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Some thiols have been shown to be efficient in both bleaching and stabilizing the 

brightness of mechanical pulps. Two thiols, thioglycerol and glycol dimercaptoacetate, 

have received considerable attention due to their photostabilization effects. Their 

reactions with 1,4-benzoquinone, a model lignin compound, were investigated. 

In the first part of this study, reaction products were isolated using preparative 

HPLC and were fully characterized using GC-MS as well as l 3 c - ~ h 4 R  Both thiols were 

found to undergo Michael addition with the model quinone (in methanol) to yield a 

substituted hydroquinone. Further reaction with excess quinone in the presence of UV- 

light facilitated subsequent redox reactions producing darkly colored substituted 

quinones. 



Another part of this research examined the reaction of the substituted 

hydroquinones with lightly bleached aspen CTMP. The nearly colorless substituted 

hydroquinones were applied to the test papers and irradiated for several hours. The 

brightness pads darkened quickly, suggesting redox chemistry that was similar to the 

reaction with 1,4-benzoquinone. An extraction was performed and the products examined 

with W-Visible spectrometry. This research fbther supported the hypothesis that these 

thiols react with chromophoric quinoid structures in lignin resulting initially in a 

bleaching effect. Subsequent redox reactions produce highly colored materials leading to 

a pulp that is ultimately darker than untreated pulp. 





Reaction 11: Reaction of Brightness Pads 
with Substituted Hydroquinone (1) ...................................... -37 

Reaction 111: Reaction of 1 . 4.Benzoquinone 
with Glycol Dimercaptoacetate ........................................... 40 

Reaction IV: Reaction of Brightness Pads 
with Disubstituted Hydroquinone (5) ................................... 47 

............................................... CHAPTER 3: Conclusions and Suggested Work 51 

.......................................................................... Suggested Work -51 

......................................................... CHAPTER 4: Experimental Procedures 53 

General Method of Acetylation .......................................................... 53 

General Method for De.acetylation ...................................................... 53 

General Method for GC-MS analysis .................................................... 54 

General Method for NMR Characterization ............................................ 54 

General Method for HPLC Quantification ............................................. 55 

General Method for Making Brightness Pads .......................................... 55 

Reaction I: Reaction of 1. 4.Benzoquinone with Thioglycerol ....................... 56 

Reaction 11: Treatment of Brightness Pads with (1) ................................... 57 

...... Reaction 111: Reaction of 1. 4.Benzoquinone with Glycol Dimercaptoacetate 58 

Reaction IV: Treatment of Brightness Pads with (5) .................................. 59 

........................................................................................... References -61 

........................................................................ Appendix: Supporting data -61 

........................................................................... Biography of the Author -76 



LIST OF TABLES 

1. Brightness loss of test papers treated with a solution of ethyl 

acetate and mono-adduct (1). ............................................................... .38 

2. Brightness loss of test papers treated with substituted 

hydroquinone (5). ............................................................................. -48 





Trials 1 and 2 compare the loss in brightness of papers treated with 

............................... monoadduct (1). as compared to the untreated control 39 

.............................................. Pure disubstituted quinone fiom reaction I 40 

................................................. Product extracted fiom brightness pads 40 

...... Formation of diadduct fiom 1. 4.benzoquinone and glycol dimercaptoacetate 41 

.................................. Proposed fragmentation of substituted hydroquinone 42 

Formation of highly colored quinone ..................................................... 43 

1 3 ~ - ~ ~ ~  of compound (6) ................................................................ -45 

13 ..................................................... Labeled C-NMR of compound (6) -46 

Trials 1 and 2 display the rapid brightness loss that occurred ii i  

pulp treated with hydroquinone (5) . The control was only treated 

.................................................................................. with solvent -48 

30 . Compound extracted fiom brightness pads ............................................... 49 

3 1 . Pure substituted quinone (6) .................. ... ........................................ 49 

........................................ A.1. Simulated 13c-NMR of substituted quinone (2) -68 

......................................... A.2. GCMS of 13c-NMR of substituted quinone (2) 69 

...................................... A.3. 3 ~ - ~ ~ ~  of substituted quinone (6) with solvent 70 

A.4. I3c-Nh4~ of substituted quinone (6) with 
........................................................... solvent peaks subtracted out -71 

........................................... A S  . W-Vis spectrum of substituted quinone (6) -72 

A.6. W-Vis  spectra ............................................................................... -73 

A.7. InitialGCh4S ofreactionIII(Tirne=O) ................................................... 74 

A.8. GCMS spctrum of reaction 111 after 5 hours irradiation .............................. 75 



CHAPTER 1 : Literature Review 

Introduction 

The production of pulp for manufacturing paper represents one of the largest uses 

of our forest resources. Every year, millions of tons of pulp are produced in the United 

States. Much of this pulp is produced by chemical pulping methods that utilize only 40- 

50% of the raw material. Some pulp, however, is produced without significant 

delignification in a very high yield (85-96%) based on raw material. TMP (thenno- 

mechanical pulps) and CTMP (chemithermo-mechanical pulps) are examples of high- 

yield pulps that can be manufactured with substantially lower cost than fully delignified 

pulps. Thus, interest is growing rapidly in replacing low-yield chemical pulps with 

higher-yield mechanical pulps. 

Currently, high-yield pulps are used for production of newsprint and other short- 

life papers. Widespread use is hindered by the low brightness and poor brightness 

stability of these pulps. While both TMP and CTMP can be bleached to IS0 brightness 

80, the high lignin content is responsible for rapid yellowing which shortens the useful 

life of the paper. Lignin produces yellow chromophores as it undergoes a variety of 

photochemical reactions, causing visible yellowing in the paper. 

Technological advances over the years have allowed for high-yield pulp 

production with smoothness, formation, and bonding characteristics suitable for fine 

papers meitner, 19911. Thus, the yellowing process appears to be the remaining obstacle 

preventing the widespread use of mechanical pulp Forsskahl, 19941. 



Causes of Photoyellowing 

Color reversion occurs in paper upon exposure to heat or light. Photo-induced 

yellowing is responsible for a majority of the brightness loss in high-yield pulps. 

Thermally-induced brightness reversion, a slow oxidative discoloration at ambient 

temperature, can cause a 2-5 point brightness loss, whereas photoyellowing can result in 

a 30 point brightness loss in a relatively short period of time. Under similar conditions, a 

typical bleached haft pulp experiences only a 3 point brightness loss [Heitner, 19931. 

While both heat and light can cause brightness loss in high-yield pulps, the photo-induced 

reversion must be prevented to permit the use of high-yield pulps in fine quality papers. 

In some 60 years of yellowing research, a greater understanding has been achieved 

regarding the photochemical processes responsible for the photoyellowing of pulp. 

Major advances have been made in the last decade as researchers have identified some 

specific mechanisms whereby lignin photodegrades in near-W light Feary, 1 9941. 

The Role of Chromophores 

The problem of paper yellowing has been observed since the late 1800's [Cross, 

18971. Although little was understood about the photodegradation of pulp, researchers 

were able to link it with the chemistry of lignin [Forman, 19401. In the 194OYs, research 

focused on understanding the connection between ultraviolet light, lignin, and the 

photoyellowing process [Forman, 1940; Reineck and Lewis, 1 945; Nolan et al., 1945; 

Lewis et al., 1945; Van den Akker, 19491. Investigators also performed conclusive 

experiments showing that the most rapid yellowing of pulp occurs in the presence of W 

light and oxygen [Leary, 1 968a; Kringstad, 1 969; Lin and Kringstad, 1970% 19711. 



More recent research demonstrated that the yellowing of lignin-rich paper is a 

surface phenomenon. [Forsskahl, 1995a and references therein]. Spectroscopic studies 

have shown that the photochemistry of lignin is not distributed homogeneously in the 

yellowed layer [Heitner, 1993al. 

In 1968, Leary [I9681 proposed that quinoid compounds play a key role in the 

photo-oxidation process. Numerous experiments have since shown that extended 

conjugated structures in lignin absorb W light (h=300-400111x1) to produce radicals 

[Heitner, 19911. These radical intermediates react to form a variety of colored ortho- and 

para-quinones k b o  et a]., 1990; Zhu et al., 19951. Figure 1 displays a general scheme 

accounting for the formation of ortho-quinones. 

CbOH 

H k - e L i g n i n  I 

HO-CH 
- 

\ Lignin 

Lignin Lignin 

Figure 1. Formation of ortho-quinones [Heitner, 1993al 

While these quinones account for a significant amount of the yelIowing observed 

in pulp, a number of other functional groups are considered to be important initiators in 

the photoyellowing process [Agarwal, 1997; Forsskahl, 1994 and references therein]. 

Aromatic a-carbonyl groups, ring conjugated carbon-carbon double bond structures, 

hydroquinones, stilbenes, and biphenyl structures are all thought to contribute to 



photodegradation [Agarwal, 1997; Forsskahl, 1994; Nonni et al., 1982; Argyropoulos et 

al., 19921. Products include acids, carbonyl compounds, quinones, and aldehydes 

[Gellerstedt and Zhan, 19931. Not all products are colored [Forsskahl, 1994 and 

references therein]. 

Even though much progress has been made over the years, there is still no 

complete explanation of the yellowing process. The view that only one species or 

reaction mechanism causes yellowing has given way to a belief that this is a much more 

complex phenomenon. 

The Role of Oxygen 

For nearly as long as the yellowing problem has been investigated, questions have 

been raised concerning the role of oxygen. Research fiom early investigations v a n  den 

Akker et a]., 1949; Kringstad, 19691 consistently indicated that photochemical oxidation 

reactions were responsible for the majority of the degradation observed in lignin-rich 

pulps. The studies done with oxygen, however, were not so conclusive. 

Van den Akker and coworkers [I9491 found that irradiation of a given 

groundwood pulp resulted in a smaller brightness loss in N2 (6.8 points) than in air (10.1 

points). A few years later, Leary [I9681 reported that inadiation of newsprint for 500 

hours in N2, COz, or vacuum resulted in only slight yellowing. It was thought that 

perhaps the yellowing observed by Van den Akker under N2 was due to incomplete 

removal of oxygen fiom the wood fiber. It was also suggested that they may have 

observed the formation of chromophores through a reaction pathway that doesn't depend 

on the presence of oxygen meitner, 19931. 



observed the formation of chrornophores through a reaction pathway that doesn't depend 

on the presence of oxygen [Heitner, 19931. 

Leary's work was soon confirmed by Lin and Kringstad [I 9711. They reported 

that a solution of milled wood lignin in methylcellulose and water failed to form colored 

products after 6 hours of W radiation in a vacuum. 

More recent studies by Castellan and coworkers [Castellan et a]., 1987, 1989, 

19931 showed that the formation of colored products was only slightly dependent on 

degassing. Using phenolic and non-phenolic a-carbonyl P-0-4 lignin models 11987, 

19891, they concluded that ground state oxygen did not play a major role in the basic 

photochemistry of lignin. 

Argyropoulos and Sun El9961 found that photoirradiation cleaved the P-0-4 

ethers present in lignin significantly faster under oxygen than under nitrogen. The solid 

state chemistry of lignin chromophores, however, may be different than model 

compounds in solution. In this study, oxygen may serve as a catalyst capable of 

generating peroxy fiee radicals within the lignin facilitating breakdown of the P-0-4 

linkages. 

TMP and CTMP sheets were noticeably bleached when placed in a singlet oxygen 

stream [Forsskahl et a]., 19881. This suggests that singlet oxygen can participate in 

bleaching, as well as yellowing, reactions. 

Weir and coworkers 11995, 19961 have investigated anaerobic photoreactions 

using different lignin molecules. They have concluded that there are some definite 

photoyellowing reactions that do not require the presence of oxygen. Thus fir the role of 

oxygen in the photodegradation process remains elusive. 



Tbe Yellowing Mecbanism 

The photoyellowing of pulp is a complicated mechanistic process that is not 

wholly understood. While much remains to be learned concerning the yellowing 

phenomenon, recent research has identified three main reaction pathways to account for 

most lignin photodegradation in near-W light: the "fkee phenoxy radical" pathway, the 

"phenacyl" pathway, and the "ketyl" pathway. Of these pathways, it is perhaps the most 

recently discovered "ketyl" pathway that is the most important mary, 19941. Each one, 

however, contributes to ow understanding of the interactions between lignin, oxygen, and 

W light to form colored products. 

Free Pbenoxy Radical Patbway 

Prior to 1988, only the fiee phenoxy radical pathway was known beary, 19941. 

Singh [I9661 found in his research that significant brightness stability could be achieved 

through benzoylation of the phenolic groups in lignin. Other studies soon followed, 

demonstrating the role of the phenolic hydroxyl groups in the yellowing process Leary, 

1968bI. 

In 1967, Leary [1968b] proposed that the observed yellowing of lignified 

materials was due either to the direct absorption of light by lke phenolic hydroxyl groups 

or to oxidation by removal of a hydrogen atom. The following mechanism was proposed: 



Yellow and 
Dimethoxylated , 

Products 

A = Absorber 

Figure 2. An early explanation of yellowing [Leary, 1968b] 

Further research by Lin and Kringstad [I9701 suggested that chromophore "Ay' is a 

carbonyl group which is responsible for the abstraction of a phenolic hydrogen. Removal 

of this phenolic hydroxy group by various acetylation or alkylation reactions helped to 

decrease the extent of light-induced yellowing, but did not seem to slow the initial rate. 

Further work, which focused on the eff'ects of carbonyl group reduction, helped 

elucidate the phenoxy pathway. This pathway is shown in Figure 3. 
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Figure 3. Free phenoxy pathway [adapted ftom Leary, 19941 

This research indicated that excitation of the carbonyl chromophore was the basis 

for yellowing. The excited chromophore could either abstract a hydrogen atom ftom ftee 

phenolic hydroxyl groups, yielding phenoxy ftee radicals, or be quenched by the 

formation of singlet oxygen. 



Alternatively, the excited carbonyl chromophore could undergo intersystem 

crossing to the excited triplet state. This species could abstract a neighboring phenolic 

hydrogen similarly, creating a phenoxy radical [Kringstad and Lin, 19701. Regardless of 

which mechanism was followed, the resulting phenoxy fiee radicals were easily oxidized 

to colored products. 

While this mechanistic pathway represented a major step in understanding the 

photoyellowing process, it could not account for two very important observations. This 

pre-1988 mechanism could not explain the light-induced yellowing that occurred even 

when fiee phenoxy hydroxyl groups were chemically blocked. Furthermore, the major 

photodegradation products are ketones and this mechanistic pathway does not explain 

their fonnation Only about 30% of observed lignin breakdown can be explained by the 

fiee phenoxy radical pathway peary, 19941. 

The Phenacyl Pathway 

The phenacyl pathway, first proposed by Lin and Gierer [1972], fUrther 

contributed to the understanding of photoyellowing by accounting for the formation of 

ketone products. Although this mechanism was first suggested in the early 19703, it was 

not confirmed for several years. 
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Figure 4. The phenacyl pathway [Leary, 1 9941 



Irradiation of model lignin compounds containing a-carbonyl8-0-4 ether 

linkages produced various ketones, ketois, and always guaiacol. Figure 4 shows the 

phenacyl pathway which displays some of the products resulting fiom cleavage of the 

P-0-4 bonds. Hornolytic bond cleavage of the a-GAV model yields a phenacyl radical 

and a phenoxy radical. While the phenoxy radical may be oxidized to a quinone, it can 

also undergo hydrogen abstraction to produce a ketone and guaiacol. The phenacyl 

hgment can either dimerize or couple. The coupling reaction creates products that are 

susceptible to further reaction with light to produce secondary chromophores. 

More recent model compound studies in the late 1980's and early 1990's have 

confirmed the work of Gierer and Lin. These studies have also identified some products 

formed through this pathway wanucci et a]., 1988; Netto-Ferreira and Scaiano, 19891. 

Figure 5 wary, 19941 displays how the phenacyl pathway contributed to our 

knowledge of the overall yellowing mechanism Still less than half of observed lignin 

degradation could be accounted for, due in part to the k t  that TMP contains carbonyl 

groups in only about 7% of the lignin building units Keary, 19941. 



Light 

. 
Figure 5. Pathways of yellowing known in 1990 [Leary, 19943 

The "Ketyl" Pathway 

The ketyl pathway, which was recognized in 1992, helped account for a number 

of important observations that neither the free phenoxy radical pathway nor the phenacyl 

pathway could explain. 

As early as the 1960 '~~  researchers reported that reduction of carbonyl groups by 

NaB& did not stop the photoyellowing process. [Leary, 1968; Lin and Kringstad, 1970; 



GAVH Ketyl Radical 

0-L 
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L 
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Figure 6. The ketyl pathway ZLeary, 19943 

Schmidt and Heitner, 19911. This led investigators to search for other mechanisms of 

light-induced yellowing. 

In 199 1, Scaiano and coworkers [I9911 observed that the model compound a- 

Guaiacoxyacetoveratone (a-GAVH) reacted readily with other radicals to form a ketyl 

radical. They noted that the rapid cleavage of the P-aryl ether bond of the ketyl radical 

yielded a phenoxy radical as well as an en01 that tautomerized to the corresponding 

ketone. As this work was confirmed by others [Leary 1994, reference 93, the ketyl 

pathway shown in Figure 6 became apparent. 

The proposed mechanism proceeds due to the formation of peroxy radicals 

resulting fiom reaction of oxygen with carbon-centered lignin fiee radicals. As the 



generated ketyl radical fragments, ketones are formed which act as secondary 

chromophores, thus sustaining photodegradation as a chain reaction. 

This pathway answered some important questions. Not only did it help explain 

the production of ketones, but it also helped account for the inhibitory action of radical 

scavengers like ascorbic acid and thiols [Leary, 19941. Furthermore, it explained why 

blocking the phenacyl and phenoxy flee radical pathways only seemed to inhiiit the 

initial phase of yellowing m c i s ,  19911. Approximately 70% of yellowing may occur 

through the ketyl pathway, which is currently recognized as the most important reaction 

route. 

Stabilization Against Photoyellowing 

For more than 50 years, attempts have been made to inhibit yellowing. As early as 

1945, researchers [Reinack and Lewis, 19453 were searching for inhibitors that would 

prevent, or at least significantly slow, photoyellowing. Since investigators had not 

identified any specific reaction mechanism in the photodegradation process, it is not 

surprising that no usefbl chemical inhibitor was found. Even though several dozen 

compounds were tested, including aldehydes, ketones, esters, salts, organic acids, 

carbohydrates, chlorinated compounds, phenols, and mines, no noteworthy inhibition 

was observed when these compounds were applied to papers and exposed to light 

meinack and Lewis, 1945; Nolan, 19451. 

While the search continues to preclude photoyellowing completely, the results 

have improved greatly in recent years. As our understanding of the mechanisms involved 



grows clearer, it will become easier to devise strategies to overcome this multi-faceted 

problem. 

Most efforts thus fhr have concentrated on chemical modification or elimination 

of chromophores, as well as addition of inhibitors. More recently, work has been done to 

study the ability of antioxidants to serve as excited state quenchers [Leary, 1994; Heitner, 

1993bl. 

Chemical Modification of Lignin Functional Groups 

Among the first bctional groups to be modified were the fiee phenolic hydroxyl 

groups. Since the first reaction pathway accounting for yellowing suggested that these 

functional groups played a significant part in the formation of yellow chromophores, 

efforts were focused on blocking these sites [Leary, 19681. 

A number of reactions were employed to eliminate the fiee phenolic hydroxyl 

groups. Methylation, benzoylation, and acetylation all successfblly blocked the 

intermediate phenoxy radicals fiom fonning [Leary, 1968; Heitner, 19911. In this way, 

some photostabilization was achieved. 

Cole and coworkers [I9931 reported that acetylation, the most effective at 

yellowing inhibition, was not selective. The acetic anhydride, while reacting with the 

lignin to retard overall yellowing, also acetylated the cellulose which detracted fiom the 

quality of the pulp. Selective acetylation is possible through carefbl control of pH [Cole 

et al., 19931. Under the right conditions, etherification of phenolic hydroxy groups in 

bleached CTMP with polyethylene glycol derivatives was found to inhl'bit 

photodegradation [Cole 1993a; Cole et al., 1993bl. 



Since only approximately 30% of total photoyellowing follows the phenoxy fiee 

radical pathway, however, this route's most successfd inhibitor provides only a partial 

solution. 

Another chromophore that has received attention is the aromatic carbonyl group. 

Excited aromatic carbonyls play a role in both the phenoxy fiee radical and phenacyl 

pathways. As early as the 1 96OYs, it was found that reduction of carbonyls in unbleached 

mechanical pulp decreased the rate of yellowing [Leary, 19681. For example, reduction 

of carbonyls with NaBI-& gives a brighter pulp and lengthens the time required for 

complete yellowing. Unfortunately, chemical treatments have been largely unsuccessfbl 

at altering the extent of yellowing [Francis et al., 199 1 ; Schmidt and Heitner, 1991 ; 

Fornier et al., 19891. 

A number of researchers have reported that the photoyellowing behavior of 

unbleached and borohydride-bleached mechanical pulps is very similar [Schmidt and 

Heitner, 1993; Agarwal and McSweeny, 19971. Agarwal and McSweeny [1997l 

evaluated the role of the a-carbonyl functional group using near-IR (infrared), and 

excited FT (fourier transform) Raman spectroscopy. They proposed that a-carbonyls as 

well as  ring conjugated ethylenic groups are not responsible for initiating yellowing 

reactions. 

Hu and coworkers [2000] have suggested that perhaps the removal of both a- 

carbonyl and a-hydroxyl groups is necessary for a more complete inhibition of 

photoyellowing. Modification of non-aromatic groups in lignin under mild conditions is 

shown in Figure 7 w u  et al., 1 9991. 



Figure 7. Some reactions of non-aromatic groups in lignin [Hu, 19991 

Researchers have studied the reactions of ozone with stilbenes and styrenes. 

These model compounds helped to elucidate major reactions of ozone, a bleaching agent, 

with residual lignins in softwood krafi pulps. Eriksson and Gierer [I9851 reported that 

ozone readily reacted with such compounds under milder conditions than chlorine I 

chlorine dioxide. It was suggested, however, that the ozone treatment may actually be 

producing other chromophores in addition to generating some radical intermediates fiom 

lignin itself. 

Hydrogenation of lignin aromatics has been only partially successhl [Heitner, 

1993bl. In order for lignin vinyl groups in TMP to be hydrogenated completely, a 

homogeneous catalyst would be needed. 



Chemical Additives 

Considerable effort has been made to find chemical additives that would retard or 

block brightness reversion [Heitner, 1993b; Leary, 19941. Most of the research has 

focused on UV absorbers or radical scavenging antioxidants. 

W Absorbers 

Since the 19407s, researchers have been looking for inhibitors to prevent the 

fading of groundwood. Nolan [I9451 sought a compound that would absorb in the 270- 

400 nm range and inhibit photoyellowing. His work showed that fluorescent purple dye 

(a solution of Eastman diethyl dihydrocollidinedicarboxylate and calcium tungstate) did 

slow yellowing, but was economically unfeasible. 

Over the years, more compounds have been identified as effective inhibitors. 

Some that have received considerable attention include a variety of hydroxyl substituted 

bemophenones [Kringstad, 1969; Fornier de Violet et al., 19901. One of these 

compounds, 2,4-dihydroxybenzophenone (DHB) has demonstrated an ability to act as an 

excited triplet quencher and chain breaker [Gellerstedt et al., 1983; Fornier de Violet et 

a]. , 1 9901. 

Polyethylene glycol (PEG) was first reported by Minemura to inhibit yellowing 

winemura, 1 978; Minemura and Umehara, 19861. Cole and coworkers [I 9931 

performed several experiments in which PEG significantly stabilized model lignin 

compounds against photoyellowing. Janson and Forsskahl 119961 found that 

polytetrahydrohan was even more effective than PEG as an inhibitor. 



The mechanisms by which these polymers retard yellowing are not well 

understood. To date, the most effective W absorbers for mechanical pulps are 

benzophenone, certain polymers, and triazole-based structures [Harvey et al., 19971. 

Radical Scavenging Antioxidants 

The search for radical scavengers has not been going on as  long as the search for 

W absorbers. Since the proposed photoyellowing reaction pathways all include the 

generation of a phenoxy radical, investigators have been searching for an additive that 

would act as a hydrogen donor. A compound that would react with this key intermediate 

in the yellowing pathway should successfully obstruct photodegradation. A number of 

compounds have been studied including ascorbic acid, a variety of dienes, disulfides, 

thioethers, and thiols. 

Ascorbic acid is a compound that has been studied extensively. While it was 

found that ascorbic acid inhibited yellowing temporarily [Schmidt and Heitner, 1991; 

Fornier de Violet et al., 19901, the treated papers eventually yellowed at the same rate as 

untreated paper. Several researchers have suggested that this observation is due to the 

susceptibility of ascorbic acid to photo-oxidation. As this photo-oxidation occurs, other 

radical species are formed, allowing the yellowing reaction to proceed p a n  et al., 1993; 

Heitner 1993bI. The ease with which ascorbic acid itself can form radicals renders it 

ineffective as a yellowing inhibitor. 



Thiols 

This class of compounds has received considerable attention in recent years. In 

1987, Cole and Sarkanen [I9871 reported a promising method of brightness stabilization. 

In their investigation, a number of sulfur compounds were found to inhibit successhlly 

yellowing in mechanical pulps. Their work showed that polyhydroxythiols, such as 

thioglycerol and glycol dimercaptoacetate, acted as bleaching agents and photostabilizers, 

while disulfides, sulfoxides, and sulfones proved to be ineffective additives. Further tests 

revealed that the ability of sulfur compounds to bleach and/or stabilize pulp was very 

dependent on structure. Kutney [I9861 obtained similar results. Certain compounds 

demonstrated an ability to bleach pulp up to 5 percentage points, while larger analogs had 

little effect under the same conditions. 

A striking example of this structure effect was reported by Cole and Sarkanen in 

1987. Glycol dimercaptoacetate and pentaerythritol tetrathioglycolate contain identical 

hctional groups yet diier greatly in size and structure. 

G l p l  Dirnercaptoacetate 
Pentaerythritol tetrathiogmlate 

Figure 8. Thiols 



While glycol dirnercaptoacetate initially bleached the pulp and provided some 

stabilization, pentathreitol tetrathioglycolate actually promoted discoloration. 

These studies, as well as studies particularly with thioglycerol, have been 

reproduced by numerous scientists and extensively documented in the literature [Janson, 

1989; Kutney, 1986; Schmidt et al., 1990; Lee and Sumirnoto, 1991; Castellan et a]., 

1991 ; Daneault et a]., 1991 ; Hirashima and Sumimoto, 1994; Pan et a]., 1995, 19961. 

The chemical mechanisms by which certain mercapto-additives stabilize pulp are 

not hlly evident. A hydrogen donation mechanism was proposed as a means for 

photostabilization [Cole and Sarkanen, 19861. This idea gained support when Fischer 

and coworkers [I9911 used ESR to study the effects of certain s u l h  compounds on the 

decomposition of phenoxy radicals. Recent molecular modeling studies performed in our 

group suggest that thiols like thioglycerol do not inhibit photoyellowing by acting as 

hydrogen donors [Fort et al., 19971, since they are no more effective H-donors than 

glycerol or simple thiols. 

Work done by Cook and coworkers [I9961 has provided support for the proposed 

radical scavenging mechanism of thiol stabilization agents. 

R-SH + Lignin-0 - R-S' + Lignin-OH 

Figure 9. Thiostabilization of lignin radicals [Cook et a]., 19961 



Another mechanism that has been suggested to account for the bleaching effect of 

certain thiols is Michael addition of the thiols to quinoidal structures [Cole and Sarkanen, 

19871. Figure 8 accounts for thio-photostabilization by a Michael-type addition to a, P- 

unsaturated carbonyl and quinoid structures [Cook et al., 19961. The nucleophilic 

properties of thiols may allow for their addition to a variety of unsaturated lignin 

chromophores including coniferaldehyde units, stilbene derivatives, and ortho- and para- 

quinoid structures. The removal of such chromophores provides an explanation for the 

observed bleaching of mechanical pulp. 

Figure 10. Michael addition of thioglycerol to model quinone 

[adapted fiom Cook et al., 19961 

Supporting evidence for Michael addition reactions has been increasing steadily 

[Gellerstedt and Zhang, 1993; Lee and Sumimoto, 19911. In 1994, ~ i rashika  and 

Sumimoto proposed that thioglycerol adds to existing para-quinones and further reacts to 

form additional quinones upon irradiation mirashirna and Sumirnoto, 19941. This would 

explain the bleaching effect as well as the subsequent redarkening that is observed in pulp 

with thiols such as thioglycerol and glycol dimercaptoacetate [Cole et al., l987,1996]. 

Figure 9 shows the Michael addition reaction that is thought to occur between 1,4- 

benzoquinone (a model lignin compound) and thioglycerol [Cole et al., 20001. 



The conversion of the quinone to a sulfiu-substituted hydroquinone resulted in an 

initial bleaching effect. It also was suggested that additional redox chemistry may occur, 

yielding darker sulfur-substituted quinones (Figure 10) [Wang, 19971. 

Substituted 
Hydroqu inon es 

Figure 1 1. Bleaching of 1,4-benzoquinone by thioglycerol [Wang, 19971 

Thiols have provided some valuable insight into the photo yellowing process. 

Some thiols have demonstrated a remarkable ability to stabilize against discoloration. 

Unfortunately their ability to stabilize is time dependent [Cook et d , 1 9961. Yellowing 

is only inhibited as long as fiee thiols are available. Furthermore, the malodorous 

properties of thiols are also a barrier to commercial applications. Nevertheless, if these 



mechanisms were understood at a molecular level, it should be possible to design other 

additives with perhaps even better photostabilization properties. 

Radical Scavengers and W Absorbers 

Some of the most recent research combines a W absorber with a radical 

scavenger. Petit-Conil and coworkers [I9981 found a significant reduction in color 

reversion by treating pulp with a three component mixture. Test papers were treated with 

sucrose, a polyethylene oxide dithiol, and Tinuvin 1 130. The first two acted as 

antioxidants while the latter knctioned as a UV absorber. 

(la) R =  & 
Tinuvin 328 (UVA) 

2-(2'-hydroxy-3',5'di- tert- 
amy Ipheny1)benzot rim1 e 

Cibafast H (UVA) 

4-hy&oxy-2,2,6,6- tetra 
met hy $i peri dine N-oxyl 

Figure 12. UV absorbers and nitroxide radical traps [McGany et al., 20001 



Other researchers reported remarkable color stability using hindered nitroxides 

[McGarry et al., 2000J. Figure 1 1 displays the compounds used in the McGarry study. 

Compounds (la) and (2a) served as ultraviolet light absorbers ( W A )  while (1 b) and (2b) 

functioned as nitroxide radical traps. 

Peroxide-bleached softwood TMP lost 10 IS0 brightness points over 600 days of 

ambient exposure when treated with only 1% UVA and 1% nitroxide radical trap. (This 

exposure was equated with 600 days of continuous exposure to office fluorescent lighting 

and window-filtered daylight.) It is believed that this inhibition must involve a catalytic 

mechanism in which the nitroxide is regenerated. 

The past few years have seen considerable progress in yellowing inhibition. 

Although these studies have enhanced our understanding of the photoyellowing process, 

many questions remain unanswered. 

Summary 

Photoyellowing of paper is a property of lignin-rich, high-yield pulps. The 

mechanisms by which photo-induced yellowing occurs are still not perfectly understood. 

Early stages of research showed that lignin in mechanical pulps is responsible for 

yellowing. Lignin, a complex structure, has not been completely characterized. While 

years of research have revealed the identity of some chromophores that react to form 

colored products, many aspects of the reaction pathways remain unclear. The phenoxy 

radical is believed to be a major precursor to photoreversion. 



Currently, three main pathways that generate phenoxy radicals have been 

proposed. The "fiee phenoxy radical" pathway, the "phenacyl" pathway, and the "ketyl" 

pathway all help account for the formation of colored products. Of these mechanistic 

routes, the "ketyl" pathway is considered to be the major reaction pathway. In this 

scheme, phenoxy radicals are generated by cleavage of lignin $-0-4 phenyl ether units. 

The ketyl radicals that are formed can react Wher  to generate ketones and phenoxy 

radicals which form more colored quinones. 

Based on advancing knowledge of the mechanism of lignin photodegradation, 

researchers have attempted to inhibit light-induced yellowing in high-yield pulps. Some 

workers have focused on chemical modification of lignin functional groups. So fhr, this 

method only partially inhibits photoyellowing. Others have searched for chemical 

additives that would photostabilize high-yield pulps. Some W absorbers have 

bctioned as inhibitors, but they are too costly to be a reasonable option. A number of 

radical scavenging antioxidants have been examined including ascorbic acid and a variety 

of sulfur compounds. Thiols and thioethers have been shown to retard photoyellowing. 

Two thiols, glycol dimercaptoacetate and thioglycerol, provide both bleaching and 

photostabilization effects. No commercially viable technology has been devised, 

however, because none of the additives have fulfilled all of the requirements necessary 

for practical application. 

Although thiols lack some basic qualifications for commercial use, they have 

significantly contributed to our understanding of the molecular processes involved in the 

bleaching and stabilization of mechanical pulp. While much has been accomplished, 



more research is needed to help us better grasp the mechanisms involved in 

photostabilization by thiols, thioethers, and other sulfbr-containing additives. 

In a few recent studies, the effects of adding a combination of compounds that 

would serve as UV absorbers as well as radical scavenging antioxidants, have been 

investigated. While these experiments have met with a degree of success, there is still no 

pragmatic, comprehensive sohtion to the complex problem of photoreversion in high- 

yield pulp. It is expected that better solutions will be found once our investigations lead 

to hller knowledge of the yellowing mechanisms. 



CHAPTER 2: Results and Discussion 

In 1987, Cole and Sarkanen [I9871 reported a promising method for 

photostabilization of high-yield pulps. In their studies at the University of Washington, 

they found that some sulfur-containing compounds, particularly thiols, were effective 

stabilizers against photoyellowing. Some compounds demonstrated an ability to bleach 

as well as to stabilize mechanical pulps. In their investigation, they found that the 

molecular structure of the sulfur compounds had a tremendous impact on stabilizing 

activity. Their research, along with subsequent work, identified several compounds that 

acted as yellowing inhl'bitors. While it is clear that such compounds will not be used as 

commercial stabilizers, a complete knowledge of the mechanisms by which they inhibit 

yellowing can aid in the design of even more effective inhibitors. 

In this study, we focused on two thiols, thioglycerol and glycol dirnercaptoacetate, 

both of which have been successful at photostabilization. 

Thioglycerol Glycol dimercaptoacetate 

Figure 13. Thiols 

The goal of this investigation was to learn more about the mechanism by which 

they initially bleach and eventually darken pulp. It has been reported that such thiols add 



via a Michael-type addition to a, P-unsaturated carbonyl and quinoid structures in the 

lignin [Cole and Sarkanen 1987; Cook et al., 1996; Ragauskas and Cook 1997; Hirashima 

and Sumimoto, 1994; Cole et al., 19961. The redarkening is attributed to additional redox 

chemistry that occurs when all of the free thiol has reacted. 

The initial stages of our research examined the reactions between the thiols and 

1,4-benzoquinone, a model lignin compound. This work focused on characterizing the 

products generated in these reactions. Next, we turned our attention to the reactions of 

these same thiols with high-yield pulp. Similarities would offer support to the hypothesis 

that thiols, reacting with chromophoric quinoid groups in lignin, are responsible for the 

initial bleaching and ultimate redarkening of high-yield pulp. 

Reaction I: Reaction of 1,4-Benzoquinone with Thioglycerol 

Previous work in our group demonstrated that thioglycerol readily reacts with 1,4- 

benzoquinone via a Michael addition reaction to yield a colorless substituted 

hydroquinone [Cole, 1996; Wang, 19971. This adduct, however, underwent further 

reactions yielding darkly colored products. In an effort to understand the actions of 

thioglycerol in high-yield pulp, we focused our attention on examining the chemistry of 

thioglycerol with a model lignin compound in solution. 

1,4-Benzoquinone was reacted with thioglycerol in methanol at a 1 : lmolar ratio at 

ambient temperatures. The mixture turned brown immediately upon mixing but became 

clear after about 20 minutes. The reaction was allowed to proceed for 4 hours to insure 

complete reaction. The mixture then was concentrated using a rotary evaporator and 



purified using preparative HPLC. Mono-adduct that was purified via HPLC was stored 

under nitrogen and placed in the refiigerator. 

Figure 14 shows the reaction scheme used to obtain the desired substituted 

quinone. Compound (1) was identified on the CiC-MS. Previous research has 

documented that thiols such as thioglycerol often provided initial bleaching effects which 

eventually gave way to substantial darkening [Cole et al., 1986,20001. As (1) was reacted 

with additional benzoquinone, a darker substituted quinone (2) formed. 

m. purification 
+ 

Products 
- Pure (2) 

HPE 

Figure 14. Reaction of thioglycerol with 1 ,4-benzoquinone 

The GC-MS spectra and EI are shown in Figure 15. The most abundant ions can 

easily be elucidated. 
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Figure 15. GC-MS spectrum of substituted hydroquinone (1) 



A nice molecular ion peak shows up at 2 16. The peak at 198 can be attributed to 

dehydration. The origins of large peaks at 141 and 142 are proposed in Figure 16. 

Figure - 16. Fragmentation pattern of the mono-adduct (1) 

The HPLC chromatograms shown in figures 17 and 18 helped identify as well as 

monitor the hrmation of (2). Chromatogram A is pure THF solvent. Chromotogram B 

is pure solvent with (1) added. Compound (1) had a retention time of 5.5 minutes. This 

sample was spiked with 1,4-benzoquinone (peak at 3.5 minutes in chromatogram C). 

After 90 minutes of irradiation it was observed that the 1,4-benzoquinone peak at 3.6 

minutes (chromatogram D, Figure 18) had become much smaller than compound (1) at 



Chromatogram A 

Chromatogram B 
, 

Chromatogram C 

Figure 17. Characterization of products 



Chromatogram E 

Figure 1 8. HPLC chromatograms containing products 

at 5.4 minutes. The large peak at -43 minutes was assumed to be (2), but no 

hydroquinone peak was observed. The sample was spiked with 1,4-hydroquinone and the 

peak at 5.3 minutes became considerably larger (Chromatogram E). (Pure 1,4- 

hydroquinone under the same conditions had a retention time of 5.4 minutes). This 





reaction was repeated three more times. In each experiment the formation of the major 

products, 1,4-hydroquinone and (2), could be monitored easily using HPLC. 

Using preparative HPLC, the compound at 42 minutes was separated and 

dissolved in DzO for NMR analysis. Figure 19 shows the ' 3 ~ - ~ ~ ~  obtained and 

matches each peak to its corresponding carbon. The small peak at -49 ppm was methanol 

used as a reference. Further information can be found in the experimental section and 

other supporting data in the Appendix (Figure 1 ). 

A small amount of (2) was dissolved in THF (-8 mgs of (2) in 1.5 rnls THF). 

Tbis was used to obtain an IR spectrum of the quinone. Figure 20 displays an 

overlapping spectrum of THF solvent and THF with (2). 

Figure 20. IR spectrum of compound (2) 



The primary regions of interest are the two peaks at 1785 em-' and 1872cm-' in the 

- fingerprint region. These peaks cari be attributed to the C=O characteristic of an 

extended conjugated carbonyl revealing the presence of a substituted quinone. 

The data obtained fiom HPLC as well NMR and IR spectroscopy account for the 

severe darkening observed after the initial formation of colorless substituted 

hydroquinones. These hydroquinones readily undergo redox reactions with 1,4- 

benzoquinone yielding a more darkly colored substituted quinone. 

Reaction 11: Reaction of Brightness Pads with Substituted Hydroquinone (1). 

Based on the information gleaned fiom Reaction I, we examined the reaction of 

thioglycerol with a high-yield pulp. The substituted hydroquinone (1) was applied to 

lightly bleached CTMP and irradiated for 60.0 hours. The brightness loss was monitored 

as a hnction of time and an extraction was performed to characterize photochemical 

products. We proposed that if thioglycerol reacted with quinoidal groups in lignin as it 

had to 1,4-benzoquinone, then similar products should be observed using high-yield pulp, 

rather than model lignin compounds as a source of quinones. 

Compound (1) was prepared and isolated as d e m i  in Reaction I. Using 

preparative HPLC, compound (1) was purified and stored under nitrogen A third of this 

solution was placed in a separate flask and dried using a rotary evaporator. The final 

weight of the residue after removal of the ethyl acetatehexane solvent was 70.1 mg. This 

was re-dissolved in -30 mls of ethyl acetate and applied to a brightness pad using a glass 

pipette. By carefi~lly and evenly applying this dilute solution a reasonably uniform 

distribution of (1) was attained. A second brightness pad was treated in the same way. 



Compound (1) (68 mg) was applied. A third brightness pad was saturated with ethyl 

acetate to serve as a control, and all three were immediately placed in the photoreactor. 

At regular time intervals they were removed and IS0  brightness measurements were 

taken. Five brightness measurements were taken on each sheet and the average 

brightness recorded in Table 1 .  

Table 1 .  Brightness loss of test papers treated with a solution of 
ethyl acetate and mon-adduct (1). 

W Exposure 
in hours Control Trial 1 Trial 2 

63.6 54.8 55.2 
0.166 62.5 47.5 52.1 

The data points were taken over a 60 hour time span, and brightness loss is 

graphed versus time in Figure 2 1. 



Brightness Loss 

0 10 20 30 40 50 60 
Time of UV exposure (hours) 

Figure 21. Trials 1 and 2 compare the loss in brightness of papers treated with mono- 
adduct (I), as compared to the untreated control 

An extraction was performed on one of the test papers, and the solution was 

examined using UV-Vis spectroscopy. Figure 22 shows the UV-Vis spectrum of pure 

compound (2), made as described in Reaction I. This spectrum compares very closely to 

the scan taken of the compound extracted fiom the test paper (Figure 23). The three 

major absorbencies of pure (2) at 258,3 10, and 428 nm nearly match the peaks which 

appear at 254,308, and 428 nm in the spectrum of the extracted product (Figure 23). The 

UV-Vis data offer more evidence that redox chemistry occurring in the test paper is 

identical to the redox reaction occurring in solution with 1 ,Cbenzoquinone. 



. Figure 22. Pure disubstituted quinone from reaction I . . 

Figure 23. Product extracted fiom brightness pads 

Reaction III: Reaction of 1,4-Benzoquinone with Glycol Dimemaptoacetate 

Glycol dimercaptoacetate has been studied under similar conditions as 

thioglycerol [Wang, 19973. With a thiol fi~nctional group at each end of the molecule, this 

compound has also served to bleach pulp initially. By studying the reaction of this thiol 

with 1,4-benzoquinone we hoped to learn more about compounds reacted with lignin in 

high-yield pulp. 



I ,4-Benzoquinone was reacted with glycol dirnercaptoacetate in methanol at 

ambient temperature at various molar ratios. The crude product mixture was treated with 

a solution of acetic anhydride and pyridine. Previous work in our group demonstrated 

that acetylation helps stabilize the substituted hydroquinone products [Cole et a]., 19961. 

In this reaction, acetylation facilitated separation and characterization by preparative 

HPLC. Figure 24 displays this reaction. 

Figure 24. Formation of diadduct &om 1,4-benzoquinone and glycol 
dimercaptoacetate 



Compounds (3) and (4) were the major products. Earlier work in our group 

characterized these products using GCRMS and NMR analyses [Cole et al., 2OOO]. Using 

preparative HPLC, compound (3) was isolated, and then deacetylated. This reaction was 

allowed to proceed for 60 hours to insure complete deacetylation. Compound (5) was 

characterized using GCRMS. 

The mass spectrum (EI) as well as the chromatogram show pure (5) (See Figure 2 

in the Appendix). Although no molecular ion peak is visible, the hgmentation pattern is 

consistent with the structure. Figure 25 shows a scheme that accounts for some of the 

most abundant ions. 

m/z 182 (base peak) 

Figure 25. Proposed fragmentation pattern of substituted hydroquinone 



When the ratio of quinone to thiol is increased fiom I : 1 to 2: 1, the Michael 

addition reaction gives approximately 80% diadduct. This was done to maximize the 

quantity of (5). This colorless diadduct was then reacted fbrther with 1,4-benzoquinone 

in the presence of UV light to yield (6) and 1,4-hydroquinone. 

hv 
_____) 

THF 

6 Separation with preparative HPLC 

Pure (6) 

Figure 26. Formation of highly colored quinone 

Compound (6) proved a bit difficult to characterize. The main obstacle 

was the solubility. Removal of the ethyl acetate solvent resulted in a visible conversion 

of the product into a black tany substance which was no longer readily soluble in ethyl 



acetate. By concentrating the compound in ethyl acetate and adding deuterated acetone, 

an NMR could be taken. Figure 27 shows the ' 3 ~ - ~ ~ ~  spectrum of this mixture. The 

large muhiplet at 29 ppm, as well as the strong peak at 206 ppm, can be attributed to the 

deuterated acetone solvent. The solvent contained 1 % TMS which was referenced to 0 

ppm. A scan of the ethyl acetate 1 acetone solvent mixture along with the spectrum shown 

in Figure 27 was loaded into NUTS. NUTS, or NMR Utility Transform Software, allows 

for one spectrum to be subtracted fiom another (see Figures 3 and 4 in the appendix for 

spectra showing ethyl acetate peaks subtracted out). The remaining 18 peaks correspond 

to the carbons of compound (6). In Figure 28, the peaks are asssigned to the appropriate 

carbon atoms in the quinone. 







Reaction IV: Reaction of Brightness Pads with Disubstituted Hydroquinone (5). 

Since 1,4-benzoquinone had generated the highly colored quinone (6) through a 

redox reaction, we sought to determine whether similar products would be formed using 

high-yield pulp as a source of lignin. This experiment could offer a reason for the 

substantial darkening observed in thiol treated pulp. 

Compound (5) was prepared and isolated as descrikd in Reaction 111. Using 

preparative HPLC, it was purified, then placed under nitrogen, and stored in the 

refiigerator. By drying a few milliliters of solution in a tared vessel, it was found that 

this solution had a concentration of 2.3 g 1 mL (ethyl acetate as solvent). Using this data, 

68 mgs of (5) were applied to each brightness pad using a glass pipette. Two brightness 

pads were treated as uniformly as possible over a 15 minute period. A third brightness 

pad was treated with pure ethyl acetate to serve as a control. All three test papers were 

placed in the photoreactor for 70 hours. Brightness readings were taken at regular time 

intervals to monitor brightness loss. Table 2 and Figure 29 show the actual data points 

obtained, as well as a graph of brightness loss versus time. 



Table 2. Brightness loss of test papers treated with substituted hydroquinone (5) 

Time of UV 
exposure in Control Trial 1 Trail 2 

Brightness Loss 

0 20 40 6 0  80 

Time (hours) 

Figure 29. Trials 1 and 2 display the rapid brightness loss that occurred in pulp treated 
with hydroquinone (5). The control was only treated with solvent. 



Ethyl acetate was used to extract the product and a W-Vis spectrum taken after 

concentrating the solution. The spectrum that was obtained is shown in Figure 30. Figure 

3 1 shows the scan taken of pure (6). 

Figure 30 Compound extracted from brightness pads. 

Figure 3 1 Pure substituted quinone (6). 

The marked wavelengths are nearly identical in both figures. The peaks in Figure 

30 appear at 254,332, and 414 nm, while Figure 31 shows maxima at 254,308, and 410 



nrn. It should be noted that the relative absorbance of pure (6) in Figure 31 is much 

greater than the extracted sample due to the much greater concentration that was needed 

to show the peak at 408 nm. The low sohbility of (6) made it difficult to extract and thus 

the initial scan (See Figure 5 in the appendix ) shows no peak around 41 0 nm. By using 

pure (5) as a blank rather than just ethyl acetate, the peak at 41 4 nrn (Figure 30) became 

apparent. The similarities between spectra provide evidence that redox chemistry 

occurring in the test papers is identical to the redox reaction observed in solution with 

1,4-benzoquinone. 

In conclusion, it was found that both thioglycerol and glycol dimercaptoacetate 

react with the model quinone to generate a nearly colorless hydroquinone. Data obtained 

fiom experiments done with both thiols show that a Michael addition reaction does 

indeed occur. Furthermore, reaction of these substituted hydroquinones with additional 

quinone yields highly colored substituted quinones. These substituted hydroquinones also 

were applied to brightness pads made fiom lightly bleached aspen CTMP. These test 

papers were irradiated for up to 70 hours. In each case, severe darkening of the test 

papers occurred much faster than the untreated controls. Various instrumental techniques 

indicated that there is no difference between redox chemistry taking place in solution or 

in the test papers. The results help to account for the initial bleaching and ultimate 

redarkening of thiol treated high-yield pulp. 



Chapter 3: Conclusions and Suggested Work 

In conclusion, it was found that both thioglycerol and glycol dirnercaptoacetate 

react with the model quinone to generate a nearly colorless hydroquinone. Data obtained 

fiom experiments done with both thiols show that a Michael addition reaction does 

indeed occur. Furthermore, reaction of these substituted hydroquinones with additional 

quinone yields highly colored substituted quinones. These substituted hydroquinones also 

were applied to brightness pads made fiom lightly bleached aspen CTMP. These test 

papers were irradiated for up to 70 hours. In each case, severe darkening of the test 

papers occurred much faster than the untreated controls. Various instrumental techniques 

indicated that there is no difference between redox chemistry taking place in solution or 

in the test papers. The results help to account for the initial bleaching and ultimate 

redarkening of thiol treated high-yield pulp. 

Suggested Work 

One of the questions that arose fiom this research pertained to the role of 

atmospheric oxygen in the darkening of thiol treated pulp. The substituted hydroquinones 

were synthesized and applied to brightness pads and subjected to UV in the presence of 

oxygen. This procedure should be repeated with UV irradiation under a vacuum or argon 

atmosphere. If radiation in the absence of air does not significantly slow the 

photoyellowing process, it would suggest that the obsewed redox chemistry occurs 

directly between the s u l h  substituted adduct and the quinoidal groups in Iignin. 



Some Wher experiments should be done to investigate the role of ketone triplets 

in the photoyellowing process. It has been proposed that thiols may compete with other 

phenolic groups in donating hydrogen to the generated radicals. Using labeled inhibitors 

would provide additional information about the mechanism by which thiols inhibit 

yellowing. Such work could be done in solution as well as with high lignin pulps. 



CHAPTER 4: Experimental Procedures 

Glycol dimercaptoacetate was purchased fiom ICN Biomedicals, thioglycerol was 

obtained fiom Evans Chemetics, and 1,4-benzoquinone was acquired fiom Aldrich. 

Acetic anhydride was obtained fiom Fisher Scientific Company. Pyridine (99.8%) was 

purchased fiom Fluka. All other solvents were acquired fiom VWR Scientific. These 

compounds were used without further purification. 

General Method for Acetylation 

The substrate was suspended in excess acetic anhydride. Substrates with a mass 

range of -20-200 rng were dissolved in 10-15 mI, of solvent. Twenty five mI, of solvent 

was used for larger masses (-200-500 mg). A few drops of pyridine were added with 

stirring and the mixture was left for 24 hours at room temperature. The excess acetic 

anhydride, acetic acid, and pyridine were then removed under vacuum (40-60 "C12-3 mrn 

Hg for 1 hour). 

General Method for De-acetylation 

Compounds to be de-acetylated were purified using preparative HPLC and 

dissolved in excess 2-propanol. For the reactions described in this work, 10 mL of 

HPLC-grade 2-propanol were sufficient to suspend the substrate thoroughly. Ten drops 

of pyridine were added and the flask was flushed with nitrogen. A reflux condenser and 

drying tube were attached and the solution was heated to 80 "C for -50 hours. 



General Method for GC-MS Analysis 

All GC-MS data were obtained using a Hewlett-Packard 6890 series GCIMSD 

system. The chromatography was done using a HP-5MS (5% phenyl methyl siloxone) 

column, measuring 300 m x 250 pm x 0.25 pm. For all samples, the injection volume 

was set at 1.0 pL. The initial oven temperature was set at 70 OC and held there for 15 

minutes. The temperature was increased 10 OC per minute until a final oven temperature 

of 250 "C was reached. This temperature was held constant for 20 minutes giving a total 

run time of 53 minutes. The MS SIM/scan parameters were set as follows: solvent delay 

set at 4.00 minutes, low mass range 45, high mass range 550, and 1.52 scandsecond. 

General Method for NMR Characterization 

All ' 3 ~ - ~ ~ ~  spectra were obtained using a Varian Gemini 300 spectrometer. 

Data acquired fiom this instrument were saved to disk. The data were transferred to the 

Sunstation, a workstation which uses Varian SunOs 4.1.2 software. Data could be 

viewed, printed, or manipulated at this computer. All spectra were saved in the 

appropriate .ftp format and transferred to NUTS (NMR data processing software fiom 

Acorn NMR Inc.). NUTS software allows the NMR spectra to be saved and accessed on 

a personal computer. 



General Method for HPLC Quantification 

HPLC analyses were done using a Hewlett-Packard 1090 Series I1 liquid 

chromatograph equipped with a diode array UV detector. All analyses used an Alltech 

Analytical Silica Column (4.6 x 250 mm). The mobile phase was ethyl acetatehxanes 

(35165 for reactions using glycol dimercaptoacetate, 50150 for reactions using thioglycol). 

The sample injection volume was set at 25.0 pL. The injections were performed at 

ambient temperature with a solvent flow rate of 1.0 mLlmin. and a total runtime of 50.0 

minutes. All samples were examined using a wavelength of 270 nm. 

Preparative separations were performed with a Waters 510 HPLC. An Alltech 

Econosphere Silica 10p column with a 250 mm length and 10 mrn internal diameter was 

employed for this work The flow rate was adjusted for each reaction to achieve the 

fastest and cleanest separation. 

All HPLC analyses were performed at ambient temperature. 

General Method for Making Brightness Pads 

The method used for forming brightness pads is described in detail in Tappi T 21 8 

om-83. Test specimens were made fiom lightly bleached CTMP obtained fiom Quesnel 

River Pulp Company. All test papers were dried in a closed room over a period of 3-5 

days. While the room experienced some changes in temperature and relative humidity, 

these fluctuations were sufficiently small to let the brightness pads dry to constant mass 

and moisture content. 



Moisture content was determined by weighing the dry brightness pad and placing 

it in the oven at 90 O C  for 1 hour. The moisture content was calcuIated as the difference 

in masses divided by the initial weight before being placed in the oven. 

Each specimen was cut to a diameter of 150 mm. Any sheets that had variations 

in thickness were discarded. Any test papers that were not being used were sealed in 

plastic bags and stored in the dark. 

Reaction 1: Reaction of l,4-Benzoquinone with Thioglycerol 

1,6Benzoquinone (1 08.1 mg, 1.00mmol) was dissolved, with stirring, in -1 0 mL 

of methanol. The solution turned orange brown immediately. A separate solution was 

prepared by dissolving 1 15 pL (1 08 mg, 1.00 mmol) of thioglycerol in 2.0 mL of 

methanol. This was added over a two minute period to the larger solution containing 

benzoquinone. After 10 minutes, the solution became colorless. In this reaction, w e  

must be given to the order in which the reagents are mixed. For the monosubstituted 

hydroquinone to be the major product formed, the thiol needs to be added to the quinone. 

A more detailed description of this reaction can be found in the literature [Cole et al., 

19961. 

Using preparative HPLC, compound (1) was pudied. A mobile phase of 50 % 

ethyl acetate, hexanes (5050 by volume) was used with a flow rate of 7-00 mWmin. (1) 

was collected at around 15 minutes. A rotary evaporator was used to strip off the solvent 

and the remaining residue was redissolved in 3.0 mL THF. To this solution was added 

approximately 100 mg of 1,4-benzoquinone in 3.0 mL THF. This solution was then 



placed in a quartz reaction vessel in the photoreactor for seven hours. This photoreaction 

yielded compound (2), a monosubstituted quinone, as well as 1,6hydroquinone. The 

redox reaction that generated this quinone was monitored using HPLC. All attempts to 

characterize (2) using GCMS were unsuccessful. Varying temperature, column, and 

solution concentration hiled to yield any data. This substituted quinone was likely 

adsorbed onto active sites in the column. 

Reaction IT: Treatment of Brightness Pads with (1) 

Three brightness pads were made using the method described above. One of the 

brightness pads served as a control and was treated with ethyl acetate solvent only, while 

the other two were treated with approximately 70 mg of (1) dissolved in ethyl acetate. 

Each test paper was placed on a ring attached to a ringstand allowing it to remain 

level and provide air circulation on both sides. Using a glass pipette, the top side of the 

paper was treated with 

(1) in 30 rnL of ethyl acetate. (The application process took about 15 minutes as the test 

paper quickly became saturated with ethyl acetate, which had to evaporate before more 

solution could be added.) 

All of the brightness measurements were taken fiom the side of the test paper that 

had been treated. 

After irradiation, one of the brightness pads was cut in small squares (-2 cm x 2 

cm) and soaked in 100 mL acetone. Using a glass stirring bar, the solution was agitated 

for approximately 10 minutes. The solution was then filtered through a 150 mL pyrex 



10-1 5p Buchner h e l .  After the solvent was stripped away using a rotary evaporator, 

the residue was re-dissolved in 10 rnL of ethyl acetate. 

The UV-Vis spectrum obtained is shown in figure 6 of the appendix. The figure 

shows the spectra obtained of the other starting materials and products. The spectra of 

1,4-benzoquinone, pure (I), and 1,4-hydroquinone are easily distinguishable fkom the 

spectrum of substituted quinone, (2). 

Reaction III: Reaction of 1,rlBenzoquinone with Glycol Dimecaptoacetate 

Benzoquinone (1 09.9 mg, 1.01 7 mrnol) was dissolved in 10 mL methanol. To 

this orange-brown solution was added a solution of glycol dimercaptoacetate (214.5 mg., 

1.020 mmol) in 5 mL of methanol. Although the solution turned brown initially, after 

about 4 minutes it became colorless. After stirring at room temperature for 2 hours, the 

solvent was evaporated using a rotary evaporator and the residue was acetylated as 

described above. From the acetylated residue, two major components, (3) and (4), were 

isolated using preparative HPLC. Compound (3), the major product, was de-acetylated 

and characterized using GC-MS. The EI spectrum matched the hgmentation pattern of 

that compound before acetylation and purification. 

Excess 1,4-benzoquinone (-1 00mg in 2 mL THF) was added to approximately 20 

mg of (5) in THF. This solution was placed in a quartz reaction vessel and exposed to 

UV light in the photoreactor, for 4 hours. The major product, (6), was purified using 

preparative HPLC. A solution of hexanes / ethyl acetate (65:3 5 by volume) was 

employed to achieve maximum peak resolution. Due to the reactivity of (6) with air, the 



solvent could not be removed without unwanted reactions occurring. Instead, the solution 

was concentrated to 5 mL, using a rotary evaporator, and diluted to 100 mL. By repeating 

this process a couple of times, the hexanes were removed leaving the disubstituted 

quinone in pure ethyl acetate. Acetone containing 1 % TMS was added to both increase 

polarity and allow for a I3c-~MR. 

Figure 7 in the appendix shows the substituted hydroquinone (35 minutes) and 

excess I ,bbenzoquinone (8 minutes) reaction mixture. Although no irradiation had been 

conducted, a little of this benzoquinone had already reacted and a small hydroquinone 

peak is visible at -23 minutes. After irradiation for 5 hours (figure 8 in the appendix), the 

substituted hydroquinone peak is smaller and the 1 ,dhydroquinone peak is much larger. 

This experiment was repeated several times, and without exception the reactants 

disappeared with increasing UV exposure. The only product that could be observed was 

1,4-hydroquinone. Attempts to characterize compound (6) using GCIMS were 
t 

unsuccessfi~l. As with (2), a substituted quinone peak was not observed under any of the 

conditions, perhaps due to ability of the compound to adhere to the active sites in the 

column. 

Reaction IV: Treatment of Brightness Pads with (5) 

Pure (5) was made, purified and concentrated in ethyl acetate. By drying a few 

milliliters of solution in a tared vessel, it was found that this solution had a concentration 

of about 2.3 g I mL (ethyl acetate solvent). Using this concentration, about 68 mg of (5) 

were applied to each brightness pad using a glass pipet. Two brightness pads were treated 

as uniformly as possible over a 15 minute period. A third brightness pad was treated with 

pure ethyl acetate to serve as a control. All three test papers were placed in the 



photoreactor for 70 hours. Brightness readings were taken at regular time intervals to 

monitor brightness loss. 

One brightness pad was cut in small (-1 cm x 1 cm) squares and placed in a flask 

containing 200 mL of ethyl acetate. A magnetic stir bar was added and the mixture was 

stirred vigorously for 6 hours. A 150 mL pyrex 10-15p Buchner funnel was used to filter 

the solution and the supernatant was concentrated using a rotary evaporator. Samples 

were evaluated using the W-Vis spectrophotometer. 
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Appendix: Supporting Data 

Figure A. 1. Simulated "c-NMR of substituted quinone (2) 



Figure A.2. GC/MS o f  substituted quinone (5) 



Figure A.3. ' 3 ~ - ~ ~ ~  of substituted quinone (6) with solvent 



Figure A.4. ' 3 ~ - ~ ~ ~  o f  substituted quinone (6) with solvent 
peaks subtracted out 



Figure A. 5. W - V i s  spectrum of substituted quinone (6) 



Figure A.6. UV-Vis spectra. 



Figure A.7. Initial GCIMS of reaction I11 (Tirne=O) 



Figure A.8. GC/MS spectrum of reaction I11 after 5 hours irradiation 
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