Q, MC(O:
o "Chg®

e

Figure 4.5: Possible model-class relations, checkiagainstO;

q in MC(Oj) g not in MC(G;j)
MC(0O; MC(0O;
@ B |
p in MC(Oj) MC(O;
=
MC(Q;
p not in MC(O;j) <

Figure 4.6: Possible relations, checkimggainstO,; andq againstO,

The steps of the heuristic are as follows.

1. Obtain the values of M (number of models MCy,) and N (number of models in

MCp,).
2. Pick an arbitrary model; from MC), and test whethey; is in MCy,.
3. Pick an arbitrary modej; from MCy, and test whethey; is in MCp,.
4. Use results of steps 1-3 to determine which two model cklasions could hold.

5. Repeat steps 2-4 for a predetermined number of iterations.
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M =N M >N M <N
qin g notin qin g notin qin g notin
MC(Oj) MC(Oj) MC(Oj) MC(Oj) MC(Oj) MC(Oj)
C(Q MC(O; MC(O:
ooy < | < > o
j
O oD oD oD
C(O;
ﬁ/lrg?()gg oD oD W qoP) oD D)
J ool @ oo OO

Figure 4.7: Checking againstO;, ¢ against);, and sizes of\/ and N

To see how this heuristic works, start at Step 1 and supp@gdhb result isM < N.
Then, as can be seen from Figure 4.3, only three model-aidestsons could possibly hold:
(1) MCp, is contained byMCo,; (2) MCo, and MCp, overlap; or (3)MCp, and MCyp,
are disjoint.

Suppose that at Step 2 it is found thatis not in MCp,. Then, as can be seen from
Figure 4.4, only three model-class relations could pogsibld: (1) MCop, containsMCo;
(2) MCp, and MCy, overlap; or (3IMCyp, and MCp, are disjoint.

Now suppose that at Step 3 it is found thais in MCy,,. Then, as can be seen from Figure
4.5, four of the five model-class relations could possiblgh@l) MCp, containsMCo; (2)
MCyp, is contained byMCop,; (3) MCp, and MCp, overlap; or (4)MCp, and MCp, are
identical.

In Step 4 we combine the information from Steps 1, 2, and 3) thié result that there is

only one model-class relation that could hold: overlapg\iFe 4.7).
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Note that although Step 1 needs to be done only once (sih@d N do not change),
nevertheless it may pay to iterate Steps 2 and 3, if the ras@tep 4 is not a single model-
class relation.

After each iteration of Steps 2 and 3, the end result will [z # most two model-classes
relations could hold. Itis possible that subsequent ii@natcan reduce the number of possible
model classes to just one: Overlap. Consider, for instangey&4.8, which shows different
quadrants for each test of whethgris in MCp, andg; is in MCp,. Figure 4.9 shows
which model-class relations could hold after a secondtitaraf testingp; in MCp, andg;
in MCo,.

For instance, the third row of Figure 4.10 shows that for elative values of\/ and
N, if the first iteration yieldsA (p, is in MCp, andg, is also in MCp,) and the second
iteration yieldsC' (p, is not in MCp, butgs is in MCp,), then the model-class relation must
be Overlap.

In this case, with just two iterations, the heuristic hagdained the unique relation that
exists between the model classes of the ontologies, evermglhdy assumption, it is not
feasible to use an algorithm to make this determination.

Note that this heuristic is not guaranteed to narrow theipiities down to just one model-
class relation. In fact, the heuristic will give this resoily when the relation between model

classes is Overlap.
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qin MC(O1) g not in MC(O1)

p in MC(O2) A B

p not in MC(O2) c D

Figure 4.8: The four quadrants of possible results for etsrhtion

The different possible outcomes of using this heuristic are

1. The heuristic narrows down the possible model-classioakto just one: Overlap.

2. The heuristic narrows down to just two possible mode$sleelations, which could
be: 1) Overlap or Contains; 2) Overlap or Contained by; 3) @yedr Disjoint; or 4)

Overlap or Identical.

The heuristic always narrows down either to the single i@taDverlap or to one of the 4
pairs of model-class relations just mentioned.
In terms of semantic interoperability, the heuristic wilbav us to draw one of the follow-

ing conclusions:

1. The two ontologies are semantically interoperaiactlyat Level 1.

2. O, is semantically interoperable with; at Levels 1 and 2A.

3. O, is semantically interoperable with; at Levels 1 and 2B.
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4. The two ontologies are semantically interoperatlmostat Level 1.

5. The two ontologies are semantically interoperable aeL&wr at Level 3.

Or, in terms of the compatibility conditions that underligr @efinitions of semantic inter-

operability, calling our ontologie®; andO;,

1. itis not possible to have a query that evaluates to Trudl madels of O, but to False
in all models ofO,; (compatibility condition 1); and it is not possible to havejaery
that evaluates to False in all models@fbut to True in all models oD; (compatibility

condition 2).

2. itis not possible to have a query that evaluates to Tru# madels ofO;, but to True in
some models oD; and to False in other models 6f; (compatibility condition 3); and
it is not possible to have a query that evaluates to True imatlels ofO; but to False in
all models ofO; (compatibility condition 1); and it is not possible to havguery that
evaluates to False in all models ©Of, but to True in some models @¥; and to False
in other models 00, (compatibility condition 4); and it is not possible to havguery
that evaluates to False in all models@fbut to True in all models of); (compatibility

condition 2).

3. itis not possible to have a query that evaluates to Trul madels ofO,, but to True in
some models of); and to False in other models 6% (compatibility condition 5); and
it is not possible to have a query that evaluates to True imadels ofO; but to False in
all models ofO; (compatibility condition 1); and it is not possible to haveuwery that

evaluates to False in all models Of,, but to True in some models 6; and to False
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in other models oD, (compatibility condition 6); and it is not possible to havguery
that evaluates to False in all models@fbut to True in all models of); (compatibility

condition 2).

4. Eitherit is not possible to have a query that evaluates to True imalilels ofO; but
to False in all models of); (compatibility condition 1) and it is not possible to have
a query that evaluates to False in all modelstpfbut to True in all models o),
(compatibility condition 2)pr none of the six compatibility conditions given in Section

3.4.2, Definition 2 (for Level 3 Semantic Interoperabilitjlds betweer®; andO,.

5. Eitherit is not possible to have a query that evaluates to True imatlels ofO; but to
False in all models af; (compatibility condition 1) and it is not possible to haveLety
that evaluates to False in all models@fbut to True in all models oD; (compatibility
condition 2);or all six of the compatibility conditions given in Section 24Definition

2 (for Level 3 Semantic Interoperability) hold betwe@pandO;.

4.4 How the Heuristic Performs

The discussion in the previous section of the workings offhtaaristic showed that it will
always, in a single pass through steps 1-4, reduce the nuwhpessible model-class relations
from five to at most two. One might still question, ‘how welktheuristic performs, in the
sense of asking what is the likelihood of obtaining any ofghgicular outcomes listed in the
previous section.

To answer this question, we consider basic empirical pridibab associated with steps
1 through 4 for the case wherd > N. The other two cases\{ = N andM < N) can
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be analyzed similarly. Assuming thaf > N, we ask and answer the following questions
related to the different possible outcomes of the heuristic
If the model-class relation is overlap, what is the probghihat one pass through steps 1

through 4 will show that:
« the model-class relation betweéhn andO; is exactly overlap?
+ the model-class relation betweéh andO; is either overlap or contains?
« the model-class relation betweén andO); either overlap or disjoint?

The pattern for asking and answering other questions ofypes(e.g., ‘If the model-class
relation is disjoint, what is the probability that one pas®tigh steps 1 through 4 will show
that the model-class relation betws@nandO; is either disjoint or overlaps?) is the same.

To take a simple numerical example, which is generalizedvipdet A/ = 1000 be the
number of models in the model class@f, N = 500 be the number of models in the model
class ofO;, and K = 100 be the number of models that the model classes have in common.

Then, the probability that, in one pass through steps 1 tgirey the heuristic shows that
the model-class relation betweéh andO; is exactly overlap (Figure 4.7) is the probability
that a randomly selected mogefrom O; isin MCp, and a randomly selected modefrom
O, is notin MCy, (Figure 4.10). Call this probability’,. ThenP; = (100/1000)*(400/500)
= (.1)(.8) = 0.08.

Similarly, the probabilityP, that in one pass through steps 1 through 4, the heuristicshow
that the model-class relation betwe@nandO; is either overlap or containgFigure 4.7) is
the probability that a randomly selected mogéiom O; isin MCp, and a randomly selected
modelq from O, isin MCy,, plusthe probability that a randomly selected mogéfom O;
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is notin MC), and a randomly selected modgrom O; isin MCp, (Figure 4.10). Ther,
= (100/1000)*(100/500) + (900/1000)*(100/500) = (.02) ¥8) = 0.20.

Similarly, the probability that, in one pass through stegbrbugh 4, the heuristic shows
that the model-class relation betwe@nandO; is either overlap or disjoin{Figure 4.7) is
the probability that a randomly selected mogetom O; is notin MCp, and a randomly
selected modej from O; is notin MCy, (Figure 4.10). Call this probability’s. ThenP; =
(900/1000)*(400/500) = (.9)*(.8) = 0.72.

In general, given\/, N, and K as above,

* P, the probability that in one pass through steps 1 througle &éuristic shows that the

model-class relation betweén andO; is exactly overlap, i$(//M)*((N — K)/N)).

* P, the probability that in one pass through steps 1 througheduristic shows that
the model-class relation betweén andO; is either overlap or containss ((K/M) *

(K/N)) + (M = K)/M) x (K/N)).

» P53, the probability that in one pass through steps 1 througle féuristic shows that the
model-class relation betweén andO; is either overlap or disjointis (((V — K)/N) *

(N = K)/N).

The above analysis of the performance of the heuristic madeotithe values of M and
N, which are assumed known in scenario 2, but also of the \Kal{#ne number of models in
common to the ontologies’ model classes), which in Scerfarsounknown. So the question
may be asked, “How do you know K?” to which the answer is “We’'dbmhen the question
becomes, “So of what use is the above analysis if you donWiik®” The answer is that the
above analysis shows the constraints that operate whewytiyiassess the performance of the
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heuristic. That the heuristic performs according to thebphilities given: in any instance of
scenario 2, probabilities of the kinds given above are avties in play.

The above analysis shows that the performance of the hewtegiends on K, and it shows
exactly how. What one can take away from this analysis is tieperformance of the heuris-
tic, for any given pair of ontologies that fall into Scena2icdepends on the relative amount of
overlap between the model classes (with the details spelietly probabilities like the ones

above).

4.5 Finite versus Tractable

One consequence of the assumptions given in Section 4.4tiswtary model of each ontology
is finite. A second consequence of these assumptions idhehatddel class of each ontology
is also finite, i.e., there are only finitely many models infeawdel class. This fact follows
from two other facts: (1) the signature of each ontology igdirand therefore, since we also
assume the size of the logical domain is equal to the numbentities in the conceptual
domain, the number of “possible realizations” (Suppes220Q. 26) of this finite signature is
finite; and (2) the model class of an ontology is a subset oftimeber of possible realizations
of the signature of the ontology.

Even though each ontology’s model class will be finite, thaselel classes may still be
too large to be practically computable. To gain some ideawflarge the size of a model class
might be, consider the upper bound on the number of possibtiels of a given ontology.

This upper bound is obtained by calculating how many modeigdcpossibly be con-

structed based on the signature alone, disregarding asybb®axioms or data tuples. For an
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ontologyO;, call this numbelt/,,. An actual ontology); will contain axioms and data tuples,
which constrain the number of models in the model class obtitelogy, so the number of
possible models of); should generally be at least several orders of magnitudédesntizan
Uo,. It is nevertheless instructive to see how rapitlly, grows as the number of constant
symbols and relation symbols increases.

Consider the ontology); from Chapter 3 (Figure 3.1) that contains 4 constant symbols
and 1 binary relation symbol. There afe= 16 possible binary relations that could be in any
realization of this signature. Since a given model could@ionanywhere from 0 through 16
of these relations, the total number of models possiblesistim of all the different ways that
a model could contaif, 1,2, ... 16 of these relations. That sum is given by;°, C(16,1) =
65, 536, where(C'(16, 7) is the number of ways of choosirgbjects from 16 objects.

Note that each of the ontologies in Figures 3.1 and 3.2 has®mniodels. Thus, the data
and axioms of those ontologies constrain the model clagseply, from a possible 65,536
models to just 9.

Consider now an ontology with 6 domain elements, 4 unaryicglat(classes), and 2
binary relations (e.g., any of the four sample ontologie&ppendix A).

Without any axioms or data tuples specified in the ontologgpael for such an ontology
could containd « 6 = 24 1-tuples for thet entities and thel unary relations (i.e., each of
the six entities could be a town, a road, a river, or a state).addition, considering the
signature alone, a model of the ontology could contain6é = 36 2-tuples for one of the
binary relations (e.gin(Bangor,Maine)) and6 x 6 = 36 2-tuples for the other binary relation
(e.g.,through(195,Bangor). Taken together, then, any model for such an ontology coane

from0to 46 +2x6% = 96 tuples. That is, the model class of such an ontology coultbdon
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25, C(96,1) structures that could be models. In other words, the patesitie of the model
class of this ontology i§9°, C(96, i) or more tharv9  10%".

In general, for an ontolog® with d domain elements angl relations of arity;: > 0, the
number of tuples that could be in any modeHs= 3, j;(d"). Any model could have from 0
to P of these relations. Thus, the upper bound on the number ailgesnodels (assuming
the ontology has no axioms and no data tupleg)js= >-2 , C(P,1).

Each of the four sample ontologies in Appendix A actually imasy fewer models, by or-
ders of magnitude. Specifically, the ontology with the mosteils is ch504.in, with87, 392
models, is about8 orders of magnitude smaller thaa = 10,

Yet, for ontologies that describe dozens or hundreds dfiesitclasses, and relations, even
when these have many axioms and data tuples, the finite nuofleodels in their model
classes may still be too large to be practically computedisTtfinite” does not always mean
“practically computable.” So, in practice, it may not alvgdye possible to compare the two
model classes directly, in order to determine the modedscialation that holds between the
ontologies. Whether or not it is possible depends on sevacsbifs, including the number of
axioms and data tuples relative to the number of constantedation symbols in the domain,
the detail with which a given domain is modeled, and the caatpnal resources available
to compute the model classes. An investigation into thederfalies outside the scope of this

thesis.
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Chapter 5

IMPLEMENTATIONS

This chapter implements one algorithm and one heuristicdésafor the model-class relation
that exists between two example geospatial ontolo@ieandO;. The algorithm determines
exactly which one of the five model-class relations (Figufg Kolds, and based on the results
of Sections 3.4 and 3.5, the level at which the two ontologressemantically interoperable.
The heuristic (Section 4.3) is not guaranteed to identifyngle model-class relation that
holds. This heuristic could identify a single relation iathrelation is Disjoint, or it could
identify two possible model-class relations (Section 413)us, the heuristic, though it is not
guaranteed to produce a definitive level of semantic inenaplity of the ontologies, will
always reduce the number of possible model-class relatlmatscould hold from five to at
most two (Figure 4.7).

The models for all the ontologies in this chapter were geerdrasing SEM (Zhang and
Zhang, 1995), with source code aftp://ftp.cs.uiowa.edu/pub/hzhang/sem/sem.ta&@me
changes were needed to get the source code to compile. Benmigas granted by the code’s
author (J. Zhang) to make these changes and to modify it akedder research purposes.
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5.1 Implementation for Scenario 1, Exact

In this Scenario, the full model classes of both ontologees loe calculated, stored on disk,
and compared to determine the exact model-class relatatrintids between them. From the
results of Section 3.4, the exact level of semantic intenaipéty is determined.

In the two ontologies that follow, there are six entities (R@) Orono, Bangor, Maine,
195, and riverl), four classes (state, town, road, and y\ard two binary spatial relations
(in” and ‘through’). Each ontology contains a number of @xis and data tuples. Instead
of presenting these ontologies in the style of previous wrapwe present English-language
summary statements of the axioms and data used in the SEMH#esselvesch501.in
andch502.in (Appendix A). Note that these English-language summangstants are just
approximations to the exact formulations given in the files. They are provided for the

reader’s convenience.
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The following statements provide an English-languageiorrsf the ontology that is spec-

ified in the file ch501.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

IN is reflexive, antisymmetric, and transitive.

THROUGH is antisymmetric and transitive.

Towns, roads, rivers, and states are all pairwise disjoint

if x and y are different roads/rivers/towns/states, themnot IN y

if X is a town/state/river and y is a road, then x is NOT IN y

if X is a road/town/state and y is a river, then x is NOT IN y

if X is a state and y is a town, then x is NOT IN y

if X is a state and y is a town, then x does NOT go THROUGH y

if X is a town/state/river and y is a road, then x does NOT g&ROWGH y

if X is a town/state and y is a river, then x does NOT go THROUWGH

if X is a town/state and y is a town, then x does NOT go THROUGH y

if x goes THROUGH y, then y is NOT IN x

Orono and Bangor are towns.

Route2 and 195 are roads.

Maine is a state.
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Riverl is a river.

Route2 is IN Orono and IN Bangor.

Orono, Bangor, and Riverl are IN Maine.

Riverl goes THROUGH Bangor, Orono, and Maine.

195 goes THROUGH, Bangor, Orono, and Maine.

Route2 goes THROUGH Bangor, Orono, and Maine.
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The following statements provide an English-languageiorrsf the ontology that is spec-

ified in the file ch502.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

IN is reflexive, antisymmetric, and transitive.

THROUGH is antisymmetric and transitive.

Towns, roads, rivers, and states are all pairwise disjoint

If x and y are different roads/rivers/towns/states, thesXOT IN y.

If X is a town/state/river and y is a road, then x is NOT IN y

If X is a road/town/state and y is a river, then x is NOT IN y.

If x is a state and y is a town, then x is NOT IN y.

If x is a state and y is a town, then x does NOT go THROUGH y.

If x is a town/state/ and y is a road, then x does NOT go THROUGH

If X is a town/state/road and y is a river, then x does NOT g&RTHUGH y.

If X is a town/state and y is a town, then x does NOT go THROUGH y

If x goes THROUGH y, then y is not IN x.

Orono and Bangor are towns.

Route2 and 195 are roads.

Maine is a state.
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Riverl is a river.

Orono and Bangor are IN Maine.

Riverl is IN Maine.

Riverl goes THROUGH Bangor, Orono, and Maine.

195 goes THROUGH, Bangor, Orono, and Maine.

Route2 goes THROUGH Bangor, Orono, and Maine.

Orono does NOT go THROUGH Maine.

Bangor does NOT go THROUGH Maine.
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5.2 Discussion: Scenario 1, Exact

The two ontologies specified ¥h501.in and ch502.in are very similar, differing only in
a few axioms and data tuples. There are 800 models of theagytoh501.in, and 1250
models of the ontology inh502.in.

The SEM program was used to generate all the models (havingnsties, four classes,
and two binary relations) for the ontologiesdh501.in andch502.in. The resulting SEM
output files (see Appendix A for what these SEM output filestaio) were processed by a
Perl program (Appendix B) to determine exactly which modats relation holds between
the two ontologies.

The output from this Perl program was:

nunber of nodels in ontology 1 is: 800

nunmber of nodels in ontology 2 is: 1250

nunber of nodels in ontology 2 but not in ontology 1: 1190
nunber of nodels in ontology 1 but not in ontology 2: 740

nunmber of nodels in both ontology 1 and ontology 2 is: 60

Thus, because there are some models in the intersectiore dévth model classes, and
because each model class also contains models that are titg mther model class, the
unique model-class relation holding between the modetekasf the two ontologies ®ver-
lap. Therefore, based on the arguments in Sections 3.3.1 anth8.dntology inch501.in is
Level-1 semantically interoperab¥eith the ontology inch502.in. What this means in terms
of the compatibility conditions that underlie our definitg of different levels of semantic
interoperability (Section 3.4.1, Definition 1) is that
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* itis not possible to have a query that evaluates to Truel imadlels ofch501.in but to

False in all models ofh502.in (compatibility condition 1);

* itis not possible to have a query that evaluates to Falsk maaels ofch501.in but to

True in all models oth502.in (compatibility condition 2).

5.3 Implementation for Scenario 2, Heuristic

In this scenario, we use two ontologies in the fité$03.in and ch504.in (Appendix A).

Each of these ontologies uses the same six entities, fossedaand two binary spatial rela-
tions as the two ontologies in the previous section. Recealti{i§n 4.2.1) that by assumption
in Scenario 2: (1) the model classes of the ontologies caoimputed and stored on disk, (2)
the number of models in each model class is known, and (3)dh®uating resources (e.g.,
time, memory) are not available to implement an algorithit thetermines exactly which
model-class relation holds. Thus for Scenario 2 we impldéradmeuristic (Section 4.3) that

narrows down the possibilities of which model-class relagicould hold.
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The following statements provide an English-languageiorrsf the ontology that is spec-

ified in the file ch503.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

IN is reflexive, antisymmetric, and transitive.

THROUGH is antisymmetric.

Towns, roads, rivers, and states are all pairwise disjoint

If x and y are different roads/rivers/towns/states, thesXOT IN y.

If X is a town/state/river and y is a road, then x is NOT IN y

If X is a road/town/state and y is a river, then x is NOT IN y.

If x is a state and y is a town, then x is NOT IN y.

If x is a state and y is a town, then x does NOT go THROUGH y.

If x is a town/state/river and y is a road, then x does NOT g&RTHIGH .

If X is a town/state/road and y is a river, then x does NOT g&RTHUGH y.

If X is a town/state and y is a town, then x does NOT go THROUGH y

Orono and Bangor are towns.

Route2 and 195 are roads.

Maine is a state.

Riverl is a river.
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Orono and riverl are IN Maine.

Riverl goes THROUGH Bangor and Orono.

195 goes THROUGH, Bangor and Orono.

Route2 goes THROUGH Bangor and Orono.

Bangor does NOT go THROUGH Maine.

Orono does NOT go THROUGH Maine.
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The following statements provide an English-languageiorrsf the ontology that is spec-

ified in the file ch504.in, which is the input file of this ontology in the format that SEM

requires (see Appendix A).

IN is reflexive, antisymmetric, and transitive.

THROUGH is antisymmetric.

Towns, roads, rivers, and states are all pairwise disjoint

If x and y are different roads/rivers/towns/states, thesXOT IN y.

If X is a town/state/river and y is a road, then x is NOT IN y

If X is a road/town/state and y is a river, then x is NOT IN y.

If x is a state and y is a town, then x is NOT IN y.

If x is a state and y is a town, then x does NOT go THROUGH y.

If x is a town/state/river and y is a road, then x does NOT g&RTHIGH .

If X is a town/state and y is a river, then x does NOT go THROWGH

If X is a town/state and y is a town, then x does NOT go THROUGH y

Orono and Bangor are towns.

Route2 and 195 are roads.

Maine is a state.

Riverl is a river.
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Orono and Riverl are IN Maine.

Riverl goes THROUGH Bangor and Orono.

195 goes THROUGH, Bangor and Maine.

Route2 goes THROUGH Bangor, Orono, and Maine.

Bangor does NOT go THROUGH Maine.

Orono does NOT go THROUGH Maine.
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5.4 Discussion: Scenario 2, Heuristic

The ontologies specified ih503.in andchb504.in are very similar to each other, differing
only in a few of their axioms and data tuples. There are 938®@els of the ontology
specified inc503.in and 187,392 models of the ontology specifiedin4.in.

The SEM program was used to generate all the models (havingnsties, four classes,
and two binary relations) for the ontologiesdh503.in andch504.in. The resulting SEM
output files,c53.out andcb4.out, were processed by a Perl program (Appendix B) to deter-
mine which model-class relation(s) between the two onie®gould hold.

The output from one run of this Perl program was:

pl is 25015; p2 is 22703

gl is 12731; g2 is 154842

nodel 25015 in c¢53.out found as nodel 47829 in c54. out
nodel 22703 in c53.out not found in c54. out

nodel 12731 in c54.out not found in c53. out

nmodel 154842 in c54.out not found in c53. out

The heuristic finds that model 25015 @f3.o0ut occurs inch4.out (as model 47829), but
that model 12731 of54.0ut does not occur ir53.out. Thus, in the language of Section 4.3,
when testingy; for membership ir0; andg;, for membership irO;, we are in the upper-left

guadrant of Figure 4.8, the quadrant labeled
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The above results also show that the heuristic finds that h&2¥®3 ofc53.0ut does not
occur inch4.out, and that model 154842 eb4.out does not occur irb3.out. Thus, in the
language of Chapter 4, when testingfor membership irO; andg, for membership ir0;,
we are in the lower-right quadrant of Figure 4.8, the quatdabeledD.

Putting together this information we find that the apprderimw and column of Figure
4.8 is the row for the paifA, D) and the column fo/ < N. Thus, according to Figure 4.9,
we have determined that the unique model-class relatiomdmet the model classes of the two
ontologies ioverlap

Therefore, based on the arguments in Sections 3.3.1 anth8.dntology inch503.in is
Level-1 semantically interoperab¥eth the ontology inch504.in.

What this means in terms of the compatibility conditions timaderlie our definitions of

different levels of semantic interoperability (Sectiod.3, Definition 1) is that

* itis not possible to have a query that evaluates to Truel imadlels ofch503.in but to

False in all models ofh504.in (compatibility condition 1);

* itis not possible to have a query that evaluates to Falsk maaels ofch503.in but to

True in all models oth504.in (compatibility condition 2).
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Chapter 6

SUMMARY, CONCLUSIONS, AND

FUTURE WORK

6.1 Thematic Summary

Chapter 1 began with a simple example (Sections 1.1 and laB)ptiovided the intuition
and motivation for the treatment of semantic interopeitghih Chapters 3-5. That example
(Figures 1.3 and 1.4) highlighted how people can disagreatalvhat certain agreed-upon
statements actuallgnean It was suggested that at the root of such disagreementdtare o
different implicit assumptions people have about what tire@d-upon statemergstail, i.e.,
what does or does not follow logically from those statements

Ontologies can help get to the bottom of such disagreemieetsause they allow people to
specify their conceptualizations of a given domain in a nreeiprocessable way. In particular,
when formal ontologies are used in conjunction with reasgrsoftware that can compute
inferences, queries can be put to these ontologies to tethehcertain statements follow as
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logical consequences from the ontologies. Using ontotoggespecifications in this way will
not eliminate any disagreements that the people who wrégmtmay have about meanings,
but it will allow, under appropriate assumptions, machiteeprobe the implicit information
in these specifications and so be able to make explicit thelem@nts (logical consequences)
that are implicit in the specifications.

In particular, if the ontologies are specified using a logiaaguage whose semantics is
given by models (sets with a certain structure), it is pdesibsome cases to compute all the
models of a given ontology and so get a handle on its semaititisese cases, questions about
whether a given statement follows as a logical consequédrbe ¢statements of the) ontology
can then be analyzed directly in terms of models. A statemsentogical consequence of (the
statements of) an ontology if it is true in all models of theadogy.

In cases where not all the models of the ontologies can be emude.g., for infinite
domains, or for finite domains but intractable model classas alternate way to analyze
guestions of logical consequence can be found through pheoky. With suitable assump-
tions — dealing with the decidability of the logical langeaghe computational properties of
the proof calculus employed, and the connection betweerethéts of syntax and semantics
(i.e., completeness) for the given proof calculus — a compean determine via proof theory
whether a given statement is a logical consequence (siat, by soundness, semantic) of
the statements in the ontology.

For questions dealing with semantics, though, the argwsnesméed on models (and se-
mantic logical consequence) are often more intuitive th@marguments based on proofs (and
syntactic logical consequence). For this reason, in tl@si#h) questions about semantic inter-

operability were asked and answered in terms of models, roaf@ That is, in explaining
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what the explicit statements of an ontology collectivelyean, models were used as the intu-
itive background that could accommodate notions of impireanings, as well as the multiple
possible ‘worlds’ that are consistent with a given ontology

This model-based analysis of semantics connects the rtingvaxample in Chapter 1 to

the more detailed analyses in Chapters 3-5, via the followiapgs.

1. Geospatial ontologies are used to specify two plausibfeeptualizations of a given

geographic domain.

2. Certain assumptions of finiteness are imposed on the gmsloand all the models of

each ontology are computed.

3. A query to an ontology is a statement (written in the lagguaf the ontology specifi-
cation) that evaluates to true or false (see Section 3.4c2prding to whether or not it

follows as a logical consequence of the statements of theamyt

4. A query follows as a logical consequence of an ontologyi# frue in all models of the

ontology.

5. The test for semantic interoperability employs the notd‘compatible query results;’
which considers whether a query that is entailed by (follaszs logical consequence

of) one ontology is also entailed by another ontology.

6. Different kinds of compatible query results are definedjdating greater or lesser de-

grees of interoperability between two ontologies.

7. Different degrees of semantic interoperability dedinedin terms of different kinds of
compatible query results.
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8. Mathematical results connect the different kinds of catifpe query results to the set-

theoretic relationship (e.g., Overlaps) between the moddskes of the ontologies.

9. These mathematical results are used in conjunction Wilcalculated models of each
ontology tocomputethe degree of semantic interoperability of the two ontatsgn

terms of the set-theoretic relation that holds between thedel classes.

10. In some cases, when the model classes are extremely(¢arglee order of billions or
more models in each class), the exact level of semanticipésability may not be able

to be determined.

6.2 Answer to the Research Question

The research question posed in Chapter 1, Section 1.7\Whgn two geospatial ontologies
use the same language to describe the same domain, butidififiermodel-theoretic semantics
of their primitive spatial-relation symbols, in what sensgldo what extent are the ontologies
semantically interoperable?

Chapter 3 created the framework (formal ontologies withrtlseimantics specified by
model-theoretic semantics, Sections 3.1 and 3.2) and theorstructs (compatibility condi-
tions, Section 3.3.1) to answer this research question.

The answer to the research question is as follows:

When two geospatial ontologies use the same language tdlseetite same domain, but
differ in the model-theoretic semantics of their primitigpatial-relation symbols, they are
semantically interoperabli@ the sense thathe evaluations of arbitrary queries put to each
ontology are ‘compatible’ as determined by the six compl#itconditions (Figure 3.19).

135



When two geospatial ontologies use the same language tdlseefite same domain, but
differ in the model-theoretic semantics of their primitigpatial-relation symbols, they are
semantically interoperabl® the extent thathey meet the different groups of compatibility
conditions that correspond to the five model-class relatlwetween ontologies (Figures 3.19

and 3.18).

6.3 Results Summary

In answering this research question, this thesis has megsesarch goal set forth in Sec-
tion 1.7.2: “to create a method to assess the extent of s@matgroperability between two

geospatial ontologies” (based on the requirements in @edti6), which are to take into ac-
count both the models of the ontologies and the queries #mabe put to the ontologies.

In meeting this research goal, this thesis has:

1. investigated the notion of semantic interoperabilityneen two geospatial ontologies
when these ontologies differ only in the semantics of thempive spatial relations
(Figure 2.1). Two geospatial ontologies aitferent“in the semantics of their primitive
spatial relations” when the models of the ontologies differ, when the sets of models

of the two ontologies are not equal as sets.

2. defined different degrees phrtial semantic interoperabilitypf geospatial ontologies
in terms ofcompatibility conditionswhich in turn are defined in terms of models and

gueries.
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3. demonstrated that the different levels of semanticaperability that exist between two
ontologies can be determined based on the set-theorettore(e.g., disjoint, overlaps)

that holds between the sets of models of the two ontologies.

4. implemented two procedures for determining the relatia holds between the sets of
models of the ontologies. The first procedure calculatestBxahich relation holds.
The second procedure uses weaker assumptions and is geataniy to narrow down

the possibilities of which relations could hold from five et

What was called in Section 3.4.1 ‘Level 1 semantic interopiétg between ontologies
is the most fundamental level of semantic interoperabb#gause it guarantees that for no
query @ will @ be entailed by one ontology while( is entailed by the other ontology.
This condition thus represents a minimum ‘safety’ conditioieetween ontologies. Given that
one of the goals of using ontologies is to have machines psoogeanings without input
from people, it is essential to know when the ontologies mgibe different results to the
same query. Level 1 semantic interoperability insures &loEgiree of compatibility between
query results, without which it is unlikely that people wowbvant to trust the interpretations
of meanings to machines.

The definitions in Chapter 3 of five different levels of semamtteroperability make sense
even when certain finiteness assumptions (Section 4.1) ootah, though the actual compu-
tation of the level of semantic interoperability may not lesgible in these cases. In this sense,
this thesis has provided a platform upon which further disans of semantic interoperability

can be based.
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This thesis also showed that for the kind of geospatial ogies considered here, the
guestion of whether there is anything “special about spjates two answers: No and Yes.
No, in the sense that the method of analysis of semanticopésability between ontologies
remains the same whether spatial properties are preseheiortologies or not. Yes, in
the sense that one supposes thajanspatialontologies, particular spatial properties will be

specified in the ontologies.

6.4 Significance of the Research Contributions

As was shown in Chapters 4 and 5, given certain finiteness gagung, the levels of semantic
interoperability defined in Chapter 3 can be computed. Howagawas noted in Section 4.5,
when the total number of entities, unary relations, andryimelations exceeds more than a
few dozen, the number of possible models becomes very laxgs with appropriate axioms
and data tuples constraining the space of possible motielgomputations — at least given
the algorithms used in SEM — are quickly rendered intraetabl

Therefore, one might ask, “What is the value of this resedrdhrirealistic ontologies of
hundreds or thousands of entities, classes, and binatioredait cannot guarantee an effective
mechanism to compute the actual level of semantic inteedgaéy between two ontologies?”

To answer this question, recall the research contributioestioned in Section 1.9.2: the
novel analysis of semantic interoperability in terms of misdand queries; the conceptual
clarity achieved by narrowing the focus to one small kind iffiedence between ontologies;

and a foundation for further study.
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The research presented in this thesis is significant for ta@nreasons that are inde-
pendent of whether the actual level of semantic interopkisaban be computed in a given
case.

The first reason is that the novel analysis of semantic iptability in terms of models
and queries can serve as a touchstone to assess claims afauitis interoperability, in two
ways.

First, if a claim of semantic interoperability is being madehe context of formal ontolo-
gies with model-theoretic semantics, this thesis provalessis for evaluating whether such
a claim has standing. One is now in a position to challengesani claims: “Since for your
ontologies, semantics has something to do with models, careyplain how your definition
of semantic interoperability relates to the models of thiologies?”

Second, if a claim of semantic interoperability is being mada context that isot con-
cerned with formal ontologies and model-theoretic sensanthis thesis provides the basis
to question the underlying notion of semantic interopéitgtbiOne is now in a position to
ask: “Can you explain in detail exactly what you mean by ‘seticahand in exactly what
sense your two ontologies are semantically interoperatderding to your understanding of
semantics?”

The research presented here also makes a contributiontitntttaeaders of this research
are equipped ask probing, detailed questions about sesmatéroperability thathey might
never before have been able to, or thought to, a&kus, the research presented here serves
not only as a touchstone for assessing claims of semargioperability, but also asspring-
board for launching new research questi@imut exactly what it means for two ontologies to

be semantically interoperable.
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6.5 Conclusions

When two geospatial ontologies are formulated in a sublaggyoéthe language of first-order
logic, and certain assumptions can be made about the fisgesfethe individual models of
the ontologies and of their model classes, then it is passdotompute the level of semantic
interoperability between these ontologies. Regardlesshether or not the level of semantic
interoperability between ontologies can be computed, #imitions of these different levels
in terms of compatibility conditions between queries anddele provides information and
insights that have not appeared previously in the liteeatur

This study is foundational in that it provides base-levslits of semantic interoperability
for the case where two ontologies are the same in everythinthb model-theoretic seman-
tics of their primitive relation symbols. These base-lawsults are the sharpest that can be
obtained, in the sense that relaxing any other assumpti@isidarity—the number or names
of elements and relations on the domain, the logical langsiaged, etc.—would increase (or
at least not reduce) the variability between the ontolggeesl so would make conclusions
about semantic interoperability harder to draw.

Thus, any analysis of semantic interoperability that cdeis models and model classes

would need to take the results of this thesis into account.
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6.6 Future Work

Among several promising areas for future work are the falhgw

6.6.1 Incorporating Additional Heterogeneities

This thesis focused in detail on one particular differenetveen ontologies (a difference in
the semantics of primitive relations). We have seen thafrdi@ework by Klein (2001) is

closest in spirit to the analysis of this thesis. It is likéhat further insights into semantic
interoperability can be gained by considering other hgieneities described by Klein, not

just the differing semantics of primitives.

6.6.2 Explicating the Semantics in Methods for Integrating Ontologies

Much of the existing research on semantic heterogeneitysandhntic interoperability is car-
ried out so that different operations like integration orrgneg (Gomez-Perez et al., 2004;
Kalfoglou and Schorlemmmer, 2003) can be accomplishedh \gdod’ results as far as the
semantics goes.

Yet, in these operations, the most that is usually discussedsome kind of term-by-
term equivalences, or inclusion relations. It would benegéing to consider the connections

between:

1. the operations of integration and merging;

2. term-by-term equivalences and inclusion relations my@ag out these operations;
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3. what happens to the semantics of the individual ontofogieen they are merged using

these equivalences and inclusion relations; and

4. a model-theoretic analysis of semantic interoperabilit

6.6.3 Considering Infinite Rather than Finite Domains

Earlier chapters argued for the appropriateness of thergdgans of finiteness (of the con-
ceptual domain and of the corresponding non-logical voleapuused in this thesis. It was
also noted that these assumptions can render tractablertarrcsmall ontologies the model-
theoretic computations described in Chapter 5. Furtherysisaof individual queries by

proof-theoretic means is also decidable under these assunsp That is, a terminating al-
gorithm can always be found to decide the question of whedhguery is a logical conse-
guence of the ontology. It would interesting to investigateethertractablealgorithms could

be developed for certain special cases if the finitenessrgagns are relaxed.

6.6.4 Considering Finer Distinctions Between Model Classes

There are more subtle kinds of analyses that one could makeeihas available all models
of each model class. For instance, even with disjoint moldalses, one could consider the
tuplesthat are common to both model classes. In this way, one carlips say something
worthwhile about certain queries and their satisfactiosnime or all models of the ontologies,
even though such claims would not extendatbqueries. Such an approach focuses directly

on the models and the tuples that make them up.
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A slightly different perspective would change the initiactis from the models to the
ontologies themselves, focusing on partitioning the agi@s and considering the kinds of
semantic interoperability that result from the partitimpi From this perspective one might
ask whether a partition of the ontologies into subgroupsrities, relations, and axioms
(e.g., just those entities ‘Bangor, ‘Orono, and ‘Maineyisi the relation ‘in," and just the
axioms of transitivity) results in a different level of sentia interoperability than that which

holds for the full ontologies.

6.6.5 Exploring Relation to Translational Approach

It would be useful and informative to carefully trace out thiferent possible translational
approaches of semantic interoperability that are basedotans like that of isomorphism.
One focus of such an investigation could be on whether Legei8antic interoperability, as
discussed in this thesis, is related to certain translatiapproaches. On the surface, Level 3
(or full) semantic interoperability would appear to be dikawhat any translational approach
to semantic interoperability seeks to find. Detailed exa®pked to be developed and worked
out in order to verify whether or not this is indeed the caserther, distinctions need to be
drawn between the analysis in this thesis, which seeks &rtast a given level of semantic
interoperability, and the use of the translational appnpacich seeks to create conditions
on languages and their interpretatics® thata certain kind of semantic interoperability is
guaranteed to exist. Additionally, one might study undeatdircumstances (i.e., given what

kinds of logical systems) such guarantees of semanticapézability could be made.
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6.6.6 Exploring Relation to More Abstract Approaches

It would be useful and informative to relate the rather f@zlanalysis of this thesis to the
broader and more abstract notions of semantic interogyadand ontology alignment pre-

sented in other works (e.g., Hitzler et al. (2006)).

6.6.7 Connecting to Ongoing Developments

The potential revival of OWL Space (Hobbs, 2006) could previdndamental spatial con-
structs that could be broadly used in the geospatial communiparticular, it might be able
to be employed in whatever ontology or ontologies NGA dexibecreate. If so, the notions
of model classes and semantic interoperability will have to play.

It would also be useful to explore how the ideas of semanteraperability explicated
in this thesis correspond to the ideas of semantic inteedyildly intimated in Kuhn (2005b),
where the focus is on the semantics of service interfaceghisgnvein, a useful stepping-off

point could be the research begun in Farrugia (2002).
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Appendix A

SAMPLE ONTOLOGIESAND PROGRAM OUTPUT

A.l ch501.in

The SEM file forch501.in follows.

%% Chapter 5 Ontology 1

%% Sorts

( thing : Route2, Orono, Bangor, Maine, 195, riverl )
%% Functions

{ state : thing -> BOOL }

{ town : thing -> BOOL }

{ road : thing -> BOOL }

{ river : thing -> BOOL }

{ in . thing thing -> BOOL }

{ through : thing thing -> BOOL }

%% Clauses (Axioms)

% IN is reflexive, antisymmetric, and transitive

[ In(x,x) ]
[ x=y | -in(x,y) | -in(y,x) ]
[ -in(xy) | -iny,z) | in(x,2)]

% THROUGH is antisymmetric and transitive

[ x=y | -through(x,y) | -through(y,x) ]
[ -through(x,y) | -through(y,z) | through(x,z)]
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% towns, roads, rivers, and states are all
% pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]

[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x can’'t be IN y

[ x=y | -road(x) | -road(y) | -in(xy) ]
[ x=y | -road(x) | -road(y) [ -in(y.x) ]

[ x=y | -river(x) | -river(y) | -in(x,y) |
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) [ -town(y) | -in(y.x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
% then x is NOT IN y

[ -town(x) | -road(y) | -in(x,y) ]

[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN vy

[ -road(x) | -river(y) | -in(x)y) ]
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[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(xy) ]

% if x is a state and y is a town,
% then x is NOT IN y

[ -state(x) | -town(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x does NOT go THROUGH vy

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state/river and y is a road,
% then x does NOT go THROUGH vy

[ -town(x) | -road(y) | -through(x,y) ]

[ -state(x) | -road(y) | -through(x,y) ]
[ -river(x) | -road(y) | -through(x,y) ]

% if x is a town/state and y is a river,
% then x does NOT go THROUGH vy

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) |

% if x is a town/state and y is a town,
% then x does NOT go THROUGH vy

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% if x goes THROUGH vy, then y is NOT IN x
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[ -through(x,y) | -in(y,x) ]

% data

[ town(Orono) |
town(Bangor) |
road(Route2) ]
road(195) ]
state(Maine) ]
river(riverl) |

— p— p— p— p—

in(Route2, Orono) ]
in(Route2, Bangor) ]
in(Orono, Maine) |
in(Bangor, Maine) |
in(riverl, Maine) ]

— p— p— — p—

[ through(riverl, Bangor) ]
[ through(riverl, Orono) ]
[ through(riverl, Maine) ]

[ through(195, Bangor) ]
[ through(195, Orono) ]
[ through(195, Maine) ]

[ through(Route2, Bangor) |
[ through(Route2, Orono) ]
[ through(Route2, Maine) ]

There are 800 models of501.in. A model forch501.in as itis produced by SEM looks
like the following, which is the first model in SEM’s outputrfeh501.in.

FkkkkkHk Model 1  #kkxxxsk

state(Route2) = $F
state(Orono) = $F
state(Bangor) = $F

state(Maine) = $T
state(195) = $F
state(riverl) = $F

town(Route2) = $F
town(Orono) = $T

158



town(Bangor) = $T
town(Maine) = $F
town(l95) = $F

town(riverl) = $F
road(Route2) = $T
road(Orono) = $F
road(Bangor) = $F

road(Maine) = $F
road(195) = $T
road(riverl) = $F

river(Route2) = $F
river(Orono) = $F
river(Bangor) = $F

river(Maine) = $F
river(195) = $F
river(riverl) = $T

in(Route2,Route2) = $T

in(Route2,0rono) = $T

in(Route2,Bangor) = $
in(Route2,Maine) = $T
in(Route2,195) = $F
in(Route2,riverl) = $F
in(Orono,Route2) = $F

in(Orono,Orono) = $T
in(Orono,Bangor) = $F
in(Orono,Maine) = $T
in(Orono,195) = $F

in(Orono,riverl) =
in(Bangor,Route2) = $F
in(Bangor,Orono) = $F
in(Bangor,Bangor) = $T

$
$F

in(Bangor,Maine) = $T
in(Bangor,195) = $F

in(Bangor,riverl) = $F
in(Maine,Route2) = $F

in(Maine,Orono) = $F
in(Maine,Bangor) = $F

in(Maine,Maine) = $T
in(Maine,195) = $F
in(Maine,riverl) = $F

in(195,Route2) = $
in(195,0rono) =
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in(195,Bangor) = $F
in(195,Maine) = $F
in(195,195) =
in(195,riverl) =
in(riverl,Route2) = $F
in(riverl,0rono) = $F
in(riverl,Bangor) = $F

in(riverl,Maine) = $T
in(river1,195) = $F
in(riverl,riverl) = $T

through(Route2,Route2) = $F
through(Route2,0rono) =
through(Route2,Bangor) =
through(Route2,Maine) =
through(Route2,195) = $F
through(Route2,riverl) =
through(Orono,Route2) =
through(Orono,Orono) = $F
through(Orono,Bangor) =
through(Orono,Maine) =
through(Orono,195) = $F
through(Orono,riverl) =
through(Bangor,Route2) = $F
through(Bangor,Orono) = $F
$F
F

$
$F
$SF

$
$F

through(Bangor,Bangor) =
through(Bangor,Maine) =
through(Bangor,195) = $F
through(Bangor,riverl) = $F
through(Maine,Route2) = $F
through(Maine,Orono) = $F
through(Maine,Bangor) =
through(Maine,Maine) =
through(Maine,195) = $F
through(Maine,riverl) =
through(195,Route2) = $
through(195,0rono) = $T
through(195,Bangor) = $T
through(195, Malne) $T
through(195,195) =
through(195, riverl)
through(riverl, RouteZ) = $F
through(riverl,0Orono) = $T
through(riverl,Bangor) = $T
through(riverl,Maine) = $T

$
$F
F
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through(riverl,195)

= $F
through(riverl,riverl) =

$F

Subsequent models in this section have a similar form. Thge differences between
models are the values 81" (for True) ands F' (for False) assigned to the relations.

A.2 ch502.in

The SEM file forch502.in follows.

%% Chapter 5 Ontology 2

%% Sorts
( thing : Route2, Orono, Bangor, Maine, 195, riverl )

%% Functions

state : thing -> BOOL }
town : thing -> BOOL }
road : thing -> BOOL }
river : thing -> BOOL }

~An A

in . thing thing -> BOOL }
through : thing thing -> BOOL }

=

%% Clauses (Axioms)

% IN is reflexive, antisymmetric, and transitive

[ In(x,x) ]
[ x=y | -in(x,y) | -in(y,x) ]
[ -in(xy) | -in(y,2) | in(x,2)]

% THROUGH is antisymmetric and transitive

[ x=y | -through(x,y) | -through(y,x) ]
[ -through(x,y) | -through(y,z) | through(x,z)]
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% towns, roads, rivers, and states are
% all pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]

[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x is NOT IN y

[ x=y | -road(x) | -road(y) | -in(x,y) ]
[ x=y | -road(x) | -road(y) | -in(y.x) ]

[ x=y | -river(x) | -river(y) | -in(x,y) |
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y.x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
% then x is NOT IN y

[ -town(x) | -road(y) | -in(x,y) ]

[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN vy

[ -road(x) | -river(y) | -in(x)y) ]
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[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(xy) ]

% if x is a state and y is a town,
% then x is NOT IN y

[ -state(x) | -town(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x does NOT go THROUGH vy

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state and y is a road,
% then x does NOT go THROUGH vy

[ -town(x) | -road(y) | -through(x,y) ]
[ -state(x) | -road(y) | -through(x,y) ]

% if x is a town/state/road and y is a river,
% then x does NOT go THROUGH vy

[ -town(x) | -river(y) | -through(x,y) ]

[ -state(x) | -river(y) | -through(x,y) ]
[ -road(x) | -river(y) | -through(x,y) |

% if x is a town/state and y is a town,
% then x does NOT go THROUGH vy

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% if x goes THROUGH vy, then y is NOT IN x
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[ -through(x,y) | -in(y,x) ]

% data

[ town(Orono) |
[ town(Bangor) ]
[ road(Route2) ]
[ road(195) ]

[ state(Maine) ]
[ river(riverl) ]

[ in(Orono, Maine) ]
[ in(Bangor, Maine) ]

[ through(riverl, Bangor) ]
[ through(riverl, Orono) ]
[ through(riverl, Maine) ]

[ through(195, Bangor) ]
[ through(195, Orono) ]
[ through(195, Maine) ]

[ through(Route2, Bangor) ]
[ through(Route2, Orono) ]
[ through(Route2, Maine) |

[ -through(Orono, Maine) ]
[ -through(Bangor, Maine) ]

There are 1250 models ek502.in.

A.3

Program Output

The first Perl program in AppendixB produced the followindpuu:

number
number
number
number
number

of
of
of
of
of

models
models
models
models
models

ontology 1 is: 800
ontology 2 is: 1250
ontology 2 but not in ontology 1: 1190
ontology 1 but not in ontology 2: 740
both ontology 1 and ontology 2 is: 60
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A.4  ch503.in

The SEM file forch503.in follows.
%% Chapter 5 Ontology 3

%% Sorts

( thing : Route2, Orono, Bangor, Maine, 195, riverl )
%% Functions

{ state : thing -> BOOL }

{ town : thing -> BOOL }

{ road : thing -> BOOL }

{ river : thing -> BOOL }

{ in . thing thing -> BOOL }

{ through : thing thing -> BOOL }

%% Clauses (Axioms)

% IN is reflexive, antisymmetric, transitive

[ in(x,x) ]
[ x=y | -in(xy) | -in(y,x) ]
[ -in(xy) | -in(y,2) | in(x,2)]

% THROUGH is antisymmetric

[ x=y | -through(x,y) | -through(y,x) ]

% towns, roads, rivers, and states are
% all pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]
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[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x is NOT IN y

[ x=y | -road(x) [ -road(y) | -in(xy) ]
[ x=y | -road(x) [ -road(y) | -in(y,x) ]
[ x=y | -river(x) | -river(y) | -in(x)y) ]

y
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y,x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
% then x is NOT IN vy

[ -town(x) | -road(y) | -in(x,y) ]

[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(x,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN y

[ -road(x) | -river(y) | -in(x)y) ]
[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(x)y) ]

% if x is a state and y is a town,
% then x doesn't be IN y

[ -state(x) | -town(y) | -in(x,y) ]
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% if x is a state and y is a town,
% then x does NOT go THROUGH vy

[ -state(x) | -town(y) | -through(x,y) ]

% if x is a town/state/river and y is a road,
% then x does NOT go THROUGH vy

[ -town(x) | -road(y) | -through(x,y) ]
[ -state(x) | -road(y) | -through(x,y) ]
[ -river(x) | -road(y) | -through(x,y) ]

% if x is a town/state/road and y is a river,
% then x does NOT go THROUGH vy

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) |
[ -road(x) | -river(y) | -through(x,y) ]

% if x is a town/state and y is a town,
% then x does NOT go THROUGH vy

[ -town(x) | -town(y) | -through(x)y) ]
[ -state(x) | -town(y) | -through(x,y) ]

% data

[ town(Orono) ]
[ town(Bangor) |
[ road(Route2) ]
[ road(195) ]

[ state(Maine) ]
[ river(riverl) ]

[ in(Orono, Maine) ]
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[ in(riverl, Maine) ]

[ through(riverl, Bangor) |
[ through(riverl, Orono) ]
%[ through(riverl, Maine) ]
[ through(195, Bangor) |

[ through(195, Orono) ]

%[ through(195, Maine) ]

[ through(Route2, Bangor) |
[ through(Route2, Orono) ]
%[ through(Route2, Maine) |
[ -through(Bangor, Maine) ]
[ -through(Orono, Maine) ]

There are 93,696 models et503.in.

A5 ch504.in

The SEM file forch504.in follows.

%% Chapter 5 Ontology 4

%% Sorts

( thing : Route2, Orono, Bangor, Maine, 195, riverl )
%% Functions

{ state : thing -> BOOL }

{ town : thing -> BOOL }

{ road : thing -> BOOL }

{ river : thing -> BOOL }

{ in . thing thing -> BOOL }

{ through : thing thing -> BOOL }

%% Clauses (Axioms)
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% IN is reflexive, antisymmetric, transitive

[ In(x,x) ]
[ x=y | -in(xy) | -in(y,x) ]
[ -in(xy) | -in(y,2) | in(x,2)]

% THROUGH is antisymmetric

[ x=y | -through(x,y) | -through(y,x) ]

% towns, roads, rivers, and states are
% all pairwise disjoint

[ -town(x) | -road(x) ]
[ -town(x) | -river(x) ]
[ -town(x) | -state(x) ]
[ -road(x) | -river(x) ]

[ -road(x) | -state(x) ]
[ -river(x) | -state(x) ]

% if x and y are different roads/rivers/towns/states,
% then x is NOT IN vy

[ x=y | -road(x) | -road(y) | -in(x,y) ]
[ x=y | -road(x) | -road(y) | -in(y.x) ]

[ x=y | -river(x) | -river(y) | -in(x)y) ]
[ x=y | -river(x) | -river(y) | -in(y,x) ]

[ x=y | -town(x) | -town(y) | -in(x,y) ]
[ x=y | -town(x) | -town(y) | -in(y.x) ]

[ x=y | -state(x) | -state(y) | -in(x,y) ]
[ x=y | -state(x) | -state(y) | -in(y,x) ]

% if x is a town/state/river and y is a road,
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% then x is NOT IN vy
[ -town(x) | -road(y) | -in(xy) ]

[ -state(x) | -road(y) | -in(x,y) ]
[ -river(x) | -road(y) | -in(X,y) ]

% if x is a road/town/state and y is a river,
% then x is NOT IN y

[ -road(x) | -river(y) | -in(x)y) ]

[ -town(x) | -river(y) | -in(x,y) ]
[ -state(x) | -river(y) | -in(x)y) ]

% if x is a state and y is a town,
% then x doesn’'t be IN vy

[ -state(x) | -town(y) | -in(x,y) ]

% if x is a state and y is a town,
% then x does NOT go THROUGH vy

[ -state(x) | -town(y) | -through(xy) ]

% if x is a town/state/river and y is a road,
% then x does NOT go THROUGH vy

[ -town(x) | -road(y) | -through(x,y) ]

[ -state(x) | -road(y) | -through(x,y) ]
[ -river(x) | -road(y) | -through(x,y) ]

% if x is a town/state and y is a river,
% then x does NOT go THROUGH vy

[ -town(x) | -river(y) | -through(x,y) ]
[ -state(x) | -river(y) | -through(x,y) ]
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%[ -road(x) | -river(y) | -through(x,y) ]

% if x is a town/state and y is a town,
% then x does NOT go THROUGH vy

[ -town(x) | -town(y) | -through(x,y) ]
[ -state(x) | -town(y) | -through(xy) ]

% data

[ town(Orono) ]
[ town(Bangor) ]
[ road(Route2) ]
[ road(195) ]

[ state(Maine) ]
[ river(riverl) ]

[ in(Orono, Maine) |
[ in(riverl, Maine) |

[ through(riverl, Bangor) ]
[ through(riverl, Orono) ]
%[ through(riverl, Maine) ]

[ through(195, Bangor) ]
%[ through(195, Orono) ]

[ through(195, Maine) ]

[ through(Route2, Bangor) ]
[ through(Route2, Orono) ]
[ through(Route2, Maine) ]
[ -through(Bangor, Maine) |
[ -through(Orono, Maine) ]

There are 187,392 models @f504.in.
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A.6 Program Output

Below is the output of the second Perl program (Appendix B)duseimplement the
heuristic for Scenario 2.

pl is 25015; p2 is 22703

gl is 12731; g2 is 154842

model 25015 in c53.out found as model 47829 in c54.out
model 22703 in c53.out not found in c54.out

model 12731 in c54.out not found in c53.out

model 154842 in c54.out not found in c53.out
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Appendix B

PERL CODE FOR SCENARIOS1AND 2

B.1 Perl Codefor Scenario 1, Exact

#l/usr/bin/perl -w
use strict;
HHHHHHHHH T

Purpose: Find the model-class relation (overlaps,
contains, contained_by, disjoint, or
identical) between two geospatial
ontologies, using SEM output files for
similar ontologies -- ontologies with the
same signature, but different data or axioms.

HFHEIFHFHFHFHFHFHFHFHFHHHHHHHHHHR

Method:

Parse SEM files and store models as arrays
@modelsl and @models2, where elements of
the arrays are strings of 1's and 0’s
corresponding to truth values of SEM output.
This can be done easily, because SEM outputs
the truth values in so that if two ontologies
have the same signature, then truth values of
the models of one ontologies can be read in
the same way as the truth values for the
models of the other ontology.

R

my $i;

my $line = ”;

my $model = ”;

my $filel="c51.out";
my $file2="c52.out";
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my @modelsl
my @models2

0
0

my $numModelsl;
my $numModels2;
my 3$inOnt10nly;
my 3$inOnt20nly;
my $inBothOnts;

my $junk;
my %seen;
my Sitem;
my @keys;
my $key;

# my Selt;
# $elt = $array[ rand @array J;

open(INFILE1, "$filel") or die "Cant’ open $filel $\n";
while ($line = <INFILE1>) {

# when hit one of these lines, will have full

# model, except for 1st time which will be

# null, so shift it away after the loop

it (($line = (\ = Model 1)) ||
($line =~ /Number of models/) ) {

$model =" s/. = (\$F)/0/g;
$model =" s/. *(\$T)/1/g;
$model =" sAn//g;
push(@models1,$model);
$line = ™,
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if ( $line == (" \w+/) ) {
$model .= $line;
}
} # end while ($line = <INFILE1>)

close(INFILEL);

shift @modelsl; # since first element is null

$model =
$line =

open(INFILE2, "$file2") or die "Cant' open $file2 $N\n";
while ($line = <INFILE2>) {

if (($line = (\ * Model 1)) ||
($line =" /Number of models/) ) {

$model =" s/. = (\$F)/0/g;
$model =" s/. = (\$T)/1/g;
$model =" sAn//g;
push(@models2,$model);
$line = 7

}

if ( $line =7 (" \w+/) ) {
$model .= $line;

}

} # end while ($line = <INFILE1>)

close(INFILEL);
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shift @models2; # since first element is just null

$numModelsl
$numModels?2
print "number
print "number

%seen = ();

$#modelsl + 1;
$#models2 + 1;
of models in ontology 1 is: $numModels1\n";
of models in ontology 2 is: $numModels2\n";

my @models20nly = ();

my $ = O;

foreach $model (@modelsl) {$seen{$model} = 1; }

foreach $model (@models2) {
unless ($seen{$model}) {
push(@models20nly,$model);

$j++;
}
}

$inOnt20nly =

print "number

$#models20nly + 1;
of models in ontology 2";

print " but not in ontology 1. $inOnt20nly\n";

$model = 7
%seen = ();

my @models1Only = ();

$ = 0;

foreach $model (@models2) {$seen{$model} = 1; }
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foreach $model (@modelsl) {
unless ($seen{$model}) {
push(@models10nly,$model);
$j++;
}
}

$inOntlOnly = $#models1Only + 1;
print "number of models in ontology 1%
print " but not in ontology 2: $inOnt1Only\n™;

my @union = ();

my @intersection = ();
my @diff = ();

my %union = ();

my %intersection = ();

my %count = ();
foreach $model (@modelsl) {$union{$model} = 1; }

foreach $model (@models2) {
if ( $union{$model} ) { Sintersection{$model} = 1;}
$union{$model} = 1;

}

@intersection = keys %intersection;
$inBothOnts = $#intersection + 1;

print "number of models in both ontology 1"
print " and ontology 2 is: $inBothOnts\n";
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B.2 Perl Codefor Scenario 2, Heuristic

The Perl code for implementing the heuristic in Scenaria 2 is

#!/usr/bin/perl -w
use strict;
use locale;

R

Purpose: test whether random models from one ontology
are in the model class of another ontology

Method: hard-code values $M and $N, the values

HFHEIFEHFEHEHEHEEEFEHRFHR

HUTHHTTTHT

my $i;
my $line = "
my $model = ”;

my $filel="c53.out";
my $file2="c54.out";
#my $filel="c51.out";
#my $file2="c52.out";

my $M = 93696;
my $N = 187392;
#my $M = 800;
#my $N = 1250;
my @M = (1..$M);
my @N = (1..3N);
my @p;

my $p;

my $randompl
my $randomp?2

SM[ rand @M 1|;
$M[ rand @M ],
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push(@p, $randompl, $randomp2);

my $pInOj = 0;
my $qInOi = O;
my @g;
my $q;

my $randomgl = $N[ rand @N ];
my $randomg2 = $N[ rand @N ],
push(@q, $randomql, $randomq?);

#Qp
#Qq

(195,189);
(1239,1245);

print "pl is $p[0]; p2 is $p[1l]\n";
print "gl is $q[0]; g2 is $q[1]\n";

my $next;

foreach $p (@p) {
$next = $p + 1;

open(INFILE1, "$filel") or die "Can't open $filel\n";
my $foundFlag = 0;

while ($line = <INFILE1>) {

# leaves last model hanging,
# to be picked up outside while loop

if ($line = A + Model $p/ ) {

#print "\nCURRENT is $p\n";
$foundFlag = 1;

$line =

$model = ";

next;

}

if ( ($line == A * Model $next/) ||
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(Bline == N\ *{10}/) )
$foundFlag = 2;
#print "\n\ncurrent is $p \n$model\n\n";

last;

}

if ($foundFlag == 1) {
$model .= $line;
$model =" s/A\n//g;

}

} # end while ($line = <INFILE1>)

my $modellnHand = $model;
close(INFILEL);

#print "\n\nmodel in hand is $p\n";

$line = ;
$model =

$i = 0;

open(INFILE2, "$file2") or die "Can't open $file2\n";

while ($line = <INFILE2>) {
if ( $line =~ A + Model /) {
if ($model eq $modelinHand) {

print "model $p in $filel found as";
print" model $i in $file2\n";

$pInOj = 1;

last;
}
if ($model ne ) {

# print " kkkkkokkokkok Pi  Frrrrrkrrx
}
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$it+;

$line ="
$model = "
next;

}

if ( $line == /" \w+/ ) {
$model .= $line;
$model =" s/A\n//g;

}

} # end while ($line = <INFILE2>)

close(INFILE2);
if ('$pInQj) {
print "model $p in $filel not found in $file2 \n";
}
$pInOj = O;

} # end foreach

# now test to see if model g in $file2 is in $filel
foreach $q (@q) {
$next = $q + 1;
open(INFILE2, "$file2") or die "Can't open $file2\n";
my $foundFlag = 0;
while ($line = <INFILE2>) {
# leaves last model hanging,
# to be picked up outside while loop
if ( $line =~ A + Model $q/ ) {

#print "\nCURRENT is $qg\n";
$foundFlag = 1;
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$line =

$model ="
next;
}
if ( ($line =~ A * Model $next/) ||
($line =~ N\ «{10}/) ) {

$foundFlag = 2;
#print "\n\ncurrent is $q \n$model\n\n";

last;

}

if ($foundFlag == 1) {
$model .= $line;
$model =" sAn//g;

}

} # end while ($line = <INFILE2>)

my $modelinHand = $model;
close(INFILE2);

# print "\n\nmodel in hand $qg is \n\n $modelinHand\n\n";

$line =
$model = ";

$i = 0;
open(INFILE1, "$filel") or die "Can't open $filel\n";

while ($line = <INFILE1>) {
if ( $line == A * Model /) {
if ($model eq $modelinHand) {
print "model $q in $file2 found as";
print" model $i in $filel\n";

$qinOi = 1;
last;
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}

if ($model ne ) {
# print " kkekkkokkkokok

}

Pi++;
$line = "
$model =
next;

}

if ( $line =~/ \w+/ ) {
$model .= $line;
$model =" s/A\n//g;

} # end while ($line = <INFILE1>)

close(INFILEL);

*kkkkkhkkhkkk

\n$model\n";

print "model $q in $file2 not found in $filel \n";

if (1$qIn0Oi) {
}
$qInOi = 0;

} # end foreach
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