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The photodegradation of carbaryl in the presence of Suwannee River natural 

organic matter (NOM) as well as the presence of AgY zeolites was studied. Two 

NOM samples were purchased in 2000 and 2001 and labeled as NOM-2000 and 

NOM-2001, respectively. The synchronous-scan luminescence spectra (SSLS) 

indicate the presence of different luminophores in the two samples. This suggests that 

although the compositions of the two NOM samples are similar, isomers composing 

the NOM mixtures are different. This difference was observed in the effect the two 

Suwannee River NOM samples had on the photodegradation of carbaryl. In particular, 

the photodecomposition of carbaryl in the presence of NOM-2001 follows first-order 

kinetics; whereas, in the presence of NOM-2000 the photodecomposition of carbaryl 

did not follow first-order kinetics. Moreover, the SSLS of a 3 ppm solution of the 

NOM-2000 sample shows one band in the high-energy region. This band was 



quenched and a broad band appeared in the low-energy region as the concentration of 

the solution increased, indicating that the NOM samples might be forming oligomers 

at higher concentrations. The polymerized products were also found to affect the 

photodecomposition rate of carbaryl. 
I 

Silver-doped Y-type zeolites with different silver loadings were prepared and 

analyzed spectroscopically. Several emission bands were observed for each AgY 

sample. Each emission band becomes dominant over the others by selecting the 

suitable excitation wavelength. Similarly, different SSLS bands were observed and 

tuned by choosing the reasonable Ah indicating the presence of several luminophores. 

Both emission and SSLS indicate the presence of different silver clusters in zeolite Y. 

The prepared AgY samples were found to catalyze the photodegradation of 

carbaryl. The study shows that the AgY catalysts were found to increase the 

photodegradation rate of carbaryl by 3-79 times depending on the amount of silver that 

was loaded on the Y-type zeolites. The effectiveness of the catalysts was monitored in 

the presence of Suwannee River NOM. The results indicated that in the presence of 3 

ppm NOM and the AgY catalysts, the rate of photodegradation was enhanced, 

whereas, increasing the concentration of NOM to 15 and 30 ppm decreased the 

photodecomposition reaction rate. 

The carbaryl photodegradation products in the absence and presence of the 

AgY zeolites were quantified using the technique of GC-MS. In the absence of the 

catalysts, only a-naphthol was produced after a solution of carbaryl was irradiated for 

up to 12 hours. However, in the presence of the AgY catalysts, a-naphthol and 

phthalic acid are major photodegradation products that were produced. 
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Chapter 1 

INTRODUCTION 

This thesis summarizes an investigation into the photodegradation of the 

widely used pesticide carbaryl. In p~rticular, the influence of natural organic matter 

on the reaction will be discussed in depth. Finally, results regarding the use of 

silver(1)-exchanged zeolite Y as a catalyst for the photodecomposition of carbaryl will 

be analyzed and explained. 

The following sections present background information and a literature review 

of topics that are relevant to this study. Section 1.1 outlines the environmental 

importance of this research work. The toxicity, environmental fate, and a brief review 

of the literature involving the pesticide carbaryl is presented in section 1.2. 

Information about the make up of natural organic matter is discussed in section 1.3 

with a focus on its interaction with organic contaminants. Finally, section 1.4 

provides a general introduction about zeolites with a discussion about the particular 

zeolite used in this study, and a look at the silver(1)-exchanged Y zeolite. 

1.1. Importance of this Study 

This research involves an in-depth investigation into the breakdown of the 

toxic pesticide, carbaryl. The extensive use of pesticides to produce food is of great 

concern for our generation and future generations because they enter our lakes, rivers, 

oceans, and contaminate our groundwater supplies. Therefore, studies that look at the 

breakdown of pesticides in the environment have become very important. Our goal 



should be to try to clean up our water sources so that future generations will still have 

water available for their daily needs. 

The research work described in this thesis is particularly important because it 

looks at how the degradation of carbaryl is affected by natural organic matter. By 
I 

doing so, the study simulates what is occurring in the actual environment. 

Additionally, the use of silver(1) doped zeolites as catalysts allows the 

photodecomposition of carbaryl to occur at a much faster rate than it would under 

normal conditions. Being able to increase the breakdown rate of the pesticide without 

producing more toxic products is of extreme importance because this will allow us to 

clean up our water supplies. 

1.2. Carbaryl 

Carbaryl (I-naphthyl, N-methylcarbamate) belongs to a broad class of 

carbamate insecticides that are substituted esters of carbamic acid (NH2COOH) with 

aliphatic or aromatic substituents on the oxygen or nitrogen atoms.' The structure of 

carbaryl and the carbamate functional group can be seen in Figure 1.1. The chemical 

properties of carbaryl are determined by the carbamate functional group on the 

molecule. For example, carbaryl is only slightly soluble in water under normal 

conditions (0.004% at 3 0 " ~ ) . ~  Additionally, a high melting point (142°C) and low 

vapor pressure (1.17 x mm Hg at 25"C), contribute to excellent shelf stability and 

make carbaryl an ideal compound to work with in the lab~ratory .~  

Carbaryl was introduced in 1956 by Union Carbide Corporation as a contact 

insecticide with slight systemic properties.3 It is widely used to control insect pests of 



3 

Figure 1.1. The structure of carbaryl and the general structure of carbarnate pesticides. 

The Carbarnate Functional Group 

Carbaryl 

H 

Generic N-methyl carbarnate 



h i t ,  vegetables, cotton, and many other crops.4 Carbaryl is also effective against 

earthworms and insects in turf.' Poultry farmers use carbaryl to control mites in 

poultry, while the agriculture industry utilizes it to protect apples and other soft fruit 

from being attacked by moths and mites.6 

1.2.1. Toxicity and mode of action 

Carbaryl is considered to be moderately to very toxic depending on the dosage 

amount, the form of contact, and the type of animal that is exposed to it. In general, 

this carbamate pesticide is slightly toxic to mammals and moderately to highly toxic to 

aquatic organisms and honeybees. For example, the LDso value for carbaryl when 

ingested by male rats is 850 mg/kg.7 This value means that a dosage of 850 mg per 

kilogram of body weight will kill 50 percent of the rat population. Therefore, carbaryl 

does not pose a significant threat to the rat population. In contrast, carbaryl is 

considered moderately highly toxic to rainbow trout with an LCSo value of 1.3 ppm.8 

Since 197 1, the maximum permissible amount of carbaryl in food products of seasonal 

consumption in the United States has been set at 10 

Almost all insecticides are toxic because of their ability to disrupt the 

transmission of impulses through the nervous system of animals. Carbaryl and the 

other carbamates are no different, since their mode of action is acetylcholinesterase 

inhibition." Acetylcholinesterase (AChE) is an enzyme that conveys impulses 

through the central nervous system of mammals, insects, and other species for the 

control of basic bodily functions such as breathing, digestion, and blood flow." 

Specifically, carbaryl enters the synapse (or gap between nerve fibers and a receptor 



that typically binds with an enzyme) and binds to the receptor and thereby inhibits 

AChE so that the enzyme cannot cleave the acetylcholine.12 When a high 

concentration of acetylcholine builds up in the nerve cells, prolonged stimulation 

occurs and the affected nerve tissue eventually stops functioning. 
I 

Symptoms of acute exposure to high doses of carbaryl include sweating, 

blurring of vision, incoordination, convulsions, and respiratory fa i~ure .~  In addition, 

inhalation or ingestion of very large amounts can be toxic to the nervous and 

respiratory systems resulting in nausea, stomach cramps, diarrhea, and excessive 

salivation.I3 Carbaryl can penetrate the skin mucous membranes, respiratory tract and 

gastrointestinal tract of mammals. However, it can be rapidly metabolized by 

various animals, and excreted in the urine as glucuronides or s u ~ f a t e s . ' ~ " ~  Overall, 

carbaryl does not appear to be a significant chronic health risk to humans at or below 

normal levels set by the EPA. 

1.2.2. Environmental fate 

Given the toxicity of carbaryl to fish, honeybees, and other animals, it is 

important to discuss the fate of this pesticide once it enters the environment. Although 

carbaryl shows a relatively short residual lifetime (a few weeks in soils), its biological 

half-life is usually larger (e.g., 5-6 months in fish), and some of its toxic metabolites 

are rather persistent in the environment (until 1-4 n~onths) . '~ Table 1.1 provides 

information regarding the environmental fate of carbaryl in different media.'7-26 

In water, carbaryl is known to degrade into a-naphthol, methylamine, and 

carbon The major photolysis product is also a-naphthol, which will 



Table 1.1. The half-lives of carbaryl in water and soil under a variety of conditions. 

-- 

Environmental 
Media 

Water 

Surface Water I Photolysis I seasonal variation 1 2-6.6 days 

Water 

Water 

Water, Distilled & Sterile 

Natural Waters 

Degradation 
Pathway 

Hydrolysis 

~ ~ d ~ o l ~ s i s  

Hydrolysis 

Artificial sunlight 

Hydrolysis 

Seawater, Sterile & 
Filtered 

Specific 
Conditions 

27"C, pH = 5 

Seawater, Sterile 

Topsoil 

Anaerobic, Aquatic Soil I Hydrolysis I none 1 78 days 

Half-life 
of Carbaryl 

> 1 500 days 

25"C, pH = 7 

25"C, pH = 9 

10.1 ppm, pH = 5 

variable 

Hydrolysis 

Soil 

Aerobic Soil 

10-17 days 

3.2 hours 

21 days 

23-25 hours 

Artificial sunlight 

Artificial sunlight 

24"C, pH = 8.2,7.9 

Microbes (bacteria) 

Hydrolysis 

Topsoil 

23,24 hours 

10.1 ppm 

9.8 ppm, 1-mm layer 

5 hours 

41 days 

none 

sandy loam soil 

Field dissipation 

36 hours 

4- 17 days 

0.3-0.45 m layer 0.76-10.9 
days 



further photooxidize to 2-hydroxy- l,4-naphtho-quinone under basic  condition^.^^ 

Carbaryl is not persistent in soil, it is degraded through hydrolysis, photolysis and by 

microorganisms. Minor degradates of 1,4-naphthoquinone, 5-hydroxy- 1 -naphthyl 

methylcarbamate and 1-naphthyl-(hydroxymethy1)carbamate have been found in 

1.2.3. Biological and chemical transformations of carbaryl 

Abiotic transformations of carbaryl are equally likely to occur in the 

environment; therefore, it is important to look at the nature of the chemical reactions 

that the pesticides undergo because they often lead to the same products as the 

biological reactions. For example, the degradation pathways of carbaryl may be the 

same whether sunlight causes its decomposition or a bacterium ingests the molecule. 

Therefore, examining the chemical transformations first will provide us with insight 

into the reactions that occur when carbaryl is biodegraded as a result of microbial 

activity. 

The first abiotic transformation that carbaryl undergoes is hydrolysis. Under 

neutral to basic conditions the hydrolysis of carbaryl is very rapid. For example, at pH 

= 7, the hydrolysis half-life of carbaryl was found to be 12.1 days, and at a pH = 9, the 

hydrolysis half-life was 3.2 hours.I9 On the other hand, under acidic conditions, the 

hydrolysis process takes a lot longer. At pH = 5, the hydrolysis reaction for carbaryl 

was found to take more than 1500 days." The process of hydrolysis cleaves the C-0 

of the carbamate functional group leaving a-naphthol and methyl carbamic acid. The 



hydrolysis reaction is shown in Figure 1.2. Methyl carbamic acid is very unstable and 

rapidly degrades to carbon dioxide and methy lamine.' ' 

Figure 1.2. Hydrolytic pathway for carbaryl. 

In the presence of UV light, carbaryl can also break down via a multi-step 

oxidation process. Although the mechanism of this degradation process is not well 

known, five different products have been identified. These species include a- 

naphthol, 1,4-naphthoquinone, 5-hydroxy-l,4-naphthoquinone, phthalic acid, and 1- 

hydroxy-phthalic acid.29 

Carbaryl can also be degraded naturally via biological pathways. The 

metabolism of carbaryl is known to occur in vertebrates, insects, plants, and soil. 

Most animals readily hydrolyze a portion of the administered carbaryl, although 

hydrolysis does not seem to be a significant pathway in the metabolism of carbaryl in 

monkeys or pigs.2 Overall, carbaryl is mostly metabolized via oxidative mechanisms. 

In animals, several investigations revealed that carbaryl was metabolized by 

hepatic enzymes primarily into 1 -naphthyl N-hydroxy-methylcarbamate, 4-hydroxy- 1 - 

naphthyl N-methylcarbamate, 5-hydroxy-1-naphthyl N-methylcarbamate, and to 

conjugates of these hydroxylated  material^.^' Investigations of the comparative 



metabolism of carbaryl by different insect larval tissues revealed that the most 

efficient metabolic sites were fat body and gut.3' The products of this oxidative 

process as well as those found when plant stems are injected with carbaryl, are similar 

to those found in vertebrates. 

The mineralization, or complete biodegradation, of an organic molecule in 

water and soil is almost always a consequence of microbial activity.32. Carbaryl 

metabolism by microorganisms in soil proceeds via a predominantly hydrolytic 

mechanism or a predominantly oxidative mechanism; rarely are the two processes 

combined as they are in animals. The degradation of carbaryl in soil goes further than 

in animals, plants, and insects because the bacteria are able to break down the 

naphthalene ring in the molecule. 

When carbaryl is added directly to soil, it appears to follow the same metabolic 

pattern observed in isolates of the fungus Fusarium s ~ l a n i . ~  Two studies that were 

conducted using 14~-carbonyl carbaryl and ~ - n a ~ h t h ~ l - ' ~ C  carbaryl produced 

hydroxylated metabo~ites.~~ However, the data suggested that the metabolites are not 

necessarily conjugated as they are in animals and plants because they could not be 

extracted with acetone or methanol. 

A proposed mechanism of the oxidative breakdown of carbaryl in soil is shown 

in Figure 1 . 3 . ~ ~ ~ ~ ~  This mechanism is based on the following products that the authors 

were able to identify: I-naphthol, pyruvate, and ca tech01 .~~ '~~  The process involves the 

breakdown of the naphthalene ring that is found in the carbaryl molecule. The 

metabolism of the naphthalene ring is a known degradation pathway that occurs 

through mineralization by soil m i c r ~ o r ~ a n i s m s . ~ ~  



Figure 1.3. Hypothetical pathway of carbaryl in soil, based on the release of '%-carbon dioxide from l-naphthol-14~, carbonyl-"C 
carbaryl, and 1-naphthyl-14c carbaryl, and a known pathway of naphthalene degradation by soil microbes. Products underlined 
have been identified as soil metabolites of carbaryl. 
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1.2.4. Literature review of relevant investigations 

A majority of the research surrounding carbaryl has focused on finding a 

technique that will efficiently detect the pesticide when it is present in low 

concentrations. Several instrumental methods have been used for the determination 

of carbaryl in different media. These methods include HPLC,~' TLC:~ fl~orimetry:~ 

and phosphorimetry.38 The spectrophotometric methods are usually based on coupling 

of a diazonium ion with the phenols obtained by hydrolysis of the carbamate in 

alkaline medium.39 Additionally, some work has focused on extracting carbaryl from 

pond and well water. This method involves the use of solid-phase extraction to 

remove the organic chemical from water.40 

During the last decade, scientists have focused on trying to decompose 

carbaryl into less harmful products so that it will not be present in soil and 

groundwater supplies. One of the first studies in this area looked at the 

photodegradation of carbaryl, aldicarb, and carbofuran in water.' Carbofbran and 

aldicarb are insecticides that also belong to the carbamate family. De Bertrand and 

Barcelo looked at the effect of the photodegradation rate of these carbamates in 

different types of water, namely sea water, pond water, and distilled water. These 

authors also varied the type of lamp (i.e. mercury or xenon arc lamp) used to shine 

light on their samples.' The degradation of carbaryl was also studied in natural waters 

using fluorimetric methods to study the kinetics of the reaction. Gonzalez et al. found 

that the hydrolysis rate of carbaryl increased in the presence of a micellar solution 

under alkaline  condition^.^' 



In the most recent years, researchers have focused their attention on using 

catalysts to speed up the photodegradation of carbaryl. For instance, the 

photocatalytic degradation of carbaryl in aqueous solutions containing titanium 

dioxide suspensions has been studied.'6r42 Ti02 was used in these studies because 

scientists previously found that in its anatase form, this semiconductor allowed for the 

complete decomposition and mineralization of several aromatic compounds.42 Among 

other interesting results, Peris-Cardells et al. found that the degradation of carbaryl 

decreases as the concentration of the insecticide increases.42 In the presence of Ti02 

suspensions, Pramauro et al. discovered that carbaryl was completely mineralized to 

C02, with nitrate and ammonium ions becoming the nitrogen-containing end 

products.'6 

The use of catalysts to increase the photodecomposition rate of pesticides has 

sparked interest in our research group. In particular, zeolites are .being used as 

catalysts for the photodecomposition of c a r b a . ~ y l . ~ ~ * ~ ~  Zeolites A, X, and mordenite 

have been used in recent studies. Silver(1) doped in Zeolites A, X, and mordenite led 

to photodecomposition rates that were 164, 182, and 168 times faster, respectively 

than when carbaryl was alone in solution.29 These photodecomposition rates varied 

slightly depending on the percentage of silver that was loaded onto the zeolite. The 

photoassisted degradation of carbaryl was also studied using silver and gold dicyanide 

clusters doped in A-type zeolite.43 With the Ag(CN)2- and the Au(CN)2- complexes 

encapsulated in zeolite A, photodecomposition rates were 40 and 60 times faster, 

respectively than rates observed with carbaryl alone in solution. 



1.3. Natural Organic Matter 

Humic substances occur in soil, natural waters, and sediment and arise from 

the decomposition of plant and animal tissues. The size of the molecules, molecular 

weight, elemental composition, structure, as well as the number and position of 

functional groups on the molecu~es vary, depending on the origin and age of the 

material.44 Three fractions, namely humic acids, fulvic acids, and humin are discussed 

in most of the literature on humic substances. Specifically, the natural organic matter 

(NOM) samples that were used in this investigation are made of a combination of 

humic and fulvic acids. Humic and fulvic acids, are naturally occurring, biogenic, 

heterogeneous organic substances that can generally be characterized as being brown 

in color. 45 

1.3.1. Humic acids 

Humic acids comprise the fraction of natural organic matter that are not 

soluble in water under acidic conditions (i.e., below a pH of 2), but become 

increasingly soluble at higher p ~ . 4 5  On average, the amount of carbon found in humic 

acids ranges from 51-62 %, while oxygen levels range from 31% to 36%.46 In 

general, scientists have discovered that humic acids contain more hydrogen, carbon, 

nitrogen, and sulfur and less oxygen than fulvic acids.44 

Although the exact structure of humic acids is still a mystery, scientists have 

proposed some hypothetical structures. A "type" molecule for humic acid is made of 

micelles of a polymeric nature, of which the basic structure is an aromatic ring of the 

di- or trihydroxy-phenyl type bridged by -0-, -NH-, -N=, -S-, and other functional 



groups that contain both free OH groups and the double linkages of quinones.45 In its 

natural state, the type molecule contains attached protein and carbohydrate residues. 

Figure 1.4 shows a structure of humic acid that was proposed by ~ t e v e n s o n . ~ ~ ' ~ '  The 

structure shows the presence of aromatic rings of the di- and trihydroxybenzene type, 

the presence of the quinone groub, as well as the occurrence of carbohydrate and 

protein residues. 

Figure 1.4. Hypothetical structure of humic acid showing free and bound phenolic OH 
groups, quinone structures, oxygens as bridge units, and carboxyls variously placed on 
the aromatic ring. 

1.3.2. Fulvic acids 

While humic acids are soluble under alkaline conditions, fulvic acids are 

soluble under both acidic and basic conditions. Fulvic acids also comprise the smaller 

fractions of humic substances, having a molecular weight that ranges from hundreds of 

daltons to a few thousand d a l t ~ n s . ~ ~  In contrast to humic acids, the low-molecular- 



weight fulvic acids contain higher oxygen levels (45 to 49%) but lower carbon 

contents (43 to 47%).45346 

The structures of fulvic acids are slightly more aliphatic and less aromatic than 

humic acids; and fulvic acids contain more carboxylic acid, phenolic and ketonic 

functional groups.44 Like humic' acids, the exact structure of fulvic acids is still 

unknown simply because so many different types of fragments exist together making 

it difficult to separate and characterize individual molecules. For example, the 

elemental composition and the hypothetical molecular weight of about 2500 daltons 

led to an average molecular fonnula of CIOOH109069NZ for a fulvic acid sample that 

was isolated from aquatic humic material. The important thing to note is that several 

thousand possible isomers exist for this general Figure 1.5 shows one 

hypothetical structure of fulvic acids that consists of phenolic and benzenecarboxylic 

acids held together through hydrogen bonds, forming a polymeric structure having 

considerable stability.45350 

Figure 1.5. Structure of fulvic acid as proposed by Schnitzer and Khan. 



1.3.3. Interaction of pesticides with natural organic matter 

Natural organic matter is a very important part of ecological systems and 

serves many functions, including: (1) retaining micronutrients like Fe, B, and Mo that 

are essential for plant growth, (2) playing an important role in nitrogen and sulfur 

cycling, (3) maintaining the water regime of a soil environment, (4) being necessary 

for the development of a soil structure that is suitable for plant growth, and (5) acting 

as a pH buffer to prevent rapid fluctuations in soil acidity.46 Despite all these 

beneficial roles that natural organic matter has in the environment, it poses some 

problems when we consider its interaction with organic pollutants such as pesticides 

and toxic metal ions like mercury(11).~' 

In recent years, it has become very important for scientists to understand the 

fate of pesticides in the environment so that their application can be regulated. As a 

result, one problem that needs to be investigated in depth is the interaction of 

pesticides with natural organic matter. It is well known that the interaction between 

dissolved organic matter and pesticides not only changes the solubility and mobility of 

pesticides in the environment, but also affects the photodegradation and hydrolysis 

rate of the pesticides.52 The major problems that researchers face in pursuing this type 

of investigation is that scientists have been unable to characterize the molecular 

structure of natural organic matter (NOM), so NOM that is taken from a river may 

interact differently with the pesticide of interest than NOM that is taken from a lake. 

The way in which natural organic matter typically affects the fate of pesticides 

in the environment is through a binding interaction. In particular, binding interactions 

between pesticides and dissolved organic matter have been shown to decrease the rate 



of microbial degradation of the pesticides.53 Additionally, when sunlight is absorbed 

by the colored natural organic matter in surface waters, a rich variety of 

photochemical reactions ensue. The resulting excited states of the NOM and reactive 

transients that are produced participate in energy transfer, electron transfer, and free 

radical reactions that affect the fate' of aquatic contaminants like pesticides.54 Reports 

in this area provide data revealing that dissolved organic matter can either enhance or 

inhibit the rate of pesticide photolysis.53 

1.4. Zeolites 

The term "zeolite" was first used by Cronstedt in 1756 as a name for an 

extraordinary aluminosilicate mineral that seemed to boil when heated." Since that 

discovery, 4 1 naturally occurring zeolites have been found. Zeolites that exist 

naturally in the environment can be found in the cavities of basaltic volcanic rock, in 

metamorphic rocks, and in sedimentary tuff deposits.55 Despite the numerous 

naturally occurring zeolites that have been discovered, recently scientists have been 

focusing their attention on synthesizing zeolites for industrial purposes or to 

understand more about their chemistry. 

Zeolites are microporous crystalline solids with well-defined pore and channel 

structures. Generally they contain silicon (Si), aluminum (Al), and oxygen (0)  in their 

framework and cations, water, andlor other n~olecules within their pores. The 

framework of each zeolite is constructed from tetrahedral building blocks, T04, where 

T is a tetrahedrally coordinated atom (i.e. Si or Al). The tetrahedral building blocks, 

(si0414- and (~10$, by themselves have formal charges of -4 and -5, respectively. 



However, in the zeolite framework the OIT ratio is 2, making the Si04 units neutral 

because each oxygen atom forms a bridge between two tetrahedral atoms.56 The net 

formal charge on the A104 units is -1, causing the zeolite framework to be negatively 

charged. This negative charge is typically balanced by metal cations or protons that 

are not actually a part of the zeolite framework. Figure 1.6 depicts how the tetrahedral 

building blocks are put together to form the zeolite framew01-k.56 

Figure 1.6. The building blocks that are common to every zeolite, and the way they 
are combined to create the zeolite framework. 
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1.4.1. Zeolite Y 

Zeolite Y exhibits the faujasite (FAU) structure. Its aluminosilicate framework 

may be viewed as an assemblage of sodalite cavities that are composed of (Si24- 

xA1x04s)x' where 0 < x < 12, which are arranged in space like the carbon atoms in 

diam~nd.~'  The sodalite units in Zeolite Y have Td symmetry, whereas in others such 

as zeolite A the sodalite units exhibit Oh symmetry. 5 7 

In general, the different types of zeolites vary in their silicon to aluminum 

ratio, their pore diameter, and the number of oxygen atoms at the pore-opening ring of 



the zeolite. For zeolite Y, the SiIAl ratios generally vary from 1.5-6.0, the number of 

oxygens at the pore-opening of the zeolite is 12, and the pore diameter ranges fiom 

about 8-10 A.29 Zeolite Y has a three dimensional pore structure with pores running 

perpendicular to each other in the x, y, and z planes.s5 Figure 1.7 shows the 

framework structure of a sodalite dnit and the structure of zeolite Y. '~  It is interesting 

to see how the geometry of the sodalite unit changes when it becomes incorporated 

into this particular zeolite framework. 

1.4.2. Silver clusters doped in zeolite Y 

Studies within the past twenty years show that silver ions have an incredible 

tendency to bond to one another, forming silver  cluster^.'^-^^ Silver is of interest to 

scientists because it is isostructural with nickel, palladium, and platinum.62 These 

three transition metals have been extensively studied because of their pronounced 

catalytic activity.57 By studying silver clusters in different media, the hope is to learn 

more about silver agglomeration, which plays a very important role in heterogeneous 

catalysk6' For example, scientists have already discovered that catalysts containing 

both Ago and Agi are important in partial oxidation processes such as the formation of 

ethylene oxide from ethylene and oxygen.62 

Silver clusters can be synthesized in the cages and channels of zeolites by 

vacuum dehydration, by reduction using reducing agents, by ion exchange procedures, 

and by using y- or X-ray irradiati~n.'~ Some different types of silver clusters that have 

4+ 57,6466 been impregnated in zeolite Y include: Ag2', Ag2, Ag?, and Ag6 . Silver ions 

and silver atoms have also been found in the channels of zeolite Y. In particular, the 



photostimulated luminescence and optical absorption of silver atoms and silver 

clusters in zeolite Y have been studied e x t e n ~ i v e l ~ . ~ " ~ ~  Ag exchanged zeolite Y has 

been used to photoreduce methyl-viologen to its n-cation  radical^.^' 



Figure 1.7. (a) The structure of a sodalite cavity and (b) the framework structure of 
zeolite Y. 



Chapter 2 

MATERIALS AND METHODS 

2.1. Chemicals and Samples 

Carbaryl (I-naphthyl, N-methylcarbamate) crystals having a 99% purity were 
i 

purchased from Chem Service. HPLC grade methanol and acetone as well as a- 

naphthol were purchased from Aldrich Chemical Company. Silver nitrate, potassium 

chromate, and ammonium hydroxide were purchased from Fischer Scientific. Phthalic 

acid and Nay zeolite were donated by Dr. Rachel N. Austin, Department of 

Chemistry, Bates College. All chemicals were used as received without further 

purification. 

One sample of Suwannee River natural organic matter (NOM) was purchased 

from the International Humic Substances Society (IHSS) in 2000 and donated by Dr. 

Chnstopher S. Cronan, Department of Biological Sciences, The University of Maine. 

From this point on, this natural organic matter sample will be referred to as NOM- 

2000. A second sample of Suwannee River NOM was purchased from the 

International Humic Substances Society in 2001 and also donated by Dr. Rachel N. 

Austin. This natural organic matter sample will be referred to as NOM-2001 

throughout the remainder of this thesis. The Suwannee River NOM samples had the 

same reference number (lNlOl), so according to the IHSS the two samples were 

collected from the Suwannee River in Georgia at the same time and from the same 

area. The elemental composition of the dry Suwannee River NOM is: 48.8 %C; 3.9 

%H; 39.7 %O; 1.02 %N; 0.60 %S; 0.02 %P; and 7.0 % Ash. 



2.2. Preparation of the Silver Doped Zeolite Catalyst 

The silver exchanged Y zeolite was prepared via ion-exchange of 1 gram of 

zeolite Y with a solution of A ~ ( N H ~ ) ~ '  at 70°C for about 48 hours. The aqueous 

solution of A ~ ( N H ~ ) ~ '  was prepared by reacting silver nitrate with aqueous ammonia. 

To begin with, a known mass of siiver nitrate was placed in an erlenmeyer flask, then 

enough water was added to dissolve the solid silver nitrate crystals. Upon adding a 

small amount of ammonia to the flask, a brown precipitate appears, and then more 

ammonia is added very slowly until the precipitate completely dissolves and a clear 

solution of A g ( ~ ~ 3 ) 2 +  results. The amount of water and ammonia that are used in 

each preparation vary depending on the mass of silver nitrate that is originally placed 

in the flask. Four samples of AgY zeolite were prepared using different masses of 

silver nitrate to create samples that contained various silver loadings. Table 2.1 gives 

the masses of zeolite Y and silver nitrate that were used in each preparation. After the 

48-hour period, the AgY zeolite samples were filtered, washed three times with 

distilled water and then dried in an oven at 100°C for 24 hours. The samples were 

then transferred to small vials and stored in the dark. 

The amount of silver loaded on each zeolite was determined using the 

technique of inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 

These experiments were conducted by Dr. Rachel N. Austin and the samples were 

then sent to Gailbraith for a follow-up analysis of the silver loadings. 
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Table 2.1. The masses of silver nitrate and zeolite Y that were used to prepare each 
AgY zeolite catalyst. 

I I I 
Sample 1 Mass of Zeolite Y (g) 1 Mass of AgNO, (g) 

AgY #2 

AgY #3 

2.3. Irradiation of Carbaryl and Related Samples 

30 ppm or 3 ppm solutions of carbaryl and 3 ppm solutions of a-naphthol were 

prepared in a 10:90 v:v% methanokwater mixture. All solutions were prepared 

immediately before beginning the irradiation experiments. All irradiations were 

performed with a model M-57 mid-range UV lamp from VWR Scientific, Inc. The 

lamp emits a narrow band of irradiation at 300 nm. Each sample was irradiated in 

1 I 

1 

AgY #4 

quartz test tubes that have an inside diameter of 12.5 mm, a length of 10 mrn, and 

were 1 mm thick. Only one test tube was irradiated at a time. The distance from the 

light source to the sample tube was 2 cm and the test tubes were placed parallel to the 

light source. 

Each irradiation experiment was performed at a pH of 6.5 and at room 

temperature using a total of 5 ml of solution. The 30 ppm solutions of carbaryl were 

irradiated in the absence and presence of 10 mg of each AgY zeolite catalyst. The 3 

ppm solutions of carbaryl and a-naphthol were irradiated in the absence and presence 

of the Suwannee River natural organic matter samples and in the presence of both the 

catalyst and the NOM samples. At various time intervals, the test tubes were removed 

1 

I I 

1 5 

1 10 



from the UV light, 2 ml of solution was pipetted into a cuvette, and measurements of 

the luminescence intensity of the pesticide were recorded. The solution was then 

pipetted back into the original test tube and the sample was put back under the UV 

lamp. 

2.4. Description of Binding Experiments 

Binding experiments between carbaryl and the NOM samples were conducted 

in order to investigate the interaction between the luminophore and the quencher. In 

all cases, the NOM samples were used as the quencher, and the luminophore was 

carbaryl. In addition, one binding experiment was conducted in which carbaryl was 

the luminophore and a-naphthol was the quencher, to see the interaction between the 

pesticide and its major degradation product. 

In general, the experiments were conducted in the following manner. The 

concentration of the quencher was typically varied from 0 ppm to a maximum of 95 

ppm. The concentration of the luminophore was held constant at 3 ppm for all 

experiments. At the beginning of each experimental run, the absorption spectrum of 

the quencher was scanned and the absorbance was recorded at the maximum 

excitation and emission wavelengths of the luminophore. Then the luminescence of 

the quencher was scanned at the excitation wavelength of the luminophore. After that, 

the luminophore was added and the solution was stirred and allowed to incubate for 5 

minutes so that the luminophore and the quencher could interact in solution. After the 

5-minute period, the luminescence spectrum of the luminophorelquencher solution 

was taken. This process was repeated for different concentrations of the quencher. If 



the quencher was interacting with the luminophore, the luminescence intensity of the 

luminophore gradually decreased as the concentration of the quencher increased. 

To analyze the data in the luminescence binding experiments, a series of steps 

were followed to collect the necessary data and process it. To begin with, for each 

experiment in the laboratory the following data was collected: (1) the concentration of 

the quencher before and after adding the luminophore, (2) the luminescence intensity 

of the quencher at its maximum wavelength of emission, (3) the absorbance of the 

quencher at its maximum wavelength of emission, (4) the absorbance of the quencher 

at the luminophore's wavelength of excitation, and (5) the lun~inescence intensity of 

the luminophore/quencher system at the quencher's maximum wavelength of 

emission. 

The data analysis involved creating linear plots of the absorbance data versus 

the concentration of the quencher, and a quadratic regression of the luminescence data 

gathered for the quencher. The best-fit lines for these plots provide equations that are 

used to produce a Stern-Volmer plot. The slope of a Stern-Volmer plot gives the 

quantitative value of the binding interaction between the luminophore and the 

quencher. The technique used for the data analysis of the luminescence binding 

experiments was performed using the same method that was explained in detail by 

Feng   an^.^^ 

2.5. Ultrafiltration of the Natural Organic Matter Sample 

Ultrafiltration is a method of separating macromolecules according to 

molecular size, by filtering samples under an applied hydrostatic pressure through a 



membrane. Solute molecules within the molecular weight cutoff of the membrane 

pass through the micropores of the membrane along with the solvent.46 The Suwannee 

River natural organic matter sample that was donated by Dr. Chris Cronan was 

separated into different molecular weight fractions using the technique of 

ultrafiltration. This technique ' is based on a pressure differential across a 

semipermeable membrane so the separation occurs quite rapidly. Effective molecular 

filtration processing requires equipment and operating conditions, which minimize the 

concentration of solutes at the surface of the membrane and avoid formation of a gel 

layer which can obstruct the membrane, called concentration polarization. 

A stirred cell pressurized system was employed in which the retentate is in 

continuous contact with the molecular filtration membrane and the solution is 

continuously stirred. The stirred cells use a magnetic rotary stir bar positioned above 

the surface of the membrane to keep the solution in motion and control concentration 

polarization. The solution of NOM was pressurized from 10 to 70 psi by a nitrogen 

gas flow, while in contact with a supported semipermeable membrane. Species below 

the membrane n~olecular weight cut-off emerge as ultrafiltrate, and the retained 

species are progressively concentrated on the pressurized side of the membrane. 

Two molecular filtration membranes were used for the ultrafiltration process. 

The first membrane was labeled YM1 and allowed particles with a molecular weight 

that was less than 1,000 g/mole to pass through it. The second membrane was labeled 

YMlO and filtered particles that had a molecular weight (MW) less than 10,000 

g/mole. Using these two filtration membranes, three different MW fractions were 

produced in the following manner. First, the YMlO membrane was placed in the 



stirred cell and 250 ml of a 30 ppm solution of the NOM sample was added to the cell. 

About 25 ml of the retentate was retained and diluted to a volume of 50 ml. This 

solution contained MW fractions that were greater than 10,000 g/mole. The 225 ml of 

filtrate that passed through the membrane was collected. After the cell was rinsed 

thoroughly, the YMl membrane  as placed in it, and the 225 n ~ l  of filtrate was added 

to the cell. About 200 ml of filtrate from the YMl membrane was collected. This 

filtrate contained molecules with a molecular weight that was less than 1,000 g/mole. 

The third NOM fraction was obtained from the solution that was retained by the YMl 

membrane. This retained portion had molecules with molecular weights between 

1,000 and 10,000 glmole. 

When the ultrafiltration procedures were complete, experiments to determine 

the concentration of dissolved organic carbon (DOC) in each fraction were conducted 

by Dr. Chris Cronan. A model 700 Total Organic Carbon Analyzer (detection limit: 

0.5 ppm) from 0.1. Corporation, College Station, Texas, was used to conduct the 

quantifjl the DOC in each sample. 

2.6. Spectroscopic Measurements 

Solid state luminescence measurements of the silver(1)-exchanged zeolite Y 

catalysts were recorded at various temperatures within a range of 77 - 298 K. For the 

luminescence measurements, the samples were first mixed with a small amount of 

KBr and made into a pellet. The pellet was then attached to a copper surface using a 

mixture of vacuum grease and copper powder. The copper plate was then attached to 

the transfer tube for the low temperature experiments. The shroud that covered the 



sample had two perpendicular quartz windows, which allowed the incident beam of 

light to reach the sample and the emitted light beam to reach the detector. Liquid 

nitrogen was used for the low temperature experiments. The stainless steel transfer 

tube allowed the sample to reach the temperature of liquid nitrogen with the help of a 
I 

vacuum pump and a flow of nitrogen gas. 

After the carbaryl or a-naphthol solutions were irradiated for a certain 

increment of time, about 2 ml of the solution was transferred into a quartz cuvette. If 

the solution contained 10 mg of the AgY zeolite, the test tube was removed from the 

lamp, and the sample was centrifuged for 2 minutes prior to placing 2 ml of the sample 

into the quartz cuvette. Emission spectra were monitored at the excitation 

wavelengths that produced the maximum emission intensity of carbaryl or a-naphthol, 

as a function of irradiation time. 

2.7. Instrumentation 

All photoluminescence spectra were obtained using a model QM-1 

luminescence spectrometer from Photon Technologies International, (PTI). The 

instrument is equipped with excitation and emission monochromators, a 75-watt xenon 

arc lamp, and a photomultiplier tube serving as the detector. The excitation and 

emission slits widths varied depending on the experiment that was being conducted. 

Quartz fluorometry cuvettes having a pathlength of I cm were used for all 

luminescence and absorption measurements. Excitation, emission, and synchronous 

scan-luminescence spectra were obtained using this instrument. Excitation and 



synchronous-scan spectra were corrected for variations in lamp intensity using the 

quantum counter rhodamine B. 

UV-vis absorption measurements were obtained using a DU-640 

spectrophotometer from Beckman Instruments, Inc. The luminescence spectra of the 
I 

AgY zeolites were recorded as a function of temperature, using liquid nitrogen as the 

coolant in a model LT-3- 1 10 Heli-Tran cryogenic liquid transfer system equipped with 

a temperature controller. Experiments to determine the amount of silver that was 

doped in zeolite Y were performed by Dr. Rachel N. Austin using the coupled 

technique of ICP-AES. The ICP that was used was a Perkin-Elmer Optima with a rf 

power of 1300 W. The samples were then sent to Gailbraith for a follow-up analysis. 

GC-MS measurements were made on a Hewlett Packard 5890 Gas 

Chromatograph with a Hewlett Packard MSD 5970 serving as the detector. A 30 x 

0.25 mm DB-5MS GC column from J & W Scientific was used for the GC 

measurements. The components of various samples were separated using the 

following parameters: the injector temperature was set at 200°C, and the detector 

temperature was 300°C. The initial oven temperature was set at 100°C and held 

constant for 5 minutes. After the initial 5 minutes, the temperature was ramped to 

180°C at a rate of 20°C/nlin and held constant for 5 minutes. Finally, the temperature 

was ramped to 250°C at a rate of 20°C/min and held constant for 5 minutes. Helium 

was used as the carrier gas with flow rate of 1 mllmin. All samples were filtered prior 

to being injected into the GC-MS to remove any particles that would potentially 

obstruct the GC column. 



Chapter 3 

THE PHOTODEGRADATION OF CARBARYL AND THE INFLUENCE OF 

NATURAL ORGANIC MATTER ON THE REACTION 

3.1. Spectroscopic Analysis of Carbaryl 

3.1.1. Emission and excitation spectra 

In luminescence spectroscopy a molecular sample is illuminated by light from 

an external source, and light is emitted at a wavelength that is generally longer than 

the wavelength of excitation. Substances which display significant luminescence 

usually possess delocalized electrons present in conjugated double bonds, such as 

aromatic rings.46 Carbaryl molecules have aromatic rings and display strong 

luminescence properties. As a result, the photodegradation of this molecule is easy to 

study using the technique of luminescence spectroscopy. 

To determine where to excite the carbaryl molecule to produce the maximum 

luminescence intensity, a 3 ppm solution of carbaryl was placed in a quartz cuvette 

and the absorption spectrum of the solution was taken. The absorption spectrum of the 

solution of carbaryl showed a maximum absorbance at 276 nm with an extinction 

coeficient of 1.530 k 0.006 x lo3 L mol-' cm-' (see Figure 3.1 top). Since the 

absorption spectrum usually mirrors the excitation spectrum in luminescence 

spectroscopy (for most cases), an excitation wavelength of 276 nm was used to excite 

the carbaryl solution and observe the emission spectrum. Upon excitation at 276 nm, 

carbaryl displays a broad luminescence band that spans from 300-400 nm and has 

maxima at 323 and 333 nm (Figure 3.1), which are longer in wavelength than 276 nm. 



Figure 3.1. Absorption, excitation, and emission spectra of a 3 ppm solution of 
carbaryl. 
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3.1.2. Synchronous-scan luminescence spectra 

Synchronous-scan luminescence spectroscopy (SSLS) is a very valuable 

technique typically used to investigate the presence of several different luminophores 

in a mixture. The technique involves scanning the excitation and emission wavelength 

drives of a luminescence spectrometer simultaneously, while maintaining a constant 

wavelength difference between them.69 As a result, synchronous-scan luminescence 

spectra have more well-defined peaks compared to emission and excitation spectra. 

Figure 3.2 shows the synchronous-scan luminescence spectra (SSLS) of a 3 

ppm solution of carbaryl as a function of Ah. The most intense SSLS peak is found by 

subtracting the wavelength of maximum intensity of the excitation band from the 

wavelength of maximum intensity of the emission band. This calculation allows for 

the determination of the delta lambda that will be most suited to probe carbaryl. 

Doing this calculation we have: 333-276 nm, and 323-276 nm; giving us two delta 

lambda's since there are two maxima in the emission spectrum of carbaryl. Therefore, 

the two wavelength differences that should give the most intense SSLS band for 

carbaryl are Ah = 57 nm and Ah = 47 nm. 

Figure 3.2 displays the spectra of the two primary wavelength differences that 

need to be probed for carbaryl, along with a few others. In this figure, the peak 

maxima are slightly shifted in each SSLS, however they become more intense at Ah = 

57 and 47 nm. As shown in the figure, the SSLS bands appear between 325-350 nm, 

with peak maxima at 323, 333, 340, and 350 nm. As a result, the technique of 

synchronous-scan luminescence spectroscopy is another method that can be used to 

characterize a solution of carbaryl. 



Figure 3.2. SSLS of a 3 ppm solution of carbaryl as a function of AA. 
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3.2. Spectroscopic Analysis of the Natural Organic Matter Samples 

3.2.1. Emission and excitation spectra 

The emission and excitation profiles of both Suwannee River natural organic 

matter samples were taken to investigate the similarities andlor differences between 
I 

the two samples. Aqueous solutions having a concentration of 30 ppm were made for 

this set of experiments. For the Suwannee River NOM-2000 and NOM-2001 samples, 

the absorption spectrum revealed maxima at 333 and 345 nm, respectively. Upon 

exciting each solution at the maximum absorption intensity, broad luminescence bands 

between 360-600 nm appear with peak maxima at 437 and 455 nm, respectively. 

Figure 3.3 shows the excitation and emission spectra of the NOM-2000 and NOM- 

200 1 samples. 

From the luminescence data that is shown in Figure 3.3, it appeared that the 

two Suwannee River NOM samples that were purchased from the same company and 

collected from the same river in Georgia, were showing similar characteristics. 

However, separate experiments were still conducted after this similarity was found, 

because the samples were purchased a year apart from each other and not enough 

information was obtained at this point to allow them to be considered the same 

sample. 

3.2.2. Synchronous-scan luminescence spectra 

Since the molecular structure of humic and fulvic acids is complex, it becomes 

a challenge to fully understand the chemical structure of natural organic matter. 

Fortunately, some methods can be utilized to understand some of the chemical 





structures and properties of NOM. Synchronous-scan luminescence spectroscopy 

(SSLS) is one technique available for this purpose, and has revealed some special 

advantages when dealing with humic  substance^.'^-^^ 

The synchronous-scan luminescence spectra of the Suwannee River NOM- 
I 

2000 and NOM-2001 samples were taken as a function of Ah. Figures 3.4 and 3.5 

show the SSLS of 3 ppm solutions of NOM-2000 and NOM-2001, respectively. The 

SSLS of NOM-2000 shows several peaks with maxima at 313, 338, 356, 403, 425, 

and 470 nm; whereas, the NOM-2001 sample displays bands with maxima at 325, 

403,418,430, and 448 nm as the wavelength difference was varied: Ah = 30, 50, 70, 

and 100 nm. 

Unlike the ordinary luminescence spectra (excitation and emission spectra), 

SSLS show different bands that were distinguished at various Ah's which indicate the 

presence of different luminophores in each NOM sample. The SSLS also shows that 

the two NOM samples are different. For example, three peaks are observed in the 

high-energy region between 300-360 nm for NOM-2000; whereas, the NOM-2001 

sample shows only one band in this region at 325 nm. Moreover, in comparison to the 

SSLS of the NOM-2000 sample, NOM-2001 shows more luminescence bands in the 

low energy region. 

It is worth mentioning that not only the number and the energy of the 

synchronous-scan luminescence bands are different, the relative band intensities were 

also found to be different. For example, at Ah = 30 nm, the SSLS of the NOM-2000 

sample shows a unique intense band at 313 nm. This band became weaker for the 



SSLS of the NOM-2001 sample with the appearance of another band at lower energy 

with a maximum at 403 nm (see Figures 3.4 and 3.5). 

Since the structure of the NOM is very complicated, it is not easy to analyze 

the chemical structure of these compounds. However, throughout the past two 
I 

decades, scientists have tried to assign bands that appear in the luminescence spectrum 

of humic substances to model molecules. Based on these studies, an effort will be 

made to assign the peaks seen in Figures 3.4 and 3.5. The SSLS bands that appear 

with maxima around 3 13-338 nm are attributed to functional groups of the Suwannee 

River NOM that are similar to the structure of salicylic acid.73 Cronan et al. also 

postulated that a peak occurring in the 350-nm range in the SSLS may reflect 

quantitative differences in the amounts of salicylate-type groups or variations in the 

carboxyl substitutions of single aromatic rings in the N O M . ~ ~  

Scientists have also hypothesized that at longer wavelengths around 395 and 

470 nm, the SSLS peaks were associated with luminophore structures characterized by 

an increasing number of condensed aromatic rings7) The SSLS band that occurred 

with a maximum at 403 nm could be attributed to a functional group that is similar in 

structure to 3-hydroxycinnamic acid.74 The peak at 425 nm was also observed and 

assigned to a functional group containing 3-hydroxybenzoic acid, while the 470 nm 

band may be attributed to hydroxy and 

Finally, the observed peak at 448 nm 

caffeic acid functional r n ~ i e t i e s . ~ ~  

methoxy coumarins or chromone  derivative^.^^ 

is due to the presence of methyl salicylate or 







It is important to note that the peak assignments that have been made for both 

NOM samples only provide an idea of the makeup of the natural organic matter. 

Although several structures for humic and fulvic acids have been proposed, scientists 

are still struggling 

substances. 

In addition 

to uncover the mystery behind the actual structure of humic 
I 

to the difference found between the synchronous-scan 

luminescence spectra of the two Suwannee River NOM samples, it was also found that 

the SSLS depended on concentration. Figure 3.6 shows an example of the SSLS of 

the Suwannee River NOM-2000 sample at Ah = 30 nm and as a function of 

concentration. This experiment showed that as the concentration of the NOM-2000 

increased, the band in the SSLS shifted to lower energy. This shift indicates the 

presence of longer oligomers forming or molecules in the NOM aggregating together 

as a result of the increase in concentration. 

3.3. Ultrafiltration of the Natural Organic Matter Sample 

The Suwannee River NOM-2000 sample was separated into three molecular 

weight fractions as described in the materials and methods chapter. The first fraction 

had molecules with a molecular weight (MW) that was less than 1,000 g/mole, the 

middle fraction had molecules with a MW between 1,000 and 10,000 g/mole, and the 

largest fraction contained molecules that had a molecular weight greater than 10,000 

g/mole. Once the three different fractions were obtained, the amount of dissolved 

organic carbon (DOC) in each sample was analyzed. Table 3.1 shows the 



concentration of DOC that was found to be in each Suwannee River NOM fraction 

after ultrafiltration was complete. 

Table 3.1. The amount of DOC found in each Suwannee River MW fraction. 

I Size of MW Fraction I Concentration of DOC, mg C L-' I 
I less than 1,000 g mole-' 1 2.05 I 

between 1,000 and 10,000 g mole-' I 15.7 1 

3.4. Binding Interaction of Carbaryl and Natural Organic Matter 

In previous studies, natural organic matter has been found to play an important 

part in pesticide decomposition. Specifically, the presence of NOM has either 

enhanced or inhibited the rate of photolysis.53 Before studying the effect the presence 

of the Suwannee River natural organic matter samples had on the rate of 

photodecomposition of carbaryl, it is important to look at the binding interaction 

between the pesticide and the NOM samples. 

One hypothesis is that when carbaryl and NOM are in solution together, a 

certain fraction of the pesticide is bound to the natural organic matter. Scientists 

believe that this binding may occur through a hydrophobic partitioning mechanism, 

with polar interactions playing a much smaller If the bound carbaryl is 

represented by Ca-NOM, the following equilibrium interaction can be written: 

Ca + NOM t, Ca-NOM (1) 

I greater than 10,000 g mole-' 50.6 I 





The binding constant, Kt,, of this reaction can then be found by determining the 

concentration of each species in Equation 1 and can be calculated using Equation 2:s3 

Since we are unsure of the concentration of carbaryl bound to NOM in solution, it is 

more convenient to perform luminescence quenching experiments (or binding 

experiments) to determine the binding constant. Once Kb has been determined, the 

percent of carbaryl bound to NOM will be found by performing a simple calculation. 

Carbaryl is an excellent compound to use for the binding experiments because 

of its very strong luminescence peak upon excitation at 276 nm. Typically, as the 

amount of free carbaryl in solution decreases due to a binding interaction with the 

natural organic matter, the intensity of its luminescence band also decreases. The 

magnitude of the reduction in luminescence intensity of the emission band is 

determined by the NOM concentration and the binding constant as shown below in the 

Stern-Volmer equation: 

In Equation 3, L is the luminescence intensity of the carbaryl/NOM solution, Lo is the 

luminescence intensity of carbaryl only, Kb is the binding constant, and [NOMI is the 

concentration of NOM.' ' lS3 

Data for the binding experiments were collected as described in Chapter 2 of 

this thesis and calculations were performed in the same manner as they were done by a 

former member of Dr. Patterson's research Figure 3.7 shows a Stern-Volmer 



plot of carbaryl quenched by Suwannee River NOM-2000. To perform this set of 

binding experiments, the natural organic matter concentration was varied from 0-76 

ppm, while the concentration of carbaryl was held constant at 3 ppm. As can be seen 

in Figure 3.7, a plot of L& vs. con~entration of NOM is linear and the slope of the 

best-fit line yields a binding constant of 7.3 f 0.3 x lo4 L kg-'. 

Separating the Suwannee River NOM sample into different fractions by 

ultrafiltration allowed for the determination of the interaction of each molecular 

weight fraction with carbaryl. As a result, binding experiments were performed on 

each molecular weight fraction and carbaryl. However, the smallest MW fraction only 

had a concentration of 2.05 mg C L-'. This concentration was not high enough to 

perform the binding experiments and obtain adequate results. 

Since 134 ml of the smallest MW sample existed, it became clear that some of 

the solvent (water) needed to be removed from the sample to increase the 

concentration of DOC in the solution. The solution was put into a round bottom flask, 

connected to a vacuum line under a pressure of one tom, and a liquid nitrogen trap 

collected the excess water. 

When the procedure was complete, only 34 ml of the solution remained, and 

the concentration of DOC was immediately measured. The concentration of DOC that 

was now present in the smallest MW fraction of NOM was 20.2 mg C L", so binding 

experiments on all three NOM fractions were completed successfully. Table 3.2 

shows the results of the binding experiments that were performed on the three MW 

fractions; including the concentration of carbaryl used in the experiments, the range of 





concentrations used for the natural organic matter samples, and the binding constant 

that was determined from each set of experiments. 

Table 3.2. Results of the binding experiments performed with the three Suwannee 
I 

River MW fractions. 

The interaction between the Suwannee River NOM-2001 sample and carbaryl 

was also studied. The results indicate that the binding constants for the two Suwannee 

River NOM samples were significantly different. For the Suwannee River NOM- 

2001, the binding constant was found to be 3.04 f 0.02 x 10' L kg-', which is lower 

than the observed binding constant for NOM-2000 (7.3 + 0.3 x 10' L kg''). The 

observed difference in the binding strength between carbaryl and the two NOM 

samples is mainly due to the presence of different bands in the high-energy region. In 

specific, three bands were observed in the region between 300-350 nrn for NOM-2000 

while only one band at 325 nm was observed in the SSLS of NOM-2001. The 

presence of different luminophores in the NOM-2000 provides more active sites that 

bind to the pesticide carbaryl. 

MW fraction 

< 1,000 g mole" 

1,000 - 10,000 g mole-' 

Suwannee River NOM NOM Concentration Range [Carbaryl] 

(mg C L") 

0 - 16.2 

0 - 12.6 

Binding Constant 

( P P ~  

3 

3 

(L kg-') 

1.29 f 0.04 x lo4 

2.83 f 0.06 x lo4 



3.5. Photodegradation of Carbaryl in the Presence of NOM 

3.5.1. Luminescence study and kinetics of the reaction 

The photodegradation of carbaryl alone in solution, as well as in the presence 

of the' Suwannee River NOM samples was studied extensively. To begin with, a 3 
I 

ppm solution of carbaryl was irradiated with 300 nm light and at various time 

intervals; luminescence data were recorded. Figure 3.8 shows an example of the 

decrease in luminescence intensity of carbaryl as the solution is irradiated with 300 nm 

light. The change in the luminescence intensity of carbaryl in the presence of 3, 15, 

and 30 ppm Suwannee River NOM was also used to study the photodegradation 

reaction. 

The decrease in luminescence intensity that was seen during each 

photodecomposition reaction needed to be used for an analysis of the kinetics of each 

reaction. Typically, photodecomposition reactions involving pesticides follow 

first-order kinetics. So a plot of Ln[pesticide] vs. time will yield a straight line with 

the slope of the line being the rate constant for the reaction. 

For the kinetic analysis, the emission intensity of known concentrations of 

carbaryl were recorded and a calibration curve for the peak area from 300-400 nm of 

each carbaryl luminescence band as a function of carbaryl concentration was used to 

identify the carbaryl concentration as a function of the UV irradiation time. These 

calculations made it possible for a plot of Ln[carbaryl] vs. time to be constructed. 



Figure 3.8. The emission spectrum of a 3 ppm solution of carbaryl, as a fknction of irradiation time: (a) 0, (b) 20, (c) 60, 
(d) 100, and (e) 140 minutes. 
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Photodecomposition experiments involving 3 ppm carbaryl in the absence and 

presence of the Suwannee River NOM-2000 sample were performed. Figure 3.9 

shows the kinetic data that resulted from these experiments. In the presence of 3, 15, 

and 30 ppm concentrations of Suwannee River NOM-2000, the photodecomposition 
; 

plots are not linear and therefore do not show first-order kinetics. Furthennore, a 

closer look at the curves reveals that each set of data could actually be fit to two linear 

best-fit lines as illustrated in Figure 3.10. A summary for the rate constants for each 

data set is given in Table 3.3. This analysis led to the conclusion that NOM-2000 

strongly binds to the products that form from the decomposition of carbaryl. 

Table 3.3. First-order rate constants for the photodecomposition of a 3 ppm solution 
of carbaryl in the presence of various conc&trations o f  the Suwannee River NOM- 
2000 sample, after each curve was fit to two straight lines. 

Concentration 
of NOM 

( P P ~  

3 

15 

3 0 

Rate Constants (s") 
Slope 1 

(Time: 0-70 min) 

6.04 + 0.08 x lo-' 

5.4 f. 0.1 x lo-' 

3.97 f 0.09 x 10" 

Slope 2 

(Time: 2 80 min) 

1.764 + 0.002 x 1 o ' ~  
4.89 + 0.01 x 104 

5.25 + 0.07 x lo4 - 



Figure 3.9. Photodecomposition of 3 ppm carbaryl in the presence and absence of the Suwannee River NOM-2000 sample: 
(a) carbaryl only, (b) carbaryl + 3 ppm NOM, (c) carbaryl + 15 ppm NOM, (d) carbaryl + 30 ppm NOM. 
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A final look at Figures 3.9 and 3.10 revealed that the kinetic data shows an 

increase in the photodecomposition rate of carbaryl in the presence of Suwannee River 

NOM. The 3 pprn NOM concentration had the largest rate enhancement, and as the 

concentration increases, the rate enhancement appears to decrease. Based on these 

results, in the presence of NOM-2000 concentrations below 3 ppm, the rate 

enhancement would reach a maximum. Photodecomposition experiments in the 

presence of the three Suwannee River molecular weight fractions also revealed data 

that fit to a polynomial regression rather than a linear regression analysis. 

At this point, a comparison needed to be made between the way the two natural 

organic matter samples affected the photodecomposition of the widely used pesticide, 

carbaryl. Figure 3.1 1 shows the result of experiments conducted in the presence of 

Suwannee River NOM-2001. The figure indicates that the photodecomposition of a 3 

pprn solution of carbaryl follows first-order kinetics because a plot of Ln[carbaryl] 

versus time is linear. 

To begin with, one major difference between the NOM samples is that the 

Suwannee River NOM-2001 did not alter the kinetics of the photodegradation reaction 

while NOM-2000 did. Instead, even when 30 pprn of the Suwannee River NOM was 

present in the solution, carbaryl still degraded via first-order kinetics. In addition, 3 

and 15 pprn concentrations of the NOM-2001 sanlple decreased the rate of 

photodegradation of carbaryl, while a 30 pprn concentration of the NOM enhanced the 

photodegradation rate of carbaryl. Table 3.4 shows the rate constants for the 

photodegradation of carbaryl in the presence and absence of NOM-2001. 





3.5.2. Analysis of the influence of natural organic matter on the reaction 

Table 3.4. Rate constants for the photodecomposition of a 3 ppm solution of carbaryl 
in the presence and absence of the Suwannee River NOM-200 1 sample. 

The influence of Suwannee River natural organic matter on the 

Rate 
Constant 

(s- I )  

photodegradation of carbaryl appears to be rather significant, since results show that 

the two samples have different effects on the reaction rate, and the presence of one 

Concentration of NOM 

sample seems to change the mechanism of the reaction. As a result of these findings 

0 PPm 

3.61 + 0.04 x 

and the binding constants for each sample that were found previously, it becomes 

important to look at the approximate amount of NOM that is bound to carbaryl. 

3 PPm 

2.1 1 f 0.02 x 

To show the effect of the binding interaction on the photolysis rate constant, 

one can examine the rate constant data as it relates to the percent of the bound carbaryl 

15 P P ~  

2.42 + 0.05 x 10" 

in solution. The percentage of bound pesticide is calculated using the binding constant 

30 PPm 

3.84 + 0.09 x 10'~ 

A 

and the NOM c~ncentration:~~ 

For example, at a concentration of 3 ppm, the Suwannee River NOM-2000 bound 18.0 

f 0.8% of the total carbaryl concentration, while the NOM-2001 sample bound only 

8.36 f 0.06% of the total carbaryl in solution. Table 3.5 displays the amount of 



pesticide that is bound to each Suwannee River NOM sample at the three different 

concentrations of NOM that were used in the kinetic experiments. 

Despite the analysis of the binding interaction between carbaryl and the NOM 

samples, it is still not clear how the NOM-carbaryl binding controls the photolysis rate 

effects. This problem occurs mostly because the NOM samples taken from the same 

river in Georgia have different effects on the photodegradation of carbaryl. As was 

seen previously, in one case a small amount of the Suwannee River NOM sample 

enhanced the photodecomposition rate of carbaryl, while a small amount of the other 

NOM sample seemed to slow down the photodegradation rate. These differences 

increase the complexity of discovering a theoretical mechanism that can explain the 

photodegradation reaction in the presence of different Suwannee River NOM samples. 

Table 3.5. Percentages of a 3 ppm ,solution of carbaryl that was bound to different 
concentrations of the two Suwannee River NOM samples. 

3.5.3. Influence of a-naphthol on the photodecomposition reaction 

In previous studies, a-naphthol was found to be the first intermediate and 

major product in both hydrolysis and photodegradation reactions involving 

Year NOM 

Purchased 

2000 

200 1 

Concentration of NOM 

3 PPm 

18.0 f 0.8% 

8.36 f 0.06% 

15 P P ~  

52 _+ 2% 

3 1.3 _+ 0.2% 

30 PPm 

69 _+ 3% 

47.7 + 0.3% 



carbaryl. 18,27,29,33-34 By studying the photodegradation of a-naphthol in the presence 

and absence of the Suwannee River NOM samples and the influence of the presence 

of this intermediate on the photodegradation of carbaryl, the hope is to shed some light 

on the influence of NOM on the breahdown of carbaryl. 

To begin with, it was important to discover whether a-naphthol actually shows 

luminescence upon excitation at a specific wavelength, before performing more 

complex experiments involving this intermediate. A 3 ppm solution of a-naphthol 

was made and the absorption spectrum of the compound was taken. The absorption 

spectrum revealed a maximum at 323 nm with an extinction coefficient of 3.672 + 
0.008 x 10) L mol-' cm-I. Upon excitation at 323 nm, a broad luminescence band was 

seen with a maximum intensity at 462 nm. The excitation spectrum of a-naphthol was 

then probed by fixing the emission monochromator at 462 nm and scanning the 

excitation monochromator from 200-400 nm. Figure 3.12 shows the absorption, 

excitation, and emission spectra of a-naphthol. 

It became clear that by following the decrease in the peak area of the 

luminescence band as a hnction of the irradiation time, the photodegradation of a- 

naphthol in solution could be studied. It is important to note that the emission 

spectrum of a-naphthol appears at lower energy than that for carbaryl; therefore, the 

luminescence of a-naphthol does not interfere with that of carbaryl. As a result, 

experiments that looked at the photodecomposition of a 3 ppnl solution of a-naphthol 

in the absence and presence of the Suwannee River NOM samples were completed. 



Figure 3.12. Absorption, excitation, and emission spectra of a 3 ppm solution 
of a-naphthol. 
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For comparison, the photodegradation of a-naphthol was performed in the 

presence of the Suwannee River NOM-2000 and NOM-2001 sample. Table 3.6 

summarizes the rate constants that were found for the photodegradation of a-naphthol 

in the absence and presence of the Sywannee River NOM samples. Figure 3.13 shows 

the photodegradation of a-naphthol in the presence of NOM-2001. It is important to 

point out that the photodecomposition of a-naphthol in the presence of the NOM-2001 

sample follows first order kinetics, but the influence of the natural organic matter on 

the reaction is different from the influence it had on the photodegradation of carbaryl. 

As is shown in Table 3.6, a small amount of NOM-2001 present in the reaction 

appears to slightly enhance the photodecomposition rate of a-naphthol, whereas a 

large amount inhibits the photodegradation of the intermediate. This trend is opposite 

from the one seen for carbaryl in the presence of NOM-200 1. 

Table 3.6. Rate constants in s-' for the photodecomposition of 3 ppm a-naphthol in the - - 
presence of various concentrations of ~uwannee ~ i v e r  NOM. 

Year NOM Concentration of Suwannee River NOM I 
Purchased 

2000 

0 PPm 

1.74 + 0.02 x 

30 PPm 

5.41 f 0.02 x lo4 

3 PPm 

1.87 + 0.04 x 

15 P P ~  

4.65 f 0.03 x lo4 





Comparing the photodecomposition rate constants of carbaryl in the presence 

of NOM-2000 (Figure 3.10 and Table 3.3) with the rate constants of the a-naphthol- 

NOM-2000 reaction indicate that the observed rate constants for the second curves in 

the carbaryl-NOM system are similar to the rate constants that were obtained for a- 

naphthol in the presence of NOM-2000. For example, the second rate constant of 

carbaryl in the presence of 3 ppm NOM-2000 was found to be 1.764 f 0.002 x S-' 

which is very similar to the photodecomposition rate of alpha-naphthol in the presence 

of NOM-2000 (1.87 f 0.04 x S-I). Similar results were found for the other NOM 

concentrations. Therefore, we concluded that the photodecomposition of carbaryl in 

the presence of NOM-2000 shows two rates that are due to carbaryl in the presence of 

NOM-2000 (having low rate constants) and a-naphthol in the presence of NOM-2000 

photodecompositions, respectively. 

The next step was to focus on the influence of a-naphthol on the 

photodegradation of carbaryl. Since the intermediate and major degradation product 

of the photodecomposition of carbaryl is a-naphthol, carbaryl must be forming a- 

naphthol as it degrades and perhaps it is the presence of this intermediate that alters 

the kinetics of the reaction involving the Suwannee River NOM-2000 sample. To 

investigate the affect a-naphthol has on the photodegradation of carbaryl, an 

experiment was performed in which a 3 ppm solution of carbaryl was irradiated in the 

presence of a 3 ppm solution of a-naphthol, and the decrease in the peak areas of both 

luminescence bands were monitored. 



Figure 3.14 shows the kinetics of the photodegradation of carbaryl in the 

presence of a-naphthol, while Figure 3.15 displays the effect carbaryl had on the 

photodegradation of a-naphthol. It is important to note that in one figure the 

Ln[carbaryl] is followed, and in the other figure the Ln[a-naphthol] is shown on the y 

axis. The two figures were constructed as a result of the same experiment. 

A polynomial regression analysis of the data in Figure 3.14 yields a curve with 

a correlation coefficient ( R ~ )  of 0.983. This is a relatively good fit, and the curve 

resembles those found for the photodegradation of carbaryl in the presence of the 

NOM-2000. However, a closer look at the data revealed the idea that two linear 

regression analyses could be done on separate parts of the data, to see where the 

increase in the photodegradation of carbaryl occurs in this reaction. The results of this 

analysis are shown in Figure 3.14. 

The analysis in Figure 3.14 reveals that the data fit rather well to two linear 

best-fit lines, having correlation coefficients of 0.979 and 0.971, respectively for the 

reaction from time 0-40 minutes, and for the reaction occurring from time 50-90 

minutes. The rate constants for these two sets of data were found to be 1.17 f 0.02 x 

-4 -1 10 s and 1.97 f 0.06 x 1 o - ~  s-I, respectively. 

Figure 3.15 shows that the presence of carbaryl also changed the 

photodegradation kinetics of a-naphthol. From time 0-20 minutes, a-naphthol 

appears to be degrading very rapidly and then around 40 minutes, the concentration of 

a-naphthol begins to increase very slowly probably due to the photodegradation of 

carbaryl. However, since it is at the end of the reaction that the photodegradation rate 



of carbaryl appears to become very rapid, the a-naphthol that is produced as a result of 

the photodegradation of carbaryl plays a role in influencing the kinetics of the 

photodegradation reaction. Relating this back to the photodegradation reaction of 

carbaryl in the presence of NOM-2000 which did not follow first-order kinetics, once 
I 

a small amount of a-naphthol is produced as a result of the breakdown of carbaryl, the 

interaction between a-naphthol and carbaryl that is not bound to NOM is strong 

enough to increase the photodecomposition rate of carbaryl towards the end of the 

reaction. 

The final experiment that was conducted to look at the influence of a-naphthol 

on the photodecomposition of carbaryl was a binding experiment. In this experiment, 

a-naphthol was used as the quencher and carbaryl was used as the luminophore. The 

concentration of a-naphthol was varied from 0-56 ppm and the concentration of 

carbaryl was held constant at 3 ppm for the purpose of this experiment. The extent of 

the interaction between carbaryl and a-naphthol was analyzed by determining the 

binding constant of the reaction. The results of this experiment yielded a binding 

constant (&) of 2.86 f. 0.08 x lo4 L kge' indicating that the binding between carbaryl 

and a-naphthol is lower than the binding between the carbaryl-NOM systems. For 

example, for the photodegradation of carbaryl in the presence of a 3 ppm solution of 

a-naphthol, 7.9 f. 0.2 % of the a-naphthol solution would be bound to carbaryl. 







3.6. Conclusions 

This chapter focused on the photodegradation of the widely used pesticide 

carbaryl in the presence of Suwannee River natural organic matter. The results 

indicate that the two samples of NOM that were collected from the same river in 
I 

Georgia but purchased one year apart from each other have different affects on the 

kinetics of the photodegradation of carbaryl. The Suwannee River NOM-2000 

actually changed the kinetics of the reaction, and a small concentration of this NOM 

sample increased the degradation of carbaryl. On the other hand, the Suwannee River 

sample that was purchased a year later did not alter the kinetics of the reaction, but a 

small amount of the NOM sample present in solution decreased the photodegradation 

rate of carbaryl. The results also showed that the binding interaction between carbaryl 

and the two Suwannee River samples were very different. The NOM-2000 sample 

bound almost twice as much carbaryl as the NOM-2001 sample did. 

The results obtained for the photodegradation of carbaryl in the presence of 

NOM led to the idea that perhaps the major degradation product, a-naphthol had an 

influence on the overall reaction. Therefore, the interaction between carbaryl and a- 

naphthol was studied. To begin with, the photodegradation of a-naphthol in the 

absence and presence of the Suwannee River NOM samples was studied. The results 

indicated that a-naphthol degrades via first-order kinetics and the intermediate 

degrades more rapidly than carbaryl itself. In addition, a 3 ppm solution of carbaryl 

was irradiated in the presence of 3 ppm a-naphthol. It was found that the presence of 

a-naphthol actually alters the photodegradation kinetics of carbaryl. 



Chapter 4 

LUMINESCENCE PROPERTIES OF SILVER(1)-EXCHANGED 

ZEOLITE Y AND THE PHOTOASSISTED DEGRADATION OF 

CARBARYL 
I 

4.1. Preparation of the Silver Clusters Doped in the Y-type Zeolites 

The silver clusters anchored in the Y-type zeolite catalysts were prepared by 

ion-exchange with A ~ ( N H ~ ) z +  as described in Chapter 2. The ICP-AES analysis of the 

silver loading in each zeolite was performed, and the results are shown in Table 4.1. 

Table 4.1. The initial amount of silver nitrate that was loaded on the zeolites and the 

Sample 

AgY #1 

AgY #2 

AgY #3 

le percentage of silve 

Mass of AgN03 (g) 

loading on the zeolites. 

ICP-AES Analysis of Ag Loading 

1.46 wt% 

The results shown in Table 4.1 reveal that as the amount of silver nitrate used to 

prepare the AgY zeolites increases, the amount of silver that actually exchanges with 

the sodium cations in zeolite Y does not show the same trend. For example, AgY #4 

was made to have the highest silver loading of the four prepared zeolites because the 

most silver nitrate was added to this sample, but it turned out to have the lowest 

amount of silver when analyzed by ICP-AES. As a result, the ICP-AES analysis of 



the actual amount of silver that gets loaded on the zeolites is a very important part of 

this research. Without it the trend for the amount of Ag loaded on the zeolites (based 

on the initial mass of silver nitrate used) would have been thought to be AgY # 1  < 

AgY #2 < AgY #3 < AgY #4, which lis incorrect and would have affected the analysis 

of other experiments in this study. 

4.2. Photoluminescence of Silver(1)-exchanged Zeolite Y 

The four Ag(1)-exchanged zeolite Y samples have photoluminescence spectra 

that depend on the excitation wavelength. This indicates the presence of different 

luminophores in the Ag-Y zeolites in which their emission is observed upon selecting 

the correct excitation wavelength (i.e., site selective excitation). The luminescence 

spectra of the four zeolites have been investigated in detail in this study. The 

following discussion shows the emission and SSLS of the prepared Ag-Y zeolites as a 

hnction of temperature, excitation wavelength, SSLS, and the amount of silver. 

For example, Figure 4.1 shows the emission spectra of the AgY zeolite sample 

that has the lowest silver loading at 77 K and at the indicated excitation wavelengths. 

Four major luminescence bands with maxima at 300, 360, 410, and 470 nm were 

observed upon excitation at the wavelengths indicated in the figure. These 

luminescence bands are labeled A, B, C, and D, respectively. The figure shows that 

emission bands C and D become dominant over the others at a particular excitation 

wavelength (above 300 nm). Excitation peaks between 220-245, 250-265, 270-280, 

and 290-305 nm were observed upon monitoring the emission at the maxima labeled 

A, B, C, and D, respectively. 



Figure 4.1. Emission spectra of AgY zeolite having a 0.3 wt% Ag loading 
at 77 K and various excitation wavelengths. 
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Synchronous-scan luminescence spectroscopy (SSLS) is a technique that can 

be used to characterize the AgY zeolites because the luminescence spectra provide 

evidence of the existence of different luminophores in the sample. Figure 4.2 shows 

the SSLS of the AgY zeolite that was analyzed to have 0.3 wt% silver, as a function of 

Ah. The spectra show resolved peaks labeled A-E. Each peak in the SSLS becomes 

dominant over the others at a particular wavelength difference. 

The observed emission and SSLS bands indicate the presence of different 

silver clusters in the Y-type zeolite. The luminescence data of silver clusters doped in 

zeolite Y is not common, but a few studies have focused on the types of clusters that 

64-68 form in the zeolite. Despite the limited amount of knowledge that exists about the 

clustering of silver ions in zeolite Y, this is an important aspect to study in this 

research. Therefore, literature regarding the spectroscopy of silver clusters themselves 

as well as the assignment of the luminescence bands of silver clusters doped in other 

zeolites will be used to assign the bands in AgY. 

In addition, the formation of Ag(1) clusters doped in the ZSM-5 zeolite were 

observed and characterized using luminescence, EXAFS, and EXANES spectroscopy 

as well as extended Hiickel and ab-initio calculations. Theoretical calculations have 

indicated that the formation of *[A~'], excimers and exciplexes that were found to be 

responsible for the NO photodecomposition.77 Moreover, the formation of several 

emission bands for Ag-doped in A zeolite have also been reported. The observed 

emission bands were assigned based on ground and excited state 

theoretical  calculation^.^^ 





In this study, the observed emission bands for the AgY zeolites as seen in 

Figure 4.1 are similar to those observed for the AgA zeolites and thus similar 

assignments are given for the luminescence bands of AgY. Table 4.2. shows the 

tentative assignments of the silver clusters doped in zeolite Y. 
I 

Luminescence 
Band 

t of the luminescence bands of AgY zeolite. 
I 1 

h , n m  I Cluster I 

It was found that the luminescence properties also depend on the dopant 

concentration. As shown in Figure 4.3, the spectra of Ag doped in Y zeolite with low 

silver loading (curve D) shows a very strong emission band at 404 nm. The intensity 

of this band decreases as the silver loading increases and another band at lower energy 

appears at 430 nm (see curves B and C). Moreover, at higher silver loadings, bands 

also appear at 520 nm, which are lower in energy than the other bands (see curve a). 

This result indicates that an increase in the dopant concentration leads to the formation 

of larger clusters. 



Figure 4.3. Luminescence spectra of the Ag doped Y zeolite at he, = 265 nm 
and various Ag loadings: (a) 2.42, (b) 2.02, (c) 1.46, and (d) 0.3 wt% Ag. 
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The luminescence spectra are strongly dependent on temperature. Figure 4.4 

shows the emission spectra of silver doped in Y zeolite having 2.02 wt% silver at 

various temperatures and A,, = 270 nm. As shown in Figure 4.4, a strong emission 

band at 430 nm was observed at low temperature (77 K). Increasing the temperature 
I 

accompanies a decrease in the emission band intensity at 430 nm and other bands at 

lower energy were observed. For example, bands at 455 and 490 nm were observed at 

150 and 200 K, respectively. This finding indicated that energy transfer processes 

from the smaller silver clusters to larger silver clusters within the zeolite channels are 

thermally activated. 

4.3. Luminescence Photodecomposition Rates of Carbaryl in the Presence of the 
Ag(1) Doped Zeolite Catalyst 

Carbaryl shows two strong emission bands at 323 and 333 nm upon excitation 

at 276 nm (Figure 3.1). A 30 ppm solution of the pesticide itself, and a 30 ppm 

pesticide solution mixed with 10 mg of the silver Y-type zeolites were irradiated over 

a period of time. Emission spectra were monitored at the excitation wavelengths that 

led to maximum emission intensities as a function of irradiation time. 

The photodecomposition of carbaryl produces products that do not show 

luminescence at the monitored wavelengths. This allows the disappearance of the 

observed luminescence band as a function of the irradiation time to be monitored. For 

the kinetic analysis, the emission intensity of known concentrations of carbaryl were 

recorded and a calibration curve for the peak area from 300-400 nm of each carbaryl 

emission band as a function of carbaryl concentration was used to identify the 



75 

Figure 4.4. Emission spectra of the AgY zeolite having 2.02 wt% Ag loading 
at he, = 270 nm as a function of temperature. 
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carbaryl concentration as a function of the UV irradiation time. Figure 4.5 shows the 

emission spectra of carbaryl before UV-irradiation and after UV-irradiation in the 

presence of the AgY zeolite sample that had 2.42 wt% Ag. 

The solutions of carbaryl were irradiated with 300 nm light at 298 K. The 
I 

photodecomposition rate constants of 30 ppm carbaryl alone in solution at 298 K is 5.6 

f 0.3 x s-'. The photodegradation of carbaryl in the presence of the AgY zeolites 

was found to proceed via first-order kinetics and was also faster than the zeolite-free 

solution. Table 4.3 summarizes the photdecomposition rate constants of carbaryl in 

the presence of the four AgY zeolites. 

Table 4.3. Rate constants for the photodegradation of a 30 ppm solution of carbaryl in 
the presence of the AgY zeolites. 

As shown in Table 4.3, AgY #4 produces the slowest photodecomposition rate, 

while AgY #2 displays the fastest photodegradation rate for carbaryl. Figure 4.6 is a 

plot of the rate enhancement versus the amount of silver loaded on the Y-type zeolite. 

The rate enhancement was determined in the following way: each rate constant in 

Table 4.3 was divided by the rate constant for the photodegradation of 30 ppm 

carbaryl alone in solution and the result was rounded to the nearest whole number. 

Zeolite Sample 

AgY # I  

AgY #2 

AgY #3 

AgY #4 

Ag Loading (wt %) 

1.46 

2.42 

2.02 

0.30 

Rate constant, s-' 

6.8kO.l x lo4 

4.44 + 0.06 x 1 0 ' ~  

1.32 f 0.04 x 

1.62 +_ 0.04 x lo4 



Figure 4.5. An example of carbaryl luminescence photodecomposition as a 
function of irradiation time, in the presence of the AgY zeolite having 2.42 wt% 
Ag: (a) 0, (b) 5, (c) 10, (d) 20, and(e) 30 minutes. 
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Figure 4.6 shows that as the amount of silver loaded on zeolite Y increases, its 

catalytic activity toward the photodegradation of the pesticide carbaryl increases. This 

is mainly due to the formation of more active sites as the amount of silver increases. 

A series of control experimynts were conducted to test whether the Ag-Y 

zeolite was needed to catalyze the photodegradation of carbaryl. The same photolysis 

experiments were performed for a 30 ppm solution of carbaryl in the presence of the 

Y-type zeolite in the absence of silver ions, and the rate constant was similar to that of 

the sample of pesticide alone in solution. Subsequently, to see the effect of the silver 

ion on the decomposition rate, the same experiments were performed in the presence 

of three different aqueous AgN03 concentrations. The photodecomposition rates of 

the pesticide in the presence of the AgN03 solutions were slightly slower than the 

silver-free pesticide solution, and no dependence on the AgN03 solution was found to 

exist. 

Finally, the photodecomposition of carbaryl in the presence of the AgY 

zeolites was performed in the absence of the UV light. The results of these 

experiments yielded no significant degradation of the pesticide. As a result of these 

experiments, the presence of silver clusters in the zeolite channels appear to play a 

significant role in achieving the strong catalytic activity that was observed. The 

[A~'], exciplexes and excimers in the zeolites interact with carbaryl in the presence of 

light and weaken bonds in the pesticide which causes it to decompose. 



Figure 4.6. A plot of the photodegradation reaction rate enhancement versus the amount of silver that was loaded on 
the AgY zeolites. 
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4.4. Rationalization of the Observed Photodecomposition Rate Constants 

The enhancement of the photodecomposition rate of carbaryl in the presence of 

the AgY zeolites is attributed to excimer and exciplex formation between carbaryl and 

the silver active sites on the zeolite andlor the pesticide-to-zeolite channel sizes that 
I 

allow the entrapment of the subject compound in the zeolite channels. 

Excimers and exciplexes have been reported to form in metal-nitrogen 

c ~ m ~ l e x e s . ~ ~ ~ ~ ~  As a result, it is believed that excimer formation between the silver 

cations and the carbamate nitrogen atom is responsible for the fast 

photodecomposition rate of carbaryl, where the Ag-N bonding becomes stronger upon 

excitation. This interaction appears to weaken the bond between the carbarnate 

nitrogen and the carbonyl carbon meanwhile increasing the rate of photodegradation. 

Since the hydrolysis product (a-naphthol) of carbaryl was obtained in the absence and 

presence of the AgY zeolites, the photodecomposition of the carbarnate pesticide must 

proceed via a similar reaction mechanism. Figure 4.7 shows a theoretical mechanism 

of the photodegradation of a carbaryl in the presence of the Ag zeolite.29 The first step 

includes the hydrolysis of the carbamate group. Subsequently, the presence of the 

Ag(1) zeolite leads to the fornlation of an excimer between the Ag-N atoms which 

weaken the adjacent C-N group and thus enhances the photodecomposition rate of the 

carbamate in the presence of the AgY zeolite. 

The channel size of the Y-type zeolite is known to be - 10 A and the sizes of 

carbaryl and a-naphthol were found to be between 5 . 6 8 . 0  A.29 Therefore, the 

, entrapment of the derivatives of carbaryl inside the zeolite channels is possible. This 

makes the studied molecule exposed not only to the silver clusters on the surface but 



Figure 4.7. Proposed mechanism for the photodegradation of carbaryl in the presence 
of a silver(1)-doped zeolite catalyst. 



also to the catalysts that form in the zeolite channels and thus a significant increase in 

the photodecomposition rate is expected. 

4.5. GC-MS Analysis of Carbaryl , 
Samples of a 30 ppm solution of carbaryl in the presence and absence of 10 mg 

of the AgY zeolites were irradiated with 300 nm light for 30 minutes. The first sample 

contains a 30 ppm solution of carbaryl only, and the other four samples contain a 30 

ppm sample of carbaryl in the presence of the AgY zeolites. After irradiation was 

complete, the samples were filtered thoroughly and injected into the GC-MS. 

Carbaryl generally shows a GC peak at 16.9 minutes. GC-MS analysis of the 

30 ppm carbaryl solution that was irradiated for 30 minutes showed GC bands at 10.9 

and 16.9 minutes. However, in the presence of the AgY catalysts an additional GC 

band appeared at 8.6 minutes. Therefore, the presence of the AgY zeolite catalysts 

causes a more complete degradation of carbaryl to occur, even after being irradiated 

with 300 nm light for just 30 minutes. 

Figure 4.8 shows the gas chromatogram of the 30 ppm solution of carbaryl 

irradiated in the presence of AgY catalyst for 30 minutes. As was previously 

explained, peaks at retention times of 16.9, 10.9, and 8.6 minutes were observed. The 

mass analysis for each peak indicate the presence of carbaryl as well as two other 

organic products namely, a-naphthol and phthalic acid. 

The GC peak at 16.9 minutes had a mass spectrum with major mass ion fragments that 

appeared at m/z = 144, 115,89,57, and a molecular ion peak at m/z = 201 representing 

the carbaryl molecule. The GC band that appeared at a retention time of 10.9 minutes 



had major mass ion fragments at m/z = 144, 11 5, 89, and 63, which was similar to the 

mass spectrum of a standard solution of alpha-naphthol (MW = 144 g/mole). 

Finally, major mass ion fragments at m/z = 166, 148, 104, 76, and 50 appeared for the 

GC peak that occurred at a retention time of 8.6 minutes. The GC-MS analysis of the 

band at 8.6 minutes matched a standard solution of phthalic acid (MW = 166 g/mole). 

30 ppm solutions of carbaryl in the presence and absence of the AgY zeolite 

catalysts were irradiated with 300 nm light for 12 hours. After the 12-hour period, the 

samples were removed from the lamp light, filtered, and immediately injected into the 

GC-MS. The GC-MS analysis of 30 ppm carbaryl alone in solution once again 

revealed the presence of carbaryl and a-naphthol. The samples that contained 30 ppm 

carbaryl in the presence of the AgY zeolites were also analyzed by GC-MS. The 

results of this analysis produced the GC bands at retention times of 16.9, 10.9, and 8.6 

minutes representing carbaryl, a-naphthol, and phthalic acid, respectively. These 

results were also seen after the samples were irradiated for only 30 minutes; however, 

the intensity of the carbaryl GC band had severely decreased while the a-naphthol and 

phthalic acid GC bands became more intense after 12 hours. 



Figure 4.8. The gas chromatogram of a 30 ppm solution of carbaryl in the 
presence of 10 mg of the AgY zeolite that was irradiated for 30 minutes. 
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4.6. The Photodegradation of Carbaryl in the Presence of Both the AgY Zeolites 
and Natural Organic Matter 

The photodegradation of 30 ppm carbaryl in the presence of the AgY catalysts 

as well as NOM-2001 were also studied. In all cases, the photodecomposition of 

carbaryl proceeds via first-order kinetics. The photodecomposition of carbaryl in the 

presence of AgY catalysts is 3-79 times faster than the decomposition of 30 ppnl 

carbaryl alone (rate constant = 5.6 f 0.3 x 10" s"). Table 4.4 summarizes the rate 

constants for the photodecomposition of carbaryl in the presence of the four AgY 

zeolites and different NOM concentrations. 

The data shown in Table 4.4 indicate that the photodecomposition rate 

constants of carbaryl increase as the silver loading increases. Moreover, in 

comparison to the carbaryl in the presence of the AgY zeolites, the presence of 3 ppm 

NOM was found to enhance the rate constant. In contrast, the presence of 15 and 30 

ppm concentrations of NOM slightly decrease the photodecomposition rates. 

Table 4.4. Rate constants in s-' for the photodecomposition of a 30 ppm solution of 
- - 

carbaryl in the presence of the ~ ~ - d o ~ e d  Y-type zeolites and various concentrations 
of Suwannee River NOM-2001. 

wt%Ag 

0.30 

AgY 3 PPm 0 PPm 

SRNOM 

1.62 & 0.04 x 10" 

15 P P ~  

SR NOM 

4.38 f 0.02 x 

30 PPm 

SR NOM 

1.02 + 0.02 x 1 0 ' ~  

SR NOM 

6.01 f 0.04 x 



Figure 4.9 shows a plot of the rate constant as a function of NOM 

concentration for the four AgY zeolites. As shown in Figure 4.9, the trend is similar 

for the four curves; where, the rate constant increases in the presence of 3 pprn NOM 

and then the rate constant decreases in the presence of 15 and 30 pprn NOM. A 
I 

similar result was reached for carbaryl in the presence of 3, 15, and 30 pprn 

concentrations of NOM-2000 (see Chapter 3). 

Table 4.5 shows the amount the photodecomposition rate of carbaryl in the 

presence of the AgY zeolites was enhanced or inhibited in the presence of NOM-2001. 

The rate enhancement was determined by dividing the rate constants for the 

photodegradation of carbaryl in the presence of the AgY zeolites and 3 pprn NOM 

(column 2 of Table 4.4) by the rate constants in column 1 of Table 4.4, depending on 

which AgY zeolite was being considered. The rate inhibition factor was determined 

by dividing the rate constants in column 1 of Table 4.4 by the rate constants for the 

photodegradation of carbaryl in the presence of the AgY zeolites and 15 and 30 pprn 

NOM (columns 3 and 4 of Table 4.4), depending on which AgY zeolite was being 

used. Each result was rounded to the nearest whole number. Overall, the rate changes 

for the photodegradation of carbaryl in the presence of the AgY zeolites were very 

small in the presence of 3, 15, and 30 pprn concentrations of NOM, showing that the 

AgY zeolites will be efficient catalysts when placed in the environment. 





Table 4.5. The factors by which the rate of photodegradation of carbaryl in the 
presence of the AgY zeolites was enhanced or inhibited b y  various concentrations of 
NOM-2001 on. 

4.7. Conclusions 

This study summarizes the rich luminescent properties of silver doped Y-type 

zeolites. The results of both conventional and synchronous scan luminescence 

spectroscopy reveal the presence of multiple environments of [A~*], clusters in the 

zeolite channels. This investigation also revealed that the AgY zeolite having the 

most amount of silver also exhibited the highest catalytic activity toward the 

photodegradation of the widely used pesticide carbaryl. 

The photodecomposition of carbaryl was studied at room temperature in the 

presence and the absence of each AgY catalyst. GC-MS analysis of each 

; photodecomposition reaction shows that with carbaryl the products remain the same in 

the presence of the AgY zeolites. The samples of zeolite Y and the presence of silver 

ion without zeolite Y do not affect the photodecomposition rate constant of carbaryl. 

As a result, it appears to be the fonnation of *[A~'], excimers and exciplexes in the 

zeolite channels as well as excimer formation between the silver cations and the 

carbamate nitrogen are responsible for the achievement of the observed catalytic 



activity. In summary, this study shows that silver doped Y-type zeolites can act as 

photocatalysts to decompose the carbamate pesticide carbaryl both in the presence and 

absence of natural organic matter. 



Chapter 5 

SUMMARY, CONCLUSIONS, AND SUGGESTED FUTURE RESEARCH 

This chapter summarizes what has been achieved in this thesis. Two major 

projects have been studied in this' work. The first project is a study of the 

photodegradation of carbaryl in the presence of Suwannee River natural organic 

matter. The second project is a study of the photoluminescence properties of Ag(1) 

clusters doped in Y-type zeolite as a function of silver loadings and temperature, as 

well as its catalytic properties toward the photodecomposition of the widely used 

pesticide carbaryl. The following is a summary of the results and conclusions of this 

thesis. 

5.1. Photodecomposition of Carbaryl in the Presence of Suwannee River Natural 
Organic Matter 

5.1.1. Summary 

Carbaryl molecules have aromatic rings and were found to display strong 

luminescence properties in this study. A 3 ppm solution of carbaryl was prepared and 

the absorption spectrum revealed a peak maximum at 276 nm with an extinction 

coefficient of 1.530 It 0.006 x lo3 L mol-'. Upon excitation at 276 nm, the emission 

spectrum of carbaryl spanned from 300-400 nm with maxima at 323 and 333 nm. 

The synchronous-scan luminescence spectra (SSLS) of carbaryl revealed bands 

between 325-350 nm, with peak maxima at 323, 333, 340, and 350 nm at Ah's = 20, 

30,47,57,70, and 80 nm. 



Two Suwannee River NOM samples were used in this study, (NOM-2000 and 

NOM-2001). The emission spectra of the NOM-2000 and the NOM-2001 samples 

revealed broad luminescence bands between 360-600 nm with maxima at 437 and 455 

nm upon excitation at 333 and 345 nm, respectively. The synchronous-scan 
I 

luminescence spectra of NOM-2000 showed several peaks with maxima at 3 13, 338, 

356, 403, 425, and 470 nm. In contrast, the SSLS of the NOM-2001 sample revealed 

five bands with peak maxima located at 325, 403, 418, 430, and 448 nm. For both 

NOM samples the wavelength difference was varied in the following way: A h  = 30, 

50,70, and 100 nm. The SSLS of the NOM-2000 sample was also found to depend on 

concentration. For example, at Ah = 30 nm a 3 ppm solution of the NOM-2000 

sample showed a band at 325 nm. As the concentration of NOM sample increased 

from 15-60 ppm, the intensity of this high-energy band decreased, while a broad band 

at 403 nm appeared. 

The Suwannee River NOM-2000 sample was separated into three different 

molecular weight (MW) fractions as described in Chapter 2. One fraction contained 

molecules with a MW that was less than 1,000 g/mole, the second fraction had 

molecules with a MW between 1,000 and 10,000 g/mole, and the third fraction 

contained molecules that had a MW greater than 10,000 g/mole. The concentration of 

dissolved organic carbon (DOC) in each fraction was determined to be 2.05, 15.7, and 

50.6 mg C L-', respectively. The solvent from the solution of the smallest MW 

fraction was removed and the new DOC analysis revealed a concentration of 20.2 mg 

C L-', which was sufficient to determine the binding interaction between this sample 

and carbaryl. 



To determine the binding interaction of the NOM samples with carbaryl, NOM 

was used as the quencher and carbaryl was used as the luminophore. A Stern-Volmer 

plot of carbaryl quenched by the Suwannee River NOM-2000 sample revealed a 

binding constant of 7.3 -t 0.3 x 1 o4 L kg". Additionally, experiments to determine the 
I 

binding constant of the three NOM-2000 molecular weight fractions with carbaryl 

were performed. The binding constants were determined to be 1.29 f 0.04 x lo4, 2.83 

+ 0.06 x lo4, and 5.34 f 0.09 x lo4 L kg-' for the MW fraction that was less than 1,000 

g/mole, the MW fraction that was between 1,000 and 10,000 g/mole and the MW 

fraction that was greater than 10,000 g/mole, respectively. For the NOM-2001 

sample, the binding constant was determined to be 3.04 f 0.02 x lo4 L kg-', which was 

lower than the observed binding constant for NOM-2000. 

The photodegradation of a 3 ppm solution of carbaryl was studied in the 

absence and presence of 3, 15, and 30 ppm concentrations of the Suwannee River 

NOM samples. A plot of Ln[carbaryl] versus irradiation time for the 

photodegradation of carbaryl in the presence of the Suwannee River NOM-2000 

sample did not follow first-order kinetics. Instead, each set of data that resulted from 

the photodegradation experiment was fit to two linear best-fit lines, one between time 

0-70 minutes, and another at a time that was 2 80 minutes. Overall, the rate of the 

photodegradation of carbaryl in the presence of NOM-2000 was enhanced and the 3 

ppm solution of NOM produced the largest rate enhancement. In contrast, the kinetics 

of the photodegradation of carbaryl in the presence of the NOM-2001 sample did 

proceed via first-order kinetics. For this sample, 3 and 15 ppm concentrations of 



NOM decreased the photodecomposition rate of carbaryl, while a 30 pprn solution 

enhanced the photodegradation rate. 

To examine the effect of the binding interaction on the photolysis rate constant, 

the rate constant data was related to the percent of carbaryl bound to NOM in solution 
I 

using Equation 4 in Chapter 3. For 'the NOM-2000 sample, the percentages of a 3 

pprn solution of carbaryl that was bound to 3, 15, and 30 pprn solutions of NOM were 

18 + 0.8%, 52 +_ 2%, and 69 f 3%, respectively. In contrast, the percentages of a 3 

pprn solution of carbaryl that was bound to 3, 15, and 30 pprn solutions of NOM-2001 

were 8.36 f 0.06%, 31.3 + 0.2%, and 47.7 + 0.3%, respectively. These results were in 

agreement with the binding constants that were found for the two NOM samples. 

The photodegradation of a-naphthol was studied in the absence and presence 

of the Suwannee River NOM samples and in the presence of carbaryl. A 3 pprn 

solution of a-naphthol displays a broad luminescence band with a maximum at 462 

nm upon excitation at 323 nm. Since the lun~inescence spectrum of a-naphthol shows 

a band at longer wavelength than carbaryl, it was easy to follow the kinetics of the 

photodegradation reaction using luminescence. Thus, the photodegradation of a 3 

pprn solution of a-naphthol was studied in the presence of 3, 15, and 30 pprn 

concentrations of NOM-2000. The reaction followed first-order kinetics and the rate 

constants in the presence of NOM-2000 increased as the concentration of NOM 

increased. The photodegradation of a-naphthol in the presence of 3, 15, and 30 pprn 

solutions of NOM-2001 was also studied. The results revealed first-order rate 

constants, and a 3 pprn solution of the NOM-2001 sample enhanced the 



photodegradation rate of a-naphthol, while the photodecomposition rate decreased in 

the presence of 15 and 30 ppm concentrations of the NOM sample. 

The photodegradation of a 3 ppm solution of carbaryl in the presence of 3 ppm 

a-naphthol was studied. The results ,revealed that a plot of Ln[carbaryl] versus time 

did not display first-order kinetics. Instead, the data set was fit to two linear best fit 

lines for the reaction from time 0-40 minutes and 50-90 minutes. The presence of 

carbaryl also changed the photodegradation kinetics of a-naphthol. From time 0-20 

minutes, a-naphthol degrades rapidly and then around 40 minutes, the concentration 

of a-naphthol begins to increase due to the photodegradation of carbaryl. 

5.1.2. Conclusions 

The two Suwannee River NOM samples that were collected from the same 

river in Georgia displayed similar emission and excitation spectra, but the SSLS 

revealed differences in the two samples. For example, three peaks are observed in the 

high-energy region between 300-360 nm for NOM-2000; whereas, the NOM-2001 

sample shows only one band in this region at 325 nm. Moreover, at Ah = 30 nm the 

SSLS of the NOM-2000 sample shows an intense band at 313 nm, but this band was 

weak for the NOM-2001 sample and another band at 403 nm was seen in the same 

spectrum. 

The SSLS bands that appear with maxima between 313-338 nm were 

attributed to functional groups in the NOM that are similar to the structure of salicylic 

acid; whereas, a peak occurring around 350 nm reflects quantitative differences in the 



amounts of salicylate-type groups or variations in the carboxyl substitutions of single 

aromatic rings.73 The SSLS bands that occurred at 403 and 425 nm were assigned to 

hnctional groups similar to the structure of 3-hydroxycinnamic acid and 3- 

hydroxybenzoic acid, respectively.74 The band at 470 nm was attributed to hydroxy 
I 

and methoxy coumarins or chromone derivatives, while the band at 448 nrn was due to 

the presence of methyl salicylate or caffeic acid hnctional moieties." Therefore, the 

SSLS allowed for the determination of differences in the two Suwannee River NOM 

samples. The differences in the SSLS bands do not reveal structural differences in 

NOM-2000 and NOM-2001, but the variations lead to the conclusion that the isomers 

composing each sample could be different. 

The results of the binding interaction between carbaryl and the two Suwannee 

River NOM samples revealed that the binding constant for NOM-2001 was lower than 

that for NOM-2000. The data indicate that the difference in the binding strength 

between carbaryl and the two NOM samples is due to the presence of different SSLS 

bands that appeared in the high-energy region. For example, three bands were 

observed in the region between 300-350 nm for the NOM-2000 sample, while only 

one band at 325 nm was observed in the SSLS of NOM-2001. Therefore, the presence 

of different luminophores in NOM-2000 provides more active sites that bind to 

carbaryl. 

The influence of Suwannee River natural organic matter on the 

photodegradation was found to be significant since the two NOM samples had 

different effects on the reaction rate. The percentage of carbaryl that was bound to 

each NOM sample showed that NOM-2000 interacted more with carbaryl than NOM- 



2001 at the same concentration. Therefore, the presence of different isomers and the 

amount of carbaryl bound to NOM caused the photodegradation of carbaryl to be 

different in the presence of NOM-2000 and NOM-2001. The photodegradation of a- 

naphthol in the presence of Suwannee River NOM proceeded via first-order kinetics; 
I 

however, the two NOM samples displayed differences in the way they either enhanced 

or slowed down the photodegradation rate of carbaryl. When the photodecomposition 

rate constants of carbaryl in the presence of NOM-2000 (time 2 80 minutes) were 

compared with the rate constants for the photodegradation of a-naphthol in the 

presence of NOM-2000, they were very similar. In conclusion, the 

photodecomposition of carbaryl in the presence of NOM-2000 shows two rates that 

are due to carbaryl in the presence of NOM-2000 and a-naphthol in the presence of 

NOM-2000. 

The photodegradation of carbaryl in the presence of a-naphthol also changed 

the kinetics of the reaction. In the presence of a-naphthol, carbaryl did not degrade 

via first-order kinetics, and the data set was fit to two linear best-fit lines that 

resembled the photodegradation kinetics of carbaryl in the presence of NOM-2000. 

Therefore, the presence of the intermediate a-naphthol in solution when carbaryl is 

degrading, alters the kinetics of the reaction. The carbaryl molecules must undergo a 

binding interaction with a-naphthol causing a rate enhancement and allowing carbaryl 

to breakdown rapidly. 



5.2. Spectroscopic Properties of Ag(1)-exchanged Zeolite Y and the Photoassisted 
Degradation of Carbaryl 

5.2.1. Summary 

The AgY zeolites were prepared by ion exchange with A ~ ( N H ~ ) ~ + .  The ICP- 

AES analysis of the actual amount of iilver that was loaded on each zeolite was found 

to be: 0.3, 1.46, 2.02, and 2.42 wt% Ag. The four silver-exchanged zeolite Y samples 

have emission spectra that depend on the excitation wavelength. For example, the 

luminescence spectra of the AgY zeolite with 0.3 wt% Ag loading showed four 

luminescence bands at 300, 360, 410, and 470 nm (labeled A-D), upon excitation at 

220-245, 250-265, 270-280, and 290-305 nm. In the SSLS of the same AgY 

sample, an additional band occurred that was labeled E. The luminescence properties 

of the AgY zeolites also depended on the dopant concentration. For example, at he, = 

265 nm the AgY zeolite with the lowest Ag loading shows a strong band at 404 nm, 

but at higher silver loadings other bands appear at 430 and 520 nm. Finally, the 

luminescence spectra were also strongly dependent on temperature. For the AgY 

zeolite with 2.02 wt % Ag, a strong emission band at 430 nm was observed at 77 K, 

but as the zeolite was heated, other bands at lower energy were observed. 

A 30 ppm solution of carbaryl itself, and 30 ppm solutions of the pesticide in 

the presence of 10 mg of the Ag doped in Y-type zeolites were irradiated with 300 nm 

light. The results indicate that the photodegradation of carbaryl in the presence of the 

AgY zeolites was found to proceed via first-order kinetics and was also faster than the 

zeolite-free solution. In fact, the presence of the AgY zeolites increases the 

photodegradation rate of carbaryl by 3-79 times depending on the amount of silver 



that was loaded on the zeolites. The photodegradation of carbaryl was also studied in 

the presence of both NOM-2001 and the AgY zeolites. Overall, the presence of 3 pprn 

NOM enhanced the photodegradation rate of carbaryl, while 15 and 30 pprn 

concentrations of NOM decreased the reaction rate. For example, the rate of carbaryl 
I 

photodegradation in the presence of the AgY zeolite that had 2.42 wt% Ag was 

enhanced by a factor of 1 in the presence of 3 pprn NOM-2001, and inhibited by 

factors of 2 and 3 in the presence of 15 and 30 pprn concentrations of NOM-2001, 

respectively. 

The GC-MS analysis of carbaryl in the absence and presence of the AgY 

zeolites revealed slightly different products. A 30 pprn solution of carbaryl in the 

absence of the catalysts was irradiated for 30 minutes and the results showed the 

presence of carbaryl and the major degradation product, a-naphthol. In contrast, a 30 

pprn solution of carbaryl in the presence of the AgY zeolites that was irradiated for the 

same amount of time showed the presence of a-naphthol, phthalic acid, and carbaryl. 

5.2.2. Conclusions 

This study demonstrated remarkably rich luminescent properties of the silver 

doped Y-type zeolites. The luminescence spectra of the four AgY zeolites were found 

to depend on the wavelength of excitation. This indicated that the different 

luminophores were present in the AgY zeolites and their emission was observed upon 

site selective excitation. Furthermore, bands A-E that were observed in the emission 

and SSLS indicated the presence of different silver clusters in the Y-type zeolites. The 

assignments of the luminescence bands (Table 4.2) indicates the presence of [A~'], 



oligomers with n 2 2. Additionally, the luminescence properties showed that an 

increase in the dopant concentration leads to the formation of larger silver clusters. 

Finally, the luminescence spectra were also dependent on temperature, indicating that 

energy transfer processes were occurf-ing from smaller silver clusters to larger silver 

clusters within the zeolite channels. 

The photodegradation of carbaryl in the presence of the AgY zeolites 

proceeded via first-order kinetics and caused a rate enhancement that was 3-79 times 

faster than carbaryl alone in solution. The AgY sample with the 0.3 wt% Ag showed 

the smallest rate enhancement, while the AgY zeolite with the highest silver loading 

showed the largest rate enhancement, indicating that as the amount of silver loading 

on the zeolite increases, the rate of photodecomposition of carbaryl also increases. 

The enhancement of the photodecomposition rate of carbaryl in the presence of the 

AgY zeolites is attributed to excimer formation between silver cations and the 

carbamate nitrogen in which the Ag-N bond becomes stronger upon excitation. This 

interaction appears to weaken the bond between the carbamate nitrogen and the 

carbonyl carbon meanwhile increasing the rate of photodegradation of carbaryl. 

The GC-MS analysis of the photodegradation of carbaryl in the presence of the 

AgY zeolites indicated that the presence of the AgY catalysts causes a more complete 

degradation of carbaryl to occur, even after being irradiated with 300 nm light for just 

30 minutes. The photodegradation of carbaryl in the presence of the AgY catalysts 

and NOM-2001 showed that the presence of 3 ppm NOM increased the rate of 

degradation; whereas, larger concentrations of NOM decreased the rate of 

photodecomposition. However, the rate changes for all the NOM concentrations were 



very small indicating that the silver zeolite photocatalysts can still perform in the 

environment in the presence of natural organic matter. 

5.3. Suggested Future Research 
I 

Previous studies have shown that carbaryl degrades at different rates 

depending on the temperature and pH of the solution that it is dissolved in. For 

example, under alkaline conditions (pH = 9) and at 25OC the compound appears to 

degrade rapidly, with a half-life of 3 hours.19 On the other hand, in acidic media 

carbaryl is rather stable with a half-life of more than 1500 days at 270c . l~  These 

results show that the pH of the surrounding solution does make a difference in the 

degradation of carbaryl. Therefore, research needs to be conducted in which the 

solution of carbaryl is buffered at a certain pH and monitored throughout the course of 

the photodegradation reaction. At the same time, the temperature of the reaction 

should also be monitored to see if this variable also has an affect on the 

photodecomposition reaction rate. Trying to photodecompose carbaryl as rapidly as 

possible in the environment, and determining which conditions are best for its 

degradation is an extremely important aspect of future investigations. 

Zeolites encapsulating transition metals have been the subject of many recent 

studies due to their significant role in different efficient and selective catalytic 

reactions, such as the partial oxidation of hydrocarbons. 84-87 Many coordination 

con~plexes can form within zeolite pores by simply reacting the exchanged metal 

cations with various organic molecules. For instance, this study shows that silver 

doped in Y-zeolite displays good catalytic activity toward the photodecomposition of 



carbaryl. However, the presence of mixed metal systems might show better catalytic 

activities toward the photodecomposition of pesticides. Thus, different mixed metals 

such as Ru-Rh, Pt-Pd, Cu-Ag, and Ag-Au doped in zeolites should be prepared and 

their catalytic activities toward the photodecomposition of different pesticides will 
I 

then be tested. 

The presence of mixed metal ions should enhance the selectivity toward 

pesticides rather than other catalysts. For example, silver and gold containing 

catalysts are expected to bind to sulfur and phosphorus containing pesticides, whereas, 

Pt, Pd, and Cu containing catalysts are expected to bind to pesticides that have hard 

ligands such as nitrogen containing molecules. Therefore, we expect to tune the 

photocatalytic activities toward different types of pesticides by varying the softness or 

hardness of the catalyst. For example, pesticides that contain soft ligands like sulfur 

bind strongly to soft metals such as gold; whereas, molecules that contains hard 

ligands such as nitrogen should bind to hard metals like palladium and copper ions. 
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