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Acoustic wave sensor platforms typically consist of piezoelectric materials in 

which bulk or surface acoustic waves are excited by metallic transducers deposited on 

the sensing surface of the platform.  This type of transduction has limitations.  In 

particular the transducer may limit the type of sensing film that can be used or analyte 

that can be measured and limit the frequency of operation of the sensor.  In this work 

a novel method of exciting high frequency bulk acoustic waves in piezoelectric sensor 

platforms has been explored.  This technique consists of applying time varying 

electromagnetic fields to the sensor platform using an antenna in order to excite high 

order harmonic acoustic waves.  This configuration is known as a Monolithic Spiral 

Coil Acoustic Transduction (MSCAT) device.  This technique offers benefits such as 

a bare sensing surface that allows for the detection of both mechanical and electrical 

property changes in the film or analyte and is capable of operating at high frequencies 

by exciting high order harmonics (> 99th harmonic) in the substrate.  The antenna 

configurations have been experimentally and theoretically examined and an 



understanding of how these electric fields excite the acoustic waves in the substrate 

has been developed.  Finally, the MSCAT sensor platform was used to detect real 

world chemical and biological analytes and found in many cases to be superior to 

other bulk acoustic wave sensor platforms.   
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1 INTRODUCTION 
 

1.1. The Sensor System 

Bulk Acoustic Wave (BAW) sensors have been used for over 50 years for a 

variety of physical, chemical, and biological sensing applications.  Often a BAW 

sensor platform is referred to simply as a “sensor” although this can lead to confusion 

in the case of chemical or biological sensing applications.  For the purposes of this 

work each component of a BAW sensor system will be defined with a particular 

emphasis on chemical and biological sensing applications.   

The first component of a sensor system consists of preparing and delivering a 

sample to the sensor element (Figure 1.1). Examples of sample preparation include 

particulate filtering and chemical or biological filtering to remove the analyte from 

solution or separate the analyte from interferents. Additionally, the sample 

preparation phase of a sensor system could include the pre-concentration of a large, 

dilute sample into a measurable aliquot. This preparation component of the overall 

system is generally developed after the sensing element has been finalized since the 

effectiveness of the sample preparation depends upon the requirements of the sensing 

element. 

Although the sensor platform is an integral part of the complete sensor system 

it must be integrated with other critical components.  When a BAW sensor platform is 

used to detect physical changes on the sensor surface (mass, viscosity, electrical 

properties, etc.) no sensing film is necessary and the sensor platform is simply the 

sensor element.  When a BAW sensor platform is used in a chemical or biological 
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Figure 1.1 Block diagram of a complete sensor system for the detection of 
biological or chemical targets 

 

 

sensor system (Figure 1.1), however, the sensor element consists of two components, 

the target selective biological or chemical film and the sensing platform.  The sensor 

platform typically provides sensitivity to the sensor system while the film provides 

selectivity. 

In the case of detecting biological analytes the film provides selectivity and 

often is designed to detect only one biological analyte.  An example is a monoclonal 

antibody selective only to specific pathogenic bacteria such as E. coli O157:H7.  For 

chemical films the selectivity may not be as high and often one must resort to doping 

of the chemical film and/or operating the sensor platform at temperatures appropriate 

for the film to react with the chemical analyte.   

In the case of chemical or biological sensing applications, the sensing 

platform is typically the substrate upon which one deposits the biological or chemical 
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selective film. As the biological or chemical film interacts with the target analyte 

changes occur in the film that may be electrical, chemical, and/or mechanical.  In 

particular the electrical property changes include conductivity and/or dielectric 

constant changes while the mechanical changes include mass, elasticity, and/or 

viscosity changes.  The sensing platform must be able to detect these changes 

sensitively and rapidly (in situ).  Finally, the output from the sensing element must be 

interfaced to appropriate electronics that will provide a digital readout and display the 

presence or absence of the target analyte or the relative concentration of the target 

analyte.  Often the electronic part of the sensor system is embedded in a laboratory-

based instrument that is non-portable.  Ideally in order to realize a complete in situ 

sensor system that satisfies the criteria of selectivity, high sensitivity, and portability 

it must be possible to integrate the sensor platform and electronics into a small 

portable unit.    

Critical to the development of a small portable unit is the appropriate 

technology employed for the sensing platform.  Ideally this technology should be 

very sensitive and capable of detecting both electrical and mechanical property 

changes in the target film due to the interaction between the target analyte and the 

film.  Sensing platforms based on optical technology typically utilize optical fibers or 

surface plasmon resonance (SPR) and employ spectroscopy or fluorescence to 

examine the reflection or absorption of light on a target film.   Optically based 

sensing platforms primarily detect electrical property changes in the target film and 

cannot detect some mechanical property changes such as mass and viscosity.  

Although optical sensing platforms are sensitive and selective, when interfaced with 
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the necessary electronics systems they are generally non portable and require 

specialized training to operate.  Electrochemical based sensing elements measure a 

change in voltage, current, or conductance of a target film.  One of the most popular 

electrochemical based sensing platforms consists of a semiconducting metal oxide 

(SMO) film deposited on an insulating substrate.  This sensing element is very 

sensitive but does not have a high level of selectivity due to the fact that most 

selective sensing films cannot be applied to the sensor's surface and it measures only 

electrical property changes.  Piezoelectric sensing platforms may employ surface 

bound acoustic waves or bulk acoustic waves.  In the case of the former, surface 

acoustic wave (SAW) and acoustic plate mode (APM) sensing platforms may be 

realized.  Although these sensing platforms have been shown to be quite sensitive, the 

platforms are limited to a single operating frequency.  When using this sensing 

platform it is also necessary to isolate the electrodes from the sample and the sensing 

film.  Recently BAW sensors that utilize spiral coils to excite acoustic waves have 

been designed.  The sensors have been shown to operate over wide frequency ranges 

but suffer from relatively weak excitation efficiencies when compared to other BAW 

sensors and often require specialized electronic systems in order to excite and 

measure changes in resonant modes.  More details on these sensor platforms are 

presented in Chapter 2.   

 

1.2. Purpose and Objectives 

The purpose of this work is to develop a novel BAW sensor platform that has 

a bare sensing surface and is capable of operating over a wide frequency range.  The 
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bare sensing surface is desirable because it allows both mechanical and electrical 

property changes caused by a target analyte to be detected.  In addition, when quartz 

is used as the sensor substrate, a bare sensing surface allows the use of silica based 

surface chemistries to attach selective sensing films to the sensor’s surface.  As will 

be shown later, if the sensor platform is capable of operating over a wide frequency 

range, significant improvements in sensor sensitivity can be achieved for some 

applications.  In order to achieve these goals the following tasks need to be 

accomplished: 

• Review previous work on BAW sensors in order to identify possible 

avenues for achieving the goals of this work.   

• Design a novel sensor platform that has a bare sensing surface and is 

capable of operating over a wide frequency range. 

• Develop a theoretical understanding of the sensor platform operation. 

• Determine if the new sensor platform is capable of detecting both 

mechanical and electrical property changes in liquids. 

• Determine if the new sensor platform is capable of detecting both 

chemical and biological analytes of interest. 

Through the course of performing these tasks the Monolithic Spiral Coil 

Acoustic Transduction (MSCAT) sensor (Figure 1.2) was developed.  The MSCAT 

has electrodes removed from the sensing surface and is capable of operating over a 

wide frequency range.  In order to operate over a wide frequency range the MSCAT 

utilizes a photolithographically deposited antenna on the surface of a piezoelectric 

material opposite to the sensing surface.  Although there are limitless numbers of 
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Figure 1.2 Diagram of MSCAT sensing element.  a) Top view showing target 
selective sensing film b) bottom view showing electrical connections to sensing 

electronics 

 antenna configurations that are used for various applications, this thesis focuses on a 

spiral coil antenna.  The antenna configuration for the MSCAT was not chosen 

arbitrarily.  Most antenna designs are based on the wavelength of the electromagnetic 

wave that is to be excited and therefore only operate efficiently at a single frequency.  

There is, however, a class of antennas known as frequency independent spiral 

antennas that are capable of operating over a wide frequency range.  Due to the ability 

to miniaturize these antennas and the fact that they operate efficiently over a wide 

frequency range a spiral coil antenna was chosen as the antenna type for the MSCAT. 

The MSCAT sensor platform utilizes a photolithographically deposited spiral 

coil to excite acoustic waves in piezoelectric materials.  The coil on the MSCAT 

sensor is an antenna that radiates a time varying electric field that penetrates the 

piezoelectric wafer when the coil is excited by an RF source. As a result of the 
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piezoelectric effect, the time varying electric field sets up a time varying stress in the 

wafer. Depending on the wafer thickness and the frequency of excitation, resonant 

acoustic waves at the fundamental or higher order harmonic frequencies are excited.  

The measurable output of the MSCAT sensor is a change in its resonant frequency 

due to changes in the surrounding medium or sensing film caused by the measurand.    

Although the MSCAT’s spiral coil antenna can be deposited on any 

piezoelectric substrate, AT-cut quartz is used in the present work.  As will be 

discussed in the following chapters, when the sensor substrate is AT-cut quartz, the 

MSCAT excites the pure transverse shear mode (TSM) in the substrate.  The TSM 

has mechanical displacements that are perpendicular to the propagation direction and 

parallel to the crystal surface which minimizes acoustic losses in liquid sensing 

applications.  The AT-cut is particularly attractive for sensing applications due to the 

fact that a pure, temperature compensated TSM may be excited.   

The MSCAT has a number of advantages over other BAW sensor platforms.  

The MSCAT has a bare sensing surface and is capable of operating over a wide 

frequency range   .  The bare sensing surface allows the MSCAT to detect both 

mechanical and electrical property changes in liquids and allows for the use of silica 

based chemistries when developing chemically or biologically selective sensing films.  

The geometry of MSCAT’s photolithographically deposited spiral coil antenna can 

easily be modified which can lead to significant increases in the range of frequencies 

that can be excited in the device.  The spiral coil antenna on the MSCAT is also in 

direct contact with the substrate which leads to significantly higher excitation 

efficiencies in comparison to some other BAW sensor platforms.  In addition, the 
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MSCAT does not require specialized electronics and tuning capacitors, unlike some 

other BAW devices. The MSCAT also has the added advantage of operating at a 

number of different frequencies which can lead to significant decreases in both 

detection time and detection limit in comparison to other BAW sensor platforms as 

will be shown later.   

In this work it is shown that the MSCAT is in fact capable of exciting up to 

the 99th harmonic in AT-cut quartz.  An expression for the near-field electric fields 

radiated from a spiral coil antenna has been derived and finite element modeling has 

been performed in order to gain insight into how the MSCAT's spiral coil antenna 

excites the TSM in AT-cut quartz.  It has also been found that the MSCAT is capable 

of detecting both electrical and mechanical properties in liquids.  Finally, it has been 

shown that the MSCAT is capable of detecting both biological and chemical analytes 

of interest.   

 

1.3. Organization 

This thesis is organized into nine chapters, the first of which is the 

Introduction.  The second chapter details the previous work performed on the 

development of BAW sensor platforms and identifies possible avenues for 

improvement.  The third chapter describes development of the MSCAT sensor 

platform and provides a theoretical understanding of how the MSCAT operates.  The 

fourth chapter presents the experimental work relating to the use of the MSCAT 

sensor to detect mechanical and electrical property changes in liquids.  The fifth 

chapter details the use of the MSCAT platform as a biological sensor element.  

Chapter 6 presents a proof of concept on the use of the MSCAT platform as a 



9 
 

chemical sensing element.  The seventh chapter presents the summary, conclusions, 

and potential future work.  Appendix A describes the development of an alternative 

BAW sensor platform, a Lateral Field Excited (LFE) sensor platform fabricated on 

LiTaO3, which is also capable of operating at high frequencies by exciting high 

harmonics in the device.  The final chapter, Appendix B details the derivation of the 

near fields for planar spiral coil antennas. 
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2 BACKGROUND 

 

Bulk acoustic wave (BAW) devices by definition utilize acoustic waves that 

propagate through the interior of the device's substrate.  A BAW device's resonant 

frequency is dependent on both the velocity of the acoustic wave and the thickness of 

the substrate.  Most BAW devices utilize the piezoelectric effect in order to produce 

standing acoustic waves in the device.  In a piezoelectric material, an electric potential 

is produced when a mechanical stress is applied (direct piezoelectric effect).  The 

reverse is also true for piezoelectric materials, an applied mechanical stress will 

produce an electric potential (reverse piezoelectric effect).  When a BAW device is 

used as a sensor, changes in the acoustic wave's velocity or amplitude as the wave 

interacts with the surrounding medium are monitored.  The resonant frequency of 

BAW sensors is directly related to the velocity of the acoustic wave and therefore the 

resonant frequency is often used as the measurable output of the sensor.  In this 

chapter previous work on BAW sensors is reviewed in order to identify possible 

avenues for achieving the goals of this work outlined in Chapter 1.   

 

2.1. Sensor Platforms with Photolithographically Deposited Electrodes  

 

  2.1.1 The Quartz Crystal Microbalance (QCM) 

The most popular and well-known BAW sensor platform is the quartz crystal 

microbalance (QCM) which utilizes the piezoelectric properties of AT-cut quartz 

crystals.  For piezoelectric materials the constitutive equations describe the 
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relationship between stress (T), strain (S), electric field (E), and electric displacement 

(D) [1, 2] as follows: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸 𝑆𝑆𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝐸𝐸𝑘𝑘  (2.1) 

and  

𝐷𝐷𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑘𝑘𝑘𝑘 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑆𝑆 𝐸𝐸𝑘𝑘  (2.2) 

Where 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘  describes the piezoelectric constant tensor of the material, 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸 describes 

the elastic stiffness constant tensor at a constant electric field, and  𝜖𝜖𝑖𝑖𝑖𝑖𝑆𝑆  describes the 

dielectric permittivity tensor measured at a constant strain.  The subscripts i, j, k, and 

have values of 1, 2, or 3 and indicate the three Cartesian coordinates of the crystal axis 

(x = 1, y = 2, z = 3).  Repeated indices indicate a summation.  For example: 

 

   

𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖 = 𝑢𝑢1𝑣𝑣1 + 𝑢𝑢2𝑣𝑣2 + 𝑢𝑢3𝑣𝑣3 (2.3) 

and  

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢11 + 𝑢𝑢22 + 𝑢𝑢33  (2.4) 

 

In order to simplify (2.1) and (2.2) a compressed Voigt notation is often used 

where ij or kl are replaced by p or q.  In this case p or q can have the values of 1, 2, 3, 

4, 5, or 6 as seen in Table 2.1.   
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Table 2.1  Compressed matrix notation 

ij or kl p or q 

11 1 

22 2 

33 3 

23 or 32 4 

31 or 13 5 

12 or 21 6 

 

In this case (2.1) and (2.2) become: 

 

𝑇𝑇𝑝𝑝 = 𝑐𝑐𝑝𝑝𝑝𝑝𝐸𝐸 𝑆𝑆𝑞𝑞 − 𝑒𝑒𝑘𝑘𝑘𝑘𝐸𝐸𝑘𝑘  (2.5) 

𝐷𝐷𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑆𝑆𝑞𝑞 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑆𝑆 𝐸𝐸𝑘𝑘  (2.6) 
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Figure 2.1 AT-cut plate using IEEE (YXwl) notation. 

 

 
 
 
 
 

 

AT-cut quartz is a singly rotated Y-cut of quartz (Figure 2.1) that is commonly 

used for sensor and resonator applications due to its frequency stability to changes in 

temperature around room temperature (25° C).  The most common electrode geometry 

of the QCM sensor is shown in Figure 2.2.  The metalized region on the opposite 

surface (reference side) is outlined with dashed lines. The tab of the electrode on the 

sensing side wraps around the edge of the crystal to the reference side so that both 

electrodes can be contacted on the reference side.  QCM rate monitors have a slightly 

different electrode configuration with the sensing electrode covering almost the entire 

surface and no electrode wrap-around [3].  In the QCM sensor an electrical signal is 

delivered to the QCM via two leads that contact the back surface or reference surface 

of the crystal.  Since the electrode on the sensing side is on the side opposite to the 
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Figure 2.2  Top view (sensing surface) of a standard QCM sensor.  Shaded 

and dotted regions are gold.  Dotted regions indicate reference (bottom) 
side while shaded regions indicate sensing (top) side. 

 
 
 
 

 

reference electrode, the applied electric field is primarily perpendicular to the surface 

of the crystal. This method of excitation is known as thickness field excitation (TFE). 

For the QCM rate monitor, leads are attached to both crystal surfaces, also resulting in 

thickness field excitation. The application of a high frequency electrical signal excites 

the resonant thickness shear mode (TSM) in the crystal. The TSM has mechanical 

displacements that are perpendicular to the propagation direction and parallel to the 

crystal surfaces. When a mechanical change (mass, viscosity, or elasticity) occurs on 

the sensor surface, the resonant frequency of the device changes [4].  A more detailed 

analysis of the relative sensitivity of the QCM compared to other BAW sensors can be 

found in Chapter 4.   

Although the QCM rate monitor is the standard for monitoring thin film 

thicknesses in deposition systems, there are disadvantages associated with the QCM 

sensor platform.  For chemical or biological sensing the gold electrode on the sensing 

surface of the QCM necessitates using techniques such as the Langmuir-Blodgett 

Method [5] to attach the selective chemical or biological film to the sensor surface 

instead of the silica based surface chemistries that are most often used in chemical and 
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biological sensing applications.  Further, the electric field associated with the TSM 

cannot penetrate into the measurand or sensing layer due to the conducting electrode 

on the sensing surface.  Therefore, electrical property changes to the permittivity 

and/or conductivity of the adjacent liquid or chemi- or bioselective film caused by the 

target analyte cannot be detected with the standard QCM sensor.  Although the 

measurement of electrical property changes is not always advantageous, for some 

applications such as biological or chemical sensing the ability to monitor electrical 

property changes can offer additional information about analyte interactions with the 

sensing film.  Another drawback of the QCM is the fact that the operating 

fundamental resonant frequency is typically only between 3 and 20 MHz due to the 

thicknesses of the piezoelectric plates which limits the sensitivity [6]. Although QCM 

sensors may be operated at elevated harmonics [7], efficiently exciting above the 7th 

harmonic is difficult due to the relatively low piezoelectric coupling of quartz [8] and 

the fact that the transducer configuration results in a large parallel capacitance.  These 

limitations, however, can be overcome. 

As will be described in the remainder of this chapter, novel acoustic wave 

platforms with various transducer configurations have been developed that improve 

upon the QCM sensor platform.  In these sensor platforms the exciting transducers can 

be external to the sample or photolithographically deposited on the sample.  In most, 

but not all, cases the sample is AT-cut quartz due to the fact that the TSM in AT-cut 

quartz is temperature compensated around room temperature.   
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2.1.2.   Thickness Shear Mode (TSM) Resonators with Modified 

Electrodes on the Sensing Surface 

In order to measure electrical properties of a medium or sensing layer several 

researchers have examined modifying the electrode geometry of the QCM.   Josse et 

al. [9, 10] modified the size and shape of the sensing electrode and found that it was 

possible to detect conductivity and permittivity changes in liquids.  In particular they 

investigated decreasing the size of the sensing electrode (Figure 2.3a) and also used a 

ring-shaped sensing electrode (Figure 2.3b) to detect electrical properties in liquid 

environments.  They found that resonators with these modified electrodes were in 

essence capacitance sensors.  They also noted that one could measure the static 

capacitance changes due to changes in the liquid environment through measurement 

of the changes in the anti-resonant frequency of the device.  They concluded that 

these devices combine the advantages of a mass-sensitive QCM with a capacitive 

sensor. 

Zhang and Vetelino [11, 12] also examined the resonators with small sensing 

electrodes (Figure 2.3a), ring-shaped sensing electrodes (Figure 2.3b), and an open 

ring electrode (Figure 2.3c).  They performed extensive experiments characterizing 

these modified electrode resonators to liquid loads with changing viscosity, 

conductivity, and permittivity.  They found that as the overlap between the sensing 

electrode and the reference electrode was minimized, the sensitivity of the TSM 

resonator to liquid electrical property changes was almost 25 times greater than for 

the standard QCM electrode.  Specifically, the results obtained when the devices were 

exposed to various concentrations of NaCl in solution showed the decreased size and 
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Figure 2.3 Geometries of TSM resonators with a (a) small sensing electrode, (b) 

ring-shaped sensing electrode, and (c) open ring sensing electrode. 
 

 
 

open ring sensing electrodes to have much higher frequency shifts than the standard 

QCM. 

 

Although the TSM resonators with small sensing electrodes have been shown 

to be capable of detecting liquid property changes they are not capable of operating at 

elevated frequencies.  In addition they still have electrodes on their sensing surface 

which can limit the type of sensing film that can be used.  In order to develop a BAW 

sensor platform with a bare sensing surface, researchers have recently developed the 

lateral field excited (LFE) sensor platform. 

 

2.1.3. Lateral Field Excited (LFE) Sensors 

The TSM can also be excited in an AT-cut quartz disc by the application of an 

electric field parallel to the surfaces.  This excitation is called lateral field excitation 

(LFE) and has primarily been used to drive piezoelectric plates as resonant filters 
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Figure 2.4  Top view (sensing surface) of a LFE sensor.  Dotted regions are 

gold and indicate reference (bottom) side. 
 

[13].  Although Vig and Ballato [14, 15] suggested the possibility of LFE devices as 

sensors, Vetelino et al. [16- 18] were the first to use LFE devices as sensors. 

In an LFE sensor platform both electrodes are placed on the surface opposite 

the sensing medium (Figure 2.4) while still exciting a thickness shear mode [16].  In 

this case, the sensing surface of the device is bare and one can either expose this 

surface directly to a measurand or attach a chemiselective or bioselective layer 

directly on the bare crystal surface.  The bare quartz sensing surface allows the 

electric fields associated with the TSM to probe the measurand, allowing the LFE 

sensor platform to detect both electrical and mechanical property changes in the 

analyte or sensing film. Recently Hempel et al. [19] have shown that changes in the 

electrical properties of the analyte causes a redistribution of the electric field direction 

inside the crystal.  This redistribution results in piezoelectric stiffening (see equations 

2.1 and 2.2) which produces a change in the velocity of the acoustic wave.  Thus the 

bare quartz sensing allows the LFE sensor platform to detect both electrical and 

mechanical property changes in the analyte or sensing film. 
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Hu et al. [18] characterized the responses of a range of LFE devices with 

varying gap widths to changes in liquid properties.  The LFE sensor resonant 

frequency responses were compared with the resonant frequency responses of sensors 

having a small electrode, a closed ring electrode, an open ring electrode geometries, 

and a standard QCM.  The liquid environments included media with varying 

conductivity, permittivity, and viscosity.  The results of these tests showed that in 

addition to being extremely sensitive to electrical property changes, (conductivity and 

relative permittivity); the LFE is also capable of detecting mechanical property 

changes (viscosity).  The LFE was also shown to be approximately twice as sensitive 

as the modified electrode devices to changes in both electrical and mechanical 

property changes.  In the cases of conductivity and viscosity the resonant frequency 

shift of the LFE sensor was negative while for the dielectric constant it increased as 

the relative dielectric constant decreased.  In all cases the LFE sensor frequency shift 

was larger than the corresponding frequency shift of the QCM.   

The use of other piezoelectric materials other than AT-cut quartz for LFE 

sensors also been explored.  McCann et al. [20] performed a theoretical search and 

experimental measurements to identify the existence of high frequency temperature 

compensated TSMs in LiTaO3 (See Appendix A).  Recently Wang et al. [21] also 

performed a similar search in LiNbO3 and identified possible orientations that may be 

suitable for sensor applications. 

In order to demonstrate the applicability of the LFE sensing platform, 

responses to chemical and biological target analytes in liquid solutions have been 

examined.  The LFE sensing platform has been used in the detection of 
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organophosphates in solution [22].  The LFE sensing platform was coated with a 

polyepichlorohydrin (PECH) film, which selectively sorbs phosmet (C11H12NO4PS2), 

a pesticide widely used on fruits and vegetables. The sensitivity, reproducibility, and 

response time of the resulting LFE sensing element was obtained and compared to 

similar results obtained with a QCM sensor element. The LFE sensing element was 

found to exhibit significantly higher sensitivity than the QCM even though it was 

exposed to lower concentrations of phosmet. The responses were found to be 

reproducible and the response times shorter than those of the QCM. 

Relative to biological sensing, the LFE sensing platform was used to 

selectively detect E. coli O157:H7 in water [23].   E. coli is one of the leading causes 

of food borne illnesses [24].  There are many strains of E. coli and although most are 

harmless to humans, some strains such as the3 serotype O157:H7 can cause serious 

illnesses [25].  A biochemical film based on work performed by Berkenpas [26] that 

is selective to E. coli was attached to the LFE platform’s surface and changes in the 

resonant frequency of the resulting element were monitored [23].  More information 

on the selective sensing film is given in Chapter 5.  When compared to results 

obtained with a QCM sensor element, the sensitivity was about 5 times greater 

although the LFE’s detection limit was still only 108 microbes/mL.     

Recently, the LFE platform has been used in the detection of the chemical 

analyte saxitoxin (STX), the most dangerous neurotoxin associated with paralytic 

shellfish poisoning (PSP).  Shellfish containing STX, a product of a harmful algal 

bloom (HAB) such as red tide, is one of the primary causes of PSP in humans. The 

current Association of Official Analytical Chemists (AOAC) accepted method to 
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detect STX is the mouse bioassay. This method is a long lab-based test with both 

technical and ethical limitations. In this procedure samples are extracted from 

shellfish meat and then injected into mice.  The time of death is noted and, using a 

standard table, the toxin level in the sample is estimated [27]. 

A sensing film based on an 18-crown-6 ether (CE) molecule, which has been 

reported to sensitively sorbs STX, was developed and covalently bound to the LFE 

sensing surface [28].  As described in Chapter 6, the selectivity of CE to STX is not 

as high as was reported in [28].  Preliminary tests have shown that a differential LFE 

STX sensor element is highly sensitive to STX.  The differential LFE STX sensing 

element’s response was determined by subtracting the resonant frequency shift of the 

control sensor from that of the CE-coated sensor.  The LFE STX sensing element 

exhibited a differential resonant frequency shift of 27 Hz to 1 μM STX in water.  

With the use of the neutral sensor the differential resonant frequency shift is due to 

the interaction of STX with the CE film while discounting other non-specific 

environmental interactions. The response time of the differential LFE STX sensor 

element is approximately 5-7 minutes as compared to the mouse bioassay which can 

have a response time on the order of days.   

Recently it was found that the LFE electrode configuration plays a significant 

role in the nature of anharmonic modes that are excited [29].  As is the case with the 

QCM, it was also found that when curved substrates were used the quality factor (Q), 

effective coupling, and mode spectrum were improved [29, 30].  It was also shown 

that etching the surface of LiTaO3 LFE sensors improved the mode spectrum by 

decreasing or eliminating spurious modes that were excited. 
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Although the LFE has a bare sensing surface and has been shown to be more 

sensitive than both the standard QCM and QCM sensors with modified electrodes, it 

is unable to operate at elevated frequencies which can limit its sensitivity in 

biological and chemical sensing applications.  Recently researchers have begun to 

explore BAW sensing platforms that have the exciting electrode completely removed 

from the sensor substrate which can more useful for certain sensing applications such 

as harsh environment sensing. 

 

2.2. Remotely Excited Bulk Acoustic Wave Sensor Platforms 

 

2.2.1. Electromagnetic acoustic transducer (EMAT) 

Electromagnetic acoustic transducers (EMATs) have been in use for the 

nondestructive evaluation (NDE) of materials for over 50 years [31].  Randall et al. 

first used EMATs to measure internal friction due to intercrystalline thermal currents 

in brass bars [32].  It was not until the early 1970’s that EMATs were used for 

practical sensing purposes.  EMATS were first utilized to estimate steel sheet 

formability [33] and for the detection of stress corrosion cracks in buried gas pipelines 

[34].  More recently EMATs have been used in a variety of applications including 

inspecting the welds of sheet metal in a rolling mill, railroad rail inspection, and a 

thickness gage for seamless stainless steel tubing [34].  EMAT transducers have also 

been used to extract the material constants of piezoelectric materials [35].  In this work 

a longitudinal EMAT (L-EMAT) was developed and used to calculate the phase 

velocities and stiffness coefficients of various piezoelectric materials and found to 
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agree with the values reported in literature to within 0.1%.  In contrast to the earlier 

EMAT applications, which were on the macro scale, in the past five years EMAT 

applications have been used on a micro scale for a broad array of sensing applications, 

which include biosensors [36] and liquid sensors [37]. 

A typical bulk wave EMAT is shown in Figure 2.5 and consists of a spiral coil 

and a pair of permanent magnets [38].  Eddy currents in the metal sample are induced 

by the RF current in the coil elements.  Lorentz forces are generated in the metal due 

to the interaction of these eddy currents with the externally applied DC magnetic field.  

The Lorentz forces can create a spectrum of acoustic modes in metals which depend 

on the magnet and coil configurations [31, 39].   A pulse-echo configuration is then 

used to monitor the acoustic mode properties for the nondestructive evaluation (NDE) 

of materials [40].  As Hirao and Ogi discuss [31] the primary advantages of EMAT 

techniques are (1) non contact excitation, (2) easy generation and reception of the 

shear wave, (3) ability to operate in applications up to 1000°C, (4) ability to detect 

anisotropic elastic constants with polarized shear waves while the disadvantages 

include (1) low transfer efficiency compared to piezoelectric transducers and (2) 

inapplicability to non-metallic materials.  More recently the EMAT approach has been 

modified for use on the micro scale to produce acoustic wave sensors as described in 

the following section. 
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Figure 2.5 Configuration for bulk wave EMAT [31].  
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2.2.2. Magnetic Acoustic Resonance Sensors (MARS) 

Stevenson and Lowe [41] modified the EMAT configuration on the micro 

scale to excite high Q resonances in silica glass.  Instead of being used on the macro 

scale, the MARS utilizes the same basic configuration as EMATs but applies it on the 

micro scale to produce an acoustic wave sensor [41].  In the MARS configuration, an 

electrically excited hand wound spiral coil is placed near a metalized substrate that is 

exposed to the DC magnetic field from a single permanent magnet (Figure 2.6).  The 

spiral coil produces electromagnetic fields that induce eddy currents on the thin metal 

layer that is attached to the substrate according to Lenz’s law.  The permanent magnet 

produces static magnetic fields that couple with the time-varying eddy currents to 

produce Lorentz forces.  These time varying forces produce time varying stresses and 

hence acoustic waves.  As with other acoustic wave sensors the resonant frequency of 

the device shifts with changes on its surface [42].  Unlike other acoustic wave sensors 

however, the MARS configuration has the advantage of being capable of utilizing 

non-piezoelectric substrates.   

The term MARS can lead to some confusion.  Stevenson and Lowe also use 

MARS to describe a different sensor configuration where no permanent magnet is 

used and a piezoelectric wafer is used as the sensor substrate [43].  Others refer to this 

configuration as the Electromagnetic Piezoelectric Acoustic Sensor (EMPAS) and this 

term will be used in this work to avoid further confusion.  The details of the EMPAS 

sensor platform is given in section 2.2.3.   

Initially Stevenson and Lowe [41] deposited a thin layer of metal onto glass 

plates in which the Lorentz forces were generated.  Using a single permanent magnet 
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Figure 2.6 Diagram of MARS device showing (a) layout of sensor substrate 
(usually non-piezoelectric), conductive layer, hand wound spiral coil, and 

permanent magnet and (b) the four layers of the device. 
 

they generated radially polarized shear waves.  These shear waves then propagated 

through the thickness of the glass sample to the sensing surface.  They were able to 

resolve resonances up to the 34th harmonic in a 530 µm thick aluminized silica plate.  

An acoustic Q factor as high as 7 x 105 was measured with this configuration. They 

also found that the sensor’s response to mass loading exhibited Sauerbrey-like 

behavior [6] similar to the QCM. 

Stevenson and Lowe also examined other sensor substrates for use in MARS 

devices [41].  Stainless steel, aluminum, silica glass, fused quartz, sapphire, and 

diamond were examined.  They found that although diamond had the highest shear 

velocity and sapphire produced the clearest resonant peaks, silica glass had the best 

combination of shear velocity and clear resonant peaks.  When used as a sensor, the 
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silica glass based MARS was shown to be more sensitive than the standard QCM 

when measuring mass and liquid viscosity.   

In collaboration with Thompson, [44] Stevenson and Lowe found that it was 

possible to silinize the silica based MARS device creating a hydrophobic surface that 

resulted in sensors that exhibited smaller frequency shifts when immersed in water 

than untreated devices.  They were able to measure a frequency shift with only 

minimal damping of the sensor response when an aluminized silica sample was loaded 

with water.  They also showed that it when the silica based MARS device was used to 

detect protein absorption it exhibited a Sauerbrey-like behavior [45].   

Recently Lucklum et al. [46-50] have performed extensive research on the 

MARS.  They have simulated and designed the MARS with different RF coil 

geometries and magnet arrangements to generate thickness shear [46, 50], flexural [47, 

49, 50], and face shear [47- 50] modes.  They have demonstrated the applicability of 

the MARS for liquid property sensing and mass detection.  It was found that sensors 

exhibited sensitivity that was similar to the QCM for mass sensing applications [46].  

The advantage of the sensor for liquid property sensing is that the resonator element 

can be completely immersed in the liquid, while the electrical apparatus for excitation 

and detection is outside.  It was found that circular face shear modes were more 

sensitive to liquid density and viscosity changes while radial flexural plate modes were 

better suited to detecting liquid level.  Although a comparison to other BAW sensors 

was not performed it was demonstrated that aluminum [48] and silicon [49] based 

MARS devices were capable of detecting changes in liquid viscosity ranging from 1-

11 mPas.  Lucklum and Jakoby have also extended a single MARS into a MARS array 
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on a single substrate of metalized silicon [50], where each sensor of the array can be 

designed to operate in distinct vibration modes.  Prototypes of the MARS array have 

been fabricated in brass, successfully exciting different modes in individual sensors in 

the array.  One potential shortcoming of the MARS is that the lower detection 

efficiency compared to conventional piezoelectric transducers requires the use of 

dedicated sensor electronics [49].  In addition, these sensors have not been shown to 

be capable of operating at frequencies in excess of a few MHz or detecting changes in 

liquid electrical property changes.   

 

2.2.3. Electromagnetic Piezoelectric Acoustic Sensor (EMPAS) 

Stevenson and Lowe in collaboration with Thompson modified the MARS 

configuration to take advantage of the temperature stability of AT-cut quartz [44, 51].  

This new device will be referred to as the Electromagnetic Piezoelectric Acoustic 

Sensor (EMPAS).  The EMPAS shown in Figure 2.7 uses only a piezoelectric crystal 

and a hand wound spiral coil that is separated by a small air gap (~ 0.30 mm) [51]. The 

hand wound spiral coil produces electric fields that penetrate the piezoelectric material 

to excite acoustic waves.  The EMPAS has the advantage of being capable of exciting 

high order harmonics in AT-cut quartz wafers without the need for electrical contacts 

to the wafer. 
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Figure 2.7 Geometry of EMPAS device. 

 

 
 

Stevenson and Lowe first used the EMPAS to measure the attachment of 

Immunoglobulin G (IgG), a monumeric immunoglobulin commonly used to bind 

antibodies to a surface [51]. They found that the EMPAS did not exhibit frequencies 

predicted by Kanazawa [52] for BAW sensors.  They also found that they were able to 

distinguish chemical changes when the device was operated at two different 

frequencies that were not apparent when the device was operated at a single frequency 

[53].  In these tests they were able to excite up to the 49th harmonic in the device.  In 

later experiments they were able to excite acoustic waves up to 1 GHz using thin AT-

cut quartz wafers although the signal-to-noise ratio (SNR) was reduced significantly at 

these frequencies.   

More recently alternative EMPAS configurations have been examined.  

Stevenson and Lowe examined using ferrite-supported toroids [54] as the excitation 

mechanism for EMPAS devices (Figure 2.8a).  The toroids were designed so that their 

resonant frequency matched the fundamental frequency of the AT-cut quartz wafers 



 30 

 
Figure 2.8 Diagram showing (a) toroid based EMPAS and (b) quartz wafer 

immersed in water. 
 

(6.6 MHz).  They found that the toroid based EMPAS could excite shear acoustic 

waves in liquid although the maximum operating frequency of the device was only 33 

MHz.  More significantly, they were able to excite acoustic waves when the toroid was 

separated from the quartz wafer by a water filled beaker (Figure 2.8b). 

 

 

Stevenson and Lowe also explored using small piezoelectric chips for the 

EMPAS substrate [55].  An AT-cut quartz wafer was cleaved into millimeter sized 

chips of various shapes.  They found that these non-symmetrical chips had the benefit 

of more clearly defined resonance peak than a 12 mm diameter quartz wafer.  The 

authors postulate that this is due to the non-parallelism of the larger wafer.   

Araya-Kleinstueber et al. utilized the EMPAS as a bimolecular sensor in a 

technique they termed magnetic acoustic resonance immunoassay (MARIA) [57].  

They explored two methods for attaching antibodies onto the quartz surface of an 
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EMPAS.  The first technique was direct adsorption of the antibody onto the bare 

quartz surface and found that this technique resulted in poor attachment and low 

antibody surface density when goat IgG antibodies were used.  The second technique 

used covalent immobilization technique developed by Cass [58] that utilized a 

trimethoxysilylpropylethylene diamine modified surface coupled with glutaraldehyde 

to attach the antibodies to the sensor surface.  They found that this approach yielded 

higher antibody surface densities and larger sensor responses the binding of goat IgG.  

They postulate that the ability of the EMPAS to operate over a wide range of 

frequencies may allow one to distinguish between interactions on the sensing film 

from viscosity changes in the liquid medium due to the ability to match the acoustic 

wavelength of the sensor to the film thickness.  They believe that any interactions from 

viscosity changes in the liquid medium would not be measured by the sensor in this 

case because the acoustic wave would not penetrate past the sensing layer. 

Ballantyne and Thompson [59] were able to excite acoustic waves up to the 

75th harmonic in AT-cut quartz using the EMPAS configuration although the signal 

was not useful at these frequencies due to poor signal quality-factor (Q).  In a 

subsequent publication they state that the 49th harmonic is the upper limit on the 

EMPAS device [60].  Vasilescu et al. examined using gallium phosphate (GaP04) as 

the sensor substrate for the EMPAS instead of AT-cut quartz.  They found that 

neutravidin chemisorbed to the bare GaP04 sensor surface without the need for the 

amine layer to link the neutravidin to the sensor surface that is needed with the QCM.   

Ballantyne [8] compared the EMPAS to the QCM in the detection of the 

protein neutravidin.  The QCM was operated at its fundamental frequency (9 MHz) 



 32 

 
Figure 2.9 Block diagram of EMPAS system. 

 

while the EMPAS was operated at its 47th harmonic (453 MHz).  He found that the 

EMPAS exhibited a seven times larger signal to noise ratio in these tests.  He also used 

both devices to monitor the interaction of tat protein to a trans-activation responsive 

region Ribonucleic acid (TAR RNA) and found that the EMPAS was three times more 

sensitive than the QCM.   

Although the separation of the spiral coil from the piezoelectric crystal allows 

for remote interrogation of the sensor, the resonant responses from these devices tend 

to be relatively weak and require specialized electronics and tuning circuits to operate 

efficiently [8, 53-61] (Figure 2.9).  The system seen in Figure 2.9[8] utilizes a signal 

generator, lock-in amplifier, and handmade electronics (AM diode detector, 

preamplifier, and parallel RLC circuit) to monitor the resonant frequency of the 

EMPAS.  More details on the operating principles of the system can be found in 



 33 

Chapter 3.  Although the lock-in amplifier based system is capable of monitoring the 

resonant frequency of an EMPAS device, it does have several limitations.  Besides 

the complexity and cost of this system, resonance sweeps take a significant amount of 

time due to the necessity of letting the output of the signal generator settle after each 

change in signal frequency.  A single sweep to monitor the harmonics of an EMPAS 

from 6 MHz to 600 MHz takes approximately 20 hours [53]. Stevenson et al. 

developed a technique called frequency hopping to reduce this time to 30 minutes 

[53].  In this technique computer software was used to tune the signal generator to the 

resonant peak of each harmonic and scan over a limited range and then “hop” to the 

next resonant peak.  Additionally, due to the hand-made nature of the spiral coils, 

reproducibility from device to device can be poor [61]. 

Lee et al. [61] further modified the EMPAS system to enhance high frequency 

operation. They characterized the impedance of two different spiral coil configurations 

(3mm and 5 mm in diameter) and found that the larger spiral coil had undesirable 

parasitic capacitance.  They also found that the length of the coaxial cable used to join 

the spiral coil to the AM-detector is of critical importance.  They found that when the 

cable was a quarter of a wavelength long the system was able to achieve the highest 

resonant frequencies (650 MHz).  Researchers in Magdeburg, Germany are developing 

a compact impedance measurement system [62] that may be applicable to the EMPAS. 

Although the EMPAS has a bare sensing surface and is capable of operating at 

elevated harmonics, the EMPAS does have some limitations.  As will be shown later, 

because the spiral coil is separated from the sensor substrate the majority of the 

electric field radiated from the spiral coil is trapped in the air gap between the spiral 
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coil and the sensor substrate leading to weak resonances in the substrate.  In order to 

monitor the resonant frequency shifts of an EMPAS it is necessary to utilize complex 

electrical systems such as a lock-in amplifier system described in Chapter 3.  These 

measurement systems are extremely slow and it takes over 30 minutes to perform a 

single frequency sweep which limits the sensor’s ability to quickly detect changes in 

the target analyte or sensing film.  In addition, the necessary electronics systems are 

large and difficult to miniaturize for non-lab based applications.  In order to develop a 

sensor platform that had a bare sensing surface and was capable of operating over a 

wide frequency range but without the limitations of the EMPAS device, a different 

approach was undertaken. 
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Figure 3.1  Diagram of MSCAT sensing element a) top view showing target 

selective sensing film b) bottom view showing electrical connections to sensing 
electronics 

3 DEVELOPMENT OF THE MONOLITHIC SPIRAL COIL ACOUSTIC 

TRANSDUCTION (MSCAT) SENSOR 

 
 
 
3.1 The MSCAT Platform 
 

In this work a new BAW sensor platform that builds on the work done on 

previous BAW sensor platforms, in particular the LFE and EMPAS has been 

developed.  As will be shown in the following sections, the monolithic spiral coil 

acoustic transduction (MSCAT) platform (Figure 3.1) can excite the TSM in AT-cut 

quartz like other BAW platforms such as the QCM and LFE.   The MSCAT sensor, 

which uses a gold, photolithographically-deposited, spiral coil, has been developed to 

improve upon the best aspects of the standard QCM sensor while integrating the 

positive features of other acoustic wave sensors such as the LFE and EMPAS.  The 

coil on the MSCAT sensor is an antenna that radiates a time-varying electric field that 

penetrates the AT-cut quartz wafer. As a result of the piezoelectric effect, the time 
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varying electric field sets up a time-varying stress in the wafer. Depending on the 

wafer thickness and the frequency of excitation, resonant acoustic waves at the TSM 

fundamental and higher order harmonic frequencies are excited.  Like the LFE and 

QCM, the measurable output of the MSCAT sensor is a change in the TSM resonant 

frequency due to changes in the surrounding medium or sensing film caused by the 

measurand.   As will be discussed later, like the LFE and EMPAS the MSCAT only 

operates efficiently when it has a liquid on its sensor surface due to the electrical 

boundary conditions and is not applicable to gas sensing applications.  This 

limitation, however, can be overcome. 

As will be shown later, because the MSCAT's spiral coil is in direct contact 

with the piezoelectric wafer the MSCAT excites acoustic waves in a different manner 

than the EMPAS.  This leads to significantly stronger resonances in the AT-cut quartz 

wafer which allows the MSCAT to operate at significantly higher harmonics than the 

EMPAS and does not require specialized electronics or manual tuning for each 

measurement.  The author has been awarded a British patent [63] for the MSCAT 

sensing platform and currently has US [64], German [65], and Japanese [66] patents 

pending.    

The antenna configuration for the MSCAT was not chosen arbitrarily.  Most 

antennas such as dipoles are designed to operate at a single frequency.  With a dipole 

based antenna a fraction of the wavelength (λ) (typically λ/2 or λ/4) is a critical part 

of the antenna design.  These designs are not practical in a BAW sensor platform due 

to the size of BAW devices.  A typical AT-cut quartz BAW sensor that has a 

fundamental frequency of 5 MHz has a thickness of 0.33 mm and a diameter of 25.4 
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mm.  If one wanted to operate the device at a high frequency, for example 500 MHz, 

using a dipole based antenna one would need a dipole of length 300 mm (λ/2) or 150 

mm (λ/4), far larger than the sensor.  In addition, the sensor would only operate at a 

single frequency.  There is, however, a class of antennas that are capable of operating 

over a wide frequency range that are known as frequency independent spiral antennas 

[67].  Due to the ability to miniaturize these antennas and the fact that they operate 

efficiently over a wide frequency range a spiral coil antenna was chosen as the 

antenna type for the MSCAT.  As will be shown later, this antenna configuration is 

capable of exciting the TSM in AT-cut quartz. 

 

3.2 MSCAT Sensor Fabrication 

The cleanroom facility at the Laboratory for Surface Science and Technology 

(LASST) (University of Maine) was utilized to fabricate all MSCAT platforms for 

this work.  Glass masks were created for each spiral coil configuration.  Since the 

mask maker at LASST is only able to produce rectangles, a C program was written 

that creates the spirals from a series of rectangles.  Figure 3.2 shows a typical 

MSCAT glass mask. 

Initially an etch procedure was used where gold was deposited on AT-cut 

quartz wafers and the desired spiral coil pattern was exposed onto photoresist that 

was spun onto the gold layer.  Finally, the unwanted gold was removed through an 

etching process.  Gold was used due to the fact that it is chemically inert and has a 

high conductivity.  In order to attach the gold to the quartz surface a 200 Å chromium 

adhesion layer was used.  It was found, however, that for smaller feature sizes (less 
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than ~ 20 µm) the etch process did not produce reproducible patterns.  During the 

etch process the chromium layer could be undercut by the etchant if the sensor was 

left in the etchant too long resulting in the spirals peeling off from the quartz.  Based 

on these results a liftoff technique was developed.   

The spiral coil patterns were fabricated on the AT-cut quartz wafers by spin 

coating lift-off resist and photoresist on the crystal before the gold and chromium 

layers were deposited.  MicroChem LOR5B lift-off resist was first spun onto the bare 

surface of the wafer for 40 seconds at 2,500 RPM.  The wafer was then placed on a 

preheated hotplate (115°C) and the temperature was ramped up to 190°C to avoid 

thermally shocking the crystal.  The wafer was baked at 190 °C for 10 minutes to 

harden the lift-off resist.  The crystal was allowed to cool for 5 minutes and then 

Rohm Haas S1813 photoresist was spun on top of the LOR5B for 40 seconds at 3500 

RPM.  The wafer was baked at 115°C for 3 minutes to harden the photoresist.   

In order to produce the desired spiral coil pattern a glass mask with the desired 

pattern was utilized and the desired pattern was exposed under UV light for 45 

seconds.  The pattern was developed by first using a 1:5 solution of Rohm Haas 

MF351 to remove the photoresist layer and then a 1:2 solution of Rohm Haas MF319 

was used to remove the LOR5B layer that was exposed by the removal of the S1813.  

A 200 Å chromium adhesion layer and then the gold layer (usually 2000 Å) were 

deposited on the element using magnetron sputtering.  Finally, a lift-off procedure 

was used to remove the unwanted gold and chromium leaving the desired spiral coil 

pattern on the AT-cut quartz wafer.   
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Figure 3.2 Glass mask used to fabricate MSCAT sensors.  The rectangles are 

alignment marks and are not part of the final spiral deposited on the quartz.  The 
spiral geometries are [N, S (µm), W (µm)] clockwise from the top: [8, 50, 150], [8, 

250, 50, 515], [4, 150, 150], [8, 250, 515], and [8, 250, 150] 
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3.3 Selection of AT-cut Quartz Wafers  

Initially, MSCAT sensor elements were fabricated using 1” diameter 5MHz 

AT-cut quartz wafers obtained from Sawyer Technical Materials, LLC (Eastlake, 

OH).  These wafers were intended for use in QCM fabrication.  Although it was 

possible to excite up to the 9th harmonic in these devices it was found that they were 

not capable of high-order harmonic operation.  If was found that these quartz wafers 

had a convex surface as they were originally intended for use in QCM fabrication and 

the convex surface aids in energy trapping of the acoustic wave.  Additional 5 MHz 

quartz wafers were purchased from Sawyer Technical Materials, LLC that were 

plano-plano (both sides parallel to each other).  Although MSCATs fabricated on 

these wafers were able to operate at higher frequencies, up to the 11th harmonic, even 

higher operating frequencies was desired.  In order to achieve even higher operating 

frequencies, AT-cut quartz wafers were obtained from Lap-Tech (Bowmanville, 

Ontario, Canada) with an optical polish on both sides and the surfaces parallel to 

within 4 light bands (~ 1µm).  Devices fabricated on these wafers were able to 

operate up to the 99th harmonic, significantly higher than the Sawyer crystals.  Based 

on these results the Laptech crystals were chosen for all further MSCAT designs.   

In order to gain an understanding of the differences in the crystals that could 

explain the significant differences in performance; parallelism and surface roughness 

tests were performed on samples of each type of crystal using a Laser Fizeau 

interferometer (Zygo, Middlefield, CT).  The surface roughness measurements were 

performed on a 100µm x 100 µm square in the center of each crystal while the 

parallelism measurements were performed across the entire crystal. 
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As can be seen from Figure 3.3-Figure 3.5 there is only a small difference in 

surface roughness between the Laptech and plano-plano Sawyer crystals.  The 

Laptech and plano-plano Sawyer crystals both had surface roughness's of 

approximately 3 nm.  The plano-convex Sawyer crystals were slightly rougher with 

surface roughness up to 8 nm, most likely due to the fact that they were not optically 

polished.  Given that the plano-plano Sawyer crystals and the Laptech crystals both 

had roughly the same surface roughness it was concluded that that differences in 

surface roughness does not explain the differences in performance between the 

Laptech and Sawyer crystals.  
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Figure 3.3 Interferometric surface roughness for plano-plano Laptech crystals a) 

crystal surface and b) plot of height over line seen in (a). 
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Figure 3.4 Interferometric surface roughness for plano-convex Sawyer crystals a) 

crystal surface and b) plot of height over line seen in (a). 

 
 

 

 

 

 

 

 



 44 

 
Figure 3.5 Interferometric surface roughness for plano-plano Sawyer crystals a) 
crystal surface and b) plot of height over line seen in (a). 
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As will be described later, for high frequency applications it is desirable for 

the crystal faces to be as parallel as possible.  As can be seen in Figure 3.6-Figure 3.8 

there are significant differences in the parallelism between the three crystals.  Figure 

3.6b-Figure 3.8b show the change in distance between the two faces of the crystal.  If 

the faces were perfectly parallel, the height distance would be 0.  As can be seen in 

Figure 3.6a the Laptech crystals were highly parallel throughout the most of the 

crystal with surface parallelism within 10 nm through the middle of the crystal.  The 

edges are slightly less parallel but still within 30 nm.  The plano-plano Sawyer 

crystals were significantly less parallel with surface parallelism ranging 

approximately 200 nm across the crystal.  As can be seen in Figure 3.8a, the surface 

of the plano-plano Sawyer crystal was also much less uniform.  Not surprisingly, the 

surface of the plano-convex Sawyer crystal was not parallel.  Based on these results it 

was concluded that the parallelism of the crystal face was critical in order to operate 

the MSCAT at elevated harmonics.  This is because the wavelength of the standing 

wave that is setup between the faces of the crystal decreases with increasing 

frequency.  At 5 MHz the acoustic wavelength is approximately 660 μm, however at 

500 MHz the wavelength decreases to approximately 6.6 μm.  If the crystal faces are 

not parallel or if the surfaces are not flat destructive interference will not allow a 

standing wave to form at higher harmonics. 
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Figure 3.6 Interferometric surface parallelism for plano-plano Laptech 

crystals a) crystal surface and b) plot of height over line seen in (a). 
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Figure 3.7 Interferometric surface parallelism for plano-convex Sawyer crystals a) 

crystal surface and b) plot of height over line seen in (a). 
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Figure 3.8 Interferometric surface parallelism for plano-plano Sawyer crystals a) 

crystal surface and b) plot of height over line seen in (a). 
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3.4 Resonant Frequency Measurement Setup 

Several different measurement setups that allowed the measurement of the 

resonant frequency of MSCAT devices were explored.  In initial tests a measurement 

setup based on a lock- in amplifier similar to the system that was developed for the 

EMPAS was explored.  Subsequently tests were performed using a network analyzer. 

 

3.4.1 Lock-in amplifier measurement system 

As was described in Chapter 2, Ballantyne [68] utilized a signal generator, 

lock-in amplifier, and handmade electronics (AM diode detector, preamplifier, and 

parallel RLC circuit) to monitor the resonant frequency of the EMPAS.  As will be 

discussed later in this chapter, it is much harder to excite and detect resonances in the 

EMPAS than it is for the MSCAT.  For the EMPAS, it is necessary to monitor very 

weak resonances; therefore a highly sensitive electronics system must be used.  A 

similar setup was built and evaluated for the MSCAT (Figure 3.9).   

The lock-in system is built around a highly sensitive lock-in amplifier.  

Although the lock-in amplifier is highly sensitive, it is only capable of measuring low 

frequency signals (kHz range) while it is desirable to monitor the resonant frequency 

of the MSCAT in the MHz range.  In order to overcome this limitation a signal 

generator (controlled by LabVIEW) produces a carrier signal near the expected 

resonant frequency of the device.  This signal is modulated with a low frequency 

signal that can be read by the lock-in amplifier.  The frequency of the signal from the 

signal generator was swept over the expected resonant frequency range of the device 

being tested.  As the frequency of the signal generator is swept through the expected 
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Figure 3.9  Block diagram of lock-in amplifier based signal designed for the 

MSCAT. 
 

resonant frequency of the MSCAT, the amplitude of the signal increases when the 

sensor resonates.  This amplitude change is extracted from the signal using an 

amplitude modulation (AM) diode detector circuit.  The AM detector circuit 

demodulates the signal and filters out the high frequency components.  The lock-in 

amplifier monitors the amplitude changes in the low frequency signal.  If the resonant 

frequency of the device is within the selected frequency range, the amplitude will be 

highest at that frequency.  The voltage output of the lock-in amplifier is monitored by 

a data acquisitions card in the computer.  The computer than displays or saves the 

resonance envelope of the device.  This system is necessary for EMPAS devices 

because the resonances are very weak and difficult to detect and it is necessary to use 

a device (lock-in amplifier) capable of detecting very small signal chances. A typical 

resonant signal for an MSCAT can be seen in Figure 3.10.   
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Figure 3.10 Typical MSCAT resonant signal obtained using the lock-in amplifier 

based measurement system. 
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Besides the complexity, large size, and cost of this system, resonance sweeps 

take a significant amount of time due to the necessity of letting the output of the 

signal generator settle after each change in signal frequency.  As described earlier, a 

single sweep to monitor the harmonics of a device from 6 MHz to 600 MHz takes 

approximately 20 hours.  Due to these limitations, an alternative measurement 

approach was utilized. 

 

3.4.2 Network Analyzer based measurement system. 

Based on the limitations of the lock-in amplifier system a network analyzer 

(HP 5617A) was used for subsequent tests.  A network analyzer has the advantage of 

being capable of operating over a wide frequency range and having quick data 

acquisition times.  It is also possible to miniaturize network analyzers for BAW 

sensor applications [70, 71].  For a one port device, a network analyzer sends a 

voltage at the frequency of interest into the device and then measures the reflected 

signal [69]. From this, the reflection coefficient, Γ, can be calculated.  From Γ one 

can calculate the impedance (and therefore admittance) of the device using the 

following relationship:  
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ZL = Zo
1 +  Γ
1 − Γ

 

where 

ZL = the impedance of the device being tested 

and 

Zo = the input impedance of the network analyzer (50 Ω) 

(3.1) 

 

In order to determine the resonant frequency of the MSCAT being tested, the 

peak of the admittance was monitored.  The particular network analyzer used has a 

built in feature that can automatically convert Γ into the admittance of the device.  

Figure 3.11 shows a typical MSCAT admittance spectrum around resonance as 

measured by the network analyzer.  It should be noted that, like the LFE, at the 

fundamental frequency there is a second mode that is excited approximately 15 kHz 

higher in frequency than the pure TSM.  This second mode is not present, however at 

higher frequencies.   
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Figure 3.11 Typical MSCAT impedance spectrum around resonance as 

measured by a network analyzer. 
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The particular network analyzer used, however, does have one limitation.  It is 

only able to save 801 data points.  Therefore resolution of the resonant frequency of 

the device can be lost unless the frequency span is small enough.  In order to 

overcome this limitation the network analyzer was setup to only monitor the 

frequency region of the very peak of the admittance in order to get the maximum 

possible resolution.  The width of the frequency region that was monitored depended 

on the bandwidth of the resonant frequency being monitored which increases with 

operating frequency.  For measurements of the fundamental frequency (5 MHz), 801 

Hz was typically used.  For the 99th harmonic, 100 kHz was typically used.  In order 

to minimize the effects of noise on the signal, a quadratic function was fitted to the 

sensor response.  The resonant frequency of the MSCAT was taken to be the 

maximum value of this quadratic function (value of the frequency when the derivative 

was set equal to zero).  A MATLAB program was written to perform the calculations 

for each data file.  Figure 3.12 shows a typical MSCAT response and corresponding 

fitted line.  It was found that this technique decreased the measured resonant 

frequency noise by approximately a factor of 5 compared to simply taking the 

frequency at the maximum value of the raw admittance data as the resonant 

frequency.   
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Figure 3.12 Typical signal used to calculate the resonant frequency of the MSCAT.  

The dots are the raw data and the solid line is the fitted line. 
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Recently researchers at the University of Magdeburg have developed a 

portable RF impedance spectrum analyzer [70, 71].  This impedance analyzer is small 

and has been optimized to track the resonant frequency of BAW sensors, particularly 

the QCM and LFE.  Preliminary tests have shown that this impedance analyzer can 

also be used with the MSCAT; however the analyzer is not commercially available 

and therefore was not used for the work described in this thesis.  Future work could 

also include developing a miniaturized oscillator circuit for use with the MSCAT. 

 

3.5 Experimental Examination of the MSCAT Spiral Coil Design. 

Based on the work described in Appendix B to calculate the near-field electric 

fields radiated from a spiral coil antenna it is clear that the antenna design plays a role 

in the form of the radiated field.  The expressions for the field are too complex, 

however, to be used to fully understand the effects of the antenna parameters on the 

sensors performance.  Therefore over 40 antenna geometries were designed, 

fabricated, and experimentally tested for use in the MSCAT.  As shown in Figure 

3.13, there are three geometric parameters that may be varied with a spiral coil 

antenna: the numbers of turns (N), spacing widths (S), and line widths (W).  In this 

work the notation [N, S (µm), W (µm)] will be used to describe the geometry of the 

various MSCAT spirals.  A fourth parameter, the thickness of the spiral may also be 

changed but experimental measurements have shown that varying the thickness of the 

antenna between 1000 and 10,000 Å has no significant effect on the sensor's 

performance although the thinner antennas (1000Å), however, tended to scratch 

easily and therefore 2000 Å was chosen as the thickness for all subsequent MSCATs.   
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Figure 3.13  Geometry of the MSCAT sensor.  The spiral coil is on the reference 

surface and the sensing surface is void of metal 
 

In order to gain an understanding of the overall effect of each spiral parameter 

on the MSCAT's performance, MSCAT sensors with spiral coil antenna designs that 

varied in N, W, and S were initially designed.  The highest possible operating 

frequency of each device was examined.  The highest operating frequency was 

defined as the frequency where the resonance peak was at least 5 times larger than the 

signal noise.  Fifteen spiral antenna designs were fabricated on identical 1" AT-cut 

quartz wafers obtained from Laptech (5 MHz fundamental frequency) with N values 

ranging from 16 to 64, S values ranging from 50 μm to 400 μm, and W values 

ranging from 50 μm to 400 μm (see Table 3.1).  The N and S values were chosen as 

they are the values that are typically used for the hand wound spiral coils used for the 

MARS and EMPAS [72, 73].  Since the MARS and EMPAS use hand wound spiral 

coils, the W value is set by the wire being used (50 - 100 µm).  The MSCAT uses a 

photolithographical process and therefore the value of W can be changed.  In the 
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initial study, the values of W were selected for the N and S values chosen (Table 3.1) 

such that the spiral did not cover more than 50% of the crystal, the largest area 

covered by typical EMPAS spiral coil designs.  In order to aid in comparison, the 

percentage of the total crystal area (5 cm2) that was covered by each spiral coil was 

also calculated.  Initially it was believed that spirals with the largest number of turns 

would provide the best results as Ballantyne [68] hypothesized that the total electric 

field radiated from a spiral would be a superposition of each field produced from a 

single turn of the spiral.  This, however, proved not to be the case. 
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Table 3.1Initial spiral coil parameters to explore the effects of N, W, and S. 

 
 

N S (µm) W (µm) Area (%) Max Harm.
16 50 50 4.519809 7
28 50 50 9.430219 9
40 50 50 16.12623 9
52 50 50 24.60785 11
64 50 50 34.87507 7

N S (µm) W (µm) Area (%) Max Harm.
16 10 50 2.529853 7
16 108 50 8.423706 5
16 206 50 17.75926 7
16 304 50 30.5365 7
16 402 50 46.75544 7

N S (µm) W (µm) Area (%) Max Harm.
16 50 10 2.529853 7
16 50 108 8.423706 11
16 50 206 17.75926 13
16 50 304 30.5365 63
16 50 402 46.75544 93

Varying N with W and S constant

Varying S with N and W constant

Varying W with N and S constant
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In order to gain insight on the overall importance of each of the three spiral 

coil parameters when the MSCAT was operated in a liquid environment, the fifteen 

sensors were tested with 1 mL of de-ionized water on their surface to determine their 

maximum operating frequency.  It was found in the initial experiments that the most 

important spiral coil parameter for achieving the highest possible operating frequency 

among the devices tested is the width of the spiral, W.  In fact, varying the number of 

turns, N, or the space between the coils, S, had almost no effect on the maximum 

operating frequency of the device.  The device that operated at the highest frequency 

in these tests was a [16, 50, 402].  This device was able to operate at the 93rd 

harmonic (approximately 465 MHz).   Since the performance of the MSCAT seemed 

to increase with large W values and therefore lower coil resistance, MSCATs with 

very large W values ([1, 250, 3750] and [2, 250, 2750]) were designed and fabricated 

(Figure 3.14).  It was found that neither of these spirals could operate above the 

fundamental frequency and both exhibited poor (noisy) resonances leading to the 

conclusion that the width of the spirals was not the only factor in determining the 

optimum spiral configuration. 

Based on these results 18 additional spirals were designed and tested (Table 

3.2).  It was found that a [8, 250, 515] spiral configuration was surperior to all other 

designs examined (capable of operating at ~500 MHz) and it was selected for the tests 

described in chapters 4-6.  As will be desrcribed in the remainder of this section, 

more work is required in order to fully optimize the MSCAT’s spiral coil geometry.  

It should be noted that the LiTaO3 LFE sensor described in Appendix A was capable 

of operating at the 269th harmonic.   
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Figure 3.14 [1, 250, 3750] (left) and [2, 250, 2750] (right) MSCATs. 
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Table 3.2 Additional MSCAT spiral coil parameters. 

 

N S (µm) W (µm) Area (%) Max Har.
4 50 333 5.27 3
4 250 333 9.50 5
8 50 150 4.86 7
4 150 150 3.88 7
8 150 150 8.49 7
8 250 150 13.12 23
8 50 515 22.96 25

12 150 150 14.89 25
4 150 515 11.60 25

12 150 515 57.68 27
12 50 333 22.16 27
9 150 350 22.32 30
8 150 333 17.73 35
9 200 400 30.38 44

14 250 333 58.88 59
10 500 500 89.28 61
10 250 515 54.96 63
12 250 333 45.63 69
10 250 333 34.07 87
8 250 515 38.55 99

 

 

 

 

 

 

 



 64 

 

No clear pattern in the relationship between the maximum harmonic and the 

spiral parameters N, S, W can be seen in Table 3.2.  It can, however, be noted that the 

spiral coil designs that operated at the highest freuqencies generally had larger W and 

coverd a larger surface area of the crystal while many of the devices that were not 

able to operate at high frequencies had lower N and S values.  As can be seen in 

Figure 3.15 there is no clear relationship between the percentage of the crystal 

covered by the sprial coil and the maximum harmonic that can be excited a general 

statement can be made that in order to achieve higher operating freuqency the spiral 

should cover 30%-60% of the crystal.  This is most likely due to energy trapping as 

the electrodes on the QCM are designed such that the electrodes are thicker in the 

center thereby confining displacement to the center of the crystal and minimizing 

damping effects when the crystal clamped around its outer edges in a holder [74].  

The resistance of each coil was also calculated based on the overall length of each 

spiral.  As can be seen in Figure 3.16 all of the MSCAT designs that were capable of 

achieveing higher operating frequencies had resistances ranging between 40 Ω and 

150 Ω.  This is most likely due to impedance matching, if the impedance of the coil is 

very small or large it will effectively act as a short circuit or an open circuit and 

therefore only weakly radiate electric fields. 

In order to determine if there was a clear relationship between two of the 

spiral coil parameters (N, S, W) and the maximum operating frequency of the 

MSCAT, 3D plots were created for  every combination of two spiral coil parameters 

versus the maximum harmonic that could be excited. These results can be seen in 
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Figure 3.17-Figure 3.19.  Again, no concrete conclusions can be drawn from these 

figures but some overall comments can be made.  As can be seen in Figure 3.17 when 

comparing N and S all of the devices that operated at elevated frequencies had N 

values between 8 and 14 and the majority had S values between 250 µm and 300 µm.  

From Figure 3.18 it can be seen that when comparing N and W that all of the devices 

that operated at elevated frequencies had N values less than 16 and W values between 

300 µm and 515 µm.  From Figure 3.19 in can be seen that when comparing S and W 

all of the devices that operated at elevated harmonics had W values above 333 µm 

and spacing values between 200 µm and 300 µm.  It is clear from these results that no 

single parameter independently affects the maximum harmonic that can be excited in 

the MSCAT and more work is needed to fully develop a model                                                                            

for the MSCAT.  Although these results do not allow a concrete conclusion to be 

drawn, it can generally be said that for high frequency operation the MSCAT spiral 

coil design should have N values between 8 and 14, S values between 300 µm and 

515 µm, W values above 300 µm, cover 30-60% of the crystal surface, and have a 

spiral resistance of 40 – 150 Ω. 
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Figure 3.15 Graph showing percentage of crystal covered by spiral coil vs. 

maximum harmonic that could be excited. 
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Figure 3.16 Graph showing the resistance of the spiral coils vs. maximum 

harmonic that could be excited. 
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Figure 3.17 3D plot showing the relationship between N, S, and the maximum harmonic 

that can be excited. 
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Figure 3.18 3D plot showing the relationship between N, W, and the maximum 

harmonic that can be excited. 
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Figure 3.19 3D plot showing the relationship between S, W, and the maximum 

harmonic that can be excited. 
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Figure 3.20 Alternative spiral configurations. 

 

3.5.1 Alternative spiral configurations 

Although circular spiral loop antennas are typically used for wireless 

applications, three other configurations were also examined, namely, a square spiral 

(Figure 3.20a), a triangular spiral (Figure 3.20b), and a dual arm circular spiral 

antenna (Figure 3.20c).  The square and triangular designs were tested to determine if 

they were able to excite higher harmonics than the circular spiral coil.  The dual arm 

spiral coil antenna is an alternative configuration for frequency independent antennas 

that is occasionally used for some applications [75].  The dual arm spiral coil is 

different than the other spiral coil designs that were tested because current on 

adjacent turns of the spiral will travel in different directions.  All three spirals were 

[8, 250, 515].  These were tested to determine if the circular spiral was the best shape 

for the MSCAT.  It was found that the square [8, 250, 515] spiral was able to operate 
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up to the 89th harmonic while the triangular [8, 250, 515] MSCAT was able to 

operate up to the 95th harmonic.  The dual arm [8, 250, 515] MSCAT was only able 

to operate up to the 9th harmonic with poor Q.  Based on these results the circular 

spiral coil described earlier was chosen for the tests described in Chapters 5 & 6.   

 

3.6 Finite Element Model of the Electromagnetic Fields Radiated From a 

MSCAT 

Although equations for the near and far field electric fields radiated by the 

MSCAT spiral coil antenna were derived (see Appendix B), the form of the equations 

are too complicated to be of significant use.  In order to gain an understanding of how 

the fields generated by the spiral coil excite the acoustic waves in the MSCAT finite 

element analysis (FEA) was used to obtain the electromagnetic fields radiated by the 

spiral coil antenna deposited on AT-cut quartz.  The theoretical results were 

compared to experimental measurements for specific spiral coil geometries.  

Two phenomena were explored utilizing the Comsol Multiphysics’ finite 

element analysis (FEA) software package [76].  The first phenomenon that was 

analyzed involved the behavior of MSCAT sensors under liquid loads.  This aspect of 

the work was motivated by the fact that when operated in air, MSCAT sensors exhibit 

very weak resonances while a much stronger resonance is observed when a liquid is 

placed on the sensor surface [77].  The second phenomenon that was explored 

involved the specific spiral coil antenna configuration.  This part of the work was 

motivated by the fact that the highest harmonic that can be excited in MSCAT sensors 
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appeared to be strongly dependent on the antenna configuration as described in 

section 3.5.     

  

 3.6.1 MSCAT Behavior Under Liquid Loads 

The TSM may be excited in AT-cut quartz using electric fields in the 

thickness direction of the plate (TFE).  In the case of TFE, the piezoelectric coupling 

coefficient kTE is 8.8% [78].  The TSM may also be excited using lateral field 

excitation (LFE).  In this case, the degree of piezoelectric coupling (kLE) to the TSM 

as well as the quasi-shear and longitudinal modes are dependent on the orientation of 

the electric field relative to the x-axis of the crystal (Figure 3.21).  If the applied 

electric fields are not oriented properly (90° relative to the x-axis), other modes may 

be excited leading to spurious modes.    
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Figure 3.21  Lateral field coupling coefficients kLE for the TSM (solid line), fast 
quasi-shear mode (small dotted line), and quasi-longitudinal mode (large dotted 

line) in AT-cut quartz versus electric field angle ψ with respect to the X axis. 
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 Although the TSM may be excited in air using a MSCAT the resonances are 

relatively weak.  Once the sensor surface is covered by a liquid, however, the 

resonance becomes much stronger.  In order to explore this phenomenon FEA 

modeling is needed.  The model seen in Figure 3.22 was constructed consisting of a 

gold [8, 250, 515] circular spiral coil on the back side (non-sensing surface) of a 

quartz wafer.  Piezoelectric effects were not considered in this model.  A medium was 

then placed on the sensor surface.  Since the MSCAT is excited using sinusoidal 

signals, a potential was assumed between the inner terminal and outer terminal of the 

spiral coil (Figure 3.23).  The voltage distribution on the spiral was calculated for the 

electrostatic case and the electric field was calculated from the gradient of the 

voltage.  The model was analyzed for two electrostatic cases:  when only air was 

present on the sensor surface and when DI water was on the sensor surface.    
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Figure 3.22 MSCAT COMSOL model a) 3D view and b) side view. 

 

 
Figure 3.23 MSCAT voltage distribution calculated using COMSOL. 
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 Figure 3.24 shows the electric field in the cross section of the MSCAT when 

the sensor surface is in air only and when the sensor has DI water on its surface.  

Figure 3.25 and Figure 3.26 show a zoomed in view of the electric field distribution 

for the indicated sections.  From these figures it is clear that when the MSCAT is 

operated in air the electric fields inside the quartz are in both the lateral direction and 

thickness direction, and relatively weak.  For the air case the magnitude of the 

thickness component of the electric field in the region shown in Figure 3.25 is only 

approximately 3 times larger than the lateral component.  This will lead to the 

excitation of modes other than the TSM such as the quasi-shear and longitudinal 

modes in the crystal and helps to explains why the MSCAT does not operate well in 

air.   

 When the MSCAT is loaded with water the electric field is trapped inside the 

quartz.  In this case the boundary conditions change from the air case and the electric 

fields are stronger and primarily in the thickness direction.  In this case the magnitude 

of the thickness component of the electric field in the region shown in Figure 3.26 is 

approximately 800 times larger than the lateral component while the overall 

magnitude of the electric field inside the quartz is approximately 10 times larger than 

the air case.  It is also interesting to note that the lateral component of the electric 

field for the water case is approximately 30 times smaller than the air case.  The 

thickness component is approximately 10 times larger in the water case when 

compared to the air case.  This leads to the conclusion that thickness electric fields are 

primarily responsible for exciting the TSM in the MSCAT when it is under liquid 

loads.  It can also be concluded that the relative weakness of the thickness electric 
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field and the lateral component of the electric field which is not oriented only at 90° 

relative to the x-axis (see Figure 3.21) is primarily responsible for the MSCAT's 

inability to operate efficiently in air.   
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Figure 3.24 Segment showing the electrostatic electric field distribution in the MSCAT 

quartz when the sensor is only in air (top) and loaded with DI water (bottom).  The size of 
the arrows represents the relative magnitude of the electric field at the base of the arrow 

and the direction of the arrow indicates the direction of the electric field.  Figures 3.24 and 
3.25 show an enlarged view of the indicated sections. 
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Figure 3.25 Zoomed in region indicated in Figure 3.23 showing the electric field 

distribution for the MSCAT when it is operated in air. 
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Figure 3.26 Zoomed in region indicated in Figure 3.23 showing the electric field 

distribution for the MSCAT when it is loaded with water. 
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It is interesting to note that because the spiral coil of the EMPAS is separated 

from the quartz the electric field behavior is significantly different than for the 

MSCAT.   It is important to note that it has previously been reported that the EMPAS 

is unable to operate in air [68].  Figure 3.27 shows the electric field distribution for 

the EMPAS for both the air and water case.  For this model the spiral coil was the 

same [8, 250, 515] spiral used for the MSCAT model in order to allow for a direct 

comparison.  The coil was separated from the quartz substrate by 200 μm, roughly the 

distance of a typical teflon o-ring that is used to separate the coil from the quartz in 

the EMPAS configuration.  Figure 3.28 and Figure 3.29 show zoomed in views of the 

indicated areas.  These results show that like the MSCAT, when the EMPAS is 

loaded with water the electric fields redistributes and is primarily in the thickens 

direction while the electric field is comparatively weak in air which explains why the 

EMPAS is unable to operate in air but is capable of operating in liquid environments.   

For the air case the magnitude of the thickness component of the electric field 

in the region shown in Figure 3.28 is approximately the same as the lateral 

component unlike the MSCAT where the thickness electric field is larger.  As with 

the MSCAT, this will lead to the excitation of modes other than the TSM such as the 

quasi-shear and longitudinal modes in the crystal; however the fact that the thickness 

and lateral components of the electric field have approximately the same magnitude 

in the air case may explain why the EMPAS does not operate at all in air.   

Like the MSCAT, when the EMPAS is loaded with water the electric field is 

trapped inside the quartz.  In this case the magnitude of the thickness component of 

the electric field in the region shown in Figure 3.29 is approximately 50 times larger 
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than the lateral component while the overall magnitude of the electric field inside the 

quartz is approximately 3 times larger than the air case.  It is also interesting to note 

that the lateral component of the electric field is for the water case is approximately 

10 times smaller than the air case while the thickness component is approximately 4 

times larger in the water case when compared to the air case.  A more significant 

issue, however, is that for the EMPAS the electric field is primarily trapped in the air 

gap between the spiral coil and the quartz while the electric fields inside the quartz 

are weak in comparison to the MSCAT (Figure 3.24).  Compared to the MSCAT, the 

thickness component of the electric field for the EMPAS in the water case is 

approximately 5 times smaller while it is approximately 50% smaller for the air case.   

These results show that the magnitude of the thickness component of the 

electric field inside the EMPAS is much smaller than the MSCAT while the 

difference in magnitude between the thickness and lateral components of the electric 

field is not as large as the MSCAT.  This helps to explain why the resonances in the 

EMPAS are relatively weak and difficult to detect which results in the need for 

specialized electronics such as the lock-in amplifier setup described earlier while the 

MSCAT does not. 
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Figure 3.27 Segment showing the electrostatic electric field distribution in the 
EMPAS quartz when the sensor is only in air (top) and loaded with DI water 

(bottom).  The size of the arrows represents the relative magnitude of the electric 
field at the base of the arrow and the direction of the arrow indicates the direction of 

the electric field.  Figures 3.27 and 3.28 show an enlarged view of the indicated 
sections. 
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Figure 3.28 Zoomed in region indicated in Figure 3.26 showing the electric field 

distribution for the EMPAS when it is operated in air. 
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Figure 3.29 Zoomed in region indicated in Figure 3.26 showing the electric field 

distribution for the EMPAS when it is operated in water. 
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As was previously discussed, the MSCAT's resonances in air are weak and it 

cannot be operated at elevated harmonics.  In order to replicate the boundary 

conditions that exist when water is placed on the sensor's surface, a thin (2000 Å) 

gold layer was deposited on the MSCAT to mimic the boundary conditions of the 

liquid case.  The bottom spiral was [8, 250, 515].  It was found that the MSCAT with 

a gold layer placed on the sensing surface was able to operate in air with much 

stronger resonances than a [8, 250, 515] MSCAT (Figure 3.31).  The gold MSCAT 

was able to operate up to the 61st harmonic.  It is possible that this new sensor may be 

useful for gas sensing application.  Although this work utilized a gold layer, it is 

possible that utilizing materials with higher dielectric constants than quartz (εr ~ 4) as 

the top layer may also be useful for gas sensing applications.  Future work could 

include optimizing the overall MSCAT design (N, S, W, σ, εr) for a particular sensing 

application.   

 

 

 

 

 

 

 

 

 

 

 
Figure 3.30 Diagram showing MSCAT with gold top layer. 
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Figure 3.31 MSCAT response in air for bare MSCAT (solid line) and 

MSCAT with gold layer (dashed line). 
 

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

4.96E+06 4.96E+06 4.97E+06 4.97E+06 4.98E+06 4.98E+06 4.99E+06

|Y
| 

(d
B)

Frequency (Hz)

 

 

 

 

 

 

 

 

 

 

 

 



 88 

3.6.2 Near Field Behavior of Spiral Coil Antennas 

The far-field radiation characteristics of spiral coil antennae in air are well 

understood and they are known to operate over a wide frequency range [67], however 

the near-field radiation characteristics have not been studied in detail.  Since the 

MSCAT's spiral coil antenna is operated in the near-field it is important to understand 

how the electric fields radiated by the antenna behave in the near-field.  It was 

expected that the electric fields produced from the MSCAT antenna will vary 

depending on the design of the coil, however this has not been shown previously. 

As described in Chapter 5, it was found that for biological applications 

utilizing antibody based sensing films, an operating frequency of approximately 300 

MHz is optimum due to the dimensions of the sensing film [79, 80].  A number of 

different antenna configurations were experimentally examined as explained 

previously and it was found that an antenna design consisting of [8, 250, 515] 

provided the greatest sensitivity in the detection of E. coli O157:H7 [80] and was 

capable of operating as high as 495 MHz (99th harmonic).   In order to gain insight 

into the effects varying spiral coil geometry has on the radiated electric fields, three 

other designs were also examined and compared to the [8, 250, 515] design.  As 

shown previously, a [10, 500, 500] design was capable of operating up to 305 MHz 

(61st harmonic).  This design was chosen for further study due to the fact that it was 

able to operate at frequencies in excess of most designs but still nearly 200 MHz short 

of the [8, 250, 515] design.  A number of MSCAT antenna designs were found to be 

incapable of operating at significantly high frequencies.  Two of these designs, 

namely [8, 150, 150] (maximum excitable harmonic the 23rd) and [8, 250, 150] 
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(maximum excitable harmonic was the 7th) were also chosen for further study.  In 

order to gain an understanding of the form of the radiated electric field for different 

antenna configurations at different operating frequencies, COMSOL’s RF module 

was utilized.  

Since it has been shown that the thickness (z-direction) component of the 

electric field is responsible for exciting the TSM in the MSCAT sensor platform, the 

z-component of the electric field was chosen for further study.  Each MSCAT 

described above was modeled over a frequency range of 65 MHz – 365 MHz.  Due to 

the complexity of the model it was not possible to analyze frequencies in excess of 

365 MHz or incorporate the effects of piezoelectricity without the use of a 

supercomputer or running multiple processors in parallel.  A sinusoidal voltage was 

applied between the inner and outer terminals and the resulting electric field was 

calculated for all points in the model.  The magnetic vector potential A due to a 

current source that generates a current density J may be calculated from the solution 

to the inhomogeneous vector wave equation and the electric field E may be calculated 

from A [67] as follows: 

𝐀𝐀 =  
μ

4π
�𝐉𝐉

e−jkR

R
dv 

and 

3.2 

𝐄𝐄 =  −jωμ𝐀𝐀 − j
1

ωε
∇(∇ ∙ 𝐀𝐀) 3.3 

where  

µ = permeability  

ε = dielectric constant  
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ω = angular frequency  

k = wave number  

R = point of interest  

Since the electric field inside the AT-cut quartz crystal is of primary interest, 

the point at the center of the crystal was chosen for further study.  Figure 3.32 shows 

the magnitude of the resulting electric field for each design in the center of the 

crystal.  As can be seen in Figure 3.32, the [8, 250, 515] MSCAT produced a much 

stronger thickness direction electric field which explains why it was able to operate 

the most efficiently.  The [10, 500, 500] MSCAT also produced a much stronger 

electric field than the [8, 250, 150] and [8, 150, 150] MSCATs as the later two 

designs exhibited very weak thickness electric fields in comparison to the first two 

designs.  As can be seen in Figure 3.33 the [8, 250, 150] design did produce an 

electric field that was approximately twice as strong as the [8, 150, 150] design which 

explains why it was able to operate at higher frequencies than the [8, 150, 150] 

design.  Although the [8, 250, 515] design was experimentally found to be the best 

design tested it is possible that further work may uncover an even better design.  It is 

clear, however, that more work is necessary in order to understand what aspects of the 

spiral coil design lead to stronger near-field electric field (see Appendix B). 
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Figure 3.32 Magnitude of the thickness component (z direction) of the electric field in 
the center of the MSCAT’s AT-cut quartz wafer for various electrode geometries: [8, 
250, 515] (solid line), [10, 500, 500] (small dotted line), [8, 250, 150] (medium dotted 

line), and [8, 150, 150] (large dotted line). 
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Figure 3.33 Magnitude of the thickness component (z direction) of the electric field in 
the center of the MSCAT’s AT-cut quartz wafer for the electrode geometries: [8, 250, 

150] (medium dotted line), and [8, 150, 150] (large dotted line). 
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4 MEASUREMENT OF LIQUID MECHANICAL AND ELECTRICAL 

PROPERTY CHANGES 

 

4.1. Introduction 

Since a QCM has electrodes on the top and bottom surface, the electric field 

cannot penetrate into the measurand or sensing layer due to the conducting electrode 

on the sensing surface.  Therefore, electrical property changes to the conductivity 

and/or permittivity of the adjacent liquid or chemi- or bioselective film caused by the 

target analyte cannot be detected with the standard QCM sensor.  Previous work has 

shown that the LFE sensor platform is able to detect both electrical and mechanical 

property changes due to the fact that it does not have an electrode on its sensing 

surface [81].  In order to determine if the MSCAT  is also  capable of measuring both 

mechanical and electrical property changes in liquids, MSCAT sensors were used to 

monitor both mechanical (viscosity/density) and electrical (conductivity, relative 

permittivity) properties in liquids.   

Based on the results described in Chapter 3, several MSCAT geometries were 

chosen for these tests and compared to QCM and LFE sensors.  Although the MSCAT 

is capable of operating at high frequencies by exciting high-order harmonics in the 

device, the MSCATs were operated at their fundamental frequency (5 MHz) to allow 

direct comparison to the QCM and LFE sensors which were also operated at their 

fundamental frequency (5 MHz).  In subsequent tests, the frequency response of the 

MSCAT when it was operated at elevated harmonics was examined.   
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4.2. Experimental Description for Liquid Property Measurements  

Each sensor was clamped in a cylindrical 3 mL liquid cell holder that is 1.27 

cm in diameter.  For each test, 1 mL of liquid was placed on the sensor’s surface 

using a Thermo Scientific 200-1000 µL variable Finnpipette pipetter.  The change in 

resonant frequency for each solution from the resonant frequency when only de-

ionized (DI) water was present was measured for each device. After each test the 

sensor was rinsed 10 times with DI water and then dried with nitrogen.  Each test was 

repeated five times.   

One of the challenges in measuring liquid mechanical and electrical property 

changes using BAW sensors is that there are no candidate liquid solutions in which 

only a single parameter (viscosity and density, conductivity, relative permittivity) 

changes.  Typically, solutions are selected where one variable changes significantly 

with only small variations in the other two parameters [81].  The solutions described 

in [81] were chosen for the liquid property measurements in this work.  

The viscous liquids used for the tests were created by mixing various ratios of 

DI water and glycerol in ratios between 0% and 30% wt. glycerol.  A Cannon Fenske 

Routine Viscometer was used to measure the viscosity of each liquid and was found to 

range between 0.97 and 3.2 cP.    The square root of the density-viscosity product is 

typically used when reporting BAW sensor data due to the fact that it is not possible to 

separate the effects of each parameter individually.  The square root of the density 

viscosity product ranged between 0.97 and 1.88 √ (g∙cm-3∙mPas∙s).    The conductivity 

of each solution was measured using an Oakton CON 11 conductivity meter and 

found to vary by no more than 40 µS between all of the solutions.  The relative 
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permittivity of the solutions is reported in [82] to vary by 8 (80 for the DI water and 

72 for the 30% wt. glycerol solution).   

For changes in liquid conductivity measurements, NaCl- water solutions in the 

range of 0 to 0.06 wt% NaCl was used.  The conductivity of each solution was 

measured using an Oakton CON 11 conductivity meter and found to range between 

1.7 and 1235 µS.  Since the resonant frequency change of the MSCAT sensor is due 

to both mechanical and electrical property changes in the liquid, the NaCl 

concentrations chosen for this experiment (0 to 0.06% wt) have very small variations 

in mechanical property changes such as density and viscosity.  The viscosity of each 

solution was measured using the Cannon Fenske routine viscometer and the square 

root of the density-viscosity product was found to be nearly the same as the DI water 

used in the tests (0.97 √ (g∙cm-3∙mPas∙s) for DI water and 1.0 √(g∙cm-3∙mPas∙s) for the 

0.06 wt% solution).  The relative permittivity of these solutions is reported to vary by 

approximately 2 [84].   

Liquid solutions with varying relative permittivity were created by mixing 

solutions of DI water and 2 – propanol mixtures in 2-propaol conations between 0 

wt% (εr = 80) and 100 wt% (εr = 20).  Although the conductivity of each solution 

varies only slightly (less than 2 µS), the square root of the density-viscosity product 

varies between 0.94 and 1.27 √ (g∙cm-3∙mPas∙s).    

 

4.3. Measurement of Liquid Viscosity Changes 

A [8, 250, 515] MSCAT was compared to the performance of standard QCM 

and LFE sensors, both fabricated on AT-cut quartz with a fundamental frequency of 
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approximately 5 MHz as seen in Figure 4.1.  In order to aid in comparison, the 

theoretical frequency shift for the QCM was calculated using the relationship 

developed by Kanazawa and Gordon [83].  

As can be seen in Figure 4.1 the MSCAT sensor was capable of monitoring 

the changes in the liquid viscosities and exhibited nearly identical frequency shifts 

when compared to the LFE sensor.  As is discussed in Appendix A, a LFE fabricated 

on LiTaO3 that is capable of operating at elevated harmonics also exhibited similar 

sensitivity levels when compared to a LFE fabricated on AT-cut quartz.  The MSCAT 

exhibited a slightly larger frequency shift than the QCM, however.  This may partly 

be due to the fact that the conductivity and relative permittivity of the liquids varied 

slightly between solutions (approximately 40 µS for the conductivity and 8 for the 

relative permittivity).  It should be noted that the conductivity of the solutions 

changed by approximately 40 µS within the first four data points and was constant for 

the remaining data points which helps to explain why the MSCAT and LFE had 

higher sensitivities for the first four solutions.   As shown later, the [8, 250, 515] 

MSCAT with a gold layer placed on its sensing surface is significantly less sensitive 

to electrical property changes than the standard MSCAT or LFE.  In Figure 4.1 it can 

be seen that the gold layered MSCAT exhibited larger frequency shifts than the QCM 

but smaller frequency shifts than the standard MSCAT or LFE.  This result 

strengthens the theory that the increased frequency shift exhibited by the MSCAT and 

LFE is at least partly due to changing electrical properties of the liquids.  A triangular 

[8, 250, 515] MSCAT was also tested and found to exhibit frequency shifts that were 

almost identical to the standard [8, 250, 515] MSCAT.   
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Figure 4.1 Sensor response to changes in glycerol concentrations: (a) QCM; (b) 

theoretical frequency shift; (c) [8, 250, 515] MSCAT with gold top layer; (d) 
LFE, and (e) [8, 250, 515] MSCAT. 
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  4.4. Measurement of Liquid Conductivity Changes 

The MSCAT sensor was also tested to determine its response to electrical 

property changes in liquids.  The resonant frequency changes of the sensors with 

respect to their resonant frequencies in DI water as a function of the solution 

conductivity is shown in Figure 4.2.  As can be seen in Figure 4.2 the QCM and 

MSCAT with the gold top layer exhibited very small changes to the changes in liquid 

conductivity.  This is due to the fact that both sensors have a gold top layer which 

keeps the boundary conditions constant and therefore the electric field inside the 

sensor substrate will not vary significantly with changes in the electrical properties.  

This result indicates that an MSCAT with a gold layer on the sensing surface may be 

used for applications where it is not desirable for the sensor to be as sensitive to 

electrical property changes.   

There were, however, significant changes in the resonant frequency of both 

the standard and triangular MSCATs indicating that they were both capable of 

monitoring liquid electrical property changes while the QCM could not.  It is 

interesting to note that the triangular MSCAT was more sensitive than the standard 

MSCAT even though its spiral coil covered a surface area approximately 35% smaller 

than the standard MSCAT.  This may be due to the fact that the triangular MSCAT 

has sharp angles in its electrode while the standard circular MSCAT does not.  It is 

common practice in printed circuit board (PCB) design to avoid right angles in signal 

traces due to the fact that charge can build up at the sharp angles leading to reflection 

problems [85].  The added sensitivity of the triangular MSCAT may be due to charge 

build up at its sharp angles. The frequency change of the LFE was more than twice as 
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large as the MSCAT sensors.  Hempel has shown that changes in liquid electrical 

properties causes a redistribution of the electric field inside the LFE’s quartz wafer 

which results in a piezoelectric stiffening effect which in turn changes the resonant 

frequency of the device [86].  Although the LFE is highly sensitive to conductivity 

changes, its dynamic range is limited as its resonant frequency does not vary 

significantly for solutions above 500 µS.  Hempel has postulated that for the LFE the 

rate of piezoelectric un-stiffening is only significant for low electrolytic solutions and 

is less pronounced for higher electrolytic solutions.  Although the MSCAT is less 

sensitive to changes in conductivity than the LFE is dynamic range is larger.  It is 

likely that the difference in the electric field distribution produced by each electrode 

geometry plays a significant role in the sensitivity of each device to changes in liquid 

electrical property changes.   

   Previous work has shown that varying the LFE electrodes results in varying 

sensitivity to electrical property changes [81].  In addition, Peters has shown that the 

material properties of the resonator material also impact the sensitivity of LFE 

sensors to electrical property changes [87].  It is clear that if it is desirable to achieve 

the highest possible sensitivity to electrical property changes then more work is 

needed to optimize both the electrode configuration and sensor substrate material for 

these applications.  Peters also developed a method to distinguish between changes in 

the density-viscosity product and relative permittivity in liquids using an LFE.  

However a significant amount of work remains in order to separate the changes in 

both conductivity and relative permittivity in a solution. 
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Figure 4.2 Sensor response to changes in NaCl concentration for: (a) QCM, (b) 
[8, 250, 515] MSCAT with gold top layer, (c) standard [8, 250, 515] MSCAT, 

(d) triangular [8, 250, 515], and (e) LFE. 
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4.5. Measurement of Liquid Relative Permittivity Changes 

In order to determine the MSCAT’s sensitivity to changes in relative 

permittivity the solutions 2-proponal solutions described earlier were used.  The 

resonant frequency changes of the sensors with respect to their resonant frequencies 

in DI water as a function of the solution relative permittivity is shown in Figure 4.3.  

As can be seen in Figure 4.3 the standard MSCAT, triangular MSCAT, and LFE 

exhibited positive frequency shifts with increasing concentrations of 2-propanol 

(lower εr ).  The QCM exhibited a negative frequency shift as its resonant frequency 

was affected only by changes in the density-viscosity product of the solution.  The 

triangular MSCAT was slightly more sensitive than the standard MSCAT while the 

LFE was approximately twice as sensitive.  It is interesting to note that the MSCAT 

with a gold layer on its surface exhibited a negative frequency shift for the lower 2-

propanol concentration solutions as its response was dominated by the viscosity of the 

solutions but it exhibited a positive frequency shift for the higher concentration 

solutions.  These results further indicate that although the gold layered MSCAT is 

significantly less sensitive to electrical property changes than the standard MSCAT 

its frequency response is still influenced by the electrical properties of the liquid.   

From these results it is clear that the MSCAT is capable of detecting both 

mechanical (density/viscosity) and electrical (conductivity and relative permittivity) 

changes in liquid solutions.  It was found that the triangular MSCAT was more 

sensitive to electrical property changes than the standard MSCAT while the MSCAT 

with the gold top electrode was less sensitive to electrical property changes.  It was 

also found that the MSCAT was less sensitive to electrical property changes than the 
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LFE when both devices were operated at their fundamental frequency (5 MHz).  It is 

obvious from the results, however, that more work is required in order to develop a 

model that can distinguish between mechanical and electrical liquid property changes 

using a BAW sensor.                                                                            
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Figure 4.3 Sensor response to changes in 2-propanol concentration for: (a) LFE, 
(b) triangular [8, 250, 515] MSCAT (c) standard [8, 250, 515] MSCAT, (d) [8, 

250, 515] MSCAT with gold top layer, and (e) QCM. 
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  4.6 The Measurement of Mechanical and Electrical Property Changes at High 

Frequencies 

As was discussed in Chapter 3, the MSCAT is able to operate at high 

frequencies by exciting high order harmonics in the substrate.  In order to examine 

the MSCAT's behavior at elevated frequencies, the MSCAT was operated at elevated 

harmonics and used to measure mechanical and electrical property changes of liquids.  

A [8, 250, 515] MSCAT was operated at harmonics ranging from its fundamental 

(approximately 5 MHz) and the 99th harmonic (approximately 495 MHz).   

In order to examine the MSCAT's behavior to changes in liquid viscosity at 

elevated frequencies, the change in frequency from when the MSCAT was loaded 

with 1mL of DI water (0.95 cP) to when it was loaded with 1 mL of 30% wt glycerol 

solution (3.2 cP) was measured at various harmonics.  As before, each test was run 5 

times.  As can be seen in Figure 4.4, the MSCAT exhibited much larger frequency 

changes when operated at elevated harmonics (approximately 600 Hz at the 

fundamental frequency and 120 kHz at the 99th harmonic).  The frequency shift 

increased in a nearly linear fashion between 5 and 300 MHz.  No significant increase 

in frequency shift was observed for higher frequencies.    

The TSM has mechanical displacements that are perpendicular to the 

propagation direction and parallel to the crystal surfaces.  When the MSCAT is liquid 

loaded the boundary conditions dictate that the displacements be continuous at the 

crystal/electrode and electrode/liquid interface.  However, the viscous nature of most 

liquids results in damping of the shear wave a short distance from the crystal surface 

which results in a decrease in resonant frequency.  The distance that the wave travels 
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is dependent on the operating frequency of the device.  As Kanazawa and Gordon 

have shown [83] the resonant frequency decrease for a QCM is proportional to the 

square root of the density-viscosity product.  It has been shown, however, that this 

relationship does not apply at higher frequencies [88].  Although the exact 

mechanism is unknown it is postulated that changes in the complex acoustic 

impedance of the viscous liquid may play a role in relative frequency shifts observed 

at higher frequencies.   

The dramatic increase in the frequency shift observed for the MSCAT when it 

is operated at elevated harmonics may have applications where it is desirable to 

monitor changes in liquid viscosities.  One such application is the food industry.  

There is a need to sensitively measure the viscosity of foods in an in-line manner that 

provides measurements in real-time and is non intrusive.  Current in-line viscometers 

for the food industry include the Brookfield SST-100 In-Line Viscometer, the 

Endress & Hauser Promass I, the Cambridge Applied Systems SPC/L301 Inline 

Viscometer and the Dynatrol Viscosity Measurement Probe.  Most of these 

viscometers use pistons, a rotating cylinder, or vibrations to measure viscosity that 

may mix the fluid of interest in a non-desirable fashion.   Optical type viscometers are 

unable to measure the viscosity of opaque or clear liquids.  Another problem with the 

current technology is that they may be intrusive to the food making process and their 

installation would require an additional FDA inspection.  A sensitive in-line 

viscometer that provides real-time measurement, has no moving parts, is capable of 

measuring opaque or clear liquids, and would be non-intrusive is needed.  The 

MSCAT is a device that is capable of fulfilling all of these requirements. 
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Figure 4.4 MSCAT frequency shift due to a change of 2.25 cP when operated 

at elevated frequencies. 
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In order to examine the MSCAT sensor's behavior to changes in electrical 

property changes at elevated frequencies, the change in frequency from when the 

sensor was loaded with only DI water (1.6 µS, εr = 80) was compared to when the 

MSCAT was loaded with a 0.06% wt NaCl solution (1235 µS) and when the MSCAT 

was loaded with a 100 wt% 2-proponal (εr = 20) was measured at various harmonics.  

As before, each test was run 5 times.   

As was the case with viscosity, the MSCAT exhibited much larger frequency 

changes to changes in liquid electrical property changes when operated at elevated 

harmonics.  As can be seen in Figure 4.5 the MSCAT frequency shift was 

approximately 2.000 Hz at the fundamental frequency and 120,000 Hz at the 99th 

harmonic for the 0.06 wt% NaCl solution.  As was the case with the viscosity 

measurements, no significant increase in frequency shift was observed for higher 

frequencies.   
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Figure 4.5 MSCAT frequency shift due to a change of 1235 µS when operated 

at elevated frequencies. 
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From Figure 4.6 it can be seen that the resonant frequency of the MSCAT to 

changes in liquid relative permittivity initially increased in a nearly linear fashion 

until approximately 200 MHz.  From approximately 200 – 350 MHz the resonant 

frequency shift continued to increase, but at a much slower rate.  Above 350 MHz, 

however, the frequency shift increased dramatically.  As was stated previously, 

although the conductivity of the 2-propanol solutions does not vary significantly, the 

density-viscosity product varies by approximately 25% between the solutions.  From 

Figure 4.4 it can be seen that the magnitude of the resonant frequency shift to changes 

in liquid viscosity increase rapidly between 200 and 300 MHz.  The frequency shift, 

however, is negative.  Since the MSCAT exhibits a positive frequency shift to 

changes in relative permittivity the response to viscosity changes “dampens” the 

MSCAT’s response to the liquid permittivity changes over this frequency range.  

Above 300 MHz, however, the resonant frequency changes due to changes in liquid 

viscosity do not vary significantly.  This helps to explain why the MSCAT exhibits 

increased sensitivity to changes in relative permittivity at higher frequencies.  Based 

on these results, if it is desirable to monitor relative permittivity changes in liquids in 

which the density and viscosity also change, then the MSCAT should be operated at 

frequencies over 300 MHz to minimize the effects of liquid viscosity changes on the 

resonant frequency of the sensor.   

It should also be noted that the frequency changes of the MSCAT due to 

liquid permittivity changes are an order of magnitude smaller than the frequency 

changes due to viscosity and conductivity changes when the MSCAT is operated at 
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elevated harmonics.  As can be seen from Figure 4.1-Figure 4.3 the resonant 

frequency changes are the same order of magnitude for changes in viscosity, 

conductivity, and relative permittivity when the MSCAT is operated at the 

fundamental frequency.  The lower frequency shifts to changes in 2-propanol 

solutions can at least partly be explained by the significant effect changes in viscosity 

has on the MSCAT’s frequency response for the 2-propanol solutions.  The change in 

viscosity significantly masks the changes in relative permittivity at some frequencies.   
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Figure 4.6 MSCAT frequency shift due to a change in relative permittivity of 

60 when operated at elevated frequencies. 
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Figure 4.7-Figure 4.9 show the relative frequency shift (Δf/f) for changes in 

the square root of the density viscosity product, conductivity, and relative 

permittivity.  As can be seen in Figure 4.7 and Figure 4.8 the MSCAT has the largest 

relative frequency shift to changes in viscosity and conductivity when it is operated at 

approximately 300 MHz.  It is interesting to note that the magnitude of the relative 

frequency shift decreases initially as the operating frequency increases.  As can be 

seen in Figure 4.9 the MSCAT has the largest relative frequency shift to changes in 

relative permittivity at 500 MHz although the relative frequency shift at 500 MHz is 

only approximately 15% larger than when the MSCAT was operated at its 

fundamental frequency.  These results show that the sensitivity to mechanical and 

electrical property changes is dependent on the operating frequency of the device and 

the highest possible operating frequency does not necessarily result in the highest 

level of sensitivity.  This result may offer a possible avenue to solving the problem of 

separating liquid mechanical and electrical property changes using a BAW sensor. 

 As Hempel and Peters have shown for the LFE, the theory developed for the 

QCM such as the Sauerbrey and Kanazawa equation do not apply to BAW sensors 

with no gold top electrode [86, 87].  It is clear that a significant amount of work is 

required to theoretically predict the frequency change of the LFE and MSCAT 

sensors resulting from both mechanical and electrical property changes in liquids.  

Peters has performed some promising work on the LFE by monitoring parameters 

such as the series and parallel resonance frequencies, the maximum of the 

conductance spectrum, and the half bandwidth and was able to differentiate between 

electrical and mechanical property changes in liquids.  Based on the results shown in 
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Figure 4.4 - Figure 4.9 it is likely that operating an MSCAT at a wide range of 

frequencies will provide additional acoustic impedance information about the 

mechanical and electrical properties of a liquid sample as the sensitivity of the 

MSCAT to each liquid property changes depending on the operating frequency and 

may be helpful in separating liquid mechanical and electrical property changes.  

However, in order to utilize the MSCAT as a sensitive liquid property sensor, it will 

first be necessary to develop a strategy to separate the effects of liquid mechanical 

and electrical property changes from the MSCAT’s sensor response.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7 Relative frequency shift to a change in viscosity of 2.25 cP as a 

function of operating frequency. 
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Figure 4.8 Relative frequency shift to a change in conductivity of 1235 µS as a 

function of operating frequency. 
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Figure 4.9 Relative frequency shift to a change in relative permittivity of 60 as a 

function of operating frequency. 
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5 THE MSCAT BIOLOGICAL SENSOR PLATFORM 
 
 
5.1. Introduction 

As described in Chapter 1, when a BAW sensor platform is used in a 

biological sensor system the sensor element consists of two components, the target 

selective biological film and the sensing platform. The development of the MSCAT 

sensor platform has been described in the previous chapters.  In order to demonstrate 

the applicability of the MSCAT platform, it was used to detect two biological 

analytes which are the leading causes of foodborne illness.  The detection of the first 

biological analyte using an MSCAT sensor platform, Escherichia coli (E. coli) 

O157:H7, was explored in detail while a “proof of concept” was performed for the 

detection of the second analyte, Salmonella.  In this chapter background on E. coli as 

well as the current methods of detection is described.  Next, the development and 

verification of the target selective biological sensing film that can be attached to the 

MSCAT sensor is presented followed by the MSCAT E. coli O157:H7 results.  

Finally, the background, current detection methods, development and verification of 

the target selective biological sensing film, and the MSCAT results are presented for 

the case of Salmonella.   

 

5.2. E. coli Background 

E. coli is one of the leading causes of food borne illnesses [89].  There are 

many strains of E. coli and although most are harmless to humans, some strains such 

as serotype O157:H7 can cause serious illnesses [90].  Severe cases of E. coli 
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O157:H7 exposure can cause severe intestinal cramps, diarrhea, and fever lasting up 

to 8 days, [90] can involve renal failure and, in small children and the elderly, death.  

Although E. coli is only one part of the fecal coliform group that can cause illness in 

humans it is commonly used as an indicator for fecal contamination in drinking water 

and food due to its ability to survive outside of the body [90].   

Current methods of evaluating drinking water or food for microorganisms 

involve collecting samples and transporting them to a central laboratory for analysis. 

The samples are processed and incubated for 24 to 48 hours before the presence or 

absence of E. coli can be determined [91].  For example, the Maine Health and 

Environmental Testing Laboratory uses IDEXX Colilert® and Colisure® products for 

detecting E. coli O157:H7 [92]. These products are the only commercially available 

water tests for microbiological methods included in the Standard Methods for 

Examination of Water and Waste Water (20th Ed.). [93].   

 Recent advances in chemical and biosensor technologies have offered 

possible approaches for in situ identification and quantification of specific 

contaminants in water. Molecular recognition such as antibody-antigen reactions 

integrated with an appropriate sensing platform such as a semiconductor, a 

piezoelectric crystal, carbon nanotubes, nano-/microcantilevers and polymerase chain 

reaction (PCR) technology are currently being researched [94]. However, none of 

these sensing devices have been accepted as a standard method for evaluating 

drinking water or food samples. Clearly there is a need for a more rapid detection 

system for E. coli O157:H7. 
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One comparatively simple sensor that can identify and quantify specific 

contaminants in situ is a piezoelectric sensing platform which has been coated with a 

target selective chemical or biological film.  In order to test the MSCAT platform as a 

sensor for E. coli O157:H7 it was necessary to develop a target selective sensing film 

that could be attached to the sensor surface of the MSCAT.   

 
 
5.3.   E. coli O157:H7 Selective Sensing Film 

An E. coli O157:H7 selective sensing film based on E. coli O157:H7 

antibodies was developed by Wark [95, 96].  Antibody based sensing films are 

appealing for biological agent detection because they are highly specific and can be 

attached to a quartz surface.  Antibodies are widely used in Enzyme-linked 

immunosorbent assay (ELISA) tests for bacteria and have been shown to be highly 

selective [97], especially when a selective growth medium is used [98].   

It has recently been shown that it is possible to weakly bind antibodies to bare 

quartz surfaces [99], however the antibodies are easily rinsed off and therefore simply 

putting antibodies on to the MSCAT’s quartz surface is not a viable approach to 

produce a robust sensing film.  It was therefore necessary to develop a technique for 

chemically attaching the E. coli O157:H7 selective antibodies to the quartz surface of 

the MSCAT.   

Wark initially attempted to modify an antibody based E. coli O157:H7 sensing 

film that Berkenpas developed for a gold coated shear horizontal SAW sensor 

fabricated on langasite [100-105].    In this work Berkenpas found that the SAW 

sensor was only capable of detecting E. coli O157:H7 concentrations of 109 
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microbes/mL, a significantly higher concentration than the detection limit of some 

BAW sensors as will be described later [105].  These tests also utilized a method 

known as "dip-and-dry" in order to increase the sensitivity of the sensor.  In a dip-

and-dry test the liquid being tested is added to the sensor's surface and allowed to 

evaporate causing anything in the solution to dry onto the sensor's surface.  The 

sensor's surface is then rinsed to remove anything that was not bound to the sensor's 

surface.  The dip-and-dry method is undesirable to the food industry, however, as this 

method increases the risk of incidental binding of proteins that cannot be easily rinsed 

when they are dry such as myoglobin that is found in ground beef leading to false 

positives.  In addition, the sensing film developed by Berkenpas was for a gold 

sensing surface, not a quartz surface. 

Wark [96] developed a procedure to attach the E. coli O157:H7 selective 

antibodies to the MSCAT’s surface utilizing an amiene layer and anvidin/biotin 

interactions.  It is possible to attach amiene groups directly to quartz and it is also 

possible to attach biotin to the amiene groups.  Finally biotinylated antibodies any be 

attached to the biotin.  In order to build the E. coli O157:H7 selective sensing film the 

following procedures were undertaken (see [96] for a detailed description of the 

procedure).  It should also be noted that this sensing film could be applied to any 

acoustic wave sensor with a quartz sensing surface such as an LFE or SAW. 

The surface of the MCAT sensors was first thoroughly cleaned by using a 

Piranha cleaning procedure (a combination of sulfuric acid and hydrogen peroxide).  

A standard liquid silanization procedure utilizing (3-Aminopropyl) triethoxysilane 

was performed to produce an amine-derivatized surface on the MSCAT.  The 
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Figure 5.1  Schematic of antibody/antigen immobilization for E. coli O157:H7 

selective film 
 

 
 

MSCAT was then incubated for 4 hours in a 10μM solution of NHS-LC-LC biotin in 

Phosphate buffer saline (PBS) solution.  PBS is a buffer solution that is often using in 

biological testing as helps to maintain a constant pH.  The N-Hydroxysuccinimide 

(NHS) esters react with the amine groups on the MSCAT’s surface resulting in the 

attachment of biotin to the amine groups.  The surface of the sensor was then rinsed 

with a solution of 10 mM of glycine in PBS to deactivate any NHS-esters that may 

remain on the sensor’s surface.  The sensors were then incubated in a 0.33 μM 

solution of NeutrAvidinTM binding protein in blocker for 1 hour.  The sensors were 

then rinsed with blocker to fill any remaining free binding sites and then incubated for 

one hour in a solution of 20 μg/ml of biotinylated E. coli O157:H7 antibodies in 

blocker.  A schematic of the resulting film can be seen in Figure 5.1.    
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5.3.1. Verification of the Selectivity of the E. coli O157:H7 Antibodies 

To analyze the selectivity of the E. coli O157:H7 antibodies employed in the 

sensing film for the MSCAT E. coli O157:H7 sensor, an immunofluorescence assay 

was performed.  The antibodies were tested against three different bacterium: E. coli 

O157:H7, E. coli K-12, and Pseudomonas fluorescens (P. fluorescens).  E. coli K-12 

and P. fluorescens where chosen as candidate interferents because they represent 

bacteria that are commonly found in food.  Unlike E. coli which is an enteric bacteria 

(a bacteria which is found in the intestines), P. fluorescens is a non-enteric bacteria 

that is harmless to humans and often present on plants and sometimes used to make 

yogurt.  E. coli K-12 is a serotype of E. coli that is closely related to E. coli O157:H7 

and like E. coli O157:H7 is an enteric bacteria that is commonly found in food.  

Unlike E. coli O157:H7, however, E. coli K-12 is harmless to humans and its 

detection in food is not necessary. 

In order to analyze the selectivity of the chosen antibodies, an assay was 

performed by exposing suspensions of each bacteria to the selected anti- E. coli 

O157:H7 antibodies (primary).  After each bacteria was allowed to react with the 

selective antibodies for fifteen minutes the solution was centrifuged.  This separated 

the much larger bacteria from the smaller antibodies that did not bind to the bacteria.  

The separated bacteria were then re-suspended in blocking buffer.  Goat anti-mouse 

IgG-Alexa 488 which was conjugated with Alexa-488 flourophor was then added to 

each suspension.  The goat anti-mouse IgG antibodies will bind to the biotinylated 

IgG E. coli O157:H7 antibodies.  The Alexa-488 flourophor will fluoresce with a 

green wavelength when excited. Therefore if the E. coli O157:H7 antibodies bound to 
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the bacteria of interest, green fluorescence will be visible when the solution is 

excited.   

 This solution was centrifuged again to remove any unbound goat anti-mouse 

IgG antibodies and the remaining bacteria were again suspended in blocking buffer.  

Microscope slides were prepared for each sample and a florescent study using a 

Olympus BX51 optical microscope was performed to determine if the E. coli 

O157:H7 selective antibodies bound to each bacteria.  The results of the study can be 

seen in Figure 5.2-Figure 5.4.  In these figures, the presence of a fluorescent signal 

(green light) indicates that the E. coli O157:H7 selective antibodies did in fact bind to 

the given bacterial.  The absence of a green fluorescent signal indicates that the 

antibodies did not bind to the bacteria.   

As can be seen in Figure 5.2, the E. coli O157:H7 did in fact bind to the 

antibodies as a fluorescent signal was observed. As can be seen in Figure 5.3 and 

Figure 5.4, however, no fluorescent signal is present.  This indicates that the selected 

antibodies did not bind to these two bacteria.  
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Figure 5.2 E. coli O157:H7 slide under a) normal light and b) fluorescence. (400x 

magnification) 
 
 

 
 

 
Figure 5.3  E. coli K-12 slide under a) normal light and b) fluorescence. (400x 

magnification) 
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Figure 5.4  P. fluorescens slide under a) normal light and b) fluorescence. (400x 

magnification) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2. Verification of the Antibody Attachment to the MSCAT Sensor Platform 

Once the E. coli antibodies were verified to be selective to the sereotype of E. 

coli of interest, E. coli O157:H7, it was necessary to verify that the antibodies could 

in fact be bound to the MSCAT’s surface using the procedure that was developed.  

An Amplex® Red based immunoassay was performed to verify that the E. coli 

O157:H7 selective antibodies were bound to the MSCAT’s surface.  Amplex® Red 

produces the highly florescent compound resorufin that fluoresces at wavelengths of 

approximately 550 nm when it reacts with hydrogen peroxide (H2O2) and can be 

easily detected using spectrophotometer [106].     Amplex® Red by itself has a very 

low background fluorescence.    
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Goat anti-Mouse Immunoglobulin G (IgG) horseradish peroxidase (HRP) 

secondary antibodies were used in conjunction with Amplex® Red to verify the 

attachment of the primary E. coli antibodies.  The secondary antibodies will 

theoretically bind to only to the primary antibodies [96].  However, it has recently 

been shown that it is possible to weakly bind antibodies to bare quartz surfaces [99].  

In order to remove the possibility of the secondary antibodies to non-specifically bind 

to empty spots on the sensor surface, the sensors were placed in bovine serum 

albumin (BSA) after the sensing film was placed on the MSCAT’s surface.  BSA will 

attach to any free binding sites eliminating the possibility of non-specific secondary 

antibody attachment.  A control sensor was also used that was only exposed to BSA.  

The BSA would fill any available binding sites on the control MSCAT eliminating 

the possibility of secondary antibodies attaching to the sensor surface. 

After rinsing both MSCAT’s surfaces, the secondary antibodies were applied 

and allowed to sit for one hour then the sensors’ surfaces were rinsed again.  The 

sensors were then placed PBS.  Amplex® Red was then added to the sensors.  If the 

secondary antibodies were bound to the MSCAT’s surface the Amplex® Red and 

HRP will produce resorufin and fluoresce at approximately 550 nm (red).   

As can be seen in Figure 5.5 and Figure 5.6 the MSCAT with the primary E. 

coli antibody film produced a strong red response while the control did not.  These 

tests were performed twice yielding similar results each time. 
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Figure 5.5 Photograph of MSCAT sensor with the E. coli antibody film after the 

introduction of Amplex Red. 
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Figure 5.6 Photograph of the control MSCAT sensor without the E. coli 

antibody film after the introduction of Amplex Red. 
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5.3.3. Verification of the Effective Binding of E. coli O157:H7 to the MSCAT  

Once it was verified that the E. coli O157:H7 selective film was attached to 

the MSCAT’s surface it was necessary to verify that E. coli O157:H7 did in fact bind 

to the sensing film.  A MSCAT sensor had the sensing film deposited on its sensing 

surfaces using the procedure outlined in section 5.3.  A control sensor was left with a 

bare surface.  One mL of E. coli O157:H7 in PBS was then applied to each sensor’s 

surface and allowed to sit for one hour.  The concentration of the E. coli O157:H7 

was approximately 108 microbes/mL.  Each sensor was then lightly rinsed with PBS 

to remove any unbound E. coli O157:H7.  The sensors’ surfaces were then placed in a 

1 mL solution of Mouse anti-E. coli IgG fluorescein.  The Mouse anti-E. coli IgG 

fluorescein is an antibody selective to E. coli that has a fluorescein attached to it.  The 

fluorescein will fluoresce under 480 nm wavelength light.  The sensors’ surfaces were 

then rinsed again with PBS to remove and Mouse anti-E. coli IgG fluorescein that 

was not attached to E. coli.  Each sensor was then viewed under an Olympus BX51 

optical microscope under 480 nm wavelength light.  The control MSCAT’s did not 

exhibit any florescence; however it is clear from Figure 5.7 that the E. coli bound to 

the MSCAT sensors with the selective sensing film on their surface.   

In order to approximate the number of E. coli O157:H7 that could be bound to 

the surface of the MSCAT the number of possible antibody binding sites were first 

calculated.  In the MSCAT E. coli O157:H7 tests a cylindrical 3 mL liquid cell holder 

that is 1.27 cm in diameter was used.  Each antibody covers an area of approximately 

75 nm2 (15 nm x 5 nm).  The IgG antibodies used each have two binding sites, 
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therefore if the MSCAT’s sensing surface is uniformly covered with antibodies there 

would be approximately 3.4 x 1012 binding sites.  It should be noted that 

approximately 4 x 1014 antibodies were applied to the MSCAT’s surface during 

deposition of the sensing film.  An E. coli O157:H7 bacterium is approximately 1 

μm2 (2 μm x 0.5 μm).  Given the area of the sensing surface, approximately 1.27 x 

108 E. coli O157:H7 bacteria could be bound to the sensing surface if it is assumed 

that the bacteria bind in a single, flat layer.  From these approximations it can be 

concluded that the number of antibody binding sites is not a limiting factor in the 

number of E. coli O157:H7 that can be bound to the sensor’s surface.  It must be 

stressed, however that these are only approximate values as the antibodies do not 

always sit in a uniform layer and the E. coli O157:H7 do not necessarily lie flat on the 

sensor’s surface. 
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Figure 5.7 E. coli bound to MSCAT E. coli O157:H7 selective sensing film (400x 

magnification). 
 

 

5.4. MSCAT Response Signature 

The MSCAT’s frequency response signature to E. coli is different than a 

typical mass loading response.  It has been shown that classical BAW sensor theory 

such as the Sauerbrey [107] and Kanazawa [108] equations do not apply to complex 

liquid phase sensing problems [109].  In order to utilize MSCAT sensors for the 

detection of E. coli O157:H7 it was first necessary to determine the nature of the 

MSCAT response when E. coli O157:H7 attached to the sensing film.   
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Figure 5.8.  The MSCAT sensor response to the layers of the bio-film and E. coli 
O157:H7 in solution 
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MSCAT sensors were functionalized for the detection of E. coli O157:H7 by 

first vigorously cleaning the bare sensing surface of each of the platforms using a 

Piranha cleaning procedure (a combination of sulfuric acid and hydrogen peroxide).  

A [8, 250, 515] spiral coil design as described in Chapter 3 was used for these tests.  

The E. coli O157:H7 selective film described in section 5.3 was applied to the 

MSCAT's surface.  A 1.27 cm diameter liquid cell holder that is capable of holding 3 

mL was clamped onto the MSCAT sensor.  For the avidin and antibody layers 1 mL 

of liquid was placed on the sensor surface.  The sensors were then exposed to 1 mL 

liquid samples containing suspensions of non-pathogenic E. coli O157:H7 bacteria in 

PBS.  The concentration of these samples was approximately 108 microbes/mL. The 
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frequency response of the MSCAT was recorded over time and a response signature 

was obtained for the MSCAT sensor of which a representative signature is shown 

(Figure 5.8). 

The MSCAT response signature shown in Figure 5.8 displays the typical 

mass-loading responses usually recorded from an acoustic wave sensor for the avidin 

and antibody layers. The response from the addition of E. coli O157:H7 is different.  

The initial downward trend of the response after E. coli O157:H7is introduced is 

followed by a positive resonant frequency shift over time.  It was this positive 

frequency shift that was used for the MSCAT sensor’s response signature.  When E. 

coli O157:H7 is bound to the sensor surface it not only effectively increases the 

thickness of the film but also changes the elastic properties of the film.  The positive 

resonant frequency shift observed in the sensor upon exposure to E. coli may be 

explained by the visco-elastic effects of the biological film on the sensor’s surface 

which hide any mass-loading response [110], however the BAW detection 

mechanism for antibody based sensing films is not well understood.    Optical tests 

using a microscope at 400x magnification performed on MSCAT sensors exposed to 

E. coli O157:H7 confirmed that the E. coli O157:H7 had in fact bound to the sensor 

surface and the sensor's response was not due to the film being removed from the 

sensor surface.   

Recently Cavic et. al. have introduced the idea of “apparent slip” to explain a 

similar positive frequency shift observed in BAW sensors when used for the detection 

of biological analytes [111].  If it is assumed that the sensing layer is rigidly bound to 

the substrate's surface than any addition to the sensing film would result in the 
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effective thickness of the transducer increasing and therefore an increase in the 

effective wavelength of the acoustic wave and an overall resonant frequency 

decrease.  In actuality, however, the sensing layer is not rigidly bound to the sensor 

surface but connected by linkers such as amienes and biotin/avidin (see Figure 5.1).  

In this case the bonds can rotate or bend.  During the course of the sensor’s oscillation 

the surface of the substrate will reverse direction at the end of each oscillation (Figure 

5.9).  As the substrate surface reverses direction the sensing film continues in its 

original direction due to its momentum until it is “pulled back” by its attachment to 

the sensor substrate leading to the phenomenon known as “apparent slip” - there is a 

lag time between when the substrate changes direction at the end of the oscillation 

and when the sensing film changes its direction.  If the properties of the sensing film 

changes due to the attachment of E. coli, then the degree of apparent slip of the film 

will change which can prevent the substrate surface from transmitting energy as far 

into the sensing film.  This would result in the apparent thickness of the transducer 

decreasing and thus increasing the resonant frequency of the device.   

It should be noted that the LFE exhibited the same positive frequency shift as 

the MSCAT when it was used to detect E. coli O157:H7 [112].  Although the concept 

of “apparent slip” does offer some insight into the mechanism behind the MSCAT’s 

response to the addition of E. coli O157:H7 there is currently no concrete theory that 

can predict the optimum operating frequency for a given sensing film.  Therefore it 

was necessary to experimentally determine the optimum operating frequency of the 

MSCAT for the detection of E. coli O157:H7 with the E. coli O157:H7 selective 

sensing film described in section 5.3.   
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Figure 5.9  Diagram showing sensor substrate (rectangle), linker (line), and sensing 

film molecule (sphere) during oscillation.  There is a lag between the time when 
the substrate changes directions and the film changes directions leading to 

"apparent slip." 
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5.5. Determination of Lowest E. coli O157:H7 detection limit.   

The United States Food and Drug Administration (FD) recommended 

detection limit for E. coli O157:H7 detection is 1 microbe/mL.  In order to achieve 

this very high level of sensitivity it is usually necessary to incubate the sample for a 

given amount of time to grow the E. coli O157:H7 population to a detectible level.  

Therefore the overall detection time is a function not only of the actual detection time 

of the sensor to a given E. coli O157:H7 concentration but also the time to incubate 

the sample to the minimum detection limit of the sensor.   

Current testing methods take approximately 24 hours which means that in a 

food processing facility the food must be held for an entire day before it can be 

shipped.  If a testing method could be developed, however, that would allow the food 

processing facility to detect the presence of a single E. coli O157:H7 bacterium in 

less than 12 hours (a typically work shift) then the food could be tested and shipped in 

the same day, significantly reducing costs as well as the risk of food spoilage and 

contamination.  

Wark measured the number of E. coli O157:H7 during their incubation and 

produced the E. coli O157:H7 growth curve seen in Figure 5.10 [96].  It should be 

noted that this test was performed under optimal conditions (nutrients, temperature) to 

promote E. coli O157:H7 growth and E. coli O157:H7 colonies obtained from food 

samples may grow slower.  Typically, the E. coli O157:H7 initially experience a lag 

phase where the growth is slow.  Typically a few hours after the lag phase starts the 

E. coli O157:H7 growth enters the log phase where the bacteria multiply rapidly.  

After 3-8 hours the E. coli O157:H7 enter the stationary phase where the nutrients in 
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Figure 5.10  Typical growth curve for E. coli O157:H7 (log scale).   
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the solution decrease and the number of bacteria stabilizes.  In order to minimize the 

overall detection time (incubation time + sensor response time) it is desirable to not 

only minimize the sensor’s response time but to also achieve the lowest possible E. 

coli O157:H7 detection limit which will minimize the required incubation time. 

Initially it was believed that a MSCAT operating at the highest possible 

operating frequency would provide the highest level of sensitivity as classical BAW 

theory such as the Sauerbrey [107] and Kanazawa [108] equations predict that BAW 

sensor sensitivity increases with operating frequency.  This, however, proved not to 

be the case.  In order to determine the lowest detection limit of the MSCAT, it was 

necessary to develop an approach that minimized the number of tests due to the time 

and cost required for each test.  Initially, an MSCAT sensor was coated with the 
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biological film described in section 5.3.  The sensor was operated at its 3rd harmonic 

and exposed to a 1 mL liquid sample containing suspensions of non-pathogenic E. 

coli O157:H7 bacteria starting at a concentration of 108 microbes/mL in PBS, the 

lowest detection limit of the LFE senor with the same fundamental frequency of the 

MSCAT (5 MHz) and using a very similar sensing film [112].   Since the MSCAT's 

frequency response is recorded using a network analyzer and then analyzed after the 

test, it is necessary to select a detection time before the starting the test.  It should be 

noted that the detection time for the LFE sensor in these tests was 8 hours instead of 

the 4 hours used in the MSCAT tests.  If the sensor was able to detect the E. coli 

O157:H7 within 4 hours, the sensing film was removed from the sensor’s surface by 

piranha cleaning the sensor and the sensing film was reapplied.  The MSCAT was 

considered to have detected E. coli O157:H7 if the sensor's response increased by at 

least a factor of five above the sensor response noise within the four hour detection 

window.  The sensor was then exposed to a liquid sample containing concentrations 

of E. coli O157:H7 ten times lower than the previous sample.  If the sensor was 

unable to clearly detect the E. coli O157:H7 within 4 hours, it was operated at the 

next odd harmonic.  This process was repeated until the lowest detection limit for the 

MSCAT sensor was obtained.  Each test was performed at least twice.  Table 5.1 

shows the lowest frequency at which the detection of E. coli O157:H7 was achieved.  

As can be seen in Table 5.1, the MSCAT sensor was able to detect E. coli O157:H7 at 

concentrations as low as 104 microbes/mL when operated at its 59th harmonic (295 

MHz), 4 orders of magnitude lower than the detection limit of the LFE sensor.  Figure 

5.11 shows a typical frequency response of the MSCAT sensor in these tests. 
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Table 5.1 MSCAT operating frequency and frequency shift for various 
concentrations of E. coli O157:H7 

 

E. coli Concentration MSCAT Frequency Frequency Shift
(microbes/mL) (MHz) (Hz)

108 15 620
107 15 391
106 55 71
105 105 433
104 295 1340

 
Figure 5.11 MSCAT sensor's response to a liquid sample containing 104 
microbes/mL of E. coli O157:H7 when operated at the 59th harmonic. 
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Although there are many factors that affect the growth rate of E. coli O157:H7 

including the nutrient level in the medium, temperature, and health of the starting E. 

coli O157:H7 colony [113], a conservative estimate is that it takes approximately 3 

hours of incubation after a 2 hour lag phase for a single bacterium colony of E. coli 

O157:H7 to reach a concentration level of 104 microbes/mL for a total incubation 

time of 5 hours. Thus the response time of the MSCAT is conservatively predicted to 

be about 9 hours for the single bacterium case, allowing for the current 4 hour sensor 

response time as well as the 2 hour lag time and 3 hour incubation time.  This 

response time is a vast improvement over the more than 24 hour response time of 

FDA approved methods and would allow food processor to test and ship food in a 

single 12 hour work shift.  Based on the E. coli O157:H7 growth experiments 

performed by Wark (Figure 5.10), under ideal conditions a concentration level of 104 

microbes/mL can be reached in under an hour of incubation time.  It should be noted 

that in these tests, the MSCAT's sensor response was recorded for the four hour 

detection window before it was analyzed.  As can be seen in Figure 5.11 the 

MSCAT's resonant frequency increase by approximately 100 Hz within the first hour, 

well above the signal noise.  It is likely that the detection time could be decreased 

significantly once electronics systems such as an oscillator circuit are developed that 

allow real-time monitoring of the MSCAT's frequency response. 

Even though the MSCAT sensors used in these test were able to operate at 

465 MHz with good signal strength and Q, subsequent increases in the MSCAT 

sensor's operating frequency did not allow lower concentrations of E. coli O157:H7 to 

be detected and in fact the magnitude of the frequency response decreased.  Section 
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5.4 describing the "apparent slip" effect provides some insight into this phenomenon.  

It has also recently been shown that for many acoustic wave biological sensing 

applications proper selection of the sensor operating frequency is critical due to the 

fact that the depth that the acoustic wave penetrates the sensing layer depends on the 

operating frequency of the sensor [114].  It was also shown in this work that 

approximately 300 MHz was the optimum operating frequency for antibody/antigen 

type sensing films which is further confirmed by this study which found that 295 

MHz is the optimum operating frequency for the sensing film.  This highlights one of 

the main strengths of the MSCAT: the ability of the MSCAT sensor to operate at a 

wide range of frequencies by exciting high order harmonics allows one to tune the 

MSCAT's operating frequency to the optimal frequency for a given sensing 

application.   

The MSCAT also provides the mechanism for "acoustic spectroscopy.”  The 

potential benefits of acoustic spectroscopy were first postulated by Araya-

Kleinsteuber et. al [99].  The fundamental concept of acoustic spectroscopy is that if a 

sensor platform was developed that could operate over a wide range of frequencies it 

would be possible to "probe" the sensing film at many different frequencies possibly 

leading to increased sensitivity and selectivity in complex sensing environments 

where many different analytes of interest may be present due to the fact that the 

sensor would be most sensitive to different analytes at different frequencies.  Chapter 

4 discusses the potential use of acoustic spectroscopy to separate the effects liquid 

mechanical and electrical property changes have on a BAW sensor’s frequency 

response. 



 140 

5.6. Detection of E. coli O157:H7 in Real World Sensing Environments   

In order to test the MSCAT E. coli O157:H7 sensor in real-world sensing 

environments, two sensing scenarios were selected.  In the first, untreated well water 

obtained from a local Maine source was inoculated with E. coli O157:H7.  The E. coli 

O157:H7 selective sensing film was attached to a MSCAT sensor as described in 

section 5.3 and the sensor was exposed to the inoculated well water.  The MSCAT 

was operated at its 5th (approximately 25 MHz) harmonic in these tests. The MSCAT 

was first tested by placing 1 mL of well water with no E. coli O157:H7 present on the 

sensors surface to insure that sensor did not react to any chemical or biological 

interferents that may be present in the sample.  As can be seen in Figure 5.12 the 

MSCAT’s frequency response was stable during this test.  The well water was 

removed from the sensor’s surface and 1 mL of well water inoculated with E. coli 

O157:H7 (108 microbes/mL of well water) was then applied to the sensor’s surface.  

As seen in Figure 5.13, the MSCAT was able to detect the E. coli O157:H7 in the 

well water and the sensor's frequency shift over time from when the liquid was 

introduced exhibited the characteristic increase in resonant frequency when E. coli 

O157:H7 is present.  From these results it can be concluded that the MSCAT is 

capable of detecting E. coli O157:H7 even in drinking water that may contain 

chemical or biological interferents. 
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Figure 5.12 MSCAT sensor's response to well water. 
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Figure 5.13  MSCAT sensor's response to well water inoculated with E. coli 

O157:H7. 
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Based on the promising results obtained for well water, apple juice was 

chosen as a model food item.  Pasteurized apple juice was inoculated with E. coli 

O157:H7 and a MSCAT sensor had the E. coli O157:H7 selective sensing film 

attached to its surface as described in section 5.3 above.  The sensor was operated at 

its 5th harmonic in these tests.  The MSCAT was first tested by placing 1 mL 

pasteurized apple juice with no E. coli O157:H7 present on the sensors surface to 

ensure that sensor did not react to any chemical or biological interferents that may be 

present in the food sample.  As can be seen in Figure 5.14 the MSCAT’s frequency 

response was relatively stable during this test although it exhibited slightly more drift 

than the well water tests.  The apple juice was removed from the sensor’s surface.  

One mL of apple juice inoculated with E. coli O157:H7 (108 microbes/mL of apple 

juice) was then applied to the sensor’s surface.  The sensor's frequency response can 

be seen in Figure 5.15.  As was the case with the well water, the MSCAT was able to 

detect the E. coli O157:H7 in the apple juice and the sensor's frequency shift over 

time from when the liquid was introduced exhibited the characteristic increase in 

resonant frequency when E. coli O157:H7 is present while the MSCAT sensor's 

frequency did not change when a sample containing only the apple juice that was not 

inoculated with E. coli O157:H7.  It should be noted, however, that the frequency 

response for the apple juice inoculated with E. coli O157:H7 was approximately half 

as large as response for the well water inoculated with E. coli O157:H7 indicating 

that the apple juice may inhibit the binding of E. coli O157:H7 to the sensing film.  

One possible explanation for this is that the pH level varies significantly between 

water (~7) and apple juice (~ 3).  It has been shown that pH level can affect antibody 
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binding [115].  Based on these results it may be necessary to adjust the pH level of a 

food sample before it is introduced to the MSCAT sensor in order to maximize the 

sensor’s sensitivity.   
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Figure 5.14 MSCAT's sensor response to apple juice. 
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Figure 5.15  MSCAT sensor's response to apple juice inoculated with E. coli 

O157:H7. 
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In order to realize an MSCAT E. coli O157:H7 sensor system that can be used 

in real-world applications several tasks must be accomplished including: utilize an 

incubation process to improve the sensitivity and response time of the MSCAT 

immunosensor to E. coli O157:H7, possibly developing a method to adjust the pH of 

the sample, develop the electronics to collect, process, and store the sensor response, 

develop the overall sensor system (integration of sample preparation, pre-filtration, 

sensing element, electronics), and  test the sensor system in the lab and in the field, 

comparing the results with established products such as Colilert (IDEXX 

Laboratories, Westbrook, ME).  Based on the promising results obtained for E. coli 

O157:H7, the detection of a second biological analyte using the MSCAT was 

explored.   

 
5.7. Salmonella Background 
 

The promising results obtained for E. coli O157:H7 resulted in preliminary 

research being undertaken to determine if the MSCAT coated with a Salmonella 

selective antibody based film could be used to detect Salmonella.  There are 

approximately 2400 serotypes of Salmonella bacteria, 500 of which are of concern for 

the food industry due to the possibility of negative health effects in humans [116].  

The two most common serotypes in the United States are Typhimurium and Enteritdis 

[117].  Salmonella Typhimurium DT104 is especially dangerous as it is highly 

virulent and resistant to a number of antibiotics [117].   

The US FDA method to detect Salmonella is outlined in the Bacteriological 

Analytical Manual (BAM) [118].  This method can take up to 4 days and involves an 

enrichment and isolation procedure using Buffered Pepton Water (BPW) 
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Tetrathionate (TT) enrichment broth followed by plating on three different agar 

plates; Brilliant green novobiocin (BGN) agar, Xylose lysine Tergitol 4 (XLT-4) 

agar, and Bismuth sulfite (BS) agar.  Samples are incubated in the TT enrichment 

broth for 24 hours and the agar plates are then streaked and incubated for an 

additional 24 hours.  5 typical colonies are selected from each plate and incubated on 

TSI and LIA slants for another 24 hours.  If Salmonella is present, the TSI slant will 

turn red or yellow while the LIA slant will turn purple.  Clearly this is a time and 

labor intensive sensing approach that is not practical for rapid, large volume 

screening of food samples. 

The concern for consumer safety in foods has resulted in research on sensor 

systems which can rapidly detect pathogens. In contrast to the BAM approach, 

practically all rapid detection methods are focused on the detection of a low number 

of targets. This approach is ideal for screening large numbers of food or liquid 

samples necessary for quality control.  

BioControl's Association of Official Analytical Chemists (AOAC) certified 

Assurance® Gold EIA and VIP Salmonella tests utilize enzyme immunoassays based 

on antibodies selective to Salmonella.  Although results may be read visually or 

instrumentally within 10 minutes after introducing an enriched sample with a 

microplate reader, the tests still require a 24+ hour incubation.  In addition they also 

require complex, hands on lab based procedures to prepare the sample for each test.  

Neogen's Gene-Trak® Salmonella Assays which utilize kinetic-based DNA 

hybridization to selective detect Salmonella in food samples are another AOAC 

certified test currently available on the market.  Like the BioControl tests, however, 
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Gene-Trak® Salmonella tests require lengthy (40-48 hour) incubations and 

complicated, hands-on lab based test procedures that are estimated by the 

manufacturer to take approximately 2 hours [119].  DuPont also markets a AOAC 

certified Salmonella test, the BAX® System PCR Assay.  This test is based on 

polymerase chain reaction (PCR) analysis of Salmonella - specific DNA fragments.  

Although the BAX® tests require minimal hands-on sample preparation, they do 

require the same lengthy incubation step as the other tests as well as a 4 hour 

processing in the required automated testing unit.  Head to head tests that have 

compared the BAM method with the BAX, Gene-Trak, and Gold EIA tests have 

found that although the BAX tests have the lowest detection limit, they had an 

unacceptably high false negative rate of nearly 10% [120].  Strategic Diagnostics, Inc. 

has recently introduced an AOAC validated Salmonella test, the RapidChek®.  These 

tests utilize a proprietary bacteriophage which selectively infect the bacteria as the 

selective agent.  Although the RapidChek® tests are capable of detecting one 

Salmonella cell in a 25 g food sample, these tests still require the use of a proprietary 

enrichment broth followed by a 24 sample incubation.    Although there are tests on 

the market that are capable of detecting small amounts of Salmonella in food, they are 

all lab based, require complex testing procedures, and require at least a 24 hour 

incubation time.  Clearly there is a need for a more rapid testing method in order to 

minimize the time food must be held before it goes to market.   
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5.8. Salmonella Selective Sensing Film 

A Salmonella selective sensing film based on Salmonella antibodies was 

developed by Wark [96] using a similar approach to the approach described 

previously for E. coli O157:H7.  Due to the fact that the Salmonella antibodies were 

not biotinylated it was necessary to use aldehyde to bind the antibodies to the 

MSCAT's surface.  The antibodies were covalently bound to the quartz of the 

MSCAT sensor platforms by first silanizing the sensor surface with 3-

Aminopropyltriethoxysilane, leaving a primary amine group-terminated surface.  

Unlike the E. coli O157:H7 sensing film, an aldehyde layer is used to bind the 

Salmonella selective antibodies to the quartz surface of the MSCAT.  A free carbonyl 

group on the aldehyde binds to the amines.  After the amine layer was deposited, the 

sensors were then incubated in a 5% glutaraldehyde solution for 1 hour.    A solution 

containing the Salmonella antibodies in the same concentration as the E. coli 

antibodies (approximately was 4 x 1014 antibodies) then added and allowed to 

incubate for 12 hours. The amine terminated antibodies were bound to a free carbonyl 

group on the aldehyde.   Figure 5.16 shows a diagram of the Salmonella selective 

sensing film. 
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Figure 5.16 Schematic of Salmonella Selective Sensing Film 

 

 

 

5.8.1. Verification of the Salmonella Antibody Attachment to the MSCAT 

 Sensor Platform 

In order to verify that Salmonella was in fact binding to the MSCAT's surface, 

the same procedure described in section 5.3.2. was performed.  Two MSCAT sensors 

had the sensing film deposited on their sensing surfaces using the procedure outlined 

in section 5.8.  A bare control sensor with no Salmonella selective sensing film was 

also used.  Each sensor was exposed to 1 mL of Salmonella for four hours.  The 

concentration of the Salmonella was approximately 109 microbes/mL.  Each sensor 

was then lightly rinsed with PBS to remove any unbound Salmonella.  Each sensor 
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was examined under an Olympus BX51 optical microscope.  Figure 5.17 shows the 

Salmonella bound to the MSCAT that had the sensing film while Figure 5.18 shows 

that Salmonella did not bind to the bare MSCAT. 

 

 

 

 

 

 

 

 

 
Figure 5.17 Salmonella bound to the MSCAT's surface (800x 

magnification) 
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Figure 5.18 Bare MSCAT with no Salmonella bound to the MSCAT's surface 

(800x magnification) 
 

 

 

5.9. MSCAT Salmonella Results 

The Salmonella selective sensing film described previously was applied to a 

MSCAT sensor.  A [8, 250, 515] spiral coil design as described in Chapter 3 was used 

for these tests and the sensor was operated at its fundamental frequency.  The 

MSCAT was allowed to stabilize for 80 minutes in PBS buffer and then Salmonella 

(approximately 109 microbes/mL in PBS buffer) was applied to the sensor surface.  

The MSCAT's response signature seen in Figure 5.19 is similar to the MSCAT's 

response to E. coli O157:H7 (see Figure 5.8), however the sensor response exhibits 

considerably more noise with the Salmonella selective film than with the E. coli 
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O157:H7 selective film.  The cause of this additional noise is not known at this point 

but it is believed that it is caused by the Salmonella selective sensing film which 

utilizes aldehyde instead of avidin and biotin.   

Although these Salmonella results are promising and demonstrate that it is 

possible to develop MSCAT sensors for a wide range of pathogenic bacteria a 

significant amount of future work remains.  The chemistry to attach non- biotinylated 

antibodies to the quartz MSCAT surface should be further developed to minimize the 

noise exhibited by the MSCAT's frequency response.  In addition, it will be necessary 

to determine the optimum operating frequency of the MSCAT for this new film.  

Finally the new Salmonella sensor should be tested to determine its lowest detection 

limit and to verify that it is able to detect Salmonella in real-world sensing 

environments. 
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Figure 5.19  The MSCAT sensor response to Salmonella.  Salmonella was added 

after the 80th minute. 
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5.10. Summary 

In order to demonstrate the applicability of the MSCAT platform as a sensor, 

it was used to detect two biological analytes which are the leading causes of 

foodborne illness.  The first biological analyte was Escherichia coli (E. coli) 

O157:H7, one of the leading causes of food borne illnesses.  There are many strains 

of E. coli and although most are harmless to humans, some strains such as serotype 

O157:H7 can cause serious illnesses.  An E. coli O157:H7 selective sensing film that 

can be attached to the MSCAT's quartz surface was developed by Wark.  The 

optimum operating frequency of the MSCAT was determined and found to be 

approximately 295 MHz.  At this frequency the MSCAT was capable of detecting 104 

microbes/mL within 4 hours.  

The second biological analyte examined was Salmonella.  There are 

approximately 2400 serotypes of Salmonella bacteria, 500 or which are of concern for 

the food industry due to the possibility of negative health effects in humans.  A 

Salmonella selective sensing film was developed for the MSCAT by Wark and the 

MSCAT sensing element was tested to and found to be capable of detecting 

Salmonella in concentrations of 109 microbes/mL. 
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6 THE MSCAT CHEMICAL SENSOR PLATFORM 
 
 
6.1. Introduction 

In order to demonstrate the applicability of the MSCAT platform as a 

chemical sensor, it was used to detect the paralytic shellfish toxin (PST) saxitoxin 

(STX).  In this chapter background on STX as well as the current methods of 

detection is described.  Next, the development of two target selective sensing films 

that can be attached to the MSCAT sensor is presented followed by the MSCAT STX 

results.   

 

6.2. Saxitoxin (STX) Background 
 

Algal blooms commonly occur in marine environments when a particular 

algal species reproduces quickly due to changes in nutrient level, water quality, 

sunlight, or temperature.  Although many algal blooms are harmless, a harmful algal 

bloom (HAB) produces toxins that can be dangerous to other organisms.  Often a 

HAB in a coastal region is referred to as "red tide" due to the fact that the algal 

species associated with these outbreaks are often red or brown in color.  Although lab 

based analytical tests for red tide exist [121], more recently satellite imagery has been 

used to monitor red tide outbreaks [122, 123].  One hazard of a HAB outbreak that is 

of particular concern is paralytic shellfish poisoning (PSP) which results from the 

ingestion of toxic shellfish meat containing algal bloom toxins by humans.  

Bivalve mollusks, the main vectors of PSTs, acquire their toxicity by 

suspension-feeding on toxigenic dinoflagellates (Alexandrium spp. in North America) 
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which causes the PSTs to bioaccumulate in the mollusk. When the toxic mollusks are 

ingested by humans, PSP can be contracted, constituting a public health hazard and 

additionally can cause severe economic losses when areas are closed to commercial 

fishing. The main toxin responsible for PSP is saxitoxin (STX) [124].   

 The current AOAC Official Method of Analysis for PST detection is the 

mouse bioassay [125] which requires 10 mice for standardization as well as 2 or 3 for 

each actual test. In this procedure samples are extracted from shellfish meat and then 

injected into mice. The time of death is noted, and using a standard table, the toxin 

level in the sample is estimated [126]. The AOAC also mandates that these mice must 

be maintained at a weight between 19 and 21 g. The death time of the mouse is used 

to calculate the amount of toxin present, with any amount greater than 80µg 

toxin/100g meat considered unsafe. When one includes the time of standardization, 

the mouse bioassay test takes approximately 2 days In addition to the inherent 

problems and limitations of mammalian bioassays, the high cost of maintaining a 

healthy mouse colony for the assay and the controversial issue of using mammals for 

medical testing encourages the development of alternative assays.  

There are some alternatives to the mouse bioassay for the detection of STX  in 

shellfish meat on the market such as High Pressure/Performance Liquid 

Chromatography (HPLC) and Liquid  chromatography-Mass Spectrometry (LCMS) 

which are very expensive laboratory-based tests and a “dip-stick” test (Jellet, Canada) 

which can provide a colormetric yes or no result.  The Lawrence HPLC test has been 

accredited by the AOAC, but still requires significant laboratory equipment and time. 

The Jellet Rapid Test for STX detects toxin levels to 40µg/100g (approximately 1.5 
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μM if the STX is in water) quickly and in situ, but this level is fairly close to the 

80µg/100g deadly level and the result given by the test is qualitative and suffers from 

a high false positive rate [127]. A third and even less used method it the Garthwaite 

Enzyme-Linked Immunosorbent Assay (ELISA).  Although some alternatives to the 

mouse bioassay exist, all of the currently available tests to detect STX are expensive, 

slow, sometimes non-quantitative, and do not allow the detection of PSTs directly in 

seawater. Therefore a need exists for a method of detecting STX which can provide 

fast and accurate in situ results. 

 
6.3.  STX Selective Sensing Films 

A STX selective sensing film based on crown-ether (CE) molecules was first 

developed and tested.  Based on these results a second sensing film based on STX 

selective antibodies was also developed and tested. 

 

6.3.1. Crown Ether (CE) Based Selective Sensing Film 

It has been reported that an 18-crown-6 ether (CE) molecule has cationic 

affinity to STX compared to other common cations while remaining insensitive to 

sodium, potassium, and calcium ions in solution [128]. Additionally when CE is 

integrated into a 4-(monoaza-18-crown-6-methyl)-7- octadecanoylaminocoumarin 

(ODAC) film deposited onto a quartz surface, it has been reported1233333333333 

that STX is absorbed into the film [132]. Therefore CE can thus be theoretically 

attached to the quartz surface of an MSCAT sensor platform, making a sensitive 

sensor element selective for STX and insensitive to common ions found in a marine 



 160 

environment.  An STX selective sensing film based on CE molecules was developed 

by Wark [129] and will be briefly described here. 

Each MSCAT sensor platform was cleaned in a Piranha solution.  Each 

cleaned substrate was then incubated in a 5 mM solution of 3-Aminopropyl-

trimethoxysilane (APTMS) in acetone resulting in a silanized quartz surface.  Three 

mg of the crown ether chemical 18-Crown-6-2,3,11,12-tetracarboxylic acid was 

dissolved in 5 ml of the solvent N,N-Dimethylformamide (DMF) with 20 mg of the 

coupling agent N,N-Dicyclohexylcarbodiimide (DCC) added.  The silanized quartz 

substrates were then incubated in the Crown/DMF/DCC solution for 24 hrs.  This 

procedure resulted in the STX sensitive crown ether bound to the quartz surface of the 

MSCAT sensor platform (see Figure 6.1).   

 

 

 

 

 

 

 

 

 
Figure 6.1 CE Film attached to the bare quartz surface of an MSCAT sensor platform 
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6.3.2. Antibody Based STX Selective Sensing Film  

Based on the successful results of the MSCAT E. coli sensor, an antibody 

based sensing film selective to STX was also developed by Wark [129] and Hunter 

[130].  A small sample of antibodies selective to STX was obtained from Beacon 

Analytical (Portland, ME) [131].  Due to the small amount of antibodies available, it 

was only possible to perform a "proof of concept" study on using a MSCAT sensor 

platform coated with an antibody based sensing film to detect STX.  It is not possible 

to purchase commercial STX antibodies and Beacon is currently one of the only 

companies who have developed an ELISA based STX test.  In order to attach the 

STX selective antibodies to the quartz surface of the MSCAT a chemical procedure 

was first developed by Wark and Hunter.   

 

6.3.2.1. Attachment of STX Selective Antibodies to the Sensor Surface 

The antibodies were covalently bound to the quartz of the MSCAT sensor 

platforms by first silanizing the sensor surface with 3-Aminopropyltriethoxysilane, 

leaving a primary amine group-terminated surface.  The sensors were then incubated 

in a 5% glutaraldehyde solution for 1 hour and then a solution containing the STX 

antibodies were added and allowed to incubate until the sensor’s response stabilizes 

(indicating that binding is was no longer occurring).  The antibody solution contained 

approximately 4 x 1014 antibodies in the 1 mL solution.   A schematic of the sensing 

film can be seen in Figure 6.2. 
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Figure 6.2 Schematic of Antibody Based STX Sensing Film 

 

 

 

 

 

6.3.2.2 Verification of STX Antibody Film 

In order to verify the attachment of the primary STX selective antibodies, an 

Amplex® Red immunoassay was performed using Goat anti-Rabbit IgG HRP.  The 

immunoassay was performed in separate beakers from the film deposition process to 

avoid contamination.  12Goat anti-Rabbit Immunoglobulin G (IgG) horseradish 

peroxidase (HRP) secondary antibodies were used in conjunction with Amplex® Red 

to verify the attachment of the primary STX antibodies.  The secondary antibodies 

theoretically bind to only to the primary antibodies; however, it has recently been 
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shown that it is possible to weakly bind antibodies to bare quartz surfaces [132].  In 

order to remove the possibility of the secondary antibodies to non-specifically bind to 

empty spots on the sensor surface the sensors were placed in bovine serum albumin 

(BSA) after the sensing film was placed on the MSCAT’s surface.  BSA attaches to 

any free binding sites eliminating the possibility of non-specific secondary antibody 

attachment.  A control sensor was also used that was only exposed to BSA.  The BSA 

would fill any available binding sites on the control MSCAT eliminating the 

possibility of secondary antibodies attaching to the sensor surface. 

Each sensor was silanized to form the amiene layer and then glutaraldehyde 

was added and allowed to sit for one hour to form the aldehyde layer.  The STX 

selective antibodies were then added to phosphate buffered saline (PBS) to produce a 

solution with a concentration of 5 µL/mL.  The antibody solution was then added to 

the sensors and allowed to sit for 8 hours to ensure complete binding of the antibodies 

to the aldehyde layer.  The sensor surface was then gently rinsed to remove any free 

antibodies and BSA blocker was added and allowed to sit for one hour in order to 

block any free binding sites not occupied by antibodies.   

After rinsing both MSCAT’s surfaces, the secondary antibodies were applied 

and allowed to sit for one hour then the sensors’ surfaces were rinsed again.  The 

sensors were then placed in PBS.  PBS is a buffer solution that is often used in 

biological testing because it helps to maintain a constant pH.  Amplex® Red was then 

added to the sensors.  If the secondary antibodies were bound to the MSCAT’s 

surface the Amplex® Red and HRP will produce resorufin and fluoresce at 

approximately 550 nm (red).   
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As can be seen in Figure 6.3 and Figure 6.4 the MSCAT with the primary 

STX antibody film produced a strong red response while the control did not.  These 

tests were performed twice yielding similar results each time.  It should be noted that 

this sensing film could be applied to any acoustic wave sensor with a quartz sensing 

surface such as an LFE or SAW. 
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Figure 6.3 Photograph of MSCAT sensor with the STX antibody film after the 

introduction of Amplex® Red. 
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Figure 6.4 Photograph of the control MSCAT sensor without the STX 

antibody film after the introduction of Amplex® Red. 
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6.4. MSCAT STX Results 

After each film was developed, the sensing films were applied to MSCAT 

platforms.  Each film was tested to determine if the MSCAT sensing element was 

capable of detecting STX. 

 

6.4.1. CE Based Selective Sensing Results 

Based on results obtained for LFE sensors for the detection of STX [134], two 

MSCAT sensor were used in a differential sensing pair for the detection of STX in 

water.  One sensor, referred to as the CE MSCAT, had a film of CE molecules 

covalently bound to its sensing surface as described in previously.  The second sensor 

in the differential pair, referred to as the APTMS MSCAT, was functionalized with 3-

Aminopropyl-trimethoxysilane (APTMS) as described in section 6.3.1, leaving 

positively charged groups on its sensing surface.  These groups resist the binding of 

positively charged STX molecules while detecting non-specific mechanical and 

electrical changes in the fluid environment not associated with STX binding to the CE 

MSCAT sensor.   

The differential sensing pair was exposed to varying 1 mL concentrations of 

STX in de-ionized (DI) water.  Both sensors were operated at their fundamental 

frequency (approximately 5 MHz).  The CE MSCAT sensor exhibited a change 

(shift) in its resonant frequency due to mechanical and electrical changes in the CE 

film from STX binding.  This sensor, however, also responds to non-specific changes 

such as the conductivity in the fluid medium.  Therefore, the total response of the 

differential sensor pair is obtained by subtracting the resonant frequency change of 
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Figure 6.5 Differential MSCAT sensor response to various  concentrations of 

STX 
 

the APTMS MSCAT from that of the CE MSCAT, leaving a net frequency change 

principally due to STX binding to the CE film as seen in Figure 6.5.  A dose response 

curve for the data shown in Figure 6.5 can be seen in Figure 6.6.   
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The differential MSCAT sensing pair for STX in DI water is a quantitative in 

situ monitor for STX with a sensitivity of about 1 μM, which is significantly more 

sensitive than the mouse bioassay.  In addition, the sensor's response time was 

approximately 1 minute, significantly shorter than the response time for other sensing 

technologies like the mouse bioassay which takes 48 hours.  The differential sensing 

pair’s performance in non-ideal environments, however, was less than ideal. 

When the sensing elements were tested in salt water (35 parts per thousand 

NaCl) and simulated ocean water it was discovered that the MSCAT was unable to 

detect STX in these environments.  Wark [129] discovered that the aromatic rings of 

 
Figure 6.6 STX dose response curve for CE MSCAT. 
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the modified CE in the ODAC molecule, in addition to providing fluorescent 

indication of STX binding, was responsible for the selectivity of the CE in Gawley's 

work [128].  Wark assessed the possibility of producing the ODAC molecule and 

attaching it to a MSCAT sensor platform, but found that the synthesis (which requires 

significant time on the order of a week per yield) is too complex and expensive to be 

practical.  Although the CE MSCAT is sensitive to STX, it is not selective enough to 

be used in situ.  Therefore, a new approach was identified.   

 

6.4.2. Antibody Based Selective Sensing Results 

Due to the extremely limited supply of STX selective antibodies that were 

available, it was only possible to perform a "proof of concept" using the MSCAT.  

The antibody based STX sensing film described earlier was applied to MSCAT 

sensors.  Initial tests were performed in a phosphate buffer saline solution (PBS) 

which has many ions which fouled the crown ether film.  Upon finishing the antibody 

incubation, a 1mL aliquot of PBS buffer remained on a functionalized MSCAT.  The 

sensor was operated at its fundamental frequency and its response was monitored for 

approximately 25 minutes with 1 mL of PBS in the MSCAT holder. After 

approximately 25 minutes, a 10 uL drop of 1.67 mM STX in PBS was added to the 

sensors resulting in a concentration of approximately 1.65 μM and the response was 

recorded (Figure 6.7).  As was the case for E. coli, the frequency of the sensor with 

the antibody film initially decreased and then increased over time indicating that STX 

was binding to the sensing film. The sensor’s response increased by approximately 

100 Hz over the course of 60 minutes, a significantly larger shift than the 
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Figure 6.7 Antibody Based MSCAT STX Response to STX 
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approximately 5 Hz shift observed for a 1 μM concentration of STX observed for the 

CE film.  The MSCAT's frequency response increased by approximately 40 Hz 

within the first 5 minutes indicating that a response time on the order of minutes is 

possible.  Although the sensitivity level of the STX antibodies provided by Beacon is 

proprietary, these results indicate that the STX antibodies are highly sensitive to STX.  

It is important to remember that these tests were run in PBS which has a high salinity 

and fouled the CE film. 

  Previous work on E. coli has shown that one can take advantage of the 

"apparent slip" phenomenon by operating the MSCAT at a critical frequency which 

can maximize sensitivity.  Unfortunately due to the limited supply of STX antibodies 

that were available this critical frequency has not been found for STX.  This work 
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will be performed once a sufficient supply of STX antibodies is available.  However, 

the promising results utilizing the STX selective antibodies open an avenue for a 

rapid STX sensor that is capable of operating in complex sensing environments.   

Although the feasibility of using a MSCAT sensor platform to sensitively 

detect STX even in conductive solutions has been shown, more work remains to 

develop a commercial product.  The next steps in realizing a prototype STX sensor 

are to: determine the optimum operating frequency for the sensor to maximize 

sensitivity, develop the electronics to collect, process, and store the sensor response, 

develop the overall sensor system (integration of sample preparation, pre-filtration, 

sensing element, electronics), test the sensor system in the lab and in the field, 

comparing the results with established products such as the mouse bioassay. 

 

6.5. Summary 

The MSCAT was used to detect the chemical analyte saxitoxin.  Shellfish, 

though a popular food, can carry public health risks.  Specifically, paralytic shellfish 

poisoning (PSP) results from the ingestion of toxic shellfish meat containing algae-

produced paralytic shellfish toxins (PSTs).    Saxitoxin (STX) is the most potent of 

over 20 PST chemical derivatives.  Two STX selective sensing films, one based on a 

crown-ether molecule and one based on STX antibodies donated by Beacon 

Analytical, were developed by Wark and tested with the MSCAT.  Although the CE 

MSCAT it was found to be sensitive to STX, it is not selective enough to be used in 

situ.  An MSCAT with the antibody based sensing film was found to be capable of 

detecting STX even in conductive media.  The STX antibody based MSCAT was 
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found to be highly sensitive to STX and capable of detecting 1µM of STX in a matter 

of minutes.   
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7 SUMMARY, CONCLUSIONS, AND FUTURE WORK 
 
 
7.1 Summary 

The MSCAT sensor, which uses a gold, photolithographically-deposited, 

spiral coil antenna, has been developed to improve upon the best aspects of the 

standard QCM sensor while integrating the positive features of other acoustic wave 

sensors such as the LFE sensor and EMPAS.  The coil on the MSCAT sensor is an 

antenna that radiates a time-varying electric field that penetrates the AT-cut quartz 

wafer. As a result of the piezoelectric effect, the time varying electric field sets up a 

time-varying stress in the wafer. Depending on the wafer thickness and the frequency 

of excitation, resonant acoustic waves at the TSM fundamental and higher order 

harmonic frequencies are excited.  Like the LFE and QCM, the measurable output of 

the MSCAT sensor is a change in the resonant frequency shift of the transverse shear 

mode (TSM) due to changes in the sensing film caused by the measurand.    

The MSCAT spiral coil was examined both experimentally and theoretically.  

Over 40 spirals with different shapes, number of turns, spacing, and widths were 

designed and tested for the MSCAT sensor.  Their maximum operating frequency 

was determined and a spiral coil design for the MSCAT was selected.  The near field 

behavior of the spiral coil was examined theoretically using FEA software and an 

understanding of how the electric fields radiated from a MSCAT's spiral coil excite 

acoustic waves in the substrate was gained.   

The MSCAT was also tested for use as a biological and chemical sensor.  In 

order to demonstrate the applicability of the MSCAT platform as a sensor, it was used 
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to detect two biological analytes which are the leading causes of foodborne illness.  

The first biological analyte was Escherichia coli (E. coli) O157:H7, one of the 

leading causes of food borne illnesses.  There are many strains of E. coli and although 

most are harmless to humans, some strains such as serotype O157:H7 can cause 

serious illnesses.  Current methods of evaluating drinking water or food for 

microorganisms involve collecting samples and transporting them to a central 

laboratory for analysis. The samples are processed and incubated for 24 to 48 hours 

before the presence or absence of E. coli can be determined.  An E. coli O157:H7 

selective sensing film that can be attached to the MSCAT's quartz surface was 

developed by Wark.  The optimum operating frequency of the MSCAT was 

determined and the detection time and lowest detection limit for the MSCAT E. coli 

O157:H7 sensor was determined and compared to other BAW sensors.   

The second biological analyte examined was Salmonella.  There are 

approximately 2400 serotypes of Salmonella bacteria, 500 or which are of concern for 

the food industry due to the possibility of negative health effects in humans.  The two 

most common serotypes in the United States are Typhimurium and Enteritdis.  

Salmonella Typhimurium DT104 is especially dangerous as it is highly virulent and 

resistant to a number of antibiotics.  A Salmonella selective sensing film was 

developed for the MSCAT by Wark and the MSCAT sensing element was tested to 

determine if it could detect Salmonella. 

The MSCAT was also used to detect the chemical analyte saxitoxin.  

Shellfish, though a popular food, can carry public health risks.  Specifically, paralytic 

shellfish poisoning (PSP) results from the ingestion of toxic shellfish meat containing 
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algae-produced paralytic shellfish toxins (PSTs).    Saxitoxin (STX) is the most potent 

of over 20 PST chemical derivatives.  The current AOAC Official Method of 

Analysis for PST detection is the mouse bioassay.  In this procedure samples are 

extracted from shellfish meat and then injected into mice. The time of death is noted, 

and using a standard table, the toxin level in the sample is estimated.  Two STX 

selective sensing films, one based on a crown-ether molecule and one based on STX 

antibodies donated by Beacon Analytical, were developed by Wark and tested with 

the MSCAT.   

A theoretical search and experimental measurements were also performed to 

identify the existence of high-frequency temperature-compensated TSMs in LiTaO3. 

Prototype LFE LiTaO3 sensors were fabricated and tested (see Appendix A).  

Expressions for the near-field electric fields radiated by a spiral coil antenna were 

also derived (see Appendix B).   

 

7.2 Conclusions 

This work is the first demonstration of utilizing a photolithographiclly 

deposited antenna to excite bulk acoustic waves in a sensor platform.  Although there 

are limitless numbers of antenna configurations that one may use, the choice has to be 

carefully made in order to efficiently excite bulk acoustic waves over a wide 

frequency range.  Although all antennas radiate electromagnetic fields which can 

excite acoustic waves in piezoelectric materials through the reverse piezoelectric 

effect, most antenna designs only radiate electromagnetic fields efficiently at a single 

frequency due to the fact that their designs are based on the wavelength of the 
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electromagnetic wave that is to be excited.  There is, however, a class of antennas 

known as frequency independent spiral antennas that are capable of operating over a 

wide frequency range.  Due to the ability to miniaturize these antennas and the fact 

that they operate efficiently over a wide frequency range a spiral coil antenna was 

chosen as the antenna type for the MSCAT. 

It was found that a [8 turn, 250 µm spacing, 515 µm width] MSCAT was 

capable of operating up to the 99th harmonic which is a significant improvement over 

the 63rd harmonic that was successfully used for the EMPAS.  It was found that the 

parallelism of the AT-cut quartz substrate is critical in order to achieve high 

frequency operation.  Theoretical work was performed in order to gain an 

understanding of how the MSCAT's spiral coil antenna excites the TSM in AT-cut 

quartz.  An expression for the near-field electric fields radiated by a spiral coil 

antenna were derived and it was concluded that the spiral coil antenna radiates 

electric fields in both the lateral and thickness direction in the near field, not just the 

lateral direction, as was previously believed.   

Based on these results, two phenomena relating to the operation of the 

MSCAT sensor platform using FEA modeling was examined.  First, the electric field 

distribution in the AT-cut quartz wafer when the sensor was loaded with DI water and 

when it was left in air was examined.  It was found that when the sensor was operated 

in air the electric fields inside the wafer were relatively weak and in several different 

directions leading to both weak resonances and destructive interference of the TSM 

due to multiple modes being excited.  When a liquid was placed on the sensor 

surface, however, the distribution of the electric field changed significantly.  The 
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magnitude of the electric field was much stronger than the air case and the electric 

fields were oriented in the thickness direction leading to only the excitation of the 

desired TSM.  This is in contrast to the EMPAS where the majority of the electric 

fields are trapped in the air gap between the coil and the AT-cut quartz wafer.  This 

result leads to the conclusion that the MSCAT excites the TSM in AT-cut quartz 

much more efficiently than the EMPAS does due to the fact that the spiral coil is in 

direct contact with the substrate.  It was also found that an MSCAT platform that has 

a gold electrode placed on its sensing surface is capable of operating in air and may 

be applicable to gas sensing applications. 

The near-field behavior of several different spiral coil antenna configurations 

was also examined.  It was found that the thickness component of the electric field in 

the AT-cut quartz wafer varies significantly with the design of the spiral coil.  This 

result leads to the conclusion that it is critical to properly select the spiral coil 

configuration for the MSCAT in order to efficiently. 

The MSCAT was found to be capable of detecting both mechanical (viscosity 

density product) and electrical (conductivity and relative permittivity) property 

changes in liquids while the QCM can only detect mechanical property changes.  

When the MSCAT was operated at elevated harmonics its frequency shift was found 

to be four orders of magnitude larger than the frequency shift of the LFE or QCM for 

the detection of relative permittivity changes and five orders of magnitude larger for 

viscosity density product and conductivity changes.  Of more interest, however, is the 

fact that the sensitivity of the MSCAT varies depending on the operating frequency.  

The MSCAT was found to be most sensitive to changes in viscosity and conductivity 
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when it is operated at approximately 300 MHz.  The MSCAT was most sensitive to 

relative permittivity changes when it was operated at approximately 500 MHz 

although the relative frequency shift at 500 MHz is only approximately 15% larger 

than when the MSCAT was operated at its fundamental frequency.  These results 

show that the sensitivity to mechanical and electrical property changes is dependent 

on the operating frequency of the device and the highest possible operating frequency 

does not necessarily result in the highest level of sensitivity.  This is in direct contrast 

to classical BAW theory such as the Sauerbrey and Kanazawa equations which 

predict that the sensitivity of BAW devices increases with operating frequency.   

MSCAT sensors were also used to detect biological and chemical analytes.  

MSCAT sensors were used to selectively detect the bacterium E. coli O157:H7 in 

water.  The MSCAT sensor was found to be most sensitive when it was operated at its 

59th harmonic (295 MHz).  At this frequency it was able to detect E. coli O157:H7 in 

concentrations four orders of magnitude lower (104 microbes/mL) than the detection 

limit of the QCM and LFE with half the detection time (4 hours).   

MSCAT sensors have also been used to detect the chemical analyte STX, the 

most dangerous neurotoxin associated with paralytic shellfish poisoning.  It was 

found that although the MSCAT could detect low concentrations of STX using a CE 

based sensing film; the film was also sensitive to conductivity changes in the 

medium.  An antibody based sensing film was developed and found to be capable of 

detecting STX even in conductive media.  The STX antibody based MSCAT was 

found to be highly sensitive to STX and capable of detecting 1µM of STX in a matter 

of minutes.   
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These results show that the MSCAT has an enormous amount of potential as a 

sensor platform.  Due to the fact that the MSCAT has very large frequency shifts to 

mechanical and electrical property changes when operated at elevated frequencies it 

may be applicable to applications where small changes in a fluid medium must be 

measured.  It is likely that operating an MSCAT at a wide range of frequencies as an 

"acoustic spectrometer" will provide additional acoustic impedance information about 

the analyte being tested.  In addition, the MSCAT coated with an antibody based 

sensing film can be used to sensitively and quickly detect a wide range of chemical 

and biological analytes and may be a replacement for the ELISA test currently used 

for chemical and biological detection. 

A search was also made for orientations in lithium tantalate that when excited 

with a lateral electric field would offer improved sensor performance over standard 

AT-quartz LFE and QCM sensors.  Two candidate orientations of lithium tantalate 

were theoretically identified that showed significant improvements in 

electromechanical coupling and predicted to have temperature compensated pure 

TSMs at 25°C, namely the (YXwl) -16.5°, and (YXwl) -84.3° cuts.  The (YXwl) -

16.5° cut was chosen for further testing based on the separation of interfering modes 

and the body of literature available on it from its use in RF filtering applications.  

XRD measurements were performed on the wafer that verified that it was the correct 

orientation.  A LFE sensor with a fundamental frequency of 5.2 MHz was fabricated 

on this cut and found to be capable of operating at frequencies as high as 1.4 GHz 

(269th harmonic).  The temperature behavior for this cut of LTO was experimentally 

measured and found to be temperature compensated at 70°C instead of 25°C as 



 181 

theoretically predicted.  When tested as a sensor, the LTO LFE was found to be 

capable of detecting both mechanical and electrical property changes in liquids unlike 

the standard QCM.  This sensor was used to measure viscosity, conductivity, and 

relative permittivity changes in liquids and found to have significantly larger 

frequency changes than AT-cut QCM and LFE sensors when it was operated at high 

frequencies.   

 

7.3 Future Work 

Although the results obtained for the MSCAT are very promising, more work 

remains.  It would be useful to develop portable electronics systems such as an 

oscillator which would allow real-time measurements of the MSCAT's frequency 

response.  In order to fully optimize the MSCAT spiral coil configuration it will be 

necessary to develop an equivalent circuit model that incorporates the antenna design.  

Other antenna designs such as a logarithmic spiral coil where the ratio of the width to 

spacing varies could also be explored for use with the MSCAT.  It is likely that 

operating an MSCAT at a wide range of frequencies as an "acoustic spectrometer" 

will provide additional acoustic impedance information about the mechanical and 

electrical properties of a liquid sample as the sensitivity of the MSCAT to each liquid 

property changes depending on the operating frequency.  However, in order to utilize 

the MSCAT as a sensitive liquid property sensor, it will first be necessary to develop 

a strategy to separate the effects of liquid mechanical and electrical property changes 

from the MSCAT’s sensor response.  Using the MSCAT for acoustic spectroscopy 

could also be explored for a wide range of sensing applications including chemical 

and biological agent detection.  The MSCAT could also be explored as a highly 
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sensitive mass sensor for applications such as a rate monitor for thin film deposition 

systems. 

In order to realize an MSCAT E. coli O157:H7 sensor system that can be used 

in real-world applications several tasks must be accomplished including: utilize an 

incubation process to improve the sensitivity and response time of the MSCAT 

immunosensor to E. coli O157:H7, develop the electronics to collect, process, and 

store the sensor response, develop the overall sensor system (integration of sample 

preparation, pre-filtration, sensing element, electronics), and  test the sensor system in 

the lab and in the field, comparing the results with established products such as 

Colilert (IDEXX Laboratories, Westbrook, ME). 

Although these Salmonella results are promising and demonstrate that it is 

possible to develop MSCAT sensors for a wide range of pathogenic bacteria a 

significant amount of future work remains.  The chemistry to attach non-biotintilated 

antibodies to the quartz MSCAT surface should be further developed to minimize the 

noise exhibited by the MSCAT's frequency response.  In addition, it will be necessary 

to determine the optimum operating frequency of the MSCAT for this new film.  

Finally the new Salmonella sensor should be tested to determine its lowest detection 

limit and to verify that it is able to detect Salmonella in real-world sensing 

environments. 

Although the feasibility of using a MSCAT sensor platform to sensitively 

detect STX even in conductive solutions has been shown, more work remains to 

develop a commercial product.  The next steps in realizing a prototype STX sensor 

are to: determine the optimum operating frequency for the sensor to maximize 
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sensitivity, develop the electronics to collect, process, and store the sensor response, 

develop the overall sensor system (integration of sample preparation, pre-filtration, 

sensing element, electronics), test the sensor system in the lab and in the field, 

comparing the results with established products such as the mouse bioassay. 

Finally, an MSCAT array could be developed that would be capable of 

detecting a wide range of chemical and biological analytes using a single sensor 

system and potentially replace the ELISA sensor platform. 

 



184 
 

REFERENCES 

1. Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 
ANSI/IEEE Standard on Piezoelectricity.”   IEEE Trans. Ultrason. 
Ferroelect. Freq. Contr. 42 (5), 717-771, 1996. 

2.  B.A. Auld, Acoustic fields and waves in solids, 2nd ed., Malabar, FL, 
USA: Robert E. Krieger Publishing Co., vol. 1, 1990. 

3. C. Lu and O. Lewis, “Investigation of film-thickness determination by 
oscillating quartz resonators with large mass load.”   J. Appl. Phys. 43, 
4385–90, 1972.  

4. S.J. Martin, V.E. Granstaff and G.C. Frye, “Characterization of a 
quartz crystal microbalance with simultaneous mass and liquid 
loading,” Analytical Chemistry, 63 (20), 2272-2281, 1991. 

5. S.C. Ng et al. "Quartz crystal microbalance sensor deposited with 
Langmuir−Blodgett films of functionalized polythiophenes and 
application to heavy metal ions analysis."  Langmuir, 14, 1748-1752. 

6. G. Sauerbrey, “Use of quartz vibrator for weighing thin films on a 
microbalance,” Z. Phys., 155, 206-210, 1959. 

7. B. Morray, Li Suiqiong, J. Hossenlopp, R. Cernosek, and F. Josse, 
“PMMA polymer film characterization using thickness-shear mode 
(TSM) quartz resonators," Proc. IEEE Freq. Control Symp. and PDA 
Exhibition, 294-300, 2002. 

8. S. Ballantyne, ”Electromagnetic excitation of high frequency acoustic 
shear waves for the study of interfacial biochemical phenomena”   
PhD dissertation, University of Toronto, Toronto, Canada, 2005. 

9. F. Josse, “Acoustic wave liquid-phase-based microsensors,” Sens. Act. 
A, 44, 199-208, 1994. 

10.  Y. Lee, D. Everhart, and F. Josse, “The quartz crystal resonator as 
detector of electrical loading: An analysis of sensing mechanisms,” 
Proc. IEEE Int. Freq. Contr. Symp., 577-585, 1996. 

11. C. Zhang and J. Vetelino, “Bulk Acoustic Wave Sensors for Sensing 
Measurand-Induced Electrical Property Changes in Solutions,” IEEE 
Trans. Ultrason., Ferroelect. Freq. Contr. 48, 773-778, 2001. 

12. C. Zhang and J. Vetelino, “A Bulk Acoustic Wave Resonator for 
Sensing Liquid Electrical Property Changes,” Proc. IEEE/EIA Int. 
Freq. Contr. Symp., 535-541, 2001. 



185 
 

13. A. Ballato, E.R. Hatch, M. Mizan, T. Lukaszek, and R. Tilton. “Simple 
Thickness Modes Driven By Lateral Fields.” Pro. IEEE Int. Freq. 
Contr. Symp., 462–72, 1985. 

14. J.R. Vig, U.S. Patent, 5,744,902, “Chemical and Biological Sensor 
Based on Microresonators,” Date of patent: 28 April 1998. 

15. J.R. Vig and A. Ballato, U.S. Patent, 6,260,408, “Techniques for 
Sensing the Properties of Fluids with a Resonator Assembly,” Date of 
patent: 17 July 2001.  

16. J.F. Vetelino, U.S. Patent, 7,075,216, “Lateral Field Excited Acoustic 
Wave Sensor,” Date of patent: 11 July 2006. 

17. Y. Hu, L.A. French, K. Radecsky, M. Pereira da Cunha, P. Millard, 
J.F. Vetelino.  “A Lateral Field Excited Liquid Acoustic Wave 
Sensor.” Proc. IEEE Ultrasonics Symp. 46-51, 2003. 

18. Y. Hu, L.A. French Jr., K. Radecsky, M.P. da Cunha, P. Millard, and 
J.F. Vetelino, “A lateral field excited liquid acoustic wave sensor,” 
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 51 (11) 1373-1380, 
2004. 

19. U. Hempel, R. Lucklum, J.F. Vetelino, and P.R. Hauptmann, 
"Advanced application of the impedance spectrum of a lateral field 
excitated sensor,"  Sens. Act. A, 142, 97-103, 2007. 

20. D. F. McCann, J. Parks, J.M. McGann, M.P. da Cunha, J.F. Vetelino.  
“A Lateral Field Excited LiTaO3 High Frequency Bulk Acoustic 
Wave Sensor."  IEEE Trans. Ultrason., Ferroelect. Freq. Contr., 56 
(4), 779-787, 2009. 

21. W. Wang, C. Zhang, Z. Zhang, Y. Liu, and G. Feng.  "Three operation 
modes of lateral-field-excited piezoelectric devices."  Applied Physics 
Letters,  93, 242906, 2008. 

22. W. Pinkham, L.A. French Jr., D. Frankel, Y. Hu, J.F. Vetelino, 
“Pesticide detection using a lateral field excited acoustic wave sensor.”  
Sensors and Actuators B, 108, 910-16, 2005. 

23. C. York, P. Millard and L. French, J.F. Vetelino.  “A Lateral Field 
Excited Acoustic Wave Biosensor,” Proc. IEEE International 
Ultrasonics Symposium, 44-49, 2005. 

24. US Center for Disease Control.   www.cdc.gov/ 
ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm 

25. US FDA. http://www.cfsan.fda.gov/~mow/intro.html 



186 
 

26. E. Berkenpas, P. Millard, M. Pereira da Cunha.  "Detection of 
Eschericia coli O157:H7 with langasite pure shear horizontal surface 
acoustic wave sensors."  Biosensors and Bioelectronics, 21, 2255-
2262, 2006. 

27. AOAC, Official Methods of Analysis of AOAC International, P.A 
Cunniff, Ed.  Gaithersburg, MD, 1995. 

28. D. F. McCann, M. Wark, L. French, J. Vetelino.  "Novel Transducer 
Configurations for Bulk Acoustic Wave Sensors."  Proc. IEEE 
Sensors, 1448-1451, 2008. 

29.  J. M. McGann, K. Sgambato, D.F. McCann, C. Peters, J.F. Vetelino, 
"Acoustic Mode Behavior in Lateral Field Excited Sensors."  Proc. 
IEEE Ult. Symp., 2009 (in press). 

30. K. Sgambato.  "Design and testing of a lateral field excited rate 
monitor for use in thin film deposition systems.”  M.S. dissertation, 
University of Maine, Orono, ME, 2009. 

31. M. Hirao, H. Ogi, H.  EMATS for Science and Industry, Norwell, MA, 
Kluwer Aqcademics Publishers, 2003. 

32. R.H. Randall, F.C. Rose, and C. Zener, “Intercrystalline Thermal 
Currents as a Source of Internal Friction.”  Phys. Rev., 56 (4), 343-349. 
1939. 

33. P.R. Mould, T.E. Johnson, Jr., T.E." Rapid assessment of drawability 
of cold-rolled low-carbon steel sheets."  Sheet Metal Industries, 50, 
328-333, 1973. 

34. G. Alers, “A History of EMATs.” AIP Conference Proceedings, 975, 
801-808, 2007. 

35. M. Pereira da Cunha, J.W. Jordan.  "Improved Longitudinal EMAT 
transducer for elastic constant extraction."  Proc. IEEE Int. Freq. 
Cntrl. Symp., 426-432, 2005. 

36. H. Ogi, K. Motohisa, Y. Hoso, K. Hatanaka, T. Ohmori, and H. Hirao, 
“EMATs for Immunosensors,” AIP Conference Proceedings, 975,823-
827, 2007. 

37. M.K. Kang, R. Huang, and T. Knowles, “Energy-Trapping Torsional-
Mode Resonators for Liquid Sensing,” Proc. IEEE Int. Freq. Contr. 
Symp., 133-138, 2006. 



187 
 

38. H. Ogi, “Field dependence of coupling efficiency between 
electromagnetic field and ultrasonic bulk waves,” J. Appl. Phys.,82(8), 
3940-3949, 1997. 

39. R. B. Thompson, "Physical Principles of Measurements with EMAT 
Transducers", Physical Acoustics, 19, 157-300, 1990. 

40. B.W. Maxfield, A. Kuramoto, and J.K. Hulbert, “Evaluating EMAT 
Designs for Selected Applications,” Materials Evaluation,45 (10), 
1166-1183, 1987. 

41. A.C. Stevenson and C.R. Lowe, “Noncontact excitation of high Q 
acoustic resonances in glass plates,” Appl. Phys. Lett., 73 (4), 447-449, 
1998. 

42. H.S. Sindi, A.C. Stevenson, C.R. Lowe, "A strategy for chemical 
sensing based on frequency tunable acoustic devices."  Anal. Chem., 
73 (7), 1577-1586, 2001.. 

43. A.C. Stevenson, B. Araya-Kleinsteuber, R.S. Sethi, H.M. Mehta, C.R.  
Lowe, “Hypersonic evanescent waves generated with a planar spiral 
coil.”  Analyst, 128, 1175-1180, 2003. 

44. M. Thompson, R. Nisman, G.L. Hayward, H. Sindi, A.C. Stevenson, 
C.R. Lowe, "Surface energy and the response of transverse acoustic 
wave devices in liquids."  Analyst, 125, 1525-1528, 2000. 

45. A.C. Stevenson, B. Araya-Kleinsteuber, R.S. Sethi, H.M. Metha, C.R. 
Lowe, "Planar coil excitation of multifrequency shear wave 
transducers."  Biosensors and Bioelectronics, 20, 1298-1304, 2005. 

46. F. Lucklum, P. Hauptmann, and N.F. de Rooij, “Magnetic direct 
generation of acoustic resonances in silicon membranes,” Meas. Sci. 
Technol. 17 (4), 719-726, 2006. 

47. F. Lucklum, B. Jakoby, P. Hauptmann, and N.F. de Rooij, “Remote 
Electromagnetic Excitation of High-Q Silicon Resonator Sensors,” 
Proc. IEEE Int. Freq. Contr. Symp,. 139-144, 2006. 

48. F. Lucklum and B. Jakoby, “Novel Magnetic-Acoustic Face Shear 
Mode Resonators for Liquid Property Sensing,” Tech. Digest 
Transducers ’07 & Eurosensors XXI, 1717-1720, 2007. 

49. F. Lucklum and B. Jakoby, “Electromagnetic excitation of high-Q 
silicon face shear mode resonator sensors,” Proc. IEEE Ult. Symp, 
387-390, 2007. 



188 
 

50. F. Lucklum and B. Jakoby, “Multi-Mode Excitation of 
Electromagnetic-Acoustic Resonant Sensor Arrays,” Proc. IEEE Int. 
Freq. Contr. Symp., 53-57, 2008. 

51. A.C. Stevenson, B. Araya-Kleinsteuber, R.S. Sethi, H.M. Metha, C.R. 
Lowe, "The acoustic spectrophonometer: A novel bioanalytical 
technique based on multifrequency acoustic devices."  Analyst, 128, 
1222-1227, 2003. 

52. K. K. Kanazawa , J. G. Gordon, "Frequency of a quartz microbalance 
in contact with liquid."  Anal. Chim. Acta, 57,1770-1, 1985. 

53. A.C. Stevenson, B. Araya-Kleinsteuber, R.S. Sethi, H.M. Metha, C.R. 
Lowe, "The application of the acoustic spectrophonometer to 
biomolecular spectrometry: a step towards acoustic 'fingerprinting'."  
J. Mol. Recognit., 17, 174-179, 2004. 

54. A.C. Stevenson, A.C.A. Roque, B. Araya-Kleinsteuber, E. Kioupritzi, 
C.R. Lowe, "Wirelesss excitation of quartz cyrstals immersed in an 
aqueous fluid."  Analyst, 131, 474-476, 2006. 

55. A.C. Stevenson, B. Araya-Kleinsteuber, E. Kioupritzi, A.C. Roque, 
C.R. Lowe, "Noncontact excitation of quartz crystal resonator chips."  
Apl. Phys. Lett., 89, 083516, 2006. 

56. A.C. Stevenson and C.R. Lowe, “Noncontact excitation of high Q 
acoustic resonances in glass plates,” Appl. Phys. Lett., 73 (4), 447-449, 
1998. 

57. B. Araya-Kleinsteuber, A.C.A. Rouque, E. Kioupritzi, A.C. Stevenson, 
C.R. Lowe, "Magnetic acoustic resonance immunoassay (MARIA): a 
multifrequency acoustic apprach for the non-labelled detecion of 
biomoleular interactions."  J. Mol. Recognict., 19, 379-385, 2006. 

58. T. Cass, Immobilized Biomolecules in Analysis: a practical approach,   
Oxford University Press: NY, USA, 1998. 

59. M. Thompson, S.M. Ballantyne, L.E. Cheran, A.C. Stevenson, C.R. 
Lowe, “Electromagnetic excitation of high frequency acoustic waves 
and detection in the liquid phase.”  Analyst, 128, 1048-1055, 2003. 

60. S.M. Ballantyne, M. Thompson, M. “Superior analytical sensitivity of 
electromagnetic excitation compared to contact electrode instigation of 
transverse acoustic waves.”  Analyst, 129, 219-224, 2004. 

61. L. Jaehyuk, B. Araya-Kleinsteuber, A.C. Stevenson, C.R. Lowe, 
"Extending the frequency limits of non-contact acoustic generation."  
Proc. IEEE Freq. Cntrl. Symp., 36-39, 2007. 



189 
 

62. T. Schneider, U. Hempel, S. Doerner, P.R. Hauptmann, D. F. McCann, 
and J. Vetelino.  “Compact RF impedance-spectrum analyzer for 
lateral field excited liquid acoustic wave wensors”.  Proc. IEEE 
Sensors, 280-283, 2007.  

63. J. Vetelino, D. McCann, “Monolithic Antenna Excited Acoustic 
Transduction Device”.  Great Britain Patent # GB2439828.  May 28, 
2008 

64. J. Vetelino, D. McCann, “Monolithic Antenna Excited Acoustic 
Transduction Device”.  United States Patent Pending, 2007 
(11,823,135).   

65. J. Vetelino, D. McCann, “Monolithic Antenna Excited Acoustic 
Transduction Device”.  German Patent Pending, 2007 (10 2007 029 
919.4).   

66. J. Vetelino, D. McCann, “Monolithic Antenna Excited Acoustic 
Transduction Device”.  Japanese Patent Pending, 2007 (2007-169497). 

67. C. A. Balanis, Antenna Theory, Analysis, and Design, 3rd ed. 
Hoboken, NJ: John Wiley & Sons, Inc., 2005. 

68. S. Ballantyne, ”Electromagnetic excitation of high frequency acoustic 
shear waves for the study of interfacial biochemical phenomena”   
PhD dissertation, University of Toronto, Toronto, Canada, 2005. 

69. R. Schmitt, Electromagnetics Explained, Wouburn, MA: Elsevier 
Science, 2002. 

70. S. Doerner, T. Schneider, J. Schroder, P. Hauptman, "Universal 
impedance spectrum analyzer for sensor applications."  Proc. IEEE 
Sensors, 594-596, 2003;  

71. T. Schneider, U. Hempel, S. Doerner, P.R. Hauptmann, D. F. McCann, 
and J. Vetelino.  “Compact RF impedance-spectrum analyzer for 
lateral field excited liquid acoustic wave wensors”.  Proc. IEEE 
Sensors, 280-283, 2007.  

72. H.S. Sindi, A.C. Stevenson, C.R. Lowe, "A strategy for chemical 
sensing based on frequency tunable acoustic devices."  Anal. Chem., 
73 (7), 1577-1586, 2001. 

73. F. Lucklum, personal conversation, 2005. 

74. M. Once, “Effect of energy trapping on performance of QCM.” Proc. 
IEEE Int. Freq. Contrl. Symp. 433-441, 2005. 



190 
 

75. A. M. Mehrabani, L. Shafai.  "A dual-arm archimedian spiral antenna 
over a low-profile artificial magnetic conductor ground plane."  Int. 
Symp. on Antenna. Tech. and Appl. Electromag., 1-4, 2009. 

76. www.comsol.com 

77. D.F. McCann, G. Flewelling, G. Bernhard, and J.F. Vetelino.  “A 
Monolithic Spiral Coil Transduction Sensor.”  Proc. IEEE Ultson. 
Symp, 890-893, 2006. 

78. R.F. Schmitt, J.W. Allen, J.F. Vetelino, J. Parks, and C. Zhang.  "Bulk 
acoustic wave modes in quartz for sensing measurand-induced 
mechanical and electrical property changes."  Sensors and Actuators 
B, 76, 95-102, 2001,. 

79. D.W. Branch and T.L. Edwards.  “Love Wave Acoustic Array 
Biosensor Platform for Autonomus Detection.”  Proc. IEEE Ultrason. 
Symp., 260-263, 2007. 

80. D.F. McCann, M. Wark, P. Millard, D. Neivandt, J.F. Vetelino.  "The 
Detection of Chemical and Biological Analytes Using a Monolithic 
Spiral Coil Acoustic Transduction Sensor."  Proc. IEEE Ultson. 
Symp., 1187-1190, 2008. 

81. Y. Hu, L.A. French, K. Radecsky, M. Pereira da Cunha, P. Millard, 
J.F. Vetelino.  “A Lateral Field Excited Liquid Acoustic Wave 
Sensor.” Proc. IEEE Ultrasonics Symp. 46-51, 2003. 

82. U. Hempel.  "Lateral field excited quartz crystal resonators – from 
theoretical approach to sensor application.”  Ph.D. dissertation, 
University of Magdeburg, Magdeburg, Germany, 2008. 

83. K. K. Kanazawa and J.G. Gordon.  “Frequency of a quartz 
microbalance in contact with liquid.”  Anal. Chem.  57, 1771-1772, 
1985. 

84. K. Nortemann, J. Hilland, U. Kaatze.  “Dielectric properties of 
aqueous NaCl solutions at microwave frequencies.”  J. Phys. Chem. 
A., 101, 6864-6869, 1997. 

85. Altera, “AN 224: High-Speed Board Layout Guidelines.”, 
http://www.altera.com/literature/an/an224.pdf. 

86. U. Hempel, "Lateral field excited quartz crystal resonators – from 
theoretical approach to sensor application.”  Ph.D. dissertation, 
University of Magdeburg, Magdeburg, Germany, 2008. 



191 
 

87. C. Peters, “Characterization of lithium tantalite LFE sensors and their 
responses to liquids.”  Diploma thesis, University of Magdeburg, 
Germany, 2009. 

88. A.C. Stevenson, B. Araya-Kleinsteuber, R.S. Sethi, H.M. Metha, C.R. 
Lowe, "The acoustic spectrophonometer: A novel bioanalytical 
technique based on multifrequency acoustic devices." Analyst, 128, 
1222-1227, 2003. 

89. US Center for Disease Control.   www.cdc.gov/ 
ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm 

90. US FDA. http://www.cfsan.fda.gov/~mow/intro.html 

91. IDEXX. http://www.idexx.com/water/products/compare.cfm 

92. Chandler, J., Maine Health and Environmental Laboratory. Personal 
Communication. 7 June 2004. 

93. IDEXX. http://www.idexx.com/water/ 

94. L. Sang-Hun, D.D. Stubbs, J. Cairney, W.D. Hunt, “Real-time 
detection of bacteria spores using a QCM based immunosensor.”  
Proc. IEEE Sensors, 2, 1194-1198, 2003.  

95. D. F. McCann, M. Wark, P. Millard, D. Neivandt, J.F. Vetelino.  "The 
Detection of Chemical and Biological Analytes Using a Monolithic 
Spiral Coil Acoustic Transduction Sensor."  IEEE Ultrasonics 
Symposium, 1187-1190, 2008. 

96. M. Wark, M.S. dissertation, University of Maine, Orono, ME, 
unpublished. 

97. R.P. Johnson, et al., “Detection of Escherichia coli O157:H7 in meat 
by an enzyme-linked immunosorbent assay, EHEC.”  Appl. Envi. 
Micro, 61 (1), 386-388, 1995. 

98. M.S. Rhee, P.M. Gray, D.H. Kang, “Improvement of selectivity for 
isolation of Eschericia Coli O157:H7 from generic Escherichia Coli.”  
Rapid Meth. And Auto. in Micro.10 (1), 27-35, 2007. 

99. B. Araya-Kleinsteuber, A.C.A. Rouqe, E. Kiupritzi, A.C. Stevenson, 
C.R. Lowe, “Magnetic acoustic resonance immunoassay (MARIA): a 
multifrequency acoustic approach for the non-labelled detection of 
biomolecular interactions.”  J. Mol. Recognit, 19, 379-385, 2006. 



192 
 

100. E. Berkenpas, S. Bitla, P. Millard, M. Pereira da Cunha.  "LGS shear 
horizontal SAW devices for biosensor applications."  Proc. IEEE 
Ultrason. Symp., 2, 1404-1407, 2003. 

101. E. Berkenpas, M. Pereira da Cunha, S. Bitla, P. Millard.  "Shear 
horizontal SAW biosensor on langasite."  Proc. IEEE Sensors, 1, 661-
664, 2003. 

102. E. Berkenpas, S. Bitla, P. Millard, M. Pereira da Cunha.  "Pure shear 
horizontal SAW biosensor on langasite."  IEEE Trans. Ultrason. 
Ferroelect. Freq. Cntrl., 51 (11), 1404-1411, 2004. 

103. E. Berkenpas, T. Kenny, P. Millard, M. Pereira da Cunha.  "A 
langasite SH SAW O157:H7 E. coli sensor."  Proc. IEEE Ultrason. 
Symp., 54-57, 2005. 

104. E. Berkenpas, P. Millard, M. Pereira da Cunha.  "Novel O157:H7 E. 
coli detector utilizing a langasite surface acoustic wave sensor."  Proc. 
IEEE Sensors, 1237-1240, 2005. 

105. E. Berkenpas, P. Millard, M. Pereira da Cunha.  "Detection of 
Escherichia coli O157:H7 with langasite pure shear horizontal surface 
acoustic wave sensors."  Biosens. Bioelectron., 21, 2255-2262, 2006. 

106. http://www.invitrogen.com/site/us/en/home/brands/Molecular-
Probes/Key-Molecular-Probes-Products/Amplex-Red-Enzyme-
Assays/amplex-red-technology-overview.html 

107. G. Sauerbrey, “Use of quartz vibrator for weighing thin films on a  
microbalance.”  Z. Phys., 155, 206–10, 1959. 

108. K. K. Kanazawa and J.G. Gordon.  “Frequency of a quartz 
microbalance in contact with liquid.”  Anal. Chem.  57, 1771-1772, 
1985. 

109. M. Thompson, S.M. Ballantyne, L.E. Cheran, A.C. Stevenson,  C.R. 
Lowe, “Electromagnetic excitation of high frequency acoustic waves 
and detection in the liquid phase.”  Analyst, 128, 1048-1055, 2003. 

110. W.A. Gee, K.M. Ritalahti, W.D. Hunt, F.E. Loffler, “QCM 
Viscometer for Bioremediation and Microbial Activity Monitoring”, 
IEEE Sensors Journal, 3, 304-309, 2003. 

111. B.A. Cavic, F.L. Chu, L.M. Furtado, S. Ghafouri, H.Su, M. 
Thompson, “Acoustic waves and the real-time study of biochemical 
macromolecules at the liquid solid interface.”  Faraday Discuss., 107, 
159-176, 1997. 



193 
 

112. C. York, P. Millard and L. French, J.F. Vetelino. “A lateral field 
excited acoustic wave biosensor,” Proc.  IEEE International 
Ultrasonics Symposium, 44-49, 2005. 

113.  H. Fujikawa, S. Morozumi.  “Modeling surface growth of Escherichia 
coli on agar plates.”  Appl. Environ. Microbiol., 71 (12), 7920-7926, 
2005.   

114. D.W. Branch and T.L. Edwards.  “Love wave acoustic array biosensor 
platform for autonomous detection.”  Proc. IEEE Ultrason. Symp., 
260-263, 2007. 

115. M.B. Medina, L. Van Houten, P.H. Cooke, and S.I. Tu.  “Real-time 
analysis of antibody binding interactions with immobilized E. coli 
O157:H7 cells using the BIAcore.”  Biotech. Tech., 11 (3), 173-176, 
1997. 

116. Device News.  http:// 
www.measurementdevices.com/index.php?name=News&file=article&
sid=567.  "R&D: Independent Evaluations of Its New RapidCheck 
Select Salmonella Test Method." 

117. US FDA.  http://www.cfsan.fda.gov/~dms/sprfuto.html.  "Testing 
Methodologies and Sampling."   

118. US FDA.  http://www.cfsan.fda.gov/~comm/mmsalegg.html.  
"Detection of Salmonella in Environmental Samples from Poultry 
Houses." 

119. Neogen.  http://www.jsunitech.com/product/fkit/pdf/p-GT-Sal-
1001.pdf. 

120. D. Stewart, K. Reineke, M. Tortorello.  "Comparison of assurance 
gold salmonella EIA, BAX for Screening/Salmonella, and GENE-
TRAK Salmonella DLP rapid assays for detection of Salmonella in 
alfalfa sprouts and sprout irrigation water."  Journal of AOAC 
International, 85, 395-403,  2002. 

121. M. Gray, B. Wawrik, J. Paul, E. Casper, "Molecular detection and 
quantitiation of the red tide dinoflagellate karenia brevis in the marine 
environment."  Appl. Environ. Microbiol., 69 (9), 5726-5730, 2003. 

122. C. Hu et al., "Red tide detection and tracing using MODIS 
fluorescence data: A regional example in SW Florida coastal waters."  
Remote Sens. Environ., 97, 311-321, 2005. 

123. J. Ishizaka et al., "Satellite detection of red tide in ariake sound, 1998-
2001."  J. Oceanog., 62, 37-45, 2006. 



194 
 

124. T. Arnold “Toxicity, Shellfish”, eMedicine.com. 
http://www.emedicine.com/EMERG/topic528.htm. 

125. AOAC, "AOAC Official Methods of Analysis –method 959.08."  
http://www.eoma.aoac.org/, 2007. 

126. AOAC, Paralytic shellfish poison: Biological method. Sec. 35.1.37, 
Method 959.08, P.A. Cunniff, Ed.  AOAC International, Gaithersburg, 
MD, 22-23, 1995 

127. “The Rapid Test for PSP.”  http://www.jellet.ca/psp_test.htm. 

128. R.E. Gawley, et al., " Visible fluorescence chemosensor for saxitoxin."  
J. Org. Chem, 72, 2187–2191, 2007. 

129. M. Wark, M.S. dissertation, University of Maine, Orono, ME, 
unpublished. 

130. D. Hunter.  “Detection of chemical analytes using novel acoustic wave 
platforms.”  REU report, 2009, unpublished. 

131. www.beaconkits.com. 

132. P. Kele et al, "Coumaryl crown ether based chemosensors: selective 
detection of saxitoxin in the presence of sodium and potassium ions."  
Tetrahedron Lett., 43, 4413–4416, 2002. 

133. B. Araya-Kleinsteuber, A.C. A. Roque, E. Kioupritzi, A.C. Stevenson, 
C.R. Lowe.  "Magnetic acoustic resonance immunoassay (MARIA): a 
multifrequency acoustic approach for the non-labeled detection of 
bimolecular interactions."  J. Mol. Recognit., 19, 379–385, 2006. 

134. D. F. McCann, M. Wark, L. French, J. F. Vetelino.  "Novel transducer 
configurations for bulk acoustic wave sensors."  IEEE Sensors Conf., 
1448-1451, 2008. 

135. A. Ballato, E.R. Hatch, M. Mizan, T. Lukaszek, and R. Tilton, “Simple 
thickness plate modes driven by lateral fields,” Proc. 39th Ann. Freq. 
Contr. Symp., 1985, pp. 462-472. 

136. F. Josse, “Acoustic wave liquid-phase-based microsensors,” Sens. 
Actuators A: Phys. 44, 1994, pp. 199-208. 

137. M. Rodahl, F. Hook, and B. Kasemo, “QCM operation in liquids: an 
explanation of the measured variations in frequency and Q factor with 
liquid conductivity,” Anal. Chem., vol. 68, 1996, 2219-2227. 



195 
 

138. Y. Lee, D. Everhart, and F. Josse, “The quartz crystal resonator as 
detector of electrical loading: an analysis of sensing mechanisms,” 
Proc. IEEE Int. Freq. Contr. Symp., 1996, pp. 577-585. 

139. C. Zhang and J.F. Vetelino, “A bulk acoustic wave resonator for 
sensing liquid electrical property changes,” Proc. IEEE Int. 
Freq.Contr. Symp., 2001, pp. 535-541. 

140. C. York, L.A. French, Y. Hu, P. Millard, and J.F. Vetelino, “A lateral 
field excited acoustic wave biosensor,” Proc. IEEE Ultrason. Symp., 
2003, pp. 46-51. 

141. W. Pinkham, L. French, Y. Hu, D. Frankel, and J.F. Vetelino, 
“Pesticide detection using a lateral bulk excited acoustic wave sensor,” 
Chemical Sensors, Vol. 20, Sup B, 2004, pp. 262-263. 

142. Y. Hu, L.A. French Jr., K. Radecsky, M.P. da Cunha, P. Millard, and 
J.F. Vetelino, “A lateral field excited liquid acoustic wave sensor,” 
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, no. 11, 
2004, pp. 1373-1380. 

143. S.J. Martin, V.E. Granstaff, and G.C. Frye, “Characterization of a 
quartz crystal microbalance with simultaneous mass and liquid 
loading,” Anal. Chem., vol. 63, 1991, pp. 2272-2281. 

144. J. Detaint and R. Lancon, “Temperature characteristics of high 
frequency lithium tantalate plate,” Proc. 30th Ann. Freq. Contr. 
Symp., 1976, pp. 132-140. 

145. R.W. Weinert, B.R. McAvoy, M.M. Driscoll, R.A. Moore, and H.F. 
Tiersten, “LiTaO3 lateral field resonators,” Proc. IEEE Ultrason. 
Symp., 1989, pp. 477-480. 

146. J. Detaint, J. Schwartzel, H. Carru, R. Lefevre, C. Joly, B. Cappelle, Y. 
Zheng, and A. Zarka, “New designs for resonators and filters using 
lithium tantalate,” Proc. 44th Ann. Freq. Contr. Symp., 1990, pp. 337- 
348. 

147. Y. Kim, J.R. Vig, and A. Ballato, “Sensing the properties of liquids 
with doubly rotated resonators,” Proc. IEEE Int. Freq. Contr. Symp., 
1998, pp. 660-666. 

148. R.T. Smith and F.S. Welsh, “Temperature dependence of the elastic, 
piezoelectric, and dielectric constants of lithium tantalate and lithium 
niobate,” J. Appl. Phys., vol. 42, no. 6, 1971, pp. 2219-2230. 



196 
 

149. A. Ballato, “Extended Christoffel-Bechmann elastic wave formalism 
for piezoelectric, dielectric media,” Proc. IEEE Int. Freq. Contr. 
Symp., 2000, pp. 340-344. 

150. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, pp. 26-
28. 

151. M.M. Driscoll, C.R. Vale, and R.W. Weinart. “Measurement of 
Flicker Noise in High-Q, Lithium Tantalate, Bulk Wave Resonators.” 
Proc. 1987 IEEE Ultrasonics Symp. 347-52. 

152. B. Morray, Li Suiqiong, J. Hossenlopp, R. Cernosek, and F. Josse, 
“PMMA polymer film characterization using thickness-shear mode 
(TSM) quartz resonators," Proc. IEEE Freq. Control Symp. and PDA 
Exhibition, 2002, pp. 294-300. 

153. S. Ballantyne, ”Electromagnetic excitation of high frequency acoustic 
shear waves for the study of interfacial biochemical phenomena”   
PhD dissertation, University of Toronto, Toronto, Canada, 2005. 

154. D.W. Branch and T.L. Edwards.  “Love Wave Acoustic Array 
Biosensor Platform for Autonomus Detection.”  Proc. IEEE Ultrason. 
Symp., 2007, pp. 260-263. 

155. R.West, CRC Handbook of Chemistry and Physics. Boca Raton, FL: 
CRC Press, 1980. 

156. E. Prince, Mathematical Techniques in Crystallography and Materials 
Science.  New York, NY: Springer Verlag, 1992, p.29. 

157. B.K. Vainshtein , Modern Crystallography.  New York, NY,: Springer 
Verlag ,1994, p.212. 

158. J. Detaint and R. Lancon.  "Temperature Characteristics of High 
Frequency Lithium Tantalate Plates."  Proc. IEEE Freq. Control 
Symp., 1976, p. 132-140. 

159. O. Madelung, Ed. Landolt-Bornstein Numerical Data and Functional 
Relationships in Science and Technology. vol. 6, Berlin: Springer-
Verlag, 1991. 

160. W. Morgan, “Near fields of a monolithic spiral coil acoustic 
transduction sensor.”  NSF REU report, University of Maine, 2006 
(unpublished). 

161. J. Arsenault.   Personal Communications, May -August 2006. 



197 
 

162. W. Curtis “Spiral Antennas,” IRE Trans. on Antennas and 
Propagation, 298-306; May 1961. 

163. S. Ballantyne, ”Electromagnetic excitation of high frequency acoustic 
shear waves for the study of interfacial biochemical phenomena”   
PhD dissertation, University of Toronto, Toronto, Canada, 2005. 

164. C. A. Balanis, Antenna Theory, Analysis, and Design, 3rd ed. 
Hoboken, NJ: John Wiley & Sons, Inc., 2005. 

165. J. T. Conway “New Exact Solution Procedure for the Near Fields of 
the General Thin Circular Loop Antenna,” IEEE Trans. On Antennas 
and Prop., 53 (1), 509-510, 2005 

166. P.L. Overfelt, “Near Fields of the constant current thin circular loop 
antenna of arbitrary radius,” IEEE Trans. Antennas Propag., 44, 166-
171, 1996. 

167. D. H. Werner, “An exact integration procedure for vector potentials of 
thin circular loop antennas,” IEEE Trans. Antennas Propag., 44 (1), 
157-165, 1996 

168. L. W. Li, M. S. Leong, P. S. Kooi, T. S. Yeo, “Exact solutions of 
electromagnetic fields in both near and far zones radiated by thin 
circular-loop antennas: A general representation,” IEEE Trans. 
Antennas Propag., 45, 1741-1748, 1997. 



198 
 

APPENDIX A 

A LATERAL FIELD EXCITED LiTaO3 HIGH FREQUENCY BULK 

ACOUSTIC WAVE SENSOR 

 

This chapter details an alternative approach to the main goals of this thesis 

research: to develop a novel bulk acoustic wave (BAW) sensing platform that is 

capable of operating over a wide range of frequencies.  The most popular BAW 

sensor is the quartz crystal microbalance (QCM) which has electrodes on both the top 

and bottom surfaces of an AT-cut quartz wafer. In the QCM the exciting electric field 

is primarily perpendicular to the crystal surface resulting in a thickness field 

excitation (TFE) of a resonant temperature compensated transverse shear mode 

(TSM). The TSM, however, can also be excited by lateral field excitation (LFE) in 

which electrodes are placed on one side of the wafer leaving a bare sensing surface 

exposed directly to a liquid or a chemi/bio selective layer allowing the detection of 

both mechanical and electrical property changes caused by a target analyte. The use 

of LFE sensors has motivated an investigation to identify other piezoelectric crystal 

orientations that can support temperature compensated TSMs and operate efficiently 

at high frequencies resulting in increased sensitivity. A theoretical search and 

experimental measurements were performed to identify the existence of high 

frequency temperature compensated TSMs in α-quartz and LiTaO3.  Prototype LFE 

LiTaO3 sensors were fabricated and found to operate at frequencies in excess of 1 

GHz and sensitively detect viscosity, conductivity, and dielectric constant changes in 

liquids. 
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 Introduction 

Bulk acoustic wave (BAW) crystal plate resonators may be classified 

according to their style of excitation.  The “thickness-field-excited” (TFE) resonator 

(Figure A.1a) has electrodes on both plate faces.  The electric field that is induced by 

the electrodes in the TFE case is impressed across the thickness of the plate, collinear 

with the acoustic wave propagation direction.  The “lateral-field-excited” (LFE) 

resonators (Figure A.1b) have both electrodes on a single plate face leaving the 

opposing plate face bare with the exciting electric field impressed mostly across the 

gap between the electrodes.  With thickness field excitation, the choice of a particular 

crystal and plate orientation completely determines the electro-acoustical properties 

of the resonator, because it determines both the propagation direction and the 

excitation direction. Lateral field excitation allows the excitation direction to be 

chosen independently, which in turn allows a degree of control over the 

electromechanical coupling to the acoustic modes at a particular plate orientation 

[135]. This control may be used to optimize LFE resonators for different applications. 

The respective electrode configurations of TFE and LFE resonators also lead to 

differences in performance.  Neglecting fringing effects, the electric field produced 

by the TFE resonator electrodes cannot penetrate into the measurand or sensing layer 

due to the conducting electrode on the sensing surface and thus electrical property 

changes such as relative permittivity and conductivity cannot be measured [136], 

[137]. However, in many sensor applications such as biological or chemical analyte 

detection, it may be desirable to maximize the electrical sensitivity to the 

environment. Efforts have been made to increase the fringing interactions in TFE  
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(a) (b)
 

Figure A.1.  (a)  Top view (sensing surface) of a standard QCM sensor. Shaded 
(sensing surface) and dotted (bottom surface) regions are gold and all dimensions 
are in mm.; (b) Bottom view (reference surface) of a LFE sensor.  Shaded regions 

are gold.  Typical values for w are 1 mm and 13 mm for d. 

 

 

 

 

 

 

 

 

 

 

 

resonators [138, 139], but the sensing surface in these devices still has an electrode. 

Recent reports have noted progress in the development of LFE sensors [140-142]. 

This work has been performed using the well-known AT-cut of α-quartz. The choice 

of the AT-cut of quartz has allowed direct comparison to TFE devices of the same 

material, particularly the quartz crystal microbalance (QCM) [143].  

It however, may be possible to enhance the performance of LFE sensors by 

using another piezoelectric platform. The purpose of this chapter is to present work 

that has been done to theoretically identify and experimentally investigate 

orientations in α-quartz and LiTaO3 (LTO), a material known for its high 

electromechanical coupling [144-146].  In particular, factors that are desirable for a 

LFE sensing platform are identified.  A theoretical search was then undertaken to 

identify orientations in α-quartz and LTO suitable for a LFE sensing platform.   
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LFE Sensor Platform Requirements 

Four factors are important in the identification of other possible LFE sensing 

platforms.  It is desirable for an LFE sensor platform to have a piezoelectric active 

transverse shear mode (TSM) at that orientation; and preferably, a pure TSM at that 

orientation; that is, an allowable piezoelectrically active acoustic mode for which the 

mechanical displacements normal to the plate face are zero. While some effort has 

been made to include and exploit longitudinal displacements in sensor applications 

[147], such displacements generally degrade performance.  Second, given the 

existence of a pure TSM, it is desirable for one to be able to selectively excite this 

mode with zero coupling to other modes. Lateral excitation has the advantage of 

permitting a degree of control over the mode coupling [135]. The challenge is then to 

identify those orientations that maximize the electromechanical coupling to a pure 

TSM mode decoupled from interfering modes.  Third, the identified TSM should be 

temperature compensated so that the sensor's frequency response does not fluctuate 

with temperature changes.  Fourth, it is desirable for the TSM to possess larger 

piezoelectric coupling than that observed for AT-cut quartz, the substrate that has 

been used in previous LFE work [140- 142].   

 

Search Results 

Acoustic bulk wave velocities and their displacement data were computed 

using the extended Christoffel-Bechmann method [149]. The material constants used 

for α-quartz were those of James [150], and the material constants used for LTO were 

those of Smith and Welsh [148]. The loci of orientations with TSMs and the loci of 
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orientations with zero temperature coefficient of frequency (TCF) were calculated for 

α-quartz and LTO. Those orientations that lie at the intersections of these loci, namely 

the temperature compensated TSMs, were studied further. The coordinate systems 

detailed in the IEEE Standards on Piezoelectricity [16] as seen in Figure A.2 and 

Figure A.3 were used for the calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.2. IEEE Standard on Piezoelectricity [16] coordinate system used to 

calculate acoustic mode data. 
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Quartz Results 

For α-quartz, orientations with temperature compensated TSMs have been 

identified but the piezoelectric coupling values were similar to those of AT-cut 

quartz.  One cut, however, may be of interest for sensing applications as seen in 

Figure A.4.   The cut given by the IEEE notation (YXwl) [150] 0°/50.3° has only 

slightly higher piezoelectric coupling than AT-cut quartz (6.5% vs. 6.3%) but exhibits 

a TSM velocity 53% higher than the TSM in AT-cut quartz when the LFE electrodes 

are oriented such that the electric field is at an angle of 90° relative to the X-axis as 

seen  

-Ψ

X

W

 

Figure A.3. LFE sensor notation system for electric field direction relative to the 
crystallographic axes. 
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in Figure A.4.    For a given crystal thickness this would yield a 53% higher operating 

frequency compared to AT-cut crystal with the same thickness, leading to increased 

sensor sensitivity.  Table A.1 shows the lateral coupling for the other orientations 

with temperature compensated TSMs identified in α-quartz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.1. Piezoelectric coupling coefficients for various temperature 
compensated TSMs in α-quartz. 
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Figure A.4. Lateral field coupling coefficients kLE for a) -32.25° and b) 50.3° 
rotate-Y cuts of quartz versus electric field angle ψ w.r.t. the X axis. 
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LTO Results 

In LTO two cuts, (YXwl) -16.5° and (YXwl) -84.3°, offering significant 

improvements in coupling (39% and 47% respectively) compared to AT-cut quartz 

(6.3%) were identified as possible LFE sensor platforms.  As shown in Figure A.5, 

although the (YXwl) -84.3° exhibits higher piezoelectric coupling than the (YXwl) -

16.5° cut, a slight variation in the direction of the electric field would also excite the 

slow quasi-shear mode which has relatively high piezoelectric coupling, leading to 

interference.  The (YXwl) -16.5° cut has piezoelectric coupling (38.8%) more than 6 

times that of AT-cut quartz (6.3%). Also, the (YXwl) -16.5° cut of LTO has been 

previously investigated for use in RF filtering applications [151] and has theoretically 

been shown to be temperature compensated at 25°C.  This cut of LTO was therefore 

selected for further testing as a possible LFE sensor platform.  
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Figure A.5. Lateral field coupling coefficients kLE for a) (YXwl) -16.5° and b) 
(YXwl) - 83.4° rotate-Y cuts of lithium tantalate versus electric field angle ψ w.r.t. 

the X axis. 
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Experiment 

LTO wafers were purchased from Sawyer Technical Materials, LLC 

(Eastlake, OH).  X-ray diffraction (XRD) tests were first performed on the wafer to 

verify that the wafer was the desired (YXwl) -16.5° cut of LTO.  Figure A.6 shows 

the coordinate system with respect to the crystal face used in the XRD tests.  

Verification of the orientation was performed through the use of pole figures 

generated by a Panalytical (Westborough, MA) X'Pert PRO MRD Diffractometer 

using Cu k-alpha radiation configured with an x-ray lens and parallel plate 

collimator/proportional detector, a MATLAB modeling script, and by a miscut 

procedure performed by Sawyer Technical Materials, LLC.    
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Figure A.6 Coordinate system with respect to the crystal face used in XRD 

measurements and calculations. 
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An LFE sensor platform was fabricated by photolithographically depositing 

thin film gold electrodes with a chromium adhesion layer on one side (Figure A.7) of 

a LTO wafer.  An HP 8571A Network Analyzer was used to monitor the resonant 

frequency of the LTO LFE sensor platform (referred to as the LTO LFE for the 

remainder of this paper).  The device’s fundamental frequency was 5.2 MHz.  Due to 

the high piezoelectric coupling of LTO, it is possible to operate the device at very 

high frequencies by exciting high order harmonics in the device.  Resonances as high 

as 1.4 GHZ (269th harmonic) were detected.  Although LFE and QCM sensors 

fabricated on AT-cut quartz may be operated at elevated harmonics [152], efficiently 

exciting above the 7th harmonic is difficult due to the relatively low piezoelectric 

coupling of α-quartz [153].   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7. LTO LFE test crystal with dimensions. 
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Since the (YXwl) -16.5° cut of LTO is theoretically predicted to be 

temperature compensated at 25ºC [148] the temperature behavior of this cut was 

experimentally examined.    A LTO LFE sensor was placed in a temperature 

controlled oven and operated at temperatures ranging from 20ºC to 90ºC.  The 

changes in the resonant frequency of the LTO LFE sensor was monitored over the 

temperature range at the fundamental frequency (5.2 MHz), 15th harmonic (78 MHz), 

and 19th harmonic (98.8 MHz).   

In order to demonstrate the applicability of the LTO LFE sensor, the 

mechanical and electrical property changes of liquids were measured and compared 

to standard AT-cut quartz QCM and LFE sensors.  All tests were performed at a 

constant temperature of 25ºC.   

The LTO LFE sensor was operated at a different harmonic for each test to 

demonstrate its ability to operate over a wide range of frequencies.  The wide 

frequency range of operation for the LTO LFE sensor opens the possibility of tuning 

the LTO LFE's operating frequency for a given application.  It has recently been 

shown that for certain acoustic wave biological sensing applications proper selection 

of the sensor operating frequency is critical due to the fact that the depth that the 

acoustic wave penetrates the sensing layer depends on the operating frequency of the 

sensor [154]. 

In order to demonstrate the applicability of the LTO LFE sensor, it was first 

used to detect changes in the viscosity of liquids. The LFE LTO sensor’s performance 

was compared to the performance of standard QCM and LFE sensors, both fabricated 

on AT-cut quartz with a fundamental frequency of 5 MHz.  Eight solutions of varying 
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viscosities were made by mixing Karo (St. Louis, MO) brand corn syrup with 

deionized water at varying ratios from 0 to 80% corn syrup. The viscosity of each 

solution was first measured using a Cannon Instrument Co. (State College, PA) 

Cannon-Fenske Routine Viscometer. Each solution was applied to a standard QCM, 

an AT-cut quartz LFE sensor, and a LTO LFE sensor. The change in frequency (from 

the operating frequency when only de-ionized water was present) was measured for 

each device. The QCM and AT-cut quartz LFE sensor responses were measured 

using a Maxtek PLO-10i phase lock oscillator and an EZ FC-705U 100 MHz 

Universal Counter while the network analyzer was used to monitor the LTO LFE  at 

the fundamental frequency and 63rd  harmonic of the TSM.  The QCM and AT-cut 

quartz LFE sensor were fabricated from identical one-inch diameter AT-cut quartz 

wafers obtained from Maxtek, Inc (Beaverton, OR). 

The LTO LFE sensor was also tested to determine its response to electrical 

property changes in liquids.  Its response to the conductivity of NaCl water solutions 

in the range of 0 to 0.07 wt% was compared to the response of a QCM and quartz 

LFE.  The LTO LFE was operated at the 87th harmonic for the conductivity tests and 

its resonant frequency was monitored by the network analyzer.  The quartz LFE and 

QCM were operated at their fundamental frequency and their resonant frequency was 

measured using the Maxtek PLO setup described before.     

Permittivity measurements were performed by monitoring the responses of the 

LTO LFE, AT-cut LFE, and AT-cut QCM to changes in 2- propanol concentrations 

from 0 to 60 wt% in water.  2- propanol was chosen because its liquid permittivity 

changes significantly when it is added to water [155].  The LTO LFE was operated at 
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the 49th harmonic for the permittivity tests and its resonant frequency was monitored 

by the network analyzer. The quartz LFE and QCM were operated at their 

fundamental frequency and their resonant frequency was measured using the Maxtek 

PLO setup described before.     

 

Results and Discussion 

Using [16] the desired orientation is described as (YXwl) -16.5˚ which places 

the unit plate normal at [0 x, -/+cos(16.5˚) y,  +/- sin(16.5˚) z] in an orthonormal 

coordinate system. Numerical rotations appropriate for a trigonal 3m type lattice 

[156] were performed in order to generate the plate normals corresponding to the 

equivalent crystallographic planes. Since the International Centre for Diffraction Data 

(ICDD) database for this crystal is defined in terms of Miller-Bravais indices on an 

abc αβγ [5.147, 5.147, 13.766] [90̊, 90˚, 120˚] system a transformation of indices is 

desirable [157]. Transformation to Miller-Bravais indices for this orientation results 

in the 3 crystallographically equivalent planes hk.l <0 -1.0931 1> ,<-1.0931 1.0931  

0> , and <1.0931 0 1>. The <2 0 2> plane was selected for measurement via XRD as 

it is in the same family as the <1 0 1> and nearby the theoretical <1.0931 0 1> wafer 

orientation. Figure A.8a shows a <2 0 2> pole figure obtained with diffractometer set 

at 2-theta = 45.569°. A MATLAB modeling script was created that would simulate a 

theoretical XRD pole figure for a (YXwl) -16.5˚ (Figure A.8b). The XRD <2 0 2> 

pole figure and results of the modeling script for (YXwl) -16.5˚ are very similar. It 

can be concluded that a member of the family of <202> planes is very close to the cut 

surface of the sample, (YXwl) -16.5˚ family (which all possess identical  
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Figure A.8. a) X'Pert Texture generated experimental pole figure of the <202> 

plane for (YXwl) -16.5˚ LTO (concentric circles represent values of psi ranging 
from 0° to 90° in 15° increments) and b) Theoretical MATLAB simulation for 

(YXwl) -16.5˚ LTO (concentric circles represent values of psi ranging from 0° to 
90° in 10° increments). 
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characteristics due to crystallographic equivalence [158]) and that the received wafer 

was in fact cut very close to our desired orientation. For a more precise measurement 

and confirmation of these conclusions the wafer was sent to Sawyer Technical 

Materials, LLC for a miscut analysis. Sawyer determined that the orientation was 

either (YXwl) -16.467˚ or (YXwl) -19.433˚. The (YXwl) -19.433˚ possibility was 

excluded through an XRD measurement of the <0 0 6> pole figure.  In the case of a 

(YXwl) -16.5˚ orientation <0 0 6> pole would be located at psi = 73.5˚ while in the 

case of the (YXwl) -19.433˚ orientation the <0 0 6> pole would be located at psi = 

70.467˚.  The fact that the <0 0 6> pole was observed to be at psi = 73.5̊  in the XRD 

measurements further verified that the wafer was the correct orientation. 

The (YXwl) -16.5° cut of LTO is theoretically temperature compensated at 

25°C.  However, as seen in Figure A.9 experimental measurements show this cut is 

actually temperature compensated at approximately 70°C, not at 25°C.  It is 

interesting to note that the temperature behavior of the LTO LFE sensor changes very 

little when it is operated at higher harmonics.  I believe that the discrepancy between 

our predicted and measured temperature behavior for this cut is due slight 

inaccuracies in the temperature coefficients used for the theoretical calculations as 

small changes in these values can have significant impacts on the predicted results.  

Given that the (YXwl) -16.5° cut of LTO is experimentally temperature compensated 

at 70°C it is possible that an orientation close to the (YXwl) -16.5° cut is in fact 

temperature compensated at 25°C.  These temperature stability results clearly point to 

a need for updated and more accurate material constants and temperature coefficients 

for LTO. 
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Quartz LFE, quartz QCM, and LTO LFE sensors were tested by applying 

solutions of corn syrup water solutions with viscosities ranging from 1 to 94 cS.  As 

can be seen in Figure A.10a, the LTO LFE sensor had significantly larger responses 

to viscosity change than either the standard QCM or quartz LFE when it was operated 

at the 63rd harmonic. Specifically, the LTO LFE sensor showed an approximately 

twelve times larger frequency shift when compared either the standard QCM or 

quartz LFE sensors.  It is interesting to note that as seen in Figure A.10b LTO LFE 

and quartz LFE exhibited almost identical frequency shifts when they were both 

operated at their fundamental frequencies.   

 

Figure A.9.  Experimental temperature behavior for (YXwl) -16.5º LTO at its 
fundamental frequency (5.2 MHz, connected '○'), 15th harmonic (78 MHz, 

connected '*'), and 19th harmonic (98.8 MHz, connected '◊'). 
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Figure A.10. Sensor response to change in corn syrup viscosities for the a) AT-cut 
QCM (fundamental frequency, connected '▲'), AT-cut quartz LFE (fundamental 

frequency, connected '■'), (YXwl) -16.5º LTO LFE sensor (fundamental 
frequency, connected '●') and (YXwl) -16.5º LTO LFE sensor (63rd Harmonic, 

connected 'x') and b) AT-cut QCM (fundamental frequency, connected '▲'), AT-
cut quartz LFE (fundamental frequency, connected '■'), (YXwl) -16.5º LTO LFE 

sensor (fundamental frequency, connected '●') only. 
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As discussed earlier, LFE sensors are also capable of detecting electrical 

changes since there is no metal layer on the sensing surface as opposed to the QCM 

where a metal electrode is placed on both surfaces of the plate  [140]-[142].  

To test the LTO LFE sensor’s ability to measure changes in the conductivity 

of a liquid, the change in resonant frequency of an LTO LFE sensor was monitored 

using an HP 8751A network analyzer while the sensor was subjected to liquids with 

various concentrations of NaCl.  These measurements were performed at the 87th 

harmonic of the LTO LFE sensor.  The response of a standard QCM and quartz LFE 

to the same liquids was measured using the PLO setup previously discussed.  The 

resonant frequency changes of the sensors with respect to their resonant frequencies 

in deionized water as a function of NaCl concentration is shown in Figure A.11a.   

Since the resonant frequency change of the LFE sensors is due to both 

mechanical and electrical property changes in the liquid, the NaCl concentrations 

chosen for this experiment (0 to 0.07% wt) have very small variations in mechanical 

property changes such as density and viscosity.  The frequency shift for a 0.5 %wt 

NaCl solution predicted by mechanical perturbation theory was found to be only 5 Hz 

[138].  It can therefore be assumed that the mechanical properties of the liquid had 

negligible effects on the frequency response of the sensors. 

As can be seen in Figure A.11a and Figure A.11b the LTO LFE sensor was 

able to measure the changes in the liquid conductivity while the QCM could not.  As 

can be seen in Figure A.11b the quartz LFE exhibited a frequency shift of 434 Hz for  
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Figure A.11. Sensor response to changes in NaCl concentration for a) AT-cut 
QCM (fundamental frequency, connected '▲'), AT-cut quartz LFE (fundamental 

frequency, connected '■') and  (YXwl) -16.5º LTO LFE   (87th  Harmonic, 
connected 'x') sensors and b) AT-cut QCM (fundamental frequency, connected 

'▲'), AT-cut quartz LFE (fundamental frequency, conected '■') only . 
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the 0.07 wt% solution (11,500 μS/cm).  The frequency fluctuations of the QCM for 

all of the liquids were within the noise of the sensor.  The frequency change of the 

LTO LFE sensor was 30.75 kHz for the 0.07 wt% (11,500 μS/cm) solution leading to 

the conclusion that the LTO LFE sensor is extremely sensitive to small electrical 

property changes. 

The LTO LFE’s sensor response to changes in relative permittivity (εr) was 

also explored.  Figure A.12a shows the resonant frequency changes of the LTO LFE, 

quartz LFE, and QCM sensors with respect to their resonant frequencies in deionized 

water to changes in 2-propanol concentrations in water between 0 wt% (εr = 80) and 

60 wt%  (εr = 44).  As can be seen in Figure A.12a and Figure A.12b, the frequency 

of the QCM decreased by 338 Hz at 60 wt% 2-propanol concentration while the 

frequency of the LTO and quartz LFE sensors increased.  Unlike the LFE sensors 

which respond to both mechanical and electrical liquid property changes, the resonant 

frequency of the QCM is only influenced by the mechanical properties of the liquid, 

in this case the product of density and viscosity which reaches a maximum at 

approximately 50 wt%  (εr = 50) [155].   The LFE sensors also respond to changes in 

density and viscosity but in the case of the permittivity changes in this experiment, 

the sensor’s frequency response is dominated by the changes in electrical properties.  

It has previously been reported that relative permittivity decreases approximately 

linearly with 2-propanol concentrations in water from 0 wt% to 70 wt% [159].  In the 

case of the LFE sensors the resonant frequency increases as the relative permittivity 

decreases.  The frequency shift of the LTO LFE sensor was approximately 29 times 
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larger when it was operated at its 49th harmonic compared to the quartz LFE sensor 

operated at its fundamental frequency. 
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Figure A.12. Sensor response to changes in 2-propanol concentration for a) AT-cut 
QCM (fundamental frequency, connected '▲'), AT-cut quartz LFE (fundamental 

frequency, connected '■') and  (YXwl) -16.5º LTO LFE   (49th  Harmonic, 
connected 'x') sensors and b) AT-cut QCM (fundamental frequency, connected 

'▲'), AT-cut quartz LFE (fundamental frequency, connected '■') only. 
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Conclusions 

A search was made for orientations in lithium tantalate that when excited with 

a lateral electric field would offer improved sensor performance over standard AT-

quartz LFE and QCM sensors.  Two candidate orientations of lithium tantalate were 

theoretically identified that showed significant improvements in electromechanical 

coupling and predicted to have temperature compensated pure TSMs at 25°C, namely 

the (YXwl) -16.5°, and (YXwl) -84.3° cuts.  The (YXwl) -16.5° cut was chosen for 

further testing based on the separation of interfering modes and the body of literature 

available on it from its use in RF filtering applications.  XRD measurements were 

performed on the wafer that verified that it was the correct orientation.  An 

improperly aligned wafer was then excluded as a possible explanation for the 

differences observed in the theoretical and measured temperature characteristics. A 

LFE sensor with a fundamental frequency of 5.2 MHz was fabricated on this cut and 

found to be capable of operating at frequencies as high as 1.4 GHz (269th harmonic).  

The temperature behavior for this cut of LTO was experimentally measured and 

found to be temperature compensated at 70°C instead of 25°C as theoretically 

predicted.  We believe that inaccuracies in the material constants and temperature 

coefficients used to perform the theoretical calculations are the cause of this 

discrepancy.  This result points to the need for more experimental work to determine 

exactly the orientation in LTO that is temperature compensated at 25°C.  When tested 

as a sensor, the LTO LFE was found to be capable of detecting both mechanical and 

electrical property changes in liquids unlike the standard QCM.  This sensor was used 

to measure viscosity, conductivity, and relative permittivity changes in liquids and 
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found to have significantly larger frequency changes than AT-cut QCM and LFE 

sensors when it was operated at high frequencies.  It is expected that the LTO LFE 

sensor will yield significant increases in sensor sensitivity for both chemical and 

biological sensing applications. 
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APPENDIX B 

AN EXPRESSION FOR THE ELECTROMAGNETIC FIELDS 

RADIATED FROM A PLANAR SPIRAL ANTENNA 

 

 

This chapter details the work done in collaboration with Morgan and 

Arsenault [160, 161] to derive an expression for the near and far electromagnetic 

fields of a planar spiral coil antenna.  Although the behavior of the far-field electric 

fields for a spiral coil antenna has been analyzed [162] the near-field behavior is not 

well understood.  An understanding of the form of these fields, especially in the near 

field, is particularly important in understanding the excitation mechanism of the 

MSCAT. 

 

Previous Work on the Electromagnetic Piezoelectric Acoustic Sensor (EMPAS) 

In order to explain the excitation mechanism of the EMPAS, Ballantyne 

attempted to model the spiral coil as a single rectangular loop of wire [163] and used 

the expression for the resulting fields that is presented in many antenna text books 

including [164].  Figure B.1 shows the geometry of the problem Ballantyne solved.  

He found that the resulting electric field consisted only of an φ component in polar 

coordinates given by: 

𝐸𝐸𝜙𝜙 =
𝜇𝜇𝑜𝑜 sin 𝜃𝜃

4𝜋𝜋
 �

𝜔𝜔2

𝑟𝑟𝑟𝑟
cos 𝜔𝜔𝜔𝜔 +

𝜔𝜔2

𝑟𝑟2 sin 𝜔𝜔� (B1)  
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Ballantyne incorrectly postulates that since the electric field is not 

perpendicular to the coil and thus the quartz wafer, it cannot be the field that excites 

the transverse shear mode (TSM) in AT-cut quartz.  He hypothesizes that there is a 

coupling between the magnetic field induced by the coil and the electric field which 

somehow produces a secondary electric field that is perpendicular to the coil and thus 

excites the TSM.  He further hypothesizes that since coil is a concentric group of 

single loops this leads to a superposition effect that magnifies this secondary electric 

field.   

This conclusion is flawed for several reasons.  First, this evaluation is only 

valid in the far field and the quartz wafer is clearly in the near field of the antenna.  

Second, although antenna textbooks approximate a circular coil antenna as a square, 

this approximation relies on the wavelength of the signal being very long compared to 

 

Figure B.1 Geometry of rectangular spiral coil problem solved by Ballantyne. 
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the length of the coil which is not valid for high frequencies or small coils.  Finally, 

an electric field in the lateral (φ) direction can excite the TSM in AT-cut quartz as 

seen in AT-cut LFE platforms.  Figure A.4a shows the coupling to the TSM for 

lateral electric fields.  In is clearly necessary to obtain a more accurate expression for 

the radiated electric fields from a spiral coil antenna in order to understand how the 

antenna excites acoustic waves in the MSCAT platform. 

 

Derivation of the Radiated Electric Fields from a Spiral Coil Antenna 

Although the behavior of the far-field electric fields for a spiral coil antenna 

has been analyzed by Curtis [162] the near-field behavior is not well understood.  In 

order to fully analyze both the near and far field behavior of the spiral coil antenna, 

two methods were used.  The first utilized the same techniques that were used to 

determine the far field behavior of spiral coil antennas by Curtis [162] and the second 

used the methods that have been developed for analyzing the near-field behavior of 

single loop antennas [164-168].   

As was done by Curtis [162], an approximation was made that a spiral coil has 

nearly the same geometry as a sum of semicircles.  Figure B.2 shows an example for 

a two turn spiral.  The electric field from each semicircle was calculated using the 

techniques in [164-168] that were developed to solve for the near fields of single loop 

circular antennas.  Once the field from each semicircle was calculated, the principle 

of superposition was used to determine the total form of the electric field.  Figure B.3 

shows the coordinate system used for this analysis.   
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Figure B.3. Coordinate system used in near field spiral coil calculations.  The 
point (r,θ,ϕ) is the observation point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2. Diagram showing a two turn spiral coil made up of four semi-circles 
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The inner diameter of the first semicircle din, diameter of the outer spiral dout, 

and the number of turns of the spiral l are the only quantities that need to be defined 

to find the dimensions of each semicircle that makes up the spiral.  The quantities a 

and b are calculated in order to find the radius of the nth semicircle rn. 

𝑎𝑎 =  
𝑑𝑑𝑖𝑖𝑖𝑖

2
 (B2) 

𝑏𝑏 =
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑑𝑑𝑖𝑖𝑖𝑖

2(2𝑙𝑙 − 1)
 (B3) 

𝑟𝑟𝑙𝑙 = 𝑎𝑎 + (𝑙𝑙 − 1)𝑏𝑏 (B4) 

In previous work to solve for the near-fields of circular loop antennas [164-

167] the Helmholtz equation was used to calculate the vector and scalar potentials 

and then calculate the electric field using the time-varying Maxwell’s equations. 

𝛻𝛻2𝑨𝑨 + 𝑘𝑘2𝑨𝑨 = −𝜇𝜇𝑱𝑱 (B5) 

𝛻𝛻2𝜑𝜑 + 𝑘𝑘2𝜑𝜑 = −
𝜌𝜌
𝜀𝜀

 (B6) 

𝑬𝑬 = ∇𝜑𝜑 −
𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

 (B7) 

Where A is the magnetic vector potential, J is the electric current density, φ is 

the scalar potential, E is the electric field, μ is the permeability, ρ is the total charge 

density, ε is the dielectric constant, k is the wave number, and t is time.  Utilizing the 

same approach in [164-167] for a spiral coil, however, is problematic due to the fact 

that these methods utilize the trigonometric symmetry of sine and cosine functions to 

simplify the integrals since the limits on the integrals range from 0 to 2π.  This 

symmetry does not exist for the semicircle case and the integrals range from 0 to π 

and π to 2π.    
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Li et al. [168] utilized a different approach to the circular loop antenna 

problem.  They utilized dyadic Green’s functions to calculate the near and far fields 

radiated by the antennas.  As Li et al. show the volumetric electric current density 

may be expressed as: 

𝑱𝑱(𝑟𝑟′ ) =
𝑰𝑰(𝜙𝜙′ )𝛿𝛿(𝑟𝑟′ − 𝑎𝑎)𝛿𝛿(𝜃𝜃′ − 𝜋𝜋

2)
𝑎𝑎

𝛟𝛟 (B8) 

 

Where I(ϕ) is an arbitrary function of ϕ’ and a is the radius of the circular loop as 

shown in Figure B.1.  Primed variables indicate the points on the circle and unprimed 

indicate the observation point (r, θ, ϕ).  It can be shown that the radiated electric field 

is given by [168]: 

𝑬𝑬 = 𝑖𝑖𝑖𝑖𝑖𝑖 � 𝑮𝑮𝒐𝒐𝑱𝑱(𝑟𝑟)𝑑𝑑𝑑𝑑′
𝑉𝑉′

 (B9) 

𝛻𝛻2𝑮𝑮(𝑟𝑟1, 𝑟𝑟2) + 𝑘𝑘2𝑮𝑮(𝑟𝑟1, 𝑟𝑟2) = 𝛿𝛿3(𝑟𝑟1 − 𝑟𝑟2) (B10) 

 

Expanding the Green’s function yields: 

𝑮𝑮𝒐𝒐 =
𝑖𝑖𝑘𝑘𝑜𝑜

4𝜋𝜋
� � (2 − 𝛿𝛿𝑚𝑚0) ��𝑴𝑴(1)(𝑘𝑘𝑜𝑜 )𝑴𝑴′ (𝑘𝑘𝑜𝑜)

𝑴𝑴(𝑘𝑘𝑜𝑜 )𝑴𝑴′(1)(𝑘𝑘𝑜𝑜 )
�

𝑛𝑛

𝑚𝑚 =0

∞

𝑛𝑛=1

+ �𝑵𝑵(1)(𝑘𝑘𝑜𝑜 )𝑵𝑵′ (𝑘𝑘𝑜𝑜)
𝑵𝑵(𝑘𝑘𝑜𝑜 )𝑵𝑵′ (𝑘𝑘𝑜𝑜) ��  �r > 𝑎𝑎

r < 𝑎𝑎� 

(B11) 

Where δmn = 1 for m=n; and 0 for m≠n and  
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and Dmn is a normalization coefficient: 

𝐷𝐷𝑚𝑚𝑚𝑚 =
(2𝑛𝑛 + 1)(𝑛𝑛 − 𝑚𝑚)!
𝑛𝑛(𝑛𝑛 + 1)(𝑛𝑛 + 𝑚𝑚)!

 (B14) 

 

In equations (B12) and (B13), 𝑃𝑃𝑛𝑛
𝑚𝑚 (cos 𝜃𝜃) is a Legendre function.  In equation 

(B11), M(1) and N(1) zn(kr) has the form of a spherical Hankel function while for M 

and N zn(kr)has the form of a spherical Bessel function.  For the M’ and N’, (r, θ, ϕ) 

are replaced by (a, π/2, ϕ’) [168]:   

𝑧𝑧𝑛𝑛 (𝑘𝑘𝑘𝑘) = �ℎ𝑛𝑛
(1)(𝑘𝑘𝑘𝑘)  𝑟𝑟 > 𝑎𝑎
𝑗𝑗𝑛𝑛 (𝑘𝑘𝑘𝑘) 0 ≤ 𝑟𝑟 ≤ 𝑎𝑎

� (B15) 

 

Substituting equations (B8) and (B11) into equation (B9) yields an equation 

for the electric field in two regions E> (when r>a) and E< (when r≤a): 

𝑴𝑴 = ∓
𝑚𝑚𝑧𝑧𝑛𝑛 (𝑘𝑘𝑘𝑘)

sin 𝜃𝜃
𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃) sin(𝑚𝑚ϕ)𝛉𝛉

− 𝑧𝑧𝑛𝑛 (𝑘𝑘𝑘𝑘)
𝑑𝑑𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃)
𝑑𝑑𝑑𝑑

cos(𝑚𝑚ϕ) 𝛟𝛟 

(B12) 

𝑵𝑵 =
𝑛𝑛(𝑛𝑛 + 1)𝑚𝑚𝑧𝑧𝑛𝑛 (𝑘𝑘𝑘𝑘)

𝑘𝑘𝑘𝑘
𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃) cos(𝑚𝑚ϕ) 𝐫𝐫

+
𝑑𝑑[𝑟𝑟𝑟𝑟𝑛𝑛 (𝑘𝑘𝑘𝑘)]

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑑𝑑𝑃𝑃𝑛𝑛

𝑚𝑚 ( cos 𝜃𝜃)
𝑑𝑑𝑑𝑑

cos(𝑚𝑚ϕ)𝛉𝛉

∓
𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
𝑑𝑑[𝑟𝑟𝑟𝑟𝑛𝑛 (𝑘𝑘𝑘𝑘)]

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑛𝑛

𝑚𝑚 ( cos 𝜃𝜃) cos(𝑚𝑚ϕ)𝛟𝛟 

(B13) 
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�𝑬𝑬>

𝑬𝑬<� = −
𝜂𝜂𝑜𝑜 𝑘𝑘0

2

4𝜋𝜋
� � (2 − 𝛿𝛿𝑚𝑚0)𝐷𝐷𝑚𝑚𝑚𝑚 ��ΦM<𝐌𝐌(𝟏𝟏)(ko)

ΦM>𝐌𝐌(ko)
�

𝑛𝑛

𝑚𝑚=0

∞

𝑛𝑛=1

+ �ΦN<𝐍𝐍(𝟏𝟏)(ko)
ΦN>𝐍𝐍(ko)

�� 

(B16) 

 

The variable ηo is the intrinsic impedance (120πΩ) and ΦM and ΦN are 

simplified functions corresponding to M' and N': 

�ΦM<

ΦM>� = −𝑎𝑎 �
𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑎𝑎)

ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝑎𝑎)

�
𝑑𝑑𝑃𝑃𝑛𝑛

𝑚𝑚 (0)
𝑑𝑑𝑑𝑑

⎣
⎢
⎢
⎢
⎡� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜙𝜙′ )𝐼𝐼(𝜙𝜙′ )𝑑𝑑𝑑𝑑′

𝜋𝜋

0

� 𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝜙𝜙′ )𝐼𝐼(𝜙𝜙′ )𝑑𝑑𝑑𝑑′
𝜋𝜋

0 ⎦
⎥
⎥
⎥
⎤
 (B17) 

�ΦN<

ΦN>� = ∓𝑎𝑎

⎣
⎢
⎢
⎢
⎡

𝑑𝑑[𝑎𝑎𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑎𝑎)]
𝑘𝑘𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑[𝑎𝑎ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝑎𝑎)

𝑘𝑘𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 ⎦
⎥
⎥
⎥
⎤

𝑚𝑚𝑃𝑃𝑛𝑛
𝑚𝑚 (0)

⎣
⎢
⎢
⎢
⎡� 𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝜙𝜙′ )𝐼𝐼(𝜙𝜙′ )𝑑𝑑𝑑𝑑′

𝜋𝜋

0

� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜙𝜙′ )𝐼𝐼(𝜙𝜙′ )𝑑𝑑𝑑𝑑′
𝜋𝜋

0 ⎦
⎥
⎥
⎥
⎤
 (B18) 

 

A cosinusoidal current distribution is assumed: 

𝐼𝐼(𝜙𝜙′ ) = 𝐼𝐼𝑜𝑜 cos(𝑝𝑝𝜙𝜙′ ) (B19) 

 

When substituting equation (B19) into equations (B17) and (B18), all of the 

terms outside the integral will remain the same for a given m and n, however the 

terms inside the integral will become a product of trigonometric terms.  Morgan [160] 

has shown that the integral has the following solutions: 
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�𝑚𝑚𝑚𝑚 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
𝑚𝑚𝑚𝑚 𝐨𝐨𝐨𝐨𝐨𝐨 � = � cos(𝑝𝑝𝑝𝑝)

𝜋𝜋

0
�sin(𝑚𝑚𝑚𝑚)
cos(𝑚𝑚𝑚𝑚)� 𝑑𝑑𝑑𝑑

=

⎩
⎪⎪
⎨

⎪⎪
⎧

0                      𝐢𝐢𝐢𝐢 𝐦𝐦𝐦𝐦 𝐨𝐨𝐨𝐨𝐨𝐨 𝐚𝐚𝐚𝐚𝐚𝐚 𝐩𝐩 ≠ 𝐦𝐦
π
2                     𝐢𝐢𝐢𝐢 𝐦𝐦𝐦𝐦 𝐨𝐨𝐨𝐨𝐨𝐨 𝐚𝐚𝐚𝐚𝐚𝐚 𝐩𝐩 = 𝐦𝐦
0                    𝐢𝐢𝐢𝐢 𝐦𝐦𝐦𝐦 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐚𝐚𝐚𝐚𝐚𝐚 𝐩𝐩 = 𝐦𝐦
0       𝐢𝐢𝐢𝐢 𝐦𝐦𝐦𝐦 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐚𝐚𝐚𝐚𝐚𝐚 (𝐩𝐩 + 𝐦𝐦)𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞

−
2𝑚𝑚

(𝑝𝑝 + 𝑚𝑚)(𝑝𝑝 − 𝑚𝑚) 𝐢𝐢𝐢𝐢 𝐦𝐦𝐦𝐦 𝐨𝐨𝐨𝐨𝐨𝐨 𝐚𝐚𝐚𝐚𝐚𝐚 (𝐩𝐩 + 𝐦𝐦)𝐨𝐨𝐨𝐨𝐨𝐨⎭
⎪⎪
⎬

⎪⎪
⎫

 

(B20) 

 

The integrals from π to 2π have the opposite values of the above solution.  

Substituting equation (B20) into equations (B17) and (B18): 

�ΦM<

ΦM>� = −𝐼𝐼𝑜𝑜 𝑟𝑟𝑙𝑙
𝑑𝑑𝑃𝑃𝑛𝑛

𝑚𝑚 (0)
𝑑𝑑𝑑𝑑

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟𝑙𝑙)

ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝑟𝑟𝑙𝑙)

� (B21) 

�ΦN<

ΦN>� = ∓𝐼𝐼𝑜𝑜 𝑚𝑚𝑃𝑃𝑛𝑛
𝑚𝑚 (0)𝑟𝑟𝑙𝑙𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

⎣
⎢
⎢
⎢
⎡

𝑑𝑑[𝑟𝑟𝑙𝑙𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟𝑙𝑙)]
𝑘𝑘𝑜𝑜 𝑟𝑟𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙

𝑑𝑑[𝑟𝑟𝑙𝑙ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝑟𝑟𝑙𝑙)

𝑘𝑘𝑜𝑜 𝑟𝑟𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙 ⎦
⎥
⎥
⎥
⎤
 (B22) 

 

Where S and C are the functional forms of the integral and are given by: 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 =
1
2

�((−1)𝑚𝑚𝑚𝑚 − 1)(1 − 𝛿𝛿𝑝𝑝𝑝𝑝 )((−1)𝑝𝑝+𝑚𝑚 )(
−𝑚𝑚

(𝑝𝑝 + 𝑚𝑚)(𝑝𝑝 − 𝑚𝑚))

− ((−1)𝑚𝑚𝑚𝑚 +1 − 1)
𝜋𝜋
2

𝛿𝛿𝑝𝑝𝑝𝑝 � 

(B23) 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =
1
2

�((−1)𝑚𝑚𝑚𝑚 +1 − 1)(1 − 𝛿𝛿𝑝𝑝𝑝𝑝 )((−1)𝑝𝑝+𝑚𝑚 )(
−𝑚𝑚

(𝑝𝑝 + 𝑚𝑚)(𝑝𝑝 − 𝑚𝑚))

− ((−1)𝑚𝑚𝑚𝑚 − 1)
𝜋𝜋
2

𝛿𝛿𝑝𝑝𝑝𝑝 � 

(B24) 
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It is now necessary to consider the spiral coil made up of a series of semi-

circles.  We will consider the first segment to be made up of semicircles r1 and r2, the 

second segment to be made up of r3 and r4, and so on.  New variables will be created 

in order to evaluate ΦM and ΦN for the first through the lth segment: 

𝐹𝐹𝑙𝑙 = 𝑎𝑎 + 2(𝑙𝑙 − 1)𝑏𝑏 (B25) 

𝐺𝐺𝑙𝑙 = 𝑎𝑎 + (2𝑙𝑙 − 1)𝑏𝑏 (B26) 

 

Substituting equations (B25) and (B26) equations (B21) and (B22) and results in: 

�
Φ𝐹𝐹+𝐺𝐺

𝑀𝑀<

Φ𝐹𝐹+𝐺𝐺
𝑀𝑀> � = −𝐼𝐼𝑜𝑜

𝑑𝑑𝑃𝑃𝑛𝑛
𝑚𝑚 (0)
𝑑𝑑𝑑𝑑

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹𝑙𝑙 �
𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙)

ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙)

� ± 𝐺𝐺𝑙𝑙 �
𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝐺𝐺𝑙𝑙)

ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝐺𝐺𝑙𝑙)

�� (B27) 

�
Φ𝐹𝐹+𝐺𝐺

𝑁𝑁<

Φ𝐹𝐹+𝐺𝐺
𝑁𝑁> � = −𝐼𝐼𝑜𝑜 𝑚𝑚𝑃𝑃𝑛𝑛

𝑚𝑚 (0)𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

⎣
⎢
⎢
⎢
⎡
∓𝐹𝐹𝑙𝑙

⎝

⎜
⎛

𝑑𝑑[𝐹𝐹𝑙𝑙 𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙)]
𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙 𝑑𝑑𝐹𝐹𝑙𝑙

𝑑𝑑[𝐹𝐹𝑙𝑙 ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙)

𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙 𝑑𝑑𝐹𝐹𝑙𝑙 ⎠

⎟
⎞

+ 𝐺𝐺𝑙𝑙

⎝

⎜
⎛

𝑑𝑑[𝐺𝐺𝑙𝑙𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝐺𝐺𝑙𝑙)]
𝑘𝑘𝑜𝑜 𝐹𝐹𝑙𝑙𝑑𝑑𝐹𝐹𝑙𝑙

𝑑𝑑[𝐺𝐺𝑙𝑙 ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝐺𝐺𝑙𝑙)

𝑘𝑘𝑜𝑜 𝐺𝐺𝑙𝑙𝑑𝑑𝐺𝐺𝑙𝑙 ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
 

(B28) 

 

Equations (B27) and (B28) along with equations (B12) and (B13) can be 

substituted into (B16) to find the final components of the electric field: 
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�𝑬𝑬𝒓𝒓
>

𝑬𝑬𝒓𝒓
<�

= −
𝜂𝜂𝑜𝑜 𝑘𝑘0

2

4𝜋𝜋
� � � 𝐷𝐷𝑚𝑚𝑚𝑚 𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃) 𝑍𝑍1

⎝

⎜
⎛Φ𝐹𝐹+𝐺𝐺

𝑁𝑁< 𝑛𝑛(𝑛𝑛 + 1)ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜𝑟𝑟)

𝑘𝑘𝑜𝑜 𝑟𝑟

Φ𝐹𝐹+𝐺𝐺
𝑁𝑁> 𝑛𝑛(𝑛𝑛 + 1)𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟)

𝑘𝑘𝑜𝑜 𝑟𝑟 ⎠

⎟
⎞

𝑛𝑛

𝑚𝑚=0

∞

𝑛𝑛=1

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙=1

 

(B29) 

�
𝑬𝑬𝜽𝜽

>

𝑬𝑬𝜽𝜽
<� = −

𝜂𝜂𝑜𝑜 𝑘𝑘0
2

4𝜋𝜋
� � � 𝐷𝐷𝑚𝑚𝑚𝑚

⎩
⎪
⎨

⎪
⎧

∓
𝑚𝑚

sin 𝜃𝜃
𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃) 𝑍𝑍2 �Φ𝐹𝐹+𝐺𝐺
𝑀𝑀< ℎ𝑛𝑛

(1)(𝑘𝑘𝑜𝑜 𝑟𝑟)
Φ𝐹𝐹+𝐺𝐺

𝑀𝑀> 𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟)
�

𝑛𝑛

𝑚𝑚=0

∞

𝑛𝑛=1

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙=1

+
𝑑𝑑𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃)
𝑑𝑑𝑑𝑑

𝑍𝑍1

⎝

⎜
⎛Φ𝐹𝐹+𝐺𝐺

𝑁𝑁< 𝑑𝑑[𝑟𝑟ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝑟𝑟)

𝑘𝑘𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟

Φ𝐹𝐹+𝐺𝐺
𝑁𝑁> 𝑑𝑑[𝑟𝑟𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟)]

𝑘𝑘𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟 ⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

 

(B30) 

�
𝑬𝑬𝜙𝜙

>

𝑬𝑬𝜙𝜙
<� = −

𝜂𝜂𝑜𝑜 𝑘𝑘0
2

4𝜋𝜋
� � � 𝐷𝐷𝑚𝑚𝑚𝑚

⎩
⎪
⎨

⎪
⎧

−
𝑑𝑑𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃)
𝑑𝑑𝑑𝑑

𝑍𝑍1 �Φ𝐹𝐹+𝐺𝐺
𝑀𝑀< ℎ𝑛𝑛

(1)(𝑘𝑘𝑜𝑜 𝑟𝑟)
Φ𝐹𝐹+𝐺𝐺

𝑀𝑀> 𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟)
�

𝑛𝑛

𝑚𝑚 =0

∞

𝑛𝑛=1

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙=1

∓
𝑚𝑚

sin 𝜃𝜃
𝑃𝑃𝑛𝑛

𝑚𝑚 (cos 𝜃𝜃) 𝑍𝑍2

⎝

⎜
⎛Φ𝐹𝐹+𝐺𝐺

𝑁𝑁< 𝑑𝑑[𝑟𝑟ℎ𝑛𝑛
(1)(𝑘𝑘𝑜𝑜 𝑟𝑟)

𝑘𝑘𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟

Φ𝐹𝐹+𝐺𝐺
𝑁𝑁> 𝑑𝑑[𝑟𝑟𝑗𝑗𝑛𝑛 (𝑘𝑘𝑜𝑜 𝑟𝑟)]

𝑘𝑘𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟 ⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

 

(B31) 

 

Where the Z terms, which take into account the varying sine and cosine 

functions, are given by: 

𝑍𝑍1 = �−
1
2

� [((−1)𝑚𝑚𝑚𝑚 − 1) sin(𝑚𝑚𝑚𝑚) + ((−1)𝑚𝑚𝑚𝑚 +1 − 1) cos(𝑚𝑚𝑚𝑚)] (B32) 

𝑍𝑍2 = �−
1
2

� [((−1)𝑚𝑚𝑚𝑚 − 1) cos(𝑚𝑚𝑚𝑚) + ((−1)𝑚𝑚𝑚𝑚 +1 − 1) sin(𝑚𝑚𝑚𝑚)] (B33) 
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Results and Discussion 

Morgan [160] plotted the normalized patterns for the θ and ϕ components of 

the electric field for one and two turn spirals.  He assumed that the wavelength, 

λ, was equal to one half of the innermost radius.  The results can be seen in 

Figure B.4 and Figure B 5.     

Equations (B29) – (B31) are of limited usefulness in optimizing the spiral coil 

configuration of the MSCAT due to their mathematical complexity, however one 

important conclusion can be made.  In the near-field, the spiral coil does in fact 

radiate electric fields in all three dimensions.  In order to more fully understand the 

electric fields radiated by a spiral coil antenna and how they excite acoustic waves in 

the MSCAT sensor platform finite element analysis was undertaken as described in 

Chapter 3. 
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Figure B.4.  Three-dimensional normalized patter of normalized θ component of 
the electric field as a function of θ for a) single turn spiral and b) two turn spiral 
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Figure B 5.  Three-dimensional normalized patter of normalized ϕ component of 
the electric field as a function of θ for a) single turn spiral and b) two turn spiral 
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