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This thesis uses a thermal fracture mechanics model to study the thermal shock 

fracture behavior of functionally graded ceramics (FGC). The specimen used in this 

study is a FGC strip with an edge crack on one surface. A severe thermal shock is 

applied on the cracked surface. The temperature field in a thermally shocked FGC strip 

is evaluated first using a closed form solution. Thermal stresses, thermal stress intensity 

factors (TSIF) and critical thermal shocks are evaluated using a thermomechanics and 

fracture mechanics approach. The effective thermal properties of the FGC specimens are 

estimated using micromechanics models for conventional composites. Some numerical 

results of critical thermal shocks are provided for FGC specimens with constant elastic 

material properties and graded thermal properties in the thickness direction of the strips. 

Also, examples of thermal stresses and thermal stress intensity factors (TSIFs) are 
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provided. The results show that the components gradation of the FGC composites has 

significant influence on the specimens' thermal shock behavior. When the volume 

fraction of the FGC strip is changed rapidly, the critical thermal shock is changed 

dramatically. 



DEDICATION 

Dedicated to my wife Lin Lin 

iii 



ACKNOWLEGEMENTS 

I would first like to thank my advisor Professor Zhihe Jin and my co-advisor 

Professor Michael Peterson for their valuable guidance. This work would not have been 

possible without their help. 

I am grateful to Professor Donald Grant and Professor Senthil Vel for taking part 

in my thesis committee, and for providing me with constant encouragement and valuable 

suggestions. 

I would also like to thank my colleagues Donald Bragg, Andrew Goupee and 

Douglas Dow for their help in writing my thesis. 

My greatest thanks go to my wife Lin, my son Kevin, and my entire family for 

their love, support and encouragement. 

IV 



#*. 

TABLE OF CONTENTS 

DEDICATION iii 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES viii 

LIST OF FIGURES ix 

CHAPTER 

1. INTRODUCTION 1 

2. FRACTURE MECHANICS OF CERAMIC MATERIALS 9 

2.1. Basic equations of elasticity 9 

2.2. Crack tip stress and displacement 12 

2.3. Fracture criterion (Ki = Kic) 15 

2.4. Stress intensity factors for typical specimens 15 

2.5. Fracture toughness for typical ceramic materials 18 

2.6. Fracture strength 19 

3. THERMAL STRESSES AND THERMAL SHOCK BEHAVIOR 

OF CERAMICS 21 

3.1. Basic equations of heat conduction in solids 21 

3.2. Basic equations of thermoelasticity 22 

3.3. Thermal stress in an infinite strip 23 

v 



-m- • > . ' . . 

3.3.1. Temperature field 24 

3.3.2. Thermal stress field 25 

3.4. Critical thermal shock ATC 27 

4. THERMOELASTICITY OF FUNCTIONALLY GRADED CERAMICS 28 

4.1. Heat conduction equations 28 

4.2. Thermoelasticity equations 30 

4.3. Effective thermal and elastic properties 31 

5. THERMAL CRACKING IN A STRIP OF FUNCTIONALLY 

GRADED CERAMICS 35 

5.1. Temperature 36 

5.2. Thermal stress 38 

5.3. Thermal stress intensity factor 41 

5.4. Numerical results 44 

5.4.1. Temperature 47 

5.4.2. Thermal stress 52 

5.4.3. Thermal stress intensity factor 61 

6. THERMAL FRACTURE RESISTANCE OF THE FUNCTIONALLY 

GRADED CERAMICS 67 

6.1. Critical thermal shock 68 

6.2. Numerical results 70 

7. CONCLUSIONS 74 

REFERENCES .....75 

VI 



BIOGRAPHY OF THE AUTHOR 82 

vn 



•> 

LIST OF TABLES 

Table 2.1 Fracture toughness and elastic moduli for typical materials 18 

Table 5.1 Thermal properties and mass densities of FGC components 45 

viii 



LIST OF FIGURES 

Figure 1.1 The geometry of the FGC strips 7 

Figure 2.1 Stresses near a crack tip 10 

Figure 2.2 Three modes of fracture 12 

Figure 2.3 A ceramic structure under a mode I load 13 

Figure 2.4 Edge cracked strip under a tensile load a 16 

Figure 2.5 Edge cracked strip under apure bending moment 17 

Figure 2.6 Edge cracked strip under a three point bending load 18 

Figure 2.7 Fracture stress vs. crack length 19 

Figure 3.1 Thermal shock on an infinite ceramic strip 24 

Figure 5.1a An FGC strip with an edge crack 36 

Figure 5.1b An FGC strip subjected to thermal shock 36 

Figure 5.2 Volume fraction of component SiaN4 vs. non-dimensional 

position x/b in an AbCVSia^ FGC strip 45 

Figure 5.3 Effective thermal conductivity of A^OySis^ FGC strip 

vs. relative position x/b for different constituent gradation 46 

Figure 5.4 The temperature fields for a homogeneous strip calculated 

with different models 47 

Figure 5.5 Non-dimensional temperature difference vs. non-dimensional 

position in a thermally shocked AI2O3/S13N4 FGC strip 48 

IX 



<•»-

Figure 5.6 Non-dimensional temperature difference vs. non-dimensional 

position in a thermally shocked A^CVSisNt FGC strip 49 

Figure 5.7 Non-dimensional temperature difference vs. non-dimensional 

position in a thermally shocked TiC/B4C FGC strip 50 

Figure 5.8 Non-dimensional temperature difference vs. non-dimensional 

position in a thermally shocked TiC/B4C FGC strip 51 

Figure 5.9 Non-dimensional thermal stresses vs. non-dimensional positions 

in a thermally shocked AI2O3/S13N4 FGC strip 52 

Figure 5.10 Non-dimensional thermal stresses vs. non-dimensional positions 

in a thermally shocked Al203/Si3N4 FGC strip 53 

Figure 5.11 Non-dimensional thermal stresses vs. non-dimensional positions 

in a thermally shocked Al203/Si3N4 FGC strip 54 

Figure 5.12 Non-dimensional thermal stresses vs. non-dimensional positions 

for Al203/Si3N4 FGC strips with different component gradation 55 

Figure 5.13 Non-dimensional thermal stresses vs. non-dimensional positions 

in a thermally shocked T1C/B4C FGC strip 56 

Figure 5.14 Non-dimensional thermal stresses vs. non-dimensional positions 

in a thermally shocked TiC/F^C FGC strip 57 

Figure 5.15 Non-dimensional thermal stresses vs. non-dimensional positions 

in a thermally shocked TiC/B4C FGC strip 57 

Figure 5.16 Non-dimensional thermal stresses vs. non-dimensional positions 

for TiC/F^C FGC strips with different component gradations 58 

x 



* 

Figure 5.17 Comparison of the asymptotic solution with the complete solution 58 

Figure 5.18 Non-dimensional thermal stresses vs. non-dimensional time at x/b = 0 

for TiC/B4C FGC strips with different component gradations 60 

Figure 5.19 Normalized TSIF vs. non-dimensional time for A^CVSisNi 

FGC strips with different component gradations 61 

Figure 5.20 Normalized TSIF vs. non-dimensional time for AI2O3/S13N4 

FGC strips with different component gradations 62 

Figure 5.21 Normalized peak TSIF vs. a/b for AI2O3/S13N4 

FGC strips with different component gradations 63 

Figure 5.22 Normalized TSIF vs. non-dimensional time for TiC/E^C 

FGC strips with different component gradations 65 

Figure 5.23 Normalized TSIF vs. non-dimensional time for TiC/B4C 

FGC strips with different component gradations 65 

Figure 5.24 Normalized peak TSIF vs. a/b for TiC/B4C 

FGC strips with different component gradations 66 

Figure 6.1 An FGC strip with an edge crack under thermal shock 68 

Figure 6.2 Critical thermal shock ATC vs. power index p 

for AI2O3/S13N4 FGC strip 71 

Figure 6.3 Critical thermal shock ATC vs. power index p 

for TiC/SiC FGC strip 73 

Figure 6.4 Critical thermal shock ATC vs. power index p 

for T1C/B4C FGC strip 73 

xi 



:ism <•»•< 

CHAPTER 1 

INTRODUCTION 

Ceramic materials are widely used in engineering applications because they have 

some desirable material properties. Most ceramic materials consist of metal oxides, 

metal nitrides, metal carbides and others. Ceramics are used to coat the surface of metals 

or other ceramics subjected to severe usage. Most ceramic coated cutting tools are harder 

than metal cutting tools; therefore, they may have better performance and a longer life. 

Ceramic coated cutting tools are used to cut some metals which cannot be cut by using 

normal cutting procedures because of the potential of a chemical reaction between the 

two materials. Another important application of ceramics is to coat turbine engine blades 

because of ceramic's outstanding high temperature and corrosion resistance (Pettit and 

Goward, 1983). 

Despite the advantages, ceramics suffer from certain disadvantages which limit 

their usage in many engineering applications. Most ceramic materials have low 

toughness because of inherent brittleness and micro cracks. The sharp interface between 

ceramic coatings and base materials may induce a huge stress concentration when the 

ceramic coated parts are under load. This stress concentration may cause catastrophic 

material failure. To overcome these disadvantages, functionally graded ceramics (FGC) 

were recently introduced. 

1 
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An FGC is a ceramic or ceramic-ceramic composite with a gradually changing 

microstructure and macro material properties (Koizumi, 1993). FGCs have higher 

performance than conventional ceramic composites because of the gradual variation in 

volume fractions of the constituent materials which have different material properties. 

These characteristics eliminate the sharp interface between components and thus reduce 

their stress concentration. Functional grading also enhances the bonding strength 

between dissimilar components. Compared to conventional ceramic composites, FGCs 

perform better under severe environmental attacks and have higher strength and fracture 

toughness. In a study Hasselman and Youngblood (Hasselman and Youngblood, 1978) 

showed a much smaller tensile thermal stress in the FGC ceramic cylinder than in a 

homogeneous one. Under thermal shock, FGC coatings have significantly less damage 

than conventional ceramic coatings (Kuroda et al. 1993). 

High temperature applications are among the most important engineering fields 

where ceramics are used. Knowing the thermal fracture behavior of FGCs is critical for 

material design and improvement. Temperature gradients exist in FGCs, which may 

induce thermal stresses and cause material failure. FGC strips can be used to model very 

important engineering applications. Most of the strips have graded material properties 

only in the thickness direction. Under thermal load, the temperature distribution varies in 

the thickness direction when the load is applied on the surfaces. Ishiguro et al. (Ishiguro 

et al., 1993) studied the one-dimensional temperature profile in a strip of functionally 

graded material (FGM) using a multi-layered material model. Obata and Noda (Obata 

and Noda, 1993 a, 1993b) probed 1-D heat conduction in a FGM plate using perturbation 

2 
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techniques. Tanigawa et al. (Tanigawa et al., 1996) provided a one-dimensional 

temperature distribution in a FGM plate using a laminated composite with homogeneous 

layers. Jin and Paulino (Jin and Paulino, 2001) studied short time temperature 

distribution in a FGM strip using the layered material model. Jin (Jin, 2002) obtained a 

simple closed-form short time 1 -D asymptotic temperature solution using a multi-layered 

material model and asymptotic technique. Qian and Batra (Qian and Batra, 2005) studied 

three-dimensional heat conduction in a thick FGM plate by using a higher-order plate 

theory and a meshless local Petrov-Galerkin (MLPG) method. 

The temperature gradient in FGMs may cause thermal stress distributions. 

Kawasaki and Watanabe (Kawasaki and Watanabe, 1987) analyzed the thermal stress of 

a FGC composite using a finite element method. Satyamurthy and co-workers 

(Satyamurthy et al., 1990) studied the effect of the spatial variation of thermal 

conductivity on the magnitude of tensile thermal stress field in brittle materials under a 

convective thermal load. The studies showed that spatial variation of thermal 

conductivities of the FGMs reduced the thermal stresses significantly. Arai et al. (Arai et 

al, 1991) analyzed the elastic-plastic thermal stress in FGM for the purpose of optimum 

design. Noda and Tsuji (Noda and Tsuji, 1991a and 1991b) studied the thermal stress 

field in the FGM composites. Vel and Batra (Vel and Batra, 2002) obtained an exact 

solution for three-dimensional deformation of a simply supported thick FGM plate with 

transient mechanical and thermal loads on its top and/or bottom surfaces. Vel and Batra 

(Vel and Batra, 2003) also presented an analytical solution for three-dimensional 

3 



thermoplastic deformations of a simply supported rectangular FGM plate under a time-

dependent thermal load on the top and /or bottom surfaces. 

In studying the thermal fracture behavior of FGMs, thermal stress intensity factors 

(TSIFs) are used to predict their fracture behaviors and optimize the designs of the FGM 

composites when a crack presents. Jin and Noda (Jin and Noda, 1993) and Noda and Jin 

(Noda and Jin, 1993) considered steady state thermal fracture of FGMs. Kawasaki and 

Watanabe (Kawasaki and Watanabe, 1993 a, 1993b) studied the fabrication of disk-

shaped FGM by hot pressing and the thermal shock fracture mechanisms of FGMs with 

surface cracks subjected to side heating and cooling. Takahashi et al. (Takahashi et al, 

1993) probed the thermal shock/fatigue fracture behavior of surface crack in FGMs. Jin 

and Noda (Jin and Noda, 1994a) investigated crack-tip singular fields in non-

homogeneous materials. Jin and Noda (Jin and Noda, 1994b) studied an edge crack in a 

nonhomogeneous half-plane under thermal loading. Jin and Noda (Jin and Noda, 1994c) 

investigated TSIFs for a crack in a semi-infinite plane of a FGM. Erdogan and Wu 

(Erdogan and Wu, 1996) obtained the solution of TSIF for FGMs subjected to steady 

state thermal load. Jin and Batra (Jin and Batra, 1996b) studied an FGM strip with an 

edge crack. Tanigawa et al. (Tanigawa et al., 1996) investigated a nonhomogeneous 

material with a penny-shaped crack. Noda (Noda, 1997) and Fujimoto and Noda 

(Fujimoto and Noda, 2001a, 2001b) used a finite element method to investigate the crack 

growth in an FGM plate under transit thermal load. Choi et al. (Choi et al., 1998) probed 

a layered half-plane with collinear cracks; the plane has a graded homogeneous 

interfacial zone. Lee and Erdogan (Lee and Erdogan, 1998) studied the thermal stress of 

4 
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interface cracking in FGM coatings under steady state heat flow. Nemat-Alla and Noda 

(Nemat-Alla and Noda, 2000) studied a semi-infinite FGC plate with an edge crack when 

the coefficient of thermal expansion varied in two directions. Wang et al. (Wang et al, 

2000) used a laminated material model to study crack problems in FGMs under transit 

thermal loading condition. Jin and Paulino (Jin and Paulino, 2001) studied an edge 

cracked FGM strip with constant elastic moduli and graded thermal properties. Ueda 

(Ueda, 2001, 2002) studied thermal shock fracture in a graded W-Cu divertor plate. Jin 

(Jin, 2003 a) investigated the effect of thermal property gradients on the edge cracking in 

a FGM coating bonded to a homogeneous substrate subjected to a thermal shock. 

Pindera et al. (Pindera et al., 2002) used their high-order theory to investigate spallation 

in thermal barrier coatings. Zhao et al. (Zhao et al., 2002) presented a model for design 

of FGC tool materials with a symmetrical composition distribution. Huang and co­

workers (Huang et al., 2004) developed a new model for fracture analysis of functionally 

graded materials with arbitrarily varying material properties under thermal load. 

Rangaraj and Kokini (Rangaraj and Kokini, 2004) used two-dimensional finite element 

models with a cohesive zone to study quasi-static crack extension in functionally graded 

yttria stabilized zirconia (YSZ)-Bond Coat (BC) alloy thermal barrier coatings (TBC). 

Wang et al. (Wang et al., 2004) used a finite element/finite difference (FE/FD) method to 

study the thermal shock resistance of FGMs and provide the critical thermal shock. Zhao 

and co-workers (Zhao et al., 2004) studied the thermal shock resistance of AbOa-TiC and 

Al203-(W, Ti)C FGC tool materials with symmetrical structures by using finite 

element/finite difference (FE/FD) method. Kokini and Rangaraj (Kokini and Rangaraj, 
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2005) studied the thermal fracture and its time-dependent behavior in functionally graded 

yttria stabilized zirconia-NiCoCrAlY bond coat alloy thermal barrier coatings. Yildirim 

et al. (Yildirim et al., 2005) calculated TSIF in a three dimensional FGM coating using a 

correlation technique of a finite element method. Dag (Dag, 2006) developed a new 

computational method based on the equivalent domain integral (EDI) for mode I fracture 

analysis to orthotropic FGMs subjected to thermal stresses. El-Borgi et al. (El-Borgi et 

al., 2006) considered an embedded partially insulated crack in a graded coating bonded to 

a homogeneous substrate under thermal and mechanical loading. Carpinteri and Pugno 

(Carpinteri and Pugno, 2006) analyzed the stress field and fracture propagation due to 

thermal loading in multi-layered and/or functionally graded composite materials. 

Extensive reviews on thermal stress and fracture in FGM had been done by Tanigawa 

(Tanigawa, 1995) and Noda (Noda, 1999). 

When a thermal shock is applied to a FGC specimen, the pre-existing crack may 

grow depending on the severity of the thermal load. There is a critical value for the 

thermal shock called critical thermal shock and it is denoted by ATC. When the applied 

thermal load is greater than the critical thermal shock, the crack starts to grow; otherwise, 

the crack remains unchanged. The critical thermal shock indicates how severe of a 

thermal load can be applied to a specimen without combined crack growth. 

In this work, we use an analytical and semi-analytical method to evaluate critical 

thermal shocks for three FGCs, i.e., AbCVSisN^ TiC/SiC and TiC/E^C. The strips have 

the same geometry as described by Fig. 1.1. We assume that the vertical and horizontal 

dimension of the strip is much greater than its thickness b. The pre-existing crack is on 

6 
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one of the thickness surfaces. The strips can be used to model ceramic cutting tools and 

turbine engine blades in engineering applications. 

4> 
b 

< > 

Figure 1.1 The geometry of the FGC strips 

To simplify the study, but still keep the generality, we assume that the thermal 

shock is only applied on the cracked surface of the FGC strips. One dimensional heat 

conduction equations are used with appropriate boundary conditions to calculate the 

temperature field. A linear thermal elasticity approach is employed to solve the boundary 

value problem for the thermal stress distribution. The thermal stress intensity factor 

(TSIF) is then evaluated by using linear elastic thermal fracture mechanics. Once the 

TSIF is calculated, it is set to be equal to the fracture toughness of the FGC composite, 

and then the critical thermal shock is obtained. We assume these FGC strips have 

constant elastic moduli and various thermal properties in the thickness direction (x 

direction) following a power law function. These strips can be obtained in reality by 

7 
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dispersing ceramic particulates in a ceramic matrix with elastic moduli similar to that of 

the ceramic particulates. 

Chapter 2 of this thesis reviews the fracture mechanics of ceramics. Fracture 

toughnesses for particular ceramic materials are summarized. Chapter 3 reviews thermal 

stress and thermal shock behavior of ceramics. Basic heat conduction equations in solids 

and basic thermoelasticity equations are given; temperature field, thermal stress field and 

critical thermal shock for a ceramic strip are introduced. Chapter 4 reviews basic 

equations of thermoelasticity of FGCs and the micromechanics models to calculate 

effective thermal and elastic properties of FGCs. Chapter 5 studies the temperature field 

using a one-dimensional heat conduction method, the thermal stress field using a linear 

thermal elasticity method, and thermal stress intensity factor field using linear thermal 

fracture mechanics for the thermally shocked FGC strips with edge cracks. Numerical 

results of temperature fields, thermal stress fields and thermal stress intensity factors for 

particular cracked FGC strips are presented and discussed. Chapter 6 investigates 

thermal shock fracture resistance of the edge cracked FGM strips using linear thermal 

fracture mechanics. Critical thermal shock is introduced; the numerical results for 

particular FGM strips are provided and interpreted. Chapter 7 gives conclusions for this 

work. 

8 



CHAPTER 2 

FRACTURE MECHANICS OF CERAMIC MATERIALS 

The brittleness of ceramic materials requires a good understanding of their 

fracture behavior to prevent catastrophic failures when these materials are used in 

engineering applications. Ceramics inherently contain flaws and cracks. Under critical 

loading conditions, these cracks will grow thereby causing material failure. Crack 

growth occurs when the stress intensity factor reaches a critical value, called fracture 

toughness Kic. The study of the stress distribution near a crack tip in a brittle solid is the 

key to evaluate the stress intensity factor. It is also used to predict what loads or stresses 

can be safely applied to the ceramic structure and when fracture occurs. 

This chapter briefly reviews linear elastic fracture mechanics of ceramics. These 

theories can be found in fracture mechanics texts (Broek, 1988; Lawn, 1993). 

2.1 Basic equations of elasticity 

Ceramics can be treated as the ideal elastic material because stress and strain are 

linearly dependent when a load is applied on a ceramic structure, which means that 

Hooke's law can be applied. Also, the basic linear elasticity equations are used to 

evaluate the stress distribution in the near field of the crack tip as shown in Fig. 2.1. In 

the Cartesian coordinate system, these equations take the following form 

9 



Figure 2.1 Stresses near a crack tip 

(2.1) 

where Oxx, oyy, and axy are stresses. 

The compatibility equation is 

where exx, syy and Exy are strains. (2.2) 

10 

The equilibrium equations are given by 



Hooke's law defines the relations between stress and strain as 

F' where E is Young's modulus, v is Poisson's ratio, and G - . . . ,. is the shear modulus. 
2(1 + v) 

F v 
For plane strain: E'= —^~ and V = „ . For plane stress: E'= E and v'= v . 

l-v2 1-v F 

Crack tip fields can be conveniently analyzed using polar coordinates. In the 

polar coordinate system, the basic equations have the following forms 

The equilibrium equations 

(2.4) 

where r = -J*2 + .y2 , # = arctan(—). 

Hooke's law again defines the relation between stresses and strains 

^6e=\X^66-v^rX (2-5) 

e =^a 8 2C 

11 
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2.2 Crack tip stress and displacement 

According to linear elastic fracture mechanics, when a ceramic structure with a 

crack is under a load, there is a stress singularity at the crack tip. That means the stress in 

region of the crack tip is unbounded. The stress distribution near the crack tip is 

significant to the strength of the material. There are three modes of fracture, namely, 

mode I, mode II and mode III, as shown in Fig. 2.2. 

Mode I Mode II Mode III 

Figure 2.2 Three modes of fracture 

Mode I is the opening mode, mode II is the sliding mode and mode III is the 

tearing mode. Mode I and mode II are in-plane modes and mode III is an out-of-plane 

mode. Among them, mode I is the most important one for evaluation of fracture 

resistance because there is always a tendency for a brittle crack to seek an orientation that 

minimizes the shear loading. In this study, we only consider the mode I crack. 

12 
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Consider a ceramic structure symmetric about a crack subjected to a mode I load 

as shown in Fig. 2.3. The crack length is a. Since ceramics are linear elastic materials, 

we use linear elasticity equations to analyze the stress field near the crack tip. 

Figure 2.3 A ceramic structure under a mode I load 

The boundary conditions of the mode I crack problem come form the facts that 

there are no tractions on the crack surface and the deformation is symmetric about y = 0. 

<Tyy = axy = 0> 

v = 0, 

a =0, 
xy ' 

When y = 0, x < 0. 

y = 0, x > 0. 

y = 0, x > 0. 

(2.6) 

Using the basic elasticity equations given in section 2.1, along with the boundary 

condition of Eq. (2.8), the stress fields of the crack tip are obtained as follows: 

13 
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In the polar coordinate system, the stress fields have the following forms (Brian, 

1993) 

After the stress fields are calculated, Hooke's law, along with the following strain 

displacement relations, can then be used to obtain the displacements of the near crack tip. 

p = du 

*»=%> ( Z 9 ) 

_ 1 du , dv 
xy 2dy dx' 

where u and v denote the horizontal and vertical displacements, respectively. The 

displacements near the crack tip in the Cartesian coordinate system are given by 

v=§A&1 +" ) [ ( 2"1 > s i nf- s i n¥ ]-
where re = (3 - v) /(l + v) for plane stress, and K = (3 - 4v) for plane strain. 

14 
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2.3 Fracture criterion (K^ = K lc) 

In Eq. (2.8), we note that the stresses at the crack tip are singular and the stress 

intensity is characterized by a parameter Kj. Ki is dependent on the crack geometry and 

the load. It is called the stress intensity factor (SIF). In general, the stress intensity factor 

can be evaluated as follows 

KI=0<rJna, (2.11) 

where a is the crack length for edge crack or half length for interior cracks; a is the 

applied stress; and (3 is a non-dimensional parameter dependent on the crack geometry. 

According to equations (2.8) and (2.9), the SIF is the only parameter used to 

determine the intensity of the stress field near the crack tip. There is a critical value for 

SIF called the (plane strain) fracture toughness denoted as Kic. When Ki is smaller than 

Kic, the crack does not grow. But, if Ki is equal to Kic, the crack starts to grow. The 

fracture criterion in linear elastic fracture mechanics is thus given by 

K,=KIC- (2-12) 

Kic indicates the maximum value of stress intensity factor at the crack tip that the 

material can bear, beyond that, the crack will start to grow. Fracture toughness is a 

material property; it doesn't vary with a specimen's geometry or load applied. 

2.4 Stress intensity factors for typical specimens 

SIFs can be obtained using various analytical, numerical, and experimental 

methods. For typical specimens under typical loads, SIFs can be found in some 

15 



handbooks, for example, (Sih, 1973), and Tada et al. (Tada el al., 2000). Here we list the 

SIF formulas for three typical specimens. 

Case I: a uniformly tensile loaded strip with an initial edge crack as shown in Fig. 

2.4, the SIF can be calculated using Eq. (2.13). In this case, (3 is determined by the 

following equation 

jB = 1.12-0.231(f) + 10.55(f)2 -21.72(f)3 + 30.39(f)4, 
b b b b 

f £0.6. 
b 

(2.13) 

t t t t t 

mm a 

Figure 2.4 Edge cracked strip under a tensile load a 

Case II: an edge cracked strip loaded under a pure bending moment M as shown 

in Fig. 2.5, the SIF for this case can be obtained by Eq. (2.13). Where P can be 

determined in the following manner 

16 



> • » < • . • • « • " - * ' 

,# = 1.122-1.4(f) + 7.33(f)2-13.08(f)3+14(f)4 , 
b b b b 

f <0.6. 
b 

(2.14) 

In this case, M is moment per unit thickness, and the stress a 6M 

Case HI: a three point bending specimen as shown in Fig. 2.6, the SIF can be 

calculated by Eq. (2.13), where B can be determined by the following equation 

,0 = 1.106-1.552(f) + 7.71(f)2 -13.53(f)3 + 14.23(f)\ 
b b b b 

f <0.6. 
b 

(2.15) 

In this case, P is the force per unit thickness, L = 8b, and the stress a = 3LP 
2b2 

Figure 2.5 Edge cracked strip under a pure bending moment 
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Figure 2.6 Edge cracked strip under a three point bending load 

2.5 Fracture toughness for typical ceramic materials 

Fracture toughness of ceramic materials is usually much lower than those of 

metals. In this study, five ceramic materials are involved, i.e., A^C^ Si3Ni4; TiC, SiC, 

and B4C. The table below lists the fracture toughness and elastic moduli of the typical 

materials. (Shackelford et al., 1994). 

Table 2.1 Fracture toughness and elastic moduli for typical materials 

Material 

Fracture toughness 

(MPa4m) 

Young's modulus (GPa) 

Poisson's ratio 

A1203 

4.0 

350.0 

0.2 

Si3N4 

5.0 

350.0 

0.2 

TiC 

5.0 

450.0 

0.2 

SiC 

5.0 

450.0 

0.2 

B4C 

4.0 

450.0 

0.2 

Al 

1100 

14-28 

69 

0.33 
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2.6 Fracture strength 

The fracture strength of a cracked ceramic structure can be determined by 

substituting (2.13) into fracture criterion (2.14), i.e. 

ficrfr4m=KIc. 

which can be rearranged as 

(2.16) 

°> = 
K,. 

fiylnu 
(2.17) 

The calculated stress in Eq. (2.19) is called the fracture strength of the ceramic 

structure. The fracture strength is the strength of a ceramic structure in the presence of a 

crack. It indicates the maximum stress that could be safely applied on a ceramic structure 

without causing the pre-existing crack to grow. 

Ofr 

Figure 2.7 Fracture strength vs. crack length 
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Fig. 2.7 schematically shows that the fracture strength of a ceramic structure 

depends on the size of the crack length. From the figure, we can see that, for a ceramic 

structure, the larger the crack length, the lower the fracture strength. 

The fracture strength of the typical cases described in section 2.4 can be 

calculated by the following formulas 

For the edge cracked tensile specimen 

GJr = 
(1.122-1.4(|) + 7.33(|)2 -13.08(g)3 + 1 4 ( | ) V ™ ( 2 1 9 ) 

f <0.6. 
b 

For the three point bending specimen 

K, 
(Tfr = 

(1.106-1.552(f) + 7.71(f)2 -13.53(f)3 +14.23(f)4)V*a „ o m 
b b b b \i.iyj) 

f £0.6. 
b 

20 

(2.18) 

For the edge cracked pure bending specimen 
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CHAPTER 3 

THERMAL STRESSES AND THERMAL SHOCK BEHAVIOR OF 

CERAMICS 

Thermal stress in a ceramic structure is induced by a temperature gradient or an 

external constraint or the combination of both when the ceramic structure is subjected to 

a nonuniform thermal load. It can also be induced by the non-homogeneity of the 

coefficient of thermal expansion within the ceramic structure when a uniform thermal 

load is applied. In this chapter, basic heat conduction equation, thermoelasticity 

equations, and the thermal shock behavior of ceramics are reviewed (Boley and Weiner, 

1962; Lawn, 1993). 

3.1 Basic equations of heat conduction in solids 

To determine the thermal stress in an elastic body, we need to have some basic 

understanding of heat conduction. Conduction heat transfer happens between two 

particles inside a solid body or two solid bodies with different temperatures that have 

come in contact. 

By Fourier's law, heat conduction inside a solid body is related to the temperature 

gradient by the following equation 
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% (3-1) 
qy~ kdy' 

where qx and qy are the heat fluxes, k is the thermal conductivity, and T is the 

temperature. Here we consider a two-dimensional case. The governing differential 

equation of heat conduction is 

hk%Hlkf)-pe$- (3-2) 
where p is the mass density, c is the specific heat, and t is time. For a homogeneous 

material k, p, and c are constants. Eq. (3.2) can be rewritten as 

/&2T = %, (3.3) 
ot 

where K = — is the thermal diffusivity and the Laplacian of the temperature V T has 
pc 

the following form in the Cartesian coordinate system 

V 2 r = 5 ! l + 5 ! l ( 3 4 ) 

8x2 8y2 

3.2 Basic equations of thermoelasticity 

Generally, ceramics are linear elastic materials. Basic thermoelasticity equations 

can be employed to solve thermal stress and deformation problems in ceramics. For two-

dimensional problems in a rectangular Cartesian coordinate system the equilibrium 

equations are 
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where a'=(\ + v)a for plane strain and a'= a for plane stress, a is the coefficient of 

thermal expansion and AT is the temperature difference between the current and the 

initial temperature. 

3.3 Thermal stress in an infinite strip 

A strip is usually used to evaluate the thermal shock fracture resistance of ceramic 

materials. In this section, thermal stress induced by a thermal shock in an infinitely long 

strip is reviewed. We assume that the initial temperature of the strip is To. Then the 

temperature on one surface of the strip suddenly drops from To to Ta. The temperature 

on the opposite surface remains To. There is no external mechanical load on the strip, 

and the body is free from any constraints. 

23 
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(3.6) 

The compatibility equation is 



3.3.1 Temperature field 

In order to solve this thermal stress problem, it is necessary to obtain the 

temperature field in the infinite strip. The initial conditions for the strip are 

T = Tr 0 ' t = 0, 0<x<b, (3.8) 

And the boundary conditions are 

T-T 

T -T 
1 io» 

x = 0, 

x -b, 

t>0, 

t>0. 
(3-9) 

Because there is no applied temperature gradient in the y direction, this is a one-

dimensional heat conduction problem, i.e., heat flows only in the x direction as shown in 

Fig. 3.1 

Y ' 

T = Ta 

(Ta<T0) 

L 

s 
*̂  

To 

b 
v, 
S 

T = = T0 

X 

Figure 3.1 Thermal shock on an infinite ceramic strip 
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The temperature in the strip under the initial and boundary conditions as stated in 

Eq. (3.8) and Eq. (3.9) is given by (Carslaw and Jaeger, 1959; Sucec, 1985) 

| ^ = l - f - 2 y J - s i n ( ^ K " V r , (3.10) 

where T = •% is the non-dimensional time. 
b2 

3.3.2 Thermal stress field 

After the temperature field is obtained, we can then calculate the thermal stress 

distribution in the ceramic strip by using the equilibrium equations Eq. (3.5), the 

compatibility equation Eq. (3.6), and Hooke's law Eq. (3.7) along with the boundary 

conditions given as 

o - » = ^ = 0 » x = 0,x = b. (3.11) 

Because the temperature is only a function of the coordinate x and the time t, we 

can assume 

o-xy = crxy(x,t), (3.12) 

Oyy =(Tyy(X,t). 

Substituting the above stresses into the equilibrium equation Eq. (3.5) and 

applying the boundary condition (3.11) leads to 

*»=<^=0. (3-13) 
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Then, substituting Eq. (3.13) into Hooke's law Eq. (3.7), the constitutive 

equations for plain strain become 

v_ 

,2 

ff„=-(l + vX£cry-a(T-T0)\ 

syy = l-^-ayy+(l + v)a(T-T0), (3.14) 

*v = 0. 

Substituting Eq. (3.14) into the compatibility equation Eq. (3.6), gives the 

governing differential equation for the stress distribution in the infinite strip 

-^(±fayy+(\ + v)a(T-T0)) = 0. (3.15) 

After the integration of the above equation with respect to x we have the thermal 

stress distribution within the strip 

1-v2 

o-v, =<l + v)a(T-T0) + Ax + B, (3.16) 

where, the integration constants A and B can be determined by the conditions of zero 

resultant force and zero resultant moment on the specimen as follows 

u 

$cryydx = 0, 
o 
b 

\(jyyxdx = 0. 

; (3.i7) 

After finding the two integration constants, A, and B, the following stress 

distribution is obtained (Jin, 2003) 
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3.4 Critical thermal shock ATC 

Thermal stress field induced by a temperature gradient is calculated by Eq. (3.18). 

This stress can be used to evaluate the maximum temperature difference ATC that causes 

failure of a ceramic strip. It can be proven from Eq. (3.18) that the maximum thermal 

stress occurs on x = 0 immediately after the surface is subjected to the thermal shock. 

This stress can be calculated by 

If we set the maximum thermal stress equal to the tensile strength <rra of the 

ceramic material, i.e. 

(**)-« =**> (3-2°) 
the maximum temperature difference that the specimen could bear can be obtained by 

substituting Eq. (3.19) into Eq. (3.20) 

AT. = < ^ . (3.2.) 

where ATC is usually called the critical thermal shock (Lawn, 1993). When AIT < isTc, the 

ceramic strip doesn't fracture and keeps its mechanical integrity. 

27 

(3.18) 

(3.19) 



<*pn« • . » * 

CHAPTER 4 

THERMOELASTICITY OF FUNCTIONALLY GRADED 

CERAMICS 

In general, functionally graded ceramics (FGCs) are ceramic-ceramic composites. 

The difference between FGCs and macroscopically homogeneous ceramic-ceramic 

composites is that FGCs have gradually changed microstructure and material properties. 

Hence, material properties of an FGC are dependent on spatial position. These material 

properties may be approximately evaluated by the micromechanics models for 

conventional composites. To evaluate the thermal shock resistant behavior of FGCs, the 

related heat conduction and thermoelasticity equations are reviewed and summarized. 

The effective thermal and elastic material properties of FGC are also reviewed in this 

chapter. 

4.1 Heat conduction equations 

FGC composites can be treated as nonhomogeneous materials and their material 

properties can be approximately evaluated from the conventional micromechanics 

models for macroscopically homogeneous composites (Reiter et al., 1997; Jin, 2003). 

In this study, it is assumed that FGCs are graded only in the thickness direction (x 

direction). In two-dimensional cases, the temperature gradients are related to the heat 

fluxes in a Cartesian coordinate system by Fourier's law 
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Z (4.1) 

where T is temperature, qx and qy are the heat fluxes, k(x) is the space-dependent 

thermal conductivity. The governing differential equation of heat conduction is derived 

using energy conservation and Fourier's law as follows 

where p(x) is the space-dependent mass density, c(x) is the space-dependent specific 

heat, and t is time. 

The initial and boundary conditions are needed as follows for solving the 

differential equation Eq. (4.2): 

The initial condition is 

T = f(x,y), t = 0, (4.3) 

where f(x,y) is the known temperature at t = 0. 

The boundary conditions are 

T = f(p,t), t>0, (4.4) 

Or 

k(x)^ = -q(p,t), t>0, (4.5) 

where p is an arbitrary location on the surface of an FGC body, n is the outward normal 

to the boundary, T is the given temperature, and q is the given heat flux. The 
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boundary condition Eq. (4.4) gives surface temperature profile, and the boundary 

condition Eq. (4.5) specifies the heat flux. 

4.2 Thermoelasticity equations 

Since most FGCs are linearly elastic, the basic thermo-elasticity equations are 

applicable to FGC specimens. In a Cartesian coordinate system for two-dimensional 

problems, the elasticity equilibrium equations Eq. (3.5), and the compatibility equation 

Eq. (3.6) have the same forms. The only difference is Hooke's law because of the 

spatial variation of material properties 

xx E(xJ 

£yy=Y{xy[c7y> - K * ) ' o - J + «(*)'A7\ (4.6) 

= l + i/Qc)' 
£xy ~ E(x)} °'v' 

where for the plain strain 

l -v(x) 

v ( x ) ' = - ^ - , (4.7) 
l - v ( j t ) 

a(xy=[l + v(x)]a(x), 

and for plane strss 

E(x)'=E(x), 

v(x)'=v(x), (4.8) 

a(x)'=a(x). 
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In the above equations, Young's Modulus E, Poisson's Ratio v, and the 

coefficient of thermal expansion a are all functions of the coordinate x. 

To solve the thermo-elasticity equations of FGCs, we require boundary conditions. 

In traction boundary conditions, stresses on the boundary are related to the given tractions 

X and Y as follows 

X = /<r„r +mcr 
(4.9) 

Y = mcjyy+l<jxy, 

where (1, m) define the outward normal to the boundary. 

4.3 Effective thermal and elastic properties 

Generally, an FGC composite consists of two or more components with different 

thermal and elastic properties. In this study, we use the micromechanics models for 

conventional composites to calculate the properties of FGCs. This approach has been 

proven reasonable if material gradation is not too steep (Reiter and Dvorak, 1998). 

According to Hashin (Hashin, 1968) the effective thermal conductivity of a two-phase 

FGC can be calculated as follows 

—i f_ y — £ v<t72i+v>tT2k=0- <4 1 0> 

where subscripts 1 and 2 represent the properties of phase 1 and phase 2, respectively. V 

is the volume fraction of the components and k is the effective thermal conductivity. 

Hatta and Taya (Hatta and Taya 1986) gave another estimation of thermal conductivity 

for multiple phase FGCs. 
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where subscripts i and m represent inclusion and matrix properties, respectively. The 

mass density of an FGC composite may be evaluated by the rule of mixtures and the 

specific heat can also be estimated approximately by the rule of mixture. 

p = VlPx+V2p2. (4.12) 

c = VlCl+V2c2. (4.13) 

In a two-phase FGC composite, the coefficient of thermal expansion (CTE) may 

be estimated from the following equation (Levin, 1967) 

a = c , 2 + ^ L Z ^ ( _ L _ _ L ) ; (4.14) 

Kx K2 

where ai, 02 represent the CTEs of phase 1 and phase 2, respectively. Ki, and K2 are the 

bulk moduli of the components, and K is the effective bulk modulus of the FGC. 

Besides thermal properties, the elastic properties of FGCs can also be calculated 

using the conventional micromechanics model. According to the Mori and Tanaka model 

(Mori and Tanaka, 1973), (Weng, 1984), (Benveniste, 1987), the effective shear and bulk 

moduli can be estimated as follows. 

The effective shear modulus is given by 

u=u + Vi(Mj-Mm) , 4 15x 
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where, û  represents the shear modulus of the inclusion, and \im represents the shear 

modulus of the matrix. 

The effective bulk modulus is 

(4.16) 

where Kj represents the bulk modulus of the inclusion and Km represents the bulk 

modulus of the matrix. 

When the Young's modulus and the Poisson's ratio of the FGCs are the constant, 

the bulk moduli of the two components equal, by substituting Eq. (4.16) into the 

following equation 

(4.17) 

the coefficient of thermal expansion (CTE) a can be estimated as follow 

(4.18) 

The effective shear modulus and bulk modulus then can be used to calculate the 

effective Young's modulus and Poisson's ratio of the FGC composite by the following 

elasticity relations 

(4.19) 

(4.20) 



<m*. 

After the elastic and thermal properties of FGC composite are obtained, we can 

use them to analyze the thermal shock behavior of a FGC strip. Since the FGCs 

considered in this study have constant Young's modulus and Poisson's ratio, the Eq. 

(4.19) and Eq. (4.20) are not used. 
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CHAPTER 5 

THERMAL CRACKING IN A STRIP OF FUNCTIONALLY 

GRADED CERAMIC 

We have mentioned in the previous chapters that ceramics always have some 

inherent flaws, for example, micro surface cracks. The same applies to FGCs. When 

subjected to a severe thermal shock, an FGC specimen may fracture due to crack 

propagation. In linear elastic fracture mechanics, we know that the stress intensity factor 

(SIF), which is proportional to applied stress, is the driving force for crack growth. 

Under thermal loads, the driving force for the crack growth is the thermal stress intensity 

factor (TSIF). A number of practical thermal shock problems of FGC specimens can be 

treated as edge cracked strips under thermal loads. For example, an FGC cutting tool 

cooled down by the coolant from a high temperature. In this chapter, thermal cracking in 

an FGC strip is considered. The temperature field and the thermal stress field in a FGC 

strip under severe thermal shock are calculated, and the TSIF in the edge cracked FGC 

strip is also evaluated. Numerical results of the temperature fields, thermal stress fields, 

and TSIFs for the FGC strips, Al203/Si3N4 and TiC/B4C, are obtained. 
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Ceramic 
component 
A 

Ceramic 
component 
B 

Figure 5.1a An FGC strip with an edge crack 

5.1 Temperature 

We consider the temperature field of an FGC strip with an edge crack as shown in 

Fig. 5.1a. The material properties only vary in the thickness direction (x direction). The 

entire strip is initially at a temperature To. Then the temperature of the cracked surface 

suddenly drops to Ta < To, and the opposite surface is cooled down to Tb < To as shown in 

Fig. 5.1b. The strip is assumed to be free from external mechanical constraints and loads. 

Figure 5.1b An FGC strip subjected to thermal shock 
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The initial condition of the heat conduction problem is 

T = T0, t = 0, 0<x<b, 

where b is the thickness of the FGC strip. The boundary conditions are 

(5.1) 

T = T 

T = T 
1 1bi 

x = 0, 

x = b, 

t>0, 

t>0. 
(5.2) 

Because initial and boundary temperatures do not vary in the y direction of the 

strip and the crack does not affect heat flow at short times, the temperature field can be 

obtained by solving a one dimensional heat conduction problem in the x direction with 

the following governing differential equation 

3x 8x dt 
(5.3) 

Jin (Jin, 2002) obtained a closed-form, short time asymptotic solution of the 

temperature field in an FGM strip with arbitrary spatial variation of thermal properties 

using Laplace transforms and their asymptotic properties. The asymptotic temperature 

field, T(x, x), has the following form (r -> 0) 

T(X,T)-T0 

T -T 
10 1 a 

p(0)c(0)*(0) 
1/4 / 

erfc 
1 

p(x)c(x)k(x) 

p(b)c(b)k(b) 

p{x)c{x)k{x) 

X. 

k(0) dx 

rT0-Tb^ 

T -T 
V J 0 laJ 

1/4 / 

erfc 

2b4r o V K(X) 

K(Q>) 

(5.4) 

2bJrl\K{x) 
dx 

where t = tic(0)/b2 is the non-dimensional time, K(X) = k/(pc) is the thermal diffusivity, 

p(0), c(0), k(0) and K(0) are the values of p(x), c(x), k(x) and K(X) at x = 0, respectively, 
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p(b), c(b), k(b) and K(b) are the values at x = b, respectively, and erfc( ) is the 

complementary error function given by 

X 

erfc(x) = 1 --f* \exp(-y2)dy. (5.5) 

The solution given by Eq. (5.4) requires that the FGC strip have continuous and 

piecewise differentiable thermal properties. Since the thermal stress and TSIF reach their 

peak values in a very short time when subjected to a thermal shock, the short time 

temperature solution Eq. (5.4) can be used to evaluate the maximum thermal stress and 

TSIF (Jin, 2003). 

5.2 Thermal stress 

The FGC strip considered here is in a plane strain state because the thickness of 

the strip b is much smaller then its z-dimension. To obtain the thermal stress, the basic 

thermal elasticity equations, Eq. (3.5), Eq. (3.6) and the temperature field Eq. (5.4) are 

used. For plain strain, Hooke's law is as follows 

ff„=i^i(a„-!^7flrw) + a + v)a(7 ' - r 0 ) , 

ev =hz^(av-T^-axx) + (l + v)a(T-T0), (5.6) 
yy E v yy l-v 

Here, we only study a special case of a FGC strip having constant Young's modulus and 

Poisson's ratio. It may narrow the application of the model, but in practice, some FGC 

composites have this feature, i.e., TiC/SiC, Tic/B4C, and Al2(VSi3N4 FGC systems. The 
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Young's modulus of each of these FGCs may not change significantly because the 

constituents have similar Young's moduli. 

Since the material properties and the temperature only vary in the x direction of 

this particular FGC strip, the thermal stresses induced by the temperature gradation are 

only functions of x and time, as follows 

(5.7) 

For the traction free surface, the boundary conditions can then be expressed as 

o-»=<^=0> atx = 0,x = b. (5.8) 

Since all the stresses are functions of x, the derivatives of the stresses with respect 

to y are zeros. Therefore, the equilibrium equation Eq. (3.5) becomes 

0X (5.9) 

— ^ = 0, 
ox 

This shows that axx and ayy are both constant. Applying the boundary condition of Eq. 

(5.8) leads to 

<r„=<Tv=0, (5.10) 

Substituting Eq. (5.10) into Hooke's law, Eq. (5.6), we obtain the strains within 

the strip to be 
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E 
exx=-^^aw+(l + v)a(x)(T-T0), 

l-v2 

syy=^-vyy+(\ + v)a(x){T-T0), (5.11) 

*„=o. 

Substituting Eq. (5.11) into the compatibility equation Eq. (3.6) gives the 

governing differential equation for <J of the thermally shocked FGC strip 

J ^ t 1 ^ ^ + (1 + v)a(x)(T - T0)] = 0. (5.12) 

After integration of the partial differential equation Eq. (5.12) we have a general 

solution of the stress field with two integral constants 

^f-ayy=-(l + v)a(x)(T-T0) + Rx + S. (5.13) 

We need two more conditions to determine the integration constants R and S. 

These two conditions come from the fact that there are no surface forces and moments 

applied to the strip. The mathematical expressions for these two conditions are 

u 

^CTyydx = 0, 

(5.14) 

ja^xdx = 0. 

Applying the conditions Eq. (5.14) into the general solution Eq. (5.13), the two 

integration constants, R and S, can then be determined. Substituting the constants R an S 

into Eq. (5.13), the stress distribution in the FGC strip can be obtained as follows 
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EaO{x,r) E 
' x 

(5.15) 

<T'(X,T) = ^-L-L + - x 
w 1-v (1-v 2 H 

\ 22™ 2 1 / ! ' ' ' ™ ' ^^ ~ V 12 "•^^11 / 1 XCIX 

z 1-v » 1-v 

whereof, is the thermal stress c r , 0(x,r) = r ( jc , r ) - r o , £ is Young's modulus, v is 

Poisson's ratio, and a = a(x) is the coefficient of thermal expansion. The A\j (i, j = 1,2) 

and AQ are constants and can be found in (Jin, 2003b). They are given by the following 

equations 

A - Eb 

An - A2X 

1-v2 

Eb2 

2 ( l - v 0 (5.16) 

A, Eb' 
22 3(1-v 2) ' 

A— A\Ai ~ AiA\-

5.3 Thermal Stress Intensity Factor 

We know that the thermal stress intensity factor (TSIF) is the driving force for 

crack propagation under thermal load. To obtain TSIF, the basic thermal elasticity 

equations, i.e., the equilibrium equations, Eq. (3.5); the compatibility equation, Eq. (3.6); 

and Hooke's law, Eq. (5.6) are solved with given boundary conditions. 

Because of the symmetry of the FGC strip, we only consider the upper half of the 

strip. The mathematical expressions for the boundary conditions of this problem are as 

follows 
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(5.17) 

To obtain TSIF, several analytical and numerical methods may be used, for 

example, the finite element method and complex variable method. Here we use the 

Fourier transform and the singular integral equation method. In this method, stresses 

have the following expression 

(5.18) 
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The above stresses satisfy the equilibrium equations and homogeneous 

compatibility equations. The unknown functions C,(^),C2(£), A2(77), B2(r]),C2(rj), 

and £>2(77) can be determined using the boundary conditions Eq. (5.17) and solution Eq. 

(5.15). Finally, the thermal crack problem can be reduced to the following singular 

integral equation (Jin, 2003b) 

where cr7 (x,r) is given in Eq. (5.15), and ^(r , r) is the unknown density function 

defined in following manner 

* , , r ) - ^ , (5.22) 

where v is the displacement in y direction, r = 2x I a -1. K(r, s) is the kernel as given 

in Gupta and Erdogan (Gupta and Erdogan, 1974). The function ^(r,r)can also be 

calculated as (Gupta and Erdogan, 1974) 

« r , r ) - ! ! & 2 , (5.23) 
V l - r 

where \f/{r,r) is continuous for r e [-1,1]. After normalizing the functions ^(x,r)and 

y/(r,T) by (1 + v)a0T0, the normalized TSIF, K* at the crack tip can be evaluated as 
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where Ks represents mode I TSIF, and «0is the coefficient of thermal expansion (CTE) 

at x = 0. The details about calculation of the function y/(\,r) can also be found in 

Gupta and Erdogan (Gupta and Erdogan, 1974). 

5.4 Numerical results 

The FGCs studied are two phase composites: Al203/Si3N4 and TiC/B4C. These 

FGCs can be used in cutting tools because of their high hardness, high temperature and 

high wear resistance. For example, a AI2O3/S13N4 cutting tool can be used to cut steels 

which can not be cut by Si3N4 cutting tools because chemical reactions may occur 

between the metals and the cutting tools. The volume fractions of the FGC constituents 

are assumed to follow a power law function. For example, the volume fraction of Si3N4 

in the Al203/Si3N4 FGC strip is chosen following the power law function Eq. (5.25) and 

as shown in Fig. 5.2 

where p is the power exponent determining the volume fraction of Si3N4. 
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0 D.1 D.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
x/b 

Figure 5.2 Volume fraction of component Si3N4 vs. non-dimensional position x/b in an 

Al203/Si3N4 FGC strip 

Table 5.1 lists the components thermal properties and mass densities of the FGC 

strips that were studied (Shackelford et al., 1994). 

Table 5.1 Thermal properties and mass densities of FGC components 

Coefficient of thermal expansion 

(CTE) (10"6/K) 

Thermal conductivity (W/m K) 

Specific heat (kJ/kg K) 

Mass density (g/cmJ) 

A1203 

8.0 

20.0 

0.9 

3.8 

Si3N4 

3.0 

35.0 

0.7 

3.2 

TiC 

7.0 

20.0 

0.7 

4.9 

SiC 

4.0 

60.0 

1.0 

3.2 

B4C 

4.5 

30.0 

0.95 

2.5 
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Fig. 5.3 shows the effective thermal conductivity k of the FGC strip AkCVSis^ 

vs. position x/b calculated by Eq. (4.11). The volume fraction of constituent SialSLi is 

determined by Eq. (5.25). The three lines represent different power indices, p = 0.2, p = 

1, and p = 2, respectively. From this figure we can see that if the power index is less than 

1, the effective thermal conductivity of the FGC composite changes rapidly near x/b = 0. 

3 g i ; -f— 1 1 1 j J 1 j -

D 0.1 0.2 0.3 0.4 D.5 0.B 0.7 D.B 0.9 1 
x/b 

Figure 5.3 Effective thermal conductivity of AkCVSis]^ FGC strip vs. relative position 

x/b for different constituent gradation 

In this study, we assume the temperature of the surface opposite the thermally 

shocked surface is equal to the initial temperature, Tb = To. Temperatures, thermal 

stresses and thermal stress intensity factors in the FGC strips are calculated using Eq. 

(5.4), Eq. (5.15), and Eq. (5.24), respectively. Numerical results are generated by using 
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FORTRAN code (Jin, 2003b). Similar studies for TiC/SiC FGC were performed in Jin 

and Paulino (Jin and Paulino, 2001) and Jin (Jin, 2003 b). 

5.4.1 Temperature 

Fig. 5.4 compares the temperature fields of the homogeneous strip calculated by 

the asymptotic solution used in this study, Eq. (5.4), and the complete solution, Eq. (3.10). 

The two solutions have good agreement when the non-dimensional time x is less than 0.1. 

Since the thermal shock damage occurs shortly after the thermal shock is applied, this 

model is suitable to evaluate the thermal shock behavior of FGC specimen. 
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Figure 5.4 The temperature fields for a homogeneous strip calculated with different 

models 
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Figure 5.5 Non-dimensional temperature difference vs. non-dimensional position in a 

thermally shocked AkCVSis^ FGC strip 

Fig. 5.5 shows the temperature distribution, (T - TQ)/(Ta -T0) when a thermal 

shock is applied on an AkCVSis^ FGC strip. The x axis represents the non-dimensional 

position x/b. The y axis indicates the non-dimensional temperature difference. In this 

case, the power index p = 1, the three curves represent temperature distributions of the 

strip at three instants in time, respectively. From the figure, we can see that the non-

dimensional temperature difference decreases with the increases of the non-dimensional 

position, x/b. The non-dimensional temperature difference takes its peak value at x/b=0, 

which is at the cracked surface, and the minimum value occurs at x/b=l, which is the 

surface opposite the thermally shock. The smaller the value of x/b, the more significant 

the change of the non-dimensional temperature difference for the same x/b interval. 
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Figure 5.6 Non-dimensional temperature difference vs. non-dimensional position in a 

thermally shocked AI2O3/S13N4 FGC strip 

Fig. 5.6 shows the different behaviors of the temperature distributions for 

different values of power index p at the same instant of time, x = 0.1. From the figure we 

can see that changing the value of p, which means changing the volume fraction of the 

SisN4, can change the temperature distribution. For example, at the position x/b = 0.5, 

for p = 0.2, 1, and 2, the non-dimensional temperature differences are 0.42, 0.32, and 0.28, 

respectively. When x/b = 0, the non-dimensional temperature differences are equal to 1 

for all the p values. Fig. 5.6 and Fig. 5.8 couldn't show it clearly because there is a rapid 

increase for p = 0.2 when x/b is close to zero. Also, there are discontinuities in Fig. 5.6 

and Fig. 5.8 for the non-dimensional temperature difference when x/b is close to 1; this is 
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because of the asympototic nature of the solution. The solution satisfies the boundary 

condition at x = 1 only approximately and for short time. 

Fig. 5.7 and Fig. 5.8 are the numerical results of non-dimensional temperature 

difference vs. non-dimensional position of x/b for the TiC/B4C FGC strip. Fig. 5.7 shows 

the non-dimensional temperature difference vs. the non-dimensional position at p = 1. 

Fig. 5.8 gives the non-dimensional temperature difference vs. the non-dimensional 

position at x — 0.1. These figures give us similar conclusions in agreement with those 

from Fig. 5.5, and Fig. 5.6. 
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Figure 5.7 Non-dimensional temperature difference vs. non-dimensional position in a 

thermally shocked TiC/B4C FGC strip 
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Figure 5.8 Non-dimensional temperature difference vs. non-dimensional position in a 

thermally shocked TiC/B4C FGC strip 
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5.4.2 Thermal stress 

™ D.2 •, 

Figure 5.9 Non-dimensional thermal stresses vs. non-dimensional positions in a 

thermally shocked Al203/Si3N4 FGC strip 

Fig. 5.9 shows the non-dimensional thermal stresses a^(l-v)/E0a0(T0 -Ta) 

within the AI2O3/S13N4 FGC strip. The horizontal axis indicates the non-dimensional 

position x/b in the strip, the vertical axis is the non-dimensional thermal stress caused 

by the temperature gradient. The three curves represent three different instants in time. 

The power index for this case is p = 0.2. For all time, the maximum thermal stress 

occurs at x/b = 0, which is on the thermally shocked surface. For example, at x/b = 0, 

the non-dimensional thermal stresses are 0.64, 0.5 and 0.25, for x = 0.001, 0.01 and 0.1, 

respectively. As time increases, the maximum thermal stress decreases first, and then 

increases after the minimum value is reached. We also notice from the figure that the 

thermal stresses are not always positive. This is because there is no external force and 
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constraints applied on the thermally shocked FGC strip. Thermal shock brings both 

positive and negative stress, so the stresses in the strip can be balanced by themselves. 

1.2 

"= 0.2 

-0.2 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.9 1 

x/b 

Figure 5.10 Non-dimensional thermal stresses vs. non-dimensional positions in a 

thermally shocked AI2O3/S13N4 FGC strip 

Fig. 5.10 shows similar results as those in Fig. 5.9 but for a different power index. 

In this figure, the power index is p = 1. The maximum non-dimensional thermal 

stresses for x/b - 0 are 0.8, 0.6, and 0.25 at T = 0.001, 0.01 and 0.1, respectively. 
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Figure 5.11 Non-dimensional thermal stresses vs. non-dimensional positions in a 

thermally shocked A^CVSis^ FGC strip 

Fig. 5.11 shows similar results as in Fig. 5.9 and Fig. 5.10. In Fig. 5.11, p = 2. 

The non-dimensional thermal stresses for x/b = 0 are 0.82, 0.6, and 0.18 at x = 0.001, 

0.01 and 0.1, respectively. 
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Figure 5.12 Non-dimensional thermal stresses vs. non-dimensional positions for 

Al2C>3/Si3N4 FGC strips with different component gradation 

Fig. 5.12 shows the thermal stress distributions for different AI2O3/S13N4 FGC 

strips at the same instant of timer = 0.01. The strips have the power indices p = 0.2, 1, 

and 2, respectively. In this figure, the horizontal axis is x/b, and the vertical axis is still 

the non-dimensional thermal stress. It is easy to see the influence of the components' 

volume fraction on the thermal stress distribution. For example, at x/b = 0, the non-

dimensional thermal stress is 0.47 for the FGC strip with the power index p = 0.2 when 

a thermal shock is applied. But for the FGC strips with p = 1 and 2, the non-

dimensional thermal stress is 0.61. 
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The following figures show the numerical results of the thermal stress distribution 

for another FGC strip, TiC/E^C, when thermal shocks are applied. Fig. 5.13, Fig. 5.14 

and Fig. 5.15 are the non-dimensional thermal stress distributions vs. non-dimensional 

positions with the same component volume fraction at different instants in time. Fig. 

5.13 has the power index/? = 0.2, and Fig. 5.14 and Fig. 5.15 have the power indices 

p = landp = 2, respectively. Fig. 5.16 shows the non-dimensional thermal stress 

distribution vs. non-dimensional position with different component gradations at 

timer = 0.01. These figures support the conclusions we noted from previous figures for 

Al203/Si3N4 FGC strip. 
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Figure 5.13 Non-dimensional thermal stresses vs. non-dimensional positions in a 

thermally shocked TiC/B4C FGC strip 
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Figure 5.14 Non-dimensional thermal stresses vs. non-dimensional positions in a 

thermally shocked TiC/B4C FGC strip 
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Figure 5.15 Non-dimensional thermal stresses vs. non-dimensional positions in a 

thermally shocked TiC/B4C FGC strip 
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Figure 5.16 Non-dimensional thermal stresses vs. non-dimensional positions for 

T1C/B4C FGC strips with different component gradations 
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Figure 5.17 Comparison of the asymptotic solution with the complete solution 
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Fig. 5.17 shows the comparison of the asymptotic solution with the complete 

solution for the thermal stress distribution in a homogeneous ceramic strip. The vertical 

axis denotes the non-dimensional thermal stress, the horizontal axis denotes the non-

dimensional time. In this figure, the dashed line represents the complete solution and the 

solid line represents the asymptotic solution. It can be seen that the two solutions agree 

with each other very well when the non-dimensional time x is less than 0.1 which means 

that we can use the numerical model to solve the thermal shock problem because the 

maximum thermal stress always occurs shortly after the thermal shock is applied. 

Fig. 5.18 shows the thermal stresses distributions with the change of non-

dimensional time at the thermally shocked surface, x/b=0. The x axis denotes the non-

dimensional time T = tK(0)/b2 and the y axis denotes the non-dimensional thermal 

stresses. The three curves represent three different power index values, p = 0.2, p = 1, 

and p = 2. From this figure we can clearly see that the thermal stresses decrease 

significantly shortly after the thermal shock is applied. For example, the non-

dimensional thermal stresses decrease from 1 to 0.17, 0.22, and 0.33 for p = 2, p = 1, 

and p = 0.2, respectively, when non-dimensional time changes from 0 to 0.1. Also from 

the figure; we observe that for the FGC strip with a smaller power index, the thermal 

stress is larger than the one with the larger power index. For example, at non-

dimensional timer = 1, the non-dimensional thermal stresses are 0.01, 0.06 and 0.25 for 

p = 2, p = 1, and p = 0.2, respectively. 
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5.4.3 Thermal stress intensity factor 
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Figure 5.19 Normalized TSIF vs. non-dimensional time for AI2O3/S13N4 FGC strips with 

different component gradations 

Fig. 5.19 shows normalized TSIF vs. non-dimensional time. The x-axis denotes 

non-dimensional time, the y-axis represents normalized TSIF. In this case, the relative 

crack length a/b is fixed as 0.06. The figure shows that the maximum TSIF always 

occurs shortly after the thermal shock is applied, in this case, it is from about x = 0.003 to 

x = 0.005. These maximum values of TSIF are 0.085, 0.112, 0.124, 0.126 for p = 0.2, 0.5, 

1.0, and a homogeneous material. The influence of component volume fraction can also 

be observed from the figure. For example, at time x = 0.01, the TSIF values are 0.08, 

0.107, 0.118, 0.12, for p = 0.2, 0.5, 1.0, and a homogeneous material, respectively. 

61 



H$R&<* > s, « • 

"0 0.1 0.2 0.3 0.4 0.5 0.B 0.7 OB 0.9 
Non-dimensional time t 

Figure 5.18 Non-dimensional thermal stresses vs. non-dimensional time at x/b = 0 for 

TiC/B4C FGC strips with different component gradations 
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Figure 5.20 Normalized TSIF vs. non-dimensional time for A^CVSis^ FGC strips with 

different component gradations 

Fig. 5.20 shows the normalized TSIF vs. non-dimensional time for relative crack 

size a/b = 0.2. The x-axis denotes non-dimensional time, the y-axis represents 

normalized TSIF. From this figure we get similar results as those in Fig. 5.19. The 

maximum values of TSIF for the crack size a/b = 0.2 are 0.058, 0.075, 0.087, and 0.093, 

for power indices p = 0.2, 0.5, 1, and a homogeneous material, respectively. The 

maximum values of TSIF in Fig. 5.20 are less than those in Fig. 5.19. 
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Figure 5.21 Normalized peak TSIF vs. a/b for A^CVSis^ FGC strips with different 

component gradations 

Fig. 21 shows normalized peak TSIF for the FGC strips with different component 

volume fractions. The horizontal axis is the relative crack length a/b, the vertical axis is 

the normalized peak TSIF. The four curves represent four FGC strips with different 

component volume fractions. From the figure, we find that the component volume 

fraction has a significant influence on the maximum value of TSIF. For example, the 

maximum values of TSIF are 0.088, 0.112, 0.123, and 0.127 for the FGC strips with 

power indices p = 0.2, 0.5, 1.0 and the homogeneous material at about a/b = 0.06. We 

also observed that the TSIF is related to the crack length. When crack length is smaller 

than a certain value, in this figure, it is about a/b=0.06, TSIF increases with increasing 
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non-dimensional crack length, and reaches its peak value at about a/b=0.06. After the 

peak value is reached, the value of TSIF decreases with increases in non-dimensional 

crack length. For example, TSIF = 0.012, 0.016, 0.019, 0.025 for p = 0.2, 0.5, 1.0 and a 

homogeneous material at a/b = 0.5. In this case, the homogeneous material has the 

biggest TSIF value. 

The following figures show the TSIF for a TiC/B4C FGC strip with different 

component volume fractions when a severe thermal shock is applied. Fig. 5.22 and Fig. 

5.23 show the normalized TSIF distribution vs. non-dimensional time for TiC/E^C FGC 

strips with different component volume fractions. Fig. 5.22 is for the relative crack size 

a/b=0.06, and Fig. 5.23 is for a/b=0.2. Fig. 5.24 is the non-dimensional peak TSIF vs. 

non-dimensional position for the FGC strips with different component volume fractions. 

From the figures we can conclude similar results as we do from the previous three figures. 

Here the numerical results are given. 
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Figure 5.22 Normalized TSIF vs. non-dimensional time for TiC/E^C FGC strips with 

different component gradations 
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Figure 5.23 Normalized TSIF vs. non-dimensional time for TiC/B4C FGC strips with 

different component gradations 
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Figure 5.24 Normalized peak TSIF vs. a/b for T1C/B4C FGC strips with different 

component gradations 
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CHAPTER 6 

THERMAL FRACTURE RESISTANCE OF A FUNCTIONALLY 

GRADED CERAMICS 

When thermal shock is applied to a FGC strip, it is critical to know how severe a 

thermal load can be safely applied. The study of critical thermal shock is the key to 

predicting the thermal shock behavior of FGCs. The critical thermal shock is the 

maximum temperature difference applied to an FGC without growing the pre-existing 

crack when a thermal shock is applied. The critical thermal shock can be obtained by 

setting TSIF equal to the material toughness and solving for AT. The value of AT is the 

critical thermal shock and is denoted by ATC. In this chapter, the critical thermal shock 

for an FGC is derived along with numerical results for the particular FGC strips, 

AI2O3/S13N4, TiC/SiC and TiC/B4C. 
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Phase 1 

Figure 6.1 An FGC strip with an edge crack under thermal shock 

6.1 Critical thermal shock 

Fig. 6.1 shows an FGC strip under a thermal shock. We know that the TSIF is 

related to the severity of the temperature drop on the surface of the FGC strip. The 

temperature difference on the surface between the initial temperature To and the 

temperature Ta after the thermal load is applied is the thermal shock 

AT = T0-Ta. (6.1) 

We also know that TSIF is the driving force for a crack to grow under a thermal 

shock, and the fracture toughness Kic is the critical value of TSIF, beyond which the 

crack will start to propagate. When a thermal load is applied on an FGC strip, there must 

be a critical value for the thermal shock AT at which TSIF is equal to Kic. This critical 
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value of thermal shock is the critical thermal shock and is denoted by ATC. It is also 

known as the thermal shock threshold. When the thermal shock is less than the critical 

thermal shock, AT < ATC, the crack does not grow, but if AT > ATc, the crack starts to 

propagate. To determine the critical thermal shock, we set the maximum TSIF equal to 

the fracture toughness Kic 

Max{r>0}{K1(T,a,&Tc)} = Klc(a), (6.2) 

where Kic(a) denotes the fracture toughness of the FGC at x = a, and a denotes the pre­

existing crack length. Rearranging Eq. (5.24), we obtain TSIF 

K'= (1-v) 4Vf^ (U)3- (63) 

Substituting TSIF Eq. (6.3) into Eq. (6.2) yields the critical thermal shock ATC 

In Eq. (6.4), the fracture toughness of the two-phase FGC composite needs to be 

determined. The equivalent thermal and elastic property of the FGC composite 

calculated in chapter 4 does not include the fracture toughness. Here we adopt Jin and 

Batra's (Jin and Batra, 1996a) rule of mixtures formula for a two phase FGC composite 

with thermally non-homogeneous but elastically homogeneous properties graded in the x 

direction. 

(6.4) 
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where Vi(x) (/ = 1, 2) represents the volume fractions of phase 1 and phase2, respectively. 

K)c and K]c are the fracture toughnesses for phase 1 and phase 2, respectively. The 

fracture toughnesses of typical ceramic materials can be found in Table 2.1. Substituting 

the fracture toughness in Eq. (6.5) into Eq. (6.4) gives 

Ea^Jib / 2 U J 

6.2 Numerical results 

Fig. 6.2 shows the numerical result of the critical thermal shock for the 

AI2O3/S13N4 FGC strips. The two-phase composite is as shown in Fig. 6.1. Phase 1 is 

AI2O3, phase 2 is S13N4, and the thermal shock is applied on the phase 1 AI2O3 surface. 

Two initial crack lengths, alb = 0.005 and a I6 = 0.01 , are considered. The four 

horizontal lines present the critical thermal shock for the homogeneous materials of phase 

1 AI2O3 and phase 2 S13N4 with different crack lengths. For example, for the crack 

length a lb = 0.005, the ATC = 487.85°K for homogeneous Si3N4, and ATC = 182.95°K for 

homogeneous AI2O3, for the crack length alb = 0.01, the ATC = 366.53°Kand ATC = 

137.45°K for homogeneous SislNU, and AI2O3 respectively. The volume fraction of phase 

2 Si3N4 is described by following power law function and is shown in Fig. 5.4. 

V2=(y)P, (6.7) 
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From Fig. 6.2 we can see when the power index p is less than 0.5, the critical thermal 

shock decreases dramatically. For example, at p - 0.2, the critical thermal shocks are 

222°K and 177°K for alb = 0.005 and alb = 0.01, respectively. At;? = 0.5, the critical 

thermal shocks become 189°K and 144°K for the same a/b values. When p> 0.5, the 

critical thermal shocks only decrease slightly. After p > 1, the critical thermal shock is 

almost constant for the two crack lengths. For example, for alb = 0.005andalb = 0.01, 

ATC are 183°K and 137°K, respectively. These results tell us that critical thermal shock is 

changed dramatically by changing the component's volume fraction of the FGC strip 

when p is less than 1. We can also see from Fig. 6.2 that the critical thermal shock for 

alb = 0.005 is higher than the critical thermal shock for alb = 0.01, which means 

increasing the crack length or decreasing the thickness of the strip b can lower the critical 

thermal shock of the FGC strip. 
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Figure 6.2 Critical thermal shock ATC vs. power index p for A^CVSis^ FGC strip 
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Fig. 6.3 gives the numerical results of critical thermal shock for a TiC/SiC FGC 

strip. In this composite, TiC is phase 1 and SiC is phase 2. The volume fraction of SiC is 

described by the power law function in Eq. (6.7). The critical thermal shock is applied on 

the phase 1 TiC surface. Fig. 6.4 gives the numerical results of critical thermal shock for 

TiC/B4C FGC strip. In this composite, TiC is phase 1 and B4C is phase 2. The volume 

fraction of B4C is also described by the power law function in Eq. (6.7). The critical 

thermal shock is applied on the phase 1 TiC surface. We can make similar conclusions 

from these two figures as we did in Fig. 6.2. For example, when the power index p 

changes from 0.2 to 0.5, for the crack length alb = 0.005, the critical thermal shocks 

change from 196°K to 165°K for the TiC/SiC FGC strip, and from 143°K to 130°K for 

the SiC/F^C FGC strip. Also for the same interval, as p changes from 0.2 to 0.5, 

fox alb = 0.01, the critical thermal shocks change from 155°K to 126°K for TiC/SiC, and 

from 110°K to 98°K for TiC/B4C. 

Comparing the three FGC strips we find that the AI2O3/S13N4 FGC strip has the 

highest critical thermal shock, and the TiC/B4C FGC strip has the lowest critical thermal 

shock. This means that the AI2O3/S13N4 FGC strip has better thermal shock resistance 

than the other two FGCs. For example, for the same initial crack length a lb = 0.005, and 

the same power index p = 0.1, the critical thermal shocks are 265°K, 231°K, and 157°K 

for Al203/Si3N4? TiC/SiC, and TiC/B4C FGC strips, respectively. 
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Figure 6.3 Critical thermal shock ATC vs. power index p for TiC/SiC FGC strip 

Figure 6.4 Critical thermal shock ATC vs. power index p for TiC/B4C FGC strip 
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CHAPTER 7 

CONCLUSIONS 

A thermal fracture mechanics approach is used to study the thermal shock fracture 

behavior of FGC. Three FGC strips AI2O3/S13N4, TiC/SiC, and TiC/B4C, with an initial 

crack a under a severe thermal shock are considered. The FGC strips are assumed to have 

constant elastic properties and gradually changing thermal properties in the thickness 

direction described by a power law function. The temperature field, thermal stress field 

and thermal stress intensity factor are calculated. The critical thermal shocks for the 

three FGC strips are obtained. The volume fractions of constituents are critical for the 

temperature and thermal stress distributions of the thermally shocked FGC strips. 

Thermal stress intensity factors are dramatically changed when the component gradation 

is varied. The material gradation profile has a significant influence on the critical thermal 

shock. The critical thermal shock is increased almost as much as 80°K for Al203/Si3N4 

FGC strip, 70°K for TiC/SiC FGC strips, and 30°K for TiC/B4C FGC strips, when the 

power index p is changed from 1 to 0.1. For AfeCVSis^ FGC strip, the result suggests 

that the bulk of the composite is S13N4 when the thermal shock is applied on the AI2O3 

surface. Similarly, for the TiC/SiC and TiC/T^C FGCs, the bulk of the composites are 

SiC and B4C when the thermal shocks are applied on the TiC surfaces for both FGC 

strips. The transition of the component fraction should be rapid and smooth to achieve a 

higher critical thermal shock value. 
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