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Management of forest resources, even when practiced at the scale of ecosystems,

is implicitly based on managing photosynthetic acquisition of carbon by trees. This thesis

examines several aspects of carbon balance at the scale of individual trees, using red

spruce (Picea rubens Sarg.) as a model species.

Age-related declines in net primary productivity have been described for many

species, including red spruce. A potential explanation is that ontogenetic changes in

meristems lead to lower photosynthetic rates, which was confirmed here for red spruce. A

grafting study used scions from juvenile, 6Oy, and 120~ trees to demonstrate that age-

related morphological and physiological trends were retained in the grafts after 3 growing

seasons, providing evidence that those age-related trends are inherent in meristems. In

contrast with the stomatal limitations to gas exchange indicated by research on conifers in

western North America, gas exchange results from both field populations and grafted

scions suggested that age-related declines in photosynthetic rates are caused by other

factors in red spruce. Indirect evidence hints at feedback limitations to photosynthesis

from reduced sink strength for carbohydrates in old trees.



A further study evaluated the effects of temperature (T) and leaf-to-air vapor

pressure deficit (VFD) on net photosynthesis in sapling red spruce. VPD responses were

investigated in a field population and were found to have significant influence on stomatal

conductance and photosynthesis above a threshold of 2 kPa. As VPD and T are highly

correlated, a subsequent study employed growth chambers to separate their influences.

Those results demonstrated that red spruce has a substantially broader T range for

maximum photosynthetic rates than has been previously reported, and the effects of T and

VPD are additive. These findings have implications for understanding the response of red

spruce to silvicultural treatments and climate change.

The relative importance of potential environmental stresses and their influence on

in situ photosynthesis were tested using data collected from micrometeorological stations

in three contrasting silvicultural systems and a seasonally integrative carbon gain model,

VPD proved to be the most significant limiting factor, followed by T. Integrated

photosynthethic carbon gain was roughly equal in clearcut and shelterwood systems, but

was light-limited in selection stands.
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Chapter 1: Literature Review

Introduction

Carbon budgets of green plants, at individual, community and ecosystem levels, are

the foundation of food webs and, thus, influence most ecological processes. To a large

extent, autogenic mechanisms control the structure and function of ecosystems, and these

are, in turn, based on capture and retention of solar energy through photosynthesis and

subsequent carbon dynamics. The dominant influence of carbon dynamics has been

recognized in such diverse processes as intra and interspecific competition (Kimmins

1987) and global climate change (Lug0 and Brown 1986).

Consequently, effective natural resource management paradigms must be founded

in an understanding of carbon processes. Manipulation of carbon assimilation and

allocation at individual tree and stand levels forms the basis for silvicultural practices

(Nyland 1996, Oliver and Larson 1990, Smith 1986). However, as forest managers have

embraced new silvicultural paradigms, such as multicohort stands, mixed-species

approaches, and extended rotations, it has becone apparent that there are large deficiencies

in our knowledge of those essential processes (O’Hara et al. 1994). In addition, recent

national policy shifts toward ecosystem and landscape management strategies (SAP 1992,

Kessler et. al. 1992) have placed distinct emphasis on refining knowledge of the

interaction between tree physiology and ecological mechanisms.

Process models are valuable tools in our understanding of ecophysiology, but their

effectiveness as predictive instruments is impaired by lack of empirical data for calibration,

1



validation, and refinement (Running and Milner 1993). This is particularly true in multiage,

multispecies forest ecosystems (Lavigne 1992). Present theories of forest carbon dynamics

largely rely on logical hypotheses that explain observations in nature, but have not been

subjected to rigorous examination through field studies. Potential dissimilarities among

carbon process attributes in forests of different physiographic regions may further obscure

validation of general hypotheses.

An enormous body of literature has developed concerning factors that directly or

indirectly control photosynthetic carbon gain (net primary production). This review covers

only selected factors that have significant influences on photosynthetic carbon gain

associated with sapling growth or tree age. Specific mechanisms can operate at folk or

canopy levels. An example of a leaf-level impediment to photosynthetic carbon gain would

be diminishing stomatal conductance with decreasing waterpotential (Conroy et al. 1988).

Increased mutual leaf shading is a canopy-level constraint (Roberts and Long 1992,

Assmann 1970). Stand and leaf level mechanisms may interact to cause decreases in

assimilation; thus, net primary production is the result of the interaction of extrinsic

(environmental) and intrinsic (physiological) factors. Extrinsic factors are associated with

the physical environment, but may be highly modified by structure or competitive

processes associated with biotic communities. For trees, light is perhaps the most

significant resource. However, temperature, water availability, nutrient resources, and

other factors will determine a plant’s ability to utilize incident light. Intrinsic factors are

related to inherent abilities of tree species or individuals to use available resources for

growth. The following subsections explore the influence of age-related factors,
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micrometeorological parameters, and microenvironments created by stand structure on

photosynthetic carbon gain.

The influence of tree age on net primary production

Observations have established that aboveground net primary productivity

negatively correlates with tree age for both individual trees and single cohort stands

(Whittaker and Woodwell 1968, Assmann 1970, Whittaker 1975, Bormann and Likens

1979, Harcombe et al. 1990). Long-term studies on even-aged forests showed that

maximum bole increment rate, at the stand level, occurs shortly after crown closure and

declines as trees reach maturity (Assmann 1970). Although less common, studies

considering both aboveground net primary production (ANPP) and belowground primary

production (BNPP) have found similar regressions (e.g., Crier et al. 1981). Carbon budget

theories advanced to explain this observed trend can be generally divided into two

categories: assimilation rate and allocation hypotheses. The former stress the significance

of photosynthate source, and the latter carbohydrate sinks.

Allocation-based hypotheses

Allocation hypotheses are based on relative importance of various photosynthate

sinks and observed declines in the ratio of photosynthetic to nonphotosynthetic tissue as

trees and stands age. Theories in this category have traditionally received the widest

acceptance and prominence (Jarvis and Leverenz 1983, Waring and Schlesinger 1985,

Oliver and Larson 1990). The trend of increasing quantity of nonphotosynthetic tissue

mass per unit leaf area with tree age has been commonly advanced as the predominant

factor explaining reduced ANPP with tree age (Whittaker and Woodwell 1968, Waring
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and Schlesinger 1985). At the stand-level, allocation theory has been supported by

numerous studies that provide indirect evidence.

Developmental patterns of even-aged stands result in the redistribution of leaf area

(LA) among fewer individuals of larger size (Oliver and Larson 1990). Although the total

LA a monoculture growing on a specific site type can support is more plastic for shade

tolerant than intolerant species (Jack and Long 1991), a general pattern emerges. As

developing stands reach their maximum potential leaf area, autogenic thinning of less

competitive individuals frees growing space which is captured by more competitive trees

(Long and Smith 1984). Leaf area index (LAI, m* leaf surface per m* ground) increases

rapidly until the time of crown closure, often experiences a transient maximum (graphic

“hump”) as LAI slightly overshoots site-potential LA, then stabilizes or declines slowly as

the stand matures (Assmann 1970, Waring and Schlesinger 1985, Oliver and Larson

1990).

Although stand LAJ remains relatively constant, the foliage biomass supported by

individual trees increases. This has several potential effects on productivity. As leaf area is

concentrated on fewer large trees, individual tree crowns expand in both horizontal and

vertical dimensions, and density (LA per unit volume) may increase (Oliver and Larson

1990, Margolis et al. 1995). Smith and Long (1989) found that growth efficiency (defined

as stemwood production per unit LAJ) for Pinus contorta stands was inversely related to

canopy depth. They attributed this loss in efficiency to increased carbon allocation to

branches.

Although overall utilization of solar n-radiance increases with canopy depth
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(Larcher  1983), light intensity exponentially decreases with depth according to Beer’s law

of light extinction (Jarvis and Leverenz 1983). Thus, foliage at lower crown levels may be

photosynthesizing at rates near the compensation point, contributing little to a tree’s net

carbon balance (c.f Leverenz 1996). Kaufinann  and Ryan (1986) and Oliver and Larson

(1990) have suggested that a greater percent of foliage in lower canopy positions and

increased mutual shading contributes to declining overall photosynthetic efficiency in older

stands.

Roberts and Long (1992) evaluated the influence of canopy architecture on Abies

kzsiocarpa and concluded that tree-level efficiency was inversely related to canopy depth

and positively correlated to the ratio of photosynthetic to nonphotosynthetic tissue. They

generalized that individuals of codominant and dominant canopy classes with moderately

sized crowns achieve maximum efficiency. Lower efficiencies are typical of both smaller

and larger trees. As irradiance decreases with canopy depth, shorter individuals with a

greater proportion of their foliage in lower canopy positions exhibit decreased relative

productivity. Although the largest trees support most of their foliage in high h-radiance

environments, they have a greater woody infrastructure associated with each unit of leaf

area; thus their foliar efficiency is decreased by a lower assimilation-to-respiration ratio

(A:R).

Long and Smith (1990) added support to A:R explanations for the inverse

relationship between foliar efficiency and crown size by reporting that the ratio of foliage

to total crown biomass decreased with increasing crown size for Pinus contorta. A study

conducted with a lodgepole pine chronosequence by the same authors (Long and Smith
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1992) indicated that declining growth efficiency with age is due to both a decrease in LAI

and a reduction in NPP per unit leaf area. The former was attributed to abrasive crown

interactions or “crown shyness”. They suggested that LA efficiency decreases were due to

an increasing ratio of nonphotosynthetic to photosynthetic tissue.

Ryan and Waring (1992) evaluated the relative importance of assimilation rate and

allocation hypotheses in Pinus contorta forests. Using a carbon budget model, they found

that relative increases in the maintenance respiration to photosynthesis ratio &:A)

account for only 15% of the measured difference in ANPP between young and old stands.

Murty et al. (1996) evaluated the data from Ryan and Waring (1992) using a stand-level

process model and came to the same conclusion. However, Hunt et al. (1999) used

process modeling to show that allocation to respiration explained age-related decline in

productivity observed in balsam fir stands in Newfoundland, Canada. From this disparity

of results, they suggested that different mechanisms may dominate age-related

productivity changes in different climates and stand-types.

Assimilation-based hypotheses

Yoder et al. (1994) suggested that age-related declines in photosynthetic rates for

lodgepole and ponderosa pine may be a significant cause of net production decreases in

old trees. This is supported by studies of age-related differences in photosynthetic rates in

scats pine (Ku11 and Koppel 1987), bristlecone (Schoettle 1994), and hybrid Englemann x

white x Sitka spruce (Richardson et al. 2000). However, photosynthetic rates in eastern

larch have been reported to be higher in older trees (Hutchison et al. 1990). Several
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explanations for these age-related differences in photosynthetic rates have been advanced

(Ryan et al. 1996): nutrient limitations may be greater in older trees (nutrient limitation

hypothesis), hydraulic constraints may limit gas exchange in older (larger) trees (hydraulic

limitation hypothesis), or these difference may be due to ontogenetic changes (maturation

hypothesis).

Nutrient limitation hypothesis

Photosynthetic rates are strongly correlated with leaf nitrogen content in a wide

range of plant species (Field and Mooney 1986, Pearcy et al. 1987, Lambers et al. 1990).

However, this relationship may be complicated by partitioning between various

photosynthetic system and nonphotosynthetic components (Evans 1989, 1990), and the

occurrence of nitrogenous osmoregulatory and storage substances (Sarjala et al. 1987,

Margolis and Vezina 1988, Lavoie et al. 1992, Billow et al. 1994). Reich and Schoettle

(1988) suggested that photosynthetic response is more strongly linked to the interaction of

nitrogen and phosphorus content than the former element alone.

However, Ryan and Waring (1992) and Yoder et al. (1994) found no significant

tree age-related differences in total foliar nitrogen content for chronosequences of Pimrs

contorta and P. ponderosa. However, their analyses were limited to first year foliage.

Numerous investigations have shown that foliar nitrogen content is inversely related to

leaf age (Lehto and Grace 1994, Field 1983, Field and Mooney 1983, Matyssek 1986,

Lang et al. 1987). If older trees have an increased proportion of foliage in older age

classes, an overall lower nitrogen content per unit leaf mass may contribute to decreased

photosynthetic rates. No direct evaluations of this hypothesis have been reported.
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Hvdraulic limitation hvpothesis

Yoder et al. (1994) and Ryan and Yoder (1996) proposed the hydraulic limitation

hypothesis to explain the results of their study on ponderosa pine, which indicated that

photosynthesis was limited in older trees relative to younger individuals by reductions in

midday stomatal conductance. This hypothesis is based on older trees having lower

hydraulic conductivity in water pathways between roots and foliage due to longer or more

complex hydraulic pathways. Due to this lower conductivity, stomata of older trees show

greater sensitivity to evaporative demand and more tightly regulate transpiration to

minimize the potential for xylem embolism (Ryan and Yoder 1996).

The rate of xylem water flow is determined by Darcy’s law (Tyree and Ewers

199 1, Margolis et al. 1995), in which flow rate is directly proportional to cross-sectional

area of the transmitting structure (sapwood xylem), its permeability, and the water

potential gradient. As conductivity is equivalent to the combination of area and

permeability terms, a decrease in this combined parameter will require an increase in water

potential gradient to maintain constant flow. If xylem conductance is lower in older

(larger) trees, a critical water potential for stomatal closure will be reached more rapidly

than in younger (smaller) trees as evaporative demand increases.

Studies of tree hydraulic architecture provide evidence that potential xylem flux

decreases with tree size. Darcy’s law further states that flow is inversely related to

pathway length. Thus, maintaining an equal flow to leaves at greater distance from a root

absorption point, as in larger trees, requires either an increase in conductivity or water

potential gradient. Leaf specific conductivity (LSC) is commonly used as a measure of the
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ability of a particular section of stem or branch to supply water to more distal leaves, and

values for this parameter have been found to be relatively constant along the length of tree

stems (Tyree and Ewers 1991). However, Ewers and Zimmerman (1984a,b) have found

LSC values to be much lower in branches, strongly influenced by branch diameter and

order, and subject to significant restriction at branch-stem junctions. Although stem LSC

values, if strictly height-determined, would not be expected to differ greatly between

younger and older trees of the same height, the longer branches typical of older crowns

may provide significantly reduced LSC values.

Several studies indicate that larger trees are capable of altering their hydraulic

architecture to compensate for the longer, more complex pathways between roots and

foliage. These are summarized in a critique of the hydraulic limitation hypothesis by

Becker et al. (2000). For example, Pothier et al. (1989) have reported that sapwood

permeability, and thus conductance for trees of equal sapwood cross-sectional area, is

positively related to tree age in Pinus banhiana.  They viewed this relationship as an

adaptive response that provides foliage with a constant water supply as trees increase in

height and crowns expand. In addition, several attempts to provide direct evidence in

support of the hydraulic limitation hypothesis by experimental manipulation have been

unsuccessful. Hubbard et al. (1999) girdled young lodgepole pine trees to reduce LSC and

removed foliage from older trees to increase it, but found that neither manipulation

significantly changed stomatal conductance or photosynthetic rates. A similar study in

which foliage of old Douglas-fir was enclosed in plastic bags to reduce transpiration, and
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thus LSC, was also unsuccessful at increasing gas exchange rates of uncovered foliage on

the same branches (Brooks et al. 2000).

Although a physiological cause-and-effect pathway to link lower LSC and stomatal

behavior has not been established (Becker et al. 2000), some recent studies may provide

insight into the physiological mechanisms involved. Sperry et al. (1993) have suggested

that a feedback mechanism between xylem pressure potential and stomatal conductance

may protect trees from xylem cavitation during periods of water stress. Such a mechanism

may be related to pH changes in the mesophyll under mild water stress caused by high

transpirational demand, and their activation of ABA bound to cell walls (Wilkinson and

Davies 1996).

Maturation hvnothesis

The possible relationship between ontogenetic changes and declining productivity

with tree age is poorly understood, with only circumstantial evidence either for or against

this potential explanation (Ryan et al. 1996). Dramatic changes in morphological and

physiological attributes of foliage, including photosynthetic capacity, have been described

for numerous species during their early development and have been attributed to different

challenges to growth and survival at various life-stages (Greenwood and Hutchison 1993,

Rebeck et al. 1992, Hackett 1985, Greenwood 1984). Although little is known about age-

related trends in foliar attributes beyond reproductive maturity or mid-age, there is some

evidence that supports a concept of continuing change. Richardson et al. (2000) reported

that changes in foliar morphology and gas exchange attributes continue past mid-age in

hybrid Englemann x white x Sitka spruce. Similar trends in foliar attributes have been
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described for Norway spruce (Ku11 and Koppel 1987), and in needle morphology of Sitka

spruce (Steele et al. 1989). However, none of these studies have directly addressed the

potential for ontogenetic changes in meristematic tissue as a contributing mechanism to

age-related declines in productivity.

Common rootstock studies, in which scions donated by juvenile and mature trees

are grafted onto rootstock of common age, hint at the possibility that differences in

morphological and physiological traits associated with those life-stages are inherent in

meristems. Such studies have been carried out on loblolly pine (Greenwood 1985), eastern

larch (Greenwood and Hut&son 1989), and red spruce (Rebbeck et al. 1992). Emebiri et

al, (1998) and Hutchison et al. (1990) have implicated a genetic basis for ontogenetic

changes by identifying differential patterns of gene expression related to life-stages.

However, pathways by which genetic changes in meristems and/or the foliage they

produce affect photosynthetic rates have not been described.

A possible pathway by which ontogenetic changes in meristems may effect

photosynthetic rates is by producing tissue in older trees that has an inherently lower

growth rate. Shoots resulting from grafts of meristems from older trees have lower growth

rates than scions from young trees. This has been shown for loblolly pine (Greenwood

1985), eastern larch (Greenwood et al. 1989, Takemoto and Greenwood 1992) and red

spruce (Rebbeck et al. 1992). Takemoto and Greenwood speculated that the older

meristems may be weak sinks for resources compared to shoots arising from scions taken

from younger trees. Weak sinks for carbohydrate, due to reduced growth, can result in

feedback limitations to photosynthesis (Stitt 1990). Leverenz (198 1) suggested that sink
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strength limitations may explain differential photosythetic capacity among branches in the

crowns of mature Douglas-fir. Removal of strong carbon sinks has been shown to reduce

maximum leaf photosynthetic rates in herbaceous plants (Gifford and Evans 198 1). Maier

and Teskey (1992) provided evidence that sink strength enhanced by increased growth

stimulates increases in photosynthetic rates in white pine.

Micrometeorological factors influencing net photosynthetic carbon gain

Light intensity

Solar n-radiance is the most apparent control on photosynthetic rates. Assimilation

is directly, nonlinearly related to photosynthetic photon flux density (PPFD): the quantum

flux of photosynthetically active radiation (PAR, wavelength 400-700 nm) (Salisbury and

Ross 1992). The response curve of photosynthesis to PPFD passes through the x-axis at a

compensation point where assimiltion equals respiration, rises through a nearly linear

initial phase, then becomes asymptotically nonlinear as PPFD approaches the saturation

point (Larcher 1983, Teskey et al. 1995). At saturation, further increases in assimilation

rate are prevented by substrate (CO,) limitations, carboxylation reactions, electron

transport limitations, photosynthate sink-source relationships, and the influence of

environmental factors (Leverenz 1988, Farquhar et al. 1980). At the needle-level

saturation PPFD levels for most temperate conifers occur near 1000 pmol mm2 s-l

(Kozlowski 1991, Teskey et al. 1995). Mutual shading in shoots and tree crowns results in

higher saturation points at those levels (Terashima and Hikosaka 1995). However, due to

the rapid linear rise in assimilation at lower PPFD levels, rates of 50% of light-saturated
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rates commonly occur at PPFD levels of less than 10% of saturation flux (Teskey et al.

1995, Bazzaz and Carlson 1982). The convexity of photosynthesis response curves is

highly correlated with both species shade tolerance and needle position in the shade-sun

foliar adaptation continuum (Leverenz 1988).

Individual needles develop morphological and physiological adaptations to their

light environment which are reflected in their photosynthetic response curves (Leverenz

and Jarvis 1980). Shade-leaves allocate a greater percentage of resources (carbon and

nutrients) to the light harvesting complexes of photosystems I and II, while sunleaf

resource partitioning favors carboxylation and photosystem electron transport

infrastructures (Evans 1990). Shade-leaves are characterized by lower compensation and

saturation points than sun-leaves providing decreased maximum photosynthesis rates when

fully illuminated (Givinish 1988). Five-fold differences in photosynthetic capacity can exist

between sun and shade-leaves on the same plant (Pearcy et al. 1987). The overall

maximum assimilation rate for a tree crown is thus a function of not only total foliage but

of the relative proportions of shade- and sun-foliage (Givinish 1988, Pearcy et al. 1987).

While morphological attributes of shade- and sun-leaves are determined during

development, Lieffers et al. (1993) found a high degree of physiological plasticity in

shade-foliage of Picea ghca saplings exposed to higher light regimes by thinning.

However, Pothier and Margolis (199 1) reported that the determinate shoots of Abies

balsamea saplings (with preformed buds and leaf characteristics) were unable to

significantly respond to increased light levels in the growing season following thinning.

Ku11 and Koppel(l987) found that Picea abies shade needles from lower crown positions
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showed significantly lower assimilation rates, which, they suggested, were principally due

to morphological factors. Additionally, foliage from older trees have a greatly reduced

plasticity in response to changing light regimes (Richardson et al. 2000, Ku11 and Koppel

1987).

Leaf-to-air vapor pressure deficit

Stomata regulate gas exchange rates between leaves and the environment; thus,

stomata1 resistance to gas exchange influences both rates of water efilux through

transpiration and CO, uptake. This provides the basis for a significant physiological

tradeotT plants must continually compromise between water loss and supply of CO,, the

substrate for photosynthetic carboxylation (Kramer and Koslowski 1987). Plant water

relations have a powerful influence on assimilation rates, primarily through control of

stomatal conductance, thus gas exchange. Control of internal water status is necessary to

prevent air embolisms from blocking xylem water flux (Sperry et al. 1993). Resistance to

cavitation is variable among species, with critical xylem water potentials for red spruce

reported to be between -2.5 and -3.0 MPa (Sperry and Tyree 1990).

Leaf-to-air vapor pressure deficit is the driving force for transpiration (Grantz

1990), and therefore the movement of water through the soil-plant-air continuum. As

water tlux is limited by a series of resistances between soil and leaf (Pallardy et al 1994),

high rates of transpiration can result in internal plant water stress. Plants minimize harm&l

effects of water stress by controlling transpiration rate through stomatal closure

(Mansfield 1985). Plants appear to have developed several pathways by which stomata1

aperture is regulated to prevent internal water stress. Evidence indicates that stomata1
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response to water stress is mediated by abscisic acid (ABA), which promotes stomatal

closure by altering ion transport across the membranes of guard cells (Squire et al. 1988).

Leaf-level ABA concentrations may increase when mesophyll water potential drops below

a threshold (Cowan et al. 1982). Soil water stress may also induce stomatal closure

independently of leaf water status (Blackman and Davis 1985). This response has been

linked to root-produced ABA intermediation (Zhang and Davis 1990), and other hormonal

control processes (Munns and Ring 1988). In some species, root-produced ABA,

transported in the transpiration stream, may accumulate in leaves and mediate stomatal

closure after a certain volume of water has transpired (Loveys 1984). Zhang and Davies

(1989) have demonstrated that decreasing water potential in roots can induce production

of ABA. Alternatively, transpiration rate appears to be an initiating factor in inducing

stomatal closure, even in the absence of significant plant water stress (Grantz 1990).

Although the physiological details of this cause-and-effect pathway have not been lily

described, Wilkinson and Davies (1996) provided evidence that this process may be

mediated by changes in apoplastic pH in the leafmesophyll, which convert ABA from an

inactive form bound to cell walls to a free, active form. The latter pathway is consistent

with rapid responses of stomata to increasing VPD,& in tree foliage, which have been

described for numerous tree species (e.g., Day 2000, Weibel et al. 1993, Warkentin et al.

1992, Sanford and Jarvis 1986, Running 1976). Day (2000) has proposed that interspecific

differences in stomatal sensitivity to leaf-to-air vapor pressure deficit may be the result of

adaptation to the microclimates of different regions or stand-types of varying structural

characteristics.
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Matyssek (1986) and Squire et al. (1988) have reported that photosynthesis and

stomata1 conductance show strong, approximately linear, relationships. Many studies have

established a strong correlation between lowered photosynthetic rates and decreased

xylem and mesophyll pressure potential for coniferous species (summarized in Margolis et

al. 1995). Kaufmann and Ryan (1986), Ryan and Waring (1992), Yoder et al.(l994),  and

Ryan and Yoder (1997) have suggested, but provided no empirical evidence for, a link

between water stress-induced stomatal closure and declining net primary production with

tree age.

Temperature

Temperature can influence carbon gain through several pathways. High

temperatures can result in denaturation of enzymes critical to photosynthetic light-

harvesting and carboxylation pathways (Salisbury and Ross 1992, Kozlowski et al. 1991),

and carbon losses to maintenance respiration are directly related to temperature.

Additionally, temperature is a critical variable in determining relative activity of ribulose

bisphosphate carboxylase-oxygenase (rubisco) in carbon fixation (photosynthetic pathway)

as opposed to oxygen fixation (photorespiratory pathway). In addition, T,& determines the

saturation vapor pressure in the boundary layers of air at foliar surfaces, and thus leaf-to-

air vapor pressure deficit (water vapor pressure of air at saturation minus actual vapor

pressure) (Buck 198 1).

At higher temperatures (generally > 40 “C) enzymes denature, usually resulting

from deterioration of secondary molecular structure (Salisbury and Ross 1992). This may

inhibit the electron transport systems of the photosynthetic light reaction, enzymes
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involved in carboxylation reactions, or pathways for enzyme repair and replacement, and

these effects may be temporary or permanent (Levitt 1980). Vann et al. (1994) reported

that red spruce showed signs of thermal inhibition, which they attributed to disruption of

enzymatic or membrane systems, beginning at temperatures between 35 and 40 “C.

Foliar temperature can have substantial influence on carbon gain by increasing

losses to maintenance respiration. Maintenance respiration is the carbon cost of routine

“basal” metabolic activity, i.e. the carbon used to maintain established tissue primarily by

replacing structural components and enzymes, and is a relatively complex function of

temperature and other allogenic influences @archer 1983, Amthor 1984, Fitter and Hay

1987). As maintenance respiration rates are the integrated result of all physiological

activity, they generally conform to the Q’” function that describes the relationship between

temperature and rates of chemical (enzymatic) reactions (Amthor 1984). The Q’” function

provides for an exponential increase in rate with temperature that is defined by its

exponent (Q”-value)  (Salisbury and Ross 1992). For example a Q”-value of 2 defines a

function at which rates double for each 10 “C increase in temperature. Temperate conifers

generally have Q’O-values of between 1.8 and 2.4 (Ryan et al 1996, Gower and Landsburg

1997). No Q1o-values specific to red spruce have been published.

Maintenance respiration rates are generally 0.5-l. 5 % of gross photosynthetic rates

(Ryan et al. 1997, Sprugel 1995). However, fohar losses to maintenance respiration

continue when light-levels are not sufficient for photosynthesis and are a significant carbon

sink in tree species. From a whole-tree perspective (photosynthetic and nonphotosynthetic

organs), temperate species may allocate 25-50% of the carbon fixed in photosynthesis to
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maintenance respiration (Landsberg and Gower 1997, Ryan et al. 1997, Ryan et al. 1994,

Edwards et al. 1980). In red spruce, shade-adapted individuals, although they exhibit

lower absolute rates, may allocate a greater proportion of photosynthetically fixed carbon

to maintenance respiration due to lower maximum photosynthetic rates (Day 2000,

Alexander et al. 1995).

Temperature may also affect photosynthetic rates through its influence on the

relative activities of photosynthesis and photorespiration (Monson et al. 1982, Ku and

Edwards 1977a, Jolliffe and Tregunna 1968). In addition to its role as a catalyst in the

carboxylation of ribulose-1,5-bisphosphate  in the C-3 carboxylation cycle, the enzyme

ribulose-bisphosphate ca.rboxylase/oxygenase  (rubisco) also acts as a catalyst for

oxygenation in the C-2 or photorespiratory cycle. Temperature can influence the

differential activity of rubisco as carboxylase or oxygenase through two pathways. The

solubility ratio of 0, to CO, in the mesophyll symplast increases exponentially with

temperature (Ku and Edwards 1977b), increasing 0, substrate concentration and

enhancing oxygenase activity. Additionally, Ogren (1984) has proposed that temperature

and specificity of rubisco for 0, are directly related. These consideration led Tolbert

(1994) to estimate a 20 “C optimum for C3 species at current atmospheric concentrations

of 21 % 0, and 300-350 ~1 CO, 1-i air. Because of the exponential nature of the 0, to CO,

solubility ratio, Tolbert (1994) also suggested 40 to 65 pmol mol“ atmospheric CO,

concentration as an effective compensation point (zero net photosynthesis) for C3 plants

at 20 “C, 110 pmol mol“ at 30 “C, and 300 pmol mol“ at 37 “C.
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The effects of stand structure on microclimate

Stand structure exerts significant control over microclimatic variables such as light,

temperature, and leaf-to-air vapor pressure deficit, which, in turn, exercise control over

photosynthetic carbon gain. However, few studies have documented the relationship

between canopy structure and multiple environmental variables.

Most published studies have focused on the environments created by treefall gaps,

and most were carried out in tropical forests. Examples are Brandani et al. (1987), Fetcher

et al. (1985), and Chazdon and Fetcher (1984) for Costa Rican rainforests, and Ashton

(1992) for Sri Lankan rainforest. Due to great differences in insolation attributes and

conditions in the bulk atmosphere, such studies reveal little about conditions in structurally

similar forests at higher latitudes.

The most complete picture of micrometeorological conditions in temperate forest

gaps comes from the research at the Harvard Forest by F.A. Bazzaz and his associates

(summarized in Bazzaz and Wayne 1994). This study focused on patterns of

environmental heterogeniety within gaps and between gaps and the surrounding intact

forest and is unique in encompassing multiple environmental factors. Other research on

gaps in temperate North American forests have addressed the influence of light regimes

(e.g., Phillips and Shure 1990, Paulson and Platt 1989, Canham 1988b), or light and

belowground resources (e.g., Finzi and Canham 2000, Walters and Reich 1997, Sipe and

Bazzaz 1995) and their effect on regeneration or interspecific competition. However, none

of these studies comprehensively addressed micrometeorological regimes.

For canopy gaps (which are analogous to those created by multiple-tree selection
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harvests), direct beam (full strength) sunlight falls over the northern one-third to one-half

of the gap area for some portion of the day. However, the duration of direct beam

radiation is strongly dependent on gap size, gap shape, orientation of major axis

(considering a roughly oval-shaped gap), height of surrounding canopy, and seasonal track

of the sun (Bazzaz and Wayne 1994, Canham 1988b). On clear days air temperature in

large (300 m2) gaps in the Harvard Forest showed a direct, linear relationship to light

intensity, and midday maxima in the northern aspect of the gaps were 4-5 “C higher than

the surrounding intact forest (Bazzaz and Wayne 1994). Variability in air temperature

across gaps was significant, with southern aspects showing midday highs close to those of

intact forest. Rates of air movement are also an important factor in determining the

similarity of air temperature in gaps to that of bulk air above the surrounding forest

canopy and their within-gap heterogeneity, with high wind speeds resulting in more

uniform temperatures both between gap air and bulk air and within gaps (Miller et al.

1991). Higher wind speeds are generally associated with larger gaps and lower and less

uniform canopies in the surrounding forest.

The light and temperature environments created by shelterwoods are generally

characterized as more moderate than clearcuts and less spatially variable than gaps (Oliver

and Larson 1990). For example, Childs and Flint (1987) monitored air and soil

temperatures and solar radiation over a growing season in shelter-wood (24 m2 ha-’

overwood basal area) and clearcut stands in the Cascade Mountains of Oregon. Daily

average solar radiation was 30-40% lower in the shelterwood stands; however, air

temperatures were similar between the two stand-types with usually < 1 “C difference.
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Surface soil temperatures, reflecting differences in radiation input, were 4-6 “C, higher in

the clearcut during summer months. Survival of planted Douglas-fir seedlings over two

growing seasons were significantly greater in the shelterwood, which the authors

attributed to a more moderate temperature regime. Studies comparing environments in

clearcuts with intact (closed canopy) forests have demonstrated that clear-cuts have

greater input of solar radiation, higher daytime temperatures for both air and soil, and

higher evaporative demand (greater atmospheric vapor pressure deficits) at seedling

and/or sapling strata than intact canopies (Landsburg and Gower 1997). Nighttime

temperatures are lower in clearcuts due to enhanced radiational cooling. These differences

are consistent with predictions from stand-level heat budgets by the Pennman-Monteith

relationship (McCaughey 1987).

Silvicultural systems, by controlling microenvironments in seedling and sapling

strata, may be able to shift competitive balances between target species and potential

competitors (Messier et al. 1999; Hannah 1991, 1988; Marquis 1979). While this is a basic

tenet of selection and shelter-wood silviculture (Nyland 1996, Seymour and Hunter 199 1,

Smith 1986), Messier et al. (1999) made a case that the principle may also apply among

species with closely related silvical attributes. Numerous studies have investigated the

relationship between microclimate and optimal conditions for growth. The least

ambiguous results have generally come from studies that compare species pairs or groups

of species with different degrees of shade-tolerance between varying environments (e.g.,

Finzi and Canham 2000, Wayne and Bazzaz 1993, Phillips and Shure 1990, Canham

1988a). Most of these have used light regime as an independent variable and have focused
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on the heterogeneity of light environments present in gaps.

Studies that attempt to define optima for single species by using transects

extending from high light to low light or multiple plots in different stands to provide a

light-environment continuum have often produced more ambiguous results with respect to

those predicted by observations of silvical properties. This uncertainty may be related to

complexity introduced by variation in other environmental variables such as soil moisture

or nutrient availability, or variables that are highly correlated with light environment such

as transpirational demand (e.g., Holgren and H&.nell2000, McConville 1998, Klinka et al.

1992). The clearest relationships between light and growth are reported for species with

low shade-tolerances, where growth is strongly inhibited at low light levels and increases

until full sunlight levels (e.g., mountain beech (Dignan et al. 1998), longleaf pine (Palik et

al. 1997) and white pine (Stiell and Berry 1985)). With a few exceptions (e.g., Man and

Lieffers 1997) these studies have not been explicitly linked to physiological mechanisms

that are promoted or inhibited by explicit environmental variables.

Light is the principle factor causing variability in productivity or growth across

stand-types with different canopy characteristics (Coates 2000, Finzi and Canham 2000,

Bergqvist 1999, Dignan et al. 1998, Mailly and Kimmins 1997, Walters and Reich 1997,

Sipe and Bazzaz 1995, Comeau et al. 1993). However, water availability may be a second-

order limiting factor if it varies among microsites (Holgren and HBnell2000, Walters and

Reich 1997). If sites differ in edaphic attributes, nutrient availability (generally nitrogen)

may influence differential growth rates (Sipe and Bazzaz 1995, Fahey et al. 1998, Reich et

al. 1997). However, Finzi and Canham (2000) found that intersite nitrogen availability
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explained only 7% of sapling growth in a New England hardwood forest, compared with

21-79% accounted for by light regime.
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Chapter 2: Age-related changes in foliar morphology and
physiology in red spruce and their influence on
declining photosynthetic rates and productivity
with tree age

Abstract

The contribution of maturation-related changes in meristem behavior to age-

related decline in forest productivity is poorly understood. While changes in

morphological and physiological attributes associated with transition from juvenile to

reproductively-mature phases have been described for many woody species, few studies

have examined maturational changes that occur after the onset of reproductive

development. We studied age-related needle morphology and gas exchange in a

population of red spruce growing in a multicohort stand where tree ages ranged from first-

year germinants to over 150 y, as well as grafted scions from these trees. Age-related

trends in foliar morphology were evaluated, and differences in gas exchange characteristics

were compared between 60- and 120-y age-classes in a field investigation. This was

followed by a common-rootstock study, where scions from trees representing 20-, 60-,

and 120-y cohorts were grafted onto juvenile rootstock and maintained for three growing

seasons, after which morphological and physiological foliar attributes were evaluated.

The field study demonstrated significant age-related trends in foliar morphology,

including decreasing SLA and increasing needle width, projected needle area, and needle

width-to-length ratio. Similar trends were apparent in foliage from the grafted scions.

Both in situ foliage and shoots resulting from grafted scions from the oldest cohort

showed significantly lower photosynthetic rates than their counterparts from younger
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trees; however, differences in stomatal conductance and internal CO, concentrations were

nonsignificant. These results demonstrate that: (1) Foliage of red spruce shows significant

age-related trends in both morphology and physiology. (2) Lower rates of photosynthesis

contribute to age-related decline in the productivity of older red spruce. (3) These declines

in photosynthetic rates result from nonstomatal limitations. (4) Age-related changes in

morphology and physiology are inherent in meristems and persist for at least 3 y in scions

grafted to juvenile rootstock.

Introduction

The production of biomass by both individual trees and forest stands decreases

substantially with age, commencing well before trees reach the midpoint of their average

lifespan (Assmann 1970). Age-related reduction in biomass accumulation is an important

consideration in mechanistic models that predict forest growth and determines the capacity

of forests to act as carbon sinks. With the current impetus towards silvicultural approaches

that employ uneven-aged systems and extended rotations, understanding the physiological

basis for age-related decline in productivity of dominant species has become increasingly

important. Understanding this component of productivity is crucial to quantifying and

manipulating carbon fluxes in forest ecosystems and their influence on global CO, cycles.

Although both stand-level and tree-level factors may contribute to age-related

decline in productivity, those operating at the scale of individual trees are likely to play a

major, if not principal, role (Ryan et al. 1997). Several contrasting hypotheses have been

advanced to establish a physiological basis for age-related declines in individual trees.
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Until the past decade, the textbook explanation has centered on a declining ratio of

photosynthesis to respiration (e.g. Waring and Schleisinger  1984). This hypothesis was

questioned by Ryan and Waring (1992) and subsequent studies (e.g. Murty et al. 1996)

that indicated that differences in carbon allocation to maintenance respiration between

mid-aged and old trees were insufficient to account for observed age-related declines in

growth. However, Hunt et al. (1999) provided evidence that respiration plays a significant

role in age-related decline in balsam fir forests of eastern Canada. Other mechanisms based

on carbon allocation (i.e., increased carbon allocation fine roots, defensive compounds,

and sexual reproduction) have been proposed, but little quantitative evidence has been

advanced to support them (reviewed by Ryan et al. 1997).

An accumulating body of circumstantial evidence supports a model predicated on

lower photosynthetic rates (or integrated photosynthesis) in older trees (Richardson et al.

2000, Hubbard et al. 1999, Yoder et al. 1994, Ku11 and Koppel 1987). Yoder et al. (1994)

proposed that lower photosynthetic rates in older trees are caused by reduced stomatal

conductance, which, in turn, results from lower hydraulic conductivity in their longer (or

more complex) hydraulic pathways. Becker et al. (2000) has questioned the validity of this

model based on observations that trees have an excess capacity in conductance and larger

trees are able to compensate for limitations in conductivity by altering their hydraulic

architecture. While circumstantial evidence in support of the hydraulic limitation model

has been advanced (Hubbard et al. 1999, Kostner et al. 1996), attempts to manipulate

photosynthetic rates in younger trees by decreasing hydraulic conductivity or increase

rates in older trees by reducing transpirational demand have been largely unsuccessful
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(Brooks et al. 2000, Hubbard et al. 1999).

Another explanation for age-related declines in productivity may lie in genetically

based maturational changes in tree meristems with age. Dramatic changes in

morphological and physiological attributes of foliage, including photosynthetic capacity,

have been described for numerous species during their early development and have been

attributed to different challenges to growth and survival at various life-stages (Greenwood

and Hutchison 1993, Rebeck et al. 1992, Hackett 1985, Greenwood 1984). Emebiri et al.

(1998) and Hut&son et al. (1990) have implicated a genetic basis for ontogenetic changes

by identifj&rg differential patterns of gene expression related to life-stages. Although little

is known about age-related trends in foliar attributes beyond reproductive maturity or mid-

age, there is some evidence that supports a concept of continuing change. Richardson et

al. (2000) reported that changes in foliar morphology and gas exchange attributes continue

past mid-age in hybrid Englemann x white x Sitka spruce (P. emgelmunni  x glauca x

sitchensis). Similar trends in foliar attributes have been described for Norway spruce, P.

abiea (L.) Karst, (Ku11 and Koppel 1987), and in needle morphology of Sitka spruce, P.

sitchensis (Bong.) Car-r, (Steele et al. 1989). However, none of these studies have directly

implicated ontogenetic changes in meristematic tissue as a contributing mechanism.

Herein we have evaluated trends in foliar morphology and physiology that continue

beyond mid-age in red spruce (Picea rubens Sarg.) and have provided evidence that those

trends are related to ontogenetic changes in meristems. Red spruce is a major component

of several cover-types in the forests of northeastern North America, and its long lifespan

(> 200 y) and propensity to occur naturally in multicohort stands make it ideally suited as
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a model species for investigations of long-term maturational change. A study where scions

from juvenile ( 2 y) and mature (- 70 y) red spruce were grafted onto common rootstock

(Rebbeck et al. 1992) clearly showed that maturation-related changes in meristems of red

spruce persist for at least 2 y after grafting. In their results scions from mature (28 y) trees

exhibited lower specific leaf area (SLA), stomatal conductance (G,) and maximum

photosynthetic rates (A,-) than those from juvenile donors.

We conducted an investigation to evaluate a possible ontogenetic basis for age-

related decline in productivity of red spruce by addressing four questions: (1) Is there

evidence that productivity in red spruce growing in multicohort stands declines with age of

trees? (2) Is reduction in photosynthetic capacity associated with this decline? (3) Do

trends of change in foliar morphological attributes continue beyond reproductive maturity

or mid-age? and (4) Are maturation-related changes in meristem behavior (indicating

differential gene expression) associated with age-related changes in foliar attributes?

Study site and population

Methods

This study focused on a population of red spruce growing in a multicohort stand of

approximately 10 ha (Compartment C 16) at the Penobscot Experimental Forest (PEF),

Penobscot County, Maine. Use of a multicohort population minimized site effects,

particularly nutrient limitations. Stand-level differences in nutrient availability have been

advanced as a potential explanation for age-related decline in productivity, either through

direct influence on photosynthetic capacity or indirectly by stimulating greater allocation
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of resources to roots (Crier et al. 198 1). The USDA Forest Service has managed C 16

under a selection system with a five-year cutting cycle since the early 1950s. Seymour and

Kenefic (1998) have summarized the management history, edaphic conditions, and

dynamics of this stand. Although the age structure is unbalanced, cohorts ranging in age

from new germinants to approximately 150 years are present.

The upper canopy of Cl6 is dominated by two mature cohorts (Table 2.1A). The

oldest originated following significant disturbance (perhaps harvesting) in the middle of

the nineteenth century and shows a mean age at breast height (1.3m) of 117 years

(nominal 120 y age-class). The younger cohort, with a mean age of 54 years at breast

height (nominal 60 y class), was likely released by early Forest Service entries. Harvesting

systems common during the time period in which the oldest cohort was released were

diameter-limit cuts which selectively removed the largest individuals (Seymour 1992),

resulting in disturbance patterns that would closely resemble those of the single-tree to

small group selection system that released younger cohorts. Thus, it is doubtful that the

earlier harvest favored regeneration of trees with different growth characteristics or foliar

attributes than more recently released cohorts.

Growth effkiency

Growth efficiency was evaluated using a random sample (n = 58) of upper canopy

individuals (defined as those trees with > 60% of south-facing crown exposed to direct

sunlight for at least 6 hours per day during summer). DBH, height, and crown length

measurements were made on sample trees in the summer of 1995. Two opposing

increment cores (N and S aspects) were taken at breast height and the extent of sapwood
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Table 2.1. Characteristics of the red spruce population used in this study. A. Mean
attributes (n = 58) for the two upper canopy cohorts from Penobscot Experimental Forest
selection stand C-16 used for field photosynthesis measurements, foliar morphometry, and
as scion donors. B. Means (n = 32) for members of the two upper canopy cohorts selected
for field gas exchange measurements. ‘f’ = one standard deviation.

Age at 1.3 m

A. Field population

53.8 *26.4

DBH (cm) Height (m)

15.4 f 4.6 10.6 f 3.2

Live crown ratio

0.56 ht.15

117.1 f 13.2 39.7 f 2.6 20.3 h2.8 0.55 hO.15

B. Gas exchange sampling population

57.7 f 21.3 16.5 f 3.0 11.5 *2.3 0.57 l 0.14

116.5 f 14.7 37.5 *2.7 20.7 f 1.2 0.53 kO.13

marked on the fresh cores by observing change in transparency. Ages, radial growth

increments, and sapwood radii were determined with an optical core reading system

(Measuchron,  Bangor, Maine, USA) coupled to a computer using the PJKvSDOS

software (P.J. Krusic, Lamont-Doherty Geological Observatory, Palisades, NY, USA).

Active sapwood and total cross-sectional areas were calculated as concentric circles using

averaged radii. Total leaf mass was calculated using regression equations of leaf mass on

sapwood area at breast-height developed by Maguire et al. (1998) for red spruce growing

in the PEF. For individual trees, total aboveground biomass for 1994 and 1989 was

calculated from locally developed equations of biomass on diameter given in Young et al.

(1980). Aboveground annual net production (ANP) was determined as the average annual

change in aboveground biomass for the five-year period 1989-1994. Foliar efficiency

(Waring 1983) was estimated as mean annual aboveground biomass production per unit
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foliar mass over the same 5-year interval. This model incorporated the assumption that leaf

mass remained essentially the same over that period. This assumption is supported by the

relatively consistent longevity of red spruce foliage (Blum 1992) and the lack of any

reports of defoliating disturbances during that period in the PEF (USDA Forest Service

records). Correlations between productivity and age were assessed using Pearson r-values

(SAS v. 6.1; SAS Institute, Car-y, NC, USA).

Field gas exchange and water potential

In the summer of 1995, 16 trees from each of the two dominant canopy cohorts

were randomly selected for gas exchange measurements (Table 2.1 b). From this set, 2

trees from each cohort were randomly assigned without replacement to each of 8 sampling

dates (Julian dates 172, 173,201,206,208,233,235,237). On each sampling date, order

of sampling (by cohort) was random, and the sampling sequence repeated twice between

1000 and 1200 hours EST, providing 2 subsamples from each tree. Foliage samples

consisted of a terminal branch shoot from the southern aspect of the upper one-third of the

crown. Samples were harvested using a shotgun and rushed to a portable field lab within 1

minute of sampling. A section of shoot with last season’s foliage was excised for gas

exchange measurements, and the balance of the sample placed on ice in a small insulated

box for water potential measurements.

Gas exchange measurements were made with a Li-Cor 6200 closed-type

photosynthesis system using a cuvette with 0.25 1 volume. Calibrations for flow meter,

IRGA zero points, and CO, span values were made just prior to each measurement series.

Light was provided by a halogen lamp and filtered through a water bath to minimize long-
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wave infrared input, while maintaining saturating h-radiance (1000-1200 pmol m‘* s-l, Day

2000). Additional cooling was provided by external electric fans. This system allowed

needle temperatures in the cuvette (measured with a fine-wire thermocouple) to be

maintained near 25 “C, within the opimum range reported for sun-adapted foliage of this

species (Day 2000). Three sequential measurements were made within 1 - 2 minutes, and

average values used for analysis. Thus, all gas exchange measurements were completed

within 3-4 minutes of sample harvest. Our preliminary measurements indicated that

excision of branches has no deleterious effects on photosynthetic rates for at least 6- 10

minutes in spruce. All gas exchange samples were returned to the lab, dried at 65 “C for at

least 72 hours and weighed on an analytical balance (test accuracy f 0.001 g).

Xylem water potential was measured within 10 minutes of harvest using the

pressure bomb technique (Koide et al. 1989) with 100% N2. Pressurization endpoints were

observed using a 10-45x zoom stereoscope. For each sample, 3 trials were made and the

mean value reported for analysis. Material was maintained in the cooler until measured. In

addition, dawn water potential measurements were made on all trees, except on day 233,

as early as light conditions permitted sampling.

Gas exchange parameters were evaluated with analysis of variance (GLM

procedure, SAS v.6.1) using a randomized block design with date as the blocking factor to

account for variance due to phenological and meteorological factors. Concordance of

analyses with the assumptions of ANOVA was evaluated with the Durban-Watson statistic

for normality and Levene’s test for heteroscedacity (Snedecor and Corcoran 1989). As a

result, log-transformed data were used for the ANOVA of G,.
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Foliar morphometry

To minimize confounding effects of foliar adaptation to light environment, separate

analyses were carried out on shade- and sun-adapted foliage. Shade foliage was collected

from 15 randomly selected individuals in each of 6 nominal age-classes (2, 5, 10,20, 60,

and 120 years). Ages of the first 4 classes were determined by counting whorls. Ages of

the older classes were determined by cores taken at 1.3 m; therefore, their class

designations reflect age at breast height. The two oldest classes are the equivalent of the

mature cohorts used for field gas exchange measurements. As light adaptation is a fluence

response (Chabot et al. 1979), sun-adapted foliage was collected from only the three

oldest classes. Trees in the younger classes were growing in canopy gaps and received

substantially less integrated light flux than upper canopy trees. Sun-foliage was collected

from the crown positions described for field gas exchange sampling. Shade-foliage was

collected from the nor-them aspect of the lower one-third of crowns which were not likely

to receive substantial input of direct sunlight.

Collections were made during the autumn, when current-year foliage was fully

formed. For each individual, 3 subsarnples of approximately 3 cm twig length from the

current foliar cohort were analyzed. Needles were stripped from twigs, scanned on a high-

resolution flatbed scanner, and analyzed with WinSeedle  (v.4.3, Regent Instruments,

Quebec, PQ, Can.). Dry masses were determined as previously described. All analyses

were ANOVAs for simple random design (GLM procedure; SAS v.6.1). The assumptions

of ANOVA were tested as previously described and log-transformed data used when

necessary.
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Grafting study

Eighteen trees from each of the three oldest age-classes sampled for analysis of

foliar morphology (mean ages of 2 1, 54, and 117 y), were randomly selected as scion

donors. Scions for the grafting experiment originated as terminal branch shoots from

canopy positions with sun-adapted foliage (as previously defined). Scions were collected

during the last two weeks of February, 1997, with a hand pruner, pole pruner, or shotgun,

depending on tree height. After collection, scions were placed in a cooler with ice and held

dormant until grafting.

Three-year-old potted rootstocks that had satisfied their cold-requirement were

brought into a heated greenhouse in mid February, and grafts were made shortly after

rootstocks became physiologically active. This approach resulted in dormant scions being

grafted onto non-dormant rootstock to enhance the establishment of vascular connections

before scion budbreak. Scions, consisting of a terminal bud and approximately 4 cm of

subtending stem with any associated lateral buds, were cleft-grafted onto leader stems of

similar caliper. Trees were maintained in the greenhouse until danger of frost was past (15

May), then relocated to a nearby shade house (35% interception shadecloth) for the

remainder of the growing season.

Of the initial 18 scions from each age-class, 8, 12, and 7 grafts from the 20, 60,

and 120 nominal age-classes, respectively, were successful. Grafted trees were maintained

in the shadehouse for three growing seasons, resulting in 4 foliar flushes. (Trees flushed

twice in 1996 due to the extended growing season initiated in the greenhouse.) The

shadehouse Came was covered with plastic sheeting during the winter months and

47



shadecloth during the growing season. Trees were transferred to 25 1 pots at the beginning

of the second post-grafting growing season (1998), potted with peat, vermiculite, and

sand mixed 2: 1: 1, and supplied with time-release fertilizer (Osmocote 18-6- 12 (NPK);

Sierra Chemical Co., Milpitas, CA) at a rate of 0.124 kg mm2. Potentially competing leaders

from rootstocks were pruned following budbreak. Survival to the third growing season

was 6, 8, and 4 trees from the 20-, 60-, and 120-y scion classes, respectively. Most losses

were from whole-tree mortality, which may have been caused by freezing damage to

roots.

Foliar attributes of scions

In the summer of 1999 (3ti post-grafting growing season), 4 trees from each age

class were selected for sampling. This included all 4 surviving trees with 120 year-old

scions and individuals randomly selected from the other two classes. Gas exchange

measurements were made on three shoot tips from the uppermost whorl of each selected

scion. Control measurements were also made on 3 upper crown shoot tips from each of

four randomly selected rootstocks. Measurements were taken on current-year foliage

during the first two weeks of August. Shoot elongation and needle growth had ceased

approximately one month before measurements. The standard 2 x 3 cm cuvette from a

LI6400 (Li-Cor, Inc., Lincoln, NE) open-type photosynthesis system was clamped on the

center portion of sample shoots and foliage acclimated for 30 minutes to a light intensity

of 2000 pmol me2 s-’ PPFD using a LI6400-02B light source. Gas exchange measurements

were subsequently made at 14 light intensities (2000, 1500, 1000, 750, 500, 350,200,

120, 90, 60,40, 25, 10, and 0 pmol me2 s-l) in declining order. With each change in light
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intensity a 3 minute adjustment period was provided, followed by a test for stability (<

0.5% maximum CV for ACO,), and the adjustment period repeated if necessary. The

system’s infrared gas analyzers were matched before each measurement, zero values were

calibrated daily, and span values were checked weekly using a standard gas for CO, and a

L1610 (Li-Cor, Inc.) dew point generator with pressure compensation correction for H,O.

Measurements were made on one tree per day with tree sampling order assigned

randomly. On each day sampling began at 0800 EST and was completed in approximately

3 hours. After sampling, the shoot sections contained in the cuvette were severed, their

needles detached, and morphology measured as described for the field samples. Gas

exchange measurements were calculated on the basis of actual leaf mass (A,.& or area (G,)

using the algorithms in Licor, Inc. (1999). Apparent quantum efficiencies were calculated

as the slope of the linear portion of the photosynthetic light-response curve using rates at

PPFD levels 260 pmol me2 s-’ (Leverenz 1988).

Data analysis, using the means of the 3 subsamples in a simple random sample

design, followed the procedures described for the field data. To meet the assumptions of

ANOVA, analyses of photosynthesis and stomatal conductance were both performed on

log-transformed data.

Results

Foliar efficiency index (Fig. 2.1) was inversely related to tree age. This

demonstrated that either older individuals are producing less photosynthate per unit of

foliar mass or a smaller proportion of production is allocated to accretion of aboveground

biomass.
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Red spruce exhibited age-related trends in several aspects of folk morphology.

Specific leaf area (SLA; cm2 projected leaf area per g dry mass) declined with age in both

sun- and shade-adapted foliage (Fig. 2.2a) The most pronounced decreases were across

age classes < 40 y, with the rate of change lessening across the mature cohorts. Needle

width (Fig. 2.2b), needle area (Fig. 2.2c), and, particularly, the ratio of needle width-to-

length (Fig. 2.2d) showed a positive relationship to tree age that was consistent across

folk types (sun- or shade-adapted). The increasingly steep slope of the needle width-to-

length (W:L) trend between the 60- and 120-y classes compared to the 20- and 60-y

cohorts made this attribute particularly noteworthy.

Table 2.2 compares field gas exchange attributes between the upper canopy age-

classes. ANOVA showed late-morning photosynyhetic rates in the 120-y upper-canopy

cohort to be significantly lower than the 60-y cohort when calculated on a leaf-mass basis.

Stomatal conductance (G,) was not significantly different between the age classes, and

internal CO, concentration (CJ was slightly nonsignificant (p = 0.06) with the younger

cohort showing the lower levels. Dawn xylem water potentials were about -0.4 Mpa,

dropping to about -1.4 MPa during the midday. For both sampling series, differences

between the cohorts were very close to those predicted by their differences in mean tree

height (Table 2.1 b) and gravitational potential (approximately 0.01 MPa rn-‘; Salisbuxy and

Ross 1992).

For the grafted scions, ANOVA of foliar morphological attributes showed similar

age-related trends to the field population in mean needle width (Fig. 2.3a), width-to-length
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Figure 2.1. Relationship between tree age and folk efficiency for upper canopy red
spruce in C-16 (n = 58). Foliar efficiency index values represent g aboveground ANP per
100 g foliar biomass.

Table 2.2. Results of gas exchange and water potential measurements on the two upper
canopy cohorts of red spruce in PEF Compartment 16. All entries are mean * standard
error. Abbreviations and symbols are defkred in the text, and mensurational data for the
two cohorts are summarized in Table 1A.

Cohort 60 y 120y P>F

4, (pm01 g-’ s-3 14.4 f 0.86 11.7hO.84 < 0.01

G, (mmol mm* se’) 87.5 * 6.58 92.1 f 6.63 0.28

Ci (crl ~‘) 261 * 5.01 276 * 5.08 0.06

Kidhy WW - 1.42 f 0.046 - 1.52 f 0.043 0.12

- 0.41 f 0.053 - 0.45 kO.053 0.24
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Figure 2.2. Trends in foliar morphological attributes with tree age in the multicohort red
spruce field population: (A) specific leaf area, (B) mean needle width, (C) mean projected
needle area, and (D) needle width-to-length ratio. Means were calculated fkom 15 trees of
each age class, with 3 subsamples per tree. Bars represent one standard error. Letters
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ratio (Fig. 2.3b), and needle area (Fig. 2.3c). Projected needle area was significantly

different due to trends in needle width and length, while differences in SLA showed a

declining trend with scion-donor age but were nonsignificant across age-classes (Fig.

2.3d).

& exhibited a decreasing trend across age classes, but only differences between

120 y scions and those of younger donors were significant (Fig. 2.4a). Stomatal

conductance (Fig. 2.4b) showed a strong declining trend with scion age-class. Internal

CO2 concentration also decreased with scion age-class (Fig. 2.4c). However, the mean for

the 120 y age-class was only 6% lower than that for the 60 y scions, and differences

between these groups were nonsignificant. Apparent quantum efficiency (AQE) exhibited

a decreasing trend with scion age-class, with AQE of 120 y scions only about 60% as

efficient as those from 20 y donors (Fig. 2.4d).

Discussion

In the upper canopy cohorts, folk efficiency (biomass production per unit foliar

mass) declined with tree age (Fig. 2.1). Further, the trend in Figure 2.2 indicates that the

decline in foliar efficiency with age appears to begin very soon after reproductive maturity.

Similar patterns have been reported for other species (reviewed in Ryan et. al. 1997). Thus

either (1) productivity per unit leaf mass is substantially lower in the older individuals, or

(2) a greater proportion of primary production is being allocated to sinks other than

accretion of aboveground biomass. For example, Crier et al. (1981) speculated that

increasing nutrient-limitations in older stands could result in greater proportional
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allocation to root systems. However, in this multicohort stand, where individuals with

contrasting foliar efficiencies were growing adjacent to one another, differential nutrient

availability would be an unlikely cause of differing foliar efficiencies.

Morphological changes between juvenile and mature foliage (Fig. 2.2) correspond

with those reported for red spruce by Rebbeck et al. (1994) and Sitka spruce by Steele et

al. (1989). In red spruce growing in non-suppressed canopy positions, reproductive

maturity usually occurs at about 25 years (Blum 1990). Thus, this study shows that age-

related trends in foliar morphology continue well beyond reproductive maturity in both in

situ shade- and sun-adapted foliage (Fig. 2.2), and in foliage of grafted scions growing on

rootstock of common age (Fig. 2.3). Richardson et al. (2000) reported similar trends for

hybrid Englemann x white x Sitka spruce, although they found that age-related

morphological trends are complicated by canopy position (shade-sun adaptation).

Richardson et al. (2000) also reported that foliar plasticity (defined as the relative

difference between sun- and shade-adapted foliage) decreased with tree age. This is in

contrast to the morphological differences found in this study where older age-classes

showed greater morphological variation between sun- and shade-adapted foliage in all

attributes tested (Fig. 2.2). This incongruity may represent true interspecific differences or

be related to the greater PAR fluence intercepted by taller age-classes in multicohort

stands. The lack of consistency in SLA trends between in situ foliage and that of the

grafting experiment may be due to this, or, alternatively, may be an artifact of comparisons

using one-year-old foliage in the field study and first year needles in the grafting

experiment. Changes in SLA with needle age have been described in several conifers
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(Gilmore et al. 1995, Hatcher 1990). In addition, physiological attributes such as A,- and

G, are significantly lower in one-year-old compared with current year foliage in red spruce

(Day 2000).

The lower & of the 120 y cohort from both the field data and grafted scions

supports the hypothesis that photosynthetic production decreases with tree age (Yoder et

al. 1994, Ryan and Waring 1992). However, the lack of significant differences in G, and Ci

in the field study and the small differences in Ci between 60 y and 120 y scions in the

grafting experiment do not support the hypothesis that lower maximum photosynthetic

rates are due primarily to stomatal limitations to gas exchange (Yoder et al. 1994).

Alternatively, these results could be interpreted in a feedback model where

stomatal conductance is in balance with lower inherent photosynthetic rates (Sharkey

1985). In turn, lower photosynthetic rates may be related to larger scale (branch-level or

whole tree) carbon balance. In this model, investment in foliar photosynthetic capacity

would be determined by demand for photosynthate or sink strength (Farrar 1992). Age- or

size-related changes in meristematic activity would result in decreased sink strength in

shoots of older trees (or grafts made with them), ultimately reflected in changes to foliar

gas exchange attributes. Inverse relationships between inherent growth potential of scions

and donor age have been reported for loblolly pine (Pinus taeda L.) by Greenwood (1984)

and for eastern larch (Larix Zaricina (Du Roi) K. Koch) by Greenwood et al. (1989). In

eastern larch, growth potential of grafted scions declines with donor age despite higher

photosynthetic rates and chlorophyll content in their foliage (Hutchison et al 1990). After

observing that meristems of larch scions from older donors produce cells of smaller
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diameter than those of their younger counterparts when grafted on common rootstock,

Takemoto and Greenwood (1993) proposed that resource acquisition of older scions may

be limited by competitively weaker sink strengths.

In red spruce, a maturation-based sink-strength hypothesis is supported by the

equivalent Ci levels between mid-aged trees with high & and G, and old trees with lower

rates for both processes. This relationship was consistent for both field (Table 2.2) and

grafted scion (Fig, 2.4) studies. Further evidence of decreasing investment in

photosynthetic capacity with tree age comes from the lower AQE of the older scion

classes (Fig. 2.4d). The high-to-low light intensity protocol used for development of light-

response curves in this experiment did not provide sufficient response times for G, to

equlibriate with photosynthesis at lowered light levels (20-30 minutes: M. Day,

unpublished data). Thus, except at saturating n-radiances, G, was at a greater level than

would normally occur for prevailing PPFD, and Ci would presumably not be limiting over

the range of light intensities (10 - 60 pmol mm2 s“) used to determine AQE.

After three growing seasons, grafted scions exhibited age-related trends in foliar

morphology and physiology corresponding to those found in the field population,

indicating that age-related characteristics are retained for at least several growing seasons

by scions grafted to juvenile rootstocks. Thus, red spruce meristems from older trees

appear to retain a ‘memory’ with respect to the attributes of foliage they produce. Such a

scenario may explain the lack of foliar response to experiments designed to alter stomata1

conductance or photosynthesis by manipulating leaf-specific conductivity of branches

(Brooks et al. 2000, Hubbard et al. 1999).
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It is unclear whether this meristematic memory is age-related in the strict sense

(related to an internal timing mechanism) or is induced by signals related to tree size that

cause changes in metistematic gene expression. In the latter model, attributes would

ultimately be determined by such intrinsic factors as whole-tree conductivity or carbon

sink strength. Foliage produced by the meristems would have characteristics that are

adaptively superior for the changing challenges to survival faced by trees as they grow

larger. Considering the ability of red spruce to persist for decades as suppressed

individuals in forest understories then grow to upper canopy status following release

(Davis 1991, Blum 1990), the internal clock model seems unlikely, and a model that

incorporates induction by intrinsic or extrinsic factors would appear to offer the most

promising explanation.

In either case, these results imply that the expression of genes in me&ems is

altered as trees grow older or larger beyond reproductive maturity or mid-age. Differences

in genetic expression have been demonstrated during early growth (Emebiri et al. 1998)

and linked to phase changes between juvenile and reproductively mature individuals for

several species (Hutchison et al. 1990). New techniques that can simultaneously evaluate

the activity of thousands of genes provide much promise for evaluating changes in genetic

expression with respect to later life-stages.
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Chapter 3: Influence of temperature and leaf-to-air vapor
pressure deficit on net photosynthesis and
stomatal conductance in red spruce*

Abstract

A field study and controlled environment experiment were used to investigate the

roles that temperature (T) and leaf-to-air vapor pressure deficit (VPD) play in regulating

net photosynthesis (u and stomatal conductance (G,) of red spruce (Picea rubens

Sarg.). The species exhibited a relatively flat response between 16 - 32 “C for both &t

and G,. Apparent threshold effects markedly decreased both A,,& and G, between 32 and

36 “C. Vapor pressure deficit had significant effects on both A,,et and G, at values > 2 kPa.

The influence of VPD fit a linear response model and did not interact significantly with T

effects.

Introduction

In northeastern North America, red spruce (Picea mbens Sarg.) has historically

been a major component of conifer and mixed hardwood-softwood associations and one

of the most economically desirable species for lumber and fiber (Seymour 1995).

However, recent evaluations of stand conditions in the northeastern forest have given rise

to concerns about the continued abundance of red spruce in low-elevation forests. Recent

USDA Forest Service inventory data (Griffith and Alerich 1996) indicate that red spruce

has exhibited a dramatic decline and is being replaced by balsam fir (Abies bahmea Mill.)

*This chapter was published as: Day, M.E. 2000. Influence of temperature and leaf-to-air
vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce. Tree
Physiology 20:57-63; and is included here with permission of the copyright holder, Heron
Publishing, Victoria, BC, Canada.
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and several hardwood species (Seymour 1985, Livingston 1998). Harvesting practices

and/or climatic changes that decrease the presence of microenvironments favorable for

regeneration and early growth of the species may be contributing to this decline.

Several lines of evidence suggest that this species is sensitive to high air

temperatures and low atmospheric humidity. Optimum conditions for regeneration of P.

rubens have been associated with partially closed canopies (Davis 1991, Seymour 1992),

indicating that environmental conditions under more open or absent overstory canopies

may inhibit early growth. Recent palynological evidence suggests that, during warmer and

drier periods of the Holocene, spruce may have been restricted to refugia within the

coastal ‘fog belt’ that subtends the Bay of Fundy (Schauffler 1998). Intolerance of high

temperatures and a requirement for high atmospheric humidity have been cited as common

attributes of tree species currently restricted to coastal ranges (Laderman 1998).

Alexander et al. (1995) reported a temperature optimum for net photosynthesis of

about 20 “C for understory P. rubens saplings. Vann et al. (1994) found significant

inhibition of photosynthesis at higher air temperatures (> 25°C) and related the response to

current range limits and changes that might be associated with a warming climate. A 20 “C

optimum is consistent with predictions for C3 species at current atmospheric

concentrations of 21 % 0, and 300-350 pmol CO, mol’ air, based on differential

selectivity of ribulose-bisphosphate carboxylase/oxygenase (Rubisco) for CO, and 0, and

effects of temperature on the water solubility of the two gasses (Ku and Edwards 1977a,

Tolbert 1994).
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Although no studies have been published on the effects of atmospheric humidity on

carbon gain by P. rubens, work on related species suggests a possible influence. In Sitka

spruce (I? sitchensis (Bong.) Carr.), a species of the moist maritime forests of western

North America, increasing leaf to air vapor pressure deficits (WD) result in significant

inhibitory effects on stomatal conductance (Ludlow and Jan& 197 1, Running 1976,

Sanford and Jarvis 1986). Kaufmann (1976) reported a similar response for the subalpine

Engelmann spruce (P. engelmannii  Engelm.). Research by Marsden et al. (1996) suggests

that high WD may inhibit early growth of outplanted white spruce (P. glauca (Moench)

Voss) seedlings.

In this study, I tested the hypothesis that increasing WD and T, acting singly or

interactively, would reduce photosynthetic carbon gain in sapling P. rubens, and evaluated

the potential for these factors to limit carbon gain in natural populations. A preliminary

investigation determined responses under field conditions. This was followed by an

experiment in a controlled environment to separate influences of WD and temperature,

which were highly correlated in the field study, and to examine the possibility of

interactive effects between those variables.

Methods

For the controlled environment experiment, nine individuals were randomly

selected from a population of 4-year-old, 0.5-m high, potted red spruce. The trees were

placed in a greenhouse in mid-January after cold requirements had been met, repotted in

25-L pots containing a mixture of 50% peat, 25% sand, and 25% vermiculite, and

fertilized with 18-6-12 Osmocote (Sierra Chemicals) time-release fertilizer at a rate of
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0.124 kg mm3. While in the greenhouse, soil was watered to field capacity every 3 days.

New foliage had flushed by early February and was fully expanded with bark of twigs

appearing lignified by the time of the experiment (May 1 through June 7, 1998). Because

of imperfect environmental controls in the greenhouse, trees were subjected to a highly

variable environment with daytime temperatures of 15 to 38 “C and vapor pressure deficits

(VPD) ranging from near zero to over 3.5 kPa. Midday n-radiances were typically 1200 to

1500 l.&rnol me2 s-l PPFD during clear weather.

The controlled experiment was carried out in an environmental chamber (I-37

Series, Percival Manufacturing Company, Boone, IA) where all components could be

maintained at the test temperature (T,). This prevented condensation within cuvette and

control systems at high T and low VPD. The chamber allowed three individuals to be

treated per day. Temperatures were randomly assigned to each of 18 days, with each T,

occurring in each of three replicates. Three trees were assigned to each T, without

replacement; thus, each individual was tested at each T, only once. Trees were placed in

the chamber the day before measurement and held at a photoperiod of 16 h day (at T,) and

8 h night (at T, less 7 “C). Four fluorescent lights provided about 250-300 pm01 m-* s-l

PPFD within the chamber. Soil water was maintained near field capacity during the

experiment. Twig samples removed following gas exchange measurements had a mean

xylem pressure potential (q,ia of -0.3 MPa (pressure chamber method, Koide et al.

1989) and no correlation between T, and qWlem. Sampling order of trees within chamber

runs was random.

A LI-6400 photosynthesis system equipped with a standard 2 x 3 cm leaf cuvette
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and a model 6400-02B light source (Li-Cor, Inc., Lincoln, NE, U.S.A.) was used for gas

exchange measurements. This system permitted accurate control of cuvette temperature

and h-radiance. Constant VPD within the leaf chamber was maintained with a LI-610

dew-point generator (Li-Cor, Inc.) and a column of calcium sulfate desiccant in the input

air stream. To compensate for changes in T,, the IRGAs were zero-calibrated on a daily

basis. CO, and H,O span values were calibrated weekly. Temperature control and VPD

calculations were based on leaf temperature, measured by a fine wire thermocouple.

h-radiance within the cuvette was maintained at 1400 pmol me2 s-’ (photosynthetically

active radiation, 400 - 700 nm) based on preliminary determinations of saturating light

intensity at the shoot-level.

Gas exchange was measured on attached terminal shoots of lateral branches

from the upper one-third of the crown. Each measurement series began at 0900 and was

finished by 1430. The cuvette was applied at the center of current-year growth. Gas

exchange was permitted to stabilize for approximately 40 minutes before measurements

were made. A preliminary study of response times to increases in VPD, using the same

population, indicated that stability of stomatal conductance occurs within 20 to 30

minutes, and response to new light regimes stabilizes after less than 5 minutes. Before

every measurement, stability of net photosynthesis and stomatal conductance were also

verified using real time strip chart output. In all cases, VPD was manipulated from low to

higher values. Previous work indicated that stable response of gas exchange to increasing

humidity regimes can require several hours, which would preclude completing a series of

measurements in a single day.
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Measurements were made at six temperatures (16,20,24, 28, 32, and 36 “C) and

three VPDs ( 2.0,2.75, and 3.5 kPa). All VPDs were tested for runs where T, > 28 “C.

Because maximum VPD is constrained by temperature-related saturation vapor pressures,

only a VPD of 2 kPa was tested at 20 and 16 “C, and 24 “C received VPD treatments of 2

and 2.75 kPa. Temperatures were maintained f 0.2 “C and VPD f 0.1 kPa during

measurements.

After gas exchange measurements were completed, leaf areas were determined by

stripping all needles from the section that was enclosed in the cuvette, scanning at high

resolution, and analyzing the image with the computer program Needle 4.3b (Reagent

Instruments, Quebec). Projected needle areas were converted to half-total areas using a

ratio of width to perimeter (1.45) previously developed from analysis of 100 needle cross

sections. Considering the quadrate cross-sectional shape of red spruce needles, even

distribution of stomates on ab- and adaxil surfaces, and directional nature of the light

source, a half-total area basis provides a good description of the active photosynthetic

surface in this experiment. These needle areas were used to calculate net photosynthesis

and stomatal conductance using the standard algorithms of Li-Cor’s Open 3.2 operating

system (Li-Cor 1998) with broad band correction for water vapor.

Field measurements were made in July 1996, on one-year-old, randomly selected

upper crown, terminal shoots from saplings (0.5 to 2 m high) growing in the Penobscot

Experimental Forest, Bradley and Eddington, Maine. These trees were growing in the

open after release by a shelterwood overstory removal cut two years before measurement.

The same instrumentation (except the light source was a Licor 6400-02), calibration
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procedures, and methods for determining needle area as described for the chamber

experiments were used to collect field data and calculate gas exchange rates. In this case,

temperature was maintained at ambient and VDP was measured at randomly selected

levels of ambient, 75% ambient, or 50% ambient (if saturation vapor pressure permitted).

Single measurements were made on individual trees.

Correlations were examined with Pearson’s product-moment correlation

coefficients, and probabilities for r = 0 tested by Bonferroni adjustment (Snedecor and

Co&ran 1989). Data from the controlled environment experiment were divided into

subsets to test specific hypotheses by analysis of variance (ANOVA). In all analyses, each

of the trees in a chamber run were considered subsarnples and effects tested with the

replicate by effect variable error term. Specific temperature effects over the range of 16 to

36 “C were analyzed by holding VPD constant at 2 kPa, a typical midday value for forest

canopies in this region (unpublished data, Forest Ecosystem Research Program, University

of Maine). To minimize threshold effects that occur between 32 and 36 “C, intluences of

VPD were evaluated based on the data for T, < 36 “C. Interactive effects were assessed

with a balanced 3 x 3 factorial design over the temperature range of 28,32 and 36 “C and

VPD 2, 2.75, and 3.5 kPa. The SAS statistical package (Release 6.12, SAS Institute,

Car-y, NC, U.S.A.) was used for all analyses. To meet the assumptions of ANOVA,

analysis of A,,ct and G, responses were performed on log-transformed data. The SAS GLM

procedure was used for ANOVA to compensate for the unbalanced design of the VPD

response analysis. For T effects at VPD = 2, means were separated by Tukey’s HSD test

to control experiment-wise error rate with a large number of factor levels. Because of the
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smaller range of factor levels in the other analyses, the more sensitive Duncan’s multiple

range test was selected to separate means. Polynomial contrasts (Snedecor and Co&ran

1989) were used to analyze the forms of response that A,,e, and G, exhibited to increasing

W D .

Results

The field data (Fig. 3.1) indicated that both net photosynthesis (&J and stomatal

conductance (G,) were significantly correlated with leaf-to-air vapor pressure deficit

(WD): Pearson’s r of -0.80 and -0.78, respectively; both P < 0.0001. However, WD

was also highly correlated with ambient temperature (r = 0.76, P < 0.0001) which varied

from 16 to 29 “C. A strong correlation between &t and G, (r = 0.91, P < 0.0001)

indicated that stomatal resistance provides significant control over gas exchange.

The scatter of the field data suggested that the influence of WD on G, was much

weaker at lower WDs. Points representing WD < 2 kPa and included measurements

fi-om that range made during the growth chamber study (Fig. 3.2). At WD < 2 kPa,

neither data set showed a significant correlation between WD and G, (r = -0.07, P = 0.75

for field data and r = -0.26, P = 0.27 for growth chamber measurements). In Fig. 3.2 the

cloud of data points for environmental chamber trees lies generally above that representing

the field population. This is probably because of the difference in foliage cohort measured

in the two studies: current-year needles for the chamber experiment and one-year-old

foliage for the field survey. In mature (upper canopy) P. rubens, mean differences in G, of

46% between the two cohorts have been observed (M. Day, unpublished data),

presumably related to buildup of waxes in epistomatal cavities.

71



++
+

9 0

8 0 ++ +

6 0 + ++ ++:
5 0

+ +

*
+ ++

+
+

a

+ +

# ++++ + +++ ++ +
++ + +

+ z
l

+
+ + ++ +

+

0

8 -

7 -

6 -

5 -

4 -

3 -

2 -

1 -

2

A t
A A A

A
A A A

A
A

b

;

5

A

.

r I 1 I I I

0 1 2 3 4 5

Leaf-to-air vapor pressure deficit (kPa)

Figure 3.1. Field data showing the relationship between leaf-to-air vapor pressure
deficit and (a) stomata1 conductance and (b) net photosynthesis for red spruce.
Measurements are for l-year-old upper crown foliage on trees OS-2 m tall, growing in
full sunlight (n=54). Pearson’s r for stomata1 conductance = -0.80 (P < O.OOOl), and
for net photosynthesis r = -0.78 (P < 0.0001).
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Figure 3.2. Response of stomatal conductance in red spruce to leaf-to-air vapor
pressure deficits in the range of 0.4 to 2 kPa. ‘+’ indicates data from l-year-old foliage
in the field population and ‘0’ current year needles on potted trees in an environmental
chamber. Ambient air temperatures varied between 16 and 24 “C for both data sets.
Pearson’s r for field data = -0.07 (P = 0.75). For environmental chamber data r = -0.26
(P = 0.27). The generally higher conductance values of the environmental chamber
foliage are largely attributable to effects of needle age on stomatal resistance.
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Results of the controlled environment experiment with VPD held constant at 2 kPa

showed a broad temperature optimum (16 - 32 “C) for photosynthetic response to

temperature (Fig. 3.3). A peak in 4, (statistically nonsignificant) occurred at 20 “C, and a

conspicuous decline developed between 32 and 36 “C. Although G, appeared to decrease

monotonically with increasing temperature (Fig. 3.4), only the value at 36 “C is

significantly below the rates at lower temperatures, suggesting a response threshold at 32

“C or slightly above.

Figure 3.4 also indicates that the relationship between internal CO, concentration

(CJ and G, is inconsistent. This suggests that stomates are not responding in a predictable

16 20 24 28 32 36

Temperature (“C)

Figure 3.3. Response of net photosynthesis in red spruce to temperature at
a constant leaf-to-air vapor pressure deficit of 2 kPa. Letters indicate
Tukey’s HSD groupings at C% = 0.05. Bars show 1 standard error.
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fashion to Ci during the experiment. The Ci increased at higher temperatures, implying

that the rapid decrease in A,,& above 32 “C was not caused by stomatal limitation of gas

exchange.

In contrast, responses of both A,,& and G, to increasing VPD showed appreciable

decreases (Fig. 3.5). However, standardized rates of reduction were not proportional

between G, and &r Mean rates of G, dropped 43.6% between 2 and 3.5 kPa, whereas

4, declined by 26.3% over the same range. Thus 4, appears to respond to VPD at

about 60% of the standardized rate for G,. This relationship between the two response
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Figure 3.4. Responses of stomatal conductance (a) and internal CO, concentration (A)
to temperature at constant vapor pressure deficit (2 kPa). Letters indicate Tukey’s HSD
groupings at cx = 0.05. Bars show 1 standard error.
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variables is similar to that found in the data of Sanford and Jarvis (1986) for Sitka spruce.

For that species, & decreased less than 30% between 0.5 and 2.0 kPa, whereas G,

dropped by approximately 60%. Compared to P. rubens, the rate of decrease reported for

P. sitchensis  was much steeper on both unit and standardized bases. Polynomial contrasts

indicated that the responses of 4, and G, to increasing VPD were best described as

linear. Higher order models tested as insignificant.

Factorial analysis of T and VPD responses at 28,32, and 36 “C provided

nonsignificant interaction terms for both & and G, (Table 3.1).

Discussion

Response to temperature

In this C3 species adapted to cool temperate climates, the observed broad plateau

for temperature response (Fig. 3.3) is somewhat surprising and qualitatively different from

that described by Alexander et al. (1995). Those authors reported an unequivocal peak at

20 “C followed by a decline to 47% ofmaximum at 30 “C. Whereas, in this study there

was a relatively flat response to temperatures < 32 “C.

Alexander et al. (1995) attributed the decline in net photosynthesis (4 with

increasing temperatures (> 20 “C) to a greater proportion of photosynthate allocated to

maintenance respiration (Dark). Their data suggest that at 20 “C shade-adapted saplings

allocate approximately 18% of gross photosynthesis (A,,, = & + hk) to Lk. This
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Response
variable

Source df Type III MS F value P>F

Log , net photosynthesis:

Temperature 2 1.0735 26.79 0.0048

VPD 2 0.3876 119.71 0.0003

TxVPD 4 0.000945 0.16 0.9551

Log,, stomata1 conductance:

Temperature 2 0.8399 8.36 0.0372

VPD 2 1.6605 129.85 0.0002

TxVPD 4 0.00924 0.93 0.4925

Response  T Mean Duncan VPD Mean Duncan
v a r i a b l e  ‘C umol m-*s-l G r o u p i n g  kPa pm01 me2 s-’ Grouping

Net photosynthesis:

5.91

32 5.75 a 2.75 5.11 b

36 3.70

Stomata1 conductance:

2% 74.96

32 76.10

36 55.66

b 3.5 4.40 C

a 2.0 86.05 a

a 2.75 70.25 b

b 3.5 52.55 C

Table 3.1. Response of net photosynthesis and stomata1 conductance to temperature and
leaf-to-air vapor pressure deficit. Results of ANOVA for 3 x 3 factorial with temperature
levels of 28,32, and 36 “C and leaf-to-air vapor pressure deficit levels of 2, 2.75, and 3.5
kPa. Duncan’s multiple range test groupings show significant differences between means at
a = 0.05.
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ratio increased to 28% at 25 “C and 52% at 30 “C. Over this range, $ross exhibited a slight

decrease from 2.7 pmol rns2 s-’ at 20 “C, to 2.2 at 30 “C. Their &t rates are consistent with

in situ rates (2.5 pmol mm2 6’ at 20 “C) the author has measured for shade-adapted P.

rubens of comparable size (0.5-l. 5 m height), although their ratio of L to $Toss is higher

(18% versus 12.8%). In contrast, sun-adapted foliage measured on open grown saplings

showed a ratio of & to hs of 6.6% (M. Day unpublished data). This comparison

suggests temperature-related increases in  have a much smaller effect on &t in sun-

adapted foliage.

Whole tree respiratory demand, which would be expected to increase proportionally

with temperature, may also contribute to explaining the broad temperature plateau by

another pathway. Weak carbohydrate sink strength or reduced phloem loading can have a

negative feedback effect on photosynthetic rates (e.g., Leverenz 1981, Stitt 1991). In the

environmental chambers, only the shoot section used for gas exchange measurements

received saturating ii-radiance. The balance of foliage was exposed to the lower light levels

provided by growth chamber lamps and would be a relatively poorer source for export of

photosynthate.

Variation in temperature response among genetic lines or provenances and effects

associated with plastic preconditioning may complicate comparisons across studies.

Neilson et al. (1972) found that temperature optima varied among five provenances of

Sitka spruce with one showing little change in &et between 15 to 28 “C. This one was from

stock with long term exposure to higher temperatures. Those authors also reported a

correlation between time of year and T,, providing evidence of preconditioning effects.
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Trees used by Alexander et al. (1995) were collected from forest understories in Vermont,

U.S.A., at elevations of 380 and 945m, where temperature regimes would be expected to

be moderately cool. In contrast, greenhouse-maintained stock used in this experiment had

experienced temperatures greater than 30 “C on 10% of the days between initial budburst

and sampling.

Measuring air temperature as opposed to leaf temperature may bias the resulting

response curve. In both natural environments and gas exchange cuvettes conifer leaf

temperature may diverge substantially fi-om ambient air temperature under high n-radiance.

For instance, Vowinckel et al. (1975) reported open air needles under mid day u-radiance of

Picea mariana exceeded air temperature by over 7 “C and in cuvettes by 5 “C. In a

previous study with detached shoots of red spruce (M. Day, unpublished data), differentials

of >5 “C were observed under both natural and artificial illumination in 0.25 to 1 .O 1

cuvettes that were equipped with circulating fans. It appears that neither Alexander et al.

(1995) nor Vann et al. (1994) directly measured needle temperature. If needle temperature

was higher than ambient, their reported photosynthetic optimums would show bias towards

lower temperatures. Additionally, if needle temperatures exceed air temperature, VPD at

leaf surface might be higher than that calculated on an air temperature basis, providing the

potential of VPD-induced limitations to G,.

The threshold response to temperature that occurs above 32 “C may indicate

disruption of one or more components of the photosynthetic carboxylation pathway.

However, this temperatures is lower than those generally associated with disruption of

enzymatic and membrane systems (Salisbury and Ross 1992, Kozlowski et al. 1991).
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Alternatively, the temperature-dependent influence of photorespiration on A,,ct (Jolliffe and

Tregunna 1968, Ku and Edwards 1977b, Monson et al. 1982) may provide an explanation.

The solubility ratio of 0, to CO, in the mesophyll symplast increases exponentially with

temperature (Ku and Edwards 1977a), and Ogren (1984) has proposed that temperature

and specificity of rubisco for 0, are directly related. Tolbert (1994) suggested 40 to 65

pmol mol-’ atmospheric CO, concentration as an effective compensation point (zero 

for C3 plants at 20 “C, 110 pmol mol-’ at 30 “C, and 300 pmol mol-’ at 37 “C. Thus, at the

highest temperature (36 “C) and 350-380 pm01 mol’ CO, the trees in this experiment were

close to their predicted CO, compensation points. In this conceptual model, the abrupt

drop in 4, between 32 and 36 “C reflects a rapidly increasing 0, to CO, solubility ratio

and perhaps shifts in the substrate afiinity of rubisco. This interpretation is consistent with

the observed increase in Ci while G, is decreasing at higher temperatures (Fig. 3.4) and the

positive relationship between temperature and mesophyll resistance to CO, reported by

Neilson et al. (1972) for P. sitchensis.

Increasing temperature also appeared to have an influence on G,, independent of its

effects on photosynthesis (Table 3.1). While decreases in A,,=. are known to be reflected by

G, and mediated by increased Ci (Mansfield 1985), the inconsistent relationship between G,

and Ci shown in Fig. 3.4 argues against this effect occurring here. A possible explanation

may involve a stress-induced increase in active abscisic acid (Weiler et al. 1982) which

could be mediated by changes in apoplastic pH (Wilkinson and Davies 1997) at the leaf

level.
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Effects of vapor pressure deficit

A negative response of G, and & to increasing VPD has been described for

several other members of the genus Picea and is confirmed here for P. rubens (Table 3.1,

Figs. 3.1 and 3.5). In general, red spruce appears to be less sensitive to VPD at the lower

end of the scale (Fig. 3.2) than its congeners from western North America. Ludlow and

Jarvis (1971), Running (1976), Sanford and Jarvis (1986), and Warkentin et al. (1991) all

describe response curves for P. sitchensis that drop precipitously as VPD becomes greater

than 0.5 kPa. Kaufmann’s (1976) curve for P. engelmannii showed a similar response.

Interestingly, Darlington et al. (1997) found that P. mariana, which is closely related to

and can hybridize with P. rubens in the sympatric portions of their ranges (Gordon 1976),

showed no significant difference in biomass accumulation between seedlings grown in 0.3-

0.8 kPa and 2.0-2.5 kPa VPD regimes. Although gas exchange rates were not measured in

that experiment, their results are indicative of a relatively high threshold for VPD response

and/or a response curve with low slope.

The pattern of response to VPD found in red spruce may relate to comparatively

low maximum rates of G, in this species (Figs. 3.la and 3.5a, Eamus and Fowler 1990). In

contrast, Sanford and Jarvis (1986) report rates of G, in P. sitchensis as approaching 300

mm01 mm2 s-‘. When compared to its co-occurring conifer species and other members of the

genus Picea, red spruce is relatively slow growing; thus, its low rates of G, may reflect an

adaptation to permit adequate gas exchange while minimizing water loss. This might help

to explain its success on potentially water-deficient sites with shallow, primarily organic

soils overlying bedrock or hardpan.
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As with temperature, preconditioning or interactions with other environmental

factors may alter response to VPD (Wiebel et al. 1993). The shade-adapted trees used by

Alexander et al. (1995) may have had a lower threshold for VPD effects than the sun-

adapted experimental stock used here. Additionally, interactions between soil moisture and

VPD effects have been described for other species (e.g. Grieu et al. 1988). When

Alexander et al. (1995) collected their sample trees they included a 20 cm diameter by 15

cm deep soil plug. As any roots extending outside of this zone were severed, it is likely that

their trees (20-50 cm in height) would be experiencing water stress during laboratory

treatments, even if soil was kept well-watered. These conditions may have lowered natural

VPD thresholds and/or increased the steepness of that response.

Response differences between spruces may result from adaptation to regional

humidity regimes and/or other factors in their overall (air + soil) moisture environments.

Decreased sensitivity to VPD at higher humidity levels may represent an adaptation to the

regional climate of northeastern North America, where VPD levels 2 2 kPa are common

during the growing season. Data collected at a spruce plantation in the Penobscot

Experimental Forest indicate that levels of greater than 2 kPa, based on leaf temperature,

occurred on 91% of days during July and August, 1998, and on 83% under a partial

canopy in a selection stand (unpublished data, Forest Ecosystem Research Program,

University of Maine). This can be contrasted with the range of Sitka spruce in the Pacific

Northwest where atmospheric VPD levels 2 1 kPa are uncommon (Warkentin et al. 1992).
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Implications for population dynamics and management

It has been proposed that mean annual temperature decreases of approximately 1 “C

allowed red spruce to expand its range across northeastern North America during the past

1 ka (Schauffler 1998), and that Uure success of the species may be inhibited by increases

in temperature predicted for the next century (Vann et al. 1994). The relatively robust

response of & and G, to temperature reported here suggests that modest increases in

daytime temperatures during the growing season are unlikely to significantly hinder gas

exchange in P. rubens. However, daytime maxima that result in needle temperatures in

excess of 32 “C could have a dramatic effect on carbon gain. Increases in overnight

temperatures may elevate losses to dark respiration, which would be expected to have a

greater negative effects on shade-adapted individuals. Also, small changes in carbon

balance stress may have long term consequences for population dynamics by.limiting

reproductive output (Harper and White 1974) or increasing susceptibility to pests or

pathogens (Warkentin et al. 1992).

The influence exerted by VPD could be a factor in presettlement range movements

and may be related to restriction of the species to coastal ref&ia during periods of warmer

(and potentially drier) climate prior to 1 ka and in the future. However, a complete

characterization of environmental controls on population dynamics in red spruce will also

require an understanding of the role of other factors (such as soil temperature and

moisture, disturbance regimes, and seedbed availability) that influence establishment and

early growth.

While red spruce commonly regenerates under partially closed canopies, it also
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appears to be capable of tolerating, in terms of gas exchange responses, the temperature

and VPD environments found in large canopy openings. In those environments, higher light

intensities could maximize growth, while lower night time temperatures (Gilds and Flint

1987, McCaughey 1989) would reduce losses to L. Supporting this suggestion, Hughes

and Bechtel(1997) found, along transects running from intact forests into clear-cuts, that P.

rubem saplings farther from overstory shade exhibited greater stem diameters.

This study supports the hypothesis that current decreases in the abundance of P.

rubens in low-elevation forests has been more a consequence of harvesting practices and

interspecific competition than environmental variables. Seymour (1992) has proposed its

abundance in presettlement forests was favored by a combination of shade-tolerance and

longevity. These results suggest that the cool temperatures and decreased VPD associated

with understory environments are not intrinsic requirements for regeneration under the

current climatic regime, thus its shade-tolerance can be viewed as an adaptation to

surviving competition from faster growing associates. Nevertheless, differences in

physiology of sun- and shade-adapted foliage and preconditioning appear to be important

determinants of this species’ ability to take advantage of environments with higher

h-radiance.
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Chapter 4: Microclimates created by silvicultural systems and their
influence on photosynthetic carbon gain in red spruce

Abstract

Micrometeorological conditions were monitored over a growing season at sites in

stands (two replicates each) managed under three diverse silvicultural systems: selection,

shelterwood, and clearcut-plantation. The resulting data were input into a carbon gain

model, based on physiological response functions of red spruce to light, temperature, and

leaf-to-air vapor pressure deficit. Summaries of micrometeorological data and output from

the model were used to (1) assess microclimatic differences among stand-types and

variation within stand-types, (2) evaluate the relative influence of environmental factors on

photosynthetic carbon gain in sapling red spruce, (3) determine how microclimatic

differences translate into differences in net carbon gain among and within stand-types, and

(4) estimate how these differences would affect net photosynthetic carbon gain under

scenarios of cooling or warming climates.

The silvicultural regimes evaluated (selection, shelterwood, and clearcut systems)

resulted in substantially different microclimates. However, the magnitude of differences

may not be apparent if bulk air properties alone are monitored. Dissimilarities become

clearer when physiologically relevant attributes, such as folk temperature, are considered.

While gross photosynthesis, thus potential photosynthetic carbon gain, is highly

correlated with incident light flux density, the interaction of this variable with

photosynthetic light-response curves is of significant importance in integrated carbon gain.
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Attributes of these response curves not only vary between species, but are also due to

differences in light-adaptation status within species.

Modeling the integrated influence of microclimate on photosynthetic carbon gain

variables indicated that the indirect effects of temperature (vapor pressure deficit and

maintenance respiration) are more significant than direct inhibition of photosynthesis by

temperature. Vapor pressure deficit was found to be the factor having the greatest

inhibitory effects on photosynthetic carbon gain in red spruce. Among silvicultural systems,

photosynthetic carbon gain is most strongly limited by light in selection stands and by

temperature related factors (inhibition by temperature and vapor pressure deficit) in

shelterwood and clearcut systems.

The effects of competition on availability of belowground water resources

influences transpirational flux and loss of folk heat through latent energy transfer. This

aspect is especially important in controlling temperature-related inhibitions to carbon gain

in the high-energy environments of clearcuts.

With respect to net photosynthetic carbon gain of upper-crown foliage in red spruce

saplings, stand-types were ordered selection < clearcut = shelterwood under current-

climate temperature regimes. In cooler-climate scenarios this relative order was maintained,

but, in absolute terms, the superiority of clearcut and shelterwood over selection systems

increased. Under warmer-climate scenarios the order was selection =clearcut <

shelterwood , with the latter showing clear superiority over the other stand-types. This may

provide a partial explanation for reported changes in distribution of red spruce in the
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Acadian region during the Holocene, and has implications for future distribution and

management under predicted climate change scenarios.

Introduction

Numerous factors in the external environment can influence photosynthetic carbon

gain (reviewed by Teskey et al. 1995). These may act either directly on photosynthetic

rates (e.g., light intensity) or indirectly by regulating supply of reaction substrates (e.g.,

stomatal effects on CO, uptake). Additionally, external factors may influence carbon gain

through complex internal pathways, such as low soil water potential causing production of

abscissic acid in roots which, when transported to leaves, induces stomatal closure (Zhang

and Davis 1990).

Leaf temperature (T,,) has direct effects on photosynthetic carbon gain through

high temperature inhibition. At moderately high temperatures (30-40 “C in red spruce)

inhibition can result fi-om changes in the relative efficiency of ribulose-bisphosphate

carboxylase-oxygenase (rubisco) to fix CO, as opposed to 0, (Day 2000, Ogren 1984). At

higher temperatures disruption of electron transport and enzymatic systems can occur

(Vann et al. 1996, Leavitt 1980). In addition T, can have indirect effects through at least

two pathways. Rates of maintenance respiration (R,,,) increase exponentially with

temperature. As temperate tree species have Q’” values (Eq. 4.2) of approximately 2

(Amthor 1994, Ryan et al. 1994), R,,, rates can be expected to double with each 10 “C

increase in T,, In addition, T,d determines the saturation vapor pressure in the boundary
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layers of air at foliar surfaces, therefore leaf-to-air vapor pressure deficit (VPD,, = water

vapor pressure of air at saturation - actual vapor pressure at leaf surface).

VPD,, is the driving force for transpiration, therefore, movement of water through

the soil-plant-air continuum. As water flux is limited by a series of resistances between soil

and leaf (Pallardy et al. 1995), high rates of transpiration can result in internal plant water

stress. Plants minimize harmful effects of water stress, such as xylem embolism, by

controlling transpiration rate through stomata1 closure (Mansfield 1985). Partially closing

stomata not only decreases transpiration, but results in increased resistance to CO, uptake,

lowering CO, concentration in internal air spaces of the leaf Therefore, potential

photosynthesis, the possible rate under prevailing irradiance, may become substrate-limited.

Plants appear to have developed several pathways by which stomata1 aperture is

regulated to prevent internal water stress. Decreasing water potential in roots can induce

production of abssicic acid (ABA), which is transported through the xylem to leaves where

it causes stomata1 closure by altering ion transport across the membranes of guard cells

(Zhang and Davies 1990). Alternatively, transpiration rate appears to be an initiating factor

for inducing stomatal closure, even in the absence of significant plant water stress (Grantz

1990). Although the physiological details of this cause-and-effect pathway have not been

fully described, Wilkinson and Davies (1996) provided evidence that this process may be

mediated by changes in apoplastic pH in the leaf mesophyll, which induces conversion of

ABA from an inactive form bound to cell walls to a free, active form. The latter pathway is

consistent with rapid responses of stomata to increasing VPD,, in tree foliage, which have

been described for numerous tree species (e.g., Day 2000, Weibel et al. 1993, Warkentin et

93



al. 1992, Sanford and Iarvis 1986, Kaufinann 1976). Day (2000) has proposed that

interspecific differences in stomatal sensitivity to leaf-to-air vapor pressure deficit may be

the result of adaptation to the microclimates of different regions or stand-types of varying

structural characteristics.

Red spruce (Picea rubens Sarg.) is a common to dominant species in coniferous

and coniferous-deciduous forests of northeastern North America, where the species is

valuable as a sawlog and pulpwood resource. Historically, red spruce was substantially

more abundant than on the present landscape (Seymour 1992), and recent forest inventory

data indicate that its decline in abundance is accelerating (Griffith and Alerich 1996).

Seymour (1992) has suggested that this phenomenon is linked to changes in forest

management, as harvesting practices have moved from diameter-limit removals of large

trees (a defacto selection approach) to more complete harvests under even-aged systems.

Across the landscape this has resulted in red spruce being replaced by species better

adapted to grow under this harvest-imposed disturbance regime, such as balsam fir (Abies

balsamea Mill.) and early- to mid-successional hardwoods.

Red spruce is a long-lived, shade-tolerant species that primarily regenerates from

established advance regeneration (Davis 1991). Thus, it is commonIy assumed that the

existence of a partial overstory canopy provides an ideal microclimate for growth in young

red spruce saplings. McConville  (1998) suggested that height growth in red spruce saplings

may be optimum under partial shade; however, the relationship was not strong. In contrast,

Hughes and Bechtel(1997) presented evidence indicating that growth in red spruce

saplings is positively correlated with distance from the canopy edge in clearcuts. The
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palynological record from the late Holocene also suggests that abundance of red spruce is

correlated positively with episodes of climatic cooling (Schauffler 1999). Although the

record remains sketchy at present, red spruce distribution in the Acadian region appears to

have expanded and contracted with changes in mean temperatures of a few degrees. This

suggests that the species may have a relatively narrow realized niche with respect to its

competitors, and its competitive abilities may be strongly influenced by climatic variables,

principally temperature.

Several studies on the photosynthetic physiology of red spruce suggest that stresses

associated with the microclimates resulting from substantial canopy removals may reduce

growth by inhibiting photosynthetic carbon gain. Alexander et al. (1995) provided evidence

that high-temperature microclimates substantially inhibit photosynthetic carbon gain in red

spruce growing in understories and proposed a temperature optimum of about 20 “C for

photosynthesis. Likewise a study by Vann et al. (1996) found substantial declines in

photosynthesis in red spruce at temperatures above 24 “C. Day (2000) has shown that

photosynthesis in this species is not only directly inhibited by high temperatures, but is

sensitive to increasing leaf-to-air vapor pressure deficit, which is highly correlated with

foliar temperature. The relative importance of these potential environmental stresses and

their infhrence on in situ photosynthesis is poorly understood.

In even-aged stands, red spruce shows slow height growth rates relative to co-

occurring tree species in its early sapling stages, making it a weak competitor that is easily

overtopped by balsam fir and other species until it reaches a height of 3-4 m (Meng and
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Seymour 1992). Therefore, factors inhibiting carbon gain during that life-stage may be

particularly important to its population dynamics.

Studies on the microclimatic conditions created by various silvicultural systems

generally show that more open canopies provide higher daytime temperature and lower

humidity (Reynolds et al. 1997, McCaughey 1989, Childs and Flint 1987) at levels near the

ground. However, the light available for photosynthesis in sapling strata is also directly

related to canopy opennessThus, saplings growing at more open sites have greater light

resources, but may face substantially greater microclimatic stresses.

This study is an attempt to answer several questions posed above. (1) What is the

importance of inhibition of net carbon gain by temperature (direct effects and indirectly

through R,J and VPD relative to gross photosynthesis, and which factors provide the most

substantial limitations to photosynthesis? (2) How do the microclimates produced by

various silvicultural systems differ or not differ, and what factors are responsible for these

differences? (3) Do these differences in microclimate translate into dissimilarities in

photosynthetic carbon gain among and within the stand-types created by these silvicultural

systems? (4) How would past or future climatic changes affect photosynthetic carbon gain

by red spruce saplings growing in these stand-types. Answers to these questions were

addressed using cumulative carbon gain functions, based on physiological response curves

to the environmental factors of interest, and hourly time-step micrometeorological data

collected over an entire growing season at replicated stations in clearcut, shelterwood, and

selection stands.
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Methods

Study site

Research was carried out in the Penobscot Experimental Forest (PEF), Penobscot

County, Maine (44’5ON, 68°35’W). Briggs and Lemin (1992) place the PEF on the border

of Maine’s central and southern climatic zones. Forest soils are variable but principally

Aquic or Typic Haplorthods or Podzols in the Thorndike, Buxton, Dixmont, and Monarda-

Bumham series (USDA Forest Service 1959). Slope phase is generally less than 8%.

The PEF lies in the Acadian region of northeastern North America. This region is

defined by moderate precipitation (100-l 30 cm) that is evenly distributed throughout the

year (Seymour 1995,1992), and contains numerous softwood, hardwood, and mixed-wood

forest types with distributions primarily controlled by soil drainage patterns (Westveld

1953). Except on excessively drained sandy soils, moisture is generally not limiting to

forest productivity, but may exert significant influence on regeneration and interspecific

competition (Seymour 1995, Meng and Seymour 1992). Small scale disturbance patterns

likely dominated the presettlement Acadian forest. Large scale fires and windthrow events

are believed to have been relatively rare (Lorimer 1977). Fires are limited by the

precipitation regime, and windthrow events by the region’s geographic position with

respect to tropical storm tracks and relatively low frequency of strong convective storms.

The PEF is dominated by conifer-deciduous forest-types. This forest is jointly

managed by the University of Maine and the Northeast Forest Experiment Station of the

U.S.D.A. Forest Service and contains stands maintained under a number of traditional and

nontraditional silvicultural systems. Prior to Forest Service management, which began in
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195 1, this area had a complex harvest history. Early harvests apparently focused on saw

timber (pine and spruce) with some hardwood cutting for firewood and removals of

hemlock to extract ttic acid from bark. Because of this history, the PEF has changed in

both composition and structure from what is believed to be that of the region’s

presettlement forests. However, the area is typical of ‘second-growth’ forests in the

southern part of the Acadian region (Seymour and Kenefic 1998). The diversity of stand-

types in the PEF and their occurrence in at least two replicates within l-2 km of each other

presented ideal conditions for this study.

Response curves

Photosynthetic light-response curves were developed for 2 sets of 12 red spruce

saplings (l-2 m height), one growing in full sunlight, and the other in multi-treefall gaps of

200 to 500 m*. The latter group would be exposed to direct beam sunlight for several hours

(perhaps not contiguous) on clear days but would receive substantially lower fluence of

photosynthetically active radiation (PAR; 400-700 nm) than those growing in full sunlight

(Bazzaz and Wayne 1994). This approach was designed to develop response curves

specific to individuals adapted to partially shaded (gap-adapted) or full sun (sun-adapted)

conditions. As light-adaptation is a fluence response (Chabot et al. 1979), differences in the

form of response curves would be expected between individuals adapted to habitats with

large differences in integrated PAR flux.

Photosynthesis measurements were made between 0800 and 1100 hours EST, in

mid-July through mid-August 1996. All trees were exposed to full sunlight at time of

sampling, therefore capable of photosynthesis at maximum rates. For each tree, a sample
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branch was randomly selected by whorl and quadrant from the upper one-third of the

crown, and measurements were taken on current-year foliage. Shoot elongation and needle

growth had ceased at least two weeks before measurements. The standard 2 x 3 cm cuvette

from a LI6400 (Li-Cor, Inc., Lincoln, NE) open-type photosynthesis system with LI6400-

02 light source was clamped on the center portion of sample shoots and foliage acclimated

for 30 minutes to a light intensity of 2000 pmol m‘* s*’ PPPD. Gas exchange measurements

were subsequently made at 14 light intensities (2000, 1500, 1000, 750, 500, 350,200, 120,

90,60,40,25, 10, and 0) in declining order. With each change in light intensity a 3 minute

adjustment period was provided, followed by a test for stability (< 0.5% maximum CV for

ACO, + hH,O), and the adjustment period repeated if necessary. The system’s infrared gas

analyzers were matched before each measurement, zero values were calibrated daily, and

span values were checked weekly using a standard gas for CO, and a LI6 10 (Li-Cor, Inc.)

dew point generator with pressure compensation for H,O. All measurements were made at

a standard temperature of 23 f 1 “C and VPD of < 1.5 kPa.

Response curves were developed based on the non-rectangular hyperbola model

(Prieul and Car-tier 1976)

A=
q.PPFD+a- d(q. PPFD + a)’ -4.q.PPFD.k.a

2k
Eq. 4.1

where A is apparent photosynthesis, q is apparent quantum efficiency (pmol A l prnol

PPFD-I), PPFD is incident photosynthetic photon flux density, a is maximum net

photosynthetic rate, and k is a bending factor that described the flex of the curve above the
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initial linear portion. Maximum photosynthetic rates were determined from mean rates at

2000 pmol rns2 6’ PPFD. To control the tendency of this model to become unstable in the

initial linear portion of the response curve (Leverenz 1988), a least-squares linear

regression was performed on subsets of data defined by PPFD < 60 pmol mm2 s-l, and the

resulting slope input as the q parameter. Subsequently, estimates of k-parameters were

determined with the Gausss-Newton algorithm of Systat (v. 8.0, SPSS, Inc., Evanston, IL,

USA), and derived using data for PPFD > 60 t.r.mol mlL s“. Table 4.1 gives parameter and

error estimates for linear (4.la) and nonrectangular hyperbola functions (4.lb), and Fig. 4.1

shows the resulting photosynthetic light-response curves for gap- and sun-adapted foliage.

Photosynthetic response curves for leaf temperature (T& and vapor pressure

deficit (VPD,,) were generated by fitting least-squares linear regression models to the data

given in a previous study of the influence of those factors on photosynthesis in red spruce

(Day 2000). As the preceding analyses indicated, the response of photosynthesis to both

factors was nonsign%cant below threshold levels (2.0 kPa for VPD and 32 “C for T).

Above the VPD threshold red spruce has been shown to respond in a linear fashion to

increasing VPD until at least 4 kPa (Day 2000). Table 4.la gives parameter and error

estimates for the regression of photosynthetic rates on VPD. As data were only available

for one T, level (36 “C) beyond 32 “C, the response was assumed to be linear and was

defined by the slope of the line connecting those Cartesian coordinates. This assumption is

substantiated by the concurrence of the high temperature compensation point (x-intercept)

of the model (43 “C) with the high temperature photosynthetic compensation point for red

spruce reported by Vann et al. (1994).
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Table 4.1. Parameter statistics for linear (A) and nonlinear (B) functions used in the
photosynthetic carbon gain model. SE = standard errors for parameter estimates.

(A) Linear functions (y = a + bx). The function for response to vapor pressure deficit
(VPD) was a slope-only equation @ = bx), thus given intercepts relate only to the dataset
used for parameter estimation. PLR = Initial linear slope of photosynthetic light-response
curve (see text for methods of estimation).

Function name Parameter Parameter SE of estimate R* of model

VPD response

a

b

0.66

5.79 0.240

-1.01 0.101

PLR: sun foliage 0.94

PLR: gap foliage 0.88

a -0.49 0.073

b 0.032 0.003

a -0.30 0.057

b 0.028 0.002

(B) Non-rectangular hyperbola (NRH; Eq. 4.1). Parameter q of the NRH (apparent
quantum efficiency) is the initial slope of the light-response curve and is equivalent to
parameter a in the PLR models of Table 4.1A. Parameter q was fixed in the estimations of
the other NRL parameters. R2 values reflect mean corrected estimates (1 -residual ss /
corrected ss).

Foliar type Parameter Parameter SE of estimate R* of model

Sun foliage 0.98

a 11.89 0.370

k 0.81 0.009

Gap foliage 0.83

a 8.81 1.482

k 0.91 0.188
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Figure 4.1. Photosynthetic light-response curves for red spruce. Curves were predicted by
the non-rectangular hyperbola model (Eq.4.1) with the fixed parameters given in Table 4.1.
The curve of sun-adapted foliage is shown with a solid line and that of gap-adapted foliage
with a dashed line.

Rates of daytime foliar maintenance respiration (R,.J were calculated fkom the linear

regressions (y-intercept values) of photosynthesis on PPFD -< 60 pm01 mm2 S’ described

above. Separate values were derived for gap-adapted and sun-adapted foliage at the

standard measurement T, of 23°C. To predict R,,, at higher and lower T, Response

models were developed based on the Q’” function (Salisbury and Ross 1992)

Eq. 4.2

where R, is the rate at temperature i, R, is the rate at temperature o, Ti - T,, is the difference

in temperature, and Q is the change in rate for each 10 “C change in temperature. A Q’O-
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value of 2.0 was selected based on reported values for related species and conifers in

general (Ryan et al. 1994, Amthor 1984). The influence of R,,, and direct temperature

limitations to photosynthesis were partitioned by subtracting estimated R, from total

temperature inhibition (TFAC) when folk temperatures exceeded the 32°C threshold.

Micrometeorological stations

Micrometeorological stations were established in the summer of 1998 in a

silvicultural clearcut, a selection stand, and an expanding gap shelter-wood stand in the

Penobscot Experimental Forest (PEF). Three additional stations were installed in a set of

replicate stands in the spring of 1999. At each station site in selection and shelterwood

stands basal area and canopy gap fraction were determined along a north-south transect

that passed through the stations. At three points (south edge of gap, gap center, and station

location in the northern sector) basal area was measured with a variable-radius prism plot,

and gap&-action with a LI2000 canopy analyzer (Li-Cor, Inc., Lincoln, NE, USA). The

means of these values for each site are given in Table 4.2.

The USDA Forest Service has managed the selection stands under a 5-y cutting

cycle since the 1950s. Harvesting has varied from individual tree to small group selection

harvests, resulting in various sizes of harvest gaps in diverse stages of regeneration.

Seymour and Kenefic (1998) have described their management and structure in detail. In

the selection stands, stations were installed adjacent to red spruce saplings of 0.5-l .O m

height situated to the north of gap center in gaps of approximately 250 m2 area . The

selected positions received direct sunlight for at least a portion of the day.
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The shelterwood stands were established in 1996 and 1997 as part of the University

of Maine’s Forest Ecosystem Research Program (FERP). Silvicultural treatment of these

stands was designed to provide an operable output of timber, to simulate the

Table 4.2. Site characteristics for locations of micrometeorological stations in the
Penobscot Experimental Forest, Penobscot County, Maine.

Stand-type

Selection

Sheltewood

Clearcut

Station Basal area (m’ ha-‘) Fraction of canopy in gaps

SL-1 26 0.172

SL-2 24 0.158

SW-1 16 0.346

SW-2 12 0.328

cc-1 0 0.100

cc-2 0 0.100

natural disturbance regimes of mixed-wood forests in the Acadian region, and to provide

regeneration niches for diverse overstory species (Seymour and Day, unpublished

manuscript). The initial harvests were broadly oval-shaped gaps of approximately 0.2 ha,

usually centered on preexisting multiple tree-fall gaps. Within the harvest gaps,

shelterwood regeneration cuts removed approximately two-thirds of the preharvest canopy.

In many cases, these entries released substantial accumulations of conifer advance

regeneration, primarily balsam fir (Abies bdsamea Mill.), eastern hemlock (Toga

canadensis (L.) Carr.), and red spruce. Gaps selected for stations had advance regeneration

of red spruce (0.5-l .O m height) located just north of the harvest area center, making

station sites similarly situated to those in the selection stands.
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To monitor micrometeorological conditions in clearcut areas, stations were located

in two spruce plantations that had been established by FERP in 1995 and 1997. The older

plantation (about 3 ha) had an ample sapling (> 0.5m ht) population around the monitoring

site. However, as the existing trees in the newer plantation were < 0.2m tall, two larger

(0.50.7m) individuals were planted near the plantation center for monitoring of leaf

temperatures. Both plantation sites were on former hardwood (birch-maple-poplar) stands

and produced large numbers of competing hardwood stump and root sprouts after planting.

To control competing sprouts, the smaller (older) plantation (CC-l) had been treated with

a ground application of herbicide in 1997 and all hardwood sprouts were removed with

motor-manual (brushsaw) release in May, 1999, immediately before collection of

microclimate data was initiated. The larger (newer) plantation (CC-2) had not received any

post-planting treatments and had numerous hardwood sprouts of l-3 m height, as well as

herbaceous and graminoid competitors.

Collection of micrometeorological data

Each micrometeorological station consisted of a 2m high tripod and mast mounted

on 1.5 cm diameter metal rods driven approximately 0.75m into the ground. Tripods were

always set to the north of sample trees to minimize shading. PPFD was measured with LI-

160 quantum sensors (Li-Cor, Inc., Lincoln, NE, USA) suspended immediately above the

crowns of sample trees on a 0.5m arm. Air temperature and vapor pressure were monitored

with Vaisala 50Y thermistor-humiters (Vaisala, Inc., Boston, MA, USA) in radiation

shields attached to the mast below the quantum sensor arm. Folk temperature was sensed

by two fine-wire (38 ga), type-T thermocouples (Omega, Inc., Stamford, CT, USA)
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located on current-year foliage of upper crown branches. Thermocouple junctions were

rested on top of foliage, the two wires extended down opposite sides of the shoot, and the

shielded wire secured to branches with very fine stainless steel strands. Wires passed

through a small clear plastic ring on the underside of the shoot, which provided a tension-

weight to keep the thermocouple junctions in contact with foliage. Sensors were calibrated

against laboratory standards (thermistor-humiters and thermocouples) or by the

manufacturer (quantum sensors) before deployment. Sensors were scanned at 60 s intervals

and hourly mean maximum, and minimum values recorded with dataloggers (4 Campbell

model 10X, and 2 model 21X; Campbell Scientific, Inc., Ogden, UT, USA).

Modeling integrated photosynthetic attributes

A deterministic photosynthetic carbon gain (PCG) model that input the hourly time-

step micrometeorological data was developed using the SAS language (SAS Institute

1998). Figure 4.2 provides a flow diagram illustrating the relationships between model

components and pathways, and the complete model code is given in Appendix A. The

model calculated apparent net photosynthesis (APS) based on the nonrectangular hyperbola

function. APS was combined with maintenance respiration (R,J, which was calculated from

baseline rates at 23 “C using a Q’” of 2.0 (see previous discussion), to estimate potential

photosynthetic carbon gain (PPCG). Factors were then developed to reduce PPCG by the

actions of leaf temperature (T,& and leaf-to-air vapor pressure deficit (VPD,,). As the

original response functions for these constituents were determined from measurements of

Lt, that model variable was used for calculating reduction factors. The influences of T,d

and VPD,=, have been shown to act independently in red spruce (Day 2000) allowing them
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to be treated additively. For each hourly timestep, net photosynthetic carbon gain (NPCG)

was then calculated as:

NPCG = PPCG - TFAC - VFAC Eq. 4. 3

where TFAC and VFAC are the reduction factors for the functions of APS on T,d and

VPD, respectively. TFAC included both direct temperature inhibition (Td) and losses to

R,,,. T, was subsequently determined by subtracting R,,, from TFAC. The model output

values of NPCG and its constituents for the growing season by summing hourly values for

the 126-day interval, 1 June - 30 Sept, 1999. To provide insight into within harvest-type

variability, output was generated independently for each replicate (2 per harvest-type).

To evaluate the influence of climatic changes on NPCG, the model was run under

cooling (mean T,, of -2.5 and -5 “C from current-climate data) and warming (mean T,, of

+2.5 and +5 “C from current-climate data) scenarios. The former represents a range of

values that have been proposed to reflect temperature conditions during Holocene cooling

periods (Gajewski 1988, 1987), while the latter are based on estimates of temperature

increases due to global warming (Mitchell et al. 1992). For these scenarios, runs were made

that modeled changes in TM as both additive and proportional functions of Tti. As an

additive function

T,$ = Tti’ + (T& - T,“) Eq. 4.4

and, as a proportional tknction

T,d = T,’ . (T,$ / T,“) Eq. 4.5
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Figure 4.2. Flow diagram for the carbon gain model. Rectangles indicate factor states,
triangles show switches, and ovals contain functions. Direct input pathways for calculating
net photosynthetic carbon gain are given as solid lines, and use of outputs from factor
states in other functions is indicated with dotted lines. TFAC is inhibition due to
temperature, VFAC is inhibition due to vapor pressure deficit, %, is maintenance
respiration, APS is apparent (net) photosynthesis, PPCG is potential photosynthetic carbon
gain, NPCG is net photosynthetic carbon gain, and T, is direct temperature limitation.
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where T,$’ and T,’ represent values of those variables under the climate change scenarios,

and T,,” and Tti,” hourly mean values in the growing season 1999 dataset.  Predictions of

models incorporating either of these functions were nearly identical, and predictions from

runs using the proportional function are reported here. Only temperature was varied in the

climate change scenarios, and it was assumed that solar energy input, ambient vapor

pressure, and photosynthetic response to light would remain constant.

Results

Microclimates created by silvicultural systems

Selection systems showed the lowest mean hourly photosynthetic photon flux

densities (PPFD, Fig. 4.3a), and mean integrated hourly PAR (400-700 nm) fluence (Fig.

4.3b). Shelterwood sites were intermediate, but still substantially less than clearcuts in all

PAR attributes. On a growing-season basis (1 June - 30 Sept.), total fluence reaching the

sensors above the crowns of saplings was (mean of two stations): 73 1 moles rns2 at

selection stand sites, 1477 moles me2 at shelterwood sites, and 4459 moles me2 in the

clearcuts. These substantial differences in input of solar radiation were not directly reflected

in differences in hourly mean (Fig. 4.4a) and maximum (Fig. 4.5a) air temperature (T*).

The trend among stand-types in foliage temperatures (TI& during daylight hours

better followed the pattern expected from solar energy input, showing an average

maximum T,=, range of 5.0 “C across stand types in early afternoon (Fig. 4.4b). However,

this relationship failed during midday when one of the selection sites (SL-1) and both
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Figure 4.3. Light characteristics for the 1999 growing season at Penobscot Experimental
Forest microclimate monitoring sites. Mean hourly photosynthetic photon flux density
(PPFD) is shown in (A),and photosynthetically active radiation (PAR) quantum fluence in
(B). Selection system sites have solid lines, shelterwood sites dotted lines, and clearcut
sites, dashed lines. Symbols for individual stations are: SL-1 -a-, SL-2 -, SW-l ...*.,
SW-2 -‘-) cc-1 -A-, cc-2 - - -.

110



28 -I
a
5
5

26-

8 24-
E
s n-
$
.!! m-
a
f IE-

a
J= IS-
s
Qz 14-

12 -

10 J

I
0 300 600 800 1200 1500 1800 2100 2400

Hour

Figure 4.4. Mean hourly air (A) and foliage (B) temperatures for the 1999 growing season
at Penobscot Experimental Forest microclimate monitoring sites. Selection system sites
have solid lines, shelterwood sites dotted lines, and clearcut sites, dashed lines. Symbols for
individual stations are: SL- 1 -o-, SL-2 -, SW- 1 l -m**, SW-2 l . a, CC- 1 -A-, CC-2 - - .
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shelterwood sites showed higher mean leaftemperatures than one of the clearcuts (CC-2).

An extensive correspondence with solar energy input was found with maximum daily T,

(Fig. 4.5b), but here a complex relationship was also evident. Maximum T, were generally

ordered clearcut > shelterwood > selection sites. However, the highest foliage temperatures

were recorded in shelterwood stands on numerous days (Fig. 5b), and the above order was

occasionally reversed. These days corresponded with the occasion of cool, damp air masses

when thermal energy radiating from the ground and surrounding vegetation would be

expected to maintain higher folk temperatures at the selection sites. A similar scenario

occurred at night when re-radiated thermal energy inputs were lowest, and losses to the sky

greatest, for foliage in the clearcuts (Fig. 4.4b).

Differences within stand-types are also evident from the number of hours that T, is

above the physiological threshold (32 “C) for limitation of photosynthesis (Table 4.3a).

This value ranges over an order of magnitude, from a low of 12 in SL-2 to1 77 in CC-2.

Based on mean values for stand-types, selection < shelter-wood < clearcut for both mean

hourly temperatures and maximum hourly temperatures. Maximum hourly T,d implies that

photosynthesis is temperature-limited for at least part of each hour. Considering that these

values represent number of hours over the growing season, the ranges within selection and

shelterwood stand-types would translate into only modest differences in temperature-

inhibition. However, the range of values within clearcuts is substantial. CC-l had integrated

hours (based on either mean or maximum T,& of less than those for either shelter-wood site

and close to the number for SL-1. In contrast CC-2 had over 2x the inhibition-hours of

CC-l.
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Trends in temperature differences between ambient air and foliage (T, - Tti)

mirrored the patterns found for mean hourly needle temperature (Fig. 4.6a) and maximum

daily foliar temperature (Fig. 4.6b). At the selection site with the greatest intact canopy

cover and smallest gap size (SL-2), mean hourly T, remained negative (lower than TJ

throughout the die1 cycle, while that at SL-1 was slightly (about 1 “C) positive at midday.

In the shelterwood stands T, - Tair was positive for 4 to 6 midday hours, with a noon

150 175 200

Julian date

,
225 250 275

Figure 4.5. Daily maximum temperature tracks for the 1999 growing season at
Penobscot Experimental Forest microclimate monitoring sites. Maximum air
temperatures are shown in A, and maximum foliage temperatures in B. Each track is
the mean of the two sites for each stand-type. Selection system sites have solid lines,
shelterwood sites dotted lines, and clearcut sites, dashed lines.
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Stand -type station Mean Mt%Xl Maximlml Maximum
1eafT tiT k&T air T

Selection mean 34 18 122 37

SL-1 55 21 151 43

SL-2 12 16 93 31

Sheltenwod mean 70 29 231 56

SW-1 85 26 270 44

SW-2 54 32 192 57

Clearcut mean 122 32 307 55

cc-1 66 31 202 52

cc-2 177 33 412 58

(b) Number of hours showing VPD inhibition by sites and basis (TM compared with T,).
Some inhibition of photosynthesis is implied by VPD > 2 kPa, moderate inhibition by VPD
> 3 kPa, and severe inhibition by VPD > 4 kPa.

Table 4.3. Number of hours above threshold levels for direct temperature inhibition of
potential photosynthetic carbon gain based on (a) TM and T,, and for vapor pressure
deficit inhibition (b) based on TM and T,.

(a) Number of hours showing direct temperature inhibition based on T, compared with
T, using mean and maximum hourly temperatures.

Stand -type station VPDbasedonT,, VF’DbwedonT,

>2kPa >3kPa >4kF% >2kPa >3kPa >4kPa

Selection mean

SL-1

SL-2

Shelterwood mean

SW-1

SW-2

Clearcut mean

cc-1

cc-2

136 28 3 156 14 0

192 49 5 199 19 0

82 6 0 112 9 0

229 69 12 213 25 0

247 84 18 201 22 0

210 55 6 225 27 0

381 119 30 247 35 4

306 51 9 235 33 2

486 186 51 259 37 5
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difference of 2.5 “C. In contrast, mean hourly T, - T,, at the clear-cut sites remained

positive from shortly after sunrise until after sunset. However, in magnitude of response the

two clear-cut curves varied greatly. The curve for CC-2 reached a mean difference of 3.7

“C, the greatest mean value of any site, while that for CC-l showed midday levels below

the two shelter-wood sites and slightly less than the highest for selection site SL- 1.

Nighttime differences in clearcuts were slightly greater (more negative) than those at sites

with an overstory canopy, an effect of enhanced radiational cooling at sites without an

overstory canopy (McCaughey 1989).

Table 4.3a uses the hours in which mean temperatures exceed the response

threshold for inhibition of photosynthesis to illustrate differences between TM and T,. on a

physiological level. If based on T,, the number of inhibition-hours were underestimated by

approximately 50% at selection and shelter-wood sites, and by roughly 75% for clearcuts

compared with estimations based on TM Underestimation based on maximum hourly

temperatures was even greater. At selection and shelter-wood sites inhibition-hours as

determined by maximum T,& and T,. differ by 3.5x and > 4x, respectively, while they

varied by nearly 6x for clearcuts.

Trends in mean hourly atmospheric vapor pressure deficit (VPDJ closely followed

those of mean hourly T, (compare Figs. 4.4a and 4.7a), although SL-2 exhibited midday

means below any other site. Maximum levels occurred between 1300 and 1500 hours at all

sites except SL-1, where the highest mean levels occurred before noon. This coincided with

peak input of solar radiation at that site (Fig. 4.1). VPD in the boundary
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Figure 4.6. Differences between leafand air temperatures for the 1999 growing season at
Penobscot Experimental Forest microclimate monitoring sites. Mean hourly difference is
shown in (A), and maximum daily differencefor stand-types in (B). Selection system sites
have solid lines, shelter-wood sites dotted lines, and clearcut sites, dashed lines. Symbols for
individual stations are: SL-1 -o-, SL-2 -, SW-l l *w**, SW-2 . . ., CC-l -A-, CC-2 - - .
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layers at foliar surfaces (VPD,,) followed similar trends to that in the bulk air, however,

absolute levels and differences between sites were greater (Fig. 4.7b). Shelterwood sites

showed the greatest similarity in trends, while those of the other stand-types diverged for at

least part of the day. For all stands except CC-2 mean hourly levels were below the 2 kPa

threshold for stomatal response to VPD in red spruce reported by Day (2000).

However, using mean values of VPD may mask important influences of these

environmental factors on foliar physiology. As Table 4.3b demonstrates, hours during

which photosynthesis is down-regulated by VPDM range from 82 at SL-2 to 486 at CC-2,

and those exhibiting a moderate reduction due to VPD, are only 6 at SL-2, but 186 at the

CC-2 site. Again, within stand-type ranges in VPD show the two shelterwood stands to be

most similar. Between the clear-cut sites, differences are proportionally less than those for

temperature inhibition (Table 4.3a) and the stand-types are most dissimilar when compared

on the basis of moderate to severe (>3 kPa - >4 kPa) inhibition-hours.

Compared with VPD,, VPD,, exhibited much smaller differences between and

within stand-types (Table 4.3b). Using VPD,, to estimate inhibition-hours resulted in

substantial underestimation of its influence on photosynthesis at the clearcut sites: 47% at

CC-2 and 23% at CC-l. Shelterwoods exhibited nearly no difference between the

approaches with a 16% underestimation at SW-l and a slight overestimation at SW-2. At

both selection stands, using VPD, as opposed to VPD,& resulted in small overestimations

of inhibition-hours.
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Figure 4.7. Digerences in mean hourly vapor pressure deficit during the1999 growing
season at Penobscot Experimental Forest microclimate monitoring sites. Mean hourly
atmospheric VPD is shown in (A), and VPD based on leaf temperature (E3). Selection
system sites have solid lines, shelterwood sites dotted lines, and clearcut sites, dashed lines.
Symbols for individual stations are: SL- 1 -•-, SL-2 -, SW- 1 *em==, SW-2 . l 0, CC- 1 -A-,
cc-2 - -.
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Influences of microclimate on photosynthetic carbon gain

Due to large differences in light availability, potential photosynthetic carbon gain

(PPCG) was greatest at the clearcut sites and about 40% less at the selection stations

(Fig.4.8,  Table 4.4). However, estimates for the clearcuts and shelterwood sites were very

close (about 6% lower in the shelter-woods). Ranges were small within all stand-types,

which correspond to narrow ranges of light fluence within stand-types.

For all stand-types the major limiting factor for PGCG was inhibition from leaf-to-

air vapor pressure deficit (VFAC) (Table 4.4), and its relative influence was of the order

clearcut  > shelterwood > selection (Fig.4.8). Diminution of VFAC was substantial along

this continuum with the effect at shelter-wood sites 65% of that estimated for clearcuts, and

at selection sites only 46% of the clearcut level (Table 4.4).  The greatest range of VPD-

inhibition within stand-types (2.6 mol y-‘) was found for the clearcut  sites (Fig. 4.8). This

compares with a much narrower range (0.1 mol y-r) for the shelterwood sites, and an

intermediate range for the selection sites (1.3 mol y-l).

Relative to inhibition by VPD, temperature inhibition of PPCG (TFAC; a

combination of direct effects and maintenance respiration) varied in importance among

stand-types (Table 4.4). TFAC and VFAC were approximately equivalent at the selection

sites, VFAC was about 1.5x the level of TFAC at the shelterwood sites, and VFAC was

roughly 2x the level of TFAC for the clearcuts. Trends in ranges also mirrored those for

VPD-inhibition (Fig. 4.8). Such parallel trends would be expected due to the use of T,& as

a fixed variable in calculating both factors (see methods).

119



32 -

28 -

24 -

s 20 - 0

it
16-

12 -

8-

4-

O-

I .

I i

SL S W CC

Stand-type

4.5

4.0

1
0 3.5 -

2 l
f-

3.0
-

I

2.5 -

2.0 -

9-

8 -

7 -

2 6 i
% 5 -

0
4 -

3 - 4
2d

I I I
SL SW CC

Stand-type

Figure 4.8. Differences among stand types in carbon gain and inhibitory factors. Units (y-
axes) for all factors are moles ms2 for the growing season 1 June through 30 September,
1999. PPCG is potential photosynthetic carbon gain NPGC is net photosynthetic carbon
gain, TFAC is temperature inhibition of PPCG, and VFAC is inhibition of PPCG due to
vapor pressure deficit. SL designated selection sites, SW shelter-wood sites, and CC
clearcut sites.Circles  give mean values for sites and bars give ranges for the two replicate of
each stand-type.
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Table 4.4. Model estimates of NPCG and model factors for the 1999 growing season (1
June - 30 September). Estimates in moles m-*. Sites 1 and 2 are the two stations in
replicates of each stand-type, referred to in the text as SL-1, SL-2, SW-l, SW-2, CC-l,
and CC-2.

Factor Stand type Mean Site 1 Site 2

Potential carbon gain
PF-3

Net carbon gain
N-3

Temperature-inhibition
(TFAC)

Maintenance respiration
0

Direct T-inhibition
crd

VPD-inhibition
(WAC)

selection 18.9 18.8 19.1
shelterwood 29.4 27.0 30.9
clearcut 31.2 31.4 30.9

selection 12.8 11.8 13.8
sheltenvood 21.5 20.0 23.1
clearcut 20.2 22.2 18.2

selection 2.9 3.0 2.7
shelterwood 3.2 3.3 3.2
clearcut 3.9 3.5 4.4

selection 2.8 2.8 2.7
shelterwood 3.0 3.0 3.0
clearcut 3.4 3.3 3.6

selection
shelterwood
clearcut

selection 3.2 3.9 2.6
sheltewood 4.7 4.7 4.8
clearcut 7.0 5.7 8.3

0.1
0.3
0.5

0.2 co. 1
0.3 0.2
0.2 0.8
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The breakdown of temperature-inhibition factors (Table 4.4) shows that losses to

maintenance respiration (R,J are an order of magnitude greater than inhibition due to direct

temperature effects (Td). Integrated direct temperature inhibition was < 1 mole m** for the

growing season at all sites, ranging from CO. 1 mole me2 at SL-2 to 0.8 mole me2 at CC-2.

When the model was run with T,, substituted for TM (Table 4.5, NPCG remained

virtually the same for the selection sites (+0.8 %), increased slightly for the shelterwoods

(3.3 %), and exhibited an 11.4 % increase for the clear-cuts. This was the result of the

negative leaf-to-air temperature differentials at the selection sites and the more positive

daytime differences at the shelterwood and clearcut  stations (Fig. 4.6), and the effects of

temperature basis on VFAC (Table 4.3b). Within the clearcuts, CC-l was more similar to

the shelterwoods  with a 4% increase in NPCG relative to the TMbased run, while CC-2

showed a 28% increase. Again, this reflects the difference in T, - T,, between the two

Table 4.5. Percent under (-) or over (+) estimation in photosynthetic carbon gain factors
and net carbon gain (NPCG), if estimated on the basis of air temperature as an alternative
to foliage temperature. Values are means for two sites located in replicate stands of each
type. TFAC = inhibition of potential photosynthetic carbon gain due to temperature
(maintenance respiration + direct temperature inhibition), and VFAC = inhibition due to
leaf-to-air vapor pressure deficit,

Stand type TFAC VFAC NPCG

selection +3.5 +3.1 +0.8

shelterwood -3.1 -10.6 +3.3

clearcut -12.8 -25.7 +11.4
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sites (Fig. 4.6). The range of differences within the other two stand categories were < 1%.

In the selection system using T, overestimated TFAC and VFAC, while in the

shelterwoods and clearcuts TFAC and VFAC were underestimated, most substantially at

clear-cut sites (Table 4.5).

Runs of the model with shifts in mean hourly air temperatures (-5, -2.5, +2.5, and

+5 “C from 1999 ‘current-climate’ temperatures) gave estimates of changes in NPCG and

its constituents under climate change scenarios (Table 4.6a). Under cooling scenarios

NPCG is increased for all stand types relative to current-climate conditions, with the largest

relative increases predicted for the clearcuts (Table 4.6b). Similarly the clearcuts suffered

the greatest relative decreases in NPCG with rising temperatures, showing a maximum

decline of 54% relative to current-climate in the +5 “C scenario. Under the cooling

scenarios the stand-types retained their same relative order of NPCG rates (selection <

shelterwood zclearcut)  as under current conditions (Fig.4.9). However, under the heating

scenarios NPCG of clearcuts becomes substantially lower than that of shelterwoods at +2.5

“C and slightly less than that of the selection stands at +5 “C. At the highest temperature,

NPCG of the shelterwoods is approximately double that of either of the other stand-types

(Table 4.6a, Fig. 4.9).

Under the cooling scenarios TFAC decreases relatively more in the clearcuts than in

the selection stands (Table 4.6b). This would be expected due to the cooler T,& values at

the selection sites, and the relatively lower rates of absolute change in R,,, at lower

temperatures predicted by the Q’” function (Eq. 4.3). In the heating scenarios, relative

increases in L therefore TFAC, are similar across stand-types. Thus, carbon allocation to
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Table 4.6. Factor values (a) and percent changes relative to current-climate (b) for net
photosynthetic carbon gain, temperature- and VPD-induced inhibition, and maintenance
respiration for changes in air temperature of -5 to +5 “C from temperatures recorded during
the 1999 growing season as predicted by the PCG model. In (b), negative values indicate a
reduction and positive values show an increase in factors.

(a) Predicted values of factors

Factor Stand type Hourly mean T,: difference with 1999 values
-5 -2.5 0 2.5 5

Net carbon gain
selection 14.6 13.8 12.8 11.2 8.5
shelterwood 24.5 23.3 21.5 18.8 15.2
clearcut 25.2 23.4 20.2 15.8 9.2

Temperature-inhibition
selection 2.0 2.5 2.9 3.7’ 4.6
shelterwd 2.2 2.5 3.2 4.4 6.1
clearcut 2.5 3.0 4.0 5.6 8.3

VF’D-inhibition
selection 1.8 2.5 3.2 4.3 5.5
shelterwood 2.2 3.2 4.7 6.5 8.8
clearcut 2.8 4.5 7.0 10.0 13.7

(b) Percent increase (+) or decrease (-) in factors relative to current-climate conditions.

Factor Stand type Change in ambient air temperature

Net carbon gain

Temperature-inhibition

VPD-inhibition

selection
shelterwood
clearcut

selection
shelterwood
clearcut

selection
shelterwood
clearcut

+14.1
+14.0
+24.8

-30.0
-31.3
-37.5

-43.8 -21.9 +34.4 +71.9
-53.2 -31.9 +38.3 +87.2
40.0 -35.7 +42.9 +95.7

+7.8 -12.5 -33.3
+8.4 -12.6 -29.3

+15.8 -21.8 -54.5

-13.8 +27.6 +58.6
-21.9 +37.5 +90.6
-25.0 +40.0 +107.5
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R, remained proportional to current-climate rates, and that factor had minimal influence on

changes in the relative order among stand-types in NPCG (Fig. 4.9). Under cooler climate

scenarios direct temperature inhibition became virtually nonexistent. With climatic

warming, losses to direct temperature inhibition, which were very small compared to those

due to R,,, in output from the current-climate model run, became substantially more

significant. Results from the +5 “C run, indicated that direct temperature inhibition would

account for 41% of TFAC at the clearcut sites. Under those conditions, selection stands

showed the lowest proportional losses to direct temperature limitations (22% of TFAC),

and shelterwoods were intermediate (31% of TFAC).

VFAC decreased dramatically for all stand-types under cooling scenarios (Table

4.6a). Under the warming scenarios, proportional increases in VFAC were greatest in the

clear-cuts, and the smallest proportional increases were at the selection sites. For all stand-

types VFAC remained the principal limitation to NPCG under current-climate scenarios.

Discussion

The effects of silvicultural systems on microclimate

Differences in air temperature (Tk) and ambient vapor pressure deficit (VPD,) on

a mean-hourly scale were small across stand-types (Figs. 4.4a and 4.7a). On a daily scale

(Fig. 4.4b) maximum temperatures on clear, calm days were commonly < 2 “C warmer in

the clear-cuts than the selection stands. This shows that T, and VPD,, in this forest are

primarily a function of larger scale meteorological phenomena such as air-mass origin and

interception of solar radiation by cloud cover. However, leaf-based microclimatic factors
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varied substantially both between stand-types and within stand-types (Figs. 4.5 and 4.7b),

and it is at this scale that temperature and vapor pressure deficit influence foliar

physiological processes. Accordingly, type and scale of climatic information must be

considered when evaluating the effects of microclimate on plant growth and other

ecological attributes.

This study shows that two inherent characteristics of micrometeorological

monitoring have implications for the development of comparisons between sites and for

input into ecophysiological process models. First is the temperature basis. As Fig. 4.6

shows, differences between T, and T,, can be substantial under certain conditions and

may vary significantly not only among silvicultural treatments but also between individual

stands or sites within a stand-type. Temperature basis is important not only for accurately

determining the effects of temperature itself, but also for its influence on vapor pressure

deficit and other parameters of physiological importance. At a coarse scale, the error

introduced by basing estimates on T, as a surrogate for T, is directly proportional to

input of solar radiation (compare Fig.4.3 and Table 4.5). However, the characteristics of

individual stands may alter this relationship (discussed below). Second, in cases where the

magnitude of physiological activities are determined by threshold functions, an important

microclimatic parameter is the number of measurement intervals at which thresholds are

exceeded. T and VPD effects on photosynthesis in red spruce are examples of such

functions. Therefore, use of data based on bulk air measurements may tend to obscure

physiological influences of microclimate, and the results of this study demonstrate that this

effect is potentially stronger at sites with greater input of solar radiation.
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Within stand-type differences in light, T,,, and VPD,& were relatively small

between shelter-wood sites compared to the other stand-types (Figs. 4.5 and 4.7). This was

likely due to the high-shade nature of light interception by the widely spaced upper canopy

trees. This overstory type would tend to produce a more even pattern of moderately

intense light (Oliver and Larson 1990) than the gaps surrounded by dense canopy that

characterize selection stands. Differences in these attributes between the selection stands

may be related to gap size (Bazzaz and Wayne 1994), which was slightly greater in SL- 1

than SL2.

Although both clearcut sites lacked an overstory canopy and showed very similar

solar energy inputs, they exhibited the greatest variation within stand-types for T,& and

VPD,, CC-2 was over 3x the size of CC-l (3 ha and 10 ha, respectively). However,

monitoring sites were centrally located in the openings and well away from shade cast by

the surrounding intact forest, making it unlikely that size of opening resulted in

microclimatic differences between the sites. As shown by their similarity in PAR fluence

(Fig. 4.3), T,, (Fig. 4.4), and VPD, (Fig. 4.7), atmospheric meteorological conditions were

substantially the same between these sites. Edaphic conditions (USDA Forest Service

1959) and preharvest stand composition (Forest Ecosystem Research Program,

unpublished data) were also similar. The only apparent dissimilarity between the clearcut

sites was in their post harvest treatment with respect to control of competing vegetation.

CC-1 had received an application of herbicide 2 years before the measurement period and

all surviving hardwood sprouts and competing shrubs were cut with brushsaws a few days

before the 1999 micrometeorological monitoring began. As a result spruce saplings in CC-
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1 had minimal competition, while those in CC-2 faced potential competition from Popths

root sprouts and stump sprouts of Be&la and Acer. Similarity in PAR fluence (Fig. 4.3)

suggests that any competition was primarily for belowground resources.

Studies at the Fallingsnow Ecosystem Project in Ontario, Canada, indicated that

control of competing vegetation for belowground resources was the predominant

limitation to conifer growth (Reynolds et al. 1997). Their data showed that soil water

availability was greater in plots with vegetation control as opposed to untreated plots

through most of the growing season. Reynolds et al. (1997) attributed increased

productivity in the treated plots to greater nitrogen mineralization from higher soil

temperatures and enhanced mineral uptake in moister soils. Alternatively, vegetation

control could enhance growth by increasing the water supply to transpiring foliage. This

would increase heat loss to latent energy transfer and reduce leaftemperature, limiting the

inhibitory effects of T and VPD on photosynthetic carbon gain. Such a competitive

limitation to soil water availability would explain the divergence between TM - T,, curves

for the two clearcut sites (Fig. 4.6). This effect may have been enhanced by monitoring

transplanted saplings at the CC-2 site (see methods). Although the saplings had been

transplanted over a year before measurements began, their root systems may not have been

exploiting as great a volume of soil as those at the CC-l site which had been in place for 4

years. The high peaks for midday T,, - T,, curves at the shelterwood sites (Fig. 4.6) may

also be due to reduced latent heat removal, resulting from competition for soil moisture

with remaining overstory trees and advance regeneration.
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The influence of silvicultural  systems on photosynthetic carbon gain

Potential photosynthetic carbon gain (PPCG) is clearly dominated by light

availability (compare Figs. 4.3 and 4.8), although PPCG was not consistently proportional

to fluence. Although fluence in the clearcuts was over 6x that at the selection sites and

nearly 3x that of the shelter-wood sites, PPCG at the selection sites was 60% of that in the

clearcuts, and that of the shelterwoods was only 6% less than the mean value for the

clearcuts. This can be explained by the interaction of light intensity (photosynthetic photon

flux density; PPFD) with the shape of photosynthetic light-response curves. A primary

factor in this incongruity was the percentage of light fluence that was above the light-

saturation point at the clearcut sites. As indicated by the photosynthetic light response

functions (Fig. 4.2) rates representing 95% of maximum rates* in red spruce sun-foliage

occur at a PPFD of approximately 1000 pmol mm2 s-l. Therefore, much of the available

h-radiance at the open sites is not photosynthetically utilized. However, this ‘excess’ PAR

input may decrease the effects of mutual shading in lower parts of the crown (not examined

in this study), which could enhance photosynthetic carbon gain at the tree level (Leverenz

1996).

A second factor contributing to the discrepancy between PAR fluence and PPCG

may be the greater photosynthetic efficiency of gap-adapted red spruce foliage at

intermediate light intensities. These light levels are associated with the strongly nonlinear

*As mathematical models of light response curves generally asymptotically approach
maximum rates, Bazzaz and Carlson (1982) recommend that a value representing 95% of
estimated maximum rates is of greater utility in comparisons of photosynthetic attributes
than maximum rates.
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portion of the photosynthetic light-response curve (Fig. 4.2), and Terashima and Hikosaka

(1995) suggested that it is in this range of PPFD that photosynthetic systems may show the

greatest divergence in their abilities to efficiently utilize incident PAR. Decreased efficiency

at intermediate light intensities results from mutual shading that may occur at many levels:

mutual shading by grana within chloroplasts, by chloroplasts within mesophyll calls, by

mesophyll cells within needles, by foliar elements (needles), and by shoots or higher-level

crown factors. The k-parameter (bending factor) of the nonrectangular hyperbola is a

quantitative estimate of this phenomena at any scale at which photosynthetic light-response

is considered (Evans et al. 1993, Leverenz 1988), and incorporates the effects of mutual

shading at all lower levels. If no mutual shading occurred, then the resulting response curve

would be of the Blackman-type, where the initial linear slope (defining apparent quantum

efficiency) would continue until the light-saturation level of PPFD was reached. In this case

the k-parameter would equal 1. Bending factors between 0 and 1 describe response curves

that deviate from Blackman-types with lower values indicating increasingly shallower bends

in their nonlinear portions. Physiologically, lower values of the k-parameter indicate

decreasing efficiency of photosynthesis at PPFD levels between those associated with the

initial linear response and saturating h-radiance (Terashima and Hikosaka 1995). In red

spruce, the light response curve of sun-adapted foliage shows a higher maximum rate of

photosynthesis than that of gap-adapted foliage (Fig.4.2). However, through a range of

moderate light intensities the response curve of gap-foliage shows a higher photosynthetic

rate than sun-foliage. This would be expected due to the thicker needles (lower specific leaf

area) of red spruce sun-foliage compared to shade-adapted needles (Chapter l), which
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implies enhanced mutual shading at cellular levels and below. Additionally, shoots of sun-

adapted foliage in red spruce tend to exhibit greater needle packing (number per unit shoot

length) and lower ratios of shoot silhouette-to-total-needle area compared to shade-foliage

( M.E.Day, unpublished data). Both of these attributes would be expected to enhance

mutual shading at the shoot-level. Although differences in photosynthetic rates at mid-

levels of PPFD are small (Fig. 4.2), light intensities in this range are typical of incident

levels in selection and shelter-wood stands, and represent mean levels during nearly one-half

the daylight hours in the clearcuts (Fig. 4.3). Consequently, the accumulated influence of

this factor may be significant in explaining the incongruity between PAR fluence and PPCG

with respect to the clearcut and shelterwood sites.

Inhibition by vapor pressure deficit (VFAC) proved to be the greatest factor

restricting PPCG and accounted for approximately 75% of the difference between PPCG

and NPCG in all stand-types. Stomatal conductance in red spruce is far less sensitive to

vapor pressure deficit than its western North American congeners Picea sitchensis (Bong.)

Carr (Warkintin et al. 1992) and P. engehnanni Engelm. (Kaufmann 1976), for which rates

decrease significantly above an ambient VPD of 0.5 kPa. However, this study demonstrates

that under current climatic conditions VFAC exerts a substantial stress on gas exchange.

That stress is increased under high n-radiance conditions due to higher foliage temperatures

and the temperature dependence of VPD (Buck 198 1). Alexander et al. (1994) and Vann et

al. (1996) have proposed that current and future southern range limits of red spruce are

controlled by temperature. The results of this study are consistent with their proposition in

the broad sense. However, it appears that the major environmental stress on this species
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will result more through the indirect influence of temperature on vapor pressure deficit than

through direct pathways (Table 4.4).

Several studies have indicated that low soil water potentials enhance the response

of stomata to VPD (Ellsworth 1999, Thomas and Eamus 1999, Nonami et al. 1990, Grieu

et al. 1988). As the modeled assessments of inhibition of photosynthesis presented do not

address this factor, they are likely underestimating actual rates of inhibition. This potential

source of error would vary by site. If this underestimation is proportional to the degree of

water stress, then rates of VFAC for sites with presumed high water stress (e.g. CC-2)

would much greater than the model suggests, while those for the sites with low water

stress (e.g. CC-l) would be closer to the predicted values.

In this study integrated carbon allocation to foliar %, (Table 4.4) is approximately

10% of gross carbon gain in all stand-types. This is broadly consistent with estimates for

other temperate conifers (Landsberg and Gower 1997, Ryan et al. 1997, Ryan et al. 1994,

Edwards et al. 1980). Due to higher T, and the temperature-dependence of R,,,, allocation

to foliar R, is greater in the clearcuts. However, foliage in the clearcuts allocated

proportionally less carbon to R,,,, relative to PPCG, than that at the selection sites. Day

(2000) has proposed that R,,, may be a more significant carbon sink proportional to gross

photosynthesis in shade-adapted red spruce foliage. In shade-foliage maximum

photosynthetic rates are approximately one-fourth of those given in Table 4.2 for sun-

foliage but respiration rates are 70-80% of sun-foliage rates (Alexander et al. 1994).

Compared to estimates for I$,,, estimates of direct temperature limitation (TJ under

current climatic conditions were small in all stand-types (Table 4.4). This is a result of the
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relatively few hours under which substantial effects from this factor occurred. Thus,

temperature inhibition to NPCG is primarily a result of losses to %. However, inhibition of

photosynthesis by T, was significantly greater under warmer climate scenarios (Table 4.6).

From these results, it appears that, under current-climate conditions, red spruce is growing

near a turning point for this factor, and an increase of a few degrees in mean ambient

temperature will result in large increases in T, inhibition of photosynthesis.

These modeling results indicate that net photosynthetic carbon gain (NPCG) in

upper canopy foliage of red spruce saplings was roughly equivalent at the shelterwood and

clearcut sites (Fig. 4.4) under current-climate conditions, with ranges of estimates for the

two stand-types showing significant overlap. When the shelterwood sites are compared

with CC-Z, NPCG in the former is clearly superior, but this order is reversed when NPCG

values of the selection sites are compared with those of CC- 1. This’ comparison

demonstrates the importance of the interaction of microclimate and competitive

environment as determinants of carbon gain. Where competition for belowground water

resources is strong (shelterwood and CC-Z sites; see discussion of microclimates),

limitations to NPCG from temperature-related factors (TFAC and VFAC) increase. This is

likely due to decreased transpiration rates resulting in lower dissipation of incident solar

radiation energy by latent heat transfer. When belowground competition in clearcuts is low

(CC-l), clearcuts and shelter-woods are roughly equivalent in NPCG. If belowground

resources are not limiting, greater light availability in the absence of an overstory canopy

may further enhance growth by providing higher PAR levels at lower crown levels in the

canopies of regenerating saplings (Johnson et al. 1998, Lamhamedi et al. 1998, Palik et al.
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1997, Klinka et al. 1992). The greater growth rates of red spruce saplings with distance

from the edge of intact canopies reported by Huges and Bechtel(1997),  may be due to this

interaction of limiting (T-related and competition) and enhancing (PAR fluence) factors.

This conceptual model may partially explain the inverse relationships between competition

and growth of conifer seedlings in numerous studies (Walstad and Kuch 1987).

By extrapolation, growth efficiency of red spruce saplings should be equal in both

shelterwood and clearcut silvicultural systems, but only if competing vegetation is

controlled in the latter. However, achieving the almost complete control of competing

vegetation at CC- 1 involves substantial costs (Nyland 1996), which are minimized under a

shelterwood system (Seymour 1995). In addition, establishment of red spruce seedlings is

enhanced by the partial shade of shelterwoods, which lowers temperatures and increases

moisture availability in the uppermost soil strata (Hannah 1988). Growth of some species

appears to be enhanced by early overwood removal in shelterwood systems (Bergqvist

1999, Dignan et al. 1998), but this has been shown to inhibit growth for others (Messier

1999, Dey and Parker 1997). For red spruce, these results argue for extended over-wood

retention in shelterwood systems unless stand prescriptions call for a high level of

vegetation control after removal.

In contrast to the shelter-wood and clearcut sites, the primary factor limiting NPCG

at the selection sites was PAR fluence. While cooler leaf temperatures minimized inhibition

of NPCG by VFAC and TFAC, mean estimated PPCG at the selection sites was roughly

equal to levels of NPCG in the other two stand-types (Table 4.4). Thus, photosynthetic

carbon gain of red spruce saplings is substantially lower under selection systems than
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shelterwood or clearcut approaches. Selection systems may provide other advantages that

are desirable from a tree growth perspective, however, such as limiting regeneration to

shade-tolerant species, and from a forest ecosystem perspective by enhancing such aspects

as structural diversity and consistency of soil microclimates over time (O’Hara 1998,

Seymour 1995). While the focus of this study is on photosynthetic carbon gain by sapling-

sized trees, there is evidence that selection systems may provide levels of productivity that

rival even-aged systems at the stand level (O’Hara 1996). These results suggest that

growth of sapling cohorts in uneven-aged red spruce stands, if desirable, can be

substantially enhanced by silvicultural prescriptions that improve light fluence at the sapling

strata (e.g., harvesting of larger groups and thinning of older cohorts).

Microclimatic conditions in stands with irregular overstory canopies are highly

heterogeneous (Finzi and Canham 2000, Baldoccchi and Collineau 1994), and great

variability is also typical within disturbance gaps (Bazzaz and Wayne 1994). Therefore,

conditions encountered by saplings in selection stands will exhibit high levels of spatial and

temporal variation, This is illustrated by the ranges of microclimatic and carbon gain factors

for the two selection sites in this study, which are apparent notwithstanding the similarities

in basal area and canopy gap-fraction between the sites (Table 4.1). Such variations have

been shown to influence competitive differentiation between species regenerating in gaps

(Finzi and Canham 2000, Wayne and Bazzaz 1993, Canham 1988). In contrast, the more

consistent canopy structure in the shelterwoods appeared to minimize these variations and

is more congruous with the close ranges of mensurational attributes of the shelterwood

sites. This difference between stand-types supports the maxim that the high-shade of
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shelterwoods provides relatively uniform conditions for regeneration (Oliver and Larson

1990, Hannah 1988). However, at the level of the individual sapling, competitors in

overstory and understory strata have the potential to produce small-scale variation in

resources that may effect the growth rates of individuals (McCaughey and Schmidt 1982).

Aboveground conditions would be expected to be relatively uniform in clearcuts,

which is apparent in the ambient light and atmospheric climatic attributes. However, the

competitive influence of surrounding vegetation on belowground resources that this study

suggests and their effects on folk physiology may also create variability in growing

conditions at the scale of individual saplings. Microsite variability may also be introduced

by the composition of competing vegetation. For example, Peltzer et al. (2000) reported

that white spruce growth was lower in competition with aspen (PopuZus) as opposed to

grass and forbs.

These sources of variability have implications for the results of this research.

Because microclimatic monitoring was carried out at only single points in each stand, the

results are not likely to adequately address inherent variation within stand-types. The

conclusions drawn here should be entertained with respect to this caveat, and viewed as a

tentative overview. A definitive understanding of how micoclimatic influences enhance or

inhibit carbon gain in relation to stand structure will require finer-scale long-term

monitoring of microclimates to evaluate both within-stand heterogeneity and the effects of

interannual climatic variation.
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Implications for the population dynamics of red spruce under changing climates

The base climate year (1999) was exceptionally warm in northeastern North

America, with the mean annual temperature at the nearest long-term monitoring station

(Caribou, Maine; lat. 46” 52’, long. -68” 2’) reported at 1.9 “C above the 30-year mean

(NCDC 2000). During the microclimate monitoring period the mean departure from normal

temperatures was slightly less (1.8 “C). However, this growing season difference was

skewed by mean September temperatures of 4.4 “C above normal mean temperatures. June

showed departure from normaJ of 1.9 “C, July 0.9 “C, and August 0.1 “C. Precipitation for

1999 was 5.3 cm above the 30-year mean. Again, this data was skewed by abnormally high

levels during September (13.6 cm, about 20% of the mean annual total).

The difference between factors limiting NPCG in red spruce saplings between

selection systems (light) and the other stand-types (T-related: TFAC and VFAC) are

apparent in the cooler climate model runs (Fig. 4.9). Under cooling scenarios selection

systems respond little in absolute NPCG (Table 4.6a.), albeit increases relative to current-

climate conditions are proportionally similar between selection and shelterwood stand-types

(Fig. 4.6b).  The most dramatic shifts in NPCG were seen with the warmer climate

scenarios. At +5 “C, NPCG in the clear-cuts was approximately equal to that of the

selection stands (Fig. 4.9). The modeling results indicated that NPCG at the shelter-wood

sites would be clearly greater than that of the other stand-types with a warming climate. In

this scenario, the shelter-wood stand-type offers the combined advantages of greater

quantum fluence than the selection sites and lower T,& (therefore, decreased inhibition by

TFAC and VFAC) than the clearcuts. Thus, under predicted scenarios of climatic warming
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(Mitchell et al. 1990), the advantages of shelterwood and selection systems for managing

red spruce will increase relative to clearcut systems.

Schauffler (1998) has suggested that red spruce in the Acadian region was

restricted to coastal refugia, and perhaps some favorable inland sites, during warmer

periods of the Holocene. As the climate cooled, the species was able to spread across the

landscape to become an important component of most Acadian forest-types. Schauffler’s

(1998) hypothesis is consistent with the climate-change modeling results from this study.

During warmer periods, red spruce would have been a poor competitor in most plant

communities due to temperature-related limitations to carbon gain. Coastal refLgia may

have offered slightly cooler, and perhaps moister, microclimates, which would minimize

those limitations. Inland sites with a combination of overstory protection from solar

radiation input and sufficient soil moisture to permit rapid transpiration and latent heat

transfer may have also offered safe-sites for this species during climatic warming. Under

climatic regimes that were somewhat cooler than the current-climate, as have been

proposed for the centuries immediately proceeding European settlement (Gajewski 1988,

1987), the species would have been a strong competitor following disturbances at many

scales. This may explain the apparently rapid spread of red spruce across the Acadian

landscape between approximately 1 k BP and the time of European settlement that

Schauffler’s (1998) hypothesis implies.

These extrapolations of red spruce carbon gain under different climatic regimes

assume that temperature is the dominant climatic variable. Thus, the estimates presented

here ignore changes in bulk air vapor pressure, precipitation regime, solar radiation input,
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and CO, concentration that may accompany changes in temperature regime. How these

related factors might change climatic warming or cooling is highly uncertain (Mitchell et al.

1990), so their interactive effects, although potentially significant, are not addressed here.

Conclusions

The silvicultural regimes evaluated (selection, shelterwood, and clearcut systems)

result in substantially different microclimates. However, microclimatic differences may not

be apparent if bulk air properties alone are monitored. Dissimilarities become clearer when

physiologically relevant attributes, such as leaf temperature and vapor pressure deficit in

the boundary layers of air at foliar surfaces, are considered. If physiological responses to

microclimatic variables are best described by threshold-type functions, the number of

measurement periods during which thresholds are exceeded may be a useful metric for

evaluating the relative intluence  of microclimates.

While gross photosynthesis, and, therefore, potential photosynthetic carbon gain, is

highly correlated with incident light flux density, the interaction of this variable with

photosynthetic light-response curves is of significant importance in integrated carbon gain.

Attributes of these response curves not only vary between species, but within species, due

to differences in light-adaptation status, and can explain the incongruities between light

fluence and integrated carbon gain in shade-tolerant species such as red spruce.

Modeling the integrated intluence  of microclimatic on photosynthetic carbon gain

variables indicates that the indirect effects of temperature (vapor pressure deficit and

maintenance respiration) are more significant than direct inhibition of photosynthesis by
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temperature. Vapor pressure deficit provides the greatest inhibition to photosynthetic

carbon gain in red spruce, with its effect approximately equal to the combined influences of

direct temperature inhibition and losses to maintenance respiration.

Among silvicultural systems, photosynthetic carbon gain is most strongly limited by

light in selection stands and by temperature related factors (inhibition by temperature and

vapor pressure deficit, and losses to maintenance respiration) in shelterwood and clearcut

systems. Lower levels of microclimatic inhibition in the shelterwoods tended to equalize net

carbon gain between shelterwoods and clearcuts.

Both among and within stand-types, the effects of competition on availability of

belowground water resources infh,tences transpirational flux and loss of folk heat through

latent energy transfer. This aspect is especially important to controlling temperature-related

inhibitions to carbon gain in the high energy environments of clearcuts.

With respect to net photosynthetic carbon gain of upper-crown foliage in red spruce

saplings, stand-types were ordered selection < clearcut 2 shelter-wood under current-

climate temperature regimes, In cooler-climate scenarios this relative order was maintained,

but in absolute terms the superiority of clearcuts and shelterwoods over selection systems

increased. Under warmer-climate scenarios the order was selection =clearcut <

shelterwood , with the latter showing clear superiority over the other stand-types. This may

provide a partial explanation for reported changes in distribution of red spruce in the

Acadian region during the Holocene, and has implications for future distribution and

management under predicted climate change scenarios.
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Appendix: Code for the carbon gain model

Figure 4.1 presents model pathways and steps in a graphic form. Using hourly time-

step data from micrometeorological stations, the model outputs potential photosynthetic

carbon gain, net photosynthetic carbon gain, losses to maintenance respiration, and

inhibition of potential photosynthesis by direct temperature effects, vapor pressure deficit,

and total temperature effects (direct temperature effects + losses to maintenance

respiration) on a growing season basis (depending on the range of dates in the dataset).

Model code is in capital letters, and italicized print describes steps and provides comment.

Iaknt~jies input &taset and input variables

FILENAME  JSDATA ‘CUlfYFILESWKESTUDPEFMET99WS99.DAT’;
DATA A; INFILE JSDATA;

INPUT STA DAY HR PPFD FLU AT ATMAX  ATMIN VPD VPDMAX STAVG
STMAX STMIN AMLT LVD MaxLT LTAT;

DATA B; SET A;

Ident@es stations by stand-type

IF(STA=l)OR(STA=S)THENTYPE=l;
IF (STA = 4) OR (STA = 6) THEN TYPE = 2;
IF (STA = 2) OR (STA = 3) THEN TYPE = 3;

Used to switch temperature basis

MLT = AMLT;
/*MLT = (AMLT/AT)*(AT  + 2.5);*/
MLT = AT;
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Calculates leaf-to-air vapor pressure de&it (ITDL)

AVPSAT = 0.61365*EXP((17.502*AT)/(240.97 + AT));
AVP = AVPSAT - VPD;
LVPSAT = 0.61365*EXP((17.502*hdLT)/(240.97 + MLT));
VPDL = LVPSAT - AVP;
IF (VPDL < 0) THEN LTVPD = 0;
IF (VPDL = 0) OR (VPDL > 0) THEN LTVPD = VPDL;

Parametizes non-rectangular hyperbola finction by foiliage light-adaptation type

IF (TYPE = 3) THEN A = 10;
IF (TYPE = 1) OR (TYPE = 2) THEN A = 9;
IF (TYPE = 3) THEN Q = 0.03;
IF (TYPE = 1) OR (TYPE = 2) THEN Q = 0.05;
IF(TYPE=3)THENK=0.81;
IF (TYPE = 1) OR (TYPE = 2) THEN K = 0.91;

Calculates potential net photosynthesis (APS) using non-rectangular hyperbola finction
IF (PPFD = 0) THEN APS = 0;
IF (PPFD > 0) THEN APS =
(Q*PPFD+A-SQRT((Q*PPFD+A)**2-4*K*Q*PPFD*A))/2*K;

Calculates maintenance respiration (I) rates using Q,,ficnction porn a 23 “C base and
Q,o of 2

RQlO = 2;
IF (PPFD > 0) AND (TYPE = 3) THEN R = 0.47;
IF (PPFD = 0) AND (TYPE = 3) THEN R= 0.33;
IF (PPFD > 0) AND ((TYPE = 1) OR (TYPE = 2)) THEN R = 0.43;
IF (PPFD = 0) AND ((TYPE = 1) OR (TYPE = 2)) THEN R= 0.301;
IF (MLT < 23) THEN RM = EXP (LOG(R)-LOG(RQ10)*((23-MLT)/lO));
IF (MLT = 23) OR (MLT > 23) THEN RM =
EXP(LOG(R)+LOG(RQ  1 O)*((hILT-23)/10));

Calculates potential gross photosynthetic rates (GPS) from net photosynthetic rates +
maintenance respiration rates

IF (PPFD = 0) THEN GPS = 0;
IF (PPFD > 0) AND (MLT < 23) THEN GPS = APS + RM;
IF (PPFD > 0) AND ((MLT > 23) OR (MLT = 23)) THEN GPS = APS + R;
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Calculates direct temperature inhibition of photosynthesis (DTFAC) when foliar
temperatures exceed the threshold of 32 “C

IF(APS=O)THENTPS=O;
IF (APS NE 0) AND ((MLT = 32) OR (MLT < 32)) THEN TPS = AI’S;
IF (APS NE 0) AND (MLT > 32) THEN TPS = APS-(0.534*(MLT - 32));
IF (TPS < 0) OR (TPS = 0) THEN TCPS = 0;
IF (TPS > 0) THEN TCPS = TPS;
DTFAC = (APS - TCPS);

Calculates inhibition of net photosynthesis by vapor pressure deficit (KFAC) when
threshold is exceeded and incident lightjk is above the levelfor 50% of maximum
photosynthetic rates (Assumes that stomata1 conductance is not limiting to photosynthesis
at low light levels.)

Sets thresholdfor inhibition of photosynthesis by vapor pressure de&it
VPT = 2.0;
IF(APS=O)THEiNVPS=O;
IF (APS NE 0) AND ((1-d < VPT) OR (Itvpd = VPT)) THEN VPS = APS;
IF (APS NE 0) AND (ltvpd > VPT) THEN VI’S = APS-( l.O09*hvpd);
IF (VPS < 0) OR (VI’S = 0) THEiN VCPS = 0;

Removes vapor pressure inhibition at PPFD levels < 200 ~01 mm2 s-’
IF (VPS > 0) AND (PPFD < 200) THEN VCPS = APS;
IF (VIPS > 0) AND ((PPFD = 200) OR (PPFD > 200)) THEN VCPS = W’S;
VFAC = (GPS - VCPS);

Scales gas exchange and inhibitory factorsfiom ~01 rnd2 s-’ to moles m-’ h-‘:

Potential photosynthetic carbon gain (PPCG)

IGPS = GPS *(60**2)*(10**-6);

Maintenance respiration (RJ

Dt.bf = Rhd*(60**2)*(10**-6);

Direct temperature inhibition of photosynthesis (TJ

DTFAC = DTFAC*(60**2)*(10**-6);
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Inhibition of photovthesis by vapor pressure deficit (TFAC)

IVFAC = VFAC*(60**2)*(10**-6);

Cakulates total inhibition of PPCG due to temperature (FAC)

ITFAC = IRM +IDTFAC;

Calculates net photovnthetic  carbon gain (NPCG)

INCG = IGPS - IRM - ITFAC - IVFAC;

Sorts dataset for integration by stand-we

PROC SORT; BY TYPE ;

Integrates by standtype

PROC MEANS MAXDEC=3 SUM;
VAR INCG IGPS IRM INRM ITFAC TTFAC IVFAC;
BY TYPE ;

Sorts data for integration by site

PROC SORT; BY TYPE ST&

Integrates by site

PROC MEANS MAXDEC=3 SUM;
VAR INCG IGPS IRM INRM ITFAC TTFAC IVFAC;
BY TYPE ST&

Ends model run
QUIT;
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