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Bacterial chemolithotroph population structure has been investigated in Lowes 

Cove marine intertidal mudflat and Damariscotta Lake, Maine. A 492 to 495 fragment of 

the cbbL gene, coding for the large subunit of Form I ribulose-1,5- bisphosphate 

carboxylase/oxygenase (rubisco) was amplified from lake surface (upper 2 mm) 

sediments and mudflat surface (upper 2 mm), subsurface (5-7 cm), and Mya arenaria 

burrow wall sediments, as well as sulfide-oxidizing bacterial mat samples. Amplified 

DNA was used to construct cbbL clone libraries. Phylogenetic analysis showed that 

Damariscotta Lake cbbL clones were mainly of the 1C type, indicating a facultative 

carbon monoxide/hydrogen-oxidizing community. Conversely, clones constructed from 

Lowes Cove sediments were dominated by Form 1A cbbL-containing chemolithotrophs 

that were most closely related to cbbL genes of sulfur-oxidizing bacteria. This suggested 



 

that the chemolithotroph community structure in lake sediments differs greatly from 

marine sediments. Phylogenetic P-tests of Lowes Cove sediments indicated that surface, 

subsurface and burrow wall sediments contain significant phylogenetic differences. 

AMOVA and LIBSHUFF statistical analyses of Lowes Cove sediment cbbL libraries 

suggested that Mya arenaria burrow wall sediments did not harbor distinct communities 

when compared to mudflat surface and subsurface libraries. However, Lowes Cove 

surface and subsurface cbbL libraries displayed moderate genetic difference by AMOVA 

analyses and were observed to contain distinct chemolithotroph communities by 

LIBSHUFF analysis of homologous and heterologous coverages.  
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CHAPTER 1: INTRODUCTION 
 

Bacterial Chemolithotrophs 
  

Prokaryotes display great metabolic diversity, utilizing phototrophic, lithotrophic, 

and heterotrophic pathways for energy production. They can even use a combination of 

these methods. Chemolithotrophy, the use of inorganic substrates for energy, is of 

particular interest because it is unique to prokaryotes. Bacterial chemolithotrophs are 

predominately members of the Proteobacteria, and can be subdivided into two major 

groups: obligate and facultative (e.g. Shively et al., 1998). All chemolithotrophs are 

capable of utilizing inorganic substrates for energy, and inorganic C (generally in the 

form of CO2) for cell carbon. While obligate chemolithotrophs depend on this autotrophic 

metabolism, facultative chemolithotrophs also grow heterotrophically.  

Obligate chemolithotrophs include sulfur, ammonium, and nitrite oxidizers 

(Madigan et al., 2003). Sulfur oxidizers have been observed to utilize sulfide, thiosulfate 

or elemental sulfur, and some sulfur oxidizers also utilize hydrogen (Nishihara et al., 

1990; Nishihara et al., 1998; Shima and Suzuki, 1993; Huber et al., 1992) or ferrous iron 

(Rawlings and Kusano, 1994; Kusano et al., 1991). Facultative chemolithotrophs 

typically include aerobic hydrogen and carbon monoxide oxidizers, as well as some 

reduced-sulfur oxidizers (Madigan et al., 2003), and metal oxidizers (Francis et al., 2001; 

Holden, PJ, personal communication). Many known facultative chemolithotrophs can use 

both carbon monoxide and hydrogen as electron donors, and most grow mixotrophically, 

utilizing both inorganic and organic substrates. Both obligate and facultative 

chemolithotrophs are able to fix CO2, and most function aerobically, using oxygen as a 
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terminal electron acceptor. However, some strains function anaerobically, including 

several sulfur-oxidizing strains (English et al., 1992; Fossing et al., 1995; McHatton, et 

al.,1996; Schulz et al., 1999; Otte et al. 1999) and an arsenite oxidizing bacterium 

(Oremland et al., 2002), which can use nitrate as an electron acceptor. 

The ecological interactions of obligate and facultative chemolithotrophs are 

poorly understood. While facultative phototrophy has been investigated in phytoplankton 

(Stickney et al., 2000; Jones, 2000; Tittel et al., 2003; Cloern and Dufford, 2005; Troost 

et al., 2005), the ecological significance of facultative chemolithotrophs and their relation 

to obligate chemolithotrophs and heterotrophs has been considered by only a few studies.  

Fitness costs of facultative chemolithotroph metabolisms have been poorly researched, 

however, studies have observed that facultative sulfur oxidzers had a lower maximum 

specific growth rate than obligate sulfur oxidizers and specialized heterotrophs (Kuenen 

and Beudeker, 1982). This indicates that there may be a cost in maintaining two 

metabolic systems in at least some facultative chemolithotrophs (Gottschal et al., 1979).  

It has been proposed that despite slower growth rates, mixotrophic growth by 

facultative chemolithotrophs may be a survival strategy in environments where both 

inorganic and organic substrates are present, but are limited (Kuenen and Beudeker, 

1982). Chemostat experiments by Gottschal et al. (1979) showed that at intermediate 

levels of thiosulfate and acetate, a facultative sulfur oxidizer could dominate a mixed 

population that also contained a specialized sulfur oxidizer and a specialized heterotroph. 

In competitive interaction studies of a specialized heterotroph and a facultative sulfur-

oxidizing strain, the heterotroph was only able to completely exclude the facultative 
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population when the inorganic substrate was absent. Furthermore, the facultative 

organism was able to dominate when the dilution rate of the chemostat was very low. 

  

Chemolithotrophy in Sediments 
 

Prokaryotes dominate the biomass and biological activity of sediments (Nealson, 

1997). Overlying water limits oxygen diffusions to sediments, and respiration results in 

anoxia below the sediment surface and anaerobic breakdown of organic matter. In littoral 

sediments, where respiratory activity is often high, oxygen depletion can occur within a 

few millimeters depth. After oxygen is exhausted, organic matter decomposition occurs 

via anaerobic pathways. A series of vertical gradients normally forms within sediments, 

in which various electron acceptors are utilized commonly in the order of redox potential, 

e.g. the potential to generate energy by coupling the oxidation of organic matter to the 

reduction of varying available terminal electron accepters (O2, Mn4+, NO3
-, Fe3+, SO4

2- 

and CO2) (Figure 1.1). Reduced inorganic ions produced by this process can be re-

oxidized by chemolithotrophs generating energy that can be coupled to CO2 fixation (e.g. 

Nealson, 1997). Anaerobic fermentation processes and breakdown of organic matter also 

provide reduced inorganic substrates for chemolithotrophs (Barns and Nierzwicki-Bauer, 

1997). 
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Figure 1.1 Idealized representation of a vertical profile of electron acceptors in marine 

sediment. Redrawn from Kristensen (2000). 



 5 

Sulfur Oxidizers 
 

The primary difference between marine and freshwater sediments is that sulfate 

concentration is normally much higher in the former (up to 25 mM in marine versus 100-

200 µM in freshwater) (Nealson, 1997). In fact, sulfate reduction has been reported to 

account for the majority of carbon turnover in marine sediments (Fenchel and Jorgensen, 

1977), while aerobic respiration dominates carbon turnover in freshwater sediments 

(Jones, 1982). Sulfate reduction occurs biologically by sulfate reducing bacteria (SRB), 

producing reduced sulfur compounds that can be utilized by sulfur-oxidizing 

chemolithotrophs. SRB function anaerobically, and are concentrated near the top of the 

anoxic zone where electron donors and accepters are at their highest concentration 

(Jorgensen and Postgate, 1982). In littoral lake sediments, putrefaction (anaerobic 

decomposition of amino acids) may be a more important source of reduced sulfur (Jones, 

et al. 1982b). 

Sulfur-oxidizing bacteria are represented by several genera and are known to 

function as either obligate or facultative chemolithotrophs, and well-described examples 

include Thiobacillus and Beggiatoa spp. (Barns and Nierzwicki-Bauer, 1997; Madigan et 

al., 2003). While sulfate is chemically stable in both oxic and anoxic environments, 

reduced sulfur compounds, especially sulfide, are prone to chemical oxidation by O2. 

Sulfide also readily reacts with iron, producing pyrite (FeS2), which precipitates and is 

unavailable to most sulfide oxidizers. Sulfur oxidizers predominately use O2 as an 

electron acceptor and, therefore, have developed strategies to obtain both electron donors 

and acceptors necessary for growth (Brune et al., 2000). These include movement 

between oxic and sulfidic layers (Schulz and Jorgensen, 2001), facultative nitrate 
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reduction (English et al., 1992; Fossing et al., 1995; McHatton, et al.1996; Schulz et al., 

1996; Otte et al. 1999), and structures to increase oxygen flux (Fenchel and Glud, 1998). 

Nitrifying Bacteria 
 
 Nitrification is a two-step process, involving the oxidation of ammonium to nitrite 

followed by the oxidation of nitrite to nitrate. Both processes occur biologically by 

obligate chemolithotrophs that use oxygen as an electron acceptor, and the energy gained 

is coupled to the fixation of CO2. Examples of ammonium oxidizers include members of 

the genera Nitrosomonas and Nitrosospira, while representative nitrite oxidizers include 

Nitrobacter, Nitrospina, and Nitrococcus species (Barns and Nierwicki-Bauer, 1997). 

 Ammonium is supplied to the sediments through several processes. The majority 

of ammonium is supplied via deamination of proteins, amino acids, and urea (Jones et al, 

1982a). Nitrate can also be converted biologically to ammomium through dissimilatory 

reduction (DNRA), a fermentative process that competes with denitrification in 

sediments, and is thought to be of most important in environments with high organic 

carbon availability (e.g. Sorensen, 1978; Tiedje et al., 1982; Jones and Simon, 1981). 

Metal Oxidizers 
 

 Iron and manganese are the dominant metals utilized by chemolithotrophs. One of 

the most studied groups of iron oxidizers is acidophilic species that include 

Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans and Thiobacillus 

thiooxidans. A. ferrooxidans can be grown with pyrite and oxygen as electron donor and 

acceptor, respectively. Energy is obtained via oxidation of ferrous iron to ferric iron or 

reduced sulfur to sulfuric acid (Rawlings and Kusano, 1994). Iron oxidizers that live in 
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neutral pH environments have been less extensively studied due to difficulty in culturing 

these organisms. The most studied strain is Gallionella, which can grow mixotrophically 

(Barns and Nierwicki-Bauer, 1997).  

 Manganese oxidizers have also been isolated from sediments, and these 

organisms obtain energy from the oxidation of Mn (II) to Mn(IV). Most function as 

lithoorganotrophs, while others function as facultative chemolithotrophs (Francis et al., 

2001). Examples of manganese oxidizing genera include Arthrobacter, Leptothrix, 

Hydromicrobium, Oceanospirillum, Vibrio and Metallogenium (Banes and Nierzwicki-

Bauer, 1997). Biological oxidation of other metals is considered to be minor. Very little 

is known about oxidation of metalloid compounds. However, oxidation of such trace 

metalloids as arsenite [As(III)] can be important in sediments where arsenic 

concentrations are locally high. Arsenite is primarily supplied to arsenic oxidizers by 

biological dissimilatory arsenate reduction (Oremland et al., 2003).  

Hydrogen and Carbon Monoxide Oxidizers 
 
 Hydrogen and carbon monoxide oxidizers are taxonomically diverse and common 

in both soil and aquatic environments (Friedrich and Schwartz, 1993). Most CO oxidizers 

also posses the ability to utilize H2 for energy, and almost all CO/ H2 oxidizers are 

facultative chemolithotrophs that grow mixotrophically with organic substrates. Some 

also grow phototrophically (Bowien and Schlegel, 1981).  

 CO and H2 are supplied to sediments as byproducts of anaerobic fermentation 

(e.g. Gray and Gest, 1965). Another important source of H2 production includes N2-fixing 

phototrophs, such as Synechococcus (Schmidt and Conrad, 1993). Photolysis of dissolved 

organic matter (DOM) is another possible source of CO to surface sediments (Zuo and 



 8 

Jones, 1997). CO production predominately occurs in anoxic zones of sediment while CO 

consumption is thought to be favored in oxygenated surface sediments (King, submitted).  

 

Carbon Dioxide Fixation 
 

There are four pathways for carbon dioxide fixation in prokaryotes, including the 

Calvin-Benson-Bassham (CBB) cycle, the reductive TCA  (rTCA) cycle, the reductive 

acetyl CoA pathway, and the 3-hydroxypropionate cycle. The predominant pathway in 

bacterial chemolithotrophs is the CBB cycle, in which ribulose-1,5-bisphosphate 

carboxylase/oxygenase (rubisco) is the key enzyme for CO2 fixation (e.g. Tabita, 1999; 

Shively et al., 1998). Rubisco also catalyzes the “wasteful” oxidation of ribulose 

bisphosphate (RuBP), and the efficiency of a particular rubisco enzyme is related to 

substrate discrimination between carboxylation and oxygenation functions.  

There are three identified forms of rubisco, Forms I, II and III, which can be 

distinguished both structurally and phylogenetically (Figure 1.2). Most bacterial 

chemolithotrophs contain Form I, which has large and small subunits encoded by the 

cbbL and cbbS genes, respectively. The subunits form a hexadecameric L8S8 quaternary 

structure.  Form I rubisco is further divided into four phylogenetic subgroups: 1A, 1B, 1C 

and 1D. The phylogeny of rubisco genes is incongruent with the phylogeny of 16S rRNA 

genes, possibly resulting from several horizontal gene transfer (HGT) events as well as 

gene duplication and loss (Delwiche and Palmer, 1996). However, particular 

chemolithotrophic functional groups have been associated with different cbbL subgroup 

types. Form 1A is found in cyanobacteria and chemolithotrophs of mainly the obligate 

type. Exceptions include Hydrogenophaga pseudoflava, a facultative hydrogen and 
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carbon monoxide oxidizer (Lee and Kim, 1998), and facultative sulfur oxidizers 

(Rawlings and Kusano, 1994). Form 1C has been found in red algae, most facultative 

hydrogen and carbon monoxide-oxidizing chemolithotrophs (e.g. Shively et al., 1998; 

Atomi, 2002) and facultative metal oxidizers (Holden and Brown, 1993; Caspi et al., 

1996). A monophyletic clade of obligate chemolithotrophic Nitrosospira spp also occurs 

in Form 1C (Utaker et al., 2002). Plants, green algae and some cyanobacteria contain 

Form 1B, while red algae contain Form 1D.  

Form II rubisco, found in dinoflagellates and Proteobacteria, is comprised of only 

large subunits (L2) and is considered a more ancient form of the gene, as it has poor 

discrimination for carboxylation and is thought to have evolved before an oxygenated 

atmosphere. Form III rubisco has been discovered in several thermophilic Archaea and is 

also composed of large subunits, having a (L2)5 structure (Watson et al., 1999; Atomi, 

2002; Maeda et al., 2002).  

Rubisco has a sluggish catalytic rate constant and organisms normally compensate 

by producing the enzyme in large quantities (Shively et al., 1998). While obligate 

chemolithotrophs must continuously make rubisco, facultative chemolithotrophs often 

regulate its production. Transcription of rubisco-encoding genes in carbon monoxide and 

hydrogen oxidizers has been observed to be strictly controlled, being induced during 

autotrophic growth and repressed to different degrees during heterotrophic or 

mixotrophic growth (Gibson and Tabita, 1997; Vichivanives et al., 2000; Bowien and 

Kusian, 2002).  
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Molecular Diversity and Distribution of Chemolithotrophs 

 

The cbbL gene has been successfully used to determine the diversity of Form 1A-

containing chemolithotrophs in several aquatic environments. Sequences from 

hydrothermal vents and deep sea sediments contained diverse cbbL genes that were 

phylogenetically related to sulfur-oxidizing thiobacilli (Elsaied and Naganuma, 2001). 

Form 1A cbbL has also been amplified from low oxygen groundwater and aquifer 

environments that have been polluted with BTEX (Benzene, Toluene, Ethylbenzene, and 

Xylene) and chlorobenzene, respectively. Sequences were diverse and phylogenetic 

analysis revealed strains closely related to Acidithiobacillus ferrooxidans and 

Hydrogenophaga pseudoflava (Alfreider et al., 2003). Conversely, Form 1A and 1B cbbL 

sequences isolated from a redox gradient in Mono Lake showed little diversity. Most 

sequences were related to Hydrogenovibrio marinus cbbL genes. Other sequences were 

related to cbbL genes from sulfur, sulfide, nitrogen and arsenic oxidizers, methanogens, 

and cyanobacteria (Giri et al., 2004). 
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Figure 1.2 Phylogenetic organization of  Form I and Form II rubsico. 

1, Ralstonia eutropha (chromosomal); 2, R. eutropha (plasmid); 3, Rhodobacter 

sphaeroides; 4, Xanthobacter flavus; 5, Hydrogenovibrio marinus 1; 6, Thiobacillus 

neapolitanus; 7, Nitrobacter vulgaris; 8,Thiobacillus denitrificans; 9, Chromatium 

vinosum 1; 10, Thiobacillus ferrooxidans; 11, Pseudomonas hydrogenothermophila; 12, 

Rhodobacter capsulatus; 13, C. vinosum 2; 14, H. marinus 2; 15, T. denitrificans; 16, H. 

marinus; 17, R. sphaeroides; 18, R. capsulatus; 19, Rhodospirillum rubrum. 

 From Shively et al., 1998



 12 

 

 The diversity of both 1A and 1C forms was considered in studies of cbbL in 

differently managed agricultural soils. The form 1C cbbL genes were phylogenetically 

diverse while form 1A cbbL sequences were much less diverse and most closely related 

to Nitrobacter spp cbbL genes (Selesi et al., 2005). In another study, a single primer set 

was utilized to amplify 1A and 1C cbbL genes from agricultural plots containing different 

plants. A large percentage of clones were of the facultative 1C type, supporting results 

from Selesi et al. (2005). Furthermore, clones were genetically diverse and plots harbored 

statistically different cbbL populations (Tolli and King, 2005) The same primer set 

utilized in Tolli and King (2005) was used to determine chemolithotroph diversity in 

several Hawaiian volcanic deposit sites that varied in stages of succession after lava flow. 

All clones were of the 1C type, suggesting a facultative community. A statistical analysis 

of the clone libraries showed that they differed significantly among sites (Nanba et al., 

2004). 

 

Study Objectives 
 

 The aim of this study was to investigate the distribution and diversity of bacterial 

chemolithotrophs in littoral sediments of a freshwater lake and an intertidal estuary by 

utilizing the cbbL gene as a genetic biomarker. The first objective addressed in this study 

was to determine which bacterial chemolithotrophs dominate marine and freshwater 

sediments. The diversity of Form 1A cbbL-containing chemolithotrophs in sediments has 

been investigated by few studies (Elsaied and Naganuma, 2001; Alfreider et al., 2003) 

and to date, no study has addressed the importance of Form 1C-containing 
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chemolithotrophs in sediments. The importance of the sulfur cycle in marine sediments 

has been well documented (e.g Fenchel and Jorgensen, 1977; Nedwell, 1982). We 

hypothesized that Lowes Cove intertidal sediment would, therefore, be dominated by 

Form 1A cbbL-containing sulfur oxidizing chemolithotrophs. Conversely, NH4
+, metal, 

H2 and CO-oxidizing chemolithotrophs may play a more important role in freshwater 

sediments (Jones et al., 1982a; Conrad et al., 1983; Zuo and Jones, 1997; Rich and King, 

1999), where sulfur compound concentrations are often low in comparison to marine 

sediments (e.g. Jones, 1982).  

The second objective explored by this study was to determine chemolithotroph 

distributions within Lowes Cove microhabitats. Lowes Cove is highly bioturbated by 

macrobenthos. Burrows span the oxic and anoxic layers of sediments, and macrofauna 

therefore provide oxygen to both the burrow and the surrounding anoxic sediment. In 

turn, this can change the microbiological composition of the burrow sediments, fostering 

distinct communities of bacteria and increasing chemolithotroph activity (Aller and 

Yingst, 1978; Aller and Aller, 1986; Kristensen, 2000).  Conversely, increased mixing of 

sediments by burrowing animals provides a means of active transport for bacteria 

between the surface and subsurface, which may prevent formation of distinct bacterial 

communities.  

To investigate chemolithotroph distribution and diversity, DNA was extracted 

from lake and marine surface sediments (upper 2 mm), marine subsurface sediments and 

burrow walls of the soft shell clam Mya arenaria. In addition, DNA was also extracted 

from sulfide-oxidizing bacterial mats on the fringe of Lowes Cove.  A 492 to 495 bp 

fragment of the cbbL gene was amplified by PCR with primers designed to target both 
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Form 1A and Form 1C cbbL genes. Amplicons were used to construct clone libraries. 

DNA inserts of the correct size were sequenced and analyzed phylogenetically to assess 

chemolithotroph distribution. Clone libraries were evaluated statistically to calculate 

sequence diversity and to determine if different sediment environments harbor distinct 

chemolithotroph communities. Maximum potential biological oxidation rates of 

ammonium, thiosulfate and CO were also calculated from each sediment type to obtain a 

basic understanding of which chemolithotroph activities may dominate.  
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CHAPTER 2: DIVERSITY AND DISTRIBUTION OF THE LARGE SUBUNIT 
GENE OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE IN 

MARINE AND FRESHWATER SEDIMENTS 
 

Introduction 
 

Bacterial chemolithotrophs are a metabolically diverse group of prokaryotes that 

utilize reduced inorganic substrates for energy and CO2 for cell carbon. Obligate 

chemolithotrophs include nitrifying bacteria and many sulfur oxidizers (Madigan et al., 

2003). Facultative chemolithotrophs grow mixotrophically, utilizing both organic and 

inorganic substrates simultaneously, and include hydrogen- and carbon monoxide-

oxidizing aerobes (Friedrich and Schwartz, 1993), some sulfur oxidizers (e.g. Jorgensen 

and Postgate, 1982) and metal oxidizers (Francis et al., 2001; Holden, PJ, personal 

communication). 

The relative distributions of bacterial chemolithotrophs have been largely 

unexplored. While 16S rRNA gene cloning and sequencing techniques are often used to 

gain insights into microbial population structure, chemolithotrophy occurs in a wide range 

of phylogenetically dissimilar bacteria. However, bacterial chemolithotrophs are united in 

their ability to fix CO2 for cell carbon, in which the Calvin-Benson-Bassham (CBB) cycle 

is the dominant pathway (e.g. Shively, 1998; Tabita, 1999). Ribulose-1,5- bisphosphate 

carboxylase/oxgenase (rubisco) catalyzes the first reaction of the CBB cycle, the 

carboxylation of ribulose bisphosphate to two molecules of 3-phosphoglycerate. Form I 

rubisco is composed of large and small subunits (L8S8) and is found in most phototrophs 

and bacterial chemolithotrophs. Form II and III rubisco have only large subunits. Form II 
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is found in some chemolithotrophs and dinoflagellates, while Form III rubisco has been 

reported in Archea (Watson et al., 1999; Atomi et al., 2002, Maeda et al., 2002). 

Analysis of the cbbL gene (also rbcL), coding for the large subunit of Form I 

rubisco, has been useful in determining bacterial chemolithotroph community composition 

(Alfreider et al., 2003; Elsaied and Naganuma, 2001; Giri et al., 2004; Nanba et al., 2004; 

Selesi et al., 2005; Tolli and King, 2005). The cbbL gene contains four phylogenetically 

distinct subgroups, 1A through 1D. Nitrifying bacteria and sulfur oxidizers typically 

contain Form 1A cbbL, while hydrogen-, carbon monoxide- and metal oxidizing facultative 

chemolithotrophs contain Form 1C. Exceptions include Hydrogenophaga pseudoflava, a 

facultative hydrogen and carbon monoxide oxidizer containing a Form 1A cbbL (Lee and 

Kim, 1998), and some obligate chemolithotrophic Nitrosospira spp containing a 

monophyletic group of cbbL genes within the Form 1C clade (Utaker et al., 2002). Also, 

several photochemolithotrophic H2 and CO oxidizers have both Form 1A and Form IC 

(Uchino and Yokota, 2003). 

Few studies have investigated chemolithotroph cbbL diversity in aquatic 

ecosystems, and none have targeted Form 1C. Phylogenetically diverse Form 1A cbbL 

genes were reported for deep-sea seep and hydrothermal vent environments (Elsaied and 

Naganuma, 2001) as well as BTEX-contaminated groundwater and chlorobenzene-

contaminated aquifers (Alfreider et al., 2003). Conversely, little phylogenetic diversity 

was observed in a redox gradient of Mono Lake (Giri et al., 2004). Analyses of 

agricultural soil cbbL genes revealed large phylogenetic diversity of Form 1C but not in 

Form 1A (Selesi et al., 2005). Furthermore, Form 1C was found to be the dominant type 
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in both agricultural soils (Tolli and King, 2005) and volcanic deposit sites (Nanba et al., 

2004). 

Oxygen limitation in sediments results in anaerobic breakdown of organic matter 

and production of reduced inorganic compounds, some of which can be used by bacterial 

chemolithotrophs (e.g. NH4
+, NO2

-, H2S, S2O3
2-, S0, Fe2+, Mn2+, H2, CO) (e.g. Malcom 

and Stanely, 1982). Sulfate concentrations in marine sediments are usually much higher 

than in freshwater sediments, and sulfide production is typically an important process in 

the former (e.g. Nedwell, 1982). Marine sediments are, therefore, expected to have larger 

populations of sulfur-oxidizing chemolithotrophs. Conversely, H2 and CO are thought to 

play major roles in terrestrial and freshwater environments (Friedrich and Schwartz, 

1993) and may be particularly important in lake sediments, where concentrations of 

sulfur compounds are comparatively low (e.g. Jones, 1982; Nedwell, 1982). 

Sediments are also heterogeneous, containing microhabitats that may support 

distinct populations of bacteria. For example, burrowing macrofauna open deeper 

sediments to overlying water, providing oxygen to both the burrow and the surrounding 

anoxic sediment. In turn, this can change the microbiological composition of burrow 

sediments, both quantitatively and qualitatively, fostering distinct communities of 

bacteria and increasing biogeochemical activity (Aller and Yingst, 1978; Aller and Aller, 

1986; Hansen et al., 1996; Chung and King, 1999; Kristensen, 2000). Conversely, active 

transport of bacteria by burrowing animals may prevent the formation of distinct bacterial 

communities, instead promoting bacterial homogeneity among the surface, subsurface 

and burrow microhabitats. 
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In this study, we report chemolithotroph distribution and diversity in sediments of 

an intertidal saltmarsh and the littoral zone of a freshwater lake in Maine. DNA was 

extracted from surface sediments (upper 2 mm) of Damariscotta Lake, and surface, 

subsurface (5-7 cm) and Mya arenaria burrow wall sediments of Lowes Cove intertidal 

saltmarsh. DNA was also extracted from sulfide-oxidizing bacterial mats located on the 

fringe of Lowes Cove. A 492 to 495 base pair fragment of the cbbL gene was amplified 

by polymerase chain reaction (PCR) with primers that target both Form 1A and 1C cbbL 

(Nanba et al., 2004). 

Phylogenetic and statistical analyses of cbbL clone libraries indicate that marine 

and freshwater sediments greatly differ in bacterial chemolithotroph community 

structure, with Form 1A dominating marine sediments and Form 1C dominating lake 

sediments. Meanwhile, statistical analyses of Lowes Cove surface, subsurface and Mya 

arenaria burrow wall sediments indicated different degrees of overlapping community 

structure based on phylogenetic variation, genetic diversity and evolutionary distance 

measurements. ANOVA analyses of maximum potential biological oxidation rates were 

consistent with molecular data Lowes Cove sediments but not Damariscotta Lake 

sediments.  

 

Materials and Methods 
 

Sampling and Site Information 
 

Marine sediments were obtained from Lowes Cove, an intertidal mudflat of the 

Damariscotta River estuary in Walpole, ME, which has been described previously (King 

et al., 1983; Hansen et al., 1996). The mudflat is highly bioturbated by a large 
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macrobenthic population, and sulfide-oxidizing bacterial mats were present in some areas 

along the edge of the cove. Freshwater sediments were collected from Damariscotta Lake 

Park in Jefferson, Maine. Damariscotta Lake is mesotrophic and has an area of 19 km2, 

and three hydrologically distinct basins. Damariscotta Lake Park is located off the 

northernmost and largest basin, which has an area of 8 km2 and a maximum depth of 

33.5m (Damariscotta Lake Watershed Association). The sediment at the collection site 

was composed of clay overlain by several centimeters of sand. 

Lowes Cove sediments were collected at low tide, when the mudflat had no 

overlying water. For CO, ammonium and thiosulfate biological oxidation rate assays, 

Lowes Cove surface (upper 2 mm) and subsurface (5-7 cm) sediments were collected by 

coring with 6.5 cm diameter acrylic tubes that were washed in a bleach solution and 

liberally rinsed with tap water. For DNA extraction, surface and subsurface sediments 

were collected by coring with sterile 50 cm3 syringes with bottoms cut off. For both DNA 

extraction and biological oxidation rate assays, sulfide-oxidizing bacterial mats were 

collected with 50 cm3 syringes, and burrow wall sediments of Mya arenaria were 

sampled in situ with a sterile spatula and transferred to Whirlpak bags. Cores were 

processed with a 75% ethanol rinsed spatula or knife.  

Damariscotta Lake sediments were collected by coring with 6.5 cm acrylic tubes 

that were washed in a bleach solution and liberally rinsed with tap water. Sediment was 

collected within 2 meters of the shore, and overlying water was approximately 0.5 m 

deep. Cores were equilibrated for one minute before removal and taken to the lab for 

processing. Overlying water was removed with a sterile syringe. Surface sediment was 
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removed with a sterile spatula. All sediment samples were processed immediately after 

collection. 

Carbon monoxide oxidation 
 

One gram fresh weight (gfw) of each triplicate sediment sample was transferred to 

60 ml serum bottles. One ml sterile artificial sea water (ASW) or filter sterilized lake 

water was added to the Lowes Cove and Damariscotta Lake samples, respectively. Serum 

bottles were sealed with gas-tight stoppers and CO was added to the headspaces via 

needle and syringe to a final concentration of 200 ppm. Gas samples were removed at 

intervals for a total of 5 days by syringe and needle. Samples were analyzed based on the 

HgO to Hg vapor conversion technique by a RGA3 gas chromatographer (GC) (Trace 

Analytical) equipped with a mercury vapor detector (see Rich and King, 1997). The GC 

was standardized with a 1000 ppm CO standard.  

Ammonium Oxidation  
 

Slurries were prepared by placing 2 gfw of each triplicate sediment sample in 50 

mL sterile disposable centrifuge tubes containing 10 ml sterile deionized water with 1 

mM ammonium chloride and 10 mM sodium chlorate to prevent oxidation of produced 

nitrite (Belser and Mays, 1980). Subsamples of 1 ml were taken at intervals for a total of 

2 weeks and placed in microcentrifuge tubes. Nitrite concentrations were determined 

colormetrically based on an azo dye reaction of nitrite with acid sulfaniliamide and n-(1-

naphthyl-) ethylaenediamine dihydrochloride. Subsamples were centrifuged to pellet 

sediment. An 800 µl liquid volume from each subsample was then aliquoted into 2 ml 

disposable cuvettes. Absorbance at 543 nm was determined using a Beckman DU640 
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spectrophotometer before and after 16 µl of 1% acid sulfaniliamide (buffered in 10% 

sulfuric acid) and 16 µl of 0.1% n-(1-naphthyl-) ethylaenediamine dihydrochloride were 

added.  

Thiousulfate Oxidation  
 

One gfw of triplicate sediment samples was added to 120 ml sterile bottles. 

Bottles were amended with 10 ml sterile ASW or filter sterilized lake water, for marine 

and freshwater sediments, respectively, containing 10 mM thiosulfate. Bottles were 

capped with sterile rubber stoppers.  Subsamples of 300 µL were taken at intervals for 2 

days for marine samples and 6 days for Damariscotta Lake samples. Subsamples were 

placed in 1.5 ml microcentrifuge tubes. After subsampling, microcentrifuge tubes were 

centrifuged to pellet sediment. Supernatants were then placed in 15 mL falcon tubes with 

2.5 mL reaction buffer (0.1 M sodium phosphate and 1mM EDTA, pH 8.0) and 50 µl of 

4mg ml-1 5,5’ – dithio-bis-(2-nitrobenzoic acid) (DNTB). DNTB reacts with thiosulfate 

to produce a quantifiable colored product (Ellman, 1959). Samples were analyzed on a 

Beckman DU640 spectrophotometer at a wavelength of 412 nm. In addition to the above 

protocol, two control reactions were simultaneously set up, including a background 

control, with no thiosulfate addition, and autoclaved killed controls to determine the 

potential for chemical thiosulfate oxidation. 

DNA extraction and amplification of cbbL genes 
 

DNA was extracted from triplicate samples using a MoBio UltraClean Soil DNA 

Kit (MoBio Labs, Carlsbad, California), according to the manufacturer’s instructions.  



 22 

DNA was amplified with primers K2f and V2r from Nanba et al. (2004). PCR reactions 

were processed with MasterTaq DNA polymerase (Brinkmann Inc.) using the 

manufacturer’s recommendations for buffers, magnesium, dNTPs and MasterTaq. 

Reactions were amplified on an Eppendorf Mastercycler thermocycler (Brinkmann Inc.) 

with the following conditions: initial 3 minute 94°C denaturation, 30 cycles of 94°C for 

45 s, 62°C for 60 s and 72°C for 60 s, and a final extension of 72°C for 7 minutes. PCR 

products were electrophoresed on a 1% agarose gel and visualized with UV after staining 

with ethidium bromide. Products of the correct size were immediately processed for 

cloning or stored at -20°C for no longer than 24 hours before processing. 

Clone library construction 
 

Triplicate PCR products from lake surface sediment were pooled and purified 

with a MoBio PCR cleanup kit (MoBio Labs, Carlsbad, California) or Qiagen Gel 

Extraction Kit. Clone libraries were constructed using the Invitrogen TOPO TA cloning 

kit and Escherichia coli TOP10 competent cells according to the manufacturer’s 

instructions (Invitrogen Life Technologies, Carlsbad, California). Clones were arbitrarily 

picked and grown with shaking overnight at 37°C in agitated Luria-Bertani broth 

containing 50 µg ml-1 kanamycin. Cultures were centrifuged and pelleted cells were 

washed and resuspended in 10 mM Tris buffer. Resuspended cells were amplified by 

PCR with TOPO cloning vectors T3 and T7 supplied by the manufacturer. PCR products 

indicating inserts of the correct size were purified with a MoBio PCR purification kit and 

sequenced by the University of Maine’s DNA Sequencing Facility using the vector 

primer T7. Sequences were screened by BLAST (Altschul et al., 1997) to confirm 

assignment as cbbL genes, and to determine their similarity to published sequences.  
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Phylogenetic Analysis  
 

DNA sequences were aligned using Clustal X version 1.01 (Thompson et al., 

1997). The cbbL phylogeny was analyzed with a neighbor-joining algorithm with the 

PAUP* phylogeny analysis program (Swofford, 1998).  Confidence in phylogenetic tree 

topology was assessed with bootstrapping by the NJ method in PAUP*. 

Statistical Analyses 
 
 Substrate oxidation rates were analyzed with a two-tailed t-test (α = 0.05), to 

determine the significance of association between dependent and independent variables. 

Maximum potential oxidation rates were determined by calculating the slopes of the 

linear regressions for each replicate at what appeared to be the maximum rate of 

oxidation. Significant differences in maximum potential biological oxidation of the sites 

were determined by performing a one-way analysis of variance with the R statistical 

software package (www.r-project.org). Transformations were applied when necessary to 

obtain normality and constant variance. Normality was measured with the Lilliefors 

(Kilmorov-Smirnov) test, and the null hypothesis of normality was accepted at a 

probability level ≥ 0.15. Constant variance was measured with the Levine test, and the 

null hypothesis of constant variance was accepted at a probability level of ≥ 0.05. When 

significant differences in means were present, as measured by a F-statistic (P ≤ 0.05), a 

Tukey HSD pothoc test was performed with 95% familywise confidence.  

Clone libraries obtained from Damariscotta Lake and Lowes Cove sediments 

were analyzed by Analysis of Molecular Variance (AMOVA) with Arlequin (Schneider 

et al., 2000) to estimate the significance of differences in population pairwise fixation 

indices (FST values) among cbbL libraries. Arlequin was also used to estimate nucleotide 
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diversity and average pairwise differences of aligned cbbL sequences. Nucleotide 

diversity estimates the probability that two randomly chosen homologous nucleotides will 

differ, while average pairwise difference estimates the number of nucleotide differences 

observed when each clone sequence is compared with all other clone sequences. 

Sediment cbbL clone libraries were also analyzed with the webLIBHSHUFF 

computer program (http://libshuff.mib.uga.edu), which calculates homologous and 

heterologous coverages using a Cramer-von Mises statistic with a Monte Carlo test 

procedure (Singleton et al., 2001). The distance matrix used in the LIBSHUFF analysis 

was obtained using DNADIST of the PHYLIP program (v. 3.65; J. Felsenstein; 

(evolution.genetics.washington.edu/phylip.htm)). Libraries were considered significantly 

different at P ≤ 0.05. A phylogenetic P-test was performed to test if the distribution of 

unique sequences between different clone libraries displays significant covariance with 

phylogeny (Martin, 2002). One thousand random trees were constructed in PAUP* from 

combined clone libraries. The tree length of the combined library was determined by 

constructing a parsimony tree using the heuristic search algorithm in PAUP*. Clone 

libraries were considered significantly different if the actual tree length was less than the 

95% lower confidence limit of the random trees. Bonferroni corrections for multiple 

comparisons were applied for LIBSHUFF and P-test analyses.  

Accession Numbers  
 
Chromatium vinosum, D90204; Synechococcus strain CcmK U46156; Synechococcus 

T6SY9, AY157474; Nitrosomonas ENI11, AB061373; Nitrosospira TCH716, 

AF459718; Hydrogenephaga pseudoflava, U55037; Thiobacillus sp., M34536; 

Bradyrhizobium japonicum USDA 110, AF041820; Nitrosospira sp. strain III2, 
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AF426416; Nitrosospira sp. strain 40K1, AF426428; Nitrosospira sp. strain AF, 

AF426415; Nitrosospira multiformis ATCC 25196, AY157474; Ralstonia eutropha, 

U20585; Rhodobacter blasticus, AB082959; Solemya velum sulfur-oxidizing symbiont 

AY531637. Terrestrial clones: HM34, AY422874 ; PN5.81, DQ149802; PN5.58, 

DQ149798; GP0.95,  DQ149762; Sulfide-oxidizing mat clones: CM4, AY422060. 

Hydrothermal vent clones: 1a04, AY431011; clone Suiyo (IC)-3, AB181164. 

Manganese-oxidizing bacterium SI85-9A1, L32182. 

 
Results 

 

Biological Oxidation Assays 
 

 Measurable rates of ammonium oxidation were observed for Lowes Cove surface 

and burrow sediments, but not for Damariscotta Lake surface sediments (Table 2.1). 

Thiosulfate and carbon monoxide oxidation were observed in samples from all sediment 

environments (Table 2.1). Example plots of CO, ammonium and thiosulfate from Lowes 

Cove surface sediments are displayed in Figure 2.1. Transformations of the data in both 

ammonium and thiosulfate oxidation models greatly improved normality and 

homogeneity of variances (Table 2.2). Significant differences between site means (P < 

0.05) were observed in ammonium and thiosulfate biological oxidation assays, but not for 

CO uptake (Table 2.2). A TukeyHSD (95% confidence) was performed on the 

ammonium and thiosulfate rate models. Ammonium oxidation in Lowes Cove surface 

and burrow wall sediments were not significantly different (P = 0.31), but were 

significantly higher than subsurface sediments (P < 0.0008). Biological thiosulfate 



 26 

oxidation rates of Damariscotta Lake surface and Lowes Cove subsurface sediments were 

not significantly different (P = 0.62). Lowes Cove surface and burrow sediments had 

comparable thiosulfate oxidation rates (P = 0.78) and were significantly higher (P < 0.05) 

than Damariscotta Lake and Lowes Cove subsurface sediments. All sediment types had 

significantly less biological thiosulfate oxidation than Lowes Cove sulfide-oxidizing 

bacterial mats (P < 0.05). 

 

 
Sample Assay AVG (pmol / g h -1) 
LC suface Ammonium 15.4 ± 53.2 
LC burrow Ammonium 47.5 ± 16.9 

LC subsurface Ammonium 3.4 ± 2.4 
D lake Ammonium 0.0 

Sample Assay AVG (nmol / g h -1) 
LC suface CO 4.2 ± 7.0 
LC burrow CO 4.1 ± 1.0 

LC subsurface CO 3.4 ± 2.4 
D lake CO 6.6 ± 2.2 

Sample Assay AVG (umol / g h -1) 
LC suface Thiosulfate 72.5 ± 30.8 
LC burrow Thiosulfate 110.0 ± 53.2 

LC mat Thiosulfate 363.6 ± 51.1 
LC subsurface Thiosulfate 23.1 ± 2.8 

D lake Thiosulfate 17.9 ± 11.1 

Table 2.1 Potential maximum oxidation (with standard deviations) of ammonium, carbon 

monoxide, and thiosulfate. Abbreviations: Lowes Cove sediment (LC), Damarsicotta 

Lake surface sediment (D Lake). All averages are of triplicate samples. 



 27 

 
 
 
 
 

 
Figure 2.1 Plots of CO, ammonium and thiosulfate potential biological oxidation for 

Lowes Cove triplicate (LCS 1, 2 and 3) surface samples.  

LCS 1 
LCS 2 
LCS 3 
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Assay Model (response) 
Lilliefors 
p-value 

Levine 
p-value 

ANOVA             
p-value 

Ammonium -1/rate 0.1618 0.1371 0.00074 
CO rate 0.3187 0.05098 0.2424 

Thiosulfate LN(rate)  0.6104 0.05346 1.529e-05 

Table 2.2 Models used in ANOVA and P-values. Sites were considered significantly 

different at a probability level of ≤ 0.05. 

 

Phylogenetic Analysis 

 

 Lowes Cove sediments were dominated by Form 1A cbbL while Damariscotta 

Lake sediments predominately contained Form 1C (Figure 2.2 and Figure 2.3). All seven 

cbbL clones from Lowes Cove sulfide-oxidizing bacterial mats were of the 1A form that 

is typical of sulfur oxidizers. All but one subsurface clone contained Form 1A cbbL, and 

a majority of surface (91%) and Mya arenaria burrow wall (86%) clones were of the 1A 

type (See Table 2.4 for number of clones obtained from each site). Lowes Cove 1A cbbL 

clones were phylogenetically similar to each other, although some were also closely 

related to hydrothermal vent and sulfide-oxidizing mat clones reported in the NCBI 

database (Table 2.3 and Figure 2.2). Twenty-three Damariscotta Lake sediment cbbL 

clones were analyzed and 21 (91%) were Form 1C. The Form 1A clones were most 

closely related to Rhodobacter blasticus, a carbon monoxide and hydrogen-oxidizing 

phototroph. All other 1C sequences were diverse and most closely related to terrestrial 

strains (Table 2.3 and Figure 2.3). 
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Clone Name 
cbbL 
Form 

Accession 
Number Description  Identity 

LCB90, LCB33, LCB57, 
LCB170, LCM138, 
LCM225, LCS91, LCS139, 
LCS66, LCS42, LCS256, 
LCS27, LCS269, LCS222 

1A AY422061 
Sulfide-oxidizing 
bacterial mat clone 
CM6R 

93-98% 

LCS120 1A AY422060 
Sulfide-oxidizing 
bacterial mat clone 
CM4 

91% 

LCS147 1A AB175812 
Hydrothermal vent 
clone Suiyo (I)-8 

90% 

LCM8 1C DQ149792 
Soil bacterium clone 
PN5.12 99% 

LCS224 1C DQ149802 
Soil bacterium clone 
PN5.81 98% 

DL72 1C DQ149762 
Soil bacterium clone 
GP0.95 99% 

DL279 1C DQ149786 
Soil bacterium clone 
GP5.183 95% 

DL434, DL469 1C DQ149777 
Soil bacterium clone 
GP5.105 94% 

Table 2.3 Results from BLAST searches. Clones that had ≥ 90% identity to a sequence in 

the NCBI nucleotide database are reported. 
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Synechococcus T6SY9
Synechococcus CC9605

Synechococcus CCMK
Chromatium
LCS176

LCM183
1a04

LCS90

LCS275
LCM153

Thiobacillus
Hydrogenophaga

S79
S103

S118
LCB162

LCB173
LCM95

S. velum symbiont
LCS102

LCB93

LCS186/246
LCS92/233

LCS279
LCS134

LCS173
LCM215
LCM181
LCS151

LCS262
LCM223

LCS147
LCM98
LCB2

LCB177/191
LCM160

LCM110/112/130
LCB111
LCS11

LCM149
LCM176

LCM101
LCM109

LCS120

CM4
LCS69/185
LCS15

LCS13/22

LCS273
LCS291
LCS181/183/212/214/258

LCB167

LCS255
LCS264

LCS10
LCM175

LCM217
LCB95/165/151
LCB44
S63
LCM200

LCM224
LCB94
LCM133/152/211

S57

LCM157/158
LCB89

LCM100
LCM92

LCM172

LCS91
LCS139

LCB170
LCM138

S7
LCS66
LCS42
LCS155

LCS256

S12
LCS27/269
LCS222
LCB57

LCM9
LCM225

NitrosomonasENI11
NitrosospiraTCH716

LCB12
Rblasticus

Nmultiformis
Nitrosospira III2

Nitrosospira40K1
NitrosospiraAF

LCS195

LCS110
clone SuiyoIC3

PN581
LCS224/271

PN558
LCB73

LCM8

B. japonicum
Manganese

GP095
LCB6

HM34
Ralstonia

LCB182
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Figure 2.2 Neighbor-joining tree of Lowes Cove partial cbbL sequences. Values of 1000 

bootstrap replicates are displayed above nodes. Site abbreviations LCS, Lowes Cove 

surface; LCB, Lowes Cove Burrow; LCM, Lowes Cove subsurface . 
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Figure 2.3 Neighbor-joining tree of Damariscotta Lake (DL) partial cbbL sequences. 

Values of 1000 bootstrap replicates are displayed above nodes. 
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Clone library statistical analyses 
 

Nucleotide diversity was similar among all sediment environments, as were 

within-site average pairwise differences (Table 2.4).  Among site average pairwise 

differences of Lowes Cove microhabitats were nearly identical, while differences 

between Lowes Cove samples and Damariscotta Lake sediments were higher (Table 2.5).  

Values of Wright’s fixation index (FST) (Table 2.5) indicated varying levels of 

genetic differentiation among clone libraries (see Hartl and Clark, 1997). The highest FST 

values were observed between Lowes Cove cbbL clone libraries and the Damariscotta 

lake cbbL sequences, supporting the hypothesis that marine and freshwater sediments 

harbor different chemolithotroph communities. Lowes Cove surface and subsurface 

sediment sequences showed moderate genetic differentiation, while little genetic diversity 

was observed among burrow wall clones and marine surface and subsurface 

environments (Table 2.5).  

 

Site 
No. of 
clones ND θ[π] 

LC Surface 45 0.22(0.11) 109.8 (48.0)  
LC Subsurface 33 0.17(0.08) 85.4(37.7) 
LC Burrow 20 0.26(0.13) 126.1(56.6) 
DL Surface 23 0.28(0.14) 137.8(61.3) 

Table 2.4 Values for nucleotide diversity (ND) and within site average pairwise 

difference (θ[π]) for Lowes Cove (LC) and Damariscotta Lake (DL) samples. Standard 

deviations are in parentheses. 
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  FST or (θ[π]) for Site   Site 
LCS LCB LCM DL 

LCS  120.0 103.8 216.9 
LCB 0.019  105.3 213.1 
LCM 0.059 0.001  222.2 
DL 0.440 0.381 0.511  

Table 2.5 Among site average pairwise differences and fixation index (FST ) values. 

Average pairwise differences (θ[π]) between populations are given above diagonal and 

FST  values are given below diagonal. Values were all significant at (P < 0.05). Site 

abbreviations: LCS, Lowes Cove Surface; LCB, Lowes Cove Burrow; DL, Damariscotta 

Lake; LCM, Lowes Cove subsurface (5-7 cm). 

 

 LIBSHUFF analyses of clone library homologous and heterologous coverages 

(Table 2.6) indicated that Lowes Cove clone libraries were all significantly different than 

the Damariscotta Lake sediment cbbL library (P = 0.001). Among Lowes Cove 

microhabitats, surface and subsurface sediments contained distinct chemolithotroph 

populations (P = 0.001) while neither of these sites was significantly different than Mya 

arenaria burrow wall sediments (P > 0.0085). 

 The tree length of a parsimony tree containing Lowes Cove clone libraries 

(surface, subsurface, and Mya arenaria burrow wall sediments) was significantly less 

than the 95% lower confidence limit of 1000 random trees. P-tests of individual Lowes 

Cove libraries similarly indicated significant phylogenetic divergence of marine 

microhabitat populations. Removing Form 1C cbbL sequences from Lowes Cove 

libraries did not change the outcome of AMOVA, LIBSHUFF or P-test analyses. 
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  LIBSHUFF P-values     
X \Y LCS LCB LCM DL 

LCS   0.094 0.001 0.001 
LCB  0.678  0.567 0.001 
LCM  0.001 0.196  0.001 
DL  0.001 0.001 0.001  

Table 2.6 LIBSHUFF probability values of XY and YX comparisons. Sites listed in the 

left column represent library X, while sites displayed in the top row represent library Y. 

Libraries were considered significantly different at 95% confidence if the XY or YX 

comparison had a probability value of ≤ 0.0085, a Bonferroni correction for multiple 

comparisons. Site abbreviations LCS, Lowes Cove Surface; LCB, Lowes Cove Burrow; 

LCM, Lowes Cove subsurface (5-7 cm); DL, Damariscotta Lake. 

 

Discussion 
 
 Few studies have addressed chemolithotroph diversity in sediments, and this was 

the first study to consider both 1A and 1C cbbL-containing chemolithotrophs. Elsaied and 

Naganuma (2001) observed phylogenetically diverse Form 1A cbbL genes in marine 

sediments and hydrothermal vent environments. Phylogenetic results from this study 

support a diverse 1A cbbL-containing community in marine intertidal sediments (Figure 

2.2). A large majority of cbbL clones were of the 1A-type, and all sequences closely 

matched known sulfur-oxidizers or clone sequences from sulfide-oxidzing bacterial mats 

(Table 2.3 and Figure 2.2). These data support the strong influence of sulfur dynamics on 

bacterial populations of marine sediments. Form 1C cbbL sequences were also obtained 

from marine sediments, indicating that CO/ H2 oxidizers also contribute to the marine 

chemolithotroph population.  
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 Conversely, Damariscotta Lake surface (upper 2mm) sediment clones mainly 

contained Form 1C cbbL sequences, suggesting a chemolithotroph population of mainly 

H2/CO oxidizers (Figure 2.3). The importance of soils in the H2 cycle has been well 

documented (Novelli et al., 1999). However, few studies have addressed the population 

structure of chemolithotrophs in terrestrial environments. Nanba et al. (2004) reported a 

community strongly dominated by Form 1C cbbL-containing chemolithotrophs in 

volcanic deposit environments. Furthermore, Tolli and King (2005) observed that 

agricultural soils were dominated by Form 1C cbbL-containing chemolithotrophs. Few 

Form 1A cbbL sequences were obtained from the soils, and sequences were most closely 

related to cbbL genes of obligate nitrifying bacteria. Selesi et al. (2005) used two sets of 

primers to target Form 1A and Form 1C cbbL sequences separately. They reported large 

phylogenetic diversity of Form 1C-containing clones and small diversity of Form 1A 

cbbL clones, which were all closely related to nitrifying bacteria.  

Some Form 1C cbbL clones of Damariscotta Lake closely matched cbbL 

sequences from terrestrial environments (Table 2.3 and Figure 2.3), with up to 99% 

identity for some sequences.  Two Form 1A cbbL genes were also sequenced from 

Damariscotta Lake. However, they were not phylogenetically related to Form 1A cbbL 

sequences obtained from Lowes Cove sediments, known sulfur oxidizers, or nitrifying 

bacteria. The closest match in the NCBI database was to Rhodobacter blasticus, a 

H2/CO-oxidizing chemolithophototroph. This indicates that littoral mesotrophic lake 

sediments contain facultative chemolithotrophs similar to terrestrial environments, but 

may contain different Form 1A cbbL communities.  
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Statistical analyses of clone libraries indicated similar nucleotide diversity in all 

populations, suggesting that both intertidal and littoral lake sediments contain diverse 

chemolithotroph communities. This was supported by average pairwise difference values 

(Table 2.4). Among site pairwise differences indicated that marine and freshwater 

sediments were different from each other, however, among site pairwise difference of 

marine environments indicated similar population structure (Table 2.5).  

Wright’s fixation index (FST) indicated that genetic diversity within the 

Damariscotta Lake cbbL clone library was significantly less than the marine and lake 

library combined (Table 2.5). LIBSHUFF analysis supported distinct chemolithotroph 

communities among the lake and intertidal sediments (Table 2.6). However, FST values 

within Lowes Cove sediment cbbL libraries displayed less genetic differentiation. Surface 

(upper 2mm) and subsurface (5-7 cm) clone libraries showed only moderate genetic 

differentiation, and Mya arenaria burrow wall clones showed little within group genetic 

variation in comparison to genetic diversity of the groups combined. LIBSHUFF analysis 

of homologous and heterologous coverages as a function of evolutionary distance (D=0.0 

to 0.5) indicated similar results for Lowes Cove cbbL clone libraries (Table 2.6). Burrow 

wall cbbL clones were not significantly different than surface and subsurface clone 

libraries.  LIBSHUFF results also indicated that marine surface and subsurface 

environments contained distinct chemolithotroph communities (P ≤ 0.001). This suggests 

that while within population marine surface and subsurface cbbL genetic diversity is only 

moderately different than the sediment microhabitats combined, the number of unique 

sequences as a function of evolutionary distance is greater within libraries than among 
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them. Furthermore, phylogenetic P-tests indicate that all Lowes Cove marine libraries 

represent different phylogenetic lineages. 

Maximum potential biological oxidation rate assays supported molecular data 

from Lowes Cove, with thiosulfate oxidation having the highest rate, followed by CO 

consumption and ammonium oxidation. Interestingly, CO consumption was not 

significantly different from any other sediment environment (Table 2.2) and was 

comparable to oxidation rates observed in soils (Tolli and King, 2005). Potential 

maximum biological uptake rates in Damariscotta Lake, however, were not consistent 

with molecular data. While cbbL sequences indicated dominance of a facultative CO/ H2-

oxidizing community, potential biological consumption rates indicated that thiosulfate 

oxidation dominated. No sulfur-oxidizing cbbL type sequences were obtained from 

Damariscotta Lake sediments. Possible explanations to this discrepancy include 

thiosulfate consumption by chemoorganotrophic bacteria or other biological sulfur 

transferase activity (Alexander and Volini, 1987; Saidu, 2004). 

 

Conclusion 
 

 Lowes Cove marine and Damariscotta Lake sediments harbored considerably 

different chemolithotroph communities. Lowes Cove sediment clone libraries were 

dominated by Form 1A cbbL while the Damariscotta lake clone library contained mainly 

Form 1C cbbL. AMOVA and LIBSHUFF statistical analyses further supported that 

Lowes Cove and Damariscotta Lake contained distinct chemolithotroph communities.  

 Chemolithotroph community structure and dynamics within Lowes Cove 

microhabitats were less clear. Phylogenetic P-tests indicated significant covariation 
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between Lowes Cove cbbL phylogeny and microhabitat community. Meanwhile, among 

site average pairwise difference values and fixation indices indicated high levels of 

sequence diversity among clone libraries relative to the diversity of the combined 

libraries. LIBSHUFF, which analyzes homologous and heterologous coverages as a 

function of evolutionary distance, suggested that Lowes Cove surface and subsurface 

libraries differed, while Mya arenaria burrow wall clone libraries were not distinct from 

the other microhabitat clone libraries.  
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