
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

5-2005

Hierarchies for Event-Based Modeling of
Geographic Phenomena
Rui Zhang

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Geographic Information Sciences Commons, and the Graphics and Human
Computer Interfaces Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Zhang, Rui, "Hierarchies for Event-Based Modeling of Geographic Phenomena" (2005). Electronic Theses and Dissertations. 568.
http://digitalcommons.library.umaine.edu/etd/568

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/568?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages

N HIERARCHIES FOR EVENT-BASED MODELING OF

GEOGRAPHIC PHENOMENA

BY

Rui Zhang

Master of Engineering, Nanjing University, Nanjing, 2002

Bachelor of Science, Nanjing University, Nan,jing, 1999

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Spatial Information Science and Engineering)

The Graduate School

The University of Ma,ine

May, 2005

Advisory Committee:

Michael F. \Vorboys, Professor of Spatial Information Science and Engineer-
ing, Advisor

Max J. Egenhofer, Professor of Spatial Information Science and Engineering

Kathleen E. Hornsby, Assistant Research Professor, National Center for Geo-
graphic Information and Analysis

@ 2005 Rui Zhang

All Rights Reserved

HIERARCHIES FOR EVENT-BASED MODELING O F

GEOGRAPHIC PHENOMENA

By Rui Zhang

Thesis Advisor: Dr. Michael I?. Worboys

An Abstra,ct of the Thesis Presented

in Partial FL~lfillment of the Requirements for the

Degree of Master of Science

(in Spatial Information Science and Engineering)

May, 2005

Modeling the dynamic aspect, or change, of geographic phenomena is essential to

explain the evolution of geographic entities and predict their future. Event-based

modelling, describing the occurrences ra.ther than states of geographic phenomena,

gives an explicit treatment of such change, but currently does not have the support

of the mechanisms to enable the shifts among different granularities of events. To

account for different tasks, a hierarchical representation of the event space a t different

granularities is needed.

This thesis presents an event-based model; a general framework for representing

events based on precondition and postcond~:tion, using Allen's temporal interval logic.

It captures not only the changes to the objects, but also some contextual information

that is necessary for the occurrence of events. Analogous to objects, events have

types and instances, and two abstraction proccsscs in the object-oriented paradigm,

generalizi~tion and a.ggregation, a,re applied to events. Event-event relations a.re

investigated through thcir preconditions and post,conditions.

Our representation of relationships between events is based on two relations be-

tween events, f-sequences and f-transitions. These relationships play an important

role in describing the structure of a component event in the event partonomy, and

therefore provide a mechanism to construct the event partonomy automatically. This

research constructs an algorithm to generate the part-whole hierarchy for events,

which supports multiple representations of events and enables shifts among them.

To illustrate the process of constructing the event partonomy, we give a case study

of a car accident scenario.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Michael F. Worboys for his encouragement,

guidance, and support for my research at all times. I also wish to ackowledge the

support and advice from other members of my thesis advisory committee, Dr. Max

J. Egenhofer and Dr. Kathleen E. Hornsby.

I want to thank all my fellow graduate students in the Department of Spatial In-

formation Science and Engineering, especially to the members of the Computational

GIScience group who showed interests in my thesis and gave me critical feedback:

Adam Battson and Lisa Walton. A special thank you goes to Farhan Faisal, Dominik

Wilmsen, Caixia Wang for their valuable discussions on my research topic.

I would like to acknowledge Ms. Jane Morse and Dr. Edward Huff for the English

proof reading of this thesis. I also thank Ms. Ellen Huff for taking care of my life and

improving my English. Finally, this thesis could not have been undertaken without

the support and patience of my wife Ms. Han Li and other family members.

TABLE OF CONTENTS

...
ACKNOWLEDGEMENTS . 111

LIST O F FIGURES . vi

C h a p t e r

1.1 Background . 1
1.2 Research Motivation . 3
1.3 Goal . 6
1.4 Scope of Thesis . 7
1.5 Approach . 7
1.6 Major Results . 9
1.7 Organization of Remainder of Thesis 10

2.1 Ontologies for Spatio-Tempora. l Information 13
2.2 Formal Models . 15

2.2.1 Fluents . 15
2.2.2 SNAP-based Models . 17
2.2.3 SPAN-based Models . 18

2.2.3.1 Event Calculus . 19
2.2.3.2 Interval Logic . 19

2.3 The Event Hierarchies . 22
2.4 Event-Event Relations and the Event Partonomy 24
2.5 Summary . 25

3.1 Event vs . Object . 26
3.2 Event Structure . 28

3.2.1 Precondition and Postcolldition 28
3.2.2 Time . 35

3.3 Event Hierarchy . 37

. 3.3.1 Event Taxonomy 39
. 3.3.2 Event Partonomy 41

. 3.4 Summary 44

. 4.1 Event-Event Relations 46
. 4.1.1 Sequence 49

. 4.1.2 Transition 50
. 4.2 Constructing the Event Partonomy 51

. 4.2.1 Generating Sequences and Transitions 53
. 4.2.2 Aggregating Events 54

. 4.2.3 Removing Transitions 56
. 4.2.4 Demonstration 57

. 4.3 Representations for Composite Events 59
. 4.3.1 Algorithm 60

. 4.3.2 Examples 61
. 4.4 Summary 67

. 5.1 Prototype Design 68
. 5.2 User Interface 70

. 5.3 Implementation of Data Structure 71
. 5.3.1 Database Schema 72

. 5.3.2 Event Class 73
. 5.4 Case Study 76

. 5.5 Summary 82

. 6 . CONCLUSIONS AND FUTURE WORK 83

. 6.1 Summary of the Thesis 83
. 6.2 Results and Major Findings 84

. 6.3 Limitations of the Model and Future Work 85
. 6.4 Summary 88

. BIBLIOGRAPHY 89

BIOBRAPHYOFTHEAUTHOR . 93

LIST OF FIGURES

. Figure 1.1 A construction event example 2

. Figure 1.2 A concept hierarchy for location 4

. Figure 1.3 An event hierarchy 5

. Figure 2.1 Hierarchical structure for substantial entities 14

. Figure 2.2 Functional dependencies for Travel event 22

. Figure 3.1 Object-oriented view vs . event-oriented view 27

. Figure 3.2 Entity evolution 29

. Figure 3.3 Entity creation 30

. Figure 3.4 Entity destruction 30

. Figure 3.5 Representation of event in decoupled and coupled form 31

Figure 3.6 Context information associated with the construction event 34

. Figure 3.7 A rock erosion event 35

. Figure 3.8 Deriving the real situation for event occurrences 37

. Figure 3.9 An event taxonomy 38

. Figure 3.10An event partonomy 38

. Figure 3.11A refined representation of the event in Fig . 3.6 40

. Figure 3.12An object hierarchy 41

. Figure 3.13Generalization and specialk~ation 41

Figure 3.14The event partonomy structure 43

Figure 4.1 Ball scenarios . 47

Figure 4.2 Transitions between f-sequence and f'-sequence 50

Figure 4.3 Transitions in the ball scenario . 52

Figure 4.4 Process of constructing the partonomy 53

Figure 4.5 Different stages during constructing the partonomy 58

Figure 4.6 The event partonomy for the ball scenario 59

Figure 4.7 Process of getting the postcondition for a composite event 60

Figure 4.8 Event composition example: El and E2 64

Figure 4.9 Event composition example: El and E3 65

Figure 4.10Event composition example: El and Eq 66

Figure 5.1 System architecture . 69

Figure 5.2 Use case diagram for the system 70

Figure 5.3 Layout of the application window 71

Figure 5.4 Diagram for the Event entity . 72

Figure 5.5 Diagram for entities Event1 and Fluent; 73

Figure 5.6 Event structure . 74

Figure 5.7 Schematic representation of a car accident scenario 77

Figure 5.8 Atomic events in the car accident scenario and their representations 78

Figure 5.9 The user window for input of event occurrences 79

Figure 5.10The sequences and transitions for the car accident scenario 80

Figure 5.11The event pa,rtonomy for the car accident scenario 80

Figure 5.12Composite events in Fig 5.11 . 81

Chapter 1

INTRODUCTION

1.1 Background

Geographic Information Systems (GISs) capture, model, manipulate, analyze, and

present geographically-referenced data (Worboys 1995). In geographic pheno~nena

change is pervasive, and is often brought about by human activities (e.g., changes of

people's locations when traveling, and changes in regional cadastral information over

time). Applications dealing with changes in geographic phenomena are examples of

spatio-temporal applications. Relevant work (Al-Taha and Barrera 1990, Worboys

1994, Peuquet and Wentz 1994, Frank 1994, Egenhofer and Golledge 1994) has been

done to model dynamic geographic phenomena by incorporating time in the GISs.

An identity-based model of change (Hornsby 1999) gives a systematic treatment of

change with the goal of developing and formalizing a set of fundamental changes

with respect to the existence or non-existence of identifiable objects. In these efforts,

however, change is not captured explicitly, and changes must be deduced from the

differences in objects over time.

Another contribution to representing and reasoning about the dynamic world

comes from the disciplines of artificial intelligence and natural language computation.

This work models the reasoning of intelligent agents as they plan to act in the

world, and supports tasks like prediction, planning, and explanation (Shoham and

Figure 1.1 : A constructioll event example

Goyal 1988). Work on temporal interval logic (Allen 1984, Allen and Ferguson 1994)

provides a more extensive logical framework for representing and reasoning about

the dynamic world.

Change is captured by occurrents, things that happen (Grenon and Smith 2004).

Processes, events, and actions are all occurrents, but they are defined from different

perspectives (Worboys 2005). For simplicity, we take all occur rent,^ as events. In

this thesis, we are concerned with physical changes made as a result of dynamic geo-

graphic phenomena. An event is taken to be a single physical change or a composite

of physical changes during a time interval, and it is represented as a pair of situa-

tions, before and after the event takes place. For example, Fig. 1.1 schematically

shows the construction of housel on 1 ~ n . d ~ as an event occurrence during the time

interval [to, t l] , represented in a discrete manner by giving states of objects housel

and landl at time to and t l .

1.2 Research Motivation

Although the event-oriented model (Worboys 2005) gives us a treatment of events

when modeling dynamic geographic phenomena, representations of events often re-

quire changing from one level of detail to another, so tha.t users can carry out a

desired task (Buttenfield and Delotto 1989). The level of detail is referred to as

granularity (Hobbs 1990, Hornsby and Egenhofer 2002). To efficiently carry out

our tasks in dynamic geographic applications, that is, reasoning about our actions,

GISs must support representations of events at different granularities together with

capability to shift between levels of detail (Buttenfield and Delotto 1989, Hornsby

1999). In this way, each task will be associated with its representations of events

at an appropriate level of detail. Monitoring of people's travel, for example, may

need to be examined at different granularities. If users want to query an information

system for popular destinations, for example, they should not be asked to analyze

detailed information such as individual travel plans. Shifting representations from

a finer granularity to a coarser granularity can improve one's understanding of the

information space, while working a t a finer granularity may uncover something that

is not known (Hornsby 1999).

Our approach to providing multiple representations of events is to provide mcch-

anisms to derive representations at lower levels of detail. In a data.base system, this

may be done through a hierarchy, which expresses the granularities of objects from

certain concept. A concept hierarchy (Han and Kambr 2001) "defines a sequence of

mappings from a set of low-level concepts to higher-level, more general concepts."

This is indicated implicitly through a total or partial order among attributes. For

country

sta te

city

Figure 1.2: A concept hierarchy for location

example, the concept location is described by attributes city, state, and countmj. A

concept hierarchy for location is shown in Fig. 1.2, and it defines a sequence of

mapping from a set of cities (low-level concept) to states (higher-level concept), and

from a set of states to countries. Concept hierarchies convey how objects are related

from concepts (e.g., location) and, thereby, provide background knowledge helping

us to derive representations of detailed raw data at coarser levels of detail. A concept

hierarchy provides a stratcgy of data reduction, or an abstraction technique, which

is applied to obtain a representation of the data that is smaller in stored volume, yet

closely maintains the integrity of the original data. In general, a concept hierarchy

is represented as a tree, but it may a.lso be in the form of a part,ial order.

After events are introduced as primitives in the event-oriented model, we can

construct event hierarchies to hierarchically structure the event space.

Figure 1.3: An event hierarchy

Definition 1.1 (event hierarchy). Let & be the event space, which includes a set

of events we are concerned with according to some application domain. An event

hierarchy defines a sequence of mappings from low-level events to higher-level events

through a partial order relation.

An event hierarchy can be depicted by a Hasse diagram or a directed acyclic

graph (DAG) with nodes representing events in E and edges representing partial

order between events at different levels of detail. When shifting from a low-level

event to a higher-level event, we get a coarser representation of the event. Instead of

drawing an arrow from a low-level event to a higher-level event, we place the higher-

level event higher than the low-level event and draw a line between them. Each node

in the event hierarchy may have multiple parents. For example, Fig. 1.3 shows an

event hierarchy for the event spacc E = {El, E2, E3, E4, E5, E6, E7, ES, E9}, and the

partial order relation is

{(El,Es)r (F,E5) , (Es ,Es) , (E31E6), (Eq,E6)' (Es,E7)>

(E6, (E6, Es), (E71 (E8, E d

An event hierarchy enables shifting between levels of detail: a fundamental require-

ment for reasoning. This hierarchy may be provided by system users, domain ex-

perts, and/or knowledge engineers. Its manual production may be time-consuming

and tedious; automatic generation of the hierarchy dynamically according to users'

perspectives is highly preferred.

1.3 Goal

The goal of this thesis is to provide different representations of dynamic geographic

phenomena. This is achieved through automatic generation of an event hierarchy,

which enables shifting between different granularities. Specifically, we are investigat-

ing the following questions:

1 . What is the underlying structure for level of detail of dynamic geo-

graphic phenomena?

2. What is needed to construct this structure automatically?

The construction of the hierarchy clcpends on the model used for dynamic geographic

phenomena. Answers to the first question may be investigated by defining an event-

based model, in which events are introdi~ced as primitives. The basic task here is

to give a framework for the represcntalion of events and to provide event operations

for deriving the representation of e\lcnLs at lower levels of detail. The answer to

the second question may be found by invc.:stigat,ing various relations bet,~\:een events.

So, primary goals of this work are to: (1) define a model for representing cvenls:

(2) investigate relationships between events, (3) propose algorithms to construct tlic

hierarchy.

1.4 Scope of Thesis

From an ontological perspective, entitics in dynamic geographic phenomena are

divided into continuarlt,s and occurrcnts (Grenon and Smith 2004). In this thesis, we

may use the word "object" to refer to a continuant entity, and take all occur rent,^

as events. It is necessary to model both objccts and events for the dynamic world,

if static and dynamic aspects of tche world are both be reprcsented. These two

categories of entities are relevant to each other, since events cannot exist without

the participation of objects, and conversely. We do not cover the representations of

objects in this thesis, and the discussion of different relations between objects and

events (Grenon and Smith 2004, Worboys and Hornsby 2004) is also beyond the

focus of this thesis.

1.5 Approach

In this research, we use the everit-oriented model (Worboys 2005); applying concepts

from the object-orientcd model, but treating events as though structurally similar

to objects. An event type (event) characterizes common properties of a set of event

occurTences (occurrences). A fra,~nework for reprcsclitirlg events is proposed based

on the concepts of precondition and postcondition. These two concepts are borrowed

hom the field of software programming (Gries 1981), but they have different defini-

tions in this thesis. Preconditions and postconditions describe the states of objects

belore and after an event occurs. The postcondition records the states of the ob-

jects after they are changed, while the precondition records these objects' initial

states and also the states of relevant objects that do not appear in the postcondition

(Their formal definitions will be given in Chapter 3).

In the object-oriented approach, two methods, generalization and aggregation, are

used to abstract excessive information a t different granularities (Smith and Smith

1977). In the event-oriented approach, they can also be applied to events, producing

the event taxonomy and event partonomy.

Generalization involves the relating of a collection of abstractions taxonomically

based on similarities, and the event taxonomy enables us to switch to coarser rep-

resentations based on similarities within some collection of finer representations. In

the event taxonomy, "is-a" forms a special relationship between events.

In an event partonomy, events are aggregated into a composite event. A compos-

ite event provides a higher-level a.bstraction of what is happening by suppressing the

details of its component events. This is similar to amalgamation (Stell and Worboys

1999), a process of collapsing two or more objects into a single object a t some coarser

granularity. The construction of the event pnrtonomy could be achieved by aggre-

gation, combining several events into a higher-level event. This process is typically

required when two representations differ in levels of detail, since some events may be

viewed either as a single composite event, or as :I set of component events.

Aggregating events also involves other challenges, for example, discovering the

semantics associated with these events and their relationships. After events are

introduced into the system as primitives, event-event relations become important

(Worboys 2003). Michotte (1963) argues that causal relations between events are

important for people to perceive and understand events. Events possess a causal

perceptual structure as well as a partonomic perceptual structure, with which the

causal perceptual structure is highly correlated (Zaclts and Tversky 2001). So causal

relations provide important contextual information, allowing events to be aggregated,

and facilitating the automatic construction of a hierarchy.

1.6 Major Results

The major result of this thesis is a general framework for representing events based

on precondition and postcondition. Two types of event hierarchies are developed,

an event taxonomy and an event partonomy. These provide multiple representations

of events and enable shifting between different granularities. An event partonomy is

generated automatically, by aggrega,ting events based on two event relations, sequence

and transition. Taxonomies and partonomies are developed to capture the relations

we perceive between events. We also propose algorithms, both to construct t,he

event partonomy and to derive representations of composite events. To implement

the process of constructing event hierarchies, a prototype is designed, and applied to

an example in order to demonstrate our. model.

1.7 Organization of Remainder of Thesis

The remainder of this thesis is organized as follows: Chapter 2 tlescribcs work on

two different ontologies for spatio-temporal information systems, SPAN and SNAP.

SPAN is an ontology of explicit event entities. Different approaches to representing

events are reviewed, including the event calculus and temporal interval logic. The

chapter also briefly describes work on people's perceptual representations of event

hierarchies according to causal relations between events.

In Chapter 3, an event-oriented model is discussed, in which concepts from object-

oriented models are applied to events. The temporal interval logic studied in Chapter

2 is used to represent events. Two event hierarchies, the event taxonomy and the

event partonomy, are described. These are shown to support multiple representations

of events and enable shifts between them.

In Chapter 4, causal relations between events, used by people when aggregating

events, is investigated from a formal perspective. We develop two event relations

between events: sequence and trmnsition, which are used to approximate to causal

relation. In addition, an algorithm is given to automatically construct an event

partonomy.

Chapter 5 describes a prototype implementation using the Oracle platform. The

system generates the event partonomy according to a set of event occurrences as

defined by the user. To show how the system works, a case study is given that

demonstrates the process of constructing an event partonomy for an example appli-

cation.

In Chapter 6, we review and evaluate the objective, methodologies, and major

results of this thesis. In addition, we give some recommelldations for future work.

Chapter 2

Spatio-temporal databases and other spatio-temporal knowledge sysleins are repre-

sentations of a reality that is inherently dynamic and characterized by continuous

change (e.g., your journey, or the El Nino phenomenon). One aspect of change is

atemporal difference, such as differences in temperature in different parts of the hu-

man body. Another aspect of change is given by differences in objects' spatial or

tispatial properties over time (Mortensen 2002). This temporal change is the focus

of the remainder of this thesis.

Temporal changes are pervasive in dynamic geog~a~phic phenomena. They need

to be introduced as primitive elements. A change occurs if and only il there exists

a proposition p and distinct times t and t' such that p is true a t t , but false at t'

(Worboys 2001). Since objects preserve their identities through change, we can trace

change by comparing states of objects a t different; times (Hornsby 1999).

This chapter reviews previous work on two different aspects of an ontology for

dynamic geographic phenornena, in which different primitives are recognized as dis-

tinguishing between changes and objects. We also review previous work on for-

ma1 models of dynamic phenomena, including situation ca.lculus, event calculus, and

interval logic. Then we describe the work on perceptual representatiolis of event

hierarchies and causal relations between events.

2.1 Ontologies for Spatio-Temporal Information

To distinguish between changes and objects, entities in reality are divided into two

categories: continuants (e.g., a mountain), existing in full a t every instant during

their lifetime, and occurrents (e.g., a football match), which could never exist in full

at any single moment (Grenon and Smith 2004). Continuants do not have temporal

parts, though they may have spatial parts. They may change over time, but they

always preserve their identities.

Based on continuants and occurrents, two different perspectives of an ontology

for dynamic phenomena, SNAP and SPAN, have been developed (Grenon and Smith

2004). From the perspective of SNAP, only continuants (SNAP entities) can be

recognized, and reality is decomposed into 3-dimensional spatial slices. From the

perspective of SPAN, occurrencts (SPAN entities) are recognized and evolve or unfold

themselves during their lifetime.

Grenon and Smith (2004) categorize SNAP entities as substantial entities, SPQR

entities, and spatio-temporal regions. The substantial entities include substances

and their fiat parts, boundaries, aggregates, and sites (Fig. 2.1). SPQR entities are

dependent on substantial entities; that is, there is no color for the car unless the

car exists. However, they are not confined to attributes or properties; they also in-

clude relationships among substantial entities. Spatio-temporal regions can be either

Figure 2.1: Hierarchical structure for substantial entities
(Grenon and Stnith 2004)

Substantial Ent i ty

substantial entities or attributes of some substantial entity. SPAN entities are also

categorized as perduring processual entities, temporal regions, and spatio-temporal

regions. Processual entities include processes and their fiat parts, boundaries, aggre-

gates, and settings.

The terms "event," "process," and "action" are used to specify the SPAN entities,

and some difficulties arise concerning the meaning of these terms and the differences

between them (Worboys 2005). For simplicity, "event" is chosen as the term for

SPAN entities, and "object" is chosen for SNAP entities. From the view of SPAN,

Substance

the dynamics of spatio-temporal phenomenon are understood as events and relations

arranged among them. To model dynamic systems, an event is used to denote the

scenario of a single change or a composite of changes to objects (Worboys 2001).

Such a definition of "event" is different from that in the event-based spatio-temporal

data model (Peuquet and Duan 1995), in which an event only is used to denote

changes to cells on a single thematic domain (e.g., land use of the population).

In summary, the SPAN ontology makes the notion of change explicit, and it is

an important way in which we humans esperience reality in our lives (Bittner 2002).

Therefore, it is necessary to use a SPAN ontology when representing dynamic phe-

Boundary Aggregate Fiat Site

nomena. In general, most current systems are based on a SNAP approach. Grenon

and Smith (2004) argue that a good ontology should incorporate both continuants

and occurrents, so that both the static and dynamic aspects of the world can be

represented.

2.2 Formal Models

This section describes two kinds of formal models for representing the dynamic world,

SNAP-based and SPAN-based, as a result of two different views of the ontology for

dynamic phenomena. In the SNAP-based models, changes are derived from the

temporal sequence of objects, their attributes, and relations. SPAN-based models

explicitly describe changes as properties of events. To begin with the discussions on

these two types of models, we first introduce the notion of fluent.

2.2.1 Fluents

Fluents model time-varying SNAP entities, such as the existence and color of a car.

Such configurations constitute situations. A situat?:on is defined using a situation

function a, which specifies a state of the world (situation) for each inst-ant of time.

Formally we have

a : T + Sit

where T is the time domain and Si t is the set of situations. There is a one-to-one

mapping from T to Si t if a linear time model is considered.

A fluent f is a function from sit11;~tions to va<lues (McCsrthy a,nd Hayes 1969).

f : Sit + Range

Each fluent has a codomain Range, specifying a set of values that SNAP entities

can take in different situa,tions. Galton (2000) simplifies the definition of a fluent; by

omitting all explicit references to situations a.nd defines it to be a function from time

to values.

(2.1) f : T t Range

For example, color(car) is a fluent:

(2.2) color(car) : T 4 Color

in which the range is Color, a set of color values.

Fluents describe SNAP entities and are classified according to the types of their

ranges. For example, a particular world might be specified by, among other things,

whether or not a car is moving (a Boolean fluent), the position of the car (a spatially-

valued fluent), and the speed of the car (a float-valued fluent). A fluent is called a

Boolean fluent if its range is a set of truth values (i.e., true or false), denoted by B.

Any fluent gives rise to Boolean fluents. Given a fluent f (Eq. 2.1), its Boolean

fluents may be defined by

s --d.f (f = v), v E Range

For each value v in Range , the Boolean fluent s is assigned true if f takes v, and

false to the rest (Galton 2000).

s : T - + L ?

s(t) E d e ~ (f (t) = V)

For example, fluent color(car) enables us to get specific Boolean fluents, such as

color(car) = white.

color(car) = white : T -f B

So the Boolean fluent records certain states of thc the SNAP ent,ity (i.e., color(car))

when it is true. To access what SNAP entity has bccn recorded by s, we use the

predicate f luent(s), for example, f luent(color(car) = white) = color(car) . In general,

Boolean fluents are specified by lzolcls(s, L) , specifying whether a Boolean fluent s is

true a t a particular time t

holds: S x T + B

where S is the set of Boolean fluents.

A fluent is essentially a temporal field allowing us to create events in just the same

way we create objects from a spatial field (Galton 2003). In SNAP-based models,

Boolean fluents are used to give states of objects, while in the SPAN-based models

they are used to trace changes when representing events.

2.2.2 SNAP-based Models

In the situation calculus (i\lIcCarthy and Ha,yes 1969), the world is represented by a

sequence of situations, and actions are defined to be transitions between situations.

A situation can be tracked through an initial situation and definitions of actions.

Given an initial situation and a sequcnce of actJions, thc initial sit;uation will be

tra81isformed into the result situation through a composition of thc actions.

There is no explicit temporal model in the situation calculus and actions are

assumed to be point-based, occurring one after another. So it is difficult for the

situation calculus to deal with temporally complex actions (e.g., actions that over-

lap). The situation calculus can be considered as a point-bascd terriporal logic with

a branching time model. No assertion exists during any action, and there is no

mechanism to represent knowledge about how long an effect will hold.

The identity-based approach (Hornsby 1999) gives a set of primit,ives that define

a set of fundamental change operations, which are derived from the identity status

of an object and are based on the notion of existence. In this work an object's

status can be one of: object existence, object non-existence without history, and ob-

ject non-existence with history. Each object has a temporal sequence that describes

its states during its lifetime. Temporal change is captured by tra.nsitions between

adjacent object states within this sequence. Object states and changes during an

object's lifetime can be tracked by mea.ns of the object's identity. In this model,

change is based on the notion of existence and nonexistence of objects, so it may not

be appropriate for other types of change, e.g., changes of object color or shape. In

addition, change is recorded qualitatively, based on temporal order, and no quanti-

tative or metric measures are employed to represent the temporal interval in which

any change is taking place.

2.2.3 SPAN-based Models

In SNAP-based models, basic entities are continuants and their states, while in the

SPAN-based models basic entities characterize change.

2.2.3.1 Event Calculus

The event calculus (Kowa.lski and Sergot 1986) is a temporal formalism to model

scenarios in which basic units are events and each event is an instance of an event

type. The basic concepts are event and property. A Boolean fluent, p, describes

a time-varying property. Two predicates, Initiate(e, p) and Temina te (e , p), are

used to describe the relationships between events and properties; event occurrence

e initiates the property p, and event occurrence e terminates the property p. In the

event calculus, p holds over a time period, ranging from the time point when an

event e initiates p to the time point when another event e' terminates p. No event

occurring between the occurrence of e and e' affects p.

2.2.3.2 Interval Logic

In the event calculus, events are instantaneous. To extend the event calculus, Allen

(1984) proposed the temporal interval logic based on the calculus of temporal inter-

vals (Allen 1983).

In interval logic, the predicate holds(s, t) is used to indicate that the Boolean

fluent s is true during t. Time intervals rather than time points are used as primitive

elements in the interval logic (Allen 1984). This arises from the observation that

times of events or states may be decomposed into subtimes. For example, in the event

that Mary prepares dinner, it is possible to look more closely at its occurrence and

decompose the event into its component events, such as the event that Mary washes

vegetables and the event that Mary cooks vegetables. We cannot look more closely

a t an instantaneous event, because time instants cannot be furt,her decomposed.

It is not necessary to introduce both time points and time intervals as primitives

into the temporal logic, since this would force a decision as to whether the time

intervals are open or closed, leading to inconsistency and truth gap problems (Allen

1984, Galton 1995). McDermott (1982) takes time points as primitives and defines

intervals in terms of their endpoints. In the famous example of light-on and light-off,

the light is off in the interval tl = [a, b], and at the point b we push the switch, then

the light is on during the interval tz = [b, c]. If both time points and time intervals

are introduced as primitives, we need to Itnow the state of the light at time point b.

Considering the intervals to be open leads us to reason that the light is neither on

nor off at time point b; whereas considering the intervals to be closed leads to the

conclusion that the light is both on and off at time point b.

There are several ways to introduce time intervals into logical formalisms: first-

order logics with temporal arguments, and reified temporal logics (Allen and Fer-

guson 1994). The latter "reify" standard propositions of the classical first-order

language as objects denoting propositional terms.

In first-order logics, a time interval is associated with each predicate directly.

This is, however, insufficient to represent events, because they require potentially

unbounded qualifications (Davidson 1967). For example, the event of Tom travelling

from New York to Boston (ETravel) might be asserted to occur during t l , using the

predicate Travel(Tom, New York, Boston, t l) . The problem arises when representing

the event of "Tom travels from New York to Boston by taking the Greyhound"

(ETravell). We can either introduce another predicate to represent this ltind of event,

like Travell(Tom, New York, Boston, Greyhound, t l) , which has an additional argument

for the means of transportation, or we can extend the predicate Travel, and usc it to

represent both kinds of events. In the former case, we produce a lot of pretlica.t.es,

such as Travel and Travel1 describing essentially the same thing. In the latter case, we

have a lot of argument positions left unspecified in some particular event description.

Actually, we cannot give a limit to the number of argument positions needed. It may

appear that we always need another argument to a,dd more information that has not

yet been captured (Allen and Ferguson 1994).

In reified logics, propositions are related to times through a truth predicate such

as holds. For example, holds(shape(rockl) = sl , t l) means the shape of object rockl

during t l is sl, or the Boolean fluent shape(rockl) = sl is true during t l . Therefore,

returning to the above travel example, we can represent ETravel using Eq. 2.3, and

represent ETravell using Eq. 2.4. Two predicates begin(tl) and end(tl) are used to

retrieve zero-duration intervals a t the beginning and end of tl. location(Tom) specifies

the location of Tom and transportation(Tom) specifies the transportation that Tom

takes.

ETravel holds(location(Tom) = New York, begin(tl))

(2.3) A holds(location(Tom) = Boston, end(tl))

ETravell = holds(location(Tom) = New York, begin (tl))

A holds(location(Tom) = Boston, end(tl))

A holds(transportation(Tom) = Greyhound, t l)

Figure 2.2: F~inctional dependencies for Travel event
(Eclipses denote sets of attributes and arcs indica.te functional dependencies)

This approach is very similar to decomposing a relation schema into a collection of

Boyce-Codd Normal Form (BCNF) relation schemas, based on functional dependen-

cies (Ramakrishnan and Gehrke 2000) (Fig. 2.2).

2.3 The Event Hierarchies

A hierarchy is one of the most common techniques for organizing and structuring

complex systems (Hirtle and Jonides 1985, Hirtle 1995, Timpf 1999). In a hierarchy,

a system is subdivided into smaller subsystems, and further subdivision may be re-

cursively repeated as long as each subdivision makes sense (Koestler 1967). Physical

reality can be organized through hierarchies, providing representations a t levels of

detail, from subatomic reality to galaxies. Levels of detail that humans can com-

prehend directly are in the middle of that range (Gibson 1986). Events also have

hierarchies, which provide multiple representations a t different levels of detail from

simple physical changes to large-scale events (Za.cks and Tversky 2001).

In perceptual psychology, an analogy exisls between objects and events and events

belong to categories and have parts (Zaclts and Tversky 2001). Events can be orga-

nized into event taxonomies. There exists a special relation, is-a, between events at

different taxonomic levels. For example, if El is the event of Tom going to school

by bus and Ez is the event of Tom going to school, we may write is-a(E1, Ez). The

number of features for events increases from superordinate to subordinate levels in

the event taxonomy. An event partonomy is developed through the part-of relation

between events. For example, if E3 is the event of Tom getting to the bus station, we

may write part-of (E3, El). Barker and Wright (1954) suggest that events are in fact

perceived by people as partonomically organized. During their experiments, small

units with fine detail in the event partonomy tended to be related to minor subgoals

and thus went unnoticed by the participants. Large units with coarse detail, which

may be related to large ongoing goals, also often went unnoticed. Between these two

extremes were units that Baker and Wright described as behavior episodes. Behavior

episodes are analogous to physical objects like tables, which can be seen with the

"naked eye." People develop the event partonomy of an ongoing activity as it hap-

pens, by aggregating behavior episodes into higher-level events, some of which may

later be further aggregated (Zacks and Tversky 2001). When considering higher-

level events, details of their component events are suppressed. Relations between

component events play a role in describing higher-level events of which they may be

part.

2.4 Event-Event Relations and the Event Partonomy

In the event partonomy, higher-level events are characterized by their component

events and by relations between component events. These relations might help us

construct event partonomies automatically.

Spatial and temporal relations between events provide clues to appropriate types

of event aggregation, but are not the main factors for us to aggregate component

events. For instance, the events of a traffic light turning red (E l) and the stopping

of the traffic at the intersection (E2) can be aggregated into a higher-level event (i.e.,

traffic stop in front of the traffic light). In this scenario people tend to believe that

the temporal relation, El occurs before E2, determines the aggregation of events.

However, the temporal relation between the occurrences of El and E2 is just a result

of another type of event relation. If the event of Tom waking up (E3) occurs sight

after El, aggregating El and E3 together does not help us to understand the scenario.

Similarly, the same problem arises when we try to aggregate events through their

spatial relations. For example, it is not necessary to aggregate the events of Tom

going from A to B (E d) and Mary going from A to B (E5) , even though both

Eq and E5 occur in the same spatial location (i.e., the route from A to B). But if

there is another event of a meeting between Tom and Mary at B, the possibility of

aggregating E4 and E5 increases.

Pearl (2000) notes that causa.1 relation is the stable mechanism that organizes

the world, and is the key relation for aggregating events. The common sense view of

causal relations is that one event (the cause) is supposed to bring about or produce

an occurrence of a second event (the effcct). There are two views on causa.lity:

whether a single process of perceiving causality is innate, or whether it is learned.

The philosopher Hume (1739) argues that perceiving causality is a learned process,

from repeated observations of the conjunction of two events, their spatio-temporal

contiguity, and the temporal priority of one event relative to the other. It is not

possible to "prove" the existence of causality. Kant (see Kant 1781) argues that

causality is an innate and core part of cognition. The essence of causality is an

"ampliation" of movement, in which the motion of the first object is transferred to

the second object. Causality is characterized by a tension between the individuality

of the objects and the perceptual integrity of motion that transfers from one object to

the other, which corresponds to "contour discontinuities" in the temporally extended

events (Zacks and Tversky 2001).

2.5 Summary

Previous work on the two ontological perspectives, SNAP and SPAN, of dynamic

geographic phenomena is described in this chapter. These two ontologies relate to

different formal models. Although SNAP-based and SPAN-based models can be used

to describe the same geographic world, they differ in that only SPAN-based models

represent changes explicitly, through events and their attributes.

Analogous to continuant object,^, events also have hierarchies, providing multiple

representations of events and enabling shifts between them. Finally, relations among

events are discussed, which provide the key to the process of constructing event

partonomies.

Chapter 3

AN EVENT-ORIENTED MODEL

The storage and representation of dynamic geographic phenomena depends on the

data model used. In an event-oriented model, events that capture changes are intro-

duced as primitives, and they are treated in the same way as objects are treated in

the object-oriented model. Concepts from the object-oriented model such as classes

and instances are applied to events. In this chapter, we develop a framework to

represent events based on the concepts of precondition and postcondition. An event

occurrence is instantiated by assigning the event a time value. We also discuss two

event hierarchies, event taxonomy and e,ucnt partonomy, which enable us to organize

the information of the event space at different levels of detail. Properties of these

hierarchies are also investigated.

3.1 Event vs. Object

From an object-oriented view, the world is viewed as a collection of objects, with

properties, behaviors, and relationships between each other. However, the object-

oriented approach is not capable of capturing the dynamic aspects of geographic phe-

nomena. F'rom an event-oriented view, dynamic geographic phenomena are viewed

as colIections of events, with proper tic:^ and relationships between each other.

Objec t-oriented Event-oriented

Instance El
Event Type

Event Occurrence I;
Figure 3.1: Object-oriented view vs. event-oriented view

There is a difference betwccn the events used in this thesis and those defined

in programming languages (e.g., a mouse click event). In programming languages,

events are considered as special objects with attributes such as sender, receiver, and

type. However, such attributes only tell static information about events without

giving us any idea on how these events occur. In this thesis, events are considered as

composites of physical changes. These cha,nges constitute patterns that may occur

repeatedly. A group of occurrences of the same event type share the same pattern of

changes, just like objects (or events defined in programming langua,ges) of the same

class have the same attributes. Similar to the concept of object type, event type (or

event) is used to specify the pattern, while event occurrence (or occurrence) is used to

denote the instance of the relevant event. Fig. 3.1 shows the corresponding concepts

at the same level in the object-oriented a,nd event-oriented world. We use notation

El, E2: . . . to denote events. Occurrences of event Ei are denoted by eil, ei2,. . ..

In the following section, we will discl~ss the fra.mework for representing events and

occurrences.

3.2 Event Structure

In the object-oriented model, objects are recognized through their clistilictive charac-

teristics, such as shapes, colors, textures, and tactile properties. By defining classcs

using attributes and methods, we represent common characteristics of the objects

belonging to the same class. Some of the examples of attributes or instance variables

are name, shape, and position. In our event-oriented model, an event is de-

fined by its precondition and postcondition, a component events list, and

a time attribute.

An event denotes a composite of physical changes. Occurrences of the same

event have the same pattern of changes, but they are independent, different from

each other, and have distinct occurrence times. Event occurrences have temporal

boundaries, and are modeled using two sorts of time. We use local time to specify

the time interval that is relative to the starting point of the event, and global time

to specify the time interval of the event occurrence. For example, the local time of

an event may be the time slot [8,9]. The global time of a specific occurrence may

be specified as a time interval [t + 8, t + 91 where t is the time point when the event

starts to occur.

3.2.1 Precondition and Postcondition

An event is characterized by changes. \;\% can trace these tempora.1 changes by

comparing properties of objects at different times. Changes in an event are vie~ved

in a discrete manner through sampling the dynamic world, and are characterized by

different states of objects at the beginning and end of the event occurrence. Based on

Figure 3.2: Entity evolution

the notion of existence and non-existence, changes in an event could be the creation

or destruction of the object (Hornsby 1999). However, changes may include the

alteration of attributes of an object or the alteration of relations between objects.

In order to model changes, we use fluents, which describe SNAP entities. Each

fluent gives rise to Boolean fluents, which record SNAP entities during the time when

the Boolean fluents are true (Sec. 2.2.1). Based on Boolean fluents, we can represent

changes by giving different values of a SNAP entity a t the beginning and end of the

event occurrence. For another example, fluent mass(rockl) describes the volume of

rockl at different times.

mass(rockl) : T 4 8

This fluent gives rise to such Boolean flucnts as mass(rockl) = ml and mass(rockl) = m2.

As Fig. 3.2 shows, the erosion of rockl is represented by t8he evolution of the vol-

ume of rockl, captured by comparing the state of mass(rockl) = ml during tl with

mass(rock,) = m2 during t2. Both time inlerva,ls tl and t2 belong to local time. Fig.

3.3 shows the creation of rockl, and Fig. 3.4 shows the destruction of rockl. How-

ever, the description of changes itself is not enough to characterize an event, since

the event is associated with contextual information, which distinguishes itself from

other events involving the same kind of changes.

Figure 3.3: Entity creation

Figure 3.4: Entity destruction

According to Davidson (1969), events are identified through their causes and

effects. However, it is difficult to capture the causes of events, that is, a set of states

that definitely lead to occurrences of the events. For example, a lit cigarette left

unattended in the forest may cause a big forest fire. But the lit cigarette itself is

not the whole cause of the forest fire; other environmental issues (e.g., humidity and

wind) are also involved. The effects of the event, that is, a complete set of states

describing the change, can only be partially known.

Instead of formalizing the cause and cffect of an event, we use two 'weaker'

concepts, precondition and po~tcondit~ion, shifting from the necessary and sufficient

condition of the occurrence of an event to the necessary condition. In order to get

the precondition and postcondition, we first obtain the necessary condition for the

event to take place. This condition characterizes changes and some initial states of

objects, and it is a conjunction of Boolean fluents in which recordings of the same

SNAP entity are coupled together (We call this the coupled fonn). The next step is

decoupled form coupled form

Precondi t ion : fluen t l :
value o f f luen t1 a t t l value a t t,
value o f f l u e n t 2 at t3 value at t2

Pos t cond i t i on : flu en t2 :
value of f luent1 at t2 value at t3

Figure 3.5: Representation of event in decoupled and coupled form

to decompose the coupled form into the precondition and postcondition of the event

(Fig. 3.5). To describe the process, we begin with definitions of precondition and

postcondition.

Definition 3.1 (precondition). The precondition of an event is a proposition that

must be true for the event to occur, and it satisfies:

(i) the precondition is in the form of holds(sl, t l) A . . . A holds(s,, t,) where

holds(si, ti), i = 1, . . . , n specifies the local time interval ti when the state

si holds, and

(ii) si describes the initial states of objects that change during the event and also

the states of objects that do not change.

Definition 3.2 (pos tcondi t ion) . The postcondition of an event is a proposition

that must be true immediately after the event occurs, and it satisfies:

(i) the postcondition is in the form of holds(s', , t i) A . . . A holds(s',, th) where

holds(s:, ti) i = 1, . . . , m specifies the local time interval t: when the state

si holds, and

(ii) sl describes the end states of objects appearing in the precondition that are

changed during the event. Formally, we have

Note that no fluents can be introduced in the postcondition that are not in

the precondition. The changes in values of fluents in the pre- and postcondition

characterize the change brought about by the event.

Definition 3.3 (e v e n t) . An event E is defined by its precondition and postcondi-

tion

Below is a typical form of a pair of precondition and postcondition of E

(3.2) E =def < holds(sl, t l) A . . . A holds(s,, t,)

A h o l d ~ (s ~ + ~ , tm+l) A . . . A holds(s,, t,),

holds(s', , t i) A . . . A h o l d s (s ~ , t;) >

There'is a parallel here with the use of precondition and postcondition in pro-

gramming language theory. In order to reason about the correctncss of computer

programs, Hoare (1969) introduced preconditions and postconditions, which are for-

mulas in first-order logic. Whenever the precondition for the program is true, the

postcondition must be true after the program executes. Given a small piece of the

code, for example, y := x + 5, a possible pair of pre- and postconditions for the

statement is:

Our use of pre- and postconditions differs from the above in two ways. Being a result

of the program, postcondition depends on its precondition, which varies depending

on the value for variable x, Those variables that do not change during the execution

of the program also appear in the postcondition. In our work, the precondition does

not vary and must be true for the occurrence of an event, and the SNAP entity will

not appear in the postcondition if it does not change.

We get the precondition and postcondition of the event from the necessary condi-

tion for its occurrence in the coupled form through the decoupling process. The holds

predicates recording the same SNAP entities will be distributed into the precondi-

tion and postcondition according to the temporal order of local times of the holds

predicates. The remainder of the holds predicates will be added to the precondition.

In general, the number of propositions in the precondition is greater than or equal

to the number of propositions in the postcondition.

Figure 3.6: Context information associated with the construction event

For example, Fig. 3.6 shows the representation of the event of the construction

of housel on landl owned by Tom. The necessary condition of its occurrence (Eq.

3.3) not only focuses on the object housel that comes into existence because of the

event, but also describes the ownership relation between Tom and landl, though this

ownership does not change during its occurrence. The ownership works as contextual

information associated with the event of constructing housel on landl.

holds(existence(housel) = false, t l) A holds(existence(housel) = true, t2)

(3.3) A holds(own(Tom, landl) = true, t l)

After we decouple Eq. 3.3, the event shown in Fig. 3.6 is represented by the

precondition-postcondition pair:

< holds(own(Tom, landl) = true, t l) A holds(existence(housel) = false, t l) ,

(3.4) holds(existence(housel) = true, t2) >

A SNAP entity is not allowed to be recorded more than twice in the necessary

condition for the occurrence of an event. Eq. 3.5 is an example of an invalid descrip-

tion for the event of rock erosion shown in Fig. 3.7. The same SNAP entity (i.e.,

mass(rockl) has been recorded three times, so we cannot distribute the predicates in

Eq. 3.5 into the precondition and postcondition.

Figure 3.7: A sock erosion event

3.2.2 Time

To deal with complicated events such as sirnultaneous events and overlapping events,

interval logic is employed in the representation framework. Events occur and states

are valid within time intervals. Time intervals are in the form of [a, 61, where a and 6

are endpoints of time intervals in some units of measurement. For events occurring at

time points, we use instantaneous intervals (zero duration time intervals) to represent

event occurrence times. Given a time interval L , we use start(^) and end(^) to access

the endpoints of L. After shifting by means of a time interval L,B,~, we get a new

interval

We incorporate two kinds of time in our model, local tinre a.nd global time. Local

time t is encoded in the precondition and postcondition of the event through the

truth predicate hold.s(s, t) . Global tinie T is used to specify the time intcrval when

the event actually occurs. Occurrenccs of event El are spccificd using a predicate

occurs. For example, ell = occeirs(El, T ~) indicates an occur~ence of El during 71.

Conversely, two predicates, type and tim,e, are used to get the event and time interval

of the occurrence.

El = type(e11)

Using these three predicates, we build a connection between events and their occur-

rences. An event may occur several times in the same space, but at the same time,

only one occurrence of the event exists.

Definition 3.4 (event occurrence). Given an everit E, its occurrence e during

time TI is defined as follows:

in which

Using Eq. 3.6, we can derive the real situation for the event occurrence (e.g.,

ell) after the local time of the event (e.g., E) is shifted by means of the occurrence

time of ell (e.g., TI). Fig. 3.8 shows the result of shifting the local time tl and t2 by

means of the global time 71.

Tl

Figure 3.8: Deriving the real situation for event occurrences

3.3 Event Hierarchy

People arrange information hierarchically and use hierarchies to reason such complex

systems. A hierarchy organizes information at diffe~ent levels of detail, and it is

conceptually constructed through abstraction, a process of eliminating the irrelevant

and amplifying the essential.

Let E be the event space, a set of events we are concerned with according to

the application domain. An event hierarchy is proposed to hierarchically structure

the event space. As we see in Def. 1.1, the event hierarchy defines a mapping

from more specialized events (low-level events) to more general events (higher-level

events) through a partial order relation. This event hierarchy is depicted by a Hasse

diagram or a directed acyclic graph (DAG) with nodes representing events in & and

edges representing partial order between events at different levels of detail. Fig. 3.9

and 3.10 gives two event hierarchies.

Hierarchies are distinguished by means of how they are construcled. Two ab-

straction processes arc studied to construct the event hierarchy: generalization and

aggregation. Generalization describes thc zs-u relation between eventsi which leads

to the event taxonomy Aggregation is used to s t~~cly and explain the compositional

lunch at the cafe

Figure 3.9: An evcllt taxonomy

f E,: Tom eats his \
\ dinner at the cafe)

Figure 3.10: An event partonomy

structure of complex events in tho syslem, aiid it is important to understand both the

individual events and the relationships among them. The relationship est.a8blishcd

by aggregation is a part-of relationship that holds between two events when one is

a part of the other. This leads to the event partonomy. Fig. 3.10 shows an event

partonomy, and Fig. 3.9 is an event taxonomy.

3.3.1 Event Taxonomy

In the event taxonomy, super-event and sub-event refer to more general and more

specialized events, respectively. The event taxonomy establishes the zs-a relationship

between events. In the event taxonomy shown in Fig. 3.9, is-a(E1, E3) specifies

the relationship between event El and event E3. E3 is the super-event, and El is

the sub-event. By extracting and sharing common parts of events' preconditions

and postcondtions, we can generalize events and place them higher up in the event

taxonomy. Conversely, we can specialize an event by adding something that is unique

to the event to its precondition and postcondition.

Events can be specialized to sub-events by adding more holds predicatcs to their

preconditions and postconditions. For an event E, we can add additional holds

predicates to the precondition of E, indicating more contextual infor~nation for E , or

we can add additional holds predicates to both of its precondition and postcondition

to indicate new and more detailed changes we find in the evcnt. Although we can

add holds predicates to its postcondition, the same SNAP entities recorded by the

holds predicates musl alieady be recorded in its precondition, so as to not violate

the definition 3.2. For example, it is wrong to use Eq 3.11 to rcprcselit the event E

Figure 3.11: A refined representation of the evcnt in Fig. 3.6

shown in Fig. 3.11, which is Inore specialized than that in Fig. 3.6.

< holds(existence(housel) = jalse, t l) A holds(own(Torn, landl) = true, t l) ,

holds(existence(housel) = true, t3) A holds(rnortgage(Tom) = brute, t2) >

We do not have the observation of the SNAP entity (i.e., mortgage(Tom)) in the pre-

condition. So the additional proposition hold.s(rnortgage(Torn) = true, t2) belongs to

the precondition rather than t,he po~t~conclitio11, indicating the contextual information

of occurrences of E. The correct form for E is

< holds(existence(house~) = false, t l)

A holds(own(Tom, landl) = tme, tl) A holds(rnortgage(Tom) = true, tz),

holds(existence(housel) = true, t3) >

An occurrence of an e\lcnt (e.g., E) during t is a,lso a.n occurrence of its super-event

(e.g., E'). That is, if E occurs during t , El also occurs during t .

Meyer (1988) observes that specialization can be regarded as both an exlension

and a restriction. In addition to adding inorc propositions into the precoridition

and postconditon, we can spccializc events by replacing tlie objects involvcd with

their sub-objects. Rom this viewpoint, occlirrences of the sub-event, represent a

Transportation hJ
Airplane Bus

Figure 3.12: An object hierarchy

Reduce the number of
states in prelpost
condition

Replace the objects
by their super-objects

s uper-event

sub-event

Increase the number of
states in prelpost
condition

Replace the objects by
their sub-objects

Figure 3.13: Generalization and specialization

sub-collection of all occurrences of its super-event. Repla,cing the objects with their

sub-objects requires an object type hierarchy. For example (Fig. 3.12), we can

replace the Transportation vehicle objects with Car objects in the event definition

to specialize the event. Conversely, we can a81so replace objects with their super-

objects to generalize the event. Fig. 3.13 shows the common generalization and

specialization process.

3.3.2 Event Par tonomy

By aggregating several associated events, we structure a composite event using its

parts. This process is called aggregation, in which the events to be aggregated are

called component events. People are sensitive to the event part structure a t cliffer-

ent time scales, ranging from events in tcrnls of physical chaiigc, events dcfincd in

relationship to intentional act, events characterized by plots, to cvcl~t~s cha,ract,erizod

thematically (Zaclcs and Tversky 2001). The part structure is orga,nizcd into a hier-

archy, called the event partonomy. For exa,mple, E2 and E3 a,re aggrega.ted into E5

in Fig. 3.10. In the event partonorny, an atomic event is the smallest recognizable

event, which makes up the bottom level of the partonomy.

Being a constructive activity, aggregation refers to the assembly of irltera,ct,ing

component events, which supprcsses the detail of the component events. For each

aggregation, instead of specifying the precondition and post,conclition for the com-

posite event, we specify the interacting component events a.nd their temporal order

through ESet, defined by

(3.12) ESet = {rcloc(E~, t l) , . . . , reloc(E,, t,))

in which ti is used to denote the position of component events in the composite event,

and it belongs to local time. For atomic events; ESet is null. Fig. 3.14 shows the

structure for the event partonomy in Fig. 3.10.

The operator reloc is defined as follows

(3.13) T . ~ O C (E , t) =< PREE(t) , POSTE(t) >

PREE(t) and POSTE(t) in Eq. 3.13 are defined by

(3.14) PREE(t) = I ~ o l d ~ (s ~ , shi[L(tl, t)) A . . . A holds(s,, shift(t,, t))

(3.15) POSTE(t) = holds($', , sh,ifk(t', , t)) A . . . A hold.$(.^',, shift (t',, t))

In Eqs. 3.14 and 3.15, E is the event defined in Eq. 3.1. Note the sirriilarily with

Eqs. 3.9 and 3.10, but in this case, the shifts are still within local time.

Figure 3.14: The event pa.rtonolriy structure

In the event partonomy, conjunction is used to model composite events; that is,

every component event should occur to compose the composite event. To aggregate

events E l , . . . , En, we construct the ESet of the composite event and get the con-

junction of all elements in ESet, represented by ~ e l o c (E ~ , 11) A . . . Areloc(E,, t,). For

example, E2 and E3 are aggregated into E5. The representamtion of E5 is given by

reloc(E2,ta) A reloc(E3,-ts). However, it is not equal to < PREE,(t2) A PRE&(ta),

POSTE,(t2) A POSTE3(t3) >, and we will explain this in Sec. 4.3.2.

The relationship between component events and composite events is part-of. For

example, part-of(E2, E5) indicates E2 is a component event of E5. Given a component

event (e.g., E2) of a corrlposite event (E5), if the composite event (i.e., E5) occurs,

the component event (i.e., E2) occurs definitely. But it is not the case in reverse.

3.4 Summary

This chapter discusses an event-oriented model, in whic:l~ wrrc define the event and it.s

occurrences through the concepts of precondition and postcondition plus local time

and global time. In addition, the event taxonomy and pa~t~onomy hierarchies are

introduced to provide us with a lncclianism to support representations of events at

different levels of detail.

Chapter 4

In Chapter 3, we discussed two event hierarchies, thc event ta,xonomy and the event

partonomy. In this chapter, we focus on the algorithm for constructing the event

partonomy. In the event partonomy, events are aggregated into composite events at

coarser levels of detail, and the composite events are characterized by their internal

structure, that is, the nature and inter-relationships of their components. Events

may be aggregated in different ways, and this work attempts to aggregate events

in ways that accord with user perception. For this, we need to take account of

event-event relations.

An event is an entity with both temporal and spatial extents. However, spatial

and temporal relations between events are not the main factors for aggregating com-

ponent events (Sec. 2.4). The causal relations between events are key relations for

aggregating events, and interactions between preconditions and postconditions help

us to investigate the ca.usa-l relations. In order to approximate to the causal rehtions,

this chapter describes two constructs, sequence and kran,sition. It is these constructs

that allow us to automatically construct the cvent partonomy, taking account of the

context in which component events occur. This chapter concludes by presenting the

algorithm for deriving the reprcscntation of composite events.

4.1 Event-Event Relations

The combination of selected events describes the cha#nge to the spa,tia1 and aspatial

properties over time. Consider the scenario in Fig. 4.l(a), balll moves ahead from

pointl, through point*, to point3. We use two events to describe the continuous

change to the position of balll, i.e., El (balll moves from pointl to point2) and E2

(balll moves from point2 to point3). These events can be composed to form a more

general event. However, there are time intervals during which change to one property

is transferred to other properties. This is critical for people to perceive the event

partonomic structure. Suppose, in Fig. 4.1 (b), we have added ball2, stationery at,

point2. Now, balll hits ball2, and balll stops a t point3 while ball2 moves from point2,

through point3, to point4. We have events E3 (balll hits ball2), E4 (ball2 moves from

point2 to point3), and E5 (ball2 moves from point3 to point4). The change to balll's

position during the occurrence of El is transferred to the change to bal12's movement

during the occurrence of E3, which in turn is tra.nsferred to the change to bal12's

position during the occurrence of E4. These transfers correspond to the maximum

number of properties that a,re changing, indicating a "contour discontinuity" in the

temporally extended events. People tend to mark the boundaries of the events when

there is a contour discontinuity. Conversely, people will tend to aggregate those

events between which transfers occur.

We define two event relations, f -sequen,ce relation a.nd f - trun,s1:2ion relation;

where f is a fluent in the events' pre- and/or postconditions. Event occurrences

are related if they belong to the same f-sequence, or if there is a f-tro,n,sl.tion between

them.

*
ball, 0

point, pbint2 point,
E l ball, moves from point, ro point2

E, ball, moves from point, to point,
ball, 0

point, pbint2 p6int,

ball, 0 ball, 0
point, p6int2 point, p6int.,

ball, CX) bal,
El ball, moves from point, l o point,

point, p6int, point3 point, E3 ball, hits ball,

ball1 0 ball,(-) E P ball, moves from pointz to point,
point, p6int2 point, point, E, ball, moves from point, to point,

E5 ball, moves from point, to point,
(b)

Figure 4.1: Ball sccnarios

To facilitate the following discussion, we define lour opera,tors to access fluents

in the precoridition and postcondition.

(4.1) FSET,,, : & + 2F

(4.3) F IfAL,,, : & x F + Dom.ninF U null

(4.4) FVA LpOst : & x F -+ D m n ~ i n , ~ U rml l

E denotes the event space, F denotes the set of fluents, and Donrui,nF is the value

domains for the flucnts in F. FSET,,,(E) returns the set of fluents in the pre-

condition of E, and FSETpOsl(E) rctunis llie set of flucrits i11 the p~st~condit~ion of

E. FVAL,,,(E, f) retrieves the valucs o l fluent f in thc prcco~lclition of E , arid

FVALpOst(E, f) retrieves the v:tll~es of flucllt f in the postcolldition of E. In more

formal terms

(4.5) FSET,,,(E) = { f E FJ f is in precondition of E)

(4.6) FSET,,,t(E) = { f E FJ f is in postcondition of E)
I

value (value E Dom.nin,), if f E FSET,,(E)

null, otherwise.
k

I

value (value E Dom.ainf), if f E FSET,,,,(E)

null, otherwise.

Given an occurrence e, FTIME,,,(e, f) a.nd FTI~~EpOst(e , f) are defined to return

the time intervals during which we record the values of fluent f in e's precondition

and postcondition. They return null if f does not appear in e's precondition and

postcondition. Formally we have

(4.9) FTIMEpr, : 0 x F + T U null

where O is the set of evcnt occurrences. During the time interval between

FTIME,, (e, f) and FTIME,,,~~ (e, f) , e makes some cha,nge to f .

Definition 4.1 (f-influence t ime) . Given an event occurrence e and a fluent f , the

f-znfl?lence time of e is defined to be the interval during which e makes changes to

f, which is formally repr?sentcd 1.137 [erzd(FTIMEl,,, (c , f)), . S ~ ~ I ~ ~ (F T I M E ~ , , ~ (~ , f))] ,

where start(t) and end(1) give the starting point and the end point of thc tirrie

interval t .

Events can occur concuriently, but they do not wake changcs to thc same fluent

concurrently. That is, their occurrences do not have overlapping f-inflilcnce times,

and so for each f , f-influence times can be linearly ordered.

4.1.1 Sequence

Definition 4.2 (f-sequence relation). Given t~vo events E, and Ej a8nd a fluent

f , there is a f-sequence relation between Ei and Ej if

(i) each event has f in both its precondition and postcondition, that is,

f E FSETPre(Ei) n FSETP,t (Ei) n FSETp-e(Ej) n FSETpo,q,(Ej)

(ii) F VALPo,t (Ei, f) = FVALp,(Ej, f)

The f-sequence relation between Ei and Ej is denoted by f-sequence(Ei, Ei).

Based on the definition of f-sequence relation, we can create sequences for different

fluents.

Definition 4.3 (f-sequence). A list of occurrences [el, . . . , en] is defined as an f-

sequence if j-sequence(type(ei), i ~ p e (e ~ + ~)) for i E (1, . . . , n - I) , and occurrences

are ordered by their f-influence times.

Note that each sequence is associatcd with one fluent and gives a description of

that fluent by recording its different values a t the beginning and the end of the event

occurrences. So a sequence describes cklanges to a. SNAP entity.

f-sequence Ei ++Ej f-sequence Ei I Ej

-A

Figure 4.2: Transitions between f-sequence and ff-sequence

For example, in Fig. 4.l(b) the occurrences el of El and e2 of E2 belong to a

sequence since there is a pos(balll)-sequence relation between El and E2, and the

pos(balll)-influence time of el is before that of e2. The occurrences of E4 (e.g., e4)

and E5 (e.g., e5) belong to a pos(bal12)-sequence. Only the occurrence of E3 (e.g., e3)

belongs to a rnov(bal12)-sequence. Therefore, there are three sequences: the pos(balll)-

sequence describes changes to the position of balll, the pos(bal12)-sequence describes

changes to the position of ball2, and the rnov(bal12)-sequence describes whether ball2

is static.

An occurrence may be associa.ted with more tha.n one sequence according to the

number of fluents that appear in both its precondition and postcondition.

4.1.2 Transition

Events are not only related through the f-sequence relation. For example, although

events E4 and E5 in Fig. 4.l(b) arc relw.te(1 through a pos(bal12)-sequence relation,

for E4 to occur, ball2 should be moving. The fluent mov(bal12) in the precondition

of E4 becomes true after the occurrence of E:%. This requires a connection between

events E3 and E4, and this is formalized using the f -transit,ion re1 a t ' ion.

Definition 4.4 (f-transition relat ion) . Given two event Ei and Ei and a flucnt

f , there is a J-trans~;tion relation between Ei and Ei if

(ii) FSET,,(Ei) n FSETwSt(E,) n FSET,.,,(Ei) n FSETpost(Ej) = (b

The f-transittion relation between E, and Ei is denoted by j-transition(Ei, Ei).

Definition 4.5 (f-transition). Given t,wo events Ei and Ei, there is a f-transition

from the occurrence ei of Ei to the occurrence eg of E$ (Fig. 4.2(b)), if

(i) f -trnnsition(Ei, Ei)

(ii) ei is the most recent occurrence in the f-sequence before eg

For example, there is a pos(balll)-t,ransition between occurrences of El and E3,

and a mov(bal12)-transition between occurrences of E3 and E4 (Fig. 4.3). Transitions

are represented using dotted arrows and sequences are represented using continuous

arrows in Fig. 4.3. For simpli~it~y, we do not give the occurrence times in the

sequence.

4.2 Constructing the Event Partonomy

We are now ready to give the algorithm for constructing the event partonorny. The

algorithm first scans the event spa.ce, checlting out the sequence and tra.nsition rcla,-

tions betjiveen events. Based on these rclat,iolls, it will generate sequences for different

Figure 4.3: Transitions in the ball scenario

fluents and transitions bctween event, occurrences. The general principles by which

the algorithm works are as follows:

(i) If occurrences are situatcd in consecutive positions in the sa.me sequence, and

are not involved in a.ny transitions, they are viewed as a single occurrence of

their composite event.

(ii) To eliminate the transitions from !;he occurrence of E to the occurrence of E', the

algorithm aggregates E witth events from the sequence to which the occurrence

of E' belongs.

(iii) The algorithm dynamically checks the occurrences in every sequence to see if

events can be further a.ggregated.

(iv) This process is repeated until there is no tra.nsition from the occurrence of E

to other occurrences.

Fig. 4.4 gives the overall actual sequence for the algorithm. The input of lhe

algorithm is a list of event occurrences, bascd on whicli the algorithni constructs an

event partonomy.

Generate the sequence
and transition l is t

I Aggregate events I

Remove transitions -
Event partonomy i"?

Figure 4.4: Process of constructing the partonomy

4.2.1 Generating Sequences and Transitions

Algorithm 4.1 gives the process of generating sequences a.nd transitions. According to

definitions 4.2 and 4.3, event occurrences in the f-sequence should have the fluent f

in their preconditions a,nd postconditions, and they are ordered by f-influence times.

Each occurrence ei and its succecding occurrence ei+l should meet the requirement

If there is a transition from the occllrrence of El (e.g., el) in the f-sequence to

the occurrence of E2 (e.g., ez), el and e2 ca.nnot be in the sa.me sequence. In a.ddition,

el is the most recent occurrence in the f -sequence before ez, and FVA Lpost(E1, f) =

FVAL,,(E2, f) . There are f-t,ransitions from el to occurrences that only a,ppear in

different scquenccs from el docs, and should occur later than e l .

The transitions bethvcen occurrelices colistitu(.e a graph, callcd a tmn.sztzon gruph.

in which the outdegree of an vcrtcx (occurrcnce) givcs the number of tre,nsitions frorn

it, and its indegree gives the nl~rnber of transitions to it.

4.2.2 Aggregating Events

During the second step, the algorithm searches for the first occurrence in an f -

sequence with no j-transition. Ii there is no suck1 occurrence, it turns to another

sequence. Otherwise it aggregates events according to Rule I:

Rule I: Given an occurrence el in an f-sequence \vitdh no f-transition

from it, let e2 be the first of el's succeeding occurrences that is involved

in transitions, either from it or to it. The evcnts occuring between e l and

ea including type(el) will be aggregated if there is an f'-transition from

other occurrences to ez , otherwise, the events occuring between el and e2

including type(el) and t?jpe(cz) are aggregated if there is an f-tran~it~ion

from e2.

The algorithm repeak the above proccss on the remaining occurrences of the f -

sequence until there is no occurrcnce with no f-transition from it.

After aggregating the events, the occurrences of the component evcnls are re-

placed by the occurrence of the composite cvcnt, arid there are tran~it~ions from the

occurrence of the composite evelit; lo other occurrences, e sajr, if tliere are transitions

from the occurrence of any of its component evcnls to e .

Algoritl~m 4.1: Generating scclllclices and transitions

Input : a list of occurrences eList
O u t p u t : sequences and transitions
1: ESet -e c$;\"creul,e an event set*\
2: f o r each occurrence e in eList do
3: E + type(e)
4: a,dd E to ESet
5: end f o r
6: fSeqSet + 4; fTraSet + 4; *create a sequence fluent set and a

transition fluent set*\
7: f o r each E in ESet do
8: add FSET,,,(E) n FSET,,,3t(E) to f SeqSet;
9: add FSET,,(E) - FSETwst(E) to fTraSet;

10: end f o r
11: f o r each f in fSeqSet do
12: f-sequence -e 4;
13: f o r each E in the ESet do
14: i f f E FSET,,,(E) n FSETpo,,(E) then
15: add occurrences of E in eList to f-sequence and sort them ac-

cording to their f -influence times
16: end if
17: end f o r
18: end f o r
19: f o r each f in fTraSet do
20: ca,nOccLisl e 4;
21: seqSetE + FSET,,,(E) f l FSET,,,,(E);
22: f o r each El in ESel. do
23: seqSetE1 + FSET,,,(E') f l FSETpOst(E1);
24: i f f E seqSet El a.nd seqSetEnseqSet E' = 4 a.nd FSET,o,7t(E', f) =

FSET,,,(E, f) then
25: add occurrences of E' in eLisl to ca.nOccList;
26 : end if
27: end f o r
28: f-transition -e 4;
29: f o r each E in ESet do
30: if f E FSET,,,(E) - FSETpOst(E) then *occurrences of E need

transitions to them*\
31 : f o r each occurrence e of E in eList do
32: t -=+ tin.),e(e);
33: get thc occurrctice e' which is the most recent occlirrencc to e

in cmnOccLisL arid a.dtl (el; e) to f-transition;
34 : end f o r
35: end i f
36: end f o r
37: end f o r
38: return f-seqiiencos and J-trallsitions

4.2.3 Removing Transitions

Each occurrence in the sequences is associatecl with transitiolis as a result of Sec.

4.2.2. Through removing transitions between occurrences, the algorithm aggregates

events and constructs the event partonomy. The algorit,hm for removing transitions

is described in algorithm 4.2, and the basic idea for the algorit-hm is to make oc-

currences appear in the same sequence. For example, to remove the transition from

the occurrence of Ei to the occurrence of Ei in Fig. 4.2(b), the algorithm aggre-

gates Ei with E,! and replaces their occurrences with the occurrence of the composite

event. There is no transition between the occurrence of the conlposite event in the

f-sequence and the occurrence of Ei since these two occurrences now appear in the

same sequence (i.e., f'-sequence). If t,he occurrence of Ei is the first occurrence in

the f'-sequence, the algorithm simply places the occurrence of Ei before the occur-

rence of Ei. After this, the algorithm scans the sequences to see if events can be

further aggregated according to Rule I. The process of removing transitions from the

occurrence of Ei will be repeated until there is no transition from the occurrence

of Ei, and thereby we can apply Rule I to the occurrence of Ei and its succeeding

occurrences in the f -sequence for aggregating events.

Algorithm 4.2: Rclnoving transitions

Input : sequences and transitions as a result of section 4.2.2
Output: a list of composite events

1: for each f -sequence do
2: for each occurrence e in the f-sequence d o
3: E + type(e); t + time(e);*get its event and occurrence time*\
4 : get a set S of occurrences to which there is a f-transition from e
5 : for each occurrence e' in S do
6: for each f-sequence to which e' belongs do
7: locate the e' in the f-sequence, and its previous occurrence e;
8: TI += time(e); 72 + time(eb);*get their occurrence times*\
9: t + min(rl, 72); tl + ~ ~ - t ; t2 e= 72-t *get their local times in

the composite event*\
10: El + E; E2 -+ type(el); *get their event types*\
11: compose E l , E2 accor$ing to their local times t l , t2
12: update the sequences and transitions with the composite event
13: if indegree of e' = 0 then *no transition to el*\
14: aggregate type(el) and events occurring before e' in the f -

sequence
15: update the sequences and transitions with the composite

event
16: end if
17: end for
18: remove the f-transition(e, el);
19: end for
20: if outdegree of e =O then *no transition from e*\
21: aggregate E and events occurring after e in the f-sequence
22: update the sequences and transitions with the composite event
23: end if
24: end for
25: end for

4.2.4 Demonstration

To construct the event partonomy for Fig. 4.l(b), the algorithm creates the sequences

and transitions as Fig. 4.3 shows. According to Rule I, E4 and E5 are aggregated

into a composite event, denoted by E45. Thc tsarisition between occurrences of El

and E3 is removed by placing the occurrence of El before the occurrence of E3 in

mov(bal12)-sequence (Fig. 4.5(1)). Since there is no transition from El, the algorithm

Figure 4.5: Different stages during constructing the partonomy
(I)afler removing pos(bal1 1) -transition(E1 E3)

(II)afier aggregating events El and E2
(III)after aggregating events E12 and E3

(IV) after removing all transitions

aggregates El and E2 into event E12 according to Rule I , and replaces the occurrences

of El and E2 with the occurrence of E12 (Fig. 4.5(11)). On the other hand, there is

no mov(bal12)-transition from the occurrence of EI2, SO E12 is aggregated with E3 in

the mov(bal12)-sequence into the composite event (Fig. 4.5(111)). Repeating this

process systematically for each event results in the event partonomy. After removing

all transitions, the sequences for Fig. 4.l(b) are shown in Fig. 4.5(IV), and the

algorithm generates the event partonomy for Fig. 4.l(b) as Fig. 4.6 shows.

Figure 4.6: The event partonomy for the ba,ll scenario

4.3 Representations for Composite Events

The composite events are represented by their preconditions and postconditions, and

their representations can be derived through the conjunctio~l of all elements in the

ESet (Sec. 3.3.2). However, they are not that simply the Boolean "and" and "or"

of the component events. Given two events Ei and Ej

Ej =< PREEj , POST4 >

we specify their temporal order through reloc(Ei, t i) and reloc(Ej, t j) . According to

formulas 3.12 and 3.13, the representation for the composite event is

It is different from the conjunctions of the component events' preconditions and

postconditions

PREE, (t,) /\ PREEj (t j)

(t,) A POSTEj (t j)

sub events' postconditions
t 1

step l

t l ' sub events' postconditions
f=vl after being processed

& I

step 11

postcondition of the

t2
I composte event

f =v2

Figure 4.7: Process of getting the postcondition for a composite event

which inevitably contradicts the constraints on the definition of the event: each

fluent exists only once in the event's precondition and postcondition. The next

section describes the algorithm for constructing this composition.

4.3.1 Algorithm

The construction of the precondition and postcondition for the composite event, as

algorithm 4.3 shows, begins with the assembly of the component events' preconditions

and postconditions. According to the component events' positions in the composite

event, we relocate the local time intervals for holds predicates in the component

events. As a result, we get two formulas 4.11 and 4.12. They need to be modified to

give the precondition and postcondition for representing the composite event.

In the postcondition, the values of a fluent are recorded as a result of mak-

ing changes to the fluent, so we have disjoint times intervals to record the val-

ues of the fluent. If a fluent has been recorded more than once, we only need to

keep the most updated one. For example, the conjunctive form of postcondition,

holds(f = vl , t l) r\ holds(f = 212, t 2) , will be changed to holds(f = v2, t i) (Fig. 4.7).

First, time intervals tl and t2 need to be modified into disjoint intervals t', and t i ,

and we get t P O S T = holds(f = vl , t i) A holds(f = va, t;). During the second step,

the obsolete recordings of the fluent are eliminated.

Processing the conjunctions of the component events' preconditions consists of

two parts. First, the proposition holds(s, t) in the conjunction of preconditions will

be removed if it is implied by tPOST. Through this, we suppress the detailed

information about the component events. If the remaining propositions still share a

common fluent, we will say that the events cannot be aggregated.

4.3.2 Examples

This section demonstrates the algorithm for deriving the prcconclitions and postcon-

ditions of the composite events created for Fig. 4.l(b).

The first example is the aggregation of El and E2, which are represented by

El =< holds(pos(balll) = pointl, t l l) , holds(pos(balll) = point?, tI2) >

E:! =< holds(pos(balll) = point2, t21), holds(pos(balll) = point3, t22) >

where tll, t12, t21, and t22 are sllo~vn in Fig. 4.8(a). To compose the composite event

EI2, we relocate El with a zero offset and E2 with an offset of the duration of El

(Fig. 4.8(b)), and get corljunctions of their prccondilions and postconditions

Algorithm 4.3 Deriving the representations of the colllposite events

Input: component events E , and their time intervals t i relevant to t,ho corn-
posite event E (i = I , . . . , n)

Outpu t : precondition PREE, and postconclition POSTE of the composite
event E

1: PREE + 6; POSTE + q3;*initialize the result*\
2: for i = 0 to n do
3: insert(PREE, pre(Ei,ti)); inscrt (POSTE, post(Ei,ti));\%.ssemble the

precondition and postcondition of Ei after relocntiny the local time in-
tervals, and propositions in PREE and POSTE a7.e sorted by start1:ng
points of their time intervals*\

4: end fo r
5: tPOST -+ plotPost(POSTE); *modify the time intervals for the propo-

sitions into disjoint inleruals*\
6: for each p in PREE do
7: if shareFluent(p, POSTE) t h e n
8: if imply(p,POSTE) t hen *p can be satisfied by POSTE*\
9 : delete(p, PREE) ;

lo: else *POSTE makes p impossible*\
11: return < @ ,$ >;
12: end if
13: else
14: if not compatible(p, PREE) t hen
15: return < 4 , q5 >;
16: end if
17: end if
18: end for
19: p + tai l(tP0ST); *get the uptodate proposition from the postcondition

list*\
20: while p # null do
21: f o r each h before p in tPOST d o
22: if fluent(h) = flucnt(p) t hen
23: delete(tPOST, h) ;
24 : end if
25: end fo r
26: p + getPrevious(p);
27: end while
28: POSTE + iPOST;
29: return < PREE, POSTE >;

Procedure: shareFluent
Input : a proposition p, ancl a proposition list plist
Ou tpu t : a boolean value
1: for each pt in plist d o
2: if fluent(pt) = fluent(p) t h e n
3: return TRUE;
4: e n d if
5: end for
6: return FALSE;

Procedure: imply
Input : a proposition p, and a proposition list plist
Ou tpu t : a boolean value
1: p, + getNlostRecent(plist, fluent(p), tiine(p));
2: if pt # null and pt imply p t h e n
3: return TRUE;
4: else
5: return FALSE;
6: e n d if

Procedure: compatible
Input : a proposition p in the proposition list plist
Ou tpu t : an boolean value, and update the proposition list plist

I: for each pt in the plist after p d o
2: t + join(p,pt); *get the proposition satisfying the requirement to the

same fluent*\
3: if t # null t h e n
4: update(p, t); delete(plist, pt);
5: else
6: return FALSE;
7: e n d if
8: e n d for
9: return TRUE;

Figure 4.8: Event composition example: El and E2

(4.14) holds(pos(balll) = point2, ti,) A holds(pos(balll) = point,, ti2)

Based on formula 4.14, we get the P O S T

where tY2 and t;2 are shown in Fig. 4.8(c). Since holds(pos(balll) = point2, t;,) can

be implied by 4.15, it is left out of formula 4.13. The recording of pos(balll) during

t',', is obsolete, and is eliminated from formula 4.15. So the repre~ent~ation of the

composite event is

Figure 4.9: Event composition example: El and E3

To aggregate the events El and Eg, El is relocated with a zero offset and E3 is

relocated with an offset of the duration of El. The representation for E3 is

E3 = < holds(pos(balll) = point2, t3,) /\ hold.s(mov(bal12) = false, t31),

holds(mov(bal12) = true, t32) >

where t31 and t32 are shown in Fig. 4.9(a). After relocating El and E3, we get the

conjunctions of their preconditions and postconditions (Fig. 4.9(b))

(4.16) A holds(mov(bal12) = false, ti,)

(4.17) holds(pos(balll) = point2, ti2) /\ holds(mov(bal12) = true, tiz)

Figure 4.10: Event composition example: El and E4

Based on 4.17, we get the tPOST

(4.18) holds(pos(balll) = point2, t'l,) A holds(mov(bal12) = true, tg2)

where t',; and t;2 are shown in Fig. 4.9(c). Since holds(pos(balll) = point2, ti,) is

implied by 4.18, it is left out of formula 4.16. As a result, the representation of event

EI3 is

El3 = < holds(pos(balll) = pointl, ti1) A h.obd.s(mov(bal12) = false, ti,),

holds(pos(balll) = point2, ty2) A holds(mov(bal12) = true, ti2) >

The simplest case is to aggregate two events that are not related, e.g., El and

Ed. Given the representation of Eq (Fig. 4.10(a))

the composite event Elq (Fig. 4.10(b)) is re1)rescnted by conjunctiol~s of its compo-

nent events' preconditions and po~tcondit~ions

We calculate new time intervals ti,, ti,, ti1, and ti2 through reloc operators.

4.4 Summary

This chapter focuses on the algorithm for constructing the event partonomy. To

achieve this goal, we develop two event relations, the f-sequence relation and the

f-transition relation, which represent causal relations between events; therefore, it

becomes possible to approximate human perception of event partonomies.

Since the representations of composite events are not as simple as conjunctions of

their component events' preconditions and postconditions, we construct an algorithm

to derive the preconditions and postconditions of the composite events.

Chapter 5

PROTOTYPE

In this chapter, a prototype system is developed that implements our algorithms for

constructing the event partonomy, and this is illustrated using a case study. In the

following sections, we will discuss the design of the pr~t~otype, the user interface, a,nd

the implementations of data structures. To conclude the work, we demonstrate the

construction of the event partonomy for the case study.

5.1 Prototype Design

The prototype system (Fig. 5.1) consists of three parts: a user interface, an Event

Processing System, and an Oracle 9i database. The user interface facilitates the

input of event occurrences by users and event representations by domain experts,

and the display of the partonomy. The theory of constructing the event pa,rtonomy

is encoded in the Event Processing System, which accesses the database through the

technology of Java Database Connectivity (JDBC) (Oracle 2002). The description

of events (i.e., precondition and postcondition) is stored as tables in the database,

and relation schemas of these tablcs will be discussed in Sec. 5.3.2.

The Event Processing System not only constructs the event partonomy according

to the event occurrences list, but also helps the domain expert maintain the event

database. Users only specify the events stored in the database and their occurrence

U s e r Interface

Event Processing System Event Database

Figure 5.1: System xchitecture

times, while domain experts specify preconditions and postconditions of events. The

functions of the system are indicated by the use case diagram (Fig. 5.2). Domain

experts create, update, delete, and query descriptions of events in the database.

Users query the descriptions of the events and get the event partonomy according to

occurrences they input. This chapter mainly focuses on the functions provided for

normal users.

The prototype was irnple~nent~ed in an object-oriented environment using Java

2. Java 2 Software Development Kit (J2SDK) including the core Java classes and

Java's Swing classes was selected to build the system. J2SDK also includes JDBC,

a standard interface used to connect Java and relational databases. In addition, we

used Oracle JDBC to get the support of estensions of Oracle-specific data types and

enhance the performance.

Figure 5.2: Use case diagram lor the system

<<Event Processing System>>

5.2 User Interface

fy< User

The user interface facilitates the interaction between users and the system, and helps

Query Event >

users access the following functions: querying the events and constructing the event

partonomy automatically.

The layout of the application window is shown in Fig. 5.3, and it is divided into

four areas for menu bar, tool bar, input pa.ne1, and a pane for displaying the results

of the query and the event partonomy.

Users input is a list of event occurrences, specilying the event types and their

occurrence times. These event types can be choscn horn a list of events loaded from

the database. Users can save their input in a file, which will be irnportecl into the

Conslruc~ Even1

system later.

Menu Bar

Pane for display
(1)Descriptions of events
(2)Event partonomy Input Panel

Figure 5.3: Layout of the application window

In the pane, the descriptions of selected events are given through their precondi-

tions and postconditions in text format. The pa.rtonomy is displayed by descriptions

of composite events as well as their component events na,mes. Users can save the

results in a file and load it later into the pane for review.

5.3 Implementation of Data Structure

In the prototype system, atomic events are stored in the database. Before performing

the construction process, domain experts need to create the event database for the

domain. It is assumed that domain experts have already created an event database

for the application domain. Local timc is represented quantitiatively, and is given in

the database as values of interval type that are offsets to the starting point of the

event. We will go through t,he database design in Scc. 5.3.1.

lType interval is defined in Sec. 5.4 .

.

Event

Figure 5.4: Diagrarn lor the Event entity

Based on the representatioris of a,tomic events in the database, the system con-

structs the partonomy automatically using the data structures described in Sec.

5.3.1 Database Schema

Events are stored as tables in the database. As described in Chapter 3, events

are defined through their preconditions and post~ondit~ions. However, we represent

events using their coupled form (Fig. 3.5)' in which recordings of the sarne flu-

cnt in both events' pre- and postconditions are coupled together. For exarriple, we

use fluenti-before and fluenti-after to record values of fluenti during t,inie inter\~als

fluenti-beforet and fluenti-aftert in events' pe- and postconditions. The diagram for

the Event entity in the database is shown in Fig. 5.4, and attribute eid is its primary

key. The relation scllcrria for Event needs to be normalized sinrc therc are depen-

Evenll r-l

Figure 5.5: Dia.gram for entities Eventl and Fluenti

dencies between eid and different fluent,s (e.g., fluenti). Therefore, t,he Event entity is

decomposed into the Eventl entity a.nd entities for different fluents (e.g., Fluenti) as

Fig. 5.5 shows.

To construct the event data,base, domain experts need to register the fluents a,nd

their types, so that the system is able to create the fluent tables in the database with

the schema:

Fluenti (eid, fluenti-before, fluenti-beforet, fluenti-after, fluenti-aftert)

Through registering the type of fluenti, domain experts specify the types of at-

tributes fluenti -before and fluenti -after in the fluent table (i.e., Fluenti). Attributes

fluenti-beforet and fluenti-aftert are values of type interval. After registering these

 fluent,^, domain experts can create events based on the flue~lts they have registered.

5.3.2 Event Class

During the construction of the event partonorny, we define an t:vent class M y Event

to represent event occurrences.

fluent: String
previous: MyEvent
next: MyEvent

operations

eName: String
elD: Number
elevel: Number
ePrecondition: String
ePostcondit~on: String
eTime: Date
trasitionTo: Array of ETran
transitionfrom: Array of ETran
childEvents: Set of CompEvent

operations
\

fluent: String

event: MyEvent
offset: Number

Figure 5.6: Event structure

The structure for MyEvent is shown in Fig. 5.6. \iVe use the UhlIL-based no-

tation to describe the event structure, and specify attributes and operations as in

UML static class diagrams. To make events distinct from object classes, a rounded

rectangle is used. Each event has its name eName, identifier elD, precondition ePre-

condition, and postcondition ePostcondition.

The event partonomy is represented through childEvents, which specifies a set of

component events of type MyEvent as well as their offsets in the composite event.

I t is modeled through a CompEvent object. Atomic events do not have component

events, so childEvents of an atomic event is null. Residing in memory, composite

events are not stored permanently in the database, but their representations can be

derived based on the evcnt partonomy a.nd represeritations of a.tomic events in the

database. The derivation process is described in Algorithm 4.3. The level of an event

in the partonomy is specified through elevel. Alolr~ic events are zero-level events,

and levels of composite events are one level higher than the highest lcvel of tjlieir

component events.

As discussed in Chapter 4, constructions of the event partonomy need sequence

and transition rehtions between events. The sequence relation is implemented

through a doubly-linked list structure ESeq in which previous and next point to

the previous and the next event occurrence in the fluent-sequence. This structure

not only gives the first event occurrence in each seqllence but also helps determine

the positions of occurrences in the sequence. Occurrences in the fluent-sequence are

sorted by their fluent-influence times rather than occurrence times. To make the

sequence consistent, multi-version data for the events are not permitted. Therefore,

the component events will be omitted if a new composite event is created from them.

This also requires that atomic events should be consistent, and each two atomic

events cannot describe changes to the same fluent in an interleaving manner.

The transitlion relation between events is modeled through an ETran object.

ETran specifies the type of transition fluent, and tlre event link, to which the current

event is related. Attributes transitionTo and transitionFrom detcrinine the direction

of the transition. So transitionTo describes the transition from the current event to

others, while transitionFrom describes the lra.nsition from other events to itself.

5.4 Case Study

To illustrate the construction process of the syst~cin, we apply the protolype systcin

to a case study. Fig. 5.7 gives a scenario of a car accident. The vehicle carl starts

from place6 and turns left at intBw, the western part of the intersection B. The

vehicle car2 starts from place5 and turns right at in&. They collide a t the northern

part of the intersection B, intBN. So the police car denoted by car, in Fig. 5.7 makes

its way to intBN where the accident has taken place, and car3 st,ops to yield to the

vehicle car,. The accident blocks the traffic a t intersection intB. Realizing that the

traffic is blocked ahead, car4 turns right a t intAE.

Objects carl, car2, cars, car4, car,, intBw, in&, intBN, and intAE are involved

in the car scenario. We use the following fluents to specify preconditions and

postcondtions of events (Fig. 5.8) in the scenario: pos(carl), pos(car2), dir(carl),

dir(car2), state(carl)), state(car2), collision(carl, car2), state(car,), pos(car,), dir(car,),

state(car3), pos(car3), traffic(intB), state(car4), pos(car4), and dir(car4). Local time

is specified by an interval with its starting point and ending point in seconds, and

Inf indicates infinity, which means the state will last forever unless there is another

event involving changes to such a state.

Domain experts create the event table and 16 fluent tables (e.g., pos(carl)). The

eid is a sequence created in the Oracle database, and it is used to join the Event1

table and fluent tables.

create sequence eventseq start with 1000 increment by 1 nocache nocycle;

Figure 5.7: Schematic representation of a car accident scenario

I

t i t
2 1 2
S 1 8

I
I

-WEST

'lace' EAST

CHELTEN AVENUE - BROAD STREET

I

= INOPERATWE TRAFFIC
CONTROL SIGNALS

I

I

I
I

I

I

I
I

I

I

I
I place3

plac

place

1 Ir

Figure 5.8: Atomic events in thc car accident sccnario alld their representations

78

Postcondition

holds(pos(car,)=intBw, (299,

299))

holds(pos(carl)=intBN, (1 5, 15))
holds(dir(carl)=north, (1 0,15)

holds(pos(car2)=intBE, (1 97,

197))

h01ds(p0s(car2)=intBN, (1 5, 15))
holds(dir(car,)=north, (8,15))

holds(collision(carl, car2)=true,
(2,lnf))

holds(state(carp)=go, (2,lnf))

holds(pos(carp)=intAE, (47, 47))

h ~ l d ~ (p ~ ~ (~ a r ~) = i n t A ~ , (12, 12))
holds(dir(carp)=north, (8.12))

holds(pos(carp)=place4, (30, 30))

holds(state(car3)=stop, (4,lnf))

holds(pos(carp)=intBN, (48, 48)

holds(traffic(lntB)=true, (1, Inf))

holds(pos(car4)=intAE, (36, 36))

holds(pos(car,)=intAE, (8,8))
holds(dir(car,)=east, (4,8))

holds(pos(car4)=place2, (44, 44))

Precondition
holds(state(carl)=go, (0,299))
holds(pos(car,)=place6, (0, 0))

holds(state(carl)=go, (0,15))
holds(pos(carl)=intBw, (0, 0))

holds(dir(car,)=east, (0,5))

holds(state(car,)=go, (0,197))
hoMs(pos(car2)=place5. (0, 0))

holds(state(car2)=go, (0,15))
holds(pos(car2)=intBE, (0, 0))
holds(dir(car,)=west, (0,5))

holds(pos(car2)=intBN, (0, 0))
holds(pos(carl)=intBN, (0,O))

holds(collision(carl, car2)=false,

(02))
holds(collision(carl, car2,=true,

(0,o))
holds(state(carp)=stop, (0,2))

holds(state(carp)=go, (0,47))
holds(pos(carp)=place3. (0. 0))

holds(state(carp)=go, (0,12))
h"lds(pos(car~)=intA~'
holds(dir(carp)=west, (0,5))

holds(state(carp)=go, (0,30))
holds(pos(carp)=intAN. (0. 0))

holds(state(car,)=go, (0,4))
holds(pos(carp)=place4, (0, 0))
holds(pos(car3)=place4, (0, 0))

holds(state(carp)=go, (0,48))
holds(pos(carp)=place4, (0, 0))

holds(collision(car,, car,)=true,

(0,lnf))
holds(traffic(lntB)=false, (0,O))
holds(state(car,)=go, (0,36))

holds(pos(car4)=placel, (0, 0))

hoIds(state(car,)=go, (0,8))
holds(pos(car4)=intAs. (0, 0))
holds(dir(carp)=north, (0,3))

holds(traffic(lnt,)=true, (0,O))

holds(state(car,)=go, (0,44))
holds(pos(car4)=intA,. (0. 0))

Event

E2

E3

E4

E5

E6

E7

E8

E9

Name
carl moves from
place, to intBw

carl turns left
af intBw

car, moves from
place, to intBE

car2 turns right
at intB,

carl and car2
collide at intBN

carp starts at
place3

carp moves from
place, to intA,

carp turns right
at intAE

carp moves from
intAN to place,

car3 stops at
place,

carp moves from
place, to intBN

Traffic is
blocked at intB

car4 moves from
place, to intA,

car, turns right
at intA,

car, moves from
intAE to place2

- - - - - - -- - --
E-1 lmO,c.rl m-. from plled l a mast- pwt of ~ntn. .e l lo

Ev& l m O , c d m r v s s f v n B

la)511flM4121716
1WBllfl2C4121718
100711112104121605

1008 11112m4 121817

i m j ~ n u o r i n i s 4 7 -

Figure 5.9: Thc user window for input of event occurrences

A new interval data, type for the local time is defined in Oracle and it specifies

the starting point and end point of the interval in seconds.

create type interval as object (ts tar t NUMBER, t-end NUMBER);

After the users input the occurrences list by mcans of the interface (Fig. 5.9), the

systcm first generates the scqucnces and transitions, which are shown schematically

in Fig. 5.10. During thc construction process, childEvents of new composite events

will be created, and an event partonomy is constructed according to vali~es of thcir

childEvents. Preconditions and postconditions of the composite evcnts arc also given

in the display pane (Fig. 5.3). Fig. 5.12 gives a complctc list of cornpositc events

in the event partonomy (Fig. 5.11), their descriptions, and their childEvents. For

example, event E19 encompasses E16 and EI7, which encompass atomic events El,

E2, and E3, E4. SO event EI9 describes that car1 moves from place6 to intBN, car;,

Figure 5.10: The sequences and transitions for the car accident scenario

Figure 5.11: The cvcnt pa,rtononly for the ca.r accident scena.rio

Figure 5.12: Composite events in Fig 5.11

E25

E26

E27

moves from place5 to i n t B N , and both carl and car2 move noithward. Event Ezo

encompasses events EI9 and atomic event E5, and it describes that carl and car;,

collide at intBN after carl moves from place6 to i n tBN and car2 moves from places

to i n tBN. Event Ezl encompasses events Ezo and Es, describing that the police

car is coming after the accident, while event E22 encompasses cvents Ezl and Elz,

describing the traffic is blocl<ed aftcr the accident.

car, moves from place3 to intBN after
traffic is blocked at intB

car4 moves from placel to intAE after
the traffic is blocked at intB

car, moves from place, to place, after
the traffic is blocked at intB

E24, El 1

E25, E13

E26,

5.5 Summary

An implementation of the partononly construction algorithm is givcn in this chap-

ter. At the beginning, we give the design of the prototype system. We also describe

the database scl~emas for storing atomic events in the databasc, and the structure of

the event class MyEvent for representing evclits in the Event Processing System. To

assess the construction algoritllm, we apply thc prototype system t,o the car accident

scenario, and the event partonomy for the scenario is generated automatically. This

prototype is evaluated in the next chapter.

Chapter 6

CONCLUSIONS AND FUTURE WORK

This chapter reviews the goal of the thesis, and sl~rnl~~arizes the approacll alld the

results. Possible research topics are discussed as an improvement to the lnodcl and

methodology.

6.1 Summary of the Thesis

The goal of this thesis is to support multiple rcpresentations of dynanlic phenomena,

so that representations a t the appropriate level of detail can be provided to users.

It has been achieved t,hrough autonlatic generation of an event partonomy, which

provides representations of events at different lcvels of detail.

In this thesis, dynamic phenomena are modeled as collections of cvcnts and rela-

tions between them. There are two event hierarchies: the event taxonomy and the

event partonomy, which enable shifting between rcpresentations of events at different

levels of detail. In this research, we develop two relations between events, f-sequence

and f-transition, bascd on which an event partonomy is constructed aulomatically.

A prototype system is also designed and applied to a Car accident scenario, and it

creates an event partonomy for the scenario.

6.2 Results and Major Findings

The major contributions of the thcsis are to provide a gcncral fra.me~vork for rep-

resenting dynamic phenolllena using events, and to provide a mechariisrn to enable

multiple representations of cvcnt-based phenorncna. The ~na~jor findings of the thesis

are as follows.

The event-oriented model gives us rriore power to explicitly rrlodel events in spatio-

temporal applications. In our framework, dynamic phenomena a,re l~lodelecl through

events, represented by the common prcconclitions and postconditions of these event

occurrences. Occurrences of the same type of event have the same @tern of pre-

condition and postcondition, but they are different in their occurrence times. Pre-

conditions and postconditions are related to the concepts of cause and effect re-

lations, and they give domain experts the flexibility to define events a.ccording to

their understandings of events' causes and effects. Simila,r to abstractions of objects,

preconditions and postconditions provide a way of abstra,cting evcnts.

Based on this framework, events may be formed into two event hierarchies that

provide multiple representations for dynamic phenomena. In the event taxonomj~,

events are rela,ted through the is-a relat,ion, and more specialized events ma,y he

defined as variations of more general events. This is achieved through reducing trhe

number of holds predicates in cventSs1 preconditions and postconditions. The event

partonomy provides a,nothcr mechanism to a,bst,ra,ct the event space, whcre an event

may be defined as a aggregation of severa.1 component cvelits. The event partonomy

supports repre~ent~ations of events at different levcls ol detail tlirough aggregatilig

several component everits into one composite e v e ~ ~ t , and suppressing the detail of

component events.

Event-event relations play an important role in constructing the event parton-

omy automatically. Causal relations between events provide important contextual

information, allowing events to be aggregated. To investigate causal relations be-

tween events, we develop two relations, sequence and transition, which are used to

approximate to the causal relations. Based on sequence and transition relations, we

develop algorithms to construct the event partonomy automatically.

6.3 Limitations of the Model and Future Work

This research is based on representa.tions of events using their preconditions and

postconditions, which only capture a part of the dynamic world. First, we cannot

represent events that do not involve any changes, for instance, "Tom stands at the

corner". Second, preconditions and postconditions are necessary conditions for event

occurrences. That is, the fact that an event's precondition and postcondition are

true does not force the event to occur. This results from the clifficulty of formalizing

causes and effects of events. Lastly, sequence and transition rela,tions are used to

approximate to causality during the construction process. But a trmsition between

two event occurrences does not mean one event occurrence will lead to the other one.

So, again it does not fully formalize the common sense notion of causa,lity.

There may be more than one wa,y to construct thc event pa.rtonomy. The algo-

rithm we propose constructs the event paxtonomy by t,rnnsition and sequence rela-

tions between events, but events may be aggregated a.ccorc1ing to spatial, temporal,

and spa,tio-temporal relations between them. In this work, users do not have op-

tions on how to construct the event partonomy. In adclition, multi-version data is

not permitted during the con~truct~ion process, and this may lead to some potential

composite events being omitted. For instance, given the transition a s described in

Fig. 4.2(a) (Sec. 4.1.2 and Sec. 4.2.3), we first aggregate El and Ei into a composite

event, Ek; then it replaces Ei and El in the f-sequence and f'-sequence. We miss

the possible composite events created from E,I and Ei.

We have identified the following research questions:

1. How are spatial, temporal, and spatio-tempo*r.al relalions applzed to

the process of c~onstmctin,g the event partonomy?

2. How does the introduction oJ disjunction a fec t the representation

power of the event model?

3. What are the algorithmic implications of adding di.sjunction?

1. The sequence arid transition relations are developed in Chapter 4 to approximate

to the causal relation between events. Events may not be rclaled through transition

or sequence relations, but thcy may still be aggregated into composite evcnts by

referencing the spatial, temporal, and spatio-temporill relations between them. To

address the first question, one solutio~l could be to assign ranks to relations by drfault

settlngs or by users' prcfcrcr1c.c.

2. I11 this thesis, preconditions and postconditions of ovclits are just conjunctiolls of

holds predicates. For exa.nlple, we are unable to represent; t,he event of Tom entering

Boardman if there are two doors doorl and door2 to the building Boardman. After we

introduce disjunction, this event can be representecl by

El = < holds(in(Tom, Boardman) = fafalse, t l)

A ((hold.s(open(doorl) = true, t2) V holds(open(door2) = true, ts)),

holds(in(Tom, Boardman) = true, t4) >

Indeterminacy will be introduced when the disjunction is used for representations of

events. After introducing the "or" operator in events' preconditions and postcondi-

tions, we convert them into Disjunctive Norrnal Form (DNF)

(6.1) < PRE, v . . . v PRE,,POST, v . . . v POST, >

where each term PREi and POSTi is a conjunction of holds predicates, and the

occurrence of the event representecl by formula 6.1 only represents the occurrence of

one of the events of Eij =< PRE,:, POSTj >, i = 1 , . . . , n, j = 1,. . . , m. Thus, dis-

junction represents event possibility. In our e~a~rnple, El represents the two possible

events of Tom entering Boardman through doorl

Ell = < holds(in(Tom, Boardman) = f a.lse, t l)

A (hold.s(open(doorl) = true, t2),

holds(in(Tom, Boardman) = true, t4) >

and Tom entering Boardman through door;!

Elz = < holds(in(Tom, Boardman) = false, t l)

A holds(open(door2) = true, t3),

holds(in(Tom, Boardman) = true, t4) >

3. After introducing the disjunction, \ire also need to extend the algorithms for

constructing the event partonomy. In our example, let E2 be the event of opening

doorl, and E3 be the event of opening doorz. There are transitions from E2 to El

or from E3 to El, but it is not necessary to aggregate El with both E2 and E3. On

the other hand, if there are disjunctions in the postcondition of one event, and there

are transitions from this event to other events, these transitions are possible, but not

guaranteed. This problem requires evaluations of the transitions to the events.

6.4 Summary

In this chapter, we have briefly summarked the work of this thesis a.nd evaluated

the goal of our work. We have a81so suggested some areas for future resea.rch.

BIBLIOGRAPHY

Al-Taha, I<. and Barrera, R. (1990), Tenipora,l data and GIs: an overview, in
'GIS/LIS790', Anaheim, CA, US, pp. 244-254.

Allen, J. F. (1983), 'Maintaining knowledge about temporal intervals', Cornmunica-
tzons of the ACM 26, 832-843.

Allen, J. F. (1984), 'Towards a general theory of action and time', Artzjicial Intelli-
gence 23(2), 123-154.

Allen, J. I?. and Ferguson, G. (1994), Actions and events in interval temporal
logic, Technical Report TR521, Computer Science Department, University of
Rochester.

Barker, R. G. and Wright, H. I?. (1954), Midwest and its Children: The Psychological
Ecology of an American Town, Row, Peterson and Company, Evanston, Illinois.

Bittner, T. (2002), An ontology for spatio-temporal databases.
http://citeseer.nj .nec.com/469674.html.

Buttenfield, B. and Delotto, J. (1989), A~lultiple repre~entat~ion, Technical Report 89-
3, National Center for Geographic Information and Analysis (NCGIA), Santa
Barbara, CA.

Davidson, D. (1967), The logical form of act,ion sentences, in N. Rescher, ed., 'The
Logic of Decision and Action', Universit,y of Pittsburgh Press, pp. 06-103.

Davidson, D. (1969), The individuation of events, in N. Rescher, ed., 'Essays in
Honour of Carl G. Hempel', D. R.eidel Publishing, Dorclrecht, Holland, pp. 216-
234.

Egenhofer, M. and Golledge, R . (1994), Time in geographic space: Report 011 the
specialist meeting of rcsearch init>iative 10, Technical Report 94-9, National
Center for Geographic Inforrnaliorl and Analysis (NCGIA), Santa Barbara, CA.

Frank, A. (1994)) Qualit,at,ive t c ~ n ~ ~ o r a l reasoning 111 GIS-ordered tiilic scalcs, zn
T . Waugh and R. Healey, eds., 'Proceedings of Sixth International Symposium
on Spatial Data Handling', Edinburgh. Scot,land, pp. 410-431.

Galton, A. (1995), Towards a qualitative theory of inoveinent, in A. Franl< a,nd
W. E<uhn, eds., 'Spa,tial Information Thcory: A Theoretical Basis for GIS',
Springer-Verlag, Berlin, pp. 377-396.

Galton, A. (2000), Qualitalive Spatial Chan,ge, Oxforcl University Press, New York,
us.

Galton, A. (2003), Desiderata for a spatio-temporal geo-ontology, in W. Kuhn, M. F.
Worboys and S. Timpf, eds., 'COSIT 2003', Kartause Ittingen, Switzerland,
pp. 1-12.

Gibson, J. J . (1986), The Ecological Approach to Visual Perception, Lawrence Erl-
baum, Hillsdale, NJ, US.

Grenon, P. and Smith, B. (2004), 'SNAP and SPAN: towards dynamic spatial ontol-
ogy', Spatial Cognition and Computation 4(1), 69-103.

Gries, D. (1981), The Science of Programming, Monographs in Computer Science,
Springer-Verlag, Secaucus, NJ, USA.

Han, J. and Kainbr, M. (2001.), Data Mining: Concepts and Techniques, hdorgan
Kaufmann, San Francisco, California.

Hirtle, S. (1 995), Representational structures for cognitlive space: Tree, ordered trees
and semi-lattice, in A. Frank and W. Kuhn, eds., 'Spatial Information Theory:
A Theoretical Basis for CIS', Springer-Verlag, Berlin, pp. 327-340.

Hirtle, S. and Jonides, J. (1985), 'Evidence of hierarchies in cognitive maps', Memory
and Cognition 13(3), 208-217.

Hoare, C. A. R. (1969), 'An a.xiomatic basis for computer programming', Communi-
cations of the ACM 12(10), 576-580.

Hobbs, J. R. (1990), Granularity, in D. PIJeld and I . Kleer, eds., 'R.eadings in Quali-
tative Reasoning about Physical Systems', Rllorgan Kaufmann, San h/Iateo, CA.
US, pp. 542-545.

Hornsby, K. E. (1999), Identity-bascd reasorling about spatio-temporal change, Ph.D
thesis, University of Maine.

Hornsby, K . E. and Egenhofer, hd. J. (2002)) 'h~Iocleliiig moving objects over multiple
granularities', Annuls of ~l//ath,cm.atics and Adificinl In,telligcnce 36, 177--194.

Hume, D. (1739), A Treatise of Humun. Nature, Oxford Uiliversilv Press, Reprint
edition (1980), Oslord, LTK.

Kant, I. (1781), C7itique of Pure Reason, St. Martin's Press, Reprint, edition (1965),
New York.

Koestler, A. (1967), The Ghost in the Ahchine, hilacniillan, New 'lrork.

Kowalski, R. and Sergot, M. (1986), 'A logic-based calcl~lus of event,', New generation
compntin.g 4(1), 67-95.

NlcCarthy, J. and Hayes, P. J. (1969), Some philosophical problems from the stand-
point of artificial intelligence, in B. Meltzer and D. Michie, eds., 'R/la,chine In-
telligence', Vol. 4, American Elsevier Publishing, pp. 463-502.

McDermott, D. V. (1982), 'A temporal logic for reasoning about processes and plans',
Cognitive Science 6, 101-155.

Meyer, B. (1988), Object-Orsented Software Construction, Prentice Hall, Englewood
Cliffs, NJ.

Nlichotte, A. E. (1963), The Perception of Causality, Basic Books, New York.

Mortensen, C. (2002), Cha#nge, in E. N. Zalta, ed., 'The Sta,n-
ford Encyclopedia of Philosophy (Winter 2002 Edition)',
http://plato.stanford.edu/archives/win2002/e~~tries/change/.

Oracle (2002), 'JDBC developer's guide a,nd reference'.

Pearl, J. (2000), Causality: ~Models, Rea.soning, and Inference, Cambridge University
Press, Cambridge, UI<.

Peuquet, D. and Duan, N. (1995), 'An event-based spa,tiotemporal data model
(ESTDM) for temporal analysis of geographical data', International Journal
of Geo.graphicu1 InJomation System 9(1), 7-24,

Peuquet, D. and Wentz, E. (1994), An approach for t,ime-based analysis of spatio-
temporal da,ta, in, T. IYaugh a,nd R. Healey, eds., 'Proceedings of Sixth Inter-
national Symposium on Spatial Da,ta Ha,ndling', Edinburgh, ScotJand, pp. 489-
504.

Ramakrishnan, R. and Gehrke, J. (2000), Database Manayement Systerns, h'IcGraw
Hill.

Shoham, Y. and Goyal, N. (1988), Representing time and action in artificial intelli-
gence. http://citeseer.ist.psu.edu/15~1/15G.ht~~~l.

Smith, J . M. and Smith, D. C. (1977), 'Database abstxactions: Aggregation aild
generalization', ACAd Tr.ansnctsons on Database Systems 2(2), 105-133.

Stell, J. and \Vorboys, WI. F. (1999), Generalizing graphs using alnalgamation and se-
lection, in R. Guting, D . Papadias and F. Lochovsky, eds., 'Advances in Spatial
Databases, 6th International Symposium, SSD'99', Hong Kong, China, pp. 19-
32.

Timpf, S. (1999), Abstraction, levels of detail, and hierarchies in map series, zn
C. Freksa and D. Mark, eds., 'Spatial Information Theory - Cognitive and Com-
putational Foundations of Geographic Information Science', Springer-Verlag,
Stade, Germany, pp. 125-140.

Worboys, M. F. (1994), 'A unified model of spatial and temporal information', Com-
puter Journal 37(1), 26-34.

Worboys, M. I?. (1995), GIs: A Computing Perspective, Taylor & Francis, London,
UK.

Worboys, M. F. (2001), Modeling cha.nges and events in dynamic spatial systems
with reference to socio-economic units, in A. Frank, J . Raper and J.-P. Cheyla.n,
eds., 'Life and Motion of Socio-Economic Units', Taylor & Fra,ncis, London, UK,
pp. 129-138.

Worboys, M. F. (2003), Knowledge discovery using geosensor networks, in 'Geo-
Sensor Network', Portland, ME.

Worboys, M. F. (2005), 'Event-oriented approaches to geographic phenomena', Inter-
national Journal of Geographical Information Science, Accepted for publication.

Worboys, M. F. and Hornsby, K. (2004), From objects to events: GEM, the geospatial
event model, in 'GIScience 2004', MaryInnd.

Zacks, J. and Tversky, B. (2001), 'Event structure in perception and conception',
Psychological Bulletin 127(1), 3-21.

BIOBRAPHY OF THE AUTHOR

Rui Zhang was born in Ningguo, P. I t . China on May 14, 1978. He aktended

school in Jixi, and graduated from Jixi Middle School in 1995.

He obtained a B.S. in Mathematics from Kanjing Universit,~, Nanjing, P. R. China

in 1999, and an M.E. in Computer Science from Nanjing University in 2002. His

research interests during this time related to security database. He was a research

assistant a t the Database Laboratory in Nanjing University, and was involved in the

project of designing a security database management system a t B1 level. He was also

interested in spatial database, and his master tllesis was titled, "An I~riplementation

of Spatial Database Based on PostgreSQL." He worked as a part tirlie software

programmer for NandaSoft Co. Ltd., Nanjing, P. R. China when he was studying

for his master degree.

After rriovirlg to Maine in September 2002, he was enrolled for grac1uat.e st.u<ly

a t the University of klaine aid served as a Cr;~.tluate Iicsearch Assistant in tlic

Department of Spatial Information Science and Engineering. He is a candidate for

the Mastcr of Science degree in Spatial Informat'ion Science anti Engineering from

the University of Maine in RJay, 2005

	The University of Maine
	DigitalCommons@UMaine
	5-2005

	Hierarchies for Event-Based Modeling of Geographic Phenomena
	Rui Zhang
	Recommended Citation

	tmp.1326819847.pdf.kezA4

