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Factors influencing the susceptibility of adult Colorado potato beetle (CPB), 

Leptinotarsa decemlineata (Say), to the fungal entomopathogen, Beauveria bassiana 

(Bals.), were studied. In an assay comparing trials between a): laboratory reared, 

non-diapausing beetles and b): field collected, post-diapausing beetles, survival of B. 

bassiana treated beetles was higher for non-diapausing adults, however, control 

mortality was higher for post-diapausing adults. In a similar assay with field collected 

pre- and post-diapausing beetles, survival of B. bassiana treated individuals was 

higher for post-diapause adults and control mortality was higher for post-diapausing 

adults than pre-diapausing beetles. In a third experiment, the effect of time from 

eclosion from the pupal case on susceptibility of laboratory-reared, non-diapausing 

adults was evaluated. A trend of increasing susceptibility up to 60 degree days (base 



10" C) was be seen, and a significant decline of mortality occurred after 125 degree 

days. The effect of sublethal and lethal doses of B. bassiana were evaluated on the 

survival of overwintering beetles. B. bassiana dose had no effect on the proportions 

of beetles sporulating or dylng. 

Behavior and infection of newly emerged adult CPB in the presence of B. 

bassiana infected cadavers was studied to determine the likelihood of transmission of 

disease as beetles emerge from the soil and colonize host plants. In 2001, arenas 

were constructed to accommodate potted greenhouse grown potato plants surrounded 

with soil to simulate the field environment. B. bassiana-killed, sporulating adult 

beetles were placed in varying patterns surrounding a release point for healthy beetles 

in the center of the arena. Laboratory reared, newly eclosed beetles were buried just 

below the soil surface at the release point and were observed for 30 minutes as they 

emerged and colonized one of four plants. The study was replicated in 2002 using a 

similar grid in a potato field. In both the arena and field, emerging beetles showed no 

preference for movement in any cardinal direction, and direction was not affected by 

the presence or absence of B. bassiana sporulating cadavers, nor did the presence of 

cadavers affect the time taken to colonize a plant or the distance traveled by a beetle. 

Relative humidity (RH) was a significant factor for distance traveled to the plant, with 

longer travel distances as the RH declined. The plant colonization behavior of newly 

emerged Colorado potato beetles does not appear to be altered by the presence of B. 

bassiana cadavers in the immediate environment. The likelihood of emerging adults 

contacting sporulating cadavers on the soil surface was quantified at different cadaver 

densities. A curvilinear relationship exists between density of cadavers on the soil 



surface and the square root number of encounters, with encounters increasing with 

increasing density. Proportional mortality and sporulation also have a curvilinear 

relationship with density, both values increasing with cadaver density. Thus, beetles 

show no avoidance behavior to sporulating cadavers. Density of sporulating cadavers 

on the soil surface is an important factor in the horizontal transmission of B. bassiana 

from cadavers to healthy, post-pupation adults. 



ACKNOWLEDGEMENTS 

There are many people to whom words are not enough to thank in aiding the 

completion of this thesis. Primarily, I would like to express my gratitude to the members 

of my committee: my major advisor Eleanor Groden, Frank Drummond and Seanna 

Annis. I have thoroughly enjoyed the opportunity to work with such skilled and 

knowledgeable scientists and am much indebted to them for their patience, knowledge, 

and friendship. 

I would also like to thank many of the other faculty members, research 

technicians, and professionals in the Department of Biological Sciences, namely Randy 

Alford, Andrei Alyokhin, Steve Woods, Roger Sher, Tamara Timms , D.J. Tall. I am 

also appreciative of the technical support given by Brad Libby, Joe Cannon and Gary 

Sewell. 

I am very grateful to the multitude of student workers that were integral to the 

completion of this research, especially Patrick Bolin, Sword Cambron and Nicole Delisle. 

I appreciate the hard work and the enjoyable company of each and every student worker. 

I am thankful to the following for their financial support: USDA, Maine 

Agricultural and Forestry Experimental Station (MAFES), The Department of Biological 

Sciences, The University of Maine, and the University of Maine's Association of 

Graduate Students (AGS). 

I would like to thank many fellow graduate students without whom this 

experience would not be the same. I would like to immensely thank Lindsay Seward, 

Karen Coluzzi, Mike Chadwick, and John Martel for constructive (sometimes 

unwelcomed) advice on matters not only pertaining to this thesis, but also to life. 



Without their help, support and "emblazoned cockles," I would not have grown as a 

scientist or a person in the way that I have. 

I would also like to thank a long list of other graduate students for the wonderful 

support, advice, hand-held walks home, popcorn, belays, "diary entries," posters, 

pancakes, chats over margaritas, soccer games, flowers, surprise parties, laughs, and 

overall friendship: Kerry Lough, Erin Haramoto, Kris Abell, Anthony O'Neal, Jesse 

Cunningham, Laura Penman, Melinda Coleman, Jeff Garnas, Jessie Muhlin, Steph 

Parker, Darlene Maloney, TR Morley, Chip Wick, Jeff Piotrowski, Tom Woodcock, and 

the rest of the "DB s", past and present. 

Finally I would like to thank my family and friends for their long-term support 

and patience for the last three years. 



TABLE OF CONTENTS 

. . 
ACKNOWLEDGEMENTS ............................................................................................. 11 

... 
LIST OF TABLES ......................................................................................................... viii 

LIST OF FIGURES ......................................................................................................... ix 

CHAPTER 

........................................................................................... 1: LITERATURE REVIEW 1 

.................................................................................................... Colorado Potato Beetle 1 

History ......................................................................................................................... I 

Life Cycle ..................................................................................................................... 2 

............................................................................................. Post-diapause Movement 2 

Summer emergence of adults ....................................................................................... 5 

............................................................................................... Pre-diapause Movement 6 

Beauveria bassiana .......................................................................................................... 7 

History .......................................................................................................................... 7 

Infection Cycle ............................................................................................................. 8 

...................................... Colorado Potato Beetle Susceptibility to Beauveria bassiana 12 

.............................................................................................................. Literature Cited 14 

2: ADULT COLORADO POTATO BEETLE SUSCEPTIBILITY 
TO B . BASSIANA ........................................................................................................... 20 

Abstract .......................................................................................................................... 20 

................................................................................................................... Introduction 21 



.................................................................................................. Materials and Methods 22 

Insects and Foliage ..................................................................................................... 22 

........................................................ B . bassiana Applications and Assay Procedures 23 

Susceptibility of Non. Pre and Post-diapause Adults to B . bassiana ......................... 24 

.......................................................................................................... Experiment A 24 

.......................................................................................................... Experiment B 25 

Data Analysis ........................................................................................................ 26 

Impact of Age on Susceptibility of Non-diapausing Adult Beetles 
. ............................................................................................................ to B bassiana 27 

..................................................................................................... Beetle Treatment 27 

Data Analysis .......................................................................................................... 28 

Effects of Sublethal and Lethal Doses on Overwintering Adult 
............................................................................................ Colorado Potato Beetles 28 

Beetle Treatment ..................................................................................................... 28 

.......................................................................................................... Data Analysis 30 

Results: .......................................................................................................................... 31 

Susceptibility of Non. Pre and Post-diapause Adults to B . bassiana ......................... 31 

Experiment A ......................................................................................................... 31 

Experiment B .......................................................................................................... 31 

Impact of Age on Susceptibility of Non-diapausing Adult Beetles 
. ............................................................................................................. to B bassiana 34 

Effects of Sublethal and Lethal Doses on Overwintering Adult 
Colorado Potato Beetles ............................................................................................. 39 

...................................................................................................................... Discussion 39 

Literature Cited .............................................................................................................. 48 



3: HORIZONTAL TRANSMISSION OF BEAUVERIA BASSIANA 
BETWEEN CADAVERS AND ADULTS OF LEPTINOTARSA 

......................................................................................................... DECEMLINEATA 51 

Abstract .......................................................................................................................... 51 

................................................................................................................... Introduction 52 

Methods ......................................................................................................................... 54 

..................................................................................................... Insects and Foliage 54 

.................................................................................................... Cadaver Production 55 

Determining Avoidance Behavior of Adult Colorado Potato beetles 
to B . bassiana Infected Cadavers .............................................................................. 56 

Data Analysis ......................................................................................................... 62 

. ..................... The Relationship Between Cadaver Density and B bassiana Infection 62 

....................................................................................................... Density Studies 62 

Data Analysis .......................................................................................................... 63 

Results ........................................................................................................................... 64 

Determining Avoidance Behavior of Adult Colorado Potato 
Beetles to B . bassiana ................................................................................................ 64 

Plant Colonization .................................................................................................. 64 

Beetle Activity ........................................................................................................ 65 

Cadaver Density Study ........................................................................................... 67 

...................................................................................................................... Discussion 71 

Literature Cited .............................................................................................................. 75 



........................................................................................................... BIBLIOGRAPHY 78 

APPENDIX . LCs0 FOR ADULT LABORATORY REARED 
COLORADO POTATO BEETLES .............................................................................. 87 

BIOGRAPHY OF THE AUTHOR ............................................................................... 93 

vii 



LIST OF TABLES 

Table 3.1 Average rating of contact between adult Colorado potato 

Beetles and B. bassiana sprorulated cadavers at varied 

cadaver densities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  1 

viii 



LIST OF FIGURES 

Figure 2.1 Non- and post-diapausing beetle responses (* SE) to 

B. bassiana treatments, including proportion 

mortality (A), proportion of dead beetles sporulated 

(B), days to death (C) and days from death to sporulation 

of dead B. bassiana treated beetles (D). .................................................. 32 

Figure 2.2 Proportion mortality (* SE) of pre- and post-diapause 

Colorado potato beetles (field populations) treated 

with B. bassiana. .................................................................................. 3 5  

Figure 2.3 Pre- and post-diapausing beetle responses (* SE) to 

B. bassiana treatments, including proportion of dead 

beetles sporulated (A), days to death (B) beetle sporulation 

of B. bassiana treated beetles (B). .......................................................... 36 

Figure 2.4 Proportion mortality (* SE) in control versus B. bassiana 

treated Colorado potato beetle adults relative to age (degree 

days, base 10°C) from adult eclosion. ............................................. 37 

Figure 2.5 Proportion sporulation (* SE) in control versus B. bassiana 

treated Colorado potato beetle adults relative to age (degree 



days, base 10°C) from adult eclosion. .................................................... 38 

Figure 2.6 The influence of adult Colorado potato beetle age (degree 

days, base 10°C, from adult eclosion) and B. bassiana 

treatment on days to death (A) and days to sporulation (B). .................. 40 

Figure 2.7 Pre- and post-winter mortality of overwintering Colorado 

potato beetles, expressed as the proportion of total collected 

(A) and as proportion of total beetles that burrowed at each 

site (number released- number dead on soil surface) (B). ...................... 4 1 

Figure 2.8 Proportion of recovered dead B. bassiana treated Colorado 

potato beetles which died and sporulated pre- and post- 

winter diapause. ........................ - ............................................................. 42 

Figure 3.1 Diagram of behavioral arenas used for study in 2001 ............................ 57 

Figure 3.2 Diagram of cadaver placement surrounding release point in 

arena trials.. ............................................................................................. 6 1 



Figure 3.3 Relationship between relative humidity and log-transformed 

number of moves (A), and log-transformed seconds to plant 

colonization (B) for adult Colorado potato beetles in relationship 

to one of four possible plants. ................................................................. 66 

Figure 3.4 Relationship between log transformed density of 

second instar Colorado potato beetle sporulated cadavers 

and square root transformed number of encounters by adult 

Colorado potato beetles ........................................................................... 68 

Figure 3.5 Relationship between log transformed density of sporulated 

second instar Colorado potato beetle cadavers and log 

transformed proportion mortality of adult Colorado potato 

beetles ..................................................................................................... 69 

Figure 3.6 Relationship between log transformed density of sporulated 

second instar Colorado potato beetle cadavers and log 

transformed proportion sporulation of adult Colorado potato 

beetles .................................................................................................... 70 

Figure A. 1 Dose response of topical applications of B. bassiana to adult 



Colorado potato beetles ............................................................................ 90 

Figure A.2 Dose response of higher concentration topical applications 

of B. bassiana to adult Colorado potato beetles ..................................... 9 1 

Figure A.3 Dose response of leaf disk B. bassiana applications to adult 

Colorado potato beetles ............................................................................. 92 

xii 



CHAPTER 1: LITERATURE REVIEW 

Colorado Potato Beetle 

History 

Since its introduction to the cultivated potato, the Colorado potato beetle (CPB), 

Leptinotarsa decenzlineata (Say) (Coleoptera: Chrysomelidae) has developed resistance 

to most insecticides used for control and has evolved into the most destructive insect pest 

of potato in the northeastern United States (Huang et al. 1995, Stewart et al. 1997, Zhao 

et al. 2000). Native to the western United States and ancestral to Mexico, the CPB 

moved from feeding on wild solanaceous plants to cultivated potato when potato 

production was introduced into its range in Iowa (Casagrande 1985). When the US 

populations of CPB were introduced to the western-spreading cultivated potato, Solanum 

tuberosum, a population switched to feed on potatoes. By 1912, CPB was found feeding 

almost everywhere potatoes were grown in the U.S. (Gauthier et al. 1981). Since then, 

many different control methods have been attempted. Unfortunately, in the effort to 

control this pest, it has developed resistance to many insecticidal compounds, first to 

DDT and at present to many other chlorinated hydrocarbons, organophosphates, 

carbamates, and some pyrethroids (Gauthier et al. 198 1, Forgash 1985, Casangrande 

1987, Grafius 1997). 



Life Cycle 

The life history of CPB is composed of 4 developmental stages: egg, larva, pupa 

and adult. Larvae and adults cause damage to potato plants through feeding on the 

foliage and occasionally the tubers. In the spring, adults emerge from the soil, colonize 

potato fields and either lay previously fertilized eggs or mate and lay eggs (Weber and 

Ferro 1994, Noronha et al. 2002). These eggs are typically laid on the underside of potato 

leaves. The eggs hatch and the larvae progress through four instars, differentiated by size 

and shape of the head capsule (Boiteau and LeBlanc 1992). Once the fourth instar has 

completed development, it arrests feeding, and the prepupa climbs off the plant and 

burrows into the soil to pupate. The pupa remains buried several centimeters under the 

soil surface for several days until the new adult ecloses and crawls to the soil surface. In 

Northern Maine, these "summer adults" feed on potato leaves to prepare for 

overwintering and may also mate. Diapausing summer adults may migrate out of the 

field to surrounding sites where they burrow into the soil until the following spring (Voss 

and Ferro l99Oa). In northern Maine's potato growing region, there is typically only one 

generation of beetles per year, whereas in more southern states, and in some southern 

portions of Maine, there can be a partial second generation (Drummond and Groden 

1996). 

Post-diapause Movement 

In spring, the stimulus that triggers emergence from overwintering sites has been 

shown to be a combination of temperature and soil surface moisture content (Tauber et al. 

1994). When there is sufficient moisture present in the soil, emergence corresponds to 



accumulation of heat units. Declining moisture causes emergence to slow or cease, and it 

only resumes after a rainfall. Tauber et al. (1 994) found that adequate soil moisture is 

necessary to stimulate beetles to initiate digging, as opposed to drier soil interfering with 

the efficiency of digging. Beetles, hence, would not emerge when conditions are 

unfavorable for their host plant. Overwintering emergence occurs simultaneously 

between male and female beetles (Alyokhin and Ferro 1999). 

Once beetles have emerged from the soil, they colonize nearby potato fields. In 

Massachusetts, this migration is usually accomplished by flight (Voss and Ferro 1990a). 

Specific orientation cues for this movement are not known, although it has been 

documented that spring-emerging beetles placed in an unfamiliar habitat had significant 

orientation to the northeast, independent of other environmental factors (Ng and Lashomb 

1983). This orientation is thought to succeed in moving beetles to warmer, southern 

facing slopes to enable flight to suitable habitats as beetles cannot fly at temperatures 

below 15°C (Caprio and Grafius 1990). Depending upon food availability within the 

field, beetles then either take part in short- or long-distance flight or walking (Caprio and 

Grafius 1990, Voss and Ferro 1990a, Alyokhin and Ferro 1999). Long-distance flight is 

characterized by beetles climbing at high angles and flying higher than 15 meters for 

distances too long to track by the unaided eye (Voss and Ferro 1990a). It has been shown 

that starved beetles more readily take part in this long-distance flight as compared to 

beetles that have been fed post-diapause (Caprio and Grafius 1990, Ferro et al. 199 1, 

Ferro. 1999). The objective of this flight is to move beetles to a more suitable habitat. 

Mating status has no effect on the occurrence of long-distance flight, suggesting that 

spring mating is not as important as is finding a suitable environment (Alyokhin and 



Ferro 1999). Beetles have been shown to survive 29 days without feeding immediately 

following emergence (Ferro et al. 1991). 

For well-fed beetles, movement is characterized by "local flight" which involves 

short distance and flight close to the ground (Voss and Ferro 1990a). Local flight 

initiation seems to be related to ambient air temperature in that no flights seem to occur 

below 15°C and most beetles will fly at 20°C (Caprio and Grafius 1990). High light 

intensity (5040%) increases flight occurrence, but it is unclear if this is an isolated effect 

or is in some way related to raising beetle body temperatures, thus increasing occurrence 

of flight (Caprio and Grafius 1990). 

Walking is also utilized for dispersal within and from potato fields. When 

released in fallow fields, male beetles were noted walking from the field more often than 

females (Weber and Ferro 1994). This discrepancy between the sexes is thought to be 

related to the necessity of males to immediately locate a suitable mate, where females 

may have less desire to mate when they can lay eggs fertilized in the previous season 

(Ferro et al. 1991). Likewise, it has also been noted that within the potato field, males are 

more likely to be found on the soil and the females are more often found on the plants 

(Weber and Ferro 1994). 

Post-diapause beetles begin mating within 24 hours of emergence (Alyokhin and 

Ferro 1999). Host plants are not needed as a stimulus for mating, and many beetles mate 

directly in the overwintering site. However, male post-diapause beetles are again, more 

motile than their female counterparts, initiating flight more frequently (Voss and Ferro 

1990b). Mating is not a necessity in the spring, since females are able to lay eggs that had 

been fertilized in the previous summer. The fecundity of mated and unrnated female 



beetles does not differ, but the viability of eggs is higher in females that mate in spring 

(Ferro 1999). Feeding does affect reproduction. Unfed females do not lay eggs compared 

to female beetles that have fed post-emergence (Ferro et al. 1991). The offspring of these 

overwintering beetles largely determines the size of the following lSt generation (Voss 

and Ferro 1992). 

Once in the new host plant field, CPB can move considerable distances by 

walking. These can exceed 0.65 km in 5 days (Follett et al. 1996). Post-diapause beetles 

characteristically aggregate on host plants, possibly attracted by either an intrinsic 

coordinated movement towards one direction or some other long-range aggregatory signal 

(Caprio and Grafius 1993). 

Summer Emergence of Adults 

Between July and early August, CPB prepupae burrow into soil to pupate. After 

pupation the new adults crawl up through the soil and emerge on the soil surface. 

Cumulative degree-days are correlated with departure from the pupation site (Alyokhin 

and Ferro 1999). Once emerged, many beetles migrate to new fields after 24 hours, if 

sufficient food or space is not available (Williams 1988, Alyokhin and Ferro 1999). 

Beetles aged 0-6 days post emergence usually move by walking and beetles aged 7-13 

days post-emergence account for most of the local and migrational flight events (Voss 

and Ferro 1990b). Colonization of host plants by summer beetles is apparently non- 

aggregational and not governed by anemotactic behavior (Caprio and Grafius 1993). 

Field studies involving releases of newly emerged summer beetles illustrate that dispersal 

from an aggregation of beetles on a few plants is slow and occurs once nearby plants are 



defoliated (Williams 1988). The same study also indicated a significant orientation of 

dispersing beetles to the east and northeast direction, which may have been influenced by 

the nearby location of a forest. Movement and migration from potato plots takes the form 

of flight and is carried out more frequently and is maintained for longer periods of time 

by unrnated male beetles, probably in search of mates (Alyokhin and Ferro 1999). 

Pre-diapause Movement 

Once beetles have emerged and dispersed, their behavior is mediated by 

environmental conditions. If the foliage is sufficient in both quantity and quality, and 

temperatures optimal for beetle activity, then beetles feed to increase energy reserves. If 

the foliage is not adequate, but temperature and photoperiod are still in the optimal range 

of 15 hours at 25OC, beetles may undertake local movements to find sufficient food (de 

Kort 1990, Hoy et al. 1996). However, if temperatures fall and photoperiod is shortened 

(14 hours, in Massachusetts) or if foliage begins to senesce, adult CPB may initiate 

diapause (Voss et al. 1988). When entering diapause, many CPB migrate to 

overwintering sites, usually woody areas that are adjacent to potato fields (Weber & Ferro 

1993). Woody areas are not the only overwintering sites that have been chosen by the 

CPB. French et al. (1993) found that in the absence of woody vegetation, CPB chose to 

overwinter in a nearby ditch that consisted of high grasses. CPB can fly to these 

overwintering sites. Voss and Ferro (1990a) described this flight as a "direct" flight from 

field to edges of the surrounding woods, with no noticeable climb in flight angle. 

However, Noronha and Cloutier (1 999) observed that much of the emigration from the 

potato field was accomplished through en masse walking events. It is not known what 



causes beetles to orient towards these overwintering habitats. Dispersal patterns are 

integral to the CPB life cycle because location of protected habitats influences the 

probability of surviving the winter. Winter mortality rates can be quite high for the CPB 

in the northeastern United States (Voss and Ferro 1992). 

In the overwintering sites, adult beetle burrows into the soil. Some beetles do 

not burrow and eventually die (Lashomb et al. 1984). Noronha (1998) suggests that the 

soil type plays an important role in the ability of the CPB to burrow, with smooth, hard- 

packed soil hindering the initiation of digging and leading to mortality of beetles. Beetles 

dig until an optimum depth is reached for the soil size and density (Noronha 1998). 

Moisture and temperature also impact the numbers of beetles that initiate digging from 

the soil surface and the depth to which the beetles burrow, with maximum occurance of 

digging at 16°C and at soil moistures of 5O-55% (Noronha 1998). Overwintering beetles 

burrow to depths ranging from 7.6 and 12.7 cm in New Jersey sandy loam soils and 

beetles remain underground for the duration of the winter months (Lashomb et al. 1984). 

Death during overwintering has been suggested as the greatest source of mortality for 

CPB populations (Voss and Ferro 1992). 

Beauveria bassiana 

History 

Beauveria bassiana (Bals.) Vuill., the causative agent of white muscardine 

disease, was first described in 1835 by Bassi de Lodi who successfully demonstrated the 

fungus's pathogenic nature against silkworm, Bombyx mori (Tanada and Kaya 1993). It 



was his discovery of B. bassiana's infectious nature that led to the development of the 

germ theory of disease (Kendrick 2000). B. bassiana is categorized as a muscardine 

fungus, due to the characteristic mycotic stage exhibited on hosts after death when white, 

powdery-appearing hyphae cover the insect cadaver. 

Beauveria species are found in the artificial class of Mitosporic fungi, 

class Deuteromycetes. Within the Beauveria genus, species are characterized by conidia 

borne singly on a zig-zag or denticulate rachis (Tanada and Kaya 1993, Humber 1997). 

Several species of Beauveria have been described, including B. bassiana, B. tenella, B. 

brongniartii, B. amorpha, and B. velata (Tanada and Kaya 1993). Strains of the same 

species have been shown to exhibit variations in virulence and pathogenicity towards 

insect hosts (Todorova 2000). B. bassiana can be distinguished from other Beauveria 

species by its globose conidia, which are usually larger than 3.5 pm in diameter (Humber 

1997). B. bassiana hyphae grows optimally at 23- 25 "C and conidia require a relative 

humidity of 92% or higher to germinate. 

Infection Cycle 

The entomopathogenic nature of B. bassiana is quite extensive as it 

possesses one of the largest host lists of entomopathogenic, imperfect fungi (Tanada and 

Kaya 1993). This wide host range has enabled B. bassiana to become one of the most 

widely used fungal biological control agents. The infective unit of imperfect 

entomopathogenic fungi such as B. bassiana is the conidium (Gillespie 1988). Infection 

will usually occur through the integument, but infection has also been observed through 

the gut and the oral cavity (Broome et al. 1976). 



Conidia of entomopathogenic Deuteromycetes will attach to an insect cuticle 

mainly through high hydrophobic forces between the conidial rodlet layer and the insect 

cuticle (Boucias et al. 1988). Binding of recognition proteins to substances on the insect 

cuticle and production of enzymes (esterase, lipase, N-acetylglucosaminidase) by the pre- 

germinating conidia may also be factors in attachment of conidia to the insect cuticle 

(Boucias and Pendland 1991). Once attached for a sufficient time and if conditions are 

suitable, a germ tube grows along the cuticle. Germinating conidia do require a useable 

source of carbon as well as a nitrogen source for hyphal growth, and the enzymes 

produced by the conidia may play a role in providing this nutrition (Boucias and Pendland 

199 1, Tanada and Kaya 1993). Chemical and physical stimuli may help orient a growing 

germ tube towards an appropriate infection site, but a well developed system of this type 

is not likely to be found in B. bassiana, as it can infect a large range of hosts, and does 

not necessitate a very specific infection site (St. Leger 1993). It has been shown, 

however, that conidia of B. bassiana that adhere to heavily sclerotized regions grow germ 

tubes until an easily penetrated area is reached (Pekrul and Grula 1979). 

With Metarhizium anisopliae, another entomopathogenic deuteromycete, once a 

suitable penetration site is found, the germ tube differentiates into several specialized 

penetration structures, including appressoria, penetration pegs and penetrant hyphae. The 

germ tube forms appresoria, which serve as an attachment site and may provide the 

"fulcrum" that is needed for the remainder of the penetration process (St. Leger 1993). 

Appresoria also are the source for cuticle degradation and thus some nutrition for the 

fungal spore (St. Leger 1993). Formation of appresoria by B. bassiana has not been 

observed, with the exception of Vey and Fargues (1977) who observed formation on the 



cuticle of CPB. A combination of physical and chemical chitin degrading forces most 

likely allow for the penetration of the fungi into the insect hemocoel (Ferron 198 1). 

The insect cuticle provides a formidable mechanical barrier to the invading fungal 

spore. It may also further prevent successful breach through the melanization of cuticle 

cells surrounding the penetrating hyphae or through the increased production of lysozyme 

and other antimicrobial proteins (Vilcinskas and Gotz 1999). This penetration event can 

serve to increase the vulnerability of the insect to bacterial infections, as tissue and cuticle 

surfaces are breached (Vey and Fargues 1977). Once inside the insect body, the fungus 

produces hyphal bodies, which multiply by budding and circulate briefly in the hemocoel 

before invading muscle and fat tissues (Tanada and Kaya 1993). Production of hyphal 

bodies has been shown to reduce the number of insect hemocytes, thereby 

immunosuppressing the individual (Hung et a!. 1993, Pendland et al. 1993). 

Insect hemocytes recognize an invading fungus as non-self propagules and 

attempt to phagocytose the invading blastospores. This method is usually not effective 

against highly virulent fungi such as B. bassiana (Vey and Gotz 1986). Encapsulation of 

the invading fungal body may be more successful. Encapsulation occurs when hemocytes 

attach to the blastospore surrounding it in layers that eventually melanize, preventing the 

spore from producing further infective hyphae (Vey and Gotz 1986). The fungus may 

outgrow this barrier and cause subsequent death, or the insect may successfully prevent 

the infection, and the capsule can remain in the hemocoel for an extended period of time. 

Studies have shown that fungal hyphal bodies circulating in insect hemolymph may shed 

parts of their cell wall or lack sugar residues that are integral in the activation of insect 

immune systems (Pendland et al. 1993, Vilcinskas and Gotz 1999). In later stages of 



mycosis, hyphal bodies have been found to possess a surface coat that mimics that of host 

cells, further evading detection by immune systems (Boucias et al. 1995). There may also 

be immunosuppressive properties of B. bassiana spores that contribute to reducing spread 

of hemocytes (Hung et al. 1992). 

B. bassiana produces secondary metabolites which are also suspected to play a 

role in their pathogenicity, although conclusive proof of their involvement has not been 

found. B. bassiana produces two families of secondary metabolites, beauverolides and 

cyclosporins (Vilinskas and Gotz 1999). High levels of beauvericin, a beauverolide could 

not be found in the hemolyrnph of B. bassiana-infected corn earworms before and leading 

up to the time of death. Injections of beauvericin did not cause death; therefore Charnplin 

and Grula (1 979) concluded that this toxin most likely does not play a role in the 

virulence of B. bassiana. It may, however, serve an anti-microbial function. Bassianolide, 

another beauverolide has been shown to be toxic when injected into lepidopteran larvae 

(Boucias and Pendland 1988). Cyclosporins have also not been shown to have consistent 

insecticidal properties, but play a role in immune suppression in vertebrates (Vilinskas 

and Gotz 1999). 

Insect death from B. bassiana can result from hemocyte reduction, soluble 

nutrient reduction, susceptibility to toxins produced by the fungus, or from bacterial 

septicemia caused by penetration events. Once the host has expired, the fungus grows 

saprophytically, mycelium eventually covers the insect body, and conidia are produced 

within a few days. 



Colorado Potato Beetle Susceptibility to Beauveria bassiana 

Due to its wide-spread pathogenic nature, B. bassiana has become a well- 

known and utilized pathogen for several major economic pests, including European corn 

borer (Ostrinia nubilalis), codling moth (Laspeyresia pornonella), Japanese beetle 

(Popillia japonica), chinch bug (Blissus leucopterus), European imported cabbageworm 

(Pieris brassicae), the blueberry flea beetle (Altica sylvia) and the Colorado potato beetle 

(Tanada and Kaya 1993, Drummond and Groden 1996,2000). B. bassiana has been used 

as a commercial control agent against CPB for 20 years, beginning with the development 

of Boverin in Russia (Ferron 198 1). In addition, B. bassiana is found naturally in many 

of the soils where CPB is problematic, with low levels of natural mycoses occurring. 

Different growth stages of CPB are characterized with differential susceptibility to B. 

bassiana. Eggs are not susceptible to infection, making this stage an unsuitable target for 

foliar sprays (Long et al. 1998). Larvae are susceptible to infection, but mortality varies 

between larval instars (Ignoffo 1983, Fernandez 2001, Joergensen 2000) Changes in 

susceptibility between larval instars may have to do with the amounts of conidia acquired 

by different sized larvae, differences in immune responses between instars, changes in 

hemocyte volume, or differences in feeding rates and subsequent nutrition between instars 

(Seryczynska and Bajan 1974, Logan et al. 1985, Bauer et al. 1988, Fernandez 2001). 

Pupae are susceptible to soil inoculations, which can reduce the following adult 

generation by as much as 74% (Watt and LeBrun 1984). Adults show some 

susceptibility, but generally much lower than that observed for larval or pupal stages 

(Fargues 1972, Fargues 1991, Appendix). 



Several other physical factors affect B. bassiana infectivity including 

temperature, humidity and W light. Temperature levels are thought to be the most 

important external factor in determining an insect's susceptibility to a pathogen, as well 

as determining the rate of multiplication of the pathogen within the host body, B. 

Bassiana growing optimally at 25OC (Waitanabe 1987). B. bassiana needs a relative 

humidity above 92.5% in order to germinate and begin the infection process (Walstead et 

al. 1970). W radiation from sunlight has also been shown to cause conidia to lose 

viability more quickly than those that are protected from the sun (Daoust and Pereira 

1986, Joergensen 2000). 

The objective of my thesis is to examine in further detail, the susceptibility 

of adult Colorado potato beetles to Beauveria bassiana. In my first manuscript, I have 

investigated the effect of physiological age and state on susceptibility of adult beetles, 

focusing on pre-diapause and post-diapause beetles, as well as overwintering beetles. In 

my second manuscript, beetle behavior was studied to determine if adult beetles possess 

mechanisms that allow them to detect and avoid B. bassiana sporulated cadavers on the 

soil surface. I also looked at the relationship between density of sporulated cadavers and 

the resulting likelihood of emerging adult infection. The information obtained from this 

thesis will be incorporated into an existing simulation model of primary and secondary 

transmission of B. bassiana in the potato ecosystem. 
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CHAPTER 2: ADULT COLORADO POTATO BEETLE 

SUSCEPTIBILITY TO B. BASSIANA 

Abstract 

The susceptibility of non-diapausing, pre-diapausing, and post-diapausing adults of the 

Colorado potato beetle to Beauveria bassiana was studied. In an assay comparing trials 

between a): laboratory reared, non-diapausing beetles and b): field collected, post- 

diapausing beetles, survival of B. bassiana treated beetles was higher for non-diapausing 

adults, but control mortality was higher for post-diapausing adults. In a similar assay with 

field collected pre-diapausing and post-diapausing beetles, survival of B. bassiana treated 

individuals was higher for post-diapause adults and control mortality was higher for post- 

diapausing adults. In a third experiment, the effect of time from eclosion from the pupal 

case on susceptibility of laboratory-reared, non-diapausing adults was evaluated. A trend 

of increasing susceptibility up to 60-degree days (base 10" C) can be seen, and a 

significant decline of mortality occurs after 125-degree days. These changes in 

susceptibility may be related to the tanning process of the cuticle and the likelihood of B. 

bassiana conidia attaching at different stages of cuticle formation, as well as the cuticle's 

ability to prevent infection. The effect of sublethal and lethal doses were evaluated on the 

survival of overwintering beetles, and it was found that B. bassiana dose had no effect on 

the proportions of beetles sporulating or dying. 



Introduction 

The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the most 

destructive insect pest of potatoes in the northeastern United States. Problems with 

insecticide resistance, environmental contamination, and worker and public health have 

generated interest in developing more ecologically sound methods for managing this pest. 

The entornopathogenic fungus Beauveria bassiana (Deuteromycetes) has been utilized as 

a commercial control agent against CPB in some parts of the world for the past 20 years 

(Ferron 198 1, Tanada and Kaya 1993, Feng et al. 1994). Different growth stages of CPB 

exhibit differential susceptibility to B. bassiana with larval stages being the most 

vulnerable (Watt and Lebrun 1984, Fargues 1991, Long et al. 1998). Assessment of B. 

bassiana efficacy against adults has received less attention because adults are generally 

considered to be much less susceptible to infection than larvae, however adult mortality 

can be a key factor to reducing future populations (Anderson et al. 1988). 

As the overwintering stage, adult CPB progress through several different 

physiological states (Leather et al. 1993). In the northern Maine potato-growing region, 

CPB usually experience one complete generation per year (Drwnmond and Groden 

1996). In the midsummer, pre-diapause adults emerge from pupation sites in the soil and 

feed heavily on potato leaves to prepare for overwintering. Individuals may mate, and 

within a week of emergence from pupation sites, burrow into the ground to overwinter. 

In the spring, these beetles (now post-diapause) emerge from the soil and colonize new 

potato fields. Through pre-diapause and post-diapause stages of development, different 

physiological processes are occurring: the newly emerged adult sclerotizes its cuticle, 

builds up fat bodies, and reduces the proportion of water in the body to successfully 



overwinter (Chapman 1971). Overwintering beetles must maintain cold-hardiness 

(including the potential of super cooling) and preserve an appropriate water balance (Lee 

1991). The post-diapause adult must successfully regain water balance, develop its 

reproductive organs, and resume active behavior and mating (Chapman 1971). Each 

physiological stage also exhibits a repertoire of behaviors that are characteristic of that 

stage. Some of these behaviors lead to increased opportunity for natural interactions with 

B. bassiana in the soil. Changes in beetle physiology combined with changes in behavior 

may influence their susceptibility to B. bassiana. In this study, we examined whether 

changes in physiological state of adult CPB impacts their susceptibility to B. bassiana. 

We also investigated the effect of different B. bassiana treatments on survival of 

overwintering beetles. 

Materials and Methods 

Insects and Foliage 

Colorado potato beetle adults were either reared from a laboratory colony, which 

was supplemented annually by field collections from the University of Maine's Rogers 

Farm in Stillwater, ME, or collected directly from fields at the same farm. Potato fields 

used for beetle collection received 7 weekly sprays of the copper hydroxide fungicide 

Champ Formula 2 @ (Agtrol Chemical Products, Houston, TX) for Phytophtora infestans 

control and no other pesticides. All adult beetles were maintained in paper cups (300ml) 

at 25*1°C and a 16:8 light-dark cycle and fed fresh greenhouse grown potato foliage 



(Solanurn tuberosurn L., variety Russet Burbank or Kennebec) daily. For laboratory 

reared experimental beetles, egg masses were collected daily from cups. At hatch, 

approximately 20 larvae were placed in paper cups (300 ml) and raised under the same 

environmental conditions as adults. At the end of the fourth stadium, when larvae 

stopped feeding (entered the prepupal stage), they were either placed in a metal tin filled 

with approximately 6 centimeters of moistened Fafard 3-B professional formula soil 

(Agawam, MA) into which they were allowed to burrow (diapause and overwintering 

assays), or, if exact age from pupation needed to be known, were placed in petri dishes 

lined with pieces of moist paper toweling (age susceptibility assay). Pupation containers 

were checked daily for the presence of new adults. 

B. bassiana Applications and Assay Procedures 

Beauveria bassiana strain GHA was obtained as dried conidia from Mycotech, 

now Emerald BioAgriculture (Butte, MT) and plated on Sabouraud dextrose agar (SDA) 

(Difco Laboratories, Detroit, MI). Colonies were sub-cultured on SDA, and single, axenic 

subcultures (grown for 10 days at 25*l "C, stored at 4*1°C for not more than 60 days) 

were utilized for these experiments. Conidia were harvested from these plates with a 

sterile loop and suspended in an aqueous solution of 0.1% Tween 20 (JT Baker, 

Phillipsburg, New Jersey). Concentrations of conidia were determined using a 

hemocytometer, and solutions were diluted as necessary with 0.1% Tween 20. Beetles 

were sprayed with either B. bassiana or control (0.1% Tween 20 alone) solutions using a 

Burkhard Computerized Spray Apparatus@ (Hertfordshire, England) at 55.2 kPa with a 

diaphragm setting of 6. Two plates of SDA were sprayed at the same time as B. bassiana 



treated beetles to obtain accurate rates of conidial density and viability at the time of the 

spray. For all three experiments, each replicate treatment of beetles was treated at the 

same time with the same B. bassiana solution. In all experiments, 298% of conidia had 

formed germ tubes after 18h at 25OC, indicating viability. 

After spray treatments in pre- diapause and post-diapause and age susceptibility 

studies, each beetle was then put in an individual 60 x 15 mm petri dish with moistened 

filter paper and maintained at 25h1°C and a 16:s light-dark cycle for 14 days. At 24-hour 

intervals, each beetle was checked for survival, and if alive, fed fresh greenhouse-grown 

potato foliage. Dead beetles were placed in a container at 100% RH and monitored for 

signs of B. bassiana sporulation. Sporulation was determined by observance with the 

unaided eye of B. bassiana hyphal growth on the outside of the insect. Occurrence of 

mortality, time (days) to death, sporulation, and time (days) from beetle death to 

sporulation were recorded. 

Susceptibility of Non-, Pre- and Post-diapause Adults to B. bassiana 

Experiment A 

A 2x2 complete randomized design (parametric survival analysis) was used to 

compare B. bassiana susceptibility between post-diapause and non-diapausing adult CPB 

with 57 beetles per treatment combination. Post-diapause beetles were collected from the 

field between June 6 and 1 1,2001. Non-diapausing beetles were raised from eggs 

produced from the laboratory culture. Non-diapausing beetles are considered as such due 

to their maintenance at a constant temperature and photoperiod that does not initiate 

diapause. Beetles from each group (non- and post-diapause) were assigned to either a 



control or B. bassiana treatment and placed 10 per dish in 6 petri dishes (9 cm diameter) 

per treatment. No formal randomization protocol was used to delegate which beetles in 

each of the cups were assigned to treatments, but each cup contributed an equal number 

of beetles to each treatment. Control beetles were sprayed with a 0.1% Tween 20 

solution and B. bassiana treated beetles were sprayed with a solution of conidia in 0.1% 

Tween 20 (654.4 conidia/rnm2). Beetles were treated with B. bassiana using 2 sprays of 

the sprayer, but all beetles were treated at the same time and with the same solution. 

Beetles were censored at 15 days. 

Experiment B 

A 2x2 complete randomized design was used to compare B. bassiana 

susceptibility between pre- and post-diapause adult CPB with year as a covariate in 

parametric survival analysis. Six hundred post-diapause field beetles were collected from 

the University of Maine's Roger's Farm between June 6 and 1 1,2001 and on June 3, 

2002. Beetles were stored in 300 ml paper cups with lids (25 per cup), given field foliage 

and maintained at 1 W l  "C in order to slow physiological development. Approximately 3 

weeks after initial collection, post-diapause beetles were warmed by placing them at 

14*1°C for 3 days, followed by 19*1° C for 3 days, before moving to 25hl "C. Between 

July 17 and 19, 2001 and July 8 and 10,2002, 600 newly emerged pre-diapause adults 

were collected from the same field as the post-diapause beetles. Two hundred ninety-five 

beetles of each physiological stage (pre- and post-diapause) were randomly allocated to 

either a control or B. bassiana. Control beetles were sprayed with a 0.1% Tween 20 

solution, and B. bassiana treatment beetles were sprayed with conidia in 0.1% Tween 20 



(632 f 41.6 conidia/mm2). Each year, eight consecutive runs of the sprayer were used to 

spray all B. bassiana beetles. All beetles were sprayed with the same stock B. bassiana 

solution. This experiment ran for 28 days, and beetles surviving the duration of the study 

were censored at 29 days. 

Data Analysis 

Beetles that died and sporulated within 4 days of the spray (2 in the control and 3 

in the B. bassiana treatments) were excluded from analyses in 2002. Based on previous 

assays, these beetles died and sporulated too quickly to have resulted from experimental 

treatments. In addition, the outward morphology of the B. bassiana was quite different 

from that of the laboratory strain used. For each assay, parametric survival density 

functions were fit using the Weibull distribution (a=0.05) (JMP 2001) and used to detect 

changes in survival with physiological state, B. bassiana treatment, and in Experiment B, 

year was incorporated as a covariate. Using this analysis, survival is measured by the 

proportion of beetles dying and incorporating the time to death of these beetles to 

determine overall survival. Nominal logistic regression (a=0.05, JMP) was used to detect 

differences in proportion sporulation between beetle groups, and two-way analysis of 

variance using treatment and age as factors (a=0.05) was used to determine time to 

sporulation differences between beetle groups. Sporulation for this and subsequent 

analyses is calculated as the proportion of dead beetles that showed signs of sporulation. 

For proportion sporulation, in instances where control groups showed no mortality, 

Fisher's Exact Test (a=0.05) was used to detect significant differences between 

treatments. 



Impact of Age on Susceptibility of Non-diapausing Adult Beetles to B. bassiana 

Beetle Treatment 

The impact of age on susceptibility of non-diapausing beetles was assessed with a 

2x2 complete randomized block design with 6 replicates over time treated as blocks in 

parametric survival analysis. Rearing protocols were developed that allowed for 

staggered production of adult beetles from the laboratory colony over a 10-day period of 

time such that beetles representing a range of known ages from adult eclosion were 

available to be treated at a set time. When the desired age range in adult beetles was 

achieved, beetles were placed into 15-degree day age groups, (this was the shortest 

interval at which beetles were collected) and within these groups, were randomly 

allocated to either the control (0.1% Tween 20) or B. bassiana treatment group (0.1% 

Tween 20 and B. bassiana (374.13 & 85.21 conidia/mm2)). A lower concentration was 

used in this experiment compared to earlier experiments, because although preliminary 

data showed that the LCso level for 195-degree day old beetles was ca. 630 conidia/rnm2 

(Appendix), it was hypothesized that younger beetles would be more susceptible to B. 

bassiana treatments. The concentration was therefore lowered in an effort to maintain ca. 

50% mortality across all age classes. Beetles were placed in petri dishes for spraying 

with a maximum of 15 beetles per dish. Variable numbers of sprayer runs were used 

between replications, as the number of available beetles for treatment varied between 

replicates, but beetles in each replicate were treated in the same order (youngest- oldest) 

and with the same B. bassiana solution within each replicate. Beetles surviving to the 



end of the assay were censored at 20 days. This experiment was replicated six times with 

112-632 beetles per trial, with a total of 1875 beetles across all trials. 

Data Analysis 

Parametric survival analysis based upon the Weibull distribution (a=0.05) (JMP 

200 1) was used to detect changes in survival with beetle age, B. bassiana treatment, and 

replicate as factors. Nominal logistic regression (a=0.05, JMP) was used to detect 

significant differences in proportion sporulation between beetle ages. Two-way analysis 

of variance using B. bassiana treatment and age as factors (a=0.05) were performed to 

detect differences in days to sporulation for age groupings. 

Effects of Sublethal and Lethal Doses on Overwintering Adult Colorado Potato 

Beetles 

Beetle Treatment 

A 3x3 complete randomized block design was used to assess the impact of B. 

bassiana treatment and stage in the overwintering process on adult CPB mortality. Six 

hundred seventy-five beetles were collected from the field August 21 and 22,2002, and 

randomly assigned to one of three treatment groups: control (0.1% Tween 20), sublethal 

B. bassiana concentration (1 1.2 conidia/mm2 in 0.1 % Tween 20), or lethal B. bassiana 

concentration (627.2 conidid mm2 in 0.1 % Tween 20). All beetles in each treatment 

group were treated with the same solution at the same time. Following treatment with the 

appropriate solution on August 28,2002, beetles were randomly allocated to one of three 

blocks of field cages with one cage for each of three collection times: fall, spring, or 



summer within each block, resulting in 25 beetles per cage in three replicate cages per 

treatment combination (B. bassiana dose x collection date). Beetles were then released 

into appropriate cages and stalks of field grown senescing potato foliage in water-filled 

test tubes (30 ml) were placed in each cage to provide beetles access to food until they 

burrowed into the soil. Cages consisted of a 13 cm deep section of metal stovepipe, 25.5 

cm in diameter, pushed 3 cm into the soil and covered with mesh screening. Cages were 

monitored every two days and foliage was replaced as needed until all beetles had 

successfully burrowed into the soil or died. Beetles that died on the soil surface were 

taken to the laboratory and placed in a high humidity chamber to monitor for sporulation. 

Cages were left intact throughout the winter. 

Fall and spring beetles were collected from the soil (described below) between 

November 8 and 13, and May 22 and 23,2002, respectively. Summer beetles were 

allowed to emerge naturally between May 23 and June 25,2002. Overwintering cages 

were replaced with larger emergence cages (91 x 73 x 15 cm). These cages had mesh 

tops and metal flashing sides and were designed to capture beetles as they emerged. 

Cages were pushed 5 cm into the soil. Beakers with water and potato foliage were placed 

in the cages to ensure that any emerging beetles had appropriate food supplies. Live 

beetles emerging within the cage were collected every 3 days beginning when the first 

emerging beetle was observed on June 3. When no additional emergence had been 

observed in any cage for one week, the soil under and around the cages was sampled to 

retrieve any additional live and dead beetles. 

To retrieve beetles from the soil in fall, spring and after natural emergence, the 

soil in a 37.16 square meter area surrounding the original circular cage was collected to a 



depth of 30.48 cm and sifted with a 5 mm screen to recover beetles and beetle parts. Both 

dead and live beetles and beetle parts were taken back to the laboratory. Dead beetles 

were checked for signs of B. bassiana sporulation, which if not evident were then held at 

approximately 100% RH, 25°C and monitored regularly for B. bassiana growth. Live 

beetles from the fall collection were kept in a sealed TupperwareB tub (38 x 26 x 

13.5cm) lined with moistened paper towels at 10°C to simulate overwintering conditions. 

These beetles were checked on a monthly basis for death and sporulation. Live beetles 

collected from the soil in spring and summer were held and monitored as described above 

for bioassays. 

Data Analysis 

Differences between B. bassiana treatments and collection dates on proportion 

mortality (as a percent of the number of beetles burrowed: 25 minus the number that died 

on soil surface) were analyzed with a two-way weighted ANOVA, weighted by sample 

size (a=0.05). A similar analysis was performed to determine significance between 

treatments for the proportion mortality as a percentage of the number of beetles actually 

recovered. Data for these analyses was transformed using the square root of the arcsine 

of the proportion. Two-way weighted ANOVAs were also performed to determine any 

significant differences between treatment effects and the number of dead beetles before 

burrowing into the soil, the total number of beetles recovered, and the number of beetles 

that sporulated. 



Results 

Susceptibility of Non-, Pre- and Post-diapause Adults to B. bassiana 

Experiment A 

B. bassiana treatment resulted in a significant overall decrease in beetle survival, and in 

an increase in sporulation (24>9.49, p<O.OO 1 for both response variables) (Fig. 2.1 A, B). 

Physiological state of the beetle (non- or post-diapause) alone did not significantly impact 

survival (measured as a combination of proportion mortality and days to death), however, 

there was a significant interaction between B. bassiana treatment and physiological state 

on survival (24>9.49, p=0.006). Post-diapause beetles experienced less B. bassiana 

induced mortality than non-diapause beetles (Fig. 2.1A). In addition, a significantly 

higher (24~9.49,  p=0.02) percentage of the B. bassiana treated non-diapause beetles that 

died sporulated (97.1%) than was observed for similarly treated post-diapausing beetles 

(89.4%) (Fig 2.1 B). Non- and post-diapause beetles did not differ in regards to the time 

it took them to die after B. bassiana treatment, but control treated non-diapause beetles 

died more quickly than did post-diapause beetles (Fig. 2.1 C). No sporulation was 

observed in any control group. 

Experiment B 

B. bassiana treatment significantly decreased beetle survival and increased 

proportions of dead beetles sporulating, (Fig. 2.2, Fig. 2.3 A) (X24>9.49, p<0.001 for both 

response variables). There were significant differences (regardless of physiological state) 



Nondiapause Postdiapause 
(lab) (field) 
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Figure 2.1 Non- and post-diapausing beetle responses (& SE) 
to B. bassiana treatments, including proportion mortality (A), 
proportion of dead beetles sporulated (B), days to death (C) and days 
from death to sporulation of dead 8. bassiana treated beetles (D). 
Letters in A and C correspond to logistic pairings at a Bonferroni 
adjusted level of a=0.025. 



between years in survival (x24>9.49, p<0.001), proportion sporulated (x24>9.49, p=0.000) 

and days to sporulation (F(1,4) =64.1403, p<O.OOl), with higher proportions of dead and 

sporulated beetles in 2002 than 2001, and longer times to death and sporulation in 2002 

than 2001. There were significant interactions between B. bassiana treatment and 

physiological state on survival (x24>9.49, p<0.0001), however responses differed between 

years (Fig. 2.2). In 2002, mortality was significantly greater in both control and B. 

bassiana treated post diapause beetles than in the control and treated pre-diapause beetles 

for that year, and greater than either group of beetles in 2001. However, mortality did not 

differ between pre- and post diapause beetles in 2001 and B. bassiana treatment mortality 

did not differ between either of the 2001 beetles and pre-diapause 2002 beetles. In 2002, 

pre-diapause beetles had significantly greater times to death (l7.48f 6.85 days) than post- 

diapause beetles (13.41f7.29 days) (Fig. 2.3 B). 

No control beetles sporulated in either pre-diapause or post-diapause beetle 

groups in 2001, although low levels of sporulation were observed in the control beetles 

that died in 2002 (Fig. 2.3A). In 2002 pre-diapause beetles had a significantly higher 

occurrence of dead beetles sporulating (x24>9.49, p<0.001) and took longer to sporulate 

than post-diapause beetles (F(I,4) = 11.9508, p<O.OOl)(Fig 2.3A), however, no differences 

were observed between 2001 treated beetles. 

The response of pre-diapause field beetles to B. bassiana (Experiment By both 

years) was compared to responses of non-diapausing lab beetles (Experiment A). 

Because beetles in Experiment B were censored at 28 days, and beetles in Experiment A 

were censored at 14 days, data fiom Experiment B was used only to 14 days, after which 

beetles were considered censored. Non-diapausing laboratory beetles experienced 



significantly more mortality, more sporulation of dead beetles, a shorter time to death 

than did pre-diapausing field beetles (x24>9.49, p<0.001 for all variables). 

Impact of Age on Susceptibility of Non-diapausing Adult Beetles to B. bassiana 

Due to high control mortality in trials 1 and 2, beetles aged 0-30 degree days were 

excluded from analyses of data B. bassiana treatment significantly decreased survival 

and increased sporulation of beetles (x28>15.5, p<0.001) (Fig. 2.4, Fig. 2.5), and beetle 

age significantly affected beetle survival (x28>15.5, p=0.0062) (Fig. 2.4). However, there 

was a significant age by B. bassiana treatment interaction on survival (xZ8>15.5, 

p=0.0446). Control mortality generally decreased with age but the same trend was not 

evident in B. bassiana treated beetles. Mortality did not change with age class, with the 

exception of an obvious decrease in mortality at 125+ degree-days for B. bassiana treated 

beetles. (Fig. 2.4). Post hoc groupings were used to analyze this decline in beetle 

mortality after 125-degree days. Proportion mortality was significantly lower in beetles 

who were 125 degree days or older (x28>15.5, p=0.03). Significant quadratic 

relationships exist between beetle age and days to death and days to sporulation (Fig. 

2.6). As beetle age increased, the time it took for beetles to die decreased until beetles 

were 60-degree days old, then time to death subsequently increased (F(,,7)=8.269, p= 

0.026). Time to sporulation showed a similar trend of decreasing, then increasing with 

time (F(1,7)=20.165, p=0.004). Of the youngest beetles, 22.9% of the dead beetles 

sporulated, 32.3% of the middle aged-beetles that died sporulated, and 33.8% of the 

oldest beetles sporulated. 
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Figure 2.2 Proportion mortality (k SE) of pre- 
and post-diapause Colorado potato beetles 
(field populations) treated with 6. bassiana. 
Letters correspond to results of logistic 
regression pairings at a Bonferroni adjusted 
level of a= 0.01 7. 
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Figure 2.3 Pre and post-diapausing beetle responses (k SE) 
to B. bassiana treatments, including proportion of dead beetles 
sporulated (A), days to death (B) beetle sporulation of B. bassiana 
treated beetles (C). Letters correspond to results of logistic regression 
pairings and ANOVA pairings at a Bonferroni adjusted level of a=0.017. 
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Figure 2.4 Proportion mortality ( * SE) in control 
versus. 6. bassiana treated Colorado potato beetle 
adults relative to age (degree days,base 10°C) from 
adult eclosion. 
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control versus. 6. bassiana treated Colorado 
potato beetle adults relative to age (degree 
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Effects of Sublethal and Lethal Doses on Overwintering Adult Colorado Potato 

Beetles 

B. bassiana treatment (control, sublethal, lethal) had no significant effect on the 

proportion of dead beetles, as a fraction of either total beetles recovered (F(2,10) = 0.1595, 

p=0.8529) or as a fraction of total beetles burrowed (F(2,10) = 0.1372, p=0.8721) (Fig 

2.7A, B). B. bassiana treatment also did not significantly affect the number of beetles 

that died on the soil surface (F(2,10) = 0.2266, p=0.7998), the total number of beetles 

recovered ( F ( ~ , J ~ )  =227.1284, p=O.68 17) or the total number of beetles that sporulated 

( F ( ~ , J ~ )  =1.3699, p=0.2824). There were significant effects of time on proportion 

mortality (F(2,10) = 19.6463, p=0.002) and sporulation (F(2,10) = 38.5 14, p=0.0431) with 

the highest levels of mortality in the spring and highest levels of sporulation in the fall 

(Fig. 2.8). There were no significant interaction effects on any variable for the treatment 

and time interaction. 

Discussion 

Decreased insect resistance to disease can be a result of several factors. Stressors 

in the insect environment can result in a decrease in insect immunity, which could 

subsequentially increase insect susceptibility to disease (Baines 1992). Low food quality 

and quantity is a stress factor that has been shown to increase insect susceptibility to B. 

bassiana (Ramoska and Todd 1985, Furlong and Groden 2003). In addition, other factors 

such as temperature, mechanical forces, and some insecticides can have significant effects 

on the susceptibility of insects to pathogens (Brey 1994, Quintela and McCoy 1998, 
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Figure 2.6 The influence of adult Colorado potato beetle age 
(degree days, base 10°C, from adult eclosion) and B. bassiana 
treatment on days to death (A) and days to sporulation (B). 
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Figure 2.7 Pre- and post-winter mortality of overwintering Colorado 
potato beetles, expressed as proportion of total collected (A) and 
proportion of total beetles that burrowed at each site (number 
released - number of dead on soil surface)(B). 
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Furlong and Groden 2001). 

This study focused on physiological state and age as factors that may affect 

susceptibility of adult Colorado potato beetles to B. bassiana. The sensitivity of the same 

insect species to a pathogen may depend on the developmental stage (Vey and Gotz 

1986). In the first set of experiments, although post-diapause beetles experienced 

significantly more B. bassiana induced mortality than pre-diapause beetles in 2002, the 

overall effect of the B. bassiana treatment relative to the control was greater for pre- and 

non- diapause beetles as compared to post-diapause beetles. Post-diapause beetles 

experienced much higher control mortality in both experiments than either the non- or 

pre-diapausing beetles. This high level of control mortality is probably associated with 

the stress that can accompany recovery from the overwintering state and recovery from 

low temperatures (Bale 1991). Non- and pre-diapausing beetles did not experience high 

control mortality, and the relative effects of B. bassiana were greater. In experiment A, 

not only did non-diapause beetles have higher proportion mortality, they also had a higher 

occurrence of sporulation, also indicating a higher susceptibility in non-diapause beetles. 

In experiment B, proportion mortalities varied between stages between each year. 

Overall, 2002 exhibited greater proportion mortalities than 2001, as well as greater 

proportions of sporulated beetles. Post-diapause beetles also showed greater variation in 

mortalities between years than pre-diapause beetles did. 

In comparison to 2001, 2002 was a wetter spring and summer (20.68 inches of 

precipitation in March-August, as compared to 19.1 1 inches in 2001). In addition, during 

beetle collection in 2002, several diseased sporulated cadavers were noted on the soil 

surface, and small proportions of control group beetles sporulated, showing probable 



evidence of exposure to disease in the field. Beetles already having been exposed to 

higher levels of inoculum experienced greater levels of mortality and sporulation in this 

year. The greater variability observed between year in control mortality and B. bassiana 

treatment in post-diapause than pre-diapause is likely due to a greater sensitivity to 

environmental interactions with pathogens. 

In cellular defense, insects must produce whole blood cells to either phagocytize 

or encapsulate a foreign particle, and depending upon the numbers of blood cells 

available at one time, the defense may be overwhelmed by infection (Salt 1970). Post- 

diapause beetles most likely vary in the amount of resources they possess when they 

emerge from overwintering, and energy is needed to produce hemocytes to fight 

infections. Since they are able to feed directly on foliage, pre-diapause beetles may have 

more reserves and are better able to produce infection fighting hemocytes, thus making 

their response to B. bassiana in this experiment less variable. 

The insect cuticle is an important barrier to the invasion of fungal pathogens. In 

the experiment evaluating the impact of adult beetle age on susceptibility of non-diapause 

beetles, we hypothesized that different ages exhibiting different levels of cuticle 

maturation would differ in their susceptibilities to B. bassiana. At pupal case emergence, 

the beetle elytra are soft and unpigrnented and gradually over the course of 4-7 days gains 

rigidity and color (personal observations). Tanning is the process by which the new 

insect cuticle sclerotizes. This process involves the transformation of water-soluble 

arthropodin to insoluble protein (Chapman 1971). This change in hydrophobicity could 

affect the attachment of B. bassiana conidia to the cuticle, as hydrophobic attraction of 

conidia rodlets to the normal insect epicuticle is an important factor in B. bassiana 



pathogenesis (Boucias et al. 1988). The tanning and subsequent additional cuticle 

deposition can take up to three weeks, but is usually shorter (Chapman 1971). 

Although proportion mortalities did not significantly increase or decrease with age 

up to 125-degree days, sporulation levels increased with beetle age to approximately 60- 

degree days, after which they decline. During the time period between 0 and 60 degree 

days beetles may show increased susceptibility because their cuticle is tanning and 

becoming more hydrophobic, but the full cuticle has not been deposited. Follett and 

Hilbeck (1995) found full elytral hardness in CPB after 3 days at 28OC or 54-degree days, 

thus, beetles in this study most likely had fully tanned cuticles at 60 degree days. After 

tanning, cuticle development is characterized by the addition of material between the 

existing cuticular layers (Chapman 1971). After 60-degree days, we most likely see a 

decrease in overall susceptibility as additional material is added, providing a increased 

mechanical bamer against the invasion of fungal pathogens. 

However, there are other factors that may be influencing these beetles's 

susceptibility to B. bassiana. Cuticular waxes, which are deposited at ecdysis, and then 

continually during the intennolt period of an insect's life, contain chemicals that inhibit 

the growth and penetration of microorganisms (David 1967). Changes in wax deposition, 

or more consistent deposition after 60-degree days may attribute to the decrease in 

susceptibility of adult CPB to B. bassiana, but does not explain the lower susceptibility of 

younger adults, as wax deposition is more likely to be incomplete soon after molting 

(Chapman 1971). 

Differences between sexes in susceptibility may also explain these trends. Male 

and female insects have been found to have differential responses to control methods, 



such as nematode treatments and insecticides (Bovin and Belair 1989, Abd-Elghafar et al. 

1990). Development of reproductive organs of the adult CPB, which occurs between 34 

and 5 1-degree days may also be related to the decrease in susceptibility after 60-degree 

days in this study (Alyokhin and Ferro 1990). 

The trend of changing susceptibility with age revealed in our study suggests that 

the ages during which adult beetles would encounter B. bassiana in its natural soil 

reservoir are the ages when they are the least susceptible to disease. Our laboratory 

observations have shown that newly eclosed beetles remain in the soil until 

approximately 22.5-degree days post-eclosion. Once on the soil surface, these beetles 

find plants usually within minutes (pers. obs.). Feeding on the plants, beetles are least 

likely to come into contact with conidia in the soil, and this time period corresponds with 

the period of highest susceptibility. Once beetles return to the soil to overwinter, they are 

usually older than 60-degree days. (Beetles in the age assay were exposed to a lower 

concentration of conidia than were beetles in the diapause studies, so mortality results are 

not comparable across experiments.) 

Bauer et al. (1998) found a decrease in susceptibility of Pieris brassicae to 

parasitization by Cotesia glomerata with increasing instar age. It was hypothesized that 

this reduction in susceptibility with age could be due to the altered ability of hemocytes to 

encapsulate the egg due to either differences in cell differentiation between ages of insect, 

or due to total number of hemocytes available, as hemocyte volume increases with 

increasing instar. Additional hemocyte volume with increasing ages, or a more efficient 

immune system could also explain changes in susceptibility with age. 



Surviving infections by fungal pathogens has been reported to reduce an insect's 

resistance to cold temperatures, increasing overwintering mortality (Ferron 1978). In this 

study, B. bassiana treatment of overwintering beetles had no effect on mortality of adults 

at any time. Cantwell (1986) also found that soil applications of B. bassiana had no 

significant effect in increasing the mortality of overwintering CPB adults. However, Watt 

and Lebrun (1984) did reduce pupal and the following adult populations by as much as 

74% with soil applications of B. bassiana conidia. Studies by Watt and Lebrun were not 

conducted with overwintering adults, as this and that of Cantwell were, thus the 

difference in physiological state of the beetle may account for the differences in results. 

Overall mortality, regardless of treatment was highest in the spring for experimental 

beetles, and although the total mortality values for summer were less than spring, 

decomposition of beetles may have resulted in an underestimate of the number that were 

recovered in the summer. The amount of beetles that sporulated decreased as time 

progressed, suggesting that those infected with B.bassiana in the fall are more likely to 

die during the fall and winter and not after emergence in the spring. 

Beauveria bassiana based pest management strategies and spray plans for CPB 

frequently focus on targeting larvae. These results indicate that there are differences in 

susceptibility between physiological stages of the adult beetle and these should be 

considered when developing management strategies with this pathogen. If adults are to 

be targeted, our results suggest that treatments should be applied to the newly emerged 

pre-diapause beetles within 125 degree days of emergence from the soil, as they show a 

consistent high level of mortality to B. bassiana when compared to mortalities of other 

ages. Early treatment of newly emerged adults would also be most effective for reducing 



oviposition. Based upon this study, treatment of overwintering beetles with B. bassiana 

does not appear to be a viable control plan. 
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CHAPTER 3: HORIZONTAL TRANSMISSION OF 

BEA UVERIA BASSIANA BETWEEN CADAVERS 

AND ADULTS OF LEPTlNOTARSA DECEMLINEATA 

Abstract 

Behavior and infection of newly emerged adult Colorado potato beetles 

(Leptinotarsa decemlineata) in the presence of Beauveria bassiana infected cadavers 

were studied to determine the likelihood of transmission of disease as beetles emerge 

from the soil and colonize host plants. In 2001, arenas were constructed to accommodate 

recessed potted potato plants surrounded with soil to simulate the field environment. B. 

bassiana killed and sporulated adult beetles were placed in varying patterns surrounding a 

release point for healthy beetles in the center of the arena. Laboratory reared, newly 

eclosed beetles were buried just below the soil surface at the release point and were 

observed for 30 minutes as they emerged and colonized one of four plants. Beetle 

movements were recorded relative to a superimposed grid consisting of 5 x 5 cm squares. 

The study was replicated in 2002 using a similar grid in a potato field. In both the arena 

and field, emerging beetles showed no preference for movement in any cardinal direction, 

and direction was not affected by the presence or absence of B. bassiana sporulating 

cadavers, nor did the presence of cadavers affect the time taken to colonize a plant or the 

distance traveled by a beetle. Relative humidity (RH) was the only significant abiotic 



factor affecting the distance traveled to the plant, with longer travel distances as the RH 

declined. 

The likelihood of emerging adults contacting sporulated cadavers on the soil 

surface was quantified at different cadaver densities, and a curvilinear relationship exists 

between density of cadavers on the soil surface and square root number of encounters, 

with the number of encounters increasing with increasing cadaver density. Proportion 

mortality and sporulation also have a curvilinear relationship with density, both values 

increasing with cadaver density. Thus, beetles show no avoidance behavior to sporulated 

cadavers, and density of sporulated cadavers on the soil surface is an important factor in 

the horizontal transmission of B. bassiana from cadavers to healthy, newly emerging 

adults. 

Introduction 

Beauveria bassiana is a fungal pathogen of many insects, and its development as 

a biological control agent has been of considerable interest as problems with insecticide 

resistance become more prevalent in today's agroecosystems (Huang et al. 1995, Stewart 

et al. 1997, Olson et al. 2000, Zhao et al. 2000). Applications of B. bassiana, an 

indigenous soil fungus, to agricultural systems have been shown to reduce pest 

populations, such as those of the Colorado potato beetle, Leptinotarsa decemlineata (Say) 

(Campbell et al. 1985, Hajek et al. 1987, Anderson et al. 1988). Since its first noted 

adaptation to the cultivated potato in 1859, the Colorado potato beetle (CPB) has 

developed resistance to most insecticides, which makes it the most destructive insect pest 

of potatoes in the Northeastern United States, including the state of Maine. 



A discrete application of B. bassiana in a potato field can reduce CPB 

populations, however, because B. bassiana conidia are sensitive to W light and rainfall, 

and because temperature and humidity play an important role in B. bassiana virulence, 

the direct effects of the primary spray can be short lived (Walstead et al. 1970, Daoust 

and Pereira 1986, Inglis et al. 2000). In contrast, secondary infection of healthy CPB 

individuals by dead, sporulating cadavers on the soil surface can be an important source 

of infection, and horizontal infection from cadavers has been illustrated in other 

insect/entomopathogen systems (Brown and Nordin 1982, Thomas et al. 1995, Furlong 

and Pel1 2001, Long et al. 2000a). Mathematical models demonstrate that without 

transmission of a disease, infection prevalence approaches a level of zero, illustrating the 

necessity of transmission if a fungal disease is to be sustained in the environment 

(Anderson and May 198 1). 

To determine how significant horizontal transmission is in reducing pest 

populations, the likelihood of healthy insects contacting diseased insects needs to be 

assessed. Long et al. (2000a) found that CPB prepupae were more likely to come in 

contact with sporulated cadavers on the soil surface as cadaver density increased, and 

subsequent mortality and sporulation increased with cadaver density. The adult stage, 

while typically not as susceptible as the larval stages (Fargues 1972, Appendix) can 

acquire infections from contact with sporulating cadavers. B. bassiana sprays that have 

targeted larval stages produce sporulating cadavers on the soil surface. These cadavers 

can coincide with the emergence of new adults from pupation sites in the soil. Once the 

adults emerge, they travel along the soil surface in order to find an acceptable host plant. 



The purpose of this study was to investigate the relationship between cadaver 

density and contact and subsequent infection of newly emerged adult CPB, a potentially 

important factor in horizontal transmission of the disease in CPB populations. This 

study also attempted to discern if there is any avoidance behavior exhibited by adult 

beetles when exposed to sporulated cadavers on the soil surface. 

Methods 

Insects and Foliage 

Colorado potato beetle adults were reared from a laboratory colony which was 

supplemented annually by field collections from the University of Maine's Rogers Farm 

in Stillwater, ME. Potato fields used for beetle collections received seven weekly sprays 

of the copper hydroxide fungicide Champ Formula 2 @ (Agtrol Chemical Products, 

Houston, TX) for Phytophtora infestans control and no other pesticides. All adult beetles 

were maintained in paper cups (300 ml) at 25f l°C and a 16:8 light-dark cycle and fed 

fresh greenhouse grown potato foliage (Solanurn tuberosum L.) (variety primarily 

Kennebec, with the exception of Delta Gold for density studies) daily. For laboratory 

reared experimental beetles, egg masses were collected daily from cups. On hatch, 

approximately 20 larvae were placed in paper cups (300 ml) and raised under the same 

conditions as adults. When larvae reached the fourth instar and stopped feeding (entered 

the prepupal stage), they were placed in petri dishes lined with pieces of moist paper 

toweling. Pupation containers were checked daily for the presence of newly 

metarnorphosized adults. 



Cadaver Production 

Beauveria bassiana strain GHA was obtained as dried conidia from Mycotech, 

now Emerald BioAgriculture (Butte, MT), and plated on Sabouraud dextrose agar (SDA) 

(Difco Laboratories, Detroit, MI). Colonies were sub-cultured once on SDA, and for each 

experiment one of these single, axenic subcultures (grown for 10 days at 25f 1°C, stored 

at 4 f  1°C for not more than 60 days) were utilized. Conidia were harvested from these 

plates with a sterile loop and suspended in an aqueous solution of 0.1% Tween 20 (JT 

Baker, Phillipsburg, New Jersey). Concentrations of conidia were determined using a 

hemocytometer, and solutions were diluted as necessary to achieve 2x10~  conidiaJm1 in 

0.1% Tween 20. Beetles were sprayed with either B. bassiana or control (0.1% Tween 20 

alone) solutions. 

To produce cadavers for these experiments, either adults or late second instar 

larvae from the laboratory culture were sprayed with a B. bassiana solution using a 

Burkhard Computerized Spray Apparatus@ (Hertfordshire, England) at 55.2 kPa with a 

diaphragm setting of 6. Two plates of SDA were sprayed at the same time as B. bassiana 

treated beetles to obtain accurate rates of conidial density and viability at the time of the 

spray. In all experiments, 298% of the conidia had formed germ tubes after 18h at 

25f 1°C, indicating viability. Sprayed beetles were held in a TuppenvareB container (38 

x 26 x 13.5 cm) lined with moist paper toweling, and fed fresh potato foliage on a daily 

basis. Once sporulated, cadavers were removed from this arena, and stored in a petri dish 

with moistened filter paper over which a layer of cheesecloth was laid. The cadavers 

were placed on the cheesecloth to prevent their direct contact with the moistened filter 

paper. Cadavers were stored at 4+_1°C and used within 3 days of sporulation. At the end 



of each day of observations, at least one cadaver of the cadavers used in the experimental 

arena was sampled for viability of conidia. A sterile needle was touched to the side of the 

cadaver and streaked onto an SDA plate. The plate was held at 25+1 OC for 18 hours to 

ensure that the cadaver's viability was not less than 70%. 

Determining Avoidance Behavior of Adult Colorado Potato Beetles to B. bassiana 

Infected Cadavers 

Beetle behavior was studied in a controlled environment in 2001, in which beetle 

movements were recorded in a wooden arena, designed to replicate a field setting. The 

same behavior was studied in the summer of 2002, but in a field setting with a modified 

version of the previous year's design. 

200 1 

In June 2001, arenas were constructed that consisted of a wooden box with an 80x 

65 cm2 plywood bottom and 14 cm high sides, elevated on 30 cm legs such that the box 

sat off of the ground to accommodate recessed potted potato plants. Four 19.5 cm 

diameter holes were cut into the plywood bottom of the box, and 19 cm plastic plant pots 

were attached with silicon caulking. Contact paper was placed on the bottom of the box, 

to provide an easily sterilized surface. Metal flashing was attached to the inside sides of 

the box with Liquid ~ a i l s @  (Macco, Cleveland, OH), to deter beetles from climbing this 

surface (Fig. 3.1). 



Figure 3.1 Diagram of behavioral arenas used for study in 2001. 



Every 3-5 days of the assay, new greenhouse-grown potato plants were placed in 

each of the four recessed pots. A layer of sieved (1 cm2 mesh) Caribou gravelly loam 

collected from the University of Maine's Aroostook Farm in Presque Isle, Maine, was 

placed in the bottom of the box to a depth of approximately 5 cm, to create an even 

surface with the top of the recessed pots such that there was no barrier to beetle 

movement. The soil was moistened with water from a spray bottle before each assay. 

North-south oriented pots were spaced at a distance of one foot to mimic distances 

between plants in a conventional potato field. Each plant center was located 30 cm from 

the center of the arena, the average distance that prepupae travel before burrowing into 

soil in the field (Long et al. 2000b). A 5.08 cm square grid made of cotton string was 

superimposed over the top of the arena to provide a framework for quantifjmg beetle 

movements. 

Individual beetle movement was monitored within the arenas relative to the potted 

potato plants and the presence (and proximity) or absence of sporulating cadavers. 

Temperature and relative humidity were monitored using a HOBO@ Pro Series 

Datalogger (Onset Computer Company, Bourne, MA) placed underneath the arena. A 

beetle that had eclosed primarily within the previous 2-5 days (250 beetles between 1 and 

5 days, 4 between 6 and 10, and 50 between 30 and 50) was placed just under the soil in 

the center of the arena and was observed by either a human observer or a video camera. 

In the case of human observation, the observer remained directly overhead of the beetle as 

it traveled, and, using a stopwatch and a grid diagram, followed the path the beetle took to 

colonize a host plant. Measurements of the number and location of that the beetle passed 

through to reach a plant, the time the beetle took to reach a plant, the amount of time 



spent in each square, and which of the four plants the beetle colonized were recorded. 

Beetles were considered to have colonized a plant when its entire body was on any part of 

the plant. Beetles that did not move from the starting point after 20 minutes, who left the 

arena by climbing up the side, and those that, once started moving, ceased movement for 

more than 20 minutes were removed and were not used for the analyses of total time for 

plant colonization or specific plant colonized. Observations made with the video camera 

were corrected for parallax error so that the upper grid lines corresponded with the actual 

spacing on the bottom of the grid. The video camera taped the trial for at least 20 

minutes, after which, if no movement was observed, a new trial was begun. 

Arenas were rotated between individual beetle trials, so that any orientation to a 

cardinal direction could be monitored. After a beetle had reached a plant it was then put 

in an individual 60 x 15 mm petri dish with moistened filter paper, fed fresh greenhouse- 

grown potato foliage and maintained at 25+1°C and a 16:8 light-dark cycle for 21 days. 

At 24-hour intervals, each beetle was checked for mortality, and if alive, fed fresh foliage 

daily for 28 days. Dead beetles were placed in a container at 100% RH and monitored for 

signs of B. bassiana sporulation. Sporulation was indicated by the observance with an 

unaided eye of B. bassiana hyphal growth on the outside of the insect. Occurrence of 

mortality and sporulation, and time (days) to death and time (days) from beetle death to 

sporulation were recorded. 

Control runs of the experiment consisted of the arena with the potato plants and 

no sporulating cadavers. For B. bassiana treatments sporulated cadavers were arranged in 

u-shapes surrounding the beetle release point, so that there was one possible path for a 

beetle to travel if travel was to be completed in a B. bassiana free square (Fig 3.2). The 



opening in the U-shaped pattern was rotated between assay runs to avoid bias from 

beetles traveling in one direction. Sixty-seven adult beetles were exposed to the control 

treatment in 2001, and fifty-three were exposed in the B. bassiana treatment. Of them, 27 

observations were not fully utilized because of the lack of beetle movement in the pre- 

established time limit. 

2002 

A similar design was utilized for the field study in 2002 as was used for the arena study in 

2001. However, in 2002, arenas consisted of a 121.92 x 91.44 cm bottomless frame that 

was placed over two plants in two adjacent rows of a potato plot at the University of 

Maine's Roger's Farm, Stillwater, ME. The frames accommodated a similar grid as the 

2001 arenas with 391 5.08 x 5.08 cm squares per frame. Assay runs were performed and 

environmental conditions were monitored as described in 2001, however all observations 

were made by human observers in 2002, and beetles were not placed under the soil at the 

start position, as the soil was too compact. A total of 125 beetles were observed for the 

control treatment, and 59 were observed for the B. bassiana treatment. Of these, 20 

observations were not utilized due to lack of beetle movement. 



Figure 3.2 Diagram of cadaver placement surrounding release point in arena trials. 
Circles represent release point of adult beetles, shaded squares represent cadaver 
placement. 



Data Analysis 

To test for beetle preference in colonizing host plants, a chi-square analysis was 

performed to determine if beetles were colonizing one of the four plants in a percentage 

significantly different than 0.25. To test if beetles were avoiding areas with B. bassiana 

cadavers present, the number of beetles passing through B. bassiana occupied squares 

relative to unoccupied squares was compared. In 2001, 10 grid squares surrounded the 

release point, and in 2002, 12 grid squares surrounded the release point (the 2002 grid 

was larger). A probability of the beetles randomly passing through a B. bassiana filled 

square was calculated, based on the number of squares in each trial that contained a B. 

bassiana sporulated cadaver. Chi-square analysis was used to determine if the actual 

frequency of beetles passing though B. bassiana filled squares deviated significantly from 

this frequency. Two way ANOVAs were performed to determine if there were any 

significant differences between beetle age, temperature, relative humidity and B. bassiana 

treatments in relation to total time for beetles to colonize plants (entire duration of trial) 

and in relation to total number of grid squares the beetle passed through to colonize a 

plant (a measure of directness). In both ANOVAs, data was log-transformed and analysis 

was conducted at an alpha level of 0.05. 

The Relationship Between Cadaver Density and B. bassiana Infection 

Density Studies 

To determine the relationship between cadaver density on the soil surface and 

adult beetle infection, the same arenas used in the behavioral assays in 2001 were used. 



A 693 cm2 area surrounding the beetle release point was marked out for cadaver 

placement in the appropriate densities. Sporulated larval cadavers were placed on the soil 

surface at densities of 0, 0.0173,0.0289,0.0606, and 0.2352 cadavers per cm2. Non- 

sporulated larval cadavers were also placed in corresponding densities for control trials. 

An adult beetle was placed in the center of the arena and was allowed to colonize one of 

four potato plants. The number of cadavers encountered by the beetle was recorded and 

each encounter was also given a numerical rating. A rating of "1" was determined by a 

contact with a cadaver that lasted less than one second and involved either a leg or 

antennae touching the cadaver only. A "2" contact lasted between 1 and 2 seconds and 

involved an adult beetle coming in contact with a cadaver on the underside of its body. A 

rating of "3" was given to beetles that had contact that lasted longer than 2 seconds and 

involved sustained contact with some part of the beetle's head, thorax or abdomen. 

Duration of encounter was also recorded, along with temperature and relative humidity. 

All beetles were kept in 60 x 15 mm Petri dishes and held for 2 weeks to check for 

subsequent death and sporulation. 

Data Analysis 

Linear regression was utilized to determine relationships between cadaver density 

and square root transformed number of encounters. Linear regression was also utilized to 

determine relationships between log1 0 transformed cadaver density and proportion 

mortality and sporulation. Two-way ANOVAs were used to determine significant factors 

impacting time to plant colonization as well as factors impacting the average rating of 

contact in any given trial. 



Results 

Determining Avoidance Behavior of Adult Colorado Potato Beetles to B. bassiana 

Plant Colonization 

One hundred ninety-two beetles were exposed to the control treatment in assay 

runs in both years, and 112 were exposed to B. bassiana treatments. In 2001 and 2002, 

neither beetles in the control treatment, nor beetles in B. bassiana treatments colonized 

one of four plants at a frequency significantly different from an expected 0.25 ( ~ 2 , 3 d f  

=7.00; ~ 2 ,  3df = 4.06, respectively for control, ~ 2 ,  3df =0.08; ~ 2 ,  3df =IS4  respectively 

for B. bassiana treatment), indicating no impact of cardinal direction on beetle 

movement. 

In both 2001 and 2002 beetles did not demonstrate any avoidance of sporulating 

cadavers. In 2001, the calculated probability of a beetle passing through a grid square 

surrounding the release point was 0.10. The calculated probability of a beetle passing 

though a B. bassiana square was 0.22. Beetles did not significantly deviate from the 

expected frequency for the B. bassiana treatment ( ~ 2 ,  1 df = 5.25). In 2002, the 

calculated probability of a beetle passing though a grid square surrounding the release 

point was 0.08. The calculated probability of a beetle passing though a B. bassiana 

square was 0.15. Beetles again did not significantly deviate from this frequency ( ~ 2 ,  1 

df= 0.08,). 



Beetle Activity 

In 2001, both adult and larval cadavers were used. In 2002, only larval cadavers 

were used. In regards to the area of each grid square (25.81 cm2), adult cadavers occupy 

approximately 2.52% of the square area, and larval cadavers occupy approximately 1.19% 

of total area within the grid square. Out of 112 beetles that were exposed to cadavers in 

both 2001 and 2002,21 beetles had contact with at least one sporulated cadaver. Of those 

21,28.6% died, and 19% of the dead subsequently sporulated. Of the 91 beetles that did 

not encounter a cadaver, 15.4% died and none sporulated. 

Analysis of environmental impacts on beetle movement revealed significant 

effects of relative humidity and year on the distance traveled (F(1,6) = 11.1698, p=0.0010 

and F(1,6) = 10.6732, p=0.0015 respectively), and the time traveled from emergence from 

the soil to colonizing their host plant (F(1,6) = 9.3998, p=0.0024 and F(1,6) = 36.4134, 

p<0.0001 respectively). However, regression revealed the relationship between relative 

humidity and distance and time traveled to be weak, with RH explaining only 3.3% of the 

variation in distance traveled (F(1,255)=12.1 12, p=0.002, r2= 0.033) (Fig 3A), and less than 

1% of the variation in the time spent traveling (F(1,255)= 7.080, p=0.073,? 0.009) (Fig 

3.3B). The time a beetle spent within control squares as opposed to B. bassiana filled 

squares was analyzed and presence of B. bassiana did not significantly alter the amount 

of time a beetle spent in a square (F(,,6) = 0.0982, p=0.09). 
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Figure 3.3 Relationship between relative humidity and log- 
tranformed number of moves (A), and log-transformed 
seconds to plant colonization (B) for adult Colorado potato 
beetles in relationship to one of four possible plants. 



More beetles were eliminated from trials for failing to move within 30 minutes in 

2001 than in 2002. Both RH and treatment significantly (at the a=0.1 level) impacted the 

number of beetles that exhibited no movement. More beetles were eliminated at higher 

relative humidities and lower temperatures (X26 > 12.6, p=0.07, p=0.09, respectively). 

Cadaver Density Study 

The number of encounters of adult beetles with sporulated cadavers on the soil 

surface prior to plant colonization significantly increased as density of cadavers increased 

(F(1,65) = 56.957, p<0.0001), and this relationship is best described by the linear regression 

between the square root transformed number of encounters and the log transformed 

density of cadavers (Fig. 3.4). Proportion mortality of adults increased as cadaver density 

increased (F(1,65) =19.468, p<0.001) and proportion sporulation increased in the same 

manner =15.979, p>0.001). These relationships are best described by the 

regression between the proportions and the log transformed density of cadavers on the 

soil surface (Fig. 3.5,3.6). Presence of B. bassiana did not impact the total time it took 

for a beetle to colonize a plant (F(I,f,) = 0.9769, p=0.3787), but total time was affected by 

age (F(1,6) = 9.1 169, p=0.0038), with older beetles taking more time to colonize plants. 

Increased densities of cadavers on the soil surface resulted in increased time to colonize 

plants, but only at the 0.10 alpha level (F(1,3) = 2.6394, p=0.0994). The average numerical 

rating of contact increased with increased cadaver density to 0.0606 cadavers/cm2, after 

which it dropped slightly (F(1,3) = 7.6706, p=0.0015) (Table 3.1). 



Density (cadavers1 cm2) 

Figure 3.4 Relationship between log transformed density of 
second instar Colorado potato beetle sporulated cadavers 
and square root transformed number of encounters by adult 
Colorado potato beetles. Regression equations and ? values are fit to 
individual data points. Figures depict mean k standard errors. 



Density (Cadavers1 cm2) 

Figure 3.5 Relationship between log transformed density of 
sporulated second instar Colorado potato beetle cadavers and log 
transformed proportion mortality of adult Colorado potato beetles. 
Regression equations and values are fit to individual data points. 
Figures depict mean -+ standard errors. 



Density (~adaverslcm*) 

Figure 3.6 Relationship between log transformed density of 
sporulated second instar Colorado potato beetle cadavers and log 
transformed proportion sporulation of adult Colorado potato beetles. 

2 
Regression equations and r values are fit to individual data points. 
Figures depict mean standard errors. 



Table 3.1 Average rating of contact between adult Colorado potato beetles and B. 
bassiana sporulated cadavers at varied cadaver densities. 

Discussion 

In both the controlled arena experiment in 2001, and in the field experiment in 

2002, beetles did not show any strong evidence of avoidance to B. bassiana sporulated 

cadavers in the environment. This is evidenced in part by the fact that beetles in both 

years did not preferentially travel to and colonize any of the four available potato plants 

regardless of the presence of sporulating cadavers between their emergence point and the 

plant. Likewise, beetles in control and B. bassiana treatments settings did not orient to a 

compass direction as they search for a host plant. 

Beetles also did not travel at an increased frequency through grid squares that did 

not contain a sporulated cadaver. The fact that 21 beetles came into contact with a 

sporulated cadaver on the soil surface when the area of a grid square that a cadaver 

occupies is less than 3%, demonstrates that beetles most likely do not have a mechanism 

for detecting diseased cadavers on the soil surface. Avoidance of 3% of a grid square 



would not necessitate a large movement. Avoidance of sporulated cadavers has been 

reported for some insects, but not others. Termites show avoidance of dead sporulated 

cadavers, but do not avoid live diseased individuals (Kramm et al. 1982). Villani et al. 

(1 994) found that Japanese beetle grubs burrowing through soil actively avoided areas 

where Metarhizum anisopliae conidia had been added. However, Lord (2001) found that 

Cephalonomia tarsalis, a parasitoid of sawtoothed grain beetles (Oryzaephilus 

surinamensis) do not distinguish between B. bassiana infected and non infected beetles, 

although the wasps are susceptible to the disease. Wasps attack their hosts when they are 

still alive, and thus do not encounter sporulating cadavers. Wasps were also found to 

enter environments with conidia present at the same frequency as clean environments. 

Although relative humidity was the only abiotic factor that played a statistically 

significant role in beetle movement, its impact was minor in this study. It has been 

reported that decreases in humidity result in increased movement of insects (Fraenkel and 

Gunn 1940). In this study, similarly, beetle movement was slightly higher at lower 

relative humidities. Beetles were also excluded from trials due to lack of movement more 

frequently at high than low relative humidity levels. 

In the arena trials, 19% of beetles that had contact with a sporulated cadaver died 

and exhibited subsequent sporulation, showing evidence of B. bassiana horizontal disease 

transmission. In the cadaver density studies the frequency of encounters of sporulated 

cadavers increased as density increased, in a curvilinear fashion. This trend supports the 

theory that the density of infected individuals in the environment is dependent upon the 

density of diseased individuals (Anderson 198 1, Brown and Nordin 1982, Kelly-Tunis et 

al. 1995, Thomas et al. 1995). These results illustrate a relationship that appears to differ 



from that described by Long et al. (2000a) for the relationship between the density of B. 

bassiana cadavers and encounters with burrowing prepupae. In this study adults had, 

overall, more contact with cadavers as they emerged from the soil and colonized their 

host plant than was found for prepupae climbing off the plant and burrowing into the soil 

to pupate (prepupae averaged between 0.01 and 2.25 encounters per individual, whereas 

adults between 0.25 and 6.25 encounters per individual). Long et al. (2000a) found a 

linear relationship between number of encounters and cadaver density, which could have 

resulted from the lower numbers of overall encounters in that study. Adult CPB are 

generally considered more motile than prepupae and this motility appears to increase their 

chance of contacting a diseased individual on the soil surface. The curvilinear trend 

indicates that perhaps there is a saturation point of encounters possible between a healthy 

CPB and diseased cadavers on the soil surface. In this study it is most likely that 

densities above 0.30 cadavers per cm2 would not yield an increase in encounters. 

In the relationship between mortality and cadaver density, mortality increased in a 

curvilinear fashion as density increased. The same trend can be seen in the relationship 

between cadaver density and proportion of dead individuals that sporulated. Overall 

mortality and sporulation values are similar to the findings of Long et al. (2000a), with, 

on average, prepupae sporulating 36.8% more than adult beetles. This is most likely due 

to the decreased susceptibility of adults to B. bassiana than mature larvae (Fargues 1972, 

Appendix). 

This study produced no evidence of adult CPB actively avoiding B. bassiana 

sporulated cadavers on the soil surface, and increased densities of sporulated cadavers 

result in increased numbers of encounters between adults and cadavers, as well as 



increased proportion mortality and sporulation. There are many other factors, however, 

besides cadaver density that plays a role in disease transmission. Environmental factors 

such as temperature and humidity (Fernandez 2000), as well as rainfall (Furlong et al. 

2003) can play a part in disease transmission. Higher temperatures may cause more 

beetle movement, but may fall out of the range of optimal B. bassiana growth. Long et 

al. (2000a) found infection rate increased with decreased temperatures, and temperature 

could not explain differences in cadaver encounters, time to burrow and depth of 

burrowing, suggesting that temperature has a greater impact on fungal growth than it does 

on beetle behavior. In fact, temperature is thought to be the most important external 

factor in determining insect susceptibility and the multiplication of a microbial pathogen 

within its host (Waitanabe 1987). 

Humidity has been shown here to affect beetle movements, but weakly. Humidity 

may play a more important role in the successful growth of B. bassiana within the 

ecosystem. For successfid B. bassiana growth and germination, relative humidity must 

be above 92.5% (Walstead et al. 1970, Fernandez 2001). Depending where in the field a 

cadaver is placed (underneath the potato canopy or on exposed soil), the humidities at the 

soil surface can fluctuate below the optimal RH range, hindering the infectivity of 

cadavers. 

The effect of radiation may also have an effect on the transmission of B. bassiana 

within the agroecosystem. Conidia exposed to sunlight lose viability much more quickly 

than those protected from the sun (Daoust and Pereira 1986, Joergensen 2000). However, 

viability of cadavers found underneath the potato canopy have been found to have a 

positive relationship with solar radiation, most likely due to microclimate changes 



associated with the change in radiation and not the direct sunlight (Fernandez 2001). 

Although these environmental factors may serve to reduce the amount of infective conidia 

on sporulated cadavers, it has been shown that an 86.1 % reduction of conidia on cadavers 

did not significantly decrease the infection rate of CPB prepupae coming in contact with 

them (Long et a1.2000a). 

Horizontal infection of adult CPB by B. bassiana is not influenced by the beetle's 

ability to detect and avoid sporulated cadavers on the soil surface, and is more likely to 

occur as the density of cadavers on the soil surface increases. A management practice 

aimed at maximizing horizontal transmission should increase the number of cadavers on 

the soil surface but the motility of the targeted life stage also needs to be considered. 

However, overall susceptibility of the targeted life stage to B. bassiana also needs to be 

considered. Although in this study, adults are more motile, the overall effect of 

encounters is higher for prepupal stages, due to their higher susceptibility. It may be 

more effective to target those stages that will have a greater reaction to each cadaver 

encounter, than to focus on the stages that have the highest number of encounters. 

Literature Cited 

Anderson, R. M. 198 1. Population ecology of infectious disease agents. In "Theoretical 
Ecology" (Ed. May, R.M.), pp. 3 18-355. Blackwell Scientific, Boston. 

Anderson, R.M. & R.M. May. 1981. The population dynamics of microparasites and 
their invertebrate hosts: Mathematical models. Philos Trans R Soc Lond Ser B 
29l(lO54): 45 1-524. 

Anderson, T.E., Roberts, D.W., & Soper, R.S. 1988. Use of Beauveria bassiana for 
suppression of the Colorado potato beetle in New York state (Coleoptera : 
Chrysomelidae). Environ. Entomol. 17: 140- 145. 



Brown, G.C. & G.L. Nordin. 1982. An epizootic model of an insect-fungal pathogen 
system. Bull. Math. Biol. 44:73 1-739. 

Campbell, R.K., T.E Anderson, M. Semel & D.W. Roberts. 1985. Management of the 
Colorado potato beetle using the entomogenous fungus Beauveria bassiana. 
Amer. Potato J.  62(1): 29-37. 

Daoust, R.A. & R. M. Pereira. 1986. Stability of entomopathogenic fungi Beauveria 
bassiana and Metarhizium anisopliae on beetle-attracting tubers and cowpea 
foliage in Brazil. Environ. Entomol. 15: 1237-1 243. 

Fraenkel, G.S. & D.L. Gum. 1940. "The Orientation of Animals. " Dover Publications, 
New York. 

Furlong, M.J. & J.K. Pel1 2001. Horizontal transmission of entomopathogenic fungi by 
the diamondback moth. Biol. Contr. 22(3):288-299. 

Hajek, A.E., R.S. Soper, D.W. Roberts, T.E. Anderson, K.D. Biever, D.N. Ferro, R.A. 
Lebrun & R.H. Storch. 1987. Foliar applications of Beauveria bassiana 
(Balsamo) Vuillemin for control of the Colorado potato beetle, Leptinotarsa 
decemlineata (Say) (Coleoptera: Chrysomelidae): and overview of pilot test 
results from the northern United States. Can. Entomol. 119(11): 959-974. 

Huang, H., Z. Smilowitz, M.C. Saunders, & R. Weisz. 1995. Field selection for 
esfenvalerate resistance by the Colorado potato beetle. Amer. Potato J. 72(1): 1- 
12. 

Inglis, G.D., Ivie, T.J., Duke, G.M. & Goettel, M.S. 2000. Influence of rain and conidial 
formulation on persistence of Beauveria bassiana on potato leaves and Colorado 
potato beetle. Biol. Contr. 1855-64. 

Joergensen, H. 2000. A model to simulate primary infection of the Colorado potato 
beetle (Leptinotarsa decemlineata) with the fungus Beauveria bassiana. Master's 
thesis, University of Maine. 94pp. 

Kelly-Tunis, K.K., B.L. Reid & M. Andis. 1995. Activity of entomopathogenic fungi in 
free-foraging workers of Camponotus pennsylvanicus (Hymenoptera: 
Formicidae). J. Econ. Entomol. 88(4): 937-943. 

Kramm, K.R., D.F. West & P.G. Rockenback. 1982. Termite pathogens: transfer of the 
entomopathogen Metarhizium anisopliae between Reticulitermes sp. termites. J .  
Invertebr. Pathol. 40: 1-6. 

Long, D.W., E. Groden & F.A. Drummond. 2000a. Horizontal transmission of 
Beauveria bassiana (Bals.)Vuill Agricultural and Forest Entomology 2: 1 1 - 17. 



Long, D.W., F.A. Drummond & E. Groden. 2000b. Modelling Beauveria bassiana 
horizontal transmission. Agricultural and Forest Entomology 2 :  19-32. 

Lord, J.C. 2001. Response of the wasp Cephalonomia tarsalis (Hyrnenoptera: 
Bethylidae) to Beauveria bassiana (Hyphomycetes: Moniliales) as free conidia or 
infection in its host,the sawtoothed grain beetle, Oryzaephilus surinamensis 
(Coleoptera: Silvanidae). Biol. Contr. 21(3): 300-304. 

Olson, E.R., G.P. Dively & J.O. Nelson. 2000. Baseline susceptibility to imidacloprid 
and cross resistance patterns in Colorado potato beetle 
(Co1eoptera:Chrysomelidae) populations. J. Econ. Entomol. 93(2):447-458. 

Stewart, J.G., G.C. Kennedy & A.V. Sturz. 1997. Incidence of insecticide resistance in 
populations of Colorado potato beetle, Leptinotarsa decemlineata (Say) 
(Coleoptera:Chrysomelidae), on Prince Edward Island. Can. Entomol. 129(1): 
2 1-26. 

Thomas, M.B., S.N.Wood, & C.J. Lomer. 1995. Biological control of locusts and 
grasshoppers using a fungal pathogen: the importance of secondary cycling. Proc. 
R. Soc. Lond. B. 259: 265-270. 

Villani, M.G., S.R. Krueger, P.C. Schroeder, F.Consolie, N.H.Consolie, L.M. Preston- 
Wiley, & D.W. Roberts. 1994. Soil application effects of Metarhizium 
anisopliae on Japanese Beetle (Co1eoptera:Scarabaeidae) behavior and survival in 
turfgrass microcosms. Biol. Contr. 23(2):502-5 13. 

Walstead, J.D., R.F. Anderson, & W.J. Stambaugh. 1970. The effects of environmental 
conditions on two specides of muscardine fungi (Beauveria bassiana and 
Metarhizium anisopliae), J. Inverter. Pathol. 16: 22 1-226. 

Watanabe, H. 1987. The host population. In "Epizootiology of Insect Diseases" (J.R. 
Fuxa and Y. Tanada, Eds.) pp. 7 1-1 12. Academic Press, New York. 

Zhao, J.Z., B. A. Bishop & E.J. Grafius. 2000. Inheritance and synergism of resistance 
to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J. 
Econ. Entomol. 93(5): 1508-1 5 14. 



BIBLIOGRAPHY 

Abd-Elghafar, S.F., A.G. Appel & T.P. Mack. 1990. Toxicity of several insecticide 
formulations against adult German cockroaches (Dictyoptera: Blattellidae). 
J. Econ. Entomol. 83: 2290-2294. 

Alyokhin, A. & D.F. Ferro. 1999. Reproduction and dispersal of summer-generation 
Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 28(3): 
425-430. 

Anderson, R. M. 1981. Population ecology of infectious disease agents. In "Theoretical 
Ecology" (R.M. May, Ed.), pp. 318-355. Blackwell Scientific, Boston. 

Anderson, R.M. & R.M. May. 198 1. The population dynamics of microparasites and 
their invertebrate hosts: Mathematical models. Philos Trans R Soc Lond Ser B 
291(1054): 45 1-524. 

Anderson, T.E., D. W. Roberts, & R.S. Soper. 1988. Use of Beauveria bassiana for 
suppression of the Colorado potato beetle in New York state (Coleoptera : 
Chrysomelidae). Environ. Entomol. 17: 140- 145. 

Baines, D., T. DeSantis, & R.G.H. Downer. 1992. Octopamine and 5-hydroxytryptamine 
enhance the phagocytic and nodule formation activities of cockroach 
(Periplanteta mericana) haemocytes. J. Econ. Entomol. 82: 83-89. 

Bale, J.S. 1991. Implications of cold hardiness for pest management. In "Insects at Low 
Temperatures." (R.E. Lee Jr. and D.L. Delinger, Eds.), pp. 461 -498. Chapman 
and Hall, London. 

Bauer, E., T. Trenczek, & S. Dom. 1998. Instar-dependent hemocyte changes in Pieris 
brassicae after parasitization by Cotesia glomerata. Entomologia Experimentalis 
et Applicata. 88(1) : 49-58. 

Boiteau, G. & J.R. LeBlanc. 1992. Colorado potato beetle: Life stages. Agriculture 
Canada Publication 1 878lE. Communications Branch, Agriculture Canada. 

Boucias, D. G. & J. C. Pendland. 1991. Attachment of mycopathogens to cuticle : The 
initial event of mycoses in arthropod hosts. In "The Fungal Spore and Disease 
Initiation in Plants and Animals." (G.T. Cole and H.C. Hoch, Eds.), pp. 101-128. 
Plenum Press, New York. 

Boucias, D.G., I. Mazet, J. Pendland, & S.Y. Hung. 1995. Comparative analysis of the in 



vivo and in vitro metabolites produced by the entomopathogen Beauveria 
bassiana. Can. J. Bot. 73(suppl. 1): s1092-s1099. 

Boucias, D.G., J.C. Pendland, & J.P. Latge. 1988. Nonspecific factors involved in 
attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl. 
Environ. Microbiol. 54 (7): 1795-1 805. 

Bovin, G. & G. Belair. 1989. Infectivity of two strains of Steinernema feltiae 
(Rhabditida: Steinernematidae) in relation to temperature, age, and sex of carrot 
weevil (Coleoptera: Curculionidae) adults. J. Econ. Entomol. 82: 762-765. 

Brey, P.T. 1994. The impact of stress on insect immunity. Bull. Inst. Pasteur 92: 110- 
118. 

Broome, J. R., P.P. Sikorowski, & B.R. Nonnent. 1976. A mechanism of pathogenicity 
of Beauveria bassiana on larvae of the imported fire ant, Solenopsis richteri. J. 
Invertebr. Pathol. 28: 87-9 1. 

Brown, G.C. & G.L. Nordin. 1982. An epizootic model of an insect-fungal pathogen 
system. Bull. Math. Biol. 44: 731-739. 

Campbell, R.K., T.E Anderson, M. Semel, & D.W. Roberts. 1985. Management of the 
Colorado potato beetle using the entomogenous fungus Beauveria bassiana. 
Amer. Potato J. 62(1): 29-37. 

Cantwell, G.E., W.W. Cantelo, & R.F.W. Schroder. 1986. Effect of Beauveria bassiana 
on underground stages of the Colorado potato beetle, Leptinotarsa decemilineata 
(Coleoptera: Chrysomelidae). The Great Lakes Entomologist 19: 81-84. 

Caprio, M.A. & E.J. Grafius. 1990. Effects of light, temperature, and feeding status on 
flight initation in postdiapause Colorado potato beetles (Coleoptera: 
Chrysomelidae). Environ. Entomol. 19: 28 1-285. 

--- 1993. Movement of adult Colorado potato beetles, Leptinotarsa decemlineata 
(Coleoptera : Chrysomelidae), in response to isolated potato plots. The Great 
Lakes Entomologist: 26: 223-23 1. 

Casagrande, R.A. 1985. The "Iowa" potato beetle, Leptinotarsa decemlineata. Bull. 
Entomol. Soc. Am. 31: 27-29. 

--- 1987. The Colorado potato beetle: 125 years of mismanagement. Bull. Entomol. Soc. 
Am. 33: 142-150. 



Champlin, F.R. & E.A. Grula. 1979. Non-involvement of beauvericin in the 
entomopathogenicity of Beauveria bassiana. Appl. Environ. Microbiol. 37: 
1122-1 125. 

Chapman, R. F. 1971. "The insects: structure and function." American Elsevier, New 
York, pp. 441-447. 

Daoust, R.A. & R. M. Pereira. 1986. Stability of entomopathogenic fungi Beauveria 
bassiana and Metarhizium anisopliae on beetle-attracting tubers and cowpea 
foliage in Brazil. Environ. Entomol. 15: 1237- 1243. 

David, W.A.L. 1967. The physiology of the insect integument in relation to the invasion 
of pathogens. In "Insects and physiology." (J. W .L. Beament and J.E. Trehere, 
Eds.), pp. 17-35. Oliver and Boyd, London. 

deKort,C.A.D. 1990. Thirty-five years of diapause research with the Colorado potato 
beetle. Entomologia Experimentalis et Applicata. 56: 1-13. 

Drummond, F. A. & E. Groden. 1996. Insect pests and natural enemies. In "The 
ecology, economics, and management of potato cropping systems: a report of the 
first four years of the Maine Potato Ecosystem Project." (R.A. Alford, F.A. 
Drummond, E.R. Gallandt, E. Groden, D.A.Lambert, M. Liebman, M.C. Marra, 
J.C. McBurnie, G.A. Porter and B. Salas, Eds.), pp. 80-1 18. Maine Agricultural 
and Forest Experiment Station, Orono, ME. 

----- 2000. Evaluation of entomopathogens for biological control of insect pests of 
lowbush (wild) blueberry. Maine Agric. & Forest Exp. Stn. Tech. Bull. 172,40 
PP. 

Fargues, J. 1972. Etude des conditions d'infection des larves de Doryphore, 
Leptinotarsa decemlineata (Say), par Beauveria bassiana (Bals.) Vuill. (Fungi 
Imperfecti). Entomophaga 17, 3 19-337. 

------- 199 1. Fecundity and egg fertility in the adult Colorado beetle (Leptinotarsa 
decemlineata) surviving larval infection by the fungus Beauveria bassiana. 
Entomologia Experimentalis et Applicata. 61 : 45-5 1. 

Feng, M.G., T.J. Poprawski, & G.C. Khachatourians. 1994. Productions, formulation 
and application of the entomopathogenic fungus Beauveria bassiana for insect 
control: current status. Biocontrol Science and Technology 4(1): 3-34. 

Fernandez, S. 2001. Study of conidia production and transmission of Beauveria 
bassiana (Balsamo) Vuill. in Colorado potato beetle (Leptinotarsa decemlineata). 
Ph.D. Dissertation, University of Maine. 176 pp. 



Ferro, D.N. 1999. Reproductive status and flight activity of the overwintered Colorado 
potato beetle. Entomologia Experimentalis et Applicata. 91: 443-448. 

Ferro, D.N., A.F. Tuttle, & D.C. Weber. 1991. Ovipositional and flight behavior of 
overwintered Colorado Potato Beetle (Coleoptera: Chrysomelidae). Environ. 
Entomol. 20(5): 1309-1 3 14. 

Ferron, P. 1978. Biological control of insect pests by entomogenous fungi. Annu. Rev. 
Entomol. 23: 409-422. 

--- 1981. Pest control by the fungi Beauveria and Metarhizium. In "Microbial control of 
pests and plant diseases (1970-1980)." (H.D. Burges, Ed.) pp. 465-482 H.D. 
Burges Academic Press, New York. 

Follett, P.A. & A. Hilbeck. 1995. Effect of temperature and diet on hind wing 
colouration development and elytral hardness of adult Colorado potato beetle 
(Coleoptera: Chrysomelidae). Annals ofApplied Biology 126 (3): 429-435. 

Follett, P.A., W.W. Cantelo, & G.K. Roderick. 1996. Local dispersal of overwintered 
Colorado potato beetle (Coleoptera: Chrysomelidae) determined by mark and 
recapture. Environ. Entomol. 25: 1304- 13 1 1. 

Forgash, A.J. 1985. Insecticide resistance in the Colorado potato beetle. In 
"Proceedings of the Symposium on the Colorado potato beetle." 1 8th Int. Congr. 
Entomol. (D.N.Fen-o and R.H.Voss, Eds.), pp. 33-52. Res. Bull. 704. Amherst, 
Mass. Agric. Exp. Stn. 

Fraenkel, G.S. & D.L. Gum. 1940. "The Orientation of Animals. " Dover Publications, 
New York. 

French, N.M., P. Follett, B.A. Nault, & G.G. Kennedy 1993. Colonization of potato 
fields in eastern North Carolina by the Colorado potato beetle. Entomologia 
Experimentalis et Applicata. 68: 247-256. 

Furlong, M.J. & J.K. Pel1 2001. Horizontal transmission of entomopathogenic fungi by 
the diamondback moth. Biol. Contr. 22(3): 288-299. 

Furlong, M.J. & E. Groden. 2001. Evaluation of synergistic interactions between the 
Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana 
and the insecticides, imidacloprid and cyromazine. J. Econ. Entomol. 94(2): 344- 
356. 

Furlong, M.J. & E. Groden. 2003. Starved induced stress and the susceptibility of the 
Colorado potato beetle, Leptinotarsa decemlineata, to infection by Beauveria 
bassiana. J. Invertebr. Pathol. (In Press). 



Gaugler, R., S.D. Costa, & J. Lashomb. 1989. Stability and efficacy of Beauveria 
bassiana soil inoculations. Environ. Entomol. l8(3): 41 2-41 7. 

Gauthier, N.L., R.N. Hofmaster, & M. Semel. 1981. History of Colorado potato beetle 
control. In "Advances in potato pest management." (J.H. Lashomb and R.A. 
Casagrande, Eds.), pp. 13-33. Hutchinson Ross, Stroudsburg, PA. 

Gillespie, A.T. 1988. Use of fungi to control pests of agricultural importance. In "Fungi 
in biological control systems," ( M.N. Burge, Ed.), pp. 37-60. Manchester 
University Press, London. 

Grafius, E. 1997. Economic impact of insecticide resistance in the Colorado potato 
beetle (Coleoptera: Chrysomelidae) on the Michigan potato industry. J. Econ. 
Entomol. 90: 1144-1 151. 

Hajek, A.E., R.S. Soper, D.W. Roberts, T.E. Anderson, K.D. Biever, D.N. Ferro, R.A. 
Lebrun, & R.H. Storch. 1987. Foliar applications of Beauveria bassiana 
(Balsamo) Vuillemin for control of the Colorado potato beetle, Leptinotarsa 
decemlineata (Say) (Coleoptera: Chrysomelidae): and overview of pilot test 
results from the northern United States. Can. Entomol. 119(11): 959-974. 

Hoy, C.W., J.A. Wyman, T.T. Vaughn, D.A. East, & P. Kaufman. 1996. Food, ground 
cover, and Colorado potato beetle (Coleoptera: Chrysomelidae) dispersal in late 
summer. J. Econ. Entomol. 89: 963-969. 

Huang, H., Z. Smilowitz, M.C. Saunders, & R. Weisz. 1995. Field selection for 
esfenvalerate resistance by the Colorado potato beetle. Amer. Potato J. 72(1): 1- 
12. 

Humber, R.A. 1997. Fungi: Identification. In "Manual of Techniques in Insect 
Pathology" (L. Lacey, Ed.), pp. 153-187. Academic Press, Boston. 

Hung, S.-Y., D.G. Boucias, & A.J. Vey. 1993. Effect of Beauveria bassiana and 
Candida albicans on the cellular defense response of Spodoptera exigua. J. 
Invertebr. Pathol. 61: 179-1 87. 

Ignoffo, C.M., C. Garcia, M. Kroha, A. Samisinakova, & S. Kalalova. 1983. A leaf 
surface treatment bioassay for determining the activity of conidia of Beauveria 
bassiana against Leptinotarsa decemlineata. J. Invertebr. Pathol. 41:  385-386. 

Inglis, G.D., T.J. Ivie, G.M. Duke, & M.S. Goettel. 2000. Influence of rain and conidial 
formulation on persistence of Beauveria bassiana on potato leaves and Colorado 
potato beetle. Biol. Contr. 18: 55-64. 



Joergensen, H. 2000. A model to simulate primary infection of the Colorado potato 
beetle (Leptinotarsa decemlineata) with the fungus Beauveria bassiana. Master's 
thesis, University of Maine. 94pp. 

JMP. 2001. "Statistics and Graphics Guide, Version 4." SAS Insitute, Cary, NC. 

Kelly-Tunis, K.K., B.L. Reid, & M. Andis. 1995. Activity of entomopathogenic fungi 
in free-foraging workers of Camponotus pennsylvanicus (Hymenoptera: 
Formicidae). J. Econ. Entomol. 88(4): 937-943. 

Kendrick, B. 2000. "The Fifth Kingdom." Focus Publishing, Newburyport, MA. 

Krarnm, K.R., D.F. West, & P.G. Rockenback. 1982. Termite pathogens: transfer of the 
entomopathogen Metarhizium anisopliae between Reticulitermes sp. termites. J. 
Invertebr. Pathol. 40: 1-6. 

Lashomb, J.H., Y.S. Ng, G. Ghidiu, & E. Green. 1984. Description of spring emergence 
by the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: 
Chrysomelidae) in New Jersey. Environ. Entomol. 13: 907-910. 

Leather, S.R., K.F.A. Walters, & J.S. Bale. 1993. "The Ecology of Insect 
Overwintering." Cambridge University Press, New York. 

Lee, R.E. Jr. 1991. Principles of insect low temperature tolerance. In "Insects at Low 
Temperatures" (R.E. Lee and D.L. Denlinger, Eds.), pp. 17-47. Chapman and 
Hall, New York. 

Logan, P.A., R.A. Casagrande, H.H. Faubert, & F.A. Drummond. 1985. Temperature- 
dependent development and feeding of immature Colorado potato beetles, 
Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environ. Entomol. 
14: 275-283. 

Long, D.W., F.A. Drummond, & E. Groden. 1998. Susceptibility of Colorado potato 
beetle (Leptinotarsa decemlineata) eggs to Beauveria bassiana. J. Invertebr. 
Pathol. 71: 182-1 83. 

------ 2000b. Modelling Beauveria bassiana horizontal transmission. Agricultural and 
Forest Entomology 2: 19-32. 

Long, D.W., E. Groden, & F.A. Drummond. 2000a. Horizontal transmission of 
Beauveria bassiana (Bals.)Vuill Agricultural and Forest Entomology 2: 1 1 - 17 

Lord, J.C. 2001. Response of the wasp Cephalonomia tarsalis (Hymenoptera: 
Bethylidae) to Beauveria bassiana (Hyphomycetes: Moniliales) as free conidia or 



infection in its host,the sawtoothed grain beetle, Oryzaephilus surinamensis 
(Coleoptera: Silvanidae). Biol. Contr. 21(3): 300-304. 

Ng, Y.S. & J.H. Lashomb. 1983. Orientation by the Colorado Potato Beetle 
(Leptinotarsa decemlineata Say). Animal Behaviour 31 : 61 7-61 8. 

Noronha, C. 1998. Effect of soil size on digging by prediapause Colorado potato 
beetles (Coleoptera: Chrysomelidae). Can. J. Entomol.. 76(9): 1705-1 7 13. 

Noronha, C. & C. Cloutier. 1999. Ground and aerial movement of adult Colorado 
potato beetle (Coleoptera: Chrysomelidae) in a univoltine population. Can. 
Entomol. 131: 521-538. 

Noronha, C., G.M. Duke, & M.S. Goettel. 2002. Damage potential and phenology of 
the Colorado potato beetle (Coleoptera: Chrysomelidae) on potato in southern 
Alberta. Phytoprotection 83: 89-98. 

Olson, E.R., G.P. Dively, & J.O. Nelson. 2000. Baseline susceptibility to imidacloprid 
and cross resistance patterns in Colorado potato beetle (Coleoptera: 
Chrysomelidae) populations. J. Econ. Entomol. 93(2): 447-458. 

Pekrul, S. & E.A. Grula. 1979. Mode of infection of the corn eanvorm (Heliothis zea) 
by Beauveria bassiana as revealed by scanning electron microscopy. J. Invertebr. 
Pathol. 34: 238-247. 

Pendland, J.C., S.-Y. Hung, & D.G. Boucias. 1993. Evasion of host defense by in vivo- 
produced protoplast-like calls of the insect mycopathogen Beauveria bassiana. J. 
of Bacteriology 175(18): 5962-5969. 

Quintela, E.D. & C.W. McCoy. 1998. Synergestic effect of imidacloprid and two 
entomopathogenic fungi on the behavior and survival of larvae of Diaprepes 
abbreviatus (Coleoptera: Curculionidae) in soil. J. Econ. Entomol. 91: 110-122. 

Ramoska, W.A. & T. Todd. 1985. Variation in the efficacy and viability of Beauveria 
bassiana in the chinch bug (Hemiptera:Lygaeidae) as a result of feeding activity 
on selected host plants. Environ. Entomol. 14: 146-148. 

Salt, G. 1970. The Cellular Defence Reactions of Insects. Cambridge University Press, 
New York. 

Seryczynska, H. & C. Bajan. 1974. Defensive reaction of L3, LA larvae of the Colorado 
potato beetle to the insecticidal fungi Paecilomyces farinosus (Dicks) Brown et 
Smith, Paecilomyses fumoso-roseus (Wize), Beauveria bassiana (BolsNuill.) 
(Fungi 1mperfect:Moniliales). Bull. Acad. Polom. Sci. Ser. Sci. Biol. 23: 267-271. 



Stewart, J.G., G.C. Kennedy, & A.V. Sturz. 1997. Incidence of insecticide resistance in 
populations of Colorado potato beetle, Leptinotarsa decemlineata (Say) 
(Coleoptera:Chrysomelidae), on Prince Edward Island. Can. Entomol. 129(1): 
2 1-26. 

St. Leger, R. 1993. Biology and mechanisms of insect-cuticle invasion by 
Deuteromycete fungal pathogens. In "Parasites and Pathogens of Insects, Vol2: 
Pathogens," (N.E. Beckage, S.N. Thompson and B.A. Federici, Eds.), pp. 21 1- 
229. Academic Press, Boston. 

Tanada, Y. & H.K. Kaya. 1993. "Insect Pathology." Academic Press, New York. 

Tauber, M.J., C.A. Tauber, & J.P. Nyrop. 1994. Soil moisture and postdormancy 
emergence of Colorado potato beetles (Coleoptera: Chrysomelidae): descriptive 
model and field emergence patterns. Environ. Entomol. 23: 1485- 1496. 

Thomas, M.B., S.N.Wood, & C.J. Lomer. 1995. Biological control of locusts and 
grasshoppers using a fungal pathogen: the importance of secondary cycling. Proc. 
R. Soc. Lond. B. 259: 265-270. 

Todorova, S.I. 2000. Pathogenicity of Beauveria bassiana isolates toward Leptinotarsa 
decemlineata (Coleoptera: Chrysomelidae), Myzuspersicae (Homoptera: 
Aphididae) and their predator Coleomegilla maculata lengi (Coleoptera: 
Coccinellidae). Phytoprotection. 81(1): 15-22. 

Vey, A. & J. Fargues. 1977. Histological and ultrastuctural studies of Beauveria 
bassiana infection in Leptinotarsa decemlineata larvae during ecdysis. J. 
Invertebr. Pathol. 30: 207-21 5. 

Vey, A. & P. Gotz. 1986. Antifungal cellular defense mechanisms in insects. In 
"Hemocytic and Humoral Immunity in Arthropods." (A.P. Gupta, Ed.), pp. 89- 
116. John Wiley and Sons, New York. 

Vilcinskas, A. & P. Gotz. 1999. Parasitic fungi and their interactions with the insect 
immune system. Advances in Parasitology 43: 267-3 13. 

Villani, M.G., S.R. Krueger, P.C. Schroeder, F. Consolie, N.H. Consolie, L.M. Preston- 
Wiley, & D.W. Roberts. 1994. Soil application effects of Metarhizium 
anisopliae on Japanese Beetle (Coleoptera: Scarabaeidae) behavior and survival 
in turfgrass microcosms. Biol. Contr. 23(2): 502-5 13. 

Voss, R.H. & D. N. Ferro. 1990a. Phenology of flight and walking by the Colorado 
potato beetle (Coleoptera: Chrysomelidae) adults in western Massachusetts. 
Environ. Entomol. 19: 1 17-122. 



--- 1990b. Ecology of migrating Colorado potato beetles (Coleoptera: Chrysomelidae) in 
western Massachusetts. Environ. Entomol. 19: 123-1 29. 

--- 1992. Population dynamics of the Colorado potato beetle (Coleoptera: 
Chrysomelidae) in western Massachusetts. Amer. Potato J. 69: 473-482. 

Voss, R.H., D.N. Ferro, & J.A. Logan. 1988. Role of reproductive diapause in the 
population dynamics of the Colorado potato beetle. Environ. Entomol. 17: 863- 
871. 

Walstead, J.D., R.F. Anderson, & W.J. Stambaugh. 1970. The effects of environmental 
conditions on two species of muscardine fungi (Beauveria bassiana and 
Metarhizium anisopliae). J. Invertebr. Pathol. 16: 22 1-226. 

Watanabe, H. 1987. The host population. In "Epizootiology of Insect Diseases" (J.R. 
Fuxa and Y. Tanada, Eds.) pp. 7 1-1 12. Academic Press, New York. 

Watt, B.A. & R.A. LeBrun. 1984. Soil effects of Beauveria bassiana on pupal 
populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. 
Entomol. 13: 15-18. 

Weber, D.C. & D.N. Ferro. 1994. Movement of overwintered Colorado Potato Beetles 
in the field. J. Agric. Entomol. 1 l(1): 17-27. 

--- 1993. Distribution of overwintering Colorado potato beetle in and near Massachusetts 
potato fields. Entomologia Experimentalis et Applicata. 66: 191 - 196. 

Williams, C.E. 1988. Movement, dispersion and orientation of a population of the 
Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), 
in eggplant. The Great Lakes Entomologist. 21(1): 3 1-38. 

Zhao, J.Z., B. A. Bishop, & E.J. Grafius. 2000. Inheritance and synergism of resistance 
to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J. 
Econ. Entomol. 93(5): 1508-1 5 14. 



APPENDIX: LCS0 FOR ADULT LABORATORY REARED 

COLORADO POTATO BEETLES 

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is one of the most 

serious insect pests of potatoes in the northeastern United States. The entomopathogenic 

fungus Beauveria bassiana (Bals.) has been utilized as a commercial control agent 

against CPB in some parts of the world for the past 20 years (Ferron 1981, Tanada and 

Kaya 1993, Feng et al. 1994). Several studies have been published illustrating LCso 

dosages for most of the stages of the beetle, including eggs (Long et al. 1998), larvae 

(Fargues 1991), and pupae (Watt and Lebrun 1984). However, since the adult stage of 

the beetle is generally thought to be less susceptible to B. bassiana treatments, LCso 

values have not been published for the adult beetle. 

In this study, our objective was to determine LCso levels of B. bassiana for 

laboratory-reared adult Colorado potato beetles, as well as to determine the most 

appropriate method of treatment. This information was to be used in subsequent 

laboratory assays. 

The experiment was initiated on January 16'~, 2001. One hundred and sixty adult 

beetles (approximately 195 degree days old, base 1 O* 1°C) were used for this study. 

These adults were reared from a laboratory colony which was supplemented annually by 

field collections from the University of Maine's Rogers Farm in Stillwater, ME. Potato 

fields used for beetle collections received seven weekly sprays of the copper hydroxide 



fungicide Champ Formula 2 @ (Agtrol Chemical Products, Houston, TX) for Phytophtora 

infestans control and no other pesticides. All adult beetles were maintained in paper cups 

(300 ml) at 25f1 OC and a 16:8 light-dark cycle and fed fresh greenhouse grown potato 

foliage (Solanum tuberosum L.) daily. 

Beauveria bassiana strain GHA was obtained as dried conidia from Mycotech, 

now Emerald BioAgriculture (Butte, MT), and plated on Sabouraud dextrose agar (SDA) 

(Difco Laboratories, Detroit, MI). Colonies were sub-cultured once on SDA, and for each 

experiment one of these single, axenic subcultures (grown for 10 days at 25f 1 OC, stored 

at 4 f  1 OC for not more than 60 days) were utilized. Conidia were harvested from these 

plates with a sterile loop and suspended in an aqueous solution of 0.1% Tween 20 (JT 

Baker, Phillipsburg, New Jersey). Concentrations of conidia were determined using a 

hemocytometer, and solutions were diluted as necessary with 0.1% Tween 20. 

To determine the best method of B. bassiana treatment, beetles were either 

sprayed directly (topical application) or exposed to treated potato leaf disks. For topical 

applications, B. bassiana or control (0.1% Tween 20 alone) solutions were sprayed using 

a Burkhard Computerized Spray Apparatus@ (Hertfordshire, England) at 55.2 kPa with a 

diaphragm setting of 6. Two plates of SDA were sprayed at the same time as B. bassiana 

treatments to obtain accurate rates of conidial density and viability at the time of the 

spray. For leaf disk exposure, 20 mm diameter leaf disks, cut from greenhouse grown 

potato plants were placed on the surface of 1% water agar and sprayed with appropriate 

solutions. Leaf disks were fed to beetles immediately following treatment. For each type 

of treatment (topical or leaf disk), 6 concentrations of B. bassiana were tested; 0 conidid 

ml, 2 x lo5, 6.32x105, 2x106, 6 . 3 2 ~ 1  06, and 2x10' conididml. In all experiments, 298% 



of the conidia had formed germ tubes after 18h at 25+1°C, indicating viability. Post 

treatment beetles were held in individual 60 x 15 mm petri dishes at 25*1° C for 14 days. 

Proportion mortalities were determined from this data. 

Figure A. 1 shows the dose response curve for topical applications. However, as 

the three lowest concentrations did not vary from each other, two of these doses were 

eliminated, and another curve was refit to the remaining data (Fig. A.2). This curve 

shows the LCs0 for topical applications to adult beetles was ca. 2 x lo7 conidid ml. For 

leaf disk exposures, mortality did not exceed 25% at any concentration, suggesting that 

this method for treating adult beetles is less efficient than topical applications. 



0 2x105 6 . 3 2 ~ 1 0 5  2 x 1 0 6  6.32106 2x1077 

Log-transformed B. bassiana concentration 

Figure A.l  Dose response of topical applications of Bbassiana 
to adult Colorado potato beetles 



6.32 x 105 2 x 1 0 6  6.32 106 2 x 1077 

Log-transformed B. bassiana concentration 

Figure A.2 Dose response of higher concentration 
topical applications of B. bassiana to adult Colorado 
potato beetles. 



Log-transformed B. bassiana concentration 

Figure A.3 Dose response of leaf disk B. bassiana applications 
to adult Colorado potato beetles 
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