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This thesis presents the design and software implementation of an under-
water acoustic modem receiver. Communication links in underwater environments
face several undesired effects. These include multipath signal reflections, inter-
symbol interference, and channel fading. This receiver design uses a combination
of time and spatial diversity inputs combined with an adaptive feedback equalizer
to counteract those effects.

The design is based on three modules. A front-end module demodulates and
Doppler-compensates the incoming data. A channel combiner module receives
data from one or more front ends for spatial diversity and combines repeated
transmissions for time diversity. The data from each input channel is time aligned
and stored in a ‘job’ structure. The channel combiner also calculates tap sizes and
locations for the feedback equalizer. Completed ‘job’ structures from the channel
combiner are then sent to an equalizer module.

The modules are implemented in C language code written and compiled for

Analog Devices SHARC digital signal processors. The hardware consists of several



processors that are interconnected via link ports. This allows each module to run
on a separate processor. It also allows for multiple instances of certain modules to

be run simultaneously to provide real-time operation.
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CHAPTER 1

Introduction

1.1 Background

Submarine warfare simulation exercises conducted by the Naval Undersea
Warfare Center (NUWC) have stimulated an interest in reliable underwater commu-
nication links. NUWC requires the ability to exchange data between submerged
submarines, surface ships, and seafloor hydrophone arrays in shallow water environ-
ments [1].

While acoustical signals propagate reasonably well in water, several issues
must be addressed when designing an underwater communications link. Tests
conducted for the Seaweb '98 program (2] and NUWC [3] have revealed that
multipath signal spread is a major problem associated with underwater communi-
cations in shallow water environments. Inter-symbol interference and signal fading
are other issues that must be dealt with as well.

A study conducted by NUWC [4] has shown that a decision feedback
equalizer (DFE) coupled with a digital phase locked loop (DPLL) can compensate
for these undesired effects in underwater environments. The DPLL helps track
phase shifts that are too rapid for the DFE. The equalizer design proposed in [4]
also makes use of multiple diversity inputs to help combat problems due to channel

fading.

1.2 Purpose of the Research

The Test and Evaluation Department at the NUWC Newport Division origi-
nally developed and tested a prototype Underwater Digital Acoustic Telemetry

(UDAT) system using Texas Instruments TMS320C40 digital signal processors



[5, 1]. This thesis presents the design and implementation of an improved UDAT
system using Analog Devices SHARC processors.

NUWC’s prototype UDAT system, or modem, utilized two TMS3240C40
DSPs for each of its four functional blocks: (1) packet detection and synchro-
nization, (2) Doppler estimation and compensation, (3) complex demodulation,
and (4) equalization. The modem l;resented in this thesis uses a redesigned Doppler
compensation algorithm that has been combined with a redesigned complex demod-
ulation algorithm, thereby allowing the two to run on a single SHARC processor.
The packet detection and synchronization algorithms have also been redesigned,
allowing them to run real-time on a single SHARC DSP. The redesign of the
packet detection and synchronization includes two additional capabilities. First is
the ability to automatically choose equalizer parameters based on channel infor-
mation. Second is the capability to handle multiple acoustic sensors.

A special initialization sequence and manual fine tuning were required to
select equalizer parameters in NUWC’s prototype modem. That design results in
fixed equalizer parameters that may not remain optimal as the channel changes
with time. The modem described in this thesis automatically gathers channel
characteristics from the synchronization pings and uses them to periodically update
the equalizer parameters.

The modem presented in this thesis is capable of handling signals from
multiple physically separated acoustic sensors. This spatial diversity technique
can help lower error rates. Another technique known as time diversity also lowers
error rates. Time diversity requires the transmitter to repeat the message several
times (usually twice). The modem described in this thesis is capable of using both
spatial and time diversity. In contrast, the prototype modem developed by NUWC

utilized time diversity operation only.



Tests of the UDAT system conducted by NUWC [5] revealed that strong
multipaths arriving several milliseconds after the main signal created problems
with equalization. Increasing the equalizer’s memory to include the late arriving
paths usually is not practical in real-time systems [5]. The equalizer used in the
modem presented in this thesis utilizes a sparse feedback section to include late

x
arriving signal paths without adding excessive computational complexity.

The modem implementation discussed in this thesis is expected to allow

a maximum data rate of 1800 bits/sec at a range of 2 nautical miles in shallow

water. It also has the capability to track Doppler shifts up to +2% in order to

compensate for transmitters and receivers aboard moving submarines and ships.

1.3 Thesis Organization

Chapter 2 provides an introduction to the modules that make up the UDAT
system and shows how they are interconnected. The system’s data frame layout
is also be presented in Chapter 2. Descriptions of each module appear in greater
detail in later chapters.

In chapter 3, the front-end module is described. This module demodulates
and Doppler-compensates the incoming data. The front-end module also provides
channel information in the form of Target ID (TID) correlations.

Chapter 4 presents the implementation and benchmarking of the decision
feedback equalizer-phase locked loop (DFE-DPLL). The DFE-DPLL, or equalizer,
is used to correct for multipath channel and fading effects.

Chapter 5 discloses the channel combiner module that collects data and
channel information from one or more front-end modules. This module time aligns
the incoming data frames and submits them to an equalizer module. The channel
combiner also gathers information about the channel characteristics that are used

to configure the equalizer.



Testing procedures and results used to verify proper operation of the system
are discussed in Chapter 6. This chapter also presents recommendations for future

changes and improvements.




CHAPTER 2
UDAT System Overview

This chapter provides an overview of the three modules that comprise the
Underwater Digital Acoustic Telemetry (UDAT) receiver. It also introduces some
notation that will be used throughi)ut the later chapters. A description of the data
frame format used by the UDAT receiver is also described in this chapter.

The software implementation of this receiver is implemented on Analog
Devices Super Harvard Architecture Computer (SHARC ) digital signal processors.
The modular design of the software makes use of link port interconnections to
exchange data between the various modules. That design allows for flexibility in
the system configuration. The original design was constructed and tested on a
Morocco II carrier board with 8 SHARC processors [6]. Work is currently under
way to move the system to a Hammerhead platform that supports four faster

SHARC processors [7].

2.1 UDAT Receiver Modules

The UDAT receiver is comprised of one or more front-end modules, a
channel combiner module, and one or more equalizer modules. These modules
are connected as shown in Figure 2.1.

One front-end module is required for every acoustic input. Exploitation of
spatial diversity requires the use of multiple, physically separated, acoustic sensors
- each with a dedicated front-end module. Exploitation of time diversity can be
achieved with a single front-end module where repeated transmissions of the same
data helps combat time varying channel fading effects.

The equalizer modules implement the mathematical operations required to

determine and track dynamic channel characteristics. The equalizers make use of
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Figure 2.1: Interconnection of UDAT receiver modules.

known training data to learn the channel characteristics. Due to the numerically
intense nature of these calculations, multiple equalizers on separate processors are
supported. The clock speed of the SHARC processors along with the channel
parameters are the key factors that determine how many equalizer modules must
be used to provide real-time operation. Chapter 4 contains equalizer benchmarks
that give examples for some typical equalizer parameters. Each equalizer module
submits its demodulated data output to a host system. The host system is typically
a Unix system that is responsible for controlling and receiving data from a group
of SHARC processors.

The channel combiner module ties the multiple front-end and equalizer
modules together. It is responsible for performing time alignment of the incoming
data. The time-aligned receptions from various acoustic sensors are then submitted
as “equalizer jobs” to one of the equalizer modules. The time alignment is based
on a synchronization ping that appears at the beginning of each data packet.
That same ping and its echoes are also used to gather channel information used

to configure the equalizers.



2.2 Sensor, Channel, and Job Notation

As was presented in Section 1.2, the UDAT system uses both time and/or
spatial diversity to reduce reception errors. Time diversity is implemented by
combining two transmissions of the same data into two equalizer input “channels.”
Spatial diversity involves combining receptions of the same data frame from two
physically separated “sensors” intd two equalizer input “channels.” It is necessary
at this time to distinguish between “sensors” and “channels”. Sensors are physical
input devices (such as hydrophones) which provide an acoustic input to a front-
end module. The sensor outputs are demodulated and Doppler compensated by
the front end. Multiple copies of these outputs for the same transmitted data
(either from spatial or time diversity) are time aligned by the channel combiner
and submitted to an equalizer for demodulation. For a given equalizer job, each
copy of the time aligned receptions is known as a “channel”.

The equalizer’s input channels can come from any combination of time
and/or spatial diversity inputs. For example, two sensors could provide four
input channels to the equalizer when the system is operating in both time and
spatial diversity modes. Or, two sensors could provide two input channels when
operating in spatial diversity mode. Alternatively, one sensor could provide two
input channels when operating in time diversity mode.

In addition to time aligning the sensor waveforms, the channel combiner is
responsible for determining the dominant channel characteristics and passing this
information along to the equalizer. This information is stored in a structure called
an “equalizer job”. Equalizer jobs are written by the channel combiner and sent

to equalizers as described in Chapter 5.
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Figure 2.2: Format of a single telemetry data frame.

2.3 Data Frame/Modulation Format

The UDAT system transmits data in a data frame format illustrated in

Figure 2.2. Each data frame is one second long and contains the following sections.

e 42 msec target identification (TID) ping
e 100 msec quiet time
e 800 msec modulated data

e 58 msec quiet time

2.3.1 TID Ping

The data frame is initiated using a synchronization pulse consisting of a
76-bit Differential Phase Shift Keyed (DPSK) ping. The receiver, described in
Chapter 3, supports the detection of two possible “target ID” bit sequences within
this synch pulse. To be compatible with tracking ping formats currently used by
NUWC, the DPSK modulation format for the synchronization ping is different
from that of the information portion of the frame. The bit duration within the

synchronization pulse is 541.33 usec, giving a ping duration of 41.682 msec.
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These TID pings are used by the channel combiner (described in Chapter
5) to time align the received data frames. These pings are also used to identify

data frame numbers when the system is operating in time diversity mode.

2.3.2 Quiet Times

The synchronization ping 1s followed by a 100 msec quiet time in which no
data is transmitted. The receiver utilizes this period to obtain possible multipath
delays for the channel. The channel combiner uses synchronization ping detections
within this time period to indicate the channel delays that are likely to include
significant energy for the following data. Further details of this operation appear
in Section 5.4. The channel combiner then passes this delay information on to the
equalizer.

The 58 msec quiet time at the end of the frame helps prevent echoes of one

frame from interfering with the next frame.

2.3.3 Modulated Data

The information period of the data frame consists of 2000 Quadrature
Phase Shift Keyed (QPSK) symbols, 200 “training symbols” followed by 1800 data
symbols. The training symbols are known by both the transmitter and receiver.
They are used to “train” the adaptive equalizer to “learn” the channel character-
istics. Training data is included with each data frame to allow the equalizer to
“re-learn” the channel characteristics once every second, thereby compensating for
rapidly changing channels.

The symbol duration for this portion of the frame is 400 usec, so that the
information portion of the frame lasts a total of 800 msec. As was stated above,

this information period is broken down into training and real data sections. The




200 symbols of training data occupy the first 80 msec, while the real data occupies
the last 720 msec of this interval.
Chapter 3 presents the UDAT receiver front-end module used to receive

this specialized signal format.
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CHAPTER 3

Receiver Front End

This chapter describes the theory behind the receiver front-end module of
the UDAT system. It also presents details of the software implementation on the

SHARC processors.

3.1 Signal Format

In addition to the modulated data frame described in Section 2.3, the trans-
mitter sends a fixed CW “pilot tone”, which is exploited by the receiver to aid in
synchronization. The pilot tone frequency is selected as one of the nulls in the
spectrum of the QPSK information portion of the frame. For the 400 usec symbol
duration, the null-to-null bandwidth of the QPSK signal is 5 kHz, so that the pilot
frequency is selected as 2.5 kHz above or below the QPSK carrier frequency. The
primary role of the pilot tone is to allow the receiver to cope with unknown Doppler
shifts in the modulated signal. The receiver has been designed to allow Doppler

shifts of up to 2%, for carrier frequencies ranging from 10 kHz to 40 kHz.

3.2 Front End Tasks

The front-end module is responsible for processing samples associated with
a particular hydrophone, and delivering complex matched filter outputs to the
channel combiner, which is running on a separate processor. In particular, the

front end must perform the following tasks:

e Convert samples of the bandpass transmitted signal to a complex represen-

tation.

e Compensate for the Doppler shift of the received signal.

11



e Detect the presence of the pilot tone, which is an indication that telemetry

data is being transmitted.

e Normalize the received waveform by the magnitude of the pilot tone, so that

a fixed amplitude received signal is delivered to the channel combiner.

e Calculate the QPSK matched filter outputs, and deliver these values to the

channel combiner.

e Find the correlation of the received waveform with two different 76-bit target
ID’s. The maximum of the two correlations and the associated target ID are

delivered to the channel combiner.

Note that although the synchronization ping correlation is performed in the
front end, the actual detection and frame alignment is performed by the channel
combiner. The receiver front end produces a continuous output stream of corre-
lation values and matched filter outputs, without any regard for the particular
data frame structure shown in Figure 2.2.

The front end output data streams are delivered to the channel combiner
at a rate of 5000 samples/sec. Each complex matched filter output symbol is
accompanied by a correlation value (indicating the larger of the two calculated
76-bit correlations), the ID associated with this maximum, and an indication of

whether the pilot tone has been detected.

3.3 Front End Overview

Figure 3.1 shows a block diagram of the receiver front-end module. The
receiver input consists of a stream of samples from an acoustic sensor using a
sample frequency of F, = 104.4375 ksps.

The signal of interest is assumed modulated at a carrier frequency 2, =

27 F, rad/sec, and has a null-to-null bandwidth of 5 kHz. For efficiency, bandpass

12
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Figure 3.1: Functional block diagram of the telemetry receiver front-end.

signals are manipulated within the receiver front end using a complex represen-

tation. For a real bandpass signal z(¢), the complex representation is given by
#(t) = L.P.P. {z(t)e 7™} (3.1)

where the notation L.P.P.{} denotes the “low pass portion” of the signal in the

argument. The original signal z(¢) can be reconstructed from Z(t) using

z(t) = 2Re{Z(t)et’"'} (3.2)

= 2|Z(t)| cos(Qt + LZ(t)) (3.3)

The magnitude and phase of the complex representation Z(t) provide the envelope
and phase of the corresponding bandpass signal. No information about z(t) is lost
in manipulating Z(t), and reduced sample rates can be used to describe the complex
representation (saving computations). The mixer and lowpass filter portions of the
front end serve to extract the complex representation of the input sample sequence,
and reduce the sample frequency by a factor of five to 20.8875 ksps (complex).
Doppler shifts in the received signal cause the apparent carrier frequency
and bandwidth of the received signal to differ from the values generated by the

transmitter. The “Doppler Compensation and Resampler” block of the receiver
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compensates for this effect by modifying the sample frequency implemented at the
receiver. In short, the receiver sampling frequency is adjusted until the transmitted
pilot tone is phase-locked to a locally generated pilot tone at the appropriate
frequency. This procedure effectively locks the receiver sample rate to that of the
transmitter. Since Doppler compensation requires resampling of the input signal,
it is straightforward to also implément an additional decimation by a factor of
(approximately) 2 within this stage. This relaxes the requirements of the first
decimation filter, saving computations. Doppler compensation implementation
using the complex representations are presented in Section 3.5.

The output of the Doppler Compensation block is a stream of complex
samples at sample rate of 10 ksps. A lowpass filter is used to limit the bandwidth
of this signal to approximately 2.5 kHz to avoid aliasing in the final decimation
stage. The QPSK matched filter output for a given time index involves summing
the filter outputs over the most recent four samples (400 usec). This operation is
combined with the calculation of the lowpass filter output, so that a single filter is
used to implement both the lowpass and matched filter operations. This sequence
is then decimated (by 2) to form the “Matched Filter Output” that is provided to
the channel combiner.

“Synch Correlation” outputs of the receiver front end provide data frame
synchronization. The matched filter outputs are correlated with the known bit
sequences for the possible synchronization pings. Since phase ambiguity exists
between the transmit and receive clocks, the magnitude of the (complex) corre-
lation is used to detect the presence of the synchronization ping. Correlation values
are calculated for every other matched filter output, giving an output sample rate
of 5 ksps. For each output sample, the maximum correlation value is reported,

along with the ping ID associated with the maximum.
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The following sections provide additional details regarding the design and

implementation of the individual components of the receiver front-end module.

3.4 Calculation of the Complex Representation

The complex representation of the input signal is given in equation (3.1).
Samples of the complex representation are calculated from the sequence of input
samples by filtering the signal z(kT,)e™7%*Ts where T, = 1/F,. Values of the

exponential can be calculated recursively by setting

e = 1 (3.4)
er = ex_1exp(—jQ.T;) k=1,2,... (3.5)
= /T (3.6)

The transcendental function exp(—j§2.T;) can be evaluated once, so that calcu-
lation of the exponential portion of the sequence involves a single complex multi-
plication. The sequence e;z(kT,) must then be filtered to produce samples of
Z(t).

The null-to-null spectrum of z(t) occupies the band F, — 2.5 kHz to F, +
2.5 kHz. Doppler shifts may shift the apparent frequency at the receiver by up
to +2%, so that for a carrier frequency of F, = 40 kHz, the band of interest
occupies roughly F, + 3.3 kHz. The lowpass filter used to create Z(t) must pass
frequencies below 3.3 kHz. To reduce the sample rate by a factor of five to 20.08875
kHz, the filter must eliminate frequencies within 3.3 kHz of 20.08875 kHz to avoid
the undesired signal from aliasing into the band of interest. A 25 coefficient FIR
lowpass filter was designed to provide 80 dB of stopband rejection. The magnitude

response of the filter is shown in Figure 3.2.
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Figure 3.2: Magnitude response of the first FIR decimation filter, used to reduce
the sample rate by a factor of five.
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Figure 3.3: Block diagram of the Doppler compensator and resampler.
3.5 Doppler Tracking

Figure 3.3 provides a conceptual block diagram of the Doppler compen-
sation and resampler portion of the receiver front-end module. The system exploits
the presence of a pilot-tone at one of the QPSK spectral nulls to lock the sampling
frequency to that used in the transmitter. The complex input for the compensator
consists of samples of Z(t) at sample frequency F, = F;/5 = 20.08875 kHz. This
signal is filtered to extract the pilot-tone portion of the signal. (The filter is not
strictly required, and the development described in this section does not assume
that the pilot tone has been separated from the modulation. However, marginal
performance improvements were realized when the filter was included, particularly
for low pilot tone amplitudes. As a result, the pilot tone filter was included in the
final implementation.)

The resampler allows calculation of the values of Z(t) or p(t) at times that
are not multiples of the input sample period 7, = 1/F,. The resampler imple-
mented in this receiver is capable of calculating values of these signals with approx-
imately 1 usec granularity in the sample time. (Note that changing the sample
rate for the complex representation is slightly more complicated than interpolating

the input signals, since the value of T, used in (3.5) must also be modified—see
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Section 3.5.3.) The goal of the Doppler compensation section is to generate a
sequence of input sample times ¢; so that the output signal sample rate is F,, = 10
ksps, locked to the transmitter clock. To accomplish this, the pilot-tone portion of
the transmitted signal is compared to a locally generated pilot tone. Phase errors
between the two signals are used to adjust the sampling clock.

x

The remainder of this section gives the mathematical development needed

to implement the resampler and Doppler compensation.

3.5.1 Complex Representations of Bandpass Signals

To develop the Doppler tracking algorithm, this subsection reviews the
complex representation notation used in this thesis, and gives a few examples of
signals that will prove useful. Let z(t) denote a bandpass signal of interest with
center frequency §2, rad/s and bandwidth B Hz. The complex representation of

z(t) given by (3.1) is restated here
#(t) = L.P.P. {z(t)e™7%} . (3.7)
The original signal z(¢) can be reconstructed from Z(¢) using

z(t) = 2Re{Z(t)et’"'} (3.8)

= 2|7(t)| cos(Qut + LE(2)) (3.9)

EXAMPLE 3.5.1 (PURE COSINE)

For z(t) = Acos(§2;t), we have

(1) = 5 exp (5(52 ~ Q.)1). (3.10)
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EXAMPLE 3.5.2 (DOPPLER SHIFTED COSINE)
Let p(t) denote a transmitted “pilot tone” Acos(Q,t). The received signal z(t)

contains a Doppler shifted tone at frequency Df2,, where D is a constant close to

1. Then
z(t) = p(Dt) = Acos(2,Dt) (3.11)
B1) = 5 exp ((2,D - Q.)1) (3.12)

EXAMPLE 3.5.3 (TIME VARYING DOPPLER SHIFTED COSINE)
Example 3.5.2 may be extended by assuming that the Doppler shift is time-varying.

This is represented mathematically by

58 = p ( /0 tD()\)d)\) = Acos (Q,, /0 tD(A)dA) (3.13)
This gives
Z(t) = gexp (jQ,, /OtD()\)d)\ - cht> . (3.14)

3.5.2 Time Scaling of Signals

In our implementation, timescaling the signal z(t) compensates for the
Doppler shift. For a constant Doppler shift factor D, it is desired to create the

signal

y(t) = x(t/9) (3.15)
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where 4§ is close to D (6 will represent our estimate of the unknown factor D at a
given time). To implement the time scaling, we develop the relationships between
the complex representations of z(t) and y(¢). The complex representation of y(t)

is

§(t) = L.P.P.{z(t/6)e 9%} (3.16)

= L.P.P. {z(t/5)e 3% (t/0)g=i0%(t=t/0)] (3.17)

For ¢ close to 1 (the usual case), the second exponential term of (3.17) is a low
frequency term and does not alter the portion of the spectrum selected by the

L.P.P. operator. We then obtain

j(t) = L.P.P.{z(t/5)e 19/} ¢=ik(t=t/0) (3.18)

= F(t)6)eI%-t/D) (3.19)

One can readily observe that the complex representation of y(t) cannot be
obtained by simply time scaling the signal Z(¢). The exponential factor in (3.19)

is required to obtain 7(t) for the desired center frequency ..

3.5.3 Nonuniform Sampling of z(%)

Note that the development in Section 3.5.2 assumed a constant time-scale
factor. In our implementation the scale factor must be adjusted to track a changing
Doppler shift factor. To do so, define the samples of y(t) in terms of the (unequally

spaced) samples of z(t):

y(KT,) = (). (3.20)
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Repeating the development of Section 3.5.2 gives
G(kT,) = &(ty)e G T—t), (3.21)

Equation (3.21) will be used extensively. The goal is to determine time sample
values t so that the signal §(kT,) dontains the pilot tone at the expected frequency.
Under this condition, the nonuniform sampler has successfully compensated for the
time-varying Doppler shift on the input signal.

In (3.21), #; denotes the time values used to sample z(t). For Doppler shift
factors close to 1, the time step values will be close to Ty, giving txy1 — tx = T},
We define A as being the correction factor for the kth sample giving the actual

sample separation:
terr =t + (1 + Ap)Ty. (3.22)

Ay is the (small) deviation in the sample step size from the kth sample to the
k + 1st sample. For Doppler shifts of up to £2%, the magnitude of Ay should

remain below 0.02. Given the values of Ay, the time sample values are given by
k-1
te = kT, + > AT, (3.23)

£=0

EXAMPLE 3.5.4 (SAMPLING OF THE PiLOT TONE)
Sampling the time-varying Doppler shifted signal from Example 3.5.3 as indicated

above gives

A tk _
§(kT,) = 5 exp (jQ,, / D(X\)dX — chtk> eI (kTy—t) (3.24)
0
A b
= S exp (jQp/O D(N\)dX - chkTy> (3.25)

21



Let Dy = 1 — di denote the average (unknown) Doppler shift factor for ty <t <

teg1-
k-1
J(kT,) = —exp (;Q,,Z T,(1+ A)Dy) — 9% kT) (3.26)
=0

k-1
= éexp(TyﬂpZ (1+ Ag)(1—dp) — jQ kT) (3.27)
¢=0

Note that A, and d, are generally small (< 0.02). In our case, d; represents
a system input—it is the actual Doppler shift at the kth sample. We wish to
determine A, such that (1+ A,)(1—d,) = 1, so that §(kT,) will represent the pilot

tone at the (known) pilot frequency.

3.5.4 A Phase Locked Loop to Adjust the Sample Rate

To determine A, so that y(k7T,) contains the expected pilot tone at the

appropriate frequency, the following strategy is adopted:

1. measure the phase error between §(kT,) and the desired exp(j(2, —Q)kT}))

terms.
2. Filter this result and adjust A, to keep this phase error small.

Figure 3.4 shows a phase-locked loop structure designed to accomplish these tasks.
To analyze the loop, each block is considered separately. The nonuniform sampler
described by (3.27) shows how changes in the Doppler shift d; or the loop output
Ay effect §(kT,). The loop filter will be denoted

Hp(z) = . (3.28)

where B(z) and A(z) are polynomials. These polynomials must be properly

selected to ensure the stability of the PLL.
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Figure 3.4: Complex representation of the phase-locked loop used for Doppler
tracking.

The phase detector measures the phase difference between (kT,) and the

desired exp(j(§2, — Q)kT, terms. In implementation, we calculate
Y(kTy) = §(kT,) exp(—j(Qp — Q)kTy) (3.29)

The phase difference is then approximated (for small phase errors, while the loop

is locked) by the imaginary part of the normalized ¥(kT,):

#(kT) =Im (&:ﬂ) (3:30)

We can now obtain the closed-loop behavior of the PLL. Substituting (3.27)

into (3.29) gives

k-1
H(T,) = 5 exp (mﬂp D[+ A1~ do) - 11) (3:31)
£=0

The phase detector output is then

k-1

$(T)) ~ Ty [(1+Ag)(1 - de) - 1] (3.32)
£=0
k-1

= T,Q, ) (g —dy - delAy) (3.33)
£=0
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Figure 3.5: Frequency-domain representation of the (linearized) phase-locked loop.

The cross-product term d;A, doeg not significantly influence the behavior of the

loop since A, and d, are both small. This term is dropped from the analysis, giving

k-1
¢(kTy) ~ QpTy Z(Al - de) (3-34)
=0
In difference equation form, we have
¢(kTy) = ¢((k — I)Ty) + QpTy(Ak—l — dk-1). (3.35)

Taking the z-transform of this result gives a frequency domain description of the

phase detector combined with the nonuniform sampler:

5 = (T~ (A(2) - d(2)) (3.30)

z

Figure 3.5 gives a frequency domain depiction of the linearized phase-locked loop
just developed. The linearized model shows how external changes in the Doppler
shift of the sampled signal (dx) are tracked by the sampler. Successful loop
operation is indicated by small values of ¢(k7,) (small phase errors). The closed-
loop transfer function from the Doppler disturbance to the phase error is given

by

) _ (3.37)
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The loop filter polynomials A(z) and B(z) should be selected to make this small
at low input frequencies (near z = 1). A second transfer function of interest is the

relationship between dy and Ag. The closed-loop relationship is given by

(3.38)

This filter should be lowpass in nature, so that the (relatively low frequency)
changes in dy are accurately tracked by the loop, while portions of the re-sampled

signal not near the pilot tone frequency are rejected.

3.5.4.1 Selection of Loop Filter Coefficients

Selection of the loop filter coeflicients was largely a trial and error process.

The following constraints are observed:

1. The loop must be stable. Given the poles and zeros of Hy(z), the gain of
the filter may be modified while monitoring the magnitudes of the roots of
(z - 1)A(2) — Q,T,B(z). Gain values are identified so that these roots lie

within the unit circle under all expected values of Q,T,.

2. The steady-state phase error must be reasonable. The phase detector given
in (3.30) is based on an assumption that the phase error will be small. Phase
errors above +7/2 violate the linearity assumptions used in the approxi-
mation given in (3.32). The nonlinearity will cause the loop to loose lock.
The steady-state phase error for a constant Doppler shift factor D, = 1 —d;

is obtained from the DC gain of the closed-loop response

¢(2)
s (d(z) z:ej0=1> s (3.39)
1
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For example, to obtain a maximum phase error of +7/3 for a maximum

Doppler shift of 2% (d;; = 0.02) gives the requirement

0.02

2 TH)]

(3.41)

e
3
To meet this requirement, the DC gain of the loop filter must exceed -34 dB.

3. The roots of A(z) are selected close to z = 1, making H(z) lowpass and

making fg—j)l small near z = 1.

4. The roots of B(z) are selected near the unit circle to control the bandwidth

of ﬁ((j)). This transfer function should be lowpass, with bandwidth sufficient

to pass the Doppler drift frequencies, but narrow enough to reject any other

modulation present in the signal.

3.5.4.2 Doppler Tracking PLL Summary

For further reference, the iterative Doppler tracking PLL is summarized by

the equations (3.42) to (3.46), which are restated from the above development.

e Nonuniform Sampler

tk = tk—l + (1 + Ak—l)Ty (342)
§(kT,) = Z(tk) exp {—ch(kTy —t)}- (3.43)

e Phase Detector
Y(kTy) = §(kTy) exp(—j(S2p — Q) KTy) (3.44)
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(3.45)

e Loop Filter

B(2) bo+biz7t 4+ by

H(z) = A(z)  14az7l+---+a,z7"

n

Ae =D big((k—i)T,) = 3 ol (3.46)

i=1

3.5.5 Nonuniform Sampler Implementation

Assume that samples of Z(t) are available at sample frequency F, samples
per second, and sample period T, = 1/F,. That is, Z(¢) has been uniformly
sampled, and Z(¢T;) is known. To implement the nonuniform sampler required by
(3.43), samples between times ¢T, can be calculated using polyphase interpolators.
For an interpolation rate of I, samples at time ¢T, + m(T;/I) can be obtained as

follows:

1. Design a lowpass FIR filter at sample rate [F, that passes the desired
signal band and rejects (at least) frequencies above F, — B, where F, is
the desired output sample rate for §(¢) (possibly different from F;) and B is
the bandwidth of Z(t). Select the number of filter coefficients as a multiple of
I. Let h(k) denote the impulse response of this filter (k =0,1,..., MI —1).

2. The set of I polyphase filters are designed by decimating h(k). The impulse

response of the mth filter is

pm(7) = h(m + jI) m=0,1,...,.] -1 5=0,1,...,. M -1 (3.47)
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3. To evaluate Z(¢T, +mT,/I), use the mth polyphase filter at time origin £T}:

M-1
F(0T, +mT,/I) = Z P (§)E((€ = 5)T2) (3.48)
= - h(m+ jDz((€ — j)T:) (3.49)

i=0

To evaluate Z(tx) as required in (3.43), tx is rounded to a close time value
of the form £, T, +m;T, /1. The required values of ¢, and m; are found recursively.

Assume that the t,_; value is known by

o1 =T+ e, 0<m <1, (3.50)

From (3.42) the next time sample is

te = tlp_1+ (1 + Ak_l)Ty (351)
T,
= tp_1+ <(1 + Ak—l)%) T, (3.52)
Ty
= gk—sz + | -1 + (1 + Ak_l)T— Tz (353)

The term in parenthesis in (3.53) can be broken into its integer and fractional part,

giving the desired step sizes:

T,
(Tk—l + (1 + Ak—l)i-,l) = Al + 1y, 0<rg<1. (354)

T

tr = (ék_l + Afk)Tx + (’I'kl) Tz/I (355)
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The required values of £;_; and my_; to evaluate (3.49) are given by setting

b = b1+ Al (356)
me = I_T‘kIJ (357)
where
T,
Al = i\(ﬂc—l + (1 + Ak_l)Ty)j (358)
T,
Ty = (Tk—l + (1 + Alc—l)T_y) — Agk (359)

and |-] denotes rounding down to the nearest integer.
Evaluation of §(kT,) in (3.43) also requires an exponential phase correction
term. The exponential evaluation may be avoided in the polyphase filter case as

follows. Substituting ¢ = €T, + my (T, /I) into (3.43) gives

§(kT,) = Z(tx) exp {—jQ(kTy — & T,)} exp {+jQ.Tymi/1} (3.60)

The value of the second exponential in (3.60) can be obtained from a lookup table,
since there are only I possible values of my. The value of the middle exponential
term may be calculated recursively. Let ¢, denote the value of this correction term

for the kth sample:

Cx = eXp {—]QC(kTy — ész)} (361)

Using the update equations for ¢, gives

e = exp{—jQ((k = VT, — €x1T:)} exp {—JQ(T, — ALT,)} (3.62)

= ck-1exp {—JQ(T, — ALT,)} (3.63)
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The exponential term of (3.63) can also be tabulated, since (for small Doppler
shifts) only a few values of Af; are possible.

The nonuniform sampler given in (3.43) is implemented by using (3.56)
through (3.59) to find ¢, my, and Af¢;. These values are used to approximate
Z(tx) using {3.49). The integer A4, is used to obtain ¢; as in (3.63) (where the
exponential factor is obtained frorr; a table). The Doppler corrected output sample

is then obtained from
ﬂ(kTy) = .f:(tk)ck exp {jQCszk/I} (364)

where again the exponential term is found from an I-element table indexed by the

value of m;.

3.5.6 Filter Designs

A 6th order elliptical highpass filter was used to implement the pilot tone
filter shown in Figure 3.3. The filter passband includes frequencies above 1.7 kHz
(the lower limit for the Doppler shifted pilot tone location). This filter, combined
with the lowpass filter implemented within the resampler, serves to isolate the
pilot tone from the bulk of the modulated signal. The filter was implemented as a
cascade of three second-order sections. The filter allows 0.3 dB of passband ripple,
and attenuates the stopband by 40 dB. A plot of the filter characteristic is shown
in Figure 3.6.

The polyphase interpolator used to implement the resampler is based on
an interpolation rate of I = 50, giving an oversampled sampling frequency of
50F; = 1044.375 ksps. The filter design described in Step 1 of Section 3.5.5 was
accomplished using a 800-coeflicient FIR filter with 80 dB of stopband rejection.

The magnitude response of this interpolation filter is illustrated in Figure 3.7.
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Figure 3.6: Magnitude response of the 6th order elliptical pilot tone filter.

The filter impulse response was decimated as described in (3.47) to give a set of
50 separate 15-coefficient polyphase filters. Calculation of each resampled output

value involves finding the output of one of these 15-coefficient FIR filters.

3.6 Lowpass and Matched Filters

The output lowpass filter illustrated in Figure 3.3 is required to avoid
aliasing when the sample rate is reduced to 5 ksps. This filter was designed to pass
frequencies belbw 2.2 kHz, and reject frequencies above 2.8 kHz. Figure 3.8 shows
a plot of the magnitude response of this filter, obtained using a 40-coefficient FIR
filter. In implementation, this filter is combined with the QPSK matched filter by
convolving the designed impulse response with the impulse response of the matched
filter (a sequence of four 1’s). The resulting combined lowpass and matched filter

is a 43-coefficient FIR filter. Note that although the magnitude response shown in
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Figure 3.7: Magnitude response of the 800-coefficient FIR interpolation filter used
to implement the resampler.
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Figure 3.8: Magnitude response of the output FIR anti-aliasing filter.

Figure 3.8 shows less than 70 dB of stopband rejection, the combined magnitude
response of the lowpass and matched filter does have more than 80 dB rejection
throughout the stopband.

The Lowpass/matched filter outputs are then decimated by a factor of two,
giving an output data stream of 5 ksps that is delivered to the channel combiner.
The decimation is not implemented as a part of the lowpass/matched filter, since
the 10 ksps output is required for accurate implementation of the ping synchro-

nization correlator.

3.7 Frame Synch Ping Correlation

The frame-synchronization ping consists of a N, = 76-bit Differential Phase

Shift Keyed (DPSK) modulated ping (or equivalently, a 77-bit BPSK ping). The
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ping may be described by

Np
p(t) = bupo(t — kT) (3.65)

k=0

where b, = £1 indicates the transmitted bit, T, = 541.33 usec is the bit period,

and py(t) describes the transmitted waveform for each bit.

sin(Qt) 0<t<T,
po(t) = (3.66)
0 elsewhere
Note that (3.66) describes a “phase jammed” signal, in which the phase of the

transmitted signal is reset for each transmitted bit. The complex representation

of po(t) is given by

—(/2)w(t) (3.67)

1 0<tLT,
w(t) = (3.68)

0 elsewhere

™
=)
~—~
o~
S’
i

The complex representation for a frame synchronization ping that occurs at ¢t = 0

is

p(t) = Zb br(—7/2)w(t — kTy)e 7%, (3.69)

k=0

The desired correlator output for a received signal s(t) is given by

t+(Np+1)Ty
c(t) = /t s(A)p(A — t)dA. (3.70)
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Substituting (3.3) into this expression gives the result in terms of the magnitude

and phase of the complex representations

t+(Np+1)Tp
o(t) = / 4I§(A)||5(A—t)l<%cos(é§(A)—éﬁ(A—t)+Qct)

+ %cos(lé(/\) + Zﬁ‘(/\ — 1)+ Qt+ Qc/\)) dA. (3.71)

The second cosine is a high frequency term with an integral that is approximately
zero (and equals zero for the ideal case in which there are an integer number of

cycles in each bit period). This term is dropped from the integration giving

ot) = / t+(Nb+1)Tb2Re{,§(/\)ﬁ*(/\—t)ejnct}d/\. (3.72)

= 2Re { (/H(Nme F\)pr (A - t)d/\> ejﬂct} ) (3.73)

The e/t term reflects the phase alignment of the correlation period. Comparing

this result to (3.2) gives the desired complex representation of the correlator output
t+(Np+1)T}
&) = / SOVF () — £)dA (3.74)
t

Frame synchronization is obtained by comparing the envelope of ¢(t) to a threshold,
or equivalently the value of 2|¢(t)|. The correlator output for the receiver front end
are the actual calculated values of (2|é(t)])2.

The matched filter calculation that has already been completed can be

exploited in the evaluation of the above integral. Breaking the integration into
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intervals of length 7} seconds gives

Ny st (k+1)T, .
i) = / S(\)bL(j /2)e™ ™k o) (3.75)
o Jt+kT,
Ny _ t+(k+1)Tp
= 3 b (i/2)e T / 5(\)dA (3.76)
k=0 t+kT

The (j/2) term may be dropped from this expression, since the correlator output

used for frame synchronization is (2]¢(t)])?%.

2

Ny _ t+(k+1)Th
correlator output = Z by 1k To / 5(A)dA (3.77)
k=0 t+kT

The matched filter outputs provide signal integration over a 400 usec period,
which is slightly less than the 541.33 usec bit period used in (3.77). Ideally,
synchronization ping correlation would be performed by integrating the input
signal over the entire 541.33 psec period, multiplying these results by 4e/%kTs
depending upon the bit sequence (b;), and summing these results over the entire 42
msec ping duration. In this implementation, the 10 ksps input sample rate implies
that each transmitted bit is represented by a non-integer number of samples, and
it is difficult to perform the integration over an exact bit period. Instead, the
implementation uses the matched filter outputs that have already been calculated.
This saves computations, and reduces the sensitivity to the imperfect bit-edge
alignment caused by the non-integral relationship between the sample period and

the bit duration. The resulting algorithm is expected to perform about 1 dB worse

than a more optimal algorithm that integrates over an entire bit period.
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CHAPTER 4

Adaptive Feedback Equalizer

This chapter describes the UDAT system’s equalizer module. This module
consists of a front-end interface to the channel combiner module and a Recursive
Least Squares (RLS) equalizer. |

Studies conducted by NUWC [4] have shown that an adaptive decision
feedback equalizer-digital phase locked loop (DFE-DPLL) works very well in terms
of reducing multipath effects, time varying inter-symbol interference, and channel
fading inherent in underwater environments. MATLAB prototypes of this equalizer
were written by Dr. Nixon A. Pendergrass, Susan M. Jarvis, and Fletcher Blackmon
at NUWC using both RLS and Fast Transversal Filters (FTF) weight update
algorithms.

Using the RLS algorithm to update the equalizer’s filter weights is relatively
computationally intensive. It is on the order of N2 where N is the length of
the weight vector (Equation 4.3). The FTF algorithm on the other hand is
more computationally efficient (on the order of N). However, since this is a
prototype system being developed for the first time on SHARC processors it was
decided to start by implementing the equalizer with an RLS algorithm. The
straightforward nature of the RLS algorithm simplified the task of translating
the MATLAB equalizer code into a C version for the SHARC processors. It was
also expected that the increased processing power of the SHARC processors (as
compared to the C40 processors used in [1]) might be sufficient to handle the
increased computational burden of the RLS algorithm.

Discussion of the equalizer will begin by introducing the notation and
presenting the basics of the implemented algorithm. Next, key operations of the C

language implementation of the equalizer will be discussed and compared to their
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MATLAB equivalents. Finally, a series of benchmarks will be presented to show

the equalizer’s calculation times for some typical tap weight counts.

4.1 General Equalizer Algorithm Overview

A block diagram of this diversity input adaptive DFE-DPLL is shown in
Figure 4.1. Note that this is thel same equalizer presented in [4] except for the
addition of the sparse feedback sections (detailed in Figure 4.3).

Both the MATLAB and C implementations of this adaptive equalizer use

the following notation:
e 1 is the symbol counter
e training is the training symbol counter
e v is a matrix with columns of input data for each channel

e L M, and M2 are the number of feedforward, feedback, and sparse feedback

tap weights respectively
e M20FF is a vector of sparse feedback tap locations
e R is the number of diversity inputs (channels)

e 4, b, and b2 are the feedforward, feedback, and sparse feedback tap weight

vectors respectively

e p(n), g¢(n), and ¢2(n) are the contributions of the feedforward, feedback, and

sparse feedback sections respectively
o W (n) is the weight vector formed from &, b, and b2 (Equation 4.8)

e U(n) is the input vector shown in Equation 4.8
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e R is the correlation matrix
o d(n) and dy;(n) are the estimates and bit decisions for symbol n

One important fact to note is the difference in orientation between the C and
MATLAB matrices. The reasons for this will be discussed further in Section 4.2.1.
Figures 4.2, 4.3, and 4.4 show the internals of the DFE-DPLL’s rt* diversity
feedforward section as well as the non-sparse and sparse feedback sections respec-
tively.
A digital phase-locked loop is used to provide the phase correction term,

O,(n) as shown in Figure 4.2. The loop for the r** diversity input is described by
O,(n+1)=06,(n) + K1-,(n) + K2- Y _ 4,(i), (4.1)
-

where ¢,(i) = ${p,(n)[XE, p,(n) + £(n)]*}, and K1 and K2 are constants that
govern the loop’s tracking characteristics [4].

The received symbol estimate can be written as

r=1i=-T
M
=D bi(n) - ds(n — &)
=1
SP M2(sp)
=Y D 025,,(n) du(n~ M20FF(sp) = §),  (42)
sp=1 {=1

where R is the number of diversity inputs, L = 27+ 1 is the number of tap weights
in each feedforward section, M is the number of tap weights in the feedback section,

and M2(sp) are the numbers of taps in each of the SP sparse feedback sections.
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Figure 4.1: Block diagram of the decision feedback equalizer - digital phase locked
loop (DFE-DPLL).
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Figure 4.2: Block diagram of the r** diversity feedforward section of the DFE-
DPLL.
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Figure 4.3: Block diagram of the non-sparse feedback section of the DFE-DPLL.
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Figure 4.4: Block diagram of the sp* sparse feedback section of the DFE-DPLL.
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The total number of tap weights is given by

N=L-R+M+§M2(sp). (4.3)
sp=1

In order to eliminate recalculating values in the 27! delay lines, column
vectors ¥,(n) are used to store the 2n+ T through 2n — T values of v, for each of
the R diversity inputs. Values in each 4, (n) vector are shifted down each time a new
input sample is added. Similarly, a vector d(n) is used to store the n — 1 through
n — M samples of ds;; for use in the feedback section. And column vectors d2,,(n)
are used to store the n— M20F F(sp)—1 through n— M20OF F(sp) — M 2(sp) values
of dy;; for use in each of the sparse feedback sections. These coefficient vectors are

shown in Equation 4.4. The corresponding weight vectors are also stored in column

vectors as shown in Equation 4.5.

— vr(2n+T) -
dyie(n — 1)
Ur(n) = vr(2n) d(n) =
dyit(n — M)
v(2n=T)

dpit(n — M20OF F(sp)

I dpit(n — M20OF F(sp) — M2(sp)) |
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a-r(n) i i ) i
—by(n) —b2,,1(n)
ar(n) = | aro(n) b(n) = b2,,(n) = : (4.5)
i —bar(n) ] I —b2,p M2(sp) (1) |
| ar,—T(n) |

Equations 4.4 and 4.5 allow Equation 4.2 to be written as

R ~ _ 5P u _
dn) = Y al-i.(n)+b"(n) d(n) + D 82,,(n) - d24(n)
= Y p(n)+4n) + ) ¢2(n) (4.6)

Equation 4.2 can also be written in terms of the entire W (n) weight vector as

d(n) = WH(n) - U(n) (4.7)
where
[ dl (TL) ] [ ’171(71) . e‘jel(")
ar(n) og(n) - e~7Or()
Wn)=| bmn) | Un)= d(n) (4.8)
b~21(”) d~21(”)
i b~25P(n) J | JQSP(TL) ]

In Equation 4.7, W(n) represents the vector of all filter coefficients used in the
various systems shown in Figures 4.2, 4.3, and 4.4. To track changing channel

conditions, this vector must be modified while the receiver is operating. The
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value of the error signal, £(n), shown in Figure 4.1 is used to drive this adaptive
process. A standard RLS algorithm was implemented to accomplish this task. The
algorithm is described by Equations 4.9 through 4.12 where R~! is the inverse of

the correlation matrix and X is the forgetting factor.

P(n) = R -U(n) (4.9)
1

* = §R{/\-G—U(TL)H13(71)} (4.10)

W(n) = W(n)+a-e(n)- P(n) (4.11)

R-1 — R~! —a- P(n) - PH(p) (4.12)

Following the weight update, the contributions of the feedforward, feedback,
and sparse feedback sections are recalculated using Equation 4.6. The decision rule

shown in Figure 4.1 makes a bit decision using

dyir(n) = sign(R{d(n)}) + j - sign(S{d(n)}) (4.13)

If the equalizer is still in training mode (first 200 symbols) the error is calculated
using €(n) = dr.s(n) — d(n) where d,.; is a known reference symbol. However,

if the equalizer is in decision directed mode the error is calculated using £(n) =

dbz’t (n) — d(n) .
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To summarize, the equalizer algorithm operates in the following manner:
¢ Initialize counters, data, and weight vectors.

o Initialize the inverse of the correlation matrix, R™!, to an identity matrix

multiplied by a small scalar.

e For each QPSK symbol in the data frame, perform the following:

— Shift and add new data to the data vectors shown in Equation 4.4.
— Update the U(n) vector as shown in Equation 4.8.
— Calculate the output, d(n), using the current weights.

— Form a temporary bit decision (Equation 4.13 and use it to calculate

the error, (n).

Update the W (n) weight vector using the RLS algorithm as described
in Equations 4.9 through 4.12.

— Recalculate the output using the new weights.

Form the bit decision (Equation 4.13 and use it to calculate the error,
e(n).

Update the phase estimate, ©,, for the phase locked loop as shown in

Equation 4.1.

e When the data frame has been completed, return the resulting vectors of

symbol estimates and bit decisions.

Section 4.2 further discusses the MATLAB and C software software implementa-

tions of this decision feedback equalizer-digital phase locked loop algorithm.
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4.2 Equalizer Implementation

The RLS equalizer used in this system is a C language implementation of
NUWC’s MATLAB version. The code performs an R input channel complex valued
exponentially weighted recursive least squares sparse adaptive filter algorithm for
a QPSK signal. The software implementations accept fractionally spaced input
samples with two samples per QP‘SK symbol. Therefore, k is used to denote the
sample index while n is used for the QPSK symbol index. Wideband libraries [8]
were used extensively to duplicate the functionality of the MATLAB code in C.
Examples of the Wideband library functions used in the equalizer are shown in the

following sections.

4.2.1 Vector and Matrix Storage

As was noted earlier in Section 4.1, both the MATLAB and C equalizer
code use the same notation. However, the column vectors in the MATLAB code
have been transposed in the C code for memory usage and indexing efficiency.
Matrices are stored in C as one long vector containing the matrices’ rows. This is
not .only the optimal storage format but it also allows certain vector operations to

be used on matrices.

4.2.2 Initializing Vectors and Matrices

MATLAB uses the functions eye, ones, and zeros to initialize vectors and
matrices. The Wideband functions vfill and cvfill, which stand for vector fill
and complex vector fill, can be used as an equivalent replacement. To duplicate
the functionality of eye, the vector fill command is first used to fill the matrix with
zeros by treating the matrix as one long row vector. Then a loop is used to change

the diagonal elements to ones.
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4.2.3 Copying Sections of Vectors and Matrices

The Wideband functions vmov and cvmov, which stand for vector move and
complex vector move, are used to copy sections of vectors and matrices. As an
example, the matrix v_k is used to store the o, vectors as defined in Equation 4.4
is formed in MATLAB using a statement of the form:

v_k(1:k,:) = v(k:-1:1, :)ﬁ
to copy the first k rows of v into v_k in the reverse order. This functionality is
duplicated in C using the Wideband function cvmov within a for loop covering
the number of diversity inputs.

cvmov (&v[index] [k-1],-1,&v_k([index] [0],1,k);
The for loop accounts for all diversity input channels just as the colon operator
does in MATLAB. Note that the variables v and v_k are transposed from their
MATLAB orientation as was described in Section 4.2.1. The first argument of
cvmov is the address of the k’th column of v and the second is a stride of -1. This
takes the first k columns of v in the reverse order. The third argument is the
destination (columns of v_k) and the stride of 1 keeps them in order. The final

argument, k is an element count.

4.2.4 Dot Products

The Wideband function ccdotpr to calculate a complex conjugate dot
product, is also used in the equalizer code. For example, the received symbol
estimate (Equation 4.7) is calculated in MATLAB using:

d(n) = Wk’ * U_k;
Again, these vectors are transposed from their MATLAB orientation requiring the
Wideband equivalent to multiply them in the reverse order using:

ccdotpr(U_k,1,W_k,1,&d_tmp,taps);
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Here, U_k and W_k are the two vectors to be multiplied and ones are used as the
strides. The variable taps has been initialized to the length of the vectors being

implemented.

4.2.5 Matrix - Vector Multiplication

Another useful Wideband function is cmvmul which performs a complex
matrix-vector multiplication. It is used to implement Equation 4.9. In MATLAB ,
this equation takes the form:

invR_Uk = inv_R * U_k;
Note that invR_Uk is the variable used to denote P in the MATLAB and C code.
The Wideband equivalent of the above calculation uses:

cmvmul (&inv_R[0] [0],taps,taps,U_k,invR_Uk);
The first argument is the start of the inv_R matrix. The next two arguments are
the row and columns of inv_R which are both taps since it is a square matrix. The
fourth argument is the source vector, U_k, which is followed by the destination,

invR_Uk .

4.2.6 RLS Correlation Matrix Update

Updating the correlation matrix (Equation 4.12) is performed using the

following MATLAB code:
inv_R = (inv_R - alfa * invR_Uk * invR_Uk’)/lmda;

However, the Wideband library does not provide a function that does both a matrix
subtraction and a multiplication. And storing a temporary copy of the invR_Uk
outer product requires more memory than is available on the SHARC processors.
Therefore, the matrix update is performed on a column by column basis.

A for loop is used to cycle through the columns. First, a scaling factor of

-alfa * invR_Uk[col_indx] is calculated. Then the Wideband function cvsma
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is used to perform a complex vector-scalar multiply and add. Initially, this was
implemented using:

cvsma(invR_Uk,1,&scale,&inv_R[0] [index],

&taps,&inv_R[0] [index],taps,taps);

to calculate the entire column of inv_R. However, on the SHARC processors this
implementation had some numeric;l instability problems. So a second method was
used to ensure that the matrix would remain symmetric. The new method uses:

cvsma(&invR_Uk[index],1,&scale,&inv_R[index] [index],

&taps,&inv_R[index] [index],taps,taps-index) ;

followed by:

cvconj(&inv_R[index+1] [index] ,taps,

Zinv_R[index] [index+1],1,taps-index-1);
inside a loop that covers all but the last two columns. This multiply and add
only operates on the upper triangular half of the matrix. The cvconj is then
used to generate the lower (conjugate) part of the matrix. Since most of the
Wideband vector functions have a minimum element count, this method requires
the last four elements (last two columns) to be calculated outside the loop.
Finally, the Wideband function vscmul is used to multiply the result by

1/1mda to take care of the division by lmda. vscmul is a vector-scalar multiply,
but the entire inv_R matrix is treated as one long vector since there is no “matrix-

scalar multiply” function in the Wideband library.

4.3 Equalizer Front End

Due to processing and memory requirements, real-time operation requires
several equalizers, each running on its own processor. As will be described in
Section 5.2.4, jobs are submitted to the equalizers via a link port transfer. This

requires a small job receiving front end to configure a link port and DMA in order
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Figure 4.5: RLS equalizer error from C version.

to receive the job. After the DMA reception has been configured, the front end
enters a loop in which it polls the link port status. Once a complete job transfer
has finished, the equalizer function is called to perform the equalization. Then the
loop repeats by reinitializing another link port reception.

An alternative job sending method that uses the processor common memory
space to transfer jobs from the channel combiner to the equalizers is described in
Section 5.2.3. That job transfer method also requires a job receiving front end to

poll the queue in the common memory for a job to equalize.

4.4 Equalizer Testing and Verification

Proper operation of the RLS equalizer code was verified by comparing it to
the known MATLAB version provided by NUWC. Figures 4.5 and 4.6 show how

the equalizer errors compare between the C and MATLAB versions respectively.

Both plots were generated using the same set of testing data.
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Figure 4.6: RLS equalizer error from MATLAB version.

Due to the fact that MATLAB’s floating point precision is greater than
that of the SHARC processors, the two error waveforms are not exactly the same.
However, they both exhibit the same characteristic shape, indicating that the
C version is operating correctly. The actual equalized output vectors were also
compared and found to be very close. Again, there was some variation in the

exact magnitudes due to precision differences.

4.5 RLS Equalizer Benchmarks

Several benchmarking tests were performed on the RLS equalizer code to
determine the time required to equalize jobs with various tap counts. This equalizer
design applies the feedback and sparse feedback tap weights equally to all input
channels. Therefore, the equalizer’s computational complexity is strongly related

to the number of feedforward taps and the number of input channels.
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The following benchmarks were performed on 40 MHz 21060 SHARC digital
signal processors on a Spectrum Morocco II carrier board [6]. The time lines in
Figures 4.7 through 4.12 were generated by measuring the time required to execute
each of the major steps within the equalizer algorithm. A PMC ADADIO board
[9] was connected to the Morocco II carrier board. The DAC on the ADADIO
board was monitored with an osclilloscope. The equalizer code was temporarily

modified to write a different value to the DAC upon completion of each of the

following events:

e entry into the main processing loop

e addition of new samples to the U_k input vector

e calculation of the output and error with current weights
e update of the filter weights, W_k

¢ update of the inv_R matrix

e calculation of the output with the new weights

e update of the DPLL phase estimate

The computation time required for each event showed up as a plateau on
the oscilloscope waveform. Data captured from the oscilloscope trace was used to
measure the width of those plateaus and generate the benchmarking timelines.

The above sequence occurs once for each sample. Therefore, a larger spike
was also written to the DAC at the completion of each job. Triggering the oscillo-
scope on the larger peak was used to determine the total equalization time required
per job. The total equalization time is also noted in each of the following bench-

marks.
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Figure 4.7: RLS benchmark for 41 taps.

4.5.1 41 Taps

According to preliminary tests conducted by NUWC, a typical test case
consists of 21 feedforward taps, 10 feedback taps, and two 5 tap sparse feedback
sections. For one input channel this results in a total tap count of 21 + 10 + 5 +
5 = 41 taps. As shown in Figure 4.7, this case requires about 1.5 msec of compu-
tation time per sample. The widest (590 usec) section represents the time required
to perform the inv_R matrix update. Prior to that is the 350 usec section repre-
senting the filter weight update calculations. Since these two operations account
for the majority of the equalizer’s computation time, they were optimized using
Wideband library routines.

Under these conditions, one job requires 2.34 seconds to equalize. Since each
job contains one second of data, three equalizers would be required for real-time

operation in this case.
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Figure 4.8: RLS benchmark for 41 taps with optimization.

Enabling optimization in the compiler results in the above case requiring
1.95 seconds to equalize one second of input data. As Figure 4.8 shows, the time
per sample has been reduced to about 1 msec. The filter weight update still takes
about 350 usec and the inv_R matrix update has been reduced by 40 usec to 550

pusec. This indicates that these operations are already well optimized.

4.5.2 62 Taps

Increasing the number of channels to two doubles the total number of
feedforward taps. Feedback taps are shared among channels so their count remains
unchanged. This results in a total tap count of (21 *x 2) + 10 + 5 + 5 = 62 taps.
Figure 4.9 shows that the filter weight update now requires just under 800 usec and
the matrix update requires about 1200 usec. This results in a total equalization

time of 4.75 seconds per job.
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Figure 4.10: RLS benchmark for 62 taps with optimization.
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Figure 4.11: RLS benchmark for 104 taps.

Again, enabling optimization in the compiler helps slightly by reducing the
overall equalization time to 4.1 seconds per job. The computational details of this
case are shown in Figure 4.10.

This two diversity channel example represents operation in either time or
spatial diversity mode. Real-time operation with this tap count will require 5

equalizer modules.

4.5.3 104 Taps

On chip memory limits the channel combiner to four channels. This brings
the total tap count for this case to (21 * 4) + 10 + 5 + 5 = 104 taps. Figures 4.11
and 4.12 show the timing details of this 104 taps case. Clearly, the filter weight
and matrix updates account for the majority of computational time per sample.

Considering the fact that equalization times with and without optimization

are 11.89 and 10.72 seconds respectively, it is obvious that the RLS equalizer is too
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Figure 4.12: RLS benchmark for 104 taps with optimization.

computationally intensive for practical use in this case. Four channel operation is
still possible but it requires a tradeoff in the tap count. For example, as shown in
Table 4.2, the number of feedforward taps must be reduced to 11 (as opposed to 21)
to bring the equalization time down to a practical 4.59 seconds. Equalization times
over five seconds are not considered practical since there are only five available
SHARC processors on the Morocco II board when the other three are running

front-end and channel combiner modules.

4.5.4 Benchmark Summary

Table 4.1 lists the total equalization times required for the above bench-
marks without compiler optimization. The times obtained with optimization

enabled are summarized in Table 4.2.

58



Input | Feedforward | Feedback | Sparse Feed- | Total | Time (sec)
Channels Taps Taps back Taps | Taps
1 21 ‘10 10 41 2.34
2 21 10 10 62 4.75
4 21 10 10 104 11.89

Table 4.1: RLS equalization times without compiler optimization.

Input | Feedforward | Feedback | Sparse Feed- | Total | Time (sec)
Channels Taps Taps back Taps | Taps

1 21 10 10 41 1.95
2 21 10 10 62 4.1

4 21 10 10 104 10.72
4 19 10 10 96 9.28
4 17 10 10 88 7.97
4 15 10 10 80 6.75
4 13 10 10 72 5.63
4 11 10 10 64 4.59
4 9 10 10 96 3.67

Table 4.2: RLS equalization times with compiler optimization.
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CHAPTER 5

Channel Combiner

This chapter presents the channel combiner module, the function of which
is tying the front-end and equalizer modules together. As such, it must perform

the following tasks:
e Time alignment of data frames

e Channel analysis (based on the target ID correlation waveform) to identify

dominant multipath components
e Formation of “equalizer jobs” for distribution to the equalizer modules

As was shown in Chapter 2, several front-end modules send time and/or
spatial diversity channels into the channel combiner. Since signals from physically
separated sensors (spatial diversity) do not all arrive at the same time, the channel
combiner must time align the data frames before presenting them to an equalizer
module. Figure 5.1 presents a pictorial view of how the channel combiner time
aligns signals from multiple sensors. The channel combiner must also calculate
equalizer tap sizes and locations based upon the channel information gathered
from the TID ping and its echoes as described in Sections 2.3.1 and 2.3.2.

The inner workings of the channel combiner module are presented by first
discussing the interface with front-end modules followed by methods of distributing
completed jobs to equalizer modules. Next, the state machines that make up the
channel combiner’s inner core are discussed. Finally, the equalizer tap calculations

are presented.
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Figure 5.1: Channel combiner functional illustration.
5.1 Interface to Front-End Modules

Each front-end module runs on its own SHARC processor and is connected
to one acoustic sensor. The channel combiner also runs on its own processor
and receives data from the front-end modules via link ports. A set of ping pong
buffers is used in conjunction with a direct memory access (DMA) transfer to
bring data into the channel combiner. The ping pong buffers utilize a pointer
(buffer_to_process) to indicate the working buffer. While the CPU is processing
the working buffer, the other 