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This thesis is part of a broader cooperative study aimed at understanding 

Paleo-forest dynamics -- namely those of the Eocene period in the Canadian High 

Arctic. Wood of the dominant tree species -- Metasequoia -- that grew on Axel 

Heiberg Island, Nunavut, Canada is the focus of this research. The text is divided 

into two chapters written as articles to be submitted to the International Association 

of Wood Anatomists Journal (IAWA). 

The first chapter of this text is a direct result of classifying the fossil wood of 

Axel Heiberg. The wood of Glyptostrobus is similar to that of Metasequoia. Because 

both trees grew on the same sites, it was vital to be able to separate the wood of these 

species. We obtained extant wood samples of these relatively rare woods from 

herbaria around the world, tested previously published descriptions, and report 

observations that more consistently separate these species. 



The second chapter of this text discusses the xylem strategies of Metasequoia. 

Because Metasequoia is a tall tree with a high water demand, its wood must be 

sufficiently strong, and provide the canopy with enough water to meet its needs. A 

microscopic analysis of tracheid parameters provides evidence for postulating 

strength and hydraulic conductance functions. The results indicate that Metasequoia 

possesses unique specific gravity and microfibril angle trends that may be adaptive 

strategies for this species at its unique high latitude sites. We have shown that as 

Metasequoia trees increase in diameter and height, they produce tracheids that 

concomitantly strengthen and potentially improve hydraulic efficiency. This finding 

provides a new perspective on the strengthhydraulic conductance compromise 

proposed by other researchers, and demonstrates a strategy of strength enhancement 

that does not involve significant latewood production. 
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CHAPTER 1 

SEPARATION OF METASEQUOIA AND GL YPTOSTROBUS 

(CUPRESSACEAE) BASED ON WOOD ANATOMY 

SUMMARY 

The wood anatomy of Metasequoia is similar to that of Glyptostrobus. Past 

descriptions of these woods often report unreliable or conflicting observations. With 

numerous samples we give updated descriptions of these woods. We also test 

previously published criteria and discuss those of real diagnostic value. We propose 

the use of a suite of characters to separate the woods, including: presence of ray cell 

separation, cells per square millimeter in transverse sections of the earlywood of 

mature wood, arrangement of cross-field pits, features of the horizontal end walls of 

longitudinal parenchyma, transition fiom earlywood to latewood, 

abundanceldistribution of longitudinal parenchyma, and aroma. 

Keywords: Metasequoia, Glyptostrobus, ray cell separation, cells per area, fossil 

wood, wood identification. 

INTRODUCTION 

Identification of tree species based on wood anatomy may be of interest to 

taxonomists studying extant flora, but it has even greater utility when studying fossil 

remains. Leaves or fruit may be present on fossil sites and can be used to create a 

taxonomic list of flora, but understanding paleo- forest dynamics requires accurate 

wood identification of stumps and logs. Correct identification of fossil wood to 



family, genus, andlor species requires referencing to well described extant wood fiom 

vouchered sources. 

The fossil record of Metasequoia and GIyptostrobus is extensive. They were 

often the dominant floristic components in many forests of North America, Europe, 

and Asia during the late Cretaceous into the middle Tertiary (Florin, 1952; 

Momohara, 1994; Kumagai et al., 1995; Stockey et al., 200 1). Numerous fossil 

forests have been found in the arctic where no trees exist today (Creber & Chaloner, 

1985; Momohara, 1994). Both species are known to inhabit similar sites -- past and 

present (Henry & McIntyre, 1926; Li, 1957; Bartholomew et al., 1983; Basinger, 

199 1 ; McIntyre, 199 1 ). When fossil wood samples are preserved in a manner that 

enables anatomical observation it is important that reliable diagnostic features be used 

to classify the species. 

Metasequoia and Glyptostrobus have shared a similar fate during and since 

their large paleo- populations. Both species are members of the former Taxodiaceae 

family, more recently incorporated into the Cupresseacae family -- Metasequoia in 

the sequoioid clade, GIyptostrobus in the taxodioid clade (Eckenwalder, 1976; Butala 

& Cridland, 1978, Judd, et al., 2002). They are currently monotypic. Metasequoia 

exists only as very small relict population on wet sites in south-central China and 

Glyptostrobus is known only as a planted tree, typically on wet sites as well (Henry & 

McIntyre, 1926; Florin, 1952; Liang et al., 1948; Momohara, 1994). Metasequoia 

and Glyptostrobus have been reported from the same paleo-arctic sites based on 

pollen, leaf, and reproductive structures (Basinger, 199 1 ; McIntyre, 199 1 ; Kumagai et 

al., 1995). 



The wood of Glyptostrobus is very similar to that of Metasequoia (Basinger, 

1980). Taxodiaceous woods generally lack true resin canals, lack indentures in 

horizontal walls of ray parenchyma, and have taxodioid type cross-field pitting 

(Greguss, 1955; Panshin & deZeeuw, 1980). Gromyko (1 982) reported that specific 

identification of these species is difficult and may not be possible with conventional 

keys. Most studies exploring these woods are suspect because of their limited sample 

size that often results in observations that are not accurate in all situations (Henry & 

McIntyre, 1926; Li, 1948; Liang et al. 1948; Greguss, 1955; Hejnowicz, 1973; 

Basinger, 198 1 ; Gromyko, 1982; Wu & Chern, 1995). 

Wood properties vary within and amongst trees of the same species (Panshin 

& deZeeuw, 1980; Basinger, 198 1 ; Larson, 1994). Ideally a study sampling from 

different environments and throughout a given tree is required to establish characters 

to definitively identify wood. Hejnowicz (1 973) attempted to account for the 

variation of wood characters in Metasequoia at different heights and ring numbers; 

however, she only observed a single young stem. Gromyko (1 982) observed intra- 

ring variation of several Taxodiaceous (now Cupressaceae) woods (including 

Metasequoia and Glyptostrobus), unfortunately, his sample size was small (3 

Metasequoia and 2 Glyptostrobus trees). The purpose of this study was to determine 

whether Metasequoia and Glyptostrobus could be separated reliably on the basis of 

wood anatomy. We examined a larger pool of vouchered samples and a larger 

number of anatomical characteristics than previous studies. 



MATERIALS AND METHODS 

Extant samples of Metasequoia and Glyptostrobus were obtained from wood 

collections housed in the United States, United Kingdom, Japan, and The 

Netherlands. In total eleven Metasequoia and eight Glyptostrobus samples (Table 

1.1) were obtained and prepared for microscopic observation. All samples used to 

establish criteria were assumed to be of mature stem wood because of the lack of 

compression wood and degree of curvature of rings across sample blocks. 

Sections 18-22 pm thick were made with a sliding microtome (A.O. Spencer 

Model 860), stained overnight in 1% Bismark Brown, and mounted in a low viscosity 

medium (Cytoseal 60 - Richard-Allan Scientific) to make permanent slides. 

Observations were made using a light microscope (Axioskop: Zeiss) equipped with a 

digital camera (SPOT RT: Diagnostic Instruments, Inc.) connected to a PC (Toshiba 

equium 7350M). All measurements were made on the PC from digital images. 

Tracheid length and diameter measurements were made using the software provided 

with the camera. Cell count measurements were determined using Scion Image Beta 

4.02 for Windows (Scion Corporation Inc., Fredrick, Maryland). Features observed 

in past studies were screened in our samples to determine their potential diagnostic 

value. 

A technique to measure cells per area (CPA) quickly and repeatedly was 

established. Transverse images were magnified to 1 OOx, beginning with the first 

formed cells of the annual ring, and included only earlywood cells. Images covered a 

default area of 1.02949 mm2. Using the default settings of the Scion Image program, 

images were converted to threshold images. Images were then analyzed using the 



Table 1.1 : Wood samples used to determine cellular attributes of 
Metasequoia and Glyptostrobus. 

Source Metaseauoia Glv~tostrobus 
MAD- 1 49 1 3 SJR-850 

United States: 
U.S.D.A. F.S. Forest 

MAD-13530 SJR-29829 

Products Laboratory S JR-5 03 1 7 
S JR-45027 

TWTW-6420 TWTW-1 052 1 
Japan: Forestry and 

Forest Products 
TWTW- 10942 

Research Institute TWTW-1 561 3 
T WTW- 15986 

The Netherlands: 
University of Utrecht UN 450 

The Netherlands: vak XX 9897 FRTGw 10 
National Herbarium - 

University Leiden Arboretum 

branch Wageningen 

United Kingdom: KW 70264 
Royal Botanic KW 19014 
Gardens. Kew KW 19015 
Japan: Kyoto 
University; 
Kamigamo 

~x~erimental  Forest 

Cored tree* 

* Not a vouchered specimen 



"Analyze Particles" command. This procedure automatically counted and measured 

objects by scanning across the image until it found the boundary of the object, and 

then outlined, measured, and redrew the object at a different gray level. Minimal 

particle size included in measurements was set at 100 pixels and cells that touched the 

image edge were included in the analysis. Values were adjusted to cells per square 

millimeter. Each section was measured from three different images and averaged to 

get the CPA value for that sample. The mean for all samples was calculated for 

determining a species CPA value. 

RESULTS 

Table 1.2 lists criteria that other researchers have used to describe the wood of 

Metasequoia and Glyptostrobus. Table 1.3 lists criteria that we have determined to 

be most diagnostic to separate our samples when used collectively. The format of the 

following species descriptions are modeled from Panshin and deZeeuw (1 980). 

Chinese swamp cypress, water pine 
(Cupressaceae) 

Glyptostrobus pensilis K.Koch. 

General Characteristics 

Wood with distinctive odor similar to that of Thuja; moderate to fine in texture; light 

(specific gravity 0.28 --1 sample estimate). Growth rings more or less distinct; 

transition from earlywood to latewood gradual. Parenchyma abundant, present in 

every growth ring, often arranged in tangential bands, visible with a hand lens. Rays 

fine. Resin canals wanting. 



Minute Anatomy 

Tracheids up to 45pm in tangential diameter; earlywood cells of mature stemwood 

averaging 1366 cells per mm2; bordered pits in 1-3 (frequently 1-2) rows on radial 

walls; sparse tangential pitting in latewood; pits leading to ray parenchyma taxodioid 

to cupressoid type, 1-6 pits per cross-field, unorganized or arranged in 2 rows. 

Longitudinal parenchyma fairly abundant, often arranged in tangential bands; end 

walls nodular but occasionally smooth. Rays uniseriate to partly bi-seriate consisting 

entirely of ray parenchyma, the tallest up to 29 cells in height, often with a complete 

separation of the middle lamella of horizontal cell walls, ray tracheids wanting. 

Dawn Redwood 
(Cupressaceae) 

Metasequoia glyptostroboides Hu et Cheng. 

General Characteristics 

Wood without distinctive odor; medium texture, light (specific gravity 0.26; Jagels et 

al., in prep), soft. Sapwood pale yellow to cream color, distinct from heartwood; 

heartwood orangelred to pinkish. Growth rings distinct, delineated by narrow 

latewood; often sinuous; discontinuous and false rings common; earlywood zone 

several times wider than latewood zone; transition from earlywood to latewood more 

or less abrupt. Parenchyma sparse and barely visibly with a hand lens. Rays fine. 

Resin canals wanting. 

Minute Characteristics 

Tracheids up to 69 pm in tangential diameter; earlywood cells of mature stem 

wood averaging 773 cells per rnm2; bordered pits 1-4 (frequently 1-2) rows on radial 



walls; sparse tangential pitting in latewood; pits leading to ray parenchyma taxodioid 

to cupressoid type, fairly large, 1-5 (frequently 2-4) pits per cross-field, often not 

aligned in marginal cells, otherwise arranged in single horizontal row. Longitudinal 

parenchyma diffuse; end walls smooth to slightly nodular. Rays uniseriate to partly 

bi-seriate consisting entirely of ray parenchyma, the tallest up to 3 8 cells in height, 

ray tracheids wanting. 

DISCUSSION 

Previous studies of the wood anatomy of Metasequoia and Glyptostrobus 

were based on small sample sizes and features were often contradicted between 

authors (Table 1.2). We addressed this issue by observing more samples than 

previous studies (Table 1. l), tested published observations, and noted any additional 

characters unique to either species. Although we found one feature that, if used 

quantitatively, consistently separated the two species (separation of ray cells), we are 

uncertain whether this character is reliable for trees growing in all environments. 

Thus, we suggest the use of the suite of characters in Table 1.3, ordered from top to 

bottom: strongest to weakest. 

The character that we observed regularly in Glyptostrobus and only rarely in 

Metasequoia was the separation of ray cells (Fig. 1.2 A-D). We are unaware of any 

other studies that have reported ray cell separation as a taxonomic feature of wood. 

Several researchers have discussed the presence, formation, and purpose of 

intercellular spaces within the rays of conifers (Laming, 1974; Panshin & deZeeuw, 



le 1.2. Published observations on extant Metasequoia and Glyptostrobus wood. 

Feature Meiasequoia glyptostroboides Glygostrobus pensilis Author 

Liang et al. 
Nodular (1 948) 

3orizontal end walls 
Smooth 

Tangential -- 1 node 
Radial -- 2-3 nodes 

Gromy ko ( 1982) 

Henry & 
Slightly swollen , 1-2 nodes Mclntyre 926) 

Smooth (occasional pitting) 3-4 bead-like nodes Greguss ( 1955) 

Not abundant Present in every ring Gromyco ( 1982) 
Scattered Hejnowicz (1 973) 

Occurrence 
Not abundant 

1-3 irregular bands per ring 
Henry & 

Mclntyre (1926) 
Fairly abundant Greguss (I 955) 

Liang et al. 
Not abundant (1 948) 
Metatracheal Li (1948) 

1-3 cupressoid/taxodioid Hejnowicz (1973) 

3 orbicular Li (1948) 
Liang et al. 

2-4 (mostly 2) taxodioid (1948) 

1-4 cupressoid/taxodioid 1-4 cupressoid Gromyko (1 982) 
Cross-field Pitting 

Henry & 
2-6 (mostly 3-4) McIntyre ( 1926) 

Single row, sometimes double Liang et al. 
Not one horizontal row 

rows at margin (1948) 
Liang et al. 

3 to 8 (20 max) (1 948) 
5 to 11 (34 max) Hejnowicz (1973) 
7 to l l (17 max) Li (1948) 

Height (cells) 
2-14 

Henry & 
Mclntyre (1926) 

1-23 1-30 Gromyko (1 982) 

8-10 (exceptionally 16 - 18) 1-18 (30) Greguss (I 955) 

Maximum tangential 
diameter (um) 

66 Li ( 1948) 

Transverse cells per 
mm2 

1300 2200 Greguss (1 955) ...... 
Distinct Hejnowicz (1973) 

arlywood - Latewood Gradual 
transition Gradual 

Distinct 

Henry & 
Gradual (young tree) McIntyre (1926) 

Gradual Gromyko (1982) 
Li (1 948) 

Gerry (1950) 
Liang et al. 

Distinct - abrupt 
(1948) 



Table 1.3. Combined features usehl in separation of Metasequoia and Glyptostrobus. 

Feature Metasequoia gtyptostroboides Glyptostrobus pensilis 

Separation of ray cells 

Average number of 
earlywood cells in mature 

stem (std. dev.) 

Arrangement of crossfield 
pits 

Horizontal end wall of 
longitudinal parenchyma 

Transition from earlywood 
to latewood 

Relative abundance and 
distribution of longitudinal 

parenchyma 

Aroma 

Absent - rare 

Single horizontal rows; random 
in marginal cells 

Usually smooth; occasionally 
slightly nodular 

Abrupt 

Sparse 

Absent 

Visible in every sample 

Random, not aligned. 

Usually nodular; 
occasionally smooth 

Gradual 

Abundant - often banded 

Present - similar to Thuja 

1980; Larson, 1994). Both Metasequoia and Glyptostrobus have pronounced 

intercellular spaces in their rays, as has been reported for other species of 

pedominately wet areas (Larson, 1994). In all our Glyptosh.obus samples, however, 

in addition to typical ray intercellular spaces formed at the corner of a cell, a complete 

separation of ray cells along the middle lamella of horizontal walls was observed. 

The feature was best observed in radial view (Fig 1.2 C, D), but could also be seen in 

tangential sections (Fig 1.2 A, B). Separation of ray cells was observed in 

Metasequoia in only two samples only at the boundary of the annual ring, and never 

extended for more than 45 pm, radially. Separation was common in all of our 

Glyptostrobus samples, it occurred randomly throughout the growth ring, and was 

observed to extend over 200 pm in radial view. The purpose or mode of formation of 



Figure. 1.1. Wood of Metasequoia glyptostroboides and Glyptostrobus pensilis. -A: 
Transverse section of G. pensilis with gradual transition from earlywood to latewood. 
- B-G: M. glyptostroboides. -B: Transverse section showing abrupt transition from 
earlywood to latewood. 4: Radial longitudinal section showing taxodioid/cupressoid 
type cross-field pitting arranged in single horizontal row and narrow latewood region. 
-D-E: Tangential longitudinal sections. -D: Tangential pitting (white arrows) and ray 
height (black arrow = 38 cells in height). --E-G: Horizontal end walls of longitudinal 
parenchyma (arrows). -E: Smooth wall. -F: Single node. 4: Two nodes. -Scale 
bars: A&B = 1000pm. C= 150pm. D=75pm. E-G=5Opm. 





Figure 1.2. Wood of Glyptostrobus pensilis. -A&B: Tangential longitudinal sections, 
arrows indicating separation of ray cells. X & D :  Radial longitudinal sections, arrows 
indicating separation of ray cells. Note also, taxodioid/cupressoid type cross-field 
pitting with random pit arrangement. -E-G: Tangential longitudinal sections showing 
horizontal end walls of longitudinal parenchyma (arrows). -E: Smooth. -F: Single 
node. 4: Two nodes. - Scale bars: A&C=lSOpm. B, D-G=SOpm. 





this feature is unknown. Because our samples may not be representative of all 

environments where Glyptostrobus may grow we suggest caution in using this feature 

as a sole indicator of the species. 

Wood characters that we found in our samples did not always agree with those 

of previous studies (Table 1.2, 1.3). For example, we measured 772 and 1400 cells 

per mm2 in the earlywood of Metasequoia and Glyptostrobus, respectively. Greguss 

(1955) reported values of 1300 and 2200 cells per mm2. Possibly Greguss's 

observations were not of mature wood. In another study we obtained values up to 

2427 cells per mm2 at the pith of a 30-year-old Metasequoia (Visscher & Jagels, in 

prep). However, by the 1 4 ~  ring, values were below those of Glyptostrobus and 

consistent with our vouchered samples by the 1 ring. Sample location is often 

unknown, especially in fossil wood, which adds to the complications of separating 

these woods. If average CPA values are less than 1400 cells/mm2 for an unknown 

wood, it is unlikely to be Glyptostrobus. If higher CPA values are measured then it is 

possible that the wood may be juvenile Metasequoia or any age Glyptostrobus. In 

these cases, more emphasis should be placed on other features listed in Table 1.3. 

Based on our sampling ray cell separation and number of earlywood cells per mm2 of 

mature stem wood, when combined, should consistently separate Glyptostrobus and 

Metasequoia in most cases. 

Several authors have discussed end wall features of longitudinal parenchyma 

to aid in the identification of the two species (Greguss, 1955; Basinger 198 1 ; 

Gromyko, 1982); characterizing Metasequoia with smooth end walls and 

Glyptostrobus with nodular end walls. We found that the features of the horizontal 



end walls of longitudinal parenchyma are variable in both species. Although end wall 

features can be seen in both radial and tangential sections, they are more easily 

determined in the latter. While the majority of end walls in our Metasequoia samples 

are smooth, some are unquestionably nodular (Fig. 1.1 E-H). Those of Glyptostrobus 

are mostly nodular with 1,2, or rarely 3 bead-like nodes (Fig. 1.2 F,G), although, we 

occasionally observed smooth end walls in this species (Fig. 1.2-E). Mahcz (1955), 

Basinger (1 98 l), and Gromyko (1 982) also reported variability in this character. 

Mahcz (1 955) found that only 6% of horizontal end walls in a mature Metasequoia 

tree were smooth, 84% were swollen to slightly nodular, and 10% had a bead-like 

node. 

The last three features listed in Table 1.3 are somewhat subjective with no 

quantitative value or presendabsent indicator attributed to them. Transition from 

earlywood to latewood is often used in wood identification keys to describe how 

quickly earlywood tracheids change into thicker walled latewood tracheids. For 

example, it is used to separate hard from soft pines as well as a general feature to 

describe other species (Panshin & deZeeuw, 1980; Hoadley, 1990). We considered 

the transition from earlywood to latewood in mature Metasequoia to be abrupt (Fig. 

1.1 B) and in Glyptostrobus to be gradual (Fig. 1.1 A). Other reports of this feature in 

Metasequoia are variable, while those for Glyptostrobus are consistent with our 

observations (Table 1.2). 

Although the relative abundance and distribution of longitudinal parenchyma 

are parameters not easily quantified because of random variation within and among 

trees, these features have been used as diagnostic characters. For instance, 



parenchyma is frequent and consistent in Sequoia and Taxodium and absent or 

infrequent in Pinus, Taxus, Torreya, and Larix (Panshin & deZeeuw, 1980). 

Transverse sections show diffuse longitudinal parenchyma in Metasequoia, while 

parenchyma was consistently more abundant and somewhat banded in Glyptostrobus. 

Glyptostrobus produces a strong and distinctive odor similar to that of Thuja 

species. We did not find this character for Glyptostrobus wood reported in the 

literature. We cannot confirm the "distinctive odor" in Metasequoia reported by 

Gerry (1950) and Linnard (1966). Aroma is often used as a gross character 

diagnostic to some species (Hoadley, 1990). Of course, regardless of its value for 

relatively fresh wood, aroma would have no value for fossil samples. 

As indicated by Panshin and deZeeuw (1 980) maximum tangential tracheid 

diameter may have diagnostic value, especially for species with unusually large (as in 

Sequoia) or small (as in Taxus) diameters. We measured maximum tangential 

diameters of 69 pm in Metasequoia and 45 pm in Glyptostrobus. T-tests on these 

data do show distinct patterns, however, it is possible to have a Metasequoia sample 

with maximum tangential diameters that fits within the upper limits of Glyptostrobus. 

We measured maximum values in some Metasequoia samples below 45 pm. In most 

conifers tracheid diameter increases with increasing distance from the pith (Panshin 

& deZeeuw, 1980). Therefore, values may depend on sample location. By 

measuring the number of tracheids per square millimeter in transverse sections (CPA) 

a large number of tracheids are observed, increasing sample size and leading to 

distinct, non-overlapping populations. This feature can be inferred qualitatively from 



the somewhat finer texture of Glypfosfrobus when compared directly to Mefasequoia 

(Fig. 1.1 A, B). 

Several authors observed the presence of traumatic resin canals or cysts in 

extant Mefasequoia (Liang et al., 1 948; Gerry, 1 950; Greguss, 1 955; Schonfeld, 

1955). Basinger (1 98 1) and Schonfeld (1 955) reported the presence of traumatic 

resin canals in fossil wood identified as Mefasequoia. We did not observe this feature 

in any of our extant samples. However, the absence of this feature from our samples 

is not significant because the feature depends on environmental perturbation and is, 

therefore, not of taxonomic value. The reason for mentioning the feature here is 

because it seems quite prevalent in MefasequoidGlypfosfrobus type fossil wood. We 

have observed what appear to be traumatic resin canals on several occasions in fossil 

Me fasequoia wood. 

To test the veracity of our anatomical separation of these species we examined 

a fossil wood sample that we had previously identified as MefasequoidGlyptostrobus 

type. The sample was well preserved, but somewhat compressed in all directions. It 

had cross-field pitting similar to that of modern Mefasequoia, longitudinal 

parenchyma end walls that were smooth, sparse occurrences of longitudinal 

parenchyma, and no separation of ray cells. CPA was intermediate between the two 

species. Compression of cells, especially in the earlywood region, however, likely 

inflates the measured CPA. Transition fiom earlywood to latewood could not be 

determined. These observations make a compelling case for placing the fossil in 

Me fasequoia. 



CHAPTER 2 

THE INFLUENCE OF CELL GEOMETRY ON WOOD STRENGTH 

IN METASEQUOIA GL YPTOSTROBOZDES 

SUMMARY 

In this study we explore tracheid dimensions as they may reflect strength properties 

of Metasequoia wood. Previous research of Metasequoia wood has shown that wood 

strength increases from pith to bark, independent of specific gravity and microfibril 

angle (Jagels et al., in prep). We have found that earlywood tracheid size (diameter 

and length) as well as wall thickness increase from pith to bark. We hypothesize that 

the increase in wood strength is due primarily to the increase in wall thickness 

expressed mostly as an increase in the S2 layer of the tracheid wall. We suggest that 

this pattern enables wood with a small proportion of latewood (as in Metasequoia) to 

increase in strength while creating hydraulically efficient cells (i.e. long, large 

diameter and thick walled tracheids) 

Keywords: Metasequoia, wood strength, hydraulic efficiency, S2 layer, microfibril 

angle, specific gravity, tracheid wall thickness 

INTRODUCTION 

Conifers rely on one cell -- the tracheid -- for both support and water 

transport. Any changes in tracheid dimensions will affect one or both functions of the 

cell (Niklas, 1992; Domec & Gartner, 2002). The mechanical and hydraulic needs 



and capabilities of tracheids change with age, species, and environmental conditions. 

However, most trees tend to follow the same general patterns of cell structure and 

resulting function. Being able to isolate the influences of an individual function is 

complicated by the intricate relationships between tracheid dimensions and function. 

Traditional thought suggests that as strength increases hydraulic conductivity 

must decrease (Carlquist, 1975; Tyree et al., 1994; Domec & Gartner, 2002). This 

generality is based on the idea that as specific gravity (SG) increases the concomitant 

wall thickness increase will lead to smaller cell lumen diameter, reducing hydraulic 

efficiency. However, the mechanics of reaction wood clearly demonstrate that there 

is more to wood strength then the quantity of cell wall material per unit area. The 

quality of cell wall is variable between tracheids resulting in wood strength 

independent of SG. Most notably, the orientation of microfibrils in the S2 layer of the 

tracheid wall has been shown to be important to wood strength (Cave & Walker, 

1994; Nakada, et al., 1998; Walker & Woollons, 1998). Theoretically, a tree could 

increase tensile strength by altering its microfibril angle (MFA) yet still have the 

same hydraulic efficiency -- SG and tracheid diameter remaining constant. 

Is it possible, however, for wood to increase in both strength and hydraulic 

efficiency without changing MFA or SG? The answer may lie in the distribution of 

cell wall material within and between tracheids in a growth ring. Conifers often 

produce earlywood tracheids that are mechanically weak but hydraulically efficient, 

and latewood tracheids that are mechanically strong but hydraulically inefficient. It is 

possible for trees to improve both functions with age by producing wider and longer 

earlywood tracheids along with thicker walled and more latewood tracheids (Domec 



& Gartner, 2002). Some conifers, however, lack a well-defined latewood. The 

question we explore is how these species deal with strength and hydraulic efficiency 

within earlywood cells. We chose Metasequoia because it is hydraulically efficient 

and tall -- in need of sufficient mechanical strength (Jagels & Day, in prep; Jagels, et 

al. in prep). 

Jagels, et al. (in prep) presented evidence that this species maximizes 

hydraulic conductance by producing relatively weak wood. Nevertheless, they found 

that two measures of wood strength -- modulus of elasticity (MOE), and modulus of 

rupture (MOR) -- increased from pith to bark. However, unlike most conifers, MFA 

and SG did not change much from pith to bark. These patterns motivate our study of 

tracheid form and function. In this study we investigate the influence of cell wall 

distribution as a function of tracheid diameter and cell wall thickness and relate these 

to changing strength values in Metasequoia. 

MATERIALS AND METHODS 

Two Metasequoia glyptostroboides trees from closed canopy stands consisting 

mostly of Metasequoia were observed. One from New Jersey (PNJ - 28 annual rings 

at breast height) the other from the northern Jiangsu Province, China (JPC - 30 

annual rings at breast height). The PNJ tree had previously been analyzed for MFA, 

tracheid length, SG, MOE, and MOR in a previous study (Jagels, et al., in prep). 

Samples for anatomical work were taken at breast height and analyzed from 

pith to bark along opposing axes of a radial strip approximately 2cm by 2cm. Radial 

strips were selected to avoid compression wood, knots, and sinuses of the fluted stem. 



Strips were progressively smoothed to a 600 grit sandpaper and scanned on a color 

flatbed scanner. Images were processed in WinDendro v. 6.3a (RCgent Instruments 

Inc. - Qukbec, Qc, Canada) to obtain ring width data. Because of Metasequoia's 

tendency to form false and incomplete growth rings every ring marked by the 

program was checked under a dissecting microscope to ensure that it was a true ring. 

Samples for thin sections were taken beginning with the second ring and every 

forth ring thereafter; seven and eight rings in total for the PNJ and JPC trees 

respectively. Transverse sections (1 8-22 pm) were made using a sliding microtome 

(A.O. model 860) and stained overnight in 1% Bismark Brown before being mounted 

in a low viscosity medium (Cytoseal60 - Richard-Allan Scientific) on microscope 

slides. Images were taken using a SPOT RT digital camera and software (Diagnostic 

Instruments) attached to a light microscope (Zeiss Axioskop) and PC (Toshiba 

Equium 7350M). 

Measurements of the number of cells per square millimeter (CPA) were made 

using black and white images of transverse sections, at a magnification of 1 OOx. 

Images were taken at the beginning of the first formed earlywood covering a default 

area of 1 .O2949 mm2. Images were analyzed in Scion Image Beta 3b (Scion 

Corporation, Frederick, Maryland). They were first converted to threshold images 

using default settings and then processed using the "Analyze particles" command. 

This procedure automatically counts and measures objects by scanning across the 

image until it finds the boundary of the object, outlines, measures, and then redraws 

the object in a different gray level. Minimal particle size included in the count was 

set at 100 pixels and cells that touched the image edge were included in the analysis. 



Values were adjusted to cells per square millimeter. Three images were taken from 

each section and averaged to obtain a value for the ring on one side of the pith. 

Values from each side of the pith were averaged to obtain a mean for the entire ring 

(six measurements per ring). 

Percent cell wall measurements were made on the same images used for CPA 

observations. A small border was added around each image before it could be 

properly analyzed in WinSeedle v. 5.1A (Regent Instruments Inc. - Quebec, Qc, 

Canada). This was done using Photo-Paint (Corel). Images were converted to 

threshold images in the WinSeedle program. Because of slight variations in staining 

and section and image quality, threshold levels were adjusted for each image. Levels 

were manually set to maximize the amount of wall area converted into black pixels. 

Images were then analyzed both as dark objects on a pale background (to obtain 

percent wall area) and light objects on a dark background (to obtain percent lumen 

area). The combined values represent the total number of pixels in each image 

(1,920,000 pixels). A ratio of the number of pixels per millimeter was used to 

convert values to percent wall (or lumen) per square millimeter. 

RESULTS AND DISCUSSION 

Figures 2.1 and 2.2 show the variation of ring width, CPA, percent wall 

material, MFA, and tracheid length for the PNJ and JPC trees respectively. MFA and 

tracheid length data were incorporated from Jagels et al. (in prep). Both trees 

followed similar patterns from pith to bark. However, tracheid dimensions in the JPC 

tree were consistently smaller than those of the slightly faster growing PNJ tree - 
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Figure 2.1 Tracheid dimensions of Metasequoia glyptostroboides 
(PNJ tree) versus ring number from pith. (MFA and tracheid length 
adapted from Jagels et al., in prep) 
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Figure 2.2 Tracheid dimensions of Metasequoia glyptostroboides 
(JPC tree) versus ring number from pith. (MFA and tracheid length 
adapted from Jagels et al. in prep) 



average tracheid length 2.39 mm and 3.53 mm respectively (Jagels et al., in prep). Of 

the measurements made for this study only CPA varied significantly from pith to 

bark. Average ring width for PNJ was 4.79 mm (std. dev. 0.73) with its largest rings 

towards the center of the tree. The JPC tree had larger rings toward the bark with an 

average ring width of 3.50 mm (std. dev. 0.87). Tracheid length and MFA have been 

associated with ring width (Bannan, 1965, 1967; Hiller & Brown, 1967; McMillin, 

1973; Fujiwara & Yang, 2000), but we did not observe a correlation between any 

tracheid dimension and ring width in Metasequoia. 

As previously shown (Jagels et al., in prep) Metasequoia follows normal 

trends of increasing wood strength from pith to bark (Cave & Walker, 1994; Domec 

& Gartner, 2002). A significant increase in MOR (29,100; 32,200 @a), and a nearly 

significant (p 0.0674) increase in MOE (3,470; 4,920 MPa) was measured between 

inner and outer rings by Jagels et al. (in prep). Many studies have shown that wood 

strength is most strongly correlated with specific gravity (Panshin & deZeeuw, 1980; 

Easterling, 1982; Niklas 1992). Thus more cell wall material per unit area should 

yield greater strength. Walker and Woollons (1997) found this to be true in a broad 

general sense and is demonstrated in our Table 2.1 between different SG "groups". 

Metasequoia supports this generality by being a very low-density wood that is 

correspondingly weak, however, when SG is similar between species or within a tree 

variations in wood strength must be attributed to other causes. For example, SG did 

not vary in the PNJ tree from pith (0.28) to bark (0.27), while strength did (Jagels, et 

al., in prep). 



Table 2.1. Comparison of average tracheid diameter and strength characteristics of 
conifers species. Values obtained from Alden (1997) and Panshin and deZeeuw 

(1980). 

Specific Average ~ o d u l u s  of Modulus of tangential 
Species gravity rupture diameter 

(@a) 
elasticity (MPa) 

(green value) 
(urn) 

Western Red Cedar 0.3 
Thuja plicata 

Atlantic White 
Cedar 0.3 1 25-30 32000 5200 

Chamaecyparis 
thyoides 

Northern White 
Cedar Thuja 0.29 20-30 29000 4410 
occidentalis 

Port-Orford -Cedar 
Chamaecyparis 0.39 35-40 45500 8960 

lawsonia 

Alaskan Yellow 
Cedar 0.42 25-35 44000 7900 

Chamaecyparis 
nootkatensis 

Black Spruce Picea 0.3 
mariana 

25-30 42100 9510 

Sitka Spruce Picea 0.3 
sitchensis 35-45 39300 8480 

Red Spruce Picea 
rubens 0.37 



Excluding reaction wood, researchers have sometimes noted that woods with 

similar specific gravities exhibit different strength values (Mark, 1967). These 

discrepancies have been explained by noting differences in microscopic properties of 

tracheid cell walls. Most notably microfibril angle of the S2 layer has been found to 

have a profound impact on the mechanical properties of wood (Cave & Walker, 1994; 

Donaldson, 1998). Larger angles are usually associated with weaker, less stable 

wood. Juvenile (core) wood produced near the center of the tree, has larger angles 

than mature (outer) wood of the same species (Butterfield & Pal, 1998; Donaldson, 

1998; Matsumura & Butterfield, 2001). In Metasequoia, there was a statistical 

difference between slightly higher MFA's at the second ring (28.7", 30.3") compared 

to MFA's of the outermost measured rings (24.7", 25.5") of the PNJ and JPC trees 

respectively. However, the decreasing trend was relatively flat (slopes = -0.1866 for 

PNJ and -0.2 137 for JPC) and MFA's remained higher than those for most 

commercial woods of similar age (Hiller & Brown, 1967; Cave & Walker, 1998). 

Similar trends (flat slope and high MFA) have been measured in plantation grown 

Pinus taeda (McMillin, 1973) and the latewood of Cryptomeria japonica (Nakada et 

al., 1998). In the latter study mechanical tests were done in which one tree 

experienced the traditional negative correlation between MFA and MOE while in 

another tree no relationship between MFA and MOE was observed. Since SG and 

MFA in Metasequoia remain nearly constant from pith to bark, we explored other 

explanations for changes in wood strength. 

Tracheid length of Metasequoia follows a typical pattern of rapidly increasing 

from the pith and leveling off around 15 growth increments (Panshin & deZeeuw, 



1980; Jagels et al., in prep). Some studies have associated increasing strength to 

increased tracheid length (Wellwood 1962; Carlquist, 1975; Rundel & Stecker, 1977). 

Carlquist (1 975) stated that trends of increasing tracheid length might be associated 

with an increased need for support. However, a plausible physical explanation that 

might link an increase in strength to an increase in tracheid length was not provided. 

Because tracheid length is usually associated with a decrease in MFA, (Wardrop & 

Dadswell, 1950; Hiller & Brown, 1967; Walker & Woollons, 1998) tracheid length 

may be acting as a surrogate for MFA. In Metasequoia, however, no relationship 

between tracheid length and MFA was observed. A similar lack of relationship has 

been reported in root wood of Pinus radiata and P. nigra (Matsumara & Butterfield 

200 1). 

By considering wood as a composite material with tracheids as short fibers in 

a matrix, one can model the effect of fiber length on strength in the same way as for 

other composite materials. In short-fiber composites, once a minimum fiber aspect 

ratio (lengthldiameter: lid) exceeds about 50: 1 then increasing fiber length has little 

further impact on the strength of the composite (Agarwal & Broutman, 1990). 

Bannan (1 965) observed tracheid l/d ratios for approximately 24 conifer species. The 

minimum average value he measured was 72: 1 in a juvenile stem of Thuja 

occidentalis. The largest for mature wood was 143: 1 for Sequoia sempervirens. 

From our measurements in Metasequoia we found a minimum Vd ratio of 80: 1 at the 

center of the tree and 120: 1 near the bark of the PNJ tree. Failure of fibers in short- 

fiber composites with low fiber aspect ratios involves fiber pullout, in which the fiber 

does not break, but separates from the matrix in which it is embedded. Mark (1967) 



stated that failure in wood generally initiates in the SI layer of the cell wall, not 

between tracheids (i.e. the fiber itself breaks). Groom et al. (2002) showed that 

failure could occur when tracheids separate from each other. However, they observed 

this type of failure only in latewood tracheids of Pseudotseuga menzenzii. In 

earlywood cells, they only witnessed failure of tracheids themselves. Metasequoia 

does not produce a large amount of latewood, therefore, separation between tracheids 

is not likely to be the point of failure. Furthermore, our study only focused on 

earlywood. These empirical data support the hypothesis that tracheid length in 

Metasequoia exceeds minimal fiber aspect ratio and, therefore, should have little or 

no effect on strength. 

Because SG, MFA, and tracheid length do not appear to be contributing to the 

differences in strength properties from pith to bark, we looked at other features in 

tracheid dimensions that might be responsible. While determining taxonomic 

characters for Metasequoia we developed a rapid technique to measure the number of 

tracheids per mm2, which we designated cells per unit area (CPA) (Visscher & Jagels, 

in prep). A significant trend was noticed when this measurement was applied along 

pith-to-bark transects. CPA values for the PNJ tree was highest at the pith (145 1 

cells/mm2), quickly decreased, leveling off by ring 10 (594 cells/mm2), and reached a 

value of 544 cells/mm2 by ring 26. Values for the JPC tree follow a similar trend, but 

the cells were somewhat smaller than those in the PNJ tree with 1867 cells/mm2 at the 

pith and 827 cells/mm2 near the bark. We used CPA values instead of average 

tracheid diameters because CPA measurements provide dimensional information 



about a large group of tracheids rather than the smaller number of individual tracheids 

usually measured to create an average transverse tracheid parameter. 

We also measured percent wall area per square millimeter near the center and 

outer rings of both trees on the same images from which CPA values were obtained. 

Percent wall area is a surrogate density measurement, and follows a similar pattern to 

SG. There was no significant change in the percent of wall material per square 

millimeter from pith to bark in either tree. Values of the second and outermost ring 

measured were, respectively, approximately 60% (std. dev. 4.7%) and 50% (std. dev. 

2.7%) for the PNJ tree and 65% (std. dev. 1 5.7%) and 69% (std. dev. 2.4%) for the 

JPC tree. By looking at the CPA and percent wall area measurements it can be 

assumed that tracheid diameter and wall thickness of are increasing from pith to bark. 

This is shown in Figure 2.3 A and B, images from the 2"d and 26' ring of the PNJ tree 

respectively. 

Because cell size clearly increases from pith to bark, we explored this as a 

possible influence on wood strength. While looking at parenchyma cells, Niklas 

(1 992) discusses the effects of cell geometry and packing as influencing strength. He 

noted that when thin walled parenchyma cells that are closely packed their strength as 

a unit increases. This pattern is contrary to what we have found in the xylem of 

Metasequoia. However, Niklas's observation did not take changes of density into 

account. Easterling et al. (1982) discusses the strength of balsa wood with different 

densities. They analyze cellular strength using simple beam theory. In doing so they 

take into account both cell wall thickness and cell geometry. They analyzed changes 

in cell shape as wood is compressed in different directions. Its original and strongest 



Figure 2.3. Transverse sections of Metaseguoia glyptostroboides (PNJ tree). - A: 2nd 
ring. -B: 26fi ring. Note that the percent cell wall area in both images is statistically 
the similar. - Both images same at same magnification -- Scale bars = 400pm. 





shape is a hexagonal prism. They concluded that this shape gives the cell axial 

stiffness but reduced transverse stiffness. The shape is similar to that of the cell used 

to make honeycomb composites. Marshall (1 998) has shown that for honeycomb 

designs made from uniform homogeneous materials, such as aluminum, shear 

strength (similar to stresses that would be experienced by tracheids in bending) does 

not differ in honeycombs of the same density but with different cell size. 

Unlike aluminum, wood is not a homogeneous material. The tracheid cell 

wall is multi-layered. The properties of each layer, as they affect strength, must be 

considered. Several authors have shown that the thickness of the primary (P) and S1 

layers is fixed and any increase in wall thickness is a consequence of additional 

production of the S2 layer (Cbte, 1965; Panshin & deZeeuw, 1980; Cave & Walker, 

1994; Walker & Woollons, 1998). If this is the case, then the influence of the S2 

layer on wood properties will vary with wall thickness. Walker and Woollons (1998) 

noted that since 80% of the wall is the S2 layer, its properties would most strongly 

influence the mechanical properties of wood. Other studies indicate the S2 layer 

determines wood properties because it not only constitutes the majority of the cell 

wall, but also has a parallel microfibril arrangement (Kretschmann, et al., 1998). 

Huang et al. (1 998) summarize this idea and discuss that strength and SG are highly 

correlated because SG and wall thickness are directly related -- thicker walls having 

more parallel microfibrils. 

If the thickness of the P and S I layers are fixed in each tracheid, then the 

proportion per unit area of these layers is dependant on how many tracheids are 

present -- CPA. The total perimeter of CPA estimates the relative amount of P and SI 



material per unit area. Figure 2.4 is a model of how total cell perimeter per area 

changes with cell size. In this model we have used smaller, but proportionally similar 

values to those observed in the 2nd and 2 6 ~  rings of the PNJ tree. Assuming tracheids 

as square in cross-section, by increasing cell size and decreasing CPA, Melasequoia, 

has decreased its total perimeter per unit area, and thus has reduced the proportion of 

P and S1 layers per square millimeter. Because cell wall area (or SG) does not change 

significantly from pith to bark, outer rings contain a larger percentage of their cell 

wall area in the stronger S2 layer -- increasing strength despite the same SG and 

MF A. 

Comparing other Cuppressaceae woods with similar design strategies (woods 

with little latewood) we see that there is support for a correlation between tracheid 

diameter and strength when SG is held constant. Table 2.1 is a compilation of 

strength values at green conditions from Alden (1990) and tracheid dimensions from 

Panshin and deZeeuw (1980). Strength values are given green because these are 

conditions closest to those in the living tree. In each case for similar species with 

matched SG, larger tracheids (i.e. larger diameters) are linked with stronger wood. It 

is possible that differences in MFA may be influencing these values, however, 

assuming all the samples are mature wood, this should be minimized. Also, because 

cell wall thickness values were not available for these species, we assume that for 

woods with the same SG those with larger tracheid diameters will also have thicker 

cell walls. Since these woods, like Metasequoia, lack significant latewood this is 

likely a valid assumption. 



Grid A Grid B 

Each grid = lmrn2 

Total perimeter Cells per 
mm2 of all cells 

(mm) 

Model 
(calculated) 

Grid A 3 6 24 

Grid B 16 16 
Percent 
change 125 50 
(W 

PNJ Tree 
(estimated) 

2nd ring 1467 152 

26th ring 633 1 00 
Percent 
change 132 52 

(W 

Figure 2.4. Changes in total perimeter of all cells per mrn2 as a function of cell size in 
transverse sections -- theoretical model and estimated values from the PNJ tree. 



In Table 2.1, the relationship between cell size and strength does not hold for 

Picea species -- trees with significant latewood. This is likely a consequence of the 

strength of latewood tracheids overwhelming the contribution of the earlywood 

tracheids, and, in fact probably represents a different design strategy for trees that 

produce a significant amount of latewood. 

CONCLUSIONS 

Metasequoia, a low-density wood lacking a well-defined latewood, provides an 

opportunity to study the effects of cell wall thickness and cell shape on wood 

strength. Because tracheids are responsible for mechanical strength and hydraulic 

conductance, any variation in their structure will influence both functions. We 

previously suggested that Metasequoia produces wood that is specialized to maximize 

hydraulic conductance through enlarged tracheid diameters (Jagels et al., in prep). It 

appears that Metasequoia simultaneously improves both hydraulic function and 

mechanical strength with distance from the pith. While this trend is contrary to the 

traditional strength/conductance tradeoff view of xylem anatomy (Carlquist, 1975; 

Tyree, et al., 1994), we suggest that this adaptation may also occur in other species 

that lack well-defined latewood. 
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