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Modeling the dynamic aspect, or change, of geographic phenomena is essential to 

explain the evolution of geographic entities and predict their future. Event-based 

modelling, describing the occurrences ra.ther than states of geographic phenomena, 

gives an explicit treatment of such change, but currently does not have the support 

of the mechanisms to enable the shifts among different granularities of events. To 

account for different tasks, a hierarchical representation of the event space a t  different 

granularities is needed. 

This thesis presents an event-based model; a general framework for representing 

events based on precondition and postcond~:tion, using Allen's temporal interval logic. 

It captures not only the changes to the objects, but also some contextual information 

that  is necessary for the occurrence of events. Analogous to objects, events have 

types and instances, and two abstraction proccsscs in the object-oriented paradigm, 

generalizi~tion and a.ggregation, a,re applied to events. Event-event relations a.re 

investigated through thcir preconditions and post,conditions. 



Our representation of relationships between events is based on two relations be- 

tween events, f-sequences and f-transitions. These relationships play an important 

role in describing the structure of a component event in the event partonomy, and 

therefore provide a mechanism to construct the event partonomy automatically. This 

research constructs an algorithm to generate the part-whole hierarchy for events, 

which supports multiple representations of events and enables shifts among them. 

To illustrate the process of constructing the event partonomy, we give a case study 

of a car accident scenario. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Geographic Information Systems (GISs) capture, model, manipulate, analyze, and 

present geographically-referenced data (Worboys 1995). In geographic pheno~nena 

change is pervasive, and is often brought about by human activities (e.g., changes of 

people's locations when traveling, and changes in regional cadastral information over 

time). Applications dealing with changes in geographic phenomena are examples of 

spatio-temporal applications. Relevant work (Al-Taha and Barrera 1990, Worboys 

1994, Peuquet and Wentz 1994, Frank 1994, Egenhofer and Golledge 1994) has been 

done to  model dynamic geographic phenomena by incorporating time in the GISs. 

An identity-based model of change (Hornsby 1999) gives a systematic treatment of 

change with the goal of developing and formalizing a set of fundamental changes 

with respect to the existence or non-existence of identifiable objects. In these efforts, 

however, change is not captured explicitly, and changes must be deduced from the 

differences in objects over time. 

Another contribution to representing and reasoning about the dynamic world 

comes from the disciplines of artificial intelligence and natural language computation. 

This work models the reasoning of intelligent agents as they plan to act in the 

world, and supports tasks like prediction, planning, and explanation (Shoham and 



Figure 1.1 : A constructioll event example 

Goyal 1988). Work on temporal interval logic (Allen 1984, Allen and Ferguson 1994) 

provides a more extensive logical framework for representing and reasoning about 

the dynamic world. 

Change is captured by occurrents, things that happen (Grenon and Smith 2004). 

Processes, events, and actions are all occurrents, but they are defined from different 

perspectives (Worboys 2005). For simplicity, we take all occur rent,^ as events. In 

this thesis, we are concerned with physical changes made as a result of dynamic geo- 

graphic phenomena. An event is taken to be a single physical change or a composite 

of physical changes during a time interval, and it is represented as a pair of situa- 

tions, before and after the event takes place. For example, Fig. 1.1 schematically 

shows the construction of housel on 1 ~ n . d ~  as an event occurrence during the time 

interval [to, t l ] ,  represented in a discrete manner by giving states of objects housel 

and landl at time to and t l .  



1.2 Research Motivation 

Although the event-oriented model (Worboys 2005) gives us a treatment of events 

when modeling dynamic geographic phenomena, representations of events often re- 

quire changing from one level of detail to another, so tha.t users can carry out a 

desired task (Buttenfield and Delotto 1989). The level of detail is referred to as 

granularity (Hobbs 1990, Hornsby and Egenhofer 2002). To efficiently carry out 

our tasks in dynamic geographic applications, that is, reasoning about our actions, 

GISs must support representations of events at  different granularities together with 

capability to  shift between levels of detail (Buttenfield and Delotto 1989, Hornsby 

1999). In this way, each task will be associated with its representations of events 

at an appropriate level of detail. Monitoring of people's travel, for example, may 

need to be examined at different granularities. If users want to query an information 

system for popular destinations, for example, they should not be asked to analyze 

detailed information such as individual travel plans. Shifting representations from 

a finer granularity to a coarser granularity can improve one's understanding of the 

information space, while working a t  a finer granularity may uncover something that 

is not known (Hornsby 1999). 

Our approach to providing multiple representations of events is to provide mcch- 

anisms to derive representations at  lower levels of detail. In a data.base system, this 

may be done through a hierarchy, which expresses the granularities of objects from 

certain concept. A concept hierarchy (Han and Kambr 2001) "defines a sequence of 

mappings from a set of low-level concepts to higher-level, more general concepts." 

This is indicated implicitly through a total or partial order among attributes. For 



country 

sta te  

city 

Figure 1.2: A concept hierarchy for location 

example, the concept location is described by attributes city, state, and countmj. A 

concept hierarchy for location is shown in Fig. 1.2, and it defines a sequence of 

mapping from a set of cities (low-level concept) to states (higher-level concept), and 

from a set of states to countries. Concept hierarchies convey how objects are related 

from concepts (e.g., location) and, thereby, provide background knowledge helping 

us to derive representations of detailed raw data at coarser levels of detail. A concept 

hierarchy provides a stratcgy of data reduction, or an abstraction technique, which 

is applied to obtain a representation of the data that is smaller in stored volume, yet 

closely maintains the integrity of the original data. In general, a concept hierarchy 

is represented as a tree, but it may a.lso be in the form of a part,ial order. 

After events are introduced as primitives in the event-oriented model, we can 

construct event hierarchies to hierarchically structure the event space. 



Figure 1.3: An event hierarchy 

Definition 1.1 (event hierarchy). Let & be the event space, which includes a set 

of events we are concerned with according to some application domain. An event 

hierarchy defines a sequence of mappings from low-level events to higher-level events 

through a partial order relation. 

An event hierarchy can be depicted by a Hasse diagram or a directed acyclic 

graph (DAG) with nodes representing events in E and edges representing partial 

order between events at  different levels of detail. When shifting from a low-level 

event to a higher-level event, we get a coarser representation of the event. Instead of 

drawing an arrow from a low-level event to a higher-level event, we place the higher- 

level event higher than the low-level event and draw a line between them. Each node 

in the event hierarchy may have multiple parents. For example, Fig. 1.3 shows an 

event hierarchy for the event spacc E = {El, E2, E3, E4,  E5, E6, E7, ES, E9}, and the 



partial order relation is 

{(El,Es)r (F,E5) ,  (Es ,Es) ,  (E31E6), (Eq,E6)' (Es,E7)> 

(E6, (E6, Es), (E71 (E8, E d  

An event hierarchy enables shifting between levels of detail: a fundamental require- 

ment for reasoning. This hierarchy may be provided by system users, domain ex- 

perts, and/or knowledge engineers. Its manual production may be time-consuming 

and tedious; automatic generation of the hierarchy dynamically according to users' 

perspectives is highly preferred. 

1.3 Goal 

The goal of this thesis is to provide different representations of dynamic geographic 

phenomena. This is achieved through automatic generation of an event hierarchy, 

which enables shifting between different granularities. Specifically, we are investigat- 

ing the following questions: 

1 .  What is the underlying structure for level of detail of dynamic geo- 

graphic phenomena? 

2. What is needed to construct this structure automatically? 

The construction of the hierarchy clcpends on the model used for dynamic geographic 

phenomena. Answers to the first question may be investigated by defining an event- 

based model, in which events are introdi~ced as primitives. The basic task here is 

to give a framework for the represcntalion of events and to provide event operations 

for deriving the representation of e\lcnLs at lower levels of detail. The answer to 



the second question may be found by invc.:stigat,ing various relations bet,~\:een events. 

So, primary goals of this work are to: (1) define a model for representing cvenls: 

(2) investigate relationships between events, (3) propose algorithms to construct tlic 

hierarchy. 

1.4 Scope of Thesis 

From an ontological perspective, entitics in dynamic geographic phenomena are 

divided into continuarlt,s and occurrcnts (Grenon and Smith 2004). In this thesis, we 

may use the word "object" to refer to a continuant entity, and take all occur rent,^ 

as events. It is necessary to model both objccts and events for the dynamic world, 

if static and dynamic aspects of tche world are both be reprcsented. These two 

categories of entities are relevant to  each other, since events cannot exist without 

the participation of objects, and conversely. We do not cover the representations of 

objects in this thesis, and the discussion of different relations between objects and 

events (Grenon and Smith 2004, Worboys and Hornsby 2004) is also beyond the 

focus of this thesis. 

1.5 Approach 

In this research, we use the everit-oriented model (Worboys 2005); applying concepts 

from the object-orientcd model, but treating events as though structurally similar 

to objects. An event type (event) characterizes common properties of a set of event 

occurTences (occurrences). A fra,~nework for reprcsclitirlg events is proposed based 

on the concepts of precondition and postcondition. These two concepts are borrowed 



hom the field of software programming (Gries 1981), but they have different defini- 

tions in this thesis. Preconditions and postconditions describe the states of objects 

belore and after an event occurs. The postcondition records the states of the ob- 

jects after they are changed, while the precondition records these objects' initial 

states and also the states of relevant objects that do not appear in the postcondition 

(Their formal definitions will be given in Chapter 3). 

In the object-oriented approach, two methods, generalization and aggregation, are 

used to abstract excessive information a t  different granularities (Smith and Smith 

1977). In the event-oriented approach, they can also be applied to events, producing 

the event taxonomy and event partonomy. 

Generalization involves the relating of a collection of abstractions taxonomically 

based on similarities, and the event taxonomy enables us to switch to coarser rep- 

resentations based on similarities within some collection of finer representations. In 

the event taxonomy, "is-a" forms a special relationship between events. 

In an event partonomy, events are aggregated into a composite event. A compos- 

ite event provides a higher-level a.bstraction of what is happening by suppressing the 

details of its component events. This is similar to amalgamation (Stell and Worboys 

1999), a process of collapsing two or more objects into a single object a t  some coarser 

granularity. The construction of the event pnrtonomy could be achieved by aggre- 

gation, combining several events into a higher-level event. This process is typically 

required when two representations differ in levels of detail, since some events may be 

viewed either as a single composite event, or as :I set of component events. 



Aggregating events also involves other challenges, for example, discovering the 

semantics associated with these events and their relationships. After events are 

introduced into the system as primitives, event-event relations become important 

(Worboys 2003). Michotte (1963) argues that causal relations between events are 

important for people to perceive and understand events. Events possess a causal 

perceptual structure as well as a partonomic perceptual structure, with which the 

causal perceptual structure is highly correlated (Zaclts and Tversky 2001). So causal 

relations provide important contextual information, allowing events to be aggregated, 

and facilitating the automatic construction of a hierarchy. 

1.6 Major Results 

The major result of this thesis is a general framework for representing events based 

on precondition and postcondition. Two types of event hierarchies are developed, 

an event taxonomy and an event partonomy. These provide multiple representations 

of events and enable shifting between different granularities. An event partonomy is 

generated automatically, by aggrega,ting events based on two event relations, sequence 

and transition. Taxonomies and partonomies are developed to  capture the relations 

we perceive between events. We also propose algorithms, both to  construct t,he 

event partonomy and to  derive representations of composite events. To implement 

the process of constructing event hierarchies, a prototype is designed, and applied to 

an example in order to demonstrate our. model. 



1.7 Organization of Remainder of Thesis 

The remainder of this thesis is organized as follows: Chapter 2 tlescribcs work on 

two different ontologies for spatio-temporal information systems, SPAN and SNAP. 

SPAN is an ontology of explicit event entities. Different approaches to representing 

events are reviewed, including the event calculus and temporal interval logic. The 

chapter also briefly describes work on people's perceptual representations of event 

hierarchies according to causal relations between events. 

In Chapter 3, an event-oriented model is discussed, in which concepts from object- 

oriented models are applied to events. The temporal interval logic studied in Chapter 

2 is used to represent events. Two event hierarchies, the event taxonomy and the 

event partonomy, are described. These are shown to support multiple representations 

of events and enable shifts between them. 

In Chapter 4, causal relations between events, used by people when aggregating 

events, is investigated from a formal perspective. We develop two event relations 

between events: sequence and trmnsition, which are used to approximate to causal 

relation. In addition, an algorithm is given to automatically construct an event 

partonomy. 

Chapter 5 describes a prototype implementation using the Oracle platform. The 

system generates the event partonomy according to a set of event occurrences as 

defined by the user. To show how the system works, a case study is given that 

demonstrates the process of constructing an event partonomy for an example appli- 

cation. 



In Chapter 6, we review and evaluate the objective, methodologies, and major 

results of this thesis. In addition, we give some recommelldations for future work. 



Chapter 2 

Spatio-temporal databases and other spatio-temporal knowledge sysleins are repre- 

sentations of a reality that is inherently dynamic and characterized by continuous 

change (e.g., your journey, or the El Nino phenomenon). One aspect of change is 

atemporal difference, such as differences in temperature in different parts of the hu- 

man body. Another aspect of change is given by differences in objects' spatial or 

tispatial properties over time (Mortensen 2002). This temporal change is the focus 

of the remainder of this thesis. 

Temporal changes are pervasive in dynamic geog~a~phic phenomena. They need 

to be introduced as primitive elements. A change occurs if and only il  there exists 

a proposition p and distinct times t and t' such that p is true a t  t ,  but false at  t' 

(Worboys 2001). Since objects preserve their identities through change, we can trace 

change by comparing states of objects a t  different; times (Hornsby 1999). 

This chapter reviews previous work on two different aspects of an ontology for 

dynamic geographic phenornena, in which different primitives are recognized as dis- 

tinguishing between changes and objects. We also review previous work on for- 



ma1 models of dynamic phenomena, including situation ca.lculus, event calculus, and 

interval logic. Then we describe the work on perceptual representatiolis of event 

hierarchies and causal relations between events. 

2.1 Ontologies for Spatio-Temporal Information 

To distinguish between changes and objects, entities in reality are divided into two 

categories: continuants (e.g., a mountain), existing in full a t  every instant during 

their lifetime, and occurrents (e.g., a football match), which could never exist in full 

at  any single moment (Grenon and Smith 2004). Continuants do not have temporal 

parts, though they may have spatial parts. They may change over time, but they 

always preserve their identities. 

Based on continuants and occurrents, two different perspectives of an ontology 

for dynamic phenomena, SNAP and SPAN, have been developed (Grenon and Smith 

2004). From the perspective of SNAP, only continuants (SNAP entities) can be 

recognized, and reality is decomposed into 3-dimensional spatial slices. From the 

perspective of SPAN, occurrencts (SPAN entities) are recognized and evolve or unfold 

themselves during their lifetime. 

Grenon and Smith (2004) categorize SNAP entities as substantial entities, SPQR 

entities, and spatio-temporal regions. The substantial entities include substances 

and their fiat parts, boundaries, aggregates, and sites (Fig. 2.1). SPQR entities are 

dependent on substantial entities; that is, there is no color for the car unless the 

car exists. However, they are not confined to attributes or properties; they also in- 

clude relationships among substantial entities. Spatio-temporal regions can be either 



Figure 2.1: Hierarchical structure for substantial entities 
(Grenon and Stnith 2004) 

Substantial Ent i ty  

substantial entities or attributes of some substantial entity. SPAN entities are also 

categorized as perduring processual entities, temporal regions, and spatio-temporal 

regions. Processual entities include processes and their fiat parts, boundaries, aggre- 

gates, and settings. 

The terms "event," "process," and "action" are used to specify the SPAN entities, 

and some difficulties arise concerning the meaning of these terms and the differences 

between them (Worboys 2005). For simplicity, "event" is chosen as the term for 

SPAN entities, and "object" is chosen for SNAP entities. From the view of SPAN, 

Substance 

the dynamics of spatio-temporal phenomenon are understood as events and relations 

arranged among them. To model dynamic systems, an event is used to denote the 

scenario of a single change or a composite of changes to objects (Worboys 2001). 

Such a definition of "event" is different from that in the event-based spatio-temporal 

data model (Peuquet and Duan 1995), in which an event only is used to denote 

changes to cells on a single thematic domain (e.g., land use of the population). 

In summary, the SPAN ontology makes the notion of change explicit, and it is 

an important way in which we humans esperience reality in our lives (Bittner 2002). 

Therefore, it is necessary to use a SPAN ontology when representing dynamic phe- 

Boundary Aggregate Fiat Site 



nomena. In general, most current systems are based on a SNAP approach. Grenon 

and Smith (2004) argue that a good ontology should incorporate both continuants 

and occurrents, so that both the static and dynamic aspects of the world can be 

represented. 

2.2 Formal Models 

This section describes two kinds of formal models for representing the dynamic world, 

SNAP-based and SPAN-based, as a result of two different views of the ontology for 

dynamic phenomena. In the SNAP-based models, changes are derived from the 

temporal sequence of objects, their attributes, and relations. SPAN-based models 

explicitly describe changes as properties of events. To begin with the discussions on 

these two types of models, we first introduce the notion of fluent. 

2.2.1 Fluents 

Fluents model time-varying SNAP entities, such as the existence and color of a car. 

Such configurations constitute situations. A situat?:on is defined using a situation 

function a,  which specifies a state of the world (situation) for each inst-ant of time. 

Formally we have 

a : T + Sit 

where T is the time domain and Si t  is the set of situations. There is a one-to-one 

mapping from T to Si t  if a linear time model is considered. 



A fluent f is a function from sit11;~tions to va<lues (McCsrthy a,nd Hayes 1969). 

f : Sit  + Range  

Each fluent has a codomain Range,  specifying a set of values that SNAP entities 

can take in different situa,tions. Galton (2000) simplifies the definition of a fluent; by 

omitting all explicit references to situations a.nd defines it to  be a function from time 

to values. 

(2.1) f : T t Range  

For example, color(car) is a fluent: 

(2.2) color(car) : T 4 Color  

in which the range is Color,  a set of color values. 

Fluents describe SNAP entities and are classified according to the types of their 

ranges. For example, a particular world might be specified by, among other things, 

whether or not a car is moving (a Boolean fluent), the position of the car (a spatially- 

valued fluent), and the speed of the car (a float-valued fluent). A fluent is called a 

Boolean fluent if its range is a set of truth values (i.e., true or false), denoted by B. 

Any fluent gives rise to Boolean fluents. Given a fluent f (Eq. 2.1), its Boolean 

fluents may be defined by 

s --d.f (f = v), v E Range  

For each value v in Range ,  the Boolean fluent s is assigned true if f takes v, and 

false to  the rest (Galton 2000). 

s : T - + L ?  



s( t )  E d e ~  (f ( t )  = V) 

For example, fluent color(car) enables us to get specific Boolean fluents, such as 

color(car) = white. 

color(car) = white : T -f B 

So the Boolean fluent records certain states of thc the SNAP ent,ity (i.e., color(car)) 

when it is true. To access what SNAP entity has bccn recorded by s, we use the 

predicate f luent(s), for example, f luent(color(car) = white) = color(car) . In general, 

Boolean fluents are specified by lzolcls(s, L ) ,  specifying whether a Boolean fluent s is 

true a t  a particular time t 

holds: S x T + B 

where S is the set of Boolean fluents. 

A fluent is essentially a temporal field allowing us to create events in just the same 

way we create objects from a spatial field (Galton 2003). In SNAP-based models, 

Boolean fluents are used to give states of objects, while in the SPAN-based models 

they are used to trace changes when representing events. 

2.2.2 SNAP-based Models 

In the situation calculus (i\lIcCarthy and Ha,yes 1969), the world is represented by a 

sequence of situations, and actions are defined to  be transitions between situations. 

A situation can be tracked through an initial situation and definitions of actions. 

Given an initial situation and a sequcnce of actJions, thc initial sit;uation will be 

tra81isformed into the result situation through a composition of thc actions. 



There is no explicit temporal model in the situation calculus and actions are 

assumed to be point-based, occurring one after another. So it is difficult for the 

situation calculus to deal with temporally complex actions (e.g., actions that over- 

lap). The situation calculus can be considered as a point-bascd terriporal logic with 

a branching time model. No assertion exists during any action, and there is no 

mechanism to represent knowledge about how long an effect will hold. 

The identity-based approach (Hornsby 1999) gives a set of primit,ives that define 

a set of fundamental change operations, which are derived from the identity status 

of an object and are based on the notion of existence. In this work an object's 

status can be one of: object existence, object non-existence without history, and ob- 

ject non-existence with history. Each object has a temporal sequence that describes 

its states during its lifetime. Temporal change is captured by tra.nsitions between 

adjacent object states within this sequence. Object states and changes during an 

object's lifetime can be tracked by mea.ns of the object's identity. In this model, 

change is based on the notion of existence and nonexistence of objects, so it may not 

be appropriate for other types of change, e.g., changes of object color or shape. In 

addition, change is recorded qualitatively, based on temporal order, and no quanti- 

tative or metric measures are employed to  represent the temporal interval in which 

any change is taking place. 

2.2.3 SPAN-based Models 

In SNAP-based models, basic entities are continuants and their states, while in the 

SPAN-based models basic entities characterize change. 



2.2.3.1 Event  Calculus 

The event calculus (Kowa.lski and Sergot 1986) is a temporal formalism to model 

scenarios in which basic units are events and each event is an instance of an event 

type. The basic concepts are event and property. A Boolean fluent, p, describes 

a time-varying property. Two predicates, Initiate(e, p) and Temina te (e ,  p), are 

used to describe the relationships between events and properties; event occurrence 

e initiates the property p, and event occurrence e terminates the property p. In the 

event calculus, p holds over a time period, ranging from the time point when an 

event e initiates p to the time point when another event e' terminates p. No event 

occurring between the occurrence of e and e' affects p. 

2.2.3.2 Interval Logic 

In the event calculus, events are instantaneous. To extend the event calculus, Allen 

(1984) proposed the temporal interval logic based on the calculus of temporal inter- 

vals (Allen 1983). 

In interval logic, the predicate holds(s, t )  is used to indicate that the Boolean 

fluent s is true during t. Time intervals rather than time points are used as primitive 

elements in the interval logic (Allen 1984). This arises from the observation that 

times of events or states may be decomposed into subtimes. For example, in the event 

that Mary prepares dinner, it is possible to look more closely at its occurrence and 

decompose the event into its component events, such as the event that Mary washes 

vegetables and the event that Mary cooks vegetables. We cannot look more closely 

a t  an instantaneous event, because time instants cannot be furt,her decomposed. 



It is not necessary to introduce both time points and time intervals as primitives 

into the temporal logic, since this would force a decision as to whether the time 

intervals are open or closed, leading to inconsistency and truth gap problems (Allen 

1984, Galton 1995). McDermott (1982) takes time points as primitives and defines 

intervals in terms of their endpoints. In the famous example of light-on and light-off, 

the light is off in the interval tl = [a, b], and at the point b we push the switch, then 

the light is on during the interval tz = [b, c]. If both time points and time intervals 

are introduced as primitives, we need to Itnow the state of the light at  time point b. 

Considering the intervals to be open leads us to reason that the light is neither on 

nor off at time point b; whereas considering the intervals to be closed leads to the 

conclusion that the light is both on and off at  time point b. 

There are several ways to introduce time intervals into logical formalisms: first- 

order logics with temporal arguments, and reified temporal logics (Allen and Fer- 

guson 1994). The latter "reify" standard propositions of the classical first-order 

language as objects denoting propositional terms. 

In first-order logics, a time interval is associated with each predicate directly. 

This is, however, insufficient to represent events, because they require potentially 

unbounded qualifications (Davidson 1967). For example, the event of Tom travelling 

from New York to Boston (ETravel) might be asserted to occur during t l ,  using the 

predicate Travel(Tom, New York, Boston, t l) .  The problem arises when representing 

the event of "Tom travels from New York to Boston by taking the Greyhound" 

(ETravell). We can either introduce another predicate to  represent this ltind of event, 

like Travell(Tom, New York, Boston, Greyhound, t l ) ,  which has an additional argument 



for the means of transportation, or we can extend the predicate Travel, and usc it to 

represent both kinds of events. In the former case, we produce a lot of pretlica.t.es, 

such as Travel and Travel1 describing essentially the same thing. In the latter case, we 

have a lot of argument positions left unspecified in some particular event description. 

Actually, we cannot give a limit to the number of argument positions needed. It  may 

appear that we always need another argument to a,dd more information that has not 

yet been captured (Allen and Ferguson 1994). 

In reified logics, propositions are related to times through a truth predicate such 

as holds. For example, holds(shape(rockl) = sl ,  t l)  means the shape of object rockl 

during t l  is sl, or the Boolean fluent shape(rockl) = sl is true during t l .  Therefore, 

returning to the above travel example, we can represent ETravel using Eq. 2.3, and 

represent ETravell using Eq. 2.4. Two predicates begin(tl) and end(tl) are used to 

retrieve zero-duration intervals a t  the beginning and end of tl. location(Tom) specifies 

the location of Tom and transportation(Tom) specifies the transportation that Tom 

takes. 

ETravel holds(location(Tom) = New York, begin(tl)) 

(2.3) A holds(location(Tom) = Boston, end(tl)) 

ETravell = holds(location(Tom) = New York, begin (tl )) 

A holds(location(Tom) = Boston, end(tl)) 

A holds(transportation(Tom) = Greyhound, t l )  



Figure 2.2: F~inctional dependencies for Travel event 
(Eclipses denote sets of attributes and arcs indica.te functional dependencies) 

This approach is very similar to  decomposing a relation schema into a collection of 

Boyce-Codd Normal Form (BCNF) relation schemas, based on functional dependen- 

cies (Ramakrishnan and Gehrke 2000) (Fig. 2.2). 

2.3 The Event Hierarchies 

A hierarchy is one of the most common techniques for organizing and structuring 

complex systems (Hirtle and Jonides 1985, Hirtle 1995, Timpf 1999). In a hierarchy, 

a system is subdivided into smaller subsystems, and further subdivision may be re- 

cursively repeated as long as each subdivision makes sense (Koestler 1967). Physical 

reality can be organized through hierarchies, providing representations a t  levels of 

detail, from subatomic reality to galaxies. Levels of detail that humans can com- 

prehend directly are in the middle of that range (Gibson 1986). Events also have 

hierarchies, which provide multiple representations a t  different levels of detail from 

simple physical changes to large-scale events (Za.cks and Tversky 2001). 



In perceptual psychology, an analogy exisls between objects and events and events 

belong to categories and have parts (Zaclts and Tversky 2001). Events can be orga- 

nized into event taxonomies. There exists a special relation, is-a, between events at  

different taxonomic levels. For example, if El is the event of Tom going to school 

by bus and Ez is the event of Tom going to school, we may write is-a(E1, Ez).  The 

number of features for events increases from superordinate to subordinate levels in 

the event taxonomy. An event partonomy is developed through the part-of relation 

between events. For example, if E3 is the event of Tom getting to the bus station, we 

may write part-of (E3,  El).  Barker and Wright (1954) suggest that events are in fact 

perceived by people as partonomically organized. During their experiments, small 

units with fine detail in the event partonomy tended to be related to minor subgoals 

and thus went unnoticed by the participants. Large units with coarse detail, which 

may be related to large ongoing goals, also often went unnoticed. Between these two 

extremes were units that Baker and Wright described as behavior episodes. Behavior 

episodes are analogous to physical objects like tables, which can be seen with the 

"naked eye." People develop the event partonomy of an ongoing activity as it hap- 

pens, by aggregating behavior episodes into higher-level events, some of which may 

later be further aggregated (Zacks and Tversky 2001). When considering higher- 

level events, details of their component events are suppressed. Relations between 

component events play a role in describing higher-level events of which they may be 

part. 



2.4 Event-Event Relations and the Event Partonomy 

In the event partonomy, higher-level events are characterized by their component 

events and by relations between component events. These relations might help us 

construct event partonomies automatically. 

Spatial and temporal relations between events provide clues to appropriate types 

of event aggregation, but are not the main factors for us to aggregate component 

events. For instance, the events of a traffic light turning red ( E l )  and the stopping 

of the traffic at  the intersection (E2 )  can be aggregated into a higher-level event (i.e., 

traffic stop in front of the traffic light). In this scenario people tend to  believe that 

the temporal relation, El occurs before E2, determines the aggregation of events. 

However, the temporal relation between the occurrences of El and E2 is just a result 

of another type of event relation. If the event of Tom waking up (E3)  occurs sight 

after El,  aggregating El and E3 together does not help us to understand the scenario. 

Similarly, the same problem arises when we try to aggregate events through their 

spatial relations. For example, it is not necessary to aggregate the events of Tom 

going from A to B ( E d )  and Mary going from A to B (E5) , even though both 

Eq and E5 occur in the same spatial location (i.e., the route from A to B). But if 

there is another event of a meeting between Tom and Mary at B, the possibility of 

aggregating E4 and E5 increases. 

Pearl (2000) notes that causa.1 relation is the stable mechanism that organizes 

the world, and is the key relation for aggregating events. The common sense view of 

causal relations is that one event (the cause) is supposed to bring about or produce 

an occurrence of a second event (the effcct). There are two views on causa.lity: 



whether a single process of perceiving causality is innate, or whether it is learned. 

The philosopher Hume (1739) argues that perceiving causality is a learned process, 

from repeated observations of the conjunction of two events, their spatio-temporal 

contiguity, and the temporal priority of one event relative to the other. It  is not 

possible to "prove" the existence of causality. Kant (see Kant 1781) argues that 

causality is an innate and core part of cognition. The essence of causality is an 

"ampliation" of movement, in which the motion of the first object is transferred to 

the second object. Causality is characterized by a tension between the individuality 

of the objects and the perceptual integrity of motion that transfers from one object to 

the other, which corresponds to "contour discontinuities" in the temporally extended 

events (Zacks and Tversky 2001). 

2.5 Summary 

Previous work on the two ontological perspectives, SNAP and SPAN, of dynamic 

geographic phenomena is described in this chapter. These two ontologies relate to 

different formal models. Although SNAP-based and SPAN-based models can be used 

to  describe the same geographic world, they differ in that only SPAN-based models 

represent changes explicitly, through events and their attributes. 

Analogous to  continuant  object,^, events also have hierarchies, providing multiple 

representations of events and enabling shifts between them. Finally, relations among 

events are discussed, which provide the key to the process of constructing event 

partonomies. 



Chapter 3 

AN EVENT-ORIENTED MODEL 

The storage and representation of dynamic geographic phenomena depends on the 

data model used. In an event-oriented model, events that capture changes are intro- 

duced as primitives, and they are treated in the same way as objects are treated in 

the object-oriented model. Concepts from the object-oriented model such as classes 

and instances are applied to events. In this chapter, we develop a framework to  

represent events based on the concepts of precondition and postcondition. An event 

occurrence is instantiated by assigning the event a time value. We also discuss two 

event hierarchies, event taxonomy and e,ucnt partonomy, which enable us to organize 

the information of the event space at different levels of detail. Properties of these 

hierarchies are also investigated. 

3.1 Event vs. Object 

From an object-oriented view, the world is viewed as a collection of objects, with 

properties, behaviors, and relationships between each other. However, the object- 

oriented approach is not capable of capturing the dynamic aspects of geographic phe- 

nomena. F'rom an event-oriented view, dynamic geographic phenomena are viewed 

as colIections of events, with proper tic:^ and relationships between each other. 



Objec t-oriented Event-oriented 

Instance El 
Event Type 

Event Occurrence I; 
Figure 3.1: Object-oriented view vs. event-oriented view 

There is a difference betwccn the events used in this thesis and those defined 

in programming languages (e.g., a mouse click event). In programming languages, 

events are considered as special objects with attributes such as sender, receiver, and 

type. However, such attributes only tell static information about events without 

giving us any idea on how these events occur. In this thesis, events are considered as 

composites of physical changes. These cha,nges constitute patterns that may occur 

repeatedly. A group of occurrences of the same event type share the same pattern of 

changes, just like objects (or events defined in programming langua,ges) of the same 

class have the same attributes. Similar to the concept of object type, event type (or 

event) is used to  specify the pattern, while event occurrence (or occurrence) is used to 

denote the instance of the relevant event. Fig. 3.1 shows the corresponding concepts 

at the same level in the object-oriented a,nd event-oriented world. We use notation 

El,  E2: .  . . to denote events. Occurrences of event Ei are denoted by eil, ei2,. . .. 

In the following section, we will discl~ss the fra.mework for representing events and 

occurrences. 



3.2 Event Structure 

In the object-oriented model, objects are recognized through their clistilictive charac- 

teristics, such as shapes, colors, textures, and tactile properties. By defining classcs 

using attributes and methods, we represent common characteristics of the objects 

belonging to the same class. Some of the examples of attributes or instance variables 

are name, shape, and position. In our event-oriented model, an event is de- 

fined by its precondition and postcondition, a component events list, and 

a time attribute. 

An event denotes a composite of physical changes. Occurrences of the same 

event have the same pattern of changes, but they are independent, different from 

each other, and have distinct occurrence times. Event occurrences have temporal 

boundaries, and are modeled using two sorts of time. We use local time to specify 

the time interval that is relative to the starting point of the event, and global time 

to specify the time interval of the event occurrence. For example, the local time of 

an event may be the time slot [8,9]. The global time of a specific occurrence may 

be specified as a time interval [t + 8, t + 91 where t is the time point when the event 

starts to occur. 

3.2.1 Precondition and Postcondition 

An event is characterized by changes. \;\% can trace these tempora.1 changes by 

comparing properties of objects at  different times. Changes in an event are vie~ved 

in a discrete manner through sampling the dynamic world, and are characterized by 

different states of objects at  the beginning and end of the event occurrence. Based on 



Figure 3.2: Entity evolution 

the notion of existence and non-existence, changes in an event could be the creation 

or destruction of the object (Hornsby 1999). However, changes may include the 

alteration of attributes of an object or the alteration of relations between objects. 

In order to model changes, we use fluents, which describe SNAP entities. Each 

fluent gives rise to Boolean fluents, which record SNAP entities during the time when 

the Boolean fluents are true (Sec. 2.2.1). Based on Boolean fluents, we can represent 

changes by giving different values of a SNAP entity a t  the beginning and end of the 

event occurrence. For another example, fluent mass(rockl) describes the volume of 

rockl at  different times. 

mass(rockl) : T 4 8 

This fluent gives rise to such Boolean flucnts as mass(rockl) = ml  and mass(rockl) = m2. 

As Fig. 3.2 shows, the erosion of rockl is represented by t8he evolution of the vol- 

ume of rockl, captured by comparing the state of mass(rockl) = ml during tl with 

mass(rock,) = m2 during t2. Both time inlerva,ls tl and t2 belong to local time. Fig. 

3.3 shows the creation of rockl, and Fig. 3.4 shows the destruction of rockl. How- 

ever, the description of changes itself is not enough to  characterize an event, since 

the event is associated with contextual information, which distinguishes itself from 

other events involving the same kind of changes. 



Figure 3.3: Entity creation 

Figure 3.4: Entity destruction 

According to Davidson (1969), events are identified through their causes and 

effects. However, it is difficult to capture the causes of events, that is, a set of states 

that definitely lead to  occurrences of the events. For example, a lit cigarette left 

unattended in the forest may cause a big forest fire. But the lit cigarette itself is 

not the whole cause of the forest fire; other environmental issues (e.g., humidity and 

wind) are also involved. The effects of the event, that is, a complete set of states 

describing the change, can only be partially known. 

Instead of formalizing the cause and cffect of an event, we use two 'weaker' 

concepts, precondition and po~tcondit~ion, shifting from the necessary and sufficient 

condition of the occurrence of an event to the necessary condition. In order to get 

the precondition and postcondition, we first obtain the necessary condition for the 

event to take place. This condition characterizes changes and some initial states of 

objects, and it is a conjunction of Boolean fluents in which recordings of the same 

SNAP entity are coupled together (We call this the coupled fonn).  The next step is 



decoupled form coupled form 

Precondi t ion :  fluen t l  : 
value o f  f luen t1  a t  t l  value a t  t, 
value o f f l u e n t 2  at t3 value at t2 

Pos t cond i t i on :  flu en  t2 : 
value of f luent1 at t2 value at t3 

Figure 3.5: Representation of event in decoupled and coupled form 

to decompose the coupled form into the precondition and postcondition of the event 

(Fig. 3.5). To describe the process, we begin with definitions of precondition and 

postcondition. 

Definition 3.1 (precondition).  The precondition of an event is a proposition that 

must be true for the event to occur, and it satisfies: 

(i) the precondition is in the form of holds(sl, t l )  A . . . A holds(s,, t,) where 

holds(si, ti), i = 1, . . . , n specifies the local time interval ti when the state 

si holds, and 

(ii) si describes the initial states of objects that change during the event and also 

the states of objects that do not change. 



Definition 3.2 (pos tcondi t ion) .  The postcondition of an event is a proposition 

that must be true immediately after the event occurs, and it satisfies: 

(i) the postcondition is in the form of holds(s', , t i)  A . . . A holds(s',, th) where 

holds(s:, ti) i = 1, . . . , m specifies the local time interval t: when the state 

si holds, and 

(ii) sl describes the end states of objects appearing in the precondition that are 

changed during the event. Formally, we have 

Note that no fluents can be introduced in the postcondition that are not in 

the precondition. The changes in values of fluents in the pre- and postcondition 

characterize the change brought about by the event. 

Definition 3.3 ( e v e n t ) .  An event E is defined by its precondition and postcondi- 

tion 

Below is a typical form of a pair of precondition and postcondition of E 

(3.2) E =def < holds(sl, t l )  A . .  . A holds(s,, t,) 

A h o l d ~ ( s ~ + ~ ,  tm+l) A . . . A holds(s,, t,), 

holds(s', , t i )  A . . . A h o l d s ( s ~ ,  t;) > 



There'is a parallel here with the use of precondition and postcondition in pro- 

gramming language theory. In order to reason about the correctncss of computer 

programs, Hoare (1969) introduced preconditions and postconditions, which are for- 

mulas in first-order logic. Whenever the precondition for the program is true, the 

postcondition must be true after the program executes. Given a small piece of the 

code, for example, y := x + 5, a possible pair of pre- and postconditions for the 

statement is: 

Our use of pre- and postconditions differs from the above in two ways. Being a result 

of the program, postcondition depends on its precondition, which varies depending 

on the value for variable x,  Those variables that do not change during the execution 

of the program also appear in the postcondition. In our work, the precondition does 

not vary and must be true for the occurrence of an event, and the SNAP entity will 

not appear in the postcondition if it does not change. 

We get the precondition and postcondition of the event from the necessary condi- 

tion for its occurrence in the coupled form through the decoupling process. The holds 

predicates recording the same SNAP entities will be distributed into the precondi- 

tion and postcondition according to the temporal order of local times of the holds 

predicates. The remainder of the holds predicates will be added to the precondition. 

In general, the number of propositions in the precondition is greater than or equal 

to the number of propositions in the postcondition. 



Figure 3.6: Context information associated with the construction event 

For example, Fig. 3.6 shows the representation of the event of the construction 

of housel on landl owned by Tom. The necessary condition of its occurrence (Eq. 

3.3) not only focuses on the object housel that comes into existence because of the 

event, but also describes the ownership relation between Tom and landl, though this 

ownership does not change during its occurrence. The ownership works as contextual 

information associated with the event of constructing housel on landl. 

holds(existence(housel) = false, t l)  A holds(existence(housel) = true, t2) 

(3.3) A holds(own(Tom, landl) = true, t l )  

After we decouple Eq. 3.3, the event shown in Fig. 3.6 is represented by the 

precondition-postcondition pair: 

< holds(own(Tom, landl) = true, t l)  A holds(existence(housel) = false, t l ) ,  

(3.4) holds(existence(housel) = true, t2) > 

A SNAP entity is not allowed to be recorded more than twice in the necessary 

condition for the occurrence of an event. Eq. 3.5 is an example of an invalid descrip- 

tion for the event of rock erosion shown in Fig. 3.7. The same SNAP entity (i.e., 

mass(rockl) has been recorded three times, so we cannot distribute the predicates in 

Eq. 3.5 into the precondition and postcondition. 



Figure 3.7: A sock erosion event 

3.2.2 Time 

To deal with complicated events such as sirnultaneous events and overlapping events, 

interval logic is employed in the representation framework. Events occur and states 

are valid within time intervals. Time intervals are in the form of [a, 61, where a and 6 

are endpoints of time intervals in some units of measurement. For events occurring at 

time points, we use instantaneous intervals (zero duration time intervals) to  represent 

event occurrence times. Given a time interval L ,  we use  start(^) and  end(^) to access 

the endpoints of L. After shifting by means of a time interval L,B,~, we get a new 

interval 

We incorporate two kinds of time in our model, local tinre a.nd global time. Local 

time t is encoded in the precondition and postcondition of the event through the 

truth predicate hold.s(s, t ) .  Global tinie T is used to specify the time intcrval when 

the event actually occurs. Occurrenccs of event El are spccificd using a predicate 



occurs. For example, ell = occeirs(El, T ~ )  indicates an occur~ence of El during 71. 

Conversely, two predicates, type and tim,e, are used to get the event and time interval 

of the occurrence. 

El = type(e11) 

Using these three predicates, we build a connection between events and their occur- 

rences. An event may occur several times in the same space, but at the same time, 

only one occurrence of the event exists. 

Definition 3.4 (event occurrence). Given an everit E, its occurrence e during 

time TI is defined as follows: 

in which 

Using Eq. 3.6, we can derive the real situation for the event occurrence (e.g., 

ell) after the local time of the event (e.g., E) is shifted by means of the occurrence 

time of ell (e.g., TI). Fig. 3.8 shows the result of shifting the local time tl and t2 by 

means of the global time 71. 



Tl 

Figure 3.8: Deriving the real situation for event occurrences 

3.3 Event Hierarchy 

People arrange information hierarchically and use hierarchies to reason such complex 

systems. A hierarchy organizes information at diffe~ent levels of detail, and it is 

conceptually constructed through abstraction, a process of eliminating the irrelevant 

and amplifying the essential. 

Let E be the event space, a set of events we are concerned with according to  

the application domain. An event hierarchy is proposed to hierarchically structure 

the event space. As we see in Def. 1.1, the event hierarchy defines a mapping 

from more specialized events (low-level events) to more general events (higher-level 

events) through a partial order relation. This event hierarchy is depicted by a Hasse 

diagram or a directed acyclic graph (DAG) with nodes representing events in & and 

edges representing partial order between events at  different levels of detail. Fig. 3.9 

and 3.10 gives two event hierarchies. 

Hierarchies are distinguished by means of how they are construcled. Two ab- 

straction processes arc studied to construct the event hierarchy: generalization and 

aggregation. Generalization describes thc zs-u relation between eventsi which leads 

to the event taxonomy Aggregation is used to s t~~cly  and explain the compositional 



lunch at the cafe 

Figure 3.9: An evcllt taxonomy 

f E,: Tom eats his \ 
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Figure 3.10: An event partonomy 



structure of complex events in tho syslem, aiid it is important to understand both the 

individual events and the relationships among them. The relationship est.a8blishcd 

by aggregation is a part-of relationship that holds between two events when one is 

a part of the other. This leads to the event partonomy. Fig. 3.10 shows an event 

partonomy, and Fig. 3.9 is an event taxonomy. 

3.3.1 Event Taxonomy 

In the event taxonomy, super-event and sub-event refer to more general and more 

specialized events, respectively. The event taxonomy establishes the zs-a relationship 

between events. In the event taxonomy shown in Fig. 3.9, is-a(E1, E3) specifies 

the relationship between event El and event E3. E3 is the super-event, and El is 

the sub-event. By extracting and sharing common parts of events' preconditions 

and postcondtions, we can generalize events and place them higher up in the event 

taxonomy. Conversely, we can specialize an event by adding something that is unique 

to the event to its precondition and postcondition. 

Events can be specialized to sub-events by adding more holds predicatcs to their 

preconditions and postconditions. For an event E, we can add additional holds 

predicates to the precondition of E, indicating more contextual infor~nation for E ,  or 

we can add additional holds predicates to both of its precondition and postcondition 

to indicate new and more detailed changes we find in the evcnt. Although we can 

add holds predicates to its postcondition, the same SNAP entities recorded by the 

holds predicates musl alieady be recorded in its precondition, so as to not violate 

the definition 3.2. For example, it is wrong to use Eq 3.11 to rcprcselit the event E 



Figure 3.11: A refined representation of the evcnt in Fig. 3.6 

shown in Fig. 3.11, which is Inore specialized than that in Fig. 3.6. 

< holds(existence(housel) = jalse, t l )  A holds(own(Torn, landl) = true, t l ) ,  

holds(existence(housel) = true, t3) A holds(rnortgage(Tom) = brute, t2) > 

We do not have the observation of the SNAP entity (i.e., mortgage(Tom)) in the pre- 

condition. So the additional proposition hold.s(rnortgage(Torn) = true, t2) belongs to 

the precondition rather than t,he po~t~conclitio11, indicating the contextual information 

of occurrences of E. The correct form for E is 

< holds(existence(house~) = false, t l )  

A holds(own(Tom, landl) = tme, tl) A holds(rnortgage(Tom) = true, tz), 

holds(existence(housel) = true, t3) > 

An occurrence of an e\lcnt (e.g., E) during t is a,lso a.n occurrence of its super-event 

(e.g., E'). That is, if E occurs during t ,  El also occurs during t .  

Meyer (1988) observes that specialization can be regarded as both an exlension 

and a restriction. In addition to adding inorc propositions into the precoridition 

and postconditon, we can spccializc events by replacing tlie objects involvcd with 

their sub-objects. Rom this viewpoint, occlirrences of the sub-event, represent a 
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Figure 3.12: An object hierarchy 
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Figure 3.13: Generalization and specialization 

sub-collection of all occurrences of its super-event. Repla,cing the objects with their 

sub-objects requires an object type hierarchy. For example (Fig. 3.12), we can 

replace the Transportation vehicle objects with Car objects in the event definition 

to specialize the event. Conversely, we can a81so replace objects with their super- 

objects to generalize the event. Fig. 3.13 shows the common generalization and 

specialization process. 

3.3.2 Event  Par tonomy 

By aggregating several associated events, we structure a composite event using its 

parts. This process is called aggregation, in which the events to  be aggregated are 

called component events. People are sensitive to the event part structure a t  cliffer- 



ent time scales, ranging from events in tcrnls of physical chaiigc, events dcfincd in 

relationship to intentional act, events characterized by plots, to cvcl~t~s cha,ract,erizod 

thematically (Zaclcs and Tversky 2001). The part structure is orga,nizcd into a hier- 

archy, called the event partonomy. For exa,mple, E2 and E3 a,re aggrega.ted into E5 

in Fig. 3.10. In the event partonorny, an atomic event is the smallest recognizable 

event, which makes up the bottom level of the partonomy. 

Being a constructive activity, aggregation refers to the assembly of irltera,ct,ing 

component events, which supprcsses the detail of the component events. For each 

aggregation, instead of specifying the precondition and post,conclition for the com- 

posite event, we specify the interacting component events a.nd their temporal order 

through ESet, defined by 

(3.12) ESet = {rcloc(E~, t l ) ,  . . . , reloc(E,, t,)) 

in which ti is used to denote the position of component events in the composite event, 

and it belongs to local time. For atomic events; ESet is null. Fig. 3.14 shows the 

structure for the event partonomy in Fig. 3.10. 

The operator reloc is defined as follows 

(3.13) T . ~ O C ( E ,  t) =< PREE(t) ,  POSTE(t) > 

PREE(t) and POSTE(t) in Eq. 3.13 are defined by 

(3.14) PREE(t)  = I ~ o l d ~ ( s ~ ,  shi[L(tl, t ) )  A . . . A holds(s,, shift(t,, t))  

(3.15) POSTE(t) = holds($', , sh,ifk(t', , t)) A . . . A  hold.$(.^',, shift (t',, t ) )  

In Eqs. 3.14 and 3.15, E is the event defined in Eq. 3.1. Note the sirriilarily with 

Eqs. 3.9 and 3.10, but in this case, the shifts are still within local time. 



Figure 3.14: The event pa.rtonolriy structure 

In the event partonomy, conjunction is used to model composite events; that is, 

every component event should occur to compose the composite event. To aggregate 

events E l , .  . . , En, we construct the ESet of the composite event and get the con- 

junction of all elements in ESet, represented by ~ e l o c ( E ~ ,  11)  A .  . . Areloc(E,, t,). For 

example, E2 and E3 are aggregated into E5. The representamtion of E5 is given by 

reloc(E2,ta) A reloc(E3,-ts). However, it is not equal to < PREE,(t2) A PRE&(ta),  

POSTE,(t2) A POSTE3(t3) >, and we will explain this in Sec. 4.3.2. 

The relationship between component events and composite events is part-of. For 

example, part-of(E2, E5) indicates E2 is a component event of E5. Given a component 

event (e.g., E2) of a corrlposite event (E5), if the composite event (i.e., E5) occurs, 

the component event (i.e., E2) occurs definitely. But it is not the case in reverse. 



3.4 Summary 

This chapter discusses an event-oriented model, in whic:l~ wrrc define the event and it.s 

occurrences through the concepts of precondition and postcondition plus local time 

and global time. In addition, the event taxonomy and pa~t~onomy hierarchies are 

introduced to provide us with a lncclianism to support representations of events at  

different levels of detail. 



Chapter 4 

In Chapter 3, we discussed two event hierarchies, thc event ta,xonomy and the event 

partonomy. In this chapter, we focus on the algorithm for constructing the event 

partonomy. In the event partonomy, events are aggregated into composite events at  

coarser levels of detail, and the composite events are characterized by their internal 

structure, that is, the nature and inter-relationships of their components. Events 

may be aggregated in different ways, and this work attempts to aggregate events 

in ways that accord with user perception. For this, we need to take account of 

event-event relations. 

An event is an entity with both temporal and spatial extents. However, spatial 

and temporal relations between events are not the main factors for aggregating com- 

ponent events (Sec. 2.4). The causal relations between events are key relations for 

aggregating events, and interactions between preconditions and postconditions help 

us to investigate the ca.usa-l relations. In order to approximate to the causal rehtions, 

this chapter describes two constructs, sequence and kran,sition. It  is these constructs 

that allow us to automatically construct the cvent partonomy, taking account of the 

context in which component events occur. This chapter concludes by presenting the 

algorithm for deriving the reprcscntation of composite events. 



4.1 Event-Event Relations 

The combination of selected events describes the cha#nge to the spa,tia1 and aspatial 

properties over time. Consider the scenario in Fig. 4.l(a),  balll moves ahead from 

pointl, through point*, to point3. We use two events to describe the continuous 

change to the position of balll, i.e., El (balll moves from pointl to point2) and E2 

(balll moves from point2 to point3). These events can be composed to form a more 

general event. However, there are time intervals during which change to one property 

is transferred to  other properties. This is critical for people to perceive the event 

partonomic structure. Suppose, in Fig. 4.1 (b), we have added ball2, stationery at, 

point2. Now, balll hits ball2, and balll stops a t  point3 while ball2 moves from point2, 

through point3, to point4. We have events E3 (balll hits ball2), E4 (ball2 moves from 

point2 to point3), and E5 (ball2 moves from point3 to point4). The change to  balll's 

position during the occurrence of El is transferred to the change to bal12's movement 

during the occurrence of E3, which in turn is tra.nsferred to the change to  bal12's 

position during the occurrence of E4. These transfers correspond to the maximum 

number of properties that a,re changing, indicating a "contour discontinuity" in the 

temporally extended events. People tend to mark the boundaries of the events when 

there is a contour discontinuity. Conversely, people will tend to aggregate those 

events between which transfers occur. 

We define two event relations, f -sequen,ce relation a.nd f - trun,s1:2ion relation; 

where f is a fluent in the events' pre- and/or postconditions. Event occurrences 

are related if they belong to the same f-sequence, or if there is a f-tro,n,sl.tion between 

them. 
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Figure 4.1: Ball sccnarios 

To facilitate the following discussion, we define lour opera,tors to access fluents 

in the precoridition and postcondition. 

(4.1) FSET,,, : & + 2F 

(4.3) F IfAL,,, : & x F + Dom.ninF U null 

(4.4) FVA LpOst : & x F -+ D m n ~ i n , ~  U rml l  

E denotes the event space, F denotes the set of fluents, and Donrui,nF is the value 

domains for the flucnts in F. FSET,,,(E) returns the set of fluents in the pre- 

condition of E, and FSETpOsl(E) rctunis llie set of flucrits i11 the p~st~condit~ion of 

E. FVAL,,,(E, f )  retrieves the valucs o l  fluent f in thc prcco~lclition of E ,  arid 



FVALpOst(E, f )  retrieves the v:tll~es of flucllt f in the postcolldition of E. In more 

formal terms 

(4.5) FSET,,,(E) = { f  E FJ f is in precondition of E) 

(4.6) FSET,,,t(E) = { f E FJ f is in postcondition of E) 
I 

value (value E Dom.nin,), if f E FSET,,(E) 

null, otherwise. 
k 

I 

value (value E Dom.ainf), if f E FSET,,,,(E) 

null, otherwise. 

Given an occurrence e, FTIME,,,(e, f )  a.nd FTI~~EpOst(e ,  f )  are defined to return 

the time intervals during which we record the values of fluent f in e's precondition 

and postcondition. They return null if f does not appear in e's precondition and 

postcondition. Formally we have 

(4.9) FTIMEpr, : 0 x F + T U null 

where O is the set of evcnt occurrences. During the time interval between 

FTIME,, (e,  f )  and FTIME,,,~~ (e,  f )  , e makes some cha,nge to f . 

Definition 4.1 (f-influence t ime) .  Given an event occurrence e and a fluent f ,  the 

f-znfl?lence time of e is defined to be the interval during which e makes changes to 

f, which is formally repr?sentcd 1.137 [erzd(FTIMEl,,, ( c ,  f)), . S ~ ~ I ~ ~ ( F T I M E ~ , , ~ ( ~ ,  f ) ) ] ,  

where start(t) and end(1) give the starting point and the end point of thc tirrie 

interval t .  



Events can occur concuriently, but they do not wake changcs to thc same fluent 

concurrently. That is, their occurrences do not have overlapping f-inflilcnce times, 

and so for each f ,  f-influence times can be linearly ordered. 

4.1.1 Sequence 

Definition 4.2 (f-sequence relation). Given t~vo events E, and Ej a8nd a fluent 

f ,  there is a f-sequence relation between Ei and Ej if 

(i) each event has f in both its precondition and postcondition, that is, 

f E FSETPre(Ei) n FSETP,t (Ei) n FSETp-e(Ej) n FSETpo,q,(Ej) 

(ii) F VALPo,t (Ei, f )  = FVALp,(Ej, f ) 

The f-sequence relation between Ei and Ej is denoted by f-sequence(Ei, Ei). 

Based on the definition of f-sequence relation, we can create sequences for different 

fluents. 

Definition 4.3 (f-sequence). A list of occurrences [el, . . . , en] is defined as an f- 

sequence if j-sequence(type(ei), i ~ p e ( e ~ + ~ ) )  for i E (1, . . . , n - I ) ,  and occurrences 

are ordered by their f-influence times. 

Note that each sequence is associatcd with one fluent and gives a description of 

that fluent by recording its different values a t  the beginning and the end of the event 

occurrences. So a sequence describes cklanges to a. SNAP entity. 



f-sequence Ei ++Ej f-sequence Ei I Ej 

-A 

Figure 4.2: Transitions between f-sequence and ff-sequence 

For example, in Fig. 4.l(b) the occurrences el of El and e2 of E2 belong to  a 

sequence since there is a pos(balll)-sequence relation between El and E2, and the 

pos(balll)-influence time of el is before that of e2. The occurrences of E4 (e.g., e4) 

and E5 (e.g., e5) belong to a pos(bal12)-sequence. Only the occurrence of E3 (e.g., e3) 

belongs to a rnov(bal12)-sequence. Therefore, there are three sequences: the pos(balll)- 

sequence describes changes to the position of balll, the pos(bal12)-sequence describes 

changes to the position of ball2, and the rnov(bal12)-sequence describes whether ball2 

is static. 

An occurrence may be associa.ted with more tha.n one sequence according to the 

number of fluents that appear in both its precondition and postcondition. 

4.1.2 Transition 

Events are not only related through the f-sequence relation. For example, although 

events E4 and E5 in Fig. 4.l(b) arc relw.te(1 through a pos(bal12)-sequence relation, 

for E4 to occur, ball2 should be moving. The fluent mov(bal12) in the precondition 



of E4 becomes true after the occurrence of E:%. This requires a connection between 

events E3 and E4, and this is formalized using the f -transit,ion re1 a t '  ion. 

Definition 4.4 (f-transition relat ion) .  Given two event Ei and Ei and a flucnt 

f ,  there is a J-trans~;tion relation between Ei and Ei if 

(ii) FSET,,(Ei) n FSETwSt(E,) n FSET,.,,(Ei) n FSETpost(Ej) = (b 

The f-transittion relation between E, and Ei is denoted by j-transition(Ei, Ei). 

Definition 4.5 (f-transition).  Given t,wo events Ei and Ei, there is a f-transition 

from the occurrence ei of Ei to the occurrence eg of E$ (Fig. 4.2(b)), if 

(i) f -trnnsition(Ei, Ei) 

(ii) ei is the most recent occurrence in the f-sequence before eg 

For example, there is a pos(balll)-t,ransition between occurrences of El and E3, 

and a mov(bal12)-transition between occurrences of E3 and E4 (Fig. 4.3). Transitions 

are represented using dotted arrows and sequences are represented using continuous 

arrows in Fig. 4.3. For simpli~it~y, we do not give the occurrence times in the 

sequence. 

4.2 Constructing the Event Partonomy 

We are now ready to give the algorithm for constructing the event partonorny. The 

algorithm first scans the event spa.ce, checlting out the sequence and tra.nsition rcla,- 

tions betjiveen events. Based on these rclat,iolls, it will generate sequences for different 



Figure 4.3: Transitions in the ball scenario 

fluents and transitions bctween event, occurrences. The general principles by which 

the algorithm works are as follows: 

(i) If occurrences are situatcd in consecutive positions in the sa.me sequence, and 

are not involved in a.ny transitions, they are viewed as a single occurrence of 

their composite event. 

(ii) To eliminate the transitions from !;he occurrence of E to the occurrence of E', the 

algorithm aggregates E witth events from the sequence to which the occurrence 

of E' belongs. 

(iii) The algorithm dynamically checks the occurrences in every sequence to see if 

events can be further a.ggregated. 

(iv) This process is repeated until there is no tra.nsition from the occurrence of E 

to other occurrences. 

Fig. 4.4 gives the overall actual sequence for the algorithm. The input of lhe 

algorithm is a list of event occurrences, bascd on whicli the algorithni constructs an 

event partonomy. 



Generate the sequence 
and transition l is t  

I Aggregate events I 
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Event partonomy i"? 

Figure 4.4: Process of constructing the partonomy 

4.2.1 Generating Sequences and Transitions 

Algorithm 4.1 gives the process of generating sequences a.nd transitions. According to 

definitions 4.2 and 4.3, event occurrences in the f-sequence should have the fluent f 

in their preconditions a,nd postconditions, and they are ordered by f-influence times. 

Each occurrence ei and its succecding occurrence ei+l should meet the requirement 

If there is a transition from the occllrrence of El (e.g., el)  in the f-sequence to 

the occurrence of E2 (e.g., ez), el and e2 ca.nnot be in the sa.me sequence. In a.ddition, 

el is the most recent occurrence in the f -sequence before ez, and FVA Lpost(E1, f )  = 

FVAL,,(E2, f ) .  There are f-t,ransitions from el to occurrences that only a,ppear in 

different scquenccs from el docs, and should occur later than e l .  



The transitions bethvcen occurrelices colistitu(.e a graph, callcd a tmn.sztzon gruph. 

in which the outdegree of an vcrtcx (occurrcnce) givcs the number of tre,nsitions frorn 

it, and its indegree gives the nl~rnber of transitions to it. 

4.2.2 Aggregating Events 

During the second step, the algorithm searches for the first occurrence in an f -  

sequence with no j-transition. Ii there is no suck1 occurrence, it turns to another 

sequence. Otherwise it aggregates events according to Rule I: 

Rule I: Given an occurrence el in an f-sequence \vitdh no f-transition 

from it, let e2 be the first of el's succeeding occurrences that is involved 

in transitions, either from it or to it. The evcnts occuring between e l  and 

ea including type(el)  will be aggregated if there is an f'-transition from 

other occurrences to ez ,  otherwise, the events occuring between el and e2 

including type(el)  and t?jpe(cz) are aggregated if there is an f-tran~it~ion 

from e2. 

The algorithm repeak the above proccss on the remaining occurrences of the f -  

sequence until there is no occurrcnce with no f-transition from it. 

After aggregating the events, the occurrences of the component evcnls are re- 

placed by the occurrence of the composite cvcnt, arid there are tran~it~ions from the 

occurrence of the composite evelit; lo other occurrences, e sajr, if tliere are transitions 

from the occurrence of any of its component evcnls to e .  



Algoritl~m 4.1: Generating scclllclices and transitions 

Input :  a list of occurrences eList 
O u t p u t  : sequences and transitions 
1: ESet -e c$;\"creul,e an event set*\ 
2: f o r  each occurrence e in eList do 
3: E + type(e) 
4: a,dd E to ESet 
5: end f o r  
6: fSeqSet + 4; fTraSet + 4; \*create a sequence fluent set and a 

transition fluent set*\ 
7: f o r  each E in ESet do 
8: add FSET,,,(E) n FSET,,,3t(E) to f SeqSet; 
9: add FSET,,(E) - FSETwst(E) to fTraSet; 

10: end f o r  
11: f o r  each f in fSeqSet do 
12: f-sequence -e 4; 
13: f o r  each E in the ESet do 
14: i f  f E FSET,,,(E) n FSETpo,,(E) then 
15: add occurrences of E in eList to f-sequence and sort them ac- 

cording to their f -influence times 
16: end if 
17: end f o r  
18: end f o r  
19: f o r  each f in fTraSet do 
20: ca,nOccLisl e 4; 
21: seqSetE + FSET,,,(E) f l  FSET,,,,(E); 
22: f o r  each El in ESel. do 
23: seqSetE1 + FSET,,,(E') f l  FSETpOst(E1); 
24: i f  f E seqSet El a.nd seqSetEnseqSet E' = 4 a.nd FSET,o,7t(E', f )  = 

FSET,,,(E, f )  then 
25: add occurrences of E' in eLisl to ca.nOccList; 
26 : end if 
27: end f o r  
28: f-transition -e 4; 
29: f o r  each E in ESet do 
30: if f E FSET,,,(E) - FSETpOst(E) then \*occurrences of E need 

transitions to them*\ 
31 : f o r  each occurrence e of E in eList do 
32: t -=+ tin.),e(e); 
33: get thc occurrctice e' which is the most recent occlirrencc to e 

in cmnOccLisL arid a.dtl (el; e) to f-transition; 
34 : end f o r  
35: end i f  
36: end f o r  
37: end f o r  
38: return f-seqiiencos and J-trallsitions 



4.2.3 Removing Transitions 

Each occurrence in the sequences is associatecl with transitiolis as a result of Sec. 

4.2.2. Through removing transitions between occurrences, the algorithm aggregates 

events and constructs the event partonomy. The algorit,hm for removing transitions 

is described in algorithm 4.2, and the basic idea for the algorit-hm is to make oc- 

currences appear in the same sequence. For example, to remove the transition from 

the occurrence of Ei to  the occurrence of Ei in Fig. 4.2(b), the algorithm aggre- 

gates Ei with E,! and replaces their occurrences with the occurrence of the composite 

event. There is no transition between the occurrence of the conlposite event in the 

f-sequence and the occurrence of Ei since these two occurrences now appear in the 

same sequence (i.e., f'-sequence). If t,he occurrence of Ei is the first occurrence in 

the f'-sequence, the algorithm simply places the occurrence of Ei before the occur- 

rence of Ei. After this, the algorithm scans the sequences to see if events can be 

further aggregated according to Rule I. The process of removing transitions from the 

occurrence of Ei will be repeated until there is no transition from the occurrence 

of Ei, and thereby we can apply Rule I to the occurrence of Ei and its succeeding 

occurrences in the f -sequence for aggregating events. 



Algorithm 4.2: Rclnoving transitions 

Input :  sequences and transitions as a result of section 4.2.2 
Output: a list of composite events 

1: for each f -sequence do 
2: for each occurrence e in the f-sequence d o  
3: E + type(e); t + time(e);\*get its event and occurrence time*\ 
4 : get a set S of occurrences to which there is a f-transition from e 
5 : for each occurrence e' in S do 
6: for each f-sequence to  which e' belongs do 
7: locate the e' in the f-sequence, and its previous occurrence e; 
8: TI += time(e); 72  + time(eb);\*get their occurrence times*\ 
9: t + min(rl, 72); tl + ~ ~ - t ;  t2 e= 72-t \*get their local times in 

the composite event*\ 
10: El + E; E2 -+ type(el); \*get their event types*\ 
11: compose E l ,  E2 accor$ing to their local times t l ,  t2 
12: update the sequences and transitions with the composite event 
13: if indegree of e' = 0 then \*no transition to el*\ 
14: aggregate type(el) and events occurring before e' in the f -  

sequence 
15: update the sequences and transitions with the composite 

event 
16: end if 
17: end for 
18: remove the f-transition(e, el); 
19: end for 
20: if outdegree of e =O then \*no transition from e*\ 
21: aggregate E and events occurring after e in the f-sequence 
22: update the sequences and transitions with the composite event 
23: end if 
24: end for 
25: end for 

4.2.4 Demonstration 

To construct the event partonomy for Fig. 4.l(b), the algorithm creates the sequences 

and transitions as Fig. 4.3 shows. According to Rule I, E4 and E5 are aggregated 

into a composite event, denoted by E45. Thc tsarisition between occurrences of El 

and E3 is removed by placing the occurrence of El before the occurrence of E3 in 

mov(bal12)-sequence (Fig. 4.5(1)). Since there is no transition from El, the algorithm 



Figure 4.5: Different stages during constructing the partonomy 
(I)afler removing pos(bal1 1 )  -transition(E1 E3) 

(II)afier aggregating events El and E2 
(III)after aggregating events E12 and E3 

(IV) after removing all transitions 

aggregates El and E2 into event E12 according to Rule I ,  and replaces the occurrences 

of El and E2 with the occurrence of E12 (Fig. 4.5(11)). On the other hand, there is 

no mov(bal12)-transition from the occurrence of EI2, SO E12 is aggregated with E3 in 

the mov(bal12)-sequence into the composite event (Fig. 4.5(111)). Repeating this 

process systematically for each event results in the event partonomy. After removing 

all transitions, the sequences for Fig. 4.l(b) are shown in Fig. 4.5(IV), and the 

algorithm generates the event partonomy for Fig. 4.l(b) as Fig. 4.6 shows. 



Figure 4.6: The event partonomy for the ba,ll scenario 

4.3 Representations for Composite Events 

The composite events are represented by their preconditions and postconditions, and 

their representations can be derived through the conjunctio~l of all elements in the 

ESet (Sec. 3.3.2). However, they are not that simply the Boolean "and" and "or" 

of the component events. Given two events Ei and Ej 

Ej =< PREEj , POST4 > 

we specify their temporal order through reloc(Ei, t i )  and reloc(Ej, t j ) .  According to 

formulas 3.12 and 3.13, the representation for the composite event is 

It  is different from the conjunctions of the component events' preconditions and 

postconditions 

PREE, (t,) /\ PREEj ( t j )  

(t,) A POSTEj ( t j )  



sub events' postconditions 
t 1 

step l 

t l '  sub events' postconditions 
f=vl after being processed 

& I 

step 11 
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Figure 4.7: Process of getting the postcondition for a composite event 

which inevitably contradicts the constraints on the definition of the event: each 

fluent exists only once in the event's precondition and postcondition. The next 

section describes the algorithm for constructing this composition. 

4.3.1 Algorithm 

The construction of the precondition and postcondition for the composite event, as  

algorithm 4.3 shows, begins with the assembly of the component events' preconditions 

and postconditions. According to the component events' positions in the composite 

event, we relocate the local time intervals for holds predicates in the component 

events. As a result, we get two formulas 4.11 and 4.12. They need to be modified to 

give the precondition and postcondition for representing the composite event. 



In the postcondition, the values of a fluent are recorded as a result of mak- 

ing changes to the fluent, so we have disjoint times intervals to record the val- 

ues of the fluent. If a fluent has been recorded more than once, we only need to 

keep the most updated one. For example, the conjunctive form of postcondition, 

holds( f = vl ,  t l )  r\ holds(f = 212, t 2 ) ,  will be changed to holds(f = v2, t i)  (Fig. 4.7). 

First, time intervals tl and t2 need to be modified into disjoint intervals t', and t i ,  

and we get t P O S T  = holds(f = vl , t i )  A holds( f = va, t;). During the second step, 

the obsolete recordings of the fluent are eliminated. 

Processing the conjunctions of the component events' preconditions consists of 

two parts. First, the proposition holds(s, t) in the conjunction of preconditions will 

be removed if it is implied by tPOST.  Through this, we suppress the detailed 

information about the component events. If the remaining propositions still share a 

common fluent, we will say that the events cannot be aggregated. 

4.3.2 Examples 

This section demonstrates the algorithm for deriving the prcconclitions and postcon- 

ditions of the composite events created for Fig. 4.l(b).  

The first example is the aggregation of El and E2, which are represented by 

El =< holds(pos(balll) = pointl, t l l ) ,  holds(pos(balll) = point?, tI2) > 

E:! =< holds(pos(balll) = point2, t21), holds(pos(balll) = point3, t22) > 

where tll, t12, t21, and t22 are sllo~vn in Fig. 4.8(a). To compose the composite event 

EI2, we relocate El with a zero offset and E2 with an offset of the duration of El 

(Fig. 4.8(b)), and get corljunctions of their prccondilions and postconditions 



Algorithm 4.3 Deriving the representations of the colllposite events 

Input:  component events E ,  and their time intervals t i  relevant to t,ho corn- 
posite event E (i = I , .  . . , n) 

Outpu t :  precondition PREE,  and postconclition POSTE of the composite 
event E 

1: PREE + 6; POSTE + q3;\*initialize the result*\ 
2: for  i = 0 to n do 
3: insert(PREE, pre(Ei,ti)); inscrt (POSTE, post(Ei,ti));\%.ssemble the 

precondition and postcondition of Ei after relocntiny the local time in- 
tervals, and propositions in PREE and POSTE a7.e sorted by start1:ng 
points of their time intervals*\ 

4: end fo r  
5: tPOST -+ plotPost(POSTE); \*modify the time intervals for the propo- 

sitions into disjoint inleruals*\ 
6: for  each p in PREE do 
7: if shareFluent(p, POSTE) t h e n  
8: if imply(p,POSTE) t hen  \*p can be satisfied by POSTE*\ 
9 : delete(p, PREE) ;  

lo:  else \*POSTE makes p impossible*\ 
11: return < @ ,$  >; 
12: end if 
13: else 
14: if not compatible(p, PREE)  t hen  
15: return < 4 ,  q5 >; 
16: end if 
17: end if 
18: end for  
19: p + tai l( tP0ST); \*get the uptodate proposition from the postcondition 

list*\ 
20: while p # null do  
21: f o r  each h before p in tPOST d o  
22: if fluent(h) = flucnt(p) t hen  
23: delete(tPOST, h )  ; 
24 : end if 
25: end fo r  
26: p + getPrevious(p); 
27: end while 
28: POSTE + iPOST;  
29: return < PREE,  POSTE >; 



Procedure:  shareFluent  
Input :  a proposition p, ancl a proposition list plist 
Ou tpu t :  a boolean value 
1: for each pt in plist d o  
2: if fluent(pt) = fluent(p) t h e n  
3: return TRUE; 
4: e n d  if 
5: end  for 
6: return FALSE; 

Procedure:  imply 
Input :  a proposition p, and a proposition list plist 
Ou tpu t :  a boolean value 
1: p, + getNlostRecent(plist, fluent(p), tiine(p)); 
2: if pt # null and pt imply p t h e n  
3: return TRUE; 
4: else 
5: return FALSE; 
6: e n d  if 

Procedure:  compatible  
Input :  a proposition p in the proposition list plist 
Ou tpu t :  an boolean value, and update the proposition list plist 

I:  for each pt in the plist after p d o  
2: t + join(p,pt); \*get the proposition satisfying the requirement to the 

same fluent*\ 
3: if t # null t h e n  
4: update(p, t); delete(plist, pt); 
5: else 
6: return FALSE; 
7: e n d  if 
8: e n d  for 
9: return TRUE; 



Figure 4.8: Event composition example: El and E2 

(4.14) holds(pos(balll) = point2, ti,) A holds(pos(balll) = point,, ti2) 

Based on formula 4.14, we get the P O S T  

where tY2 and t;2 are shown in Fig. 4.8(c). Since holds(pos(balll) = point2, t;,) can 

be implied by 4.15, it is left out of formula 4.13. The recording of pos(balll) during 

t',', is obsolete, and is eliminated from formula 4.15. So the repre~ent~ation of the 

composite event is 



Figure 4.9: Event composition example: El and E3 

To aggregate the events El and Eg, El is relocated with a zero offset and E3 is 

relocated with an offset of the duration of El.  The representation for E3 is 

E3 = < holds(pos(balll) = point2, t3,) /\ hold.s(mov(bal12) = false, t31), 

holds(mov(bal12) = true, t32) > 

where t31 and t32 are shown in Fig. 4.9(a). After relocating El and E3, we get the 

conjunctions of their preconditions and postconditions (Fig. 4.9(b)) 

(4.16) A holds(mov(bal12) = false, ti,) 

(4.17) holds(pos(balll) = point2, ti2) /\ holds(mov(bal12) = true, tiz) 



Figure 4.10: Event composition example: El and E4 

Based on 4.17, we get the tPOST 

(4.18) holds(pos(balll) = point2, t'l,) A holds(mov(bal12) = true, tg2) 

where t',; and t;2 are shown in Fig. 4.9(c). Since holds(pos(balll) = point2, ti,) is 

implied by 4.18, it is left out of formula 4.16. As a result, the representation of event 

EI3 is 

El3 = < holds(pos(balll) = pointl, ti1) A h.obd.s(mov(bal12) = false, ti,), 

holds(pos(balll) = point2, ty2) A holds(mov(bal12) = true, ti2) > 

The simplest case is to aggregate two events that are not related, e.g., El and 

Ed. Given the representation of Eq (Fig. 4.10(a)) 



the composite event Elq (Fig. 4.10(b)) is re1)rescnted by conjunctiol~s of its compo- 

nent events' preconditions and po~tcondit~ions 

We calculate new time intervals ti,, ti,, ti1, and ti2 through reloc operators. 

4.4 Summary 

This chapter focuses on the algorithm for constructing the event partonomy. To 

achieve this goal, we develop two event relations, the f-sequence relation and the 

f-transition relation, which represent causal relations between events; therefore, it 

becomes possible to approximate human perception of event partonomies. 

Since the representations of composite events are not as simple as conjunctions of 

their component events' preconditions and postconditions, we construct an algorithm 

to derive the preconditions and postconditions of the composite events. 



Chapter 5 

PROTOTYPE 

In this chapter, a prototype system is developed that implements our algorithms for 

constructing the event partonomy, and this is illustrated using a case study. In the 

following sections, we will discuss the design of the pr~t~otype,  the user interface, a,nd 

the implementations of data structures. To conclude the work, we demonstrate the 

construction of the event partonomy for the case study. 

5.1 Prototype Design 

The prototype system (Fig. 5.1) consists of three parts: a user interface, an Event 

Processing System, and an Oracle 9i database. The user interface facilitates the 

input of event occurrences by users and event representations by domain experts, 

and the display of the partonomy. The theory of constructing the event pa,rtonomy 

is encoded in the Event Processing System, which accesses the database through the 

technology of Java Database Connectivity (JDBC) (Oracle 2002). The description 

of events (i.e., precondition and postcondition) is stored as tables in the database, 

and relation schemas of these tablcs will be discussed in Sec. 5.3.2. 

The Event Processing System not only constructs the event partonomy according 

to the event occurrences list, but also helps the domain expert maintain the event 

database. Users only specify the events stored in the database and their occurrence 



U s e r  Interface 

Event Processing System Event Database 

Figure 5.1: System xchitecture 

times, while domain experts specify preconditions and postconditions of events. The 

functions of the system are indicated by the use case diagram (Fig. 5.2). Domain 

experts create, update, delete, and query descriptions of events in the database. 

Users query the descriptions of the events and get the event partonomy according to 

occurrences they input. This chapter mainly focuses on the functions provided for 

normal users. 

The prototype was irnple~nent~ed in an object-oriented environment using Java 

2. Java 2 Software Development Kit (J2SDK) including the core Java classes and 

Java's Swing classes was selected to  build the system. J2SDK also includes JDBC, 

a standard interface used to connect Java and relational databases. In addition, we 

used Oracle JDBC to get the support of estensions of Oracle-specific data types and 

enhance the performance. 



Figure 5.2: Use case diagram lor the system 

<<Event Processing System>> 

5.2 User Interface 

fy< User 

The user interface facilitates the interaction between users and the system, and helps 

Query Event > 

users access the following functions: querying the events and constructing the event 

partonomy automatically. 

The layout of the application window is shown in Fig. 5.3, and it is divided into 

four areas for menu bar, tool bar, input pa.ne1, and a pane for displaying the results 

of the query and the event partonomy. 

Users input is a list of event occurrences, specilying the event types and their 

occurrence times. These event types can be choscn horn a list of events loaded from 

the database. Users can save their input in a file, which will be irnportecl into the 

Conslruc~ Even1 

system later. 



Menu Bar 

Pane for display 
(1)Descriptions of events 
(2)Event partonomy Input  Panel 

Figure 5.3: Layout of the application window 

In the pane, the descriptions of selected events are given through their precondi- 

tions and postconditions in text format. The pa.rtonomy is displayed by descriptions 

of composite events as well as their component events na,mes. Users can save the 

results in a file and load it later into the pane for review. 

5.3 Implementation of Data Structure 

In the prototype system, atomic events are stored in the database. Before performing 

the construction process, domain experts need to  create the event database for the 

domain. It  is assumed that domain experts have already created an event database 

for the application domain. Local timc is represented quantitiatively, and is given in 

the database as values of interval type that are offsets to  the starting point of the 

event. We will go through t,he database design in Scc. 5.3.1. 

lType interval is defined in Sec. 5.4 .  
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Event 

Figure 5.4: Diagrarn lor the Event entity 

Based on the representatioris of a,tomic events in the database, the system con- 

structs the partonomy automatically using the data structures described in Sec. 

5.3.1 Database Schema 

Events are stored as tables in the database. As described in Chapter 3, events 

are defined through their preconditions and post~ondit~ions. However, we represent 

events using their coupled form (Fig. 3.5)' in which recordings of the sarne flu- 

cnt in both events' pre- and postconditions are coupled together. For exarriple, we 

use fluenti-before and fluenti-after to record values of fluenti during t,inie inter\~als 

fluenti-beforet and fluenti-aftert in events' pe- and postconditions. The diagram for 

the Event entity in the database is shown in Fig. 5.4, and attribute eid is its primary 

key. The relation scllcrria for Event needs to be normalized sinrc therc are depen- 



Evenll r-l 

Figure 5.5: Dia.gram for entities Eventl and Fluenti 

dencies between eid and different fluent,s (e.g., fluenti). Therefore, t,he Event entity is 

decomposed into the Eventl entity a.nd entities for different fluents (e.g., Fluenti) as 

Fig. 5.5 shows. 

To construct the event data,base, domain experts need to register the fluents a,nd 

their types, so that the system is able to create the fluent tables in the database with 

the schema: 

Fluenti (eid, fluenti-before, fluenti-beforet, fluenti-after, fluenti-aftert) 

Through registering the type of fluenti, domain experts specify the types of at- 

tributes fluenti -before and fluenti -after in the fluent table (i.e., Fluenti). Attributes 

fluenti-beforet and fluenti-aftert are values of type interval. After registering these 

 fluent,^, domain experts can create events based on the flue~lts they have registered. 

5.3.2 Event Class 

During the construction of the event partonorny, we define an t:vent class M y  Event 

to represent event occurrences. 



fluent: String 
previous: MyEvent 
next: MyEvent 

operations 

eName: String 
elD: Number 
elevel: Number 
ePrecondition: String 
ePostcondit~on: String 
eTime: Date 
trasitionTo: Array of ETran 
transitionfrom: Array of ETran 
childEvents: Set of CompEvent 

operations 
\ 

fluent: String 

event: MyEvent 
offset: Number 

Figure 5.6: Event structure 

The structure for MyEvent is shown in Fig. 5.6. \iVe use the UhlIL-based no- 

tation to describe the event structure, and specify attributes and operations as in 

UML static class diagrams. To make events distinct from object classes, a rounded 

rectangle is used. Each event has its name eName, identifier elD, precondition ePre- 

condition, and postcondition ePostcondition. 

The event partonomy is represented through childEvents, which specifies a set of 

component events of type MyEvent as well as their offsets in the composite event. 

I t  is modeled through a CompEvent object. Atomic events do not have component 

events, so childEvents of an atomic event is null. Residing in memory, composite 

events are not stored permanently in the database, but their representations can be 

derived based on the evcnt partonomy a.nd represeritations of a.tomic events in the 

database. The derivation process is described in Algorithm 4.3. The level of an event 



in the partonomy is specified through elevel. Alolr~ic events are zero-level events, 

and levels of composite events are one level higher than the highest lcvel of tjlieir 

component events. 

As discussed in Chapter 4, constructions of the event partonomy need sequence 

and transition rehtions between events. The sequence relation is implemented 

through a doubly-linked list structure ESeq in which previous and next point to 

the previous and the next event occurrence in the fluent-sequence. This structure 

not only gives the first event occurrence in each seqllence but also helps determine 

the positions of occurrences in the sequence. Occurrences in the fluent-sequence are 

sorted by their fluent-influence times rather than occurrence times. To make the 

sequence consistent, multi-version data for the events are not permitted. Therefore, 

the component events will be omitted if a new composite event is created from them. 

This also requires that atomic events should be consistent, and each two atomic 

events cannot describe changes to the same fluent in an interleaving manner. 

The transitlion relation between events is modeled through an ETran object. 

ETran specifies the type of transition fluent, and tlre event link, to  which the current 

event is related. Attributes transitionTo and transitionFrom detcrinine the direction 

of the transition. So transitionTo describes the transition from the current event to 

others, while transitionFrom describes the lra.nsition from other events to itself. 



5.4 Case Study 

To illustrate the construction process of the syst~cin, we apply the protolype systcin 

to a case study. Fig. 5.7 gives a scenario of a car accident. The vehicle carl starts 

from place6 and turns left at  intBw, the western part of the intersection B. The 

vehicle car2 starts from place5 and turns right at  in&. They collide a t  the northern 

part of the intersection B, intBN. So the police car denoted by car, in Fig. 5.7 makes 

its way to intBN where the accident has taken place, and car3 st,ops to yield to the 

vehicle car,. The accident blocks the traffic a t  intersection intB. Realizing that the 

traffic is blocked ahead, car4 turns right a t  intAE. 

Objects carl, car2, cars, car4, car,, intBw, in&, intBN, and intAE are involved 

in the car scenario. We use the following fluents to specify preconditions and 

postcondtions of events (Fig. 5.8) in the scenario: pos(carl), pos(car2), dir(carl), 

dir(car2), state(carl)), state(car2), collision(carl, car2), state(car,), pos(car,), dir(car,), 

state(car3), pos(car3), traffic(intB), state(car4), pos(car4), and dir(car4). Local time 

is specified by an interval with its starting point and ending point in seconds, and 

Inf indicates infinity, which means the state will last forever unless there is another 

event involving changes to such a state. 

Domain experts create the event table and 16 fluent tables (e.g., pos(carl)). The 

eid is a sequence created in the Oracle database, and it is used to join the Event1 

table and fluent tables. 

create sequence eventseq start with 1000 increment by 1 nocache nocycle; 



Figure 5.7: Schematic representation of a car accident scenario 
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Figure 5.8: Atomic events in thc car accident sccnario alld their representations 
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Postcondition 

holds(pos(car,)=intBw, (299, 

299)) 

holds(pos(carl)=intBN, (1 5, 15)) 
holds(dir(carl)=north, (1 0,15) 

holds(pos(car2)=intBE, (1 97, 

197)) 

h01ds(p0s(car2)=intBN, (1 5, 15)) 
holds(dir(car,)=north, (8,15)) 

holds(collision(carl, car2)=true, 
(2,lnf)) 

holds(state(carp)=go, (2,lnf)) 

holds(pos(carp)=intAE, (47, 47)) 

h ~ l d ~ ( p ~ ~ ( ~ a r ~ ) = i n t A ~ ,  (12, 12)) 
holds(dir(carp)=north, (8.12)) 

holds(pos(carp)=place4, (30, 30)) 

holds(state(car3)=stop, (4,lnf)) 

holds(pos(carp)=intBN, (48, 48) 

holds(traffic(lntB)=true, (1, Inf)) 

holds(pos(car4)=intAE, (36, 36)) 

holds(pos(car,)=intAE, (8,8)) 
holds(dir(car,)=east, (4,8)) 

holds(pos(car4)=place2, (44, 44)) 

Precondition 
holds(state(carl)=go, (0,299)) 
holds(pos(car,)=place6, (0, 0)) 

holds(state(carl)=go, (0,15)) 
holds(pos(carl)=intBw, (0, 0)) 

holds(dir(car,)=east, (0,5)) 

holds(state(car,)=go, (0,197)) 
hoMs(pos(car2)=place5. (0, 0)) 

holds(state(car2)=go, (0,15)) 
holds(pos(car2)=intBE, (0, 0)) 
holds(dir(car,)=west, (0,5)) 

holds(pos(car2)=intBN, (0, 0)) 
holds(pos(carl)=intBN, (0,O)) 

holds(collision(carl, car2)=false, 

(02)) 
holds(collision(carl, car2,=true, 

(0,o)) 
holds(state(carp)=stop, (0,2)) 

holds(state(carp)=go, (0,47)) 
holds(pos(carp)=place3. (0. 0)) 

holds(state(carp)=go, (0,12)) 
h"lds(pos(car~)=intA~' 
holds(dir(carp)=west, (0,5)) 

holds(state(carp)=go, (0,30)) 
holds(pos(carp)=intAN. (0. 0)) 

holds(state(car,)=go, (0,4)) 
holds(pos(carp)=place4, (0, 0)) 
holds(pos(car3)=place4, (0, 0)) 

holds(state(carp)=go, (0,48)) 
holds(pos(carp)=place4, (0, 0)) 

holds(collision(car,, car,)=true, 

(0,lnf)) 
holds(traffic(lntB)=false, (0,O)) 
holds(state(car,)=go, (0,36)) 

holds(pos(car4)=placel, (0, 0)) 

hoIds(state(car,)=go, (0,8)) 
holds(pos(car4)=intAs. (0, 0)) 
holds(dir(carp)=north, (0,3)) 

holds(traffic(lnt,)=true, (0,O)) 

holds(state(car,)=go, (0,44)) 
holds(pos(car4)=intA,. (0. 0)) 

Event 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

Name 
carl moves from 
place, to intBw 

carl turns left 
af intBw 

car, moves from 
place, to intBE 

car2 turns right 
at intB, 

carl and car2 
collide at intBN 

carp starts at 
place3 

carp moves from 
place, to intA, 

carp turns right 
at intAE 

carp moves from 
intAN to place, 

car3 stops at 
place, 

carp moves from 
place, to intBN 

Traffic is 
blocked at intB 

car4 moves from 
place, to intA, 

car, turns right 
at intA, 

car, moves from 
intAE to place2 



- - - - - - -- - -- 
E-1 lmO,c.rl m-. from plled l a  mast- pwt of ~ntn. .e l lo  

Ev& l m O , c d m r v s s f v  n B  

la)511flM4121716 
1WBllfl2C4121718 
100711112104121605 

1008 11112m4 121817 

i m j ~ n u o r i n i s 4 7 -  

Figure 5.9: Thc user window for input of event occurrences 

A new interval data, type for the local time is defined in Oracle and it specifies 

the starting point and end point of the interval in seconds. 

create type interval as object ( ts tar t  NUMBER, t-end NUMBER ); 

After the users input the occurrences list by mcans of the interface (Fig. 5.9), the 

systcm first generates the scqucnces and transitions, which are shown schematically 

in Fig. 5.10. During thc construction process, childEvents of new composite events 

will be created, and an event partonomy is constructed according to vali~es of thcir 

childEvents. Preconditions and postconditions of the composite evcnts arc also given 

in the display pane (Fig. 5.3). Fig. 5.12 gives a complctc list of cornpositc events 

in the event partonomy (Fig. 5.11), their descriptions, and their childEvents. For 

example, event E19 encompasses E16 and EI7, which encompass atomic events El, 

E2, and E3, E4. SO event EI9 describes that car1 moves from place6 to intBN, car;, 



Figure 5.10: The sequences and transitions for the car accident scenario 

Figure 5.11: The cvcnt pa,rtononly for the ca.r accident scena.rio 



Figure 5.12: Composite events in Fig 5.11 

E25 

E26 

E27 

moves from place5 to i n t B N ,  and both carl and car2 move noithward. Event Ezo 

encompasses events EI9 and atomic event E5, and it describes that carl and car;, 

collide at  intBN after carl moves from place6 to i n tBN and car2 moves from places 

to i n tBN.  Event Ezl encompasses events Ezo and Es, describing that the police 

car is coming after the accident, while event E22 encompasses cvents Ezl and Elz, 

describing the traffic is blocl<ed aftcr the accident. 

car, moves from place3 to intBN after 
traffic is blocked at intB 

car4 moves from placel to intAE after 
the traffic is blocked at intB 

car, moves from place, to place, after 
the traffic is blocked at intB 

E24, El 1 

E25, E13 

E26, 



5.5 Summary 

An implementation of the partononly construction algorithm is givcn in this chap- 

ter. At the beginning, we give the design of the prototype system. We also describe 

the database scl~emas for storing atomic events in the databasc, and the structure of 

the event class MyEvent for representing evclits in the Event Processing System. To 

assess the construction algoritllm, we apply thc prototype system t,o the car accident 

scenario, and the event partonomy for the scenario is generated automatically. This 

prototype is evaluated in the next chapter. 



Chapter 6 

CONCLUSIONS AND FUTURE WORK 

This chapter reviews the goal of the thesis, and sl~rnl~~arizes the approacll alld the 

results. Possible research topics are discussed as an improvement to the lnodcl and 

methodology. 

6.1 Summary of the Thesis 

The goal of this thesis is to support multiple rcpresentations of dynanlic phenomena, 

so that representations a t  the appropriate level of detail can be provided to users. 

It  has been achieved t,hrough autonlatic generation of an event partonomy, which 

provides representations of events at  different lcvels of detail. 

In this thesis, dynamic phenomena are modeled as collections of cvcnts and rela- 

tions between them. There are two event hierarchies: the event taxonomy and the 

event partonomy, which enable shifting between rcpresentations of events at  different 

levels of detail. In this research, we develop two relations between events, f-sequence 

and f-transition, bascd on which an event partonomy is constructed aulomatically. 

A prototype system is also designed and applied to a Car accident scenario, and it 

creates an event partonomy for the scenario. 



6.2 Results and Major Findings 

The major contributions of the thcsis are to provide a gcncral fra.me~vork for rep- 

resenting dynamic phenolllena using events, and to provide a mechariisrn to enable 

multiple representations of cvcnt-based phenorncna. The ~na~jor  findings of the thesis 

are as follows. 

The event-oriented model gives us rriore power to explicitly rrlodel events in spatio- 

temporal applications. In our framework, dynamic phenomena a,re l~lodelecl through 

events, represented by the common prcconclitions and postconditions of these event 

occurrences. Occurrences of the same type of event have the same @tern of pre- 

condition and postcondition, but they are different in their occurrence times. Pre- 

conditions and postconditions are related to the concepts of cause and effect re- 

lations, and they give domain experts the flexibility to define events a.ccording to  

their understandings of events' causes and effects. Simila,r to abstractions of objects, 

preconditions and postconditions provide a way of abstra,cting evcnts. 

Based on this framework, events may be formed into two event hierarchies that 

provide multiple representations for dynamic phenomena. In the event taxonomj~, 

events are rela,ted through the is-a relat,ion, and more specialized events ma,y he 

defined as variations of more general events. This is achieved through reducing trhe 

number of holds predicates in cventSs1 preconditions and postconditions. The event 

partonomy provides a,nothcr mechanism to a,bst,ra,ct the event space, whcre an event 

may be defined as a aggregation of severa.1 component cvelits. The event partonomy 



supports repre~ent~ations of events at different levcls ol detail tlirough aggregatilig 

several component everits into one composite e v e ~ ~ t ,  and suppressing the detail of 

component events. 

Event-event relations play an important role in constructing the event parton- 

omy automatically. Causal relations between events provide important contextual 

information, allowing events to be aggregated. To investigate causal relations be- 

tween events, we develop two relations, sequence and transition, which are used to 

approximate to the causal relations. Based on sequence and transition relations, we 

develop algorithms to  construct the event partonomy automatically. 

6.3 Limitations of the Model and Future Work 

This research is based on representa.tions of events using their preconditions and 

postconditions, which only capture a part of the dynamic world. First, we cannot 

represent events that do not involve any changes, for instance, "Tom stands at  the 

corner". Second, preconditions and postconditions are necessary conditions for event 

occurrences. That is, the fact that an event's precondition and postcondition are 

true does not force the event to occur. This results from the clifficulty of formalizing 

causes and effects of events. Lastly, sequence and transition rela,tions are used to 

approximate to causality during the construction process. But a trmsition between 

two event occurrences does not mean one event occurrence will lead to the other one. 

So, again it does not fully formalize the common sense notion of causa,lity. 



There may be more than one wa,y to construct thc event pa.rtonomy. The algo- 

rithm we propose constructs the event paxtonomy by t,rnnsition and sequence rela- 

tions between events, but events may be aggregated a.ccorc1ing to spatial, temporal, 

and spa,tio-temporal relations between them. In this work, users do not have op- 

tions on how to  construct the event partonomy. In adclition, multi-version data is 

not permitted during the con~truct~ion process, and this may lead to some potential 

composite events being omitted. For instance, given the transition a s  described in 

Fig. 4.2(a) (Sec. 4.1.2 and Sec. 4.2.3), we first aggregate El and Ei into a composite 

event, Ek; then it replaces Ei and El in the f-sequence and f'-sequence. We miss 

the possible composite events created from E,I and Ei. 

We have identified the following research questions: 

1. How are spatial, temporal, and spatio-tempo*r.al relalions applzed to 

the process of c~onstmctin,g the event partonomy? 

2.  How does the introduction oJ disjunction a fec t  the representation 

power of the event model? 

3. What are the algorithmic implications of adding di.sjunction? 

1. The sequence arid transition relations are developed in Chapter 4 to approximate 

to the causal relation between events. Events may not be rclaled through transition 

or sequence relations, but thcy may still be aggregated into composite evcnts by 

referencing the spatial, temporal, and spatio-temporill relations between them. To 

address the first question, one solutio~l could be to assign ranks to relations by drfault 

settlngs or by users' prcfcrcr1c.c. 



2. I11 this thesis, preconditions and postconditions of ovclits are just conjunctiolls of 

holds predicates. For exa.nlple, we are unable to represent; t,he event of Tom entering 

Boardman if there are two doors doorl and door2 to the building Boardman. After we 

introduce disjunction, this event can be representecl by 

El = < holds(in(Tom, Boardman) = fafalse, t l )  

A ((hold.s(open(doorl) = true, t2) V holds(open(door2) = true, ts)), 

holds(in(Tom, Boardman) = true, t4) > 

Indeterminacy will be introduced when the disjunction is used for representations of 

events. After introducing the "or" operator in events' preconditions and postcondi- 

tions, we convert them into Disjunctive Norrnal Form (DNF) 

(6.1) < PRE,  v . .  . v PRE,,POST, v . . .  v POST, > 

where each term PREi  and POSTi is a conjunction of holds predicates, and the 

occurrence of the event representecl by formula 6.1 only represents the occurrence of 

one of the events of Eij =< PRE,:, POSTj >, i = 1 , .  . . , n, j = 1,. . . , m. Thus, dis- 

junction represents event possibility. In our e~a~rnple, El represents the two possible 

events of Tom entering Boardman through doorl 

Ell = < holds(in(Tom, Boardman) = f a.lse, t l)  

A (hold.s(open(doorl) = true, t2),  

holds(in(Tom, Boardman) = true, t4) > 



and Tom entering Boardman through door;! 

Elz = < holds(in(Tom, Boardman) = false, t l)  

A holds(open(door2) = true, t3), 

holds(in(Tom, Boardman) = true, t4) > 

3. After introducing the disjunction, \ire also need to extend the algorithms for 

constructing the event partonomy. In our example, let E2 be the event of opening 

doorl, and E3 be the event of opening doorz. There are transitions from E2 to El 

or from E3 to El,  but it is not necessary to aggregate El with both E2 and E3. On 

the other hand, if there are disjunctions in the postcondition of one event, and there 

are transitions from this event to other events, these transitions are possible, but not 

guaranteed. This problem requires evaluations of the transitions to  the events. 

6.4 Summary 

In this chapter, we have briefly summarked the work of this thesis a.nd evaluated 

the goal of our work. We have a81so suggested some areas for future resea.rch. 
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