
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

5-2010

Monitoring Vegetation Change by Using Remote
Sensing: An Examination of Visitor-Induced
Impact at Cadillac Mountain, Acadia National Park
Min Kook Kim

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Forest Biology Commons

This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Kim, Min Kook, "Monitoring Vegetation Change by Using Remote Sensing: An Examination of Visitor-Induced Impact at Cadillac
Mountain, Acadia National Park" (2010). Electronic Theses and Dissertations. 417.
http://digitalcommons.library.umaine.edu/etd/417

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/91?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/417?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages


MONITORING VEGETATION CHANGE BY USING REMOTE SENSING: 

AN EXAMINATION OF VISITOR-INDUCED IMPACT  

AT CADILLAC MOUNTAIN, ACADIA NATIONAL PARK 

 

By 
Min Kook Kim 

B.A. Chung-Ang University, 2000 
M.A. Seoul National University, 2002 

M.U.P. State University of New York at Buffalo, 2005 

 

 

A THESIS 
Submitted in Partial Fulfillment of the 

Requirement for the Degree of 
Doctor of Philosophy 
(in Forest Resources) 

 

 

The Graduate School 
The University of Maine 

May, 2010 

 

Advisory Committee: 
John Daigle, Associate Professor of Forest Resources, Program Leader, Parks, 

Recreation, and Tourism, Advisor  
Jessica Leahy, Assistant Professor of Human Dimensions of Natural Resources 
Robert Lilieholm, E.L. Giddings Associate Professor of Forest Policy 
Steven Sader, Professor of Forest Resources and Cooperating Professor of Wildlife 

Ecology, Director of Maine Image Analysis Laboratory (MIAL) 
Christa Schwintzer, Professor of Biology, Assistant Director for Undergraduate 

Programs 



 ii

DISSERTATION 

ACCEPTANCE STATEMENT 

 

On behalf of the Graduate Committee for Min Kook Kim, I affirm that this 

manuscript is the final and accepted thesis.  Signatures of all committee members are on 

file with the Graduate School at the University of Maine, 42 Stodder Hall, Orono, Maine. 

 
 
 
 
 
Committee chair’s signature, name, and title                                                              (Date) 
 



 iii

© 2010 Min Kook Kim 
All Rights Reserved



LIBRARY RIGHTS STATEMENT 

 

 In presenting this thesis in partial fulfillment of the requirements for an advanced 

degree at The University of Maine, I agree that the Library shall make it freely available 

for inspection.  I further agree that permission for "fair use" copying of this thesis for 

scholarly purposes may be granted by the Librarian.  It is understood that any copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

 

    Signature: 

    Date: 



MONITORING VEGETATION CHANGE BY USING REMOTE SENSING: 
AN EXAMINATION OF VISITOR-INDUCED IMPACT  

AT CADILLAC MOUNTAIN, ACADIA NATIONAL PARK 

 

By Min Kook Kim 
 

Advisor: Dr. John Daigle 
 

An Abstract of the Thesis Presented 
in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 
(in Forest Resources) 

May, 2010 

 

Cadillac Mountain, the highest peak along the eastern seaboard in the United 

States, is a major visitor destination at Acadia National Park.  Managing vegetation 

impact on the summit of Cadillac Mountain is extremely challenging given the number of 

users and dispersed nature of visitor use at this fragile environmental setting.  Since 2000, 

more intensive management strategies based on placing physical barriers to protect 

threatened vegetation and leave no trace signs have been employed to reduce vegetation 

impact and enhance vegetation recovery in the vicinity of the summit loop trail.  A 

number of different change detection techniques and high resolution remote sensing 

datasets were utilized to identify vegetation impact and recovery from 1979 to 2007.  The 

detection of spatial pattern of vegetation impact and recovery was at a much larger scale 

than typical recreation ecology studies.  Study results showed detailed measurable 

vegetation regrowth and reduction at distances up to 90 meters from the summit loop trail, 

indicating overall positive effects in enhancing vegetation recovery in the vicinity of the



summit loop trail compared to a nearby control site with similar environmental conditions 

but no visitor use.  As expected, the vegetation recovery was higher as one moved away 

from the trail itself, and recovery was observed at a higher rate in the intermediate zone 

where visitor disturbance and ability for sites to regenerate would be higher than more 

natural variation of regrowth in the outer buffer zone with less visitor activity.  It should 

be noted that overall minimal gains in vegetation regrowth was observed from 2001 to 

2007, but compared with the time period of 1979 to 2001 there was more regrowth and 

less observed vegetation loss but total vegetation has not recovered to 1979 levels.  The 

results also showed that, although with much less resolution than typical recreation 

ecology studies, vegetation diversity was lower at the experimental site at the level of 

plant family, suggesting limited success with enhancing vegetation diversity during the 

analysis time frame.  Vegetation change detection using high resolution remote sensing 

datasets offers an approach for monitoring vegetation change dynamics and to some 

degree plant diversity, especially for a recreation setting in a sub-alpine environment with 

limited overstory vegetation such as the case at the summit of Cadillac Mountain.  

Remote sensing analysis could provide valuable baseline information for future visitor-

induced impact monitoring programs and especially for dispersed recreation sites such as 

Cadillac Mountain.  
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CHAPTER 1 
 

INTRODUCTION 
 
“… to conserve the scenery and the natural and historic objects and the wildlife therein 
and to provide for the enjoyment of the same in such manner and by such means as will 
leave them unimpaired for the enjoyment of future generations.” 

 
Organic Act, the legislated mission of the National Park Service, 1916 

 

Problem Statement 

The dual mission of the National Park Service (NPS), often referred to as 

“contradictory,” poses some significant challenges in the field of park management (Cole, 

2006a; Cole & McCool, 2000; Daigle & Zimmerman, 2004; Growcock, 2005; Leung & 

Marion, 2000; Marion, 1998; Marion & Reid, 2007; McCool & Stankey, 2003; Monz & 

Leung, 2006; Way, 2003)1.  As a result of the dual mandate, national park managers often 

struggle with the decision of how to balance the conservation of park resources with 

enjoyment of the park by the public, and it has been recognized that resource impact is an 

inherent and inevitable outcome of the interaction between the two objectives (Hammit & 

Cole, 1998; Leung & Marion, 2000).  For example, vegetation loss and soil erosion 

caused by concentrated and accumulated trampling are some common signs of visitor-

induced resource impact in national parks, and these can be especially pronounced over a 

period of time at popular “must see” destinations (Figure 1.1). 

                                                 
1 The dual mission of NPS has been recognized as a major source of problems associated with 
management issues in national parks.  However, there is also an interesting viewpoint about the 
dual mission.  Particularly, Winks (1996) and Galvin (2007a, 2007b) indicated that there is no 
fundamental contradiction in the dual mandate: the first priority of NPS should be preservation of 
natural resources, and at the same time, guarantee the enjoyment for future generations.  However, 
as Winks (1996) notes, there is a potential source of contradiction caused by ambiguity in the 
language of the Organic Act. 
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1960s 2000s 
Figure 1.1. Bubble Rock in Acadia National Park.  Certain locations such as scenic 
viewpoints and special features attract people many visitors.  These two photos illustrate 
a loss of ground vegetation cover sometime between 1960 and 2000 (Sources: Images 
courtesy of Acadia National Park). 

 

One of the significant characteristics of resource impact by recreational use is its 

highly concentrated nature because recreationists consistently tend to use the same places.  

Therefore, recreational resource impact does not occur randomly in space, but exhibits 

spatially explicit and predictable patterns (Hammitt & Cole, 1998).  Manning (1979) 

defined this spatial phenomenon as a “node” (destination areas) and “linkage” (trails) 

system (Leung, 1998; Leung & Marion, 1998).  In other words, considering the entire 

coverage of national parks and other recreation land areas, resource impact occurs in a 

very small portion of areas (localized in destination areas and trails) (Cole, 1981b; Wagar, 

1975).  However, such a spatially predictable impact pattern is a management concern, 

since the characteristics of localized impact can be severe and long-lasting (Cole, 1981a, 

2004b; Growcock, 2005; Hammitt & Cole, 1998; Pickering & Hill, 2007).  Visitor-

induced resource impact shows an asymptotic rather than linear relationship overtime, 

that is, vegetation disturbance and soil erosion occur rapidly even with relatively low use 

during the first couple of years after a site is established (Cole, 1986; Hammitt & Cole, 

1998). The severity of resource impact may also increase the potential conflict of use and 
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visitor displacement that ultimately affect the quality of the visitor experience (Farrell & 

Marion, 2002a; Leung & Marion, 1996; Leung & Monz, 2006). 

Moreover, resource impact on vegetation and soil, while localized at the site level, 

can gradually expand or creep with time as visitor use shifts across the larger landscape 

(Cole, 2004a; Cole & Hall, 1992; Hammitt & Cole, 1998).  This is a legitimate 

management concern recognized by many national park managers and recreation 

ecologists because unintended proliferation and expansion of the site tends to have more 

ecological impact than intensive impact in already-established sites (Hammitt & Cole, 

1998; Leung & Marion, 1998; Leung & Monz, 2006; Marion et al., 1993; McEwen et al., 

1996).  Consequently, this spatio-temporal pattern of resource impact has led 

management efforts to concentrate visitor use on trails and other durable surfaces (Cole, 

2001; Cole et al., 2008; Marion, 1998; Whinam & Chilcott, 2003). 

A number of site and visitor management strategies have been developed to cope 

with the problem associated with vegetation loss and other resource impacts.  It is not 

easy to distinguish site management from visitor management actions because site 

manipulation could be a potential means of managing the amount and distribution of 

visitor use.  As Manning (1999) indicated, a continuum between the two management 

actions clearly exists.  However, it should be mentioned that visitor management seeks a 

balance between visitor satisfaction and resource protection components; whereas, site 

management focuses more on the development of site protection techniques to minimize 

impact.  For example, site management strategies include permanent or temporary site 

closures, site manipulation for controlling spatial distribution of use (e.g., establishing an 

official/durable trail system and installing barriers/fence), and site hardening and 
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shielding using gravel and wood chips (Hammitt & Cole, 1998).  Also, visitor 

management strategies include, among others, use limit, length of stay limit, dispersal of 

use, concentration of use, restrictions on type of use, group size limits, seasonal limitation 

on use, and low-impact educational messages (Hammitt & Cole, 1998).  Within a spatial 

context, the site and visitor management strategies could be re-categorized as spatial 

segregation (site closures), spatial dispersal (dispersal of use), spatial containment 

(concentration of use), and spatial configuration (site manipulation) (Cole, 1982; Cole & 

Landres, 1996; Hammitt & Cole, 1998; Leonard et al., 1981; Leung, 1998; Lloyd & 

Fischer, 1972). 

Many of the above site and visitor management strategies have been further 

classified, reflecting a direct and indirect influence on visitor behavior (Gilbert, 1972; 

Lucas, 1982; Manning, 1999).  Direct management action emphasizes regulating visitors’ 

behavior; whereas, indirect management action emphasizes modifying visitors’ behavior 

by managing factors and situations that influence visitor behavior rather than directly 

controlling visitors (Hendee & Dawson, 2002; Hendee et al., 1990).  It is commonly 

agreed that the indirect approach is preferable and more effective than the direct approach, 

and it should be tried first (Clark & Stankey, 1979; Gunderson et al., 2000; Hendee et al., 

1990; Lucas, 1982; McCool & Christensen, 1996; Peterson & Lime, 1979).  However, 

there is also evidence showing the effectiveness of the direct approach in certain 

recreational settings (Dustin & McAvoy, 1984; Frost & McCool, 1988; Johnson & Kamp, 

1996; Marion & Reid, 2007; Shindler & Shelby, 1993; Swearingen & Johnson, 1995).  In 

particular, Cole (1995d) asserted that indirect methods such as visitor education and 

information programs have little supporting scientific evidence for controlling 
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recreational use and environmental impact.  Cole (2001) further suggested the need for 

the direct approach because the indirect approach is ineffective in solving specific 

resource impact problems, and the education and information programs need a relatively 

long period of time until they are adopted by visitors. 

Which management approach is more effective under given circumstances has 

been widely discussed (Manning, 1999).  On the basis of arguments for using either 

indirect or direct approaches, some researchers suggest that using both management 

approaches simultaneously is more applicable depending on the context of the problem or 

issue (Alder, 1996; Gramann & Vander Stoep, 1987).  Although it is not easy to pursue a 

balanced approach, the mixed use of both management approaches will be persuasive 

because there are complementary relationships between the two management approaches 

(Alder, 1996; Cole et al., 1997).  However, a question still remains regarding how we can 

effectively evaluate the outcome of site and visitor management strategies employed to 

reduce resource impact. 

 

Contemporary Park Management Framework: Monitoring 

 Contemporary park management frameworks such as Visitor Experience and 

Resource Protection (VERP) and Limits of Acceptable Change (LAC) heavily rely on a 

fundamental role of visitor-induced impact monitoring (Bennetts et al., 2007; Cole, 1993, 

2006a, 2006b; Cole et al., 2008; Hadwen et al., 2007; Hammitt & Cole, 1998; Hendee & 

Dawson, 2002; Leung & Farrell, 2002; Leung & Marion, 2000; Leung & Monz, 2006; 

Manning, 1999; Marion, 1998; Monz & Leung, 2006; Newman et al., 2006; Way, 2003).  

First, visitor-induced impact monitoring will help to establish a desirable management 
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objective through an initial resource inventorying process.  In other words, investigation 

on current resource conditions and use trends will be beneficial to select a level of VERP 

or LAC and to establish a potential indicator of quality (Hammitt & Cole, 1998; Marion 

et al., 2006; Newman et al., 2006).  Second, monitoring will help to estimate the 

effectiveness of management strategies already employed to reduce resource impact by 

capturing early warning of abnormal conditions of resources (Bennetts et al., 2007; 

Hammitt & Cole, 1998).  By regularly evaluating effectiveness of management strategies, 

managers can choose an optimal way between current management (when effective) and 

other alternative management strategies (when not effective). 

 Diverse monitoring techniques have been utilized that include 1) on-site 

observation (visitor behavior and use), 2) on-site measurement and experiment (resource 

condition), and 3) survey and interview (visitor or park staff) (Hammitt & Cole, 1998).  

These monitoring techniques could be further categorized as biophysical and social 

science approaches (Ingle et al., 2003; Leung & Marion, 2000) (Table 1.1).  While there 

have been substantial variations in terms of levels of accuracy, precision, and time and 

cost, more advanced methods have been developed by adapting GIS/GPS technologies 

and by selecting detailed monitoring protocols for both biophysical and social science 

approaches (Cole, 2004a; Manning et al., 2006). 
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Table 1.1. Visitor-Induced impact monitoring techniques. 
Biophysical Science Approach 

Condition Class Assessment (Cole, 1989b; Marion & Farrell, 1996; Williams & Marion, 
1995) 

Multiple Parameter Rating System (Cole, 1983; Hammitt & Cole, 1998; Leung & Marion, 
2002; Marion & Farrell, 2002) 

Experimental Design (often using 
cross-sectional, longitudinal, or 
permanent plot design) 

(Andrés-Abellán et al., 2006; Bakker et al., 1996; Bayfield, 
1979; Cole, 1993, 1995a, 1995b, 1995c; Cole & Bayfield, 
1993; Cole & Monz, 2002; Cole & Spildie, 1998; Cole & 
Trull, 1992; Lemauviel & Roze, 2003; Monz et al., 2000; 
Turner, 1990; Whinam & Chilcott, 1999, 2003) 

Ground Photographs (photopoint, 
quadrat photographs, and panoramic 
landscape  photographs) 

(Brewer & Berrier, 1984; Coleman, 1977; Nassauer, 1990; 
Skovlin, 2001) 

Water Quality Estimation (Hammitt & Cole, 1998) 

GIS/GPS 
(Beck & Gottschalk, 2004; Cole et al., 1997; Gajda et al., 
2000; Ingle et al., 2003; Leung, 1998; Marion et al., 2006; 
Newman et al., 2006) 

Social Science Approach 
Observation (Visitor Behavior and 
Use) 

(Haas & Jacobi, 2002; Jacobi, 2001a, 2003; McCool & Cole, 
2000; Turner, 2001) 

Qualitative Study (Bullock & Lawson, 2007; Farrell & Marion, 2002b) 

Quantitative Study (Bullock & Lawson, 2008; Cahill et al., 2007; Christensen & 
Cole, 2000) 

Photographs (Crowding/Social Norm) (Manning et al., 2006; Manning et al., 1996; Manning et al., 
2002) 

GIS/Computer-based Simulation 
Modeling (Visitor Use Density and 
Flow) 

(Bishop & Gimblett, 2000; Cole, 2005; Gimblett et al., 
2001; Itami et al., 2003; Lawson et al., 2004; Manning et al., 
2006; Murdock, 2004; O' Connor et al., 2005; Wang & 
Manning, 1999; Wing & Shelby, 1999) 

  

Leung and Monz (2006) cited challenges that exist in developing monitoring 

techniques in cost-effective and adaptive ways that can be implemented in perpetuity, 

providing useful and comparable data as visitor use and managerial situations change.  

For example, such existing methods, including on-site measurements and experiments, 

often require substantial field work and significant consideration in selecting size, 

number, and the location of the quadrats to be investigated.  Consequently, they may not 

be well-suited to monitoring changes in resource conditions, especially for a long-term 

period.  As they all involve “wait and see” procedures (Marion, 1998), a certain amount 
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of time should be considered after the first measurement, as well as a methodological 

consistency which is often subjective or biased.  These limitations may help explain why 

most visitor impact monitoring studies, so far, have been short-term assessments or one-

time studies.  It should be mentioned that it is often impossible to evaluate the true effect 

of the employed management strategies, if the temporal scales of studies are too short.  

There are also drawbacks to the social science approaches.  Visitor opinions about 

resource conditions are merely guesses (i.e., tend not to be highly perceptive), so they 

may not be helpful in identifying the degree of impact (Manning, 1999; Noe, 1992; 

Williams et al., 1992).  Cole (2006b) further point out that attitudes and beliefs of 

managers may also hinder the development of visitor-induced impact monitoring 

programs, especially if there is a need to prioritize the collection of scientific information.   

The main problem in the monitoring process is how to obtain uniformly reliable 

datasets for evaluating the current condition and effect of management actions employed, 

at the same time, minimizing potential errors and bias, and saving time and labor.  

Hammitt and Cole (1998) specifically indicated that there are seldom available datasets 

for monitoring resource impact and evaluating the efficacy of management strategies 

utilized.  Therefore, managers are often forced to make a decision without enough 

information associated with visitor use and resource impact, often leading to incremental 

decision-making (Cole, 2006b; Monz & Leung, 2006).  Clearly, a more fundamental and 

scientific approach is needed to apply monitoring results effectively to inform 

management decision-making (Cole, 2004b; Cole & Wright, 2004).  This may in-turn 

promote the value of developing and maintaining a visitor impact monitoring program. 
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Remote Sensing Technology for Monitoring 

Remote sensing refers to the detection and recording of values of emitted or 

reflected electromagnetic radiation with sensors in aircrafts or satellites (Ingle et al., 

2003).  While remote sensing datasets, such as satellite imageries and aerial photographs, 

would be a useful tool for monitoring purposes, the value of remote sensing has not been 

well-recognized in visitor-induced impact monitoring (Hammitt & Cole, 1998).  This is, 

as mentioned, because recreation impact tends to occur in a very small portion of areas 

(localized).  Subsequently, it was not easy to apply a remote sensing dataset having a 

broad or medium scale ground resolution to directly detect those localized small scale 

changes.  It was also impossible to detect any significant vegetation changes if there is a 

dense canopy cover or a multiple vegetation layer in a study site.  Second, it was difficult 

to capture an available dataset on time.  Sometimes, utilizing high-quality remote sensing 

datasets for analyses are very limited given the spatial and temporal scales of datasets.  

However, in spite of these problems, recent advances in image resolution and popularity, 

coupled with highly sophisticated image processing techniques, are becoming useful and 

helpful to minimize the proposed problems, to monitor visitor-induced resource impacts 

and to evaluate the effect of management strategies. 

From the perspective of recreational resource management, research regarding 

imagery and remote sensing has been explored since the early development of the 

technology to aid in monitoring.  Generally, there have been four main research trends: 1) 

supporting general management using vegetation mapping and classification, 2) 

inventorying recreational resources, 3) monitoring impact and change in recreational 
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resources, and 4) addressing the usefulness of remote sensing in park and recreation 

management (Table 1.2). 

 
Table 1.2. Research trends using remote sensing in recreational resource management.  

Research Trends* Sources 
Supporting general management 
(mapping & classification) 

(Baker et al., 1995; Hathout, 1980; Kindscher et al., 1997; 
Mehner et al., 2004; Ramsey et al., 2002; Taylor et al., 
2000) 

Inventorying recreational 
resources 

(Burnett & Conklin, 1979; Dill, 1963; Jusoff & Hassan, 
1997; Kearsley, 1994; Lindsay, 1969; MacConnell & 
Stoll, 1968; Miller & Carter, 1979; Silva & Pfeifer, 1989; 
Welch et al., 1999) 

Monitoring impact and change in 
recreational resources 

(Allan, 1983; Coleman, 1977; Grizzle et al., 2002; 
Hockings & Twyford, 1997; Lee et al., 1999; Leung et 
al., 2002; Li et al., 2006; Marion et al., 2006; Narumalani 
et al., 2004; Parmenter et al., 2003; Pauchard et al., 2000; 
Price, 1983; Witztum & Stow, 2004) 

Addressing the usefulness and 
importance of remote sensing in 
park and outdoor recreation 
management 

(Aldrich et al., 1979; Booth & Tueller, 2003; Butler & 
Wright, 1983; Dahdouh-Guebas, 2002; Draeger & 
Pettinger, 1981; Green, 1979; Gross et al., 2006; Hammitt 
& Cole, 1998; Ingle et al., 2003; Moran & Ostrom, 2005; 
Rochefort & Swinney, 2000; Taylor et al., 2000) 

* Some of the studies included human impact monitoring analyses in broad disciplines of natural 
resource management.  It is somewhat difficult to distinguish remote sensing analyses in visitor 
impact monitoring from those in general natural resource management because visitor-induced 
impact monitoring could be one major part of the natural resource management. 

 

As recreation ecologists, Monz and Leung (2006) clarified that a digital photo 

analysis would be useful in identifying vegetation change, soil erosion, social trail 

identification, unofficial site identification, and shoreline disturbance.  Ingle and others 

(2003) also indicated the importance and usefulness of remote sensing techniques for 

identifying extent and severity of visitor-induced impact as a major biophysical approach.  

They clearly stated that applications including GIS and remote sensing will enhance the 

overall quality of a monitoring dataset. 

A primary advantage of remote sensing datasets is that a relatively “big picture” 

can be easily captured in collecting datasets.  In other words, quick experiment and 
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measurement is available in identifying changes in resource conditions between dates 

without direct contacts, compared to the on-site measurement and experiment process 

that usually takes a much longer amount of time.  During this process, a potential 

likelihood of inconsistency in gathering required information for monitoring resource 

conditions could be significantly reduced by excluding observers’ biases, as well as 

saving time and labor.  This will enhance a visitor-induced impact monitoring program 

by identifying impact quickly enough to implement alternative management strategies, 

and by offering information associated with hot spots or heavily impacted areas (Witztum 

& Stow, 2004).  Also, in many cases, archived imagery is available that may further 

enhance development of a visitor-induced impact monitoring program.   

The difficulties in evaluating an actual outcome of management strategies have 

been discussed due to the complexity of an ecosystem subject to change spatial and 

temporal (Agee & Johnson, 1988; Bennetts et al., 2007; Johnson & Agee, 1988; Wallace 

et al., 1996).  In order to overcome this complexity, Agee and Johnson (1988) indicate 

that high-quality information is necessary to identify trends and to respond to resource 

impacts intelligently and deliberately.  Cole (2004b) also asserts that scientific knowledge 

provides powerful tools for monitoring recreational impact and for identifying efficacy of 

the employed management strategies.  Therefore, remote sensing technology that offers 

more credible and accurate products in terms of quality and ground resolution will be 

continuously amplified in recreational resource management and analysis due to the 

technological advances in both software and hardware. 
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Study Site 

Acadia National Park (ANP) spans 47,000 acres, and being part of the National 

Park System, it has a dual mission to conserve biological and cultural resources as well as 

provide for the enjoyment of people (Daigle & Zimmerman, 2004).  Geographically, 

ANP is the only national park in the Northeastern U.S. (Figure 2).  The mean annual 

temperature ranges from 41 to 46 degrees; the rain average is about 49 inches (123cm), 

and the snow average is about 5 feet (1.5m) annually (Lubinski et al., 2003; McMahon, 

1990; Wherry, 1929).  

Figure 1.2. Acadia National Park: Mount Desert Island has three major 
mountains: Cadillac, Sargent, and Penobscot. The Cadillac summit is the 
highest point on the Eastern Seaboard of the U.S. (1,530 feet). 

 

The park was established in 1919, and has become one of the most intensively 

used national parks in the United States (Jacobi, 2001b; Manning et al., 2006; Wang & 

Manning, 1999).  Visitation rate is similar to many other national parks in that it has been 

relatively stable over the past two decades.  For example, ANP received an estimated 2.2 
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million visitors in 2007 and 2.3 million in 1990 (Figure 1.3).  However, given the acreage 

of the park and visitation rate, ANP is the most densely populated of the major national 

parks in the U.S. (Figure 1.4). 
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Figure 1.3. Visitation level in ANP from 1990 to 2007 (Sources: 
National Park Service Public Use Statistics Office, 
http://www.nature.nps.gov/stats/). 
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Figure 1.4. Visitation levels at five major national parks in 2007 (left), and 
visitation level in 2007 divided by acreage (right), showing ANP as the most 
densely populated park (Sources: National Park Service Public Use Statistics 
Office, http://www.nature.nps.gov/stats/). 

 

Cadillac Mountain, the study site, is one of 26 peaks in ANP.  At 1,530 ft 

elevation, Cadillac Summit is the highest point on the Eastern Seaboard of the U.S.  The 

summit of Cadillac Mountain is a major destination for ANP visitors because it is the 

only mountain in Acadia with an auto road (Jacobi, 2001a, 2003).  There are three hiking 
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trails to the summit of Cadillac, as well as the auto road and the summit loop trail that is 

0.3 miles long.  A visitor survey completed by the National Park Service in 1998 shows 

that approximately 76% of total visitors to the park visited the summit of Cadillac 

Mountain (Littlejohn, 1999). 

Historic photos and archived materials show that the site became a popular visitor 

destination between the 1860s and 1870s, even before being designated as a national park 

in 1919 (Figure 1.5).  The unique scenic beauty attracted people to build three hotels at 

the actual summit area (near the current summit loop trail) around 1890.  The automobile 

road was built between 1929 and 1932, and the summit loop trail was initially paved in 

1933 with crushed rocks (re-paved often afterwards). 

 

Figure 1.5. Historic photos in the vicinity of the summit loop trail  
(Sources: Images courtesy of Acadia National Park). 

 
 
Although visitation levels have stabilized over the past few years, the summit 

receives an estimated 0.5 ~ 0.8 million visitors during the summer (June – August) each 

year (Jacobi, 2001a, 2003).  The earlier observational study, completed by Turner (2001), 
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found that the bulk of these visits come during the 100 days from Memorial Day to Labor 

Day.  This high visitation rate is partly explained by the auto road that provides 

convenient access to the top of the summit and beautiful scenic vistas of the Maine coast.   

However, the short growing season coupled with severe weather conditions make 

Cadillac Summit a difficult place for plants to grow.  Many of the plants on the Mountain 

are slow to recover from damage because of the weather and soil conditions (Jacobi, 

2003; Turner, 2001).  The sensitive sub-alpine nature of the site and the convenient 

accessibility via the auto road has created a scenario where vegetation degradation and 

soil erosion are both at a high risk.  This site represents a management challenge to 

balance the desire of the public for visiting a popular destination while at the same time 

maintaining the natural conditions of the area for current and future generations. 

Efforts to induce concentration of visitor uses and limit impact to vegetation on 

the summit were initiated in 1933 by installing the paved summit loop trail (no official 

management records, interview with the ANP resource management staff, 2007).  This 

durable surface trail was made to blend with the exposed granite surfaces intermixed with 

vegetation on the summit.  Interpretive platforms and wayside exhibits were also placed 

along the summit loop trail many years ago.   However, given the volume of visitors and 

general open nature of landscape, low vegetation and shallow soils, the summit was still 

experiencing trampling and soil erosion that prevented regeneration of vegetation.  In 

2000, a shift towards more intensive management was put in place to minimize visitor-

induced vegetation impact (Figures 1.6 & 1.7).  A combination of site and visitor 

management strategies using physical barriers and low impact education messages, 

respectively, were deployed in strategic locations to address vegetation loss on Cadillac 
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Summit.  The current resource management chief and staff in ANP had constantly 

observed a significant vegetation loss over the area, so all of these site and visitor 

management strategies were used as a management tool, not as a research mechanism 

(Turner, 2001; interview with the ANP resource management staff, 2007).  Until now, 

several studies based on social science approaches have attempted to verify the effect of 

the deployed management strategies coupled with visitors’ perceptions and experiences 

(Bullock & Lawson, 2007, 2008; Cahill et al., 2007; Park et al., 2008; Turner, 2001), but 

there has been little direct study examining the effect of the management strategies 

focusing on one of the most important biophysical factors ━ vegetation. 

 

Figure 1.6. Indirect management (left, leave no trace signage) and direct 
management (right, physical barriers): ANP has been using both management 
approaches since 2000 along the summit loop trail of Cadillac Mountain in 
order to reduce vegetation impact by trampling or visitor use. 
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Figure 1.7. Locations of physical barriers (light blue) and LNT signage (red), captured 
by GPS (Trimble GeoXT) and exported as ESRI shapefile format. 

 

Considering the sensitivity of the site and the ecological pressure caused by high 

levels of visitation, the primary objective of this study was to examine the effect of the 

two site and visitor management strategies to reduce vegetation impact in the vicinity of 

the summit loop trail.  Remote sensing and GIS technologies were utilized to investigate 

pre- and post-conditions of vegetation.  Additionally, this study set out to identify the 

utility and feasibility of remote sensing/GIS technologies to examine micro-scale 

vegetation changes at the high-use destination area. 

Specific research objectives were to: 

1) Detect fractional vegetation cover changes associated with off-trail hiking and 

trampling on Cadillac Mountain, using multi-spectral medium resolution remote 

sensing datasets: 2001 and 2006;   
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2) Examine effect of the site and visitor management strategies to reduce vegetation 

impact in the vicinity of the summit loop trail on Cadillac Mountain, using NDVI 

change detection analysis based on multi-spectral high resolution remote sensing 

datasets: 2001 and 2007;  

3) Evaluate effect of the site and visitor management strategies to reduce vegetation 

impact in the vicinity of the summit loop trail on Cadillac Mountain, using post-

classification change detection analysis based on multi-spectral high resolution remote 

sensing datasets: 2001 and 2007;  

4) Assess effect of the site and visitor management strategies to reduce vegetation impact 

in the vicinity of the summit loop trail, using pre-classification change detection 

analysis based on multi-temporal remote sensing datasets: 1979, 2001 and 2007.  

 

Holistic Approach 

This study was mainly motivated by recreation ecology, which is a relatively new 

field beginning in the 1970s (Liddle, 1997).  Recreational ecology refers to the scientific 

study examining recreational impact on the environment: vegetation, soil, water, and 

wildlife (Leung & Marion, 2000; Leung et al., 2001).  More specifically, recreation 

ecology could be defined as the field of study that examines, assesses and monitors 

visitor-induced impact in a national park or protected area, and their relationships to 

influential factors (Hammitt & Cole, 1998; Liddle, 1997; Marion, 1998).  Recent research 

trends in the discipline include development of impact monitoring protocols, 

management strategies, and low-impact educational messages (Cole, 1981a, 1989a, 

2004a; Hampton & Cole, 1988; Marion, 1995, 1998).  The main purpose of the discipline 
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is to help managers identify and evaluate the level of resource impact, allow 

understanding factors that cause impact, and suggest appropriate management actions to 

minimize impact under given conditions (Leung & Marion, 2000).  Although the 

discipline has developed effectively by adapting various experimental study designs 

(cross-sectional and longitudinal) and by developing detailed monitoring protocols (Cole, 

2004a), one of the major challenges that recreation ecology currently faces is to identify 

“how much impact (change) should be allowed under the dual mission of NPS?” 

Indeed, various management frameworks such as VERP and LAC, on the basis of 

the concept of “carrying capacity,” were developed to answer the question.  Indicators in 

many management frameworks, however, have little or no ecological background as well 

as difficulties in providing desirable ecological or biophysical indicators for monitoring 

impact (Buckley, 2003).  Studies have shown that there are often complexities and lack of 

definitions related to selecting indicators and standards of quality for monitoring 

protocols (Alldredge, 1973; Becker et al., 1984; Cole, 2004a; Graefe et al., 1984; 

Manning, 1999).  If indicators and standards of quality related to management objectives 

set relatively low carrying capacities, ultimately the areas may require direct regulations 

like use limits.  Otherwise, if indicators and standards of quality related to management 

objectives set relatively high carrying capacities, the areas may be significantly impacted 

at the first phase of recreational use (Burch, 1984; Stankey et al., 1984; Washburne, 1982). 

 A series of studies recently showed the importance of a holistic approach for 

solving the resource impact problem in protected areas (Blockstein, 1999; Chan et al., 

2007; Clark & Stankey, 2006; Clark et al., 1999; Endter-Wada et al., 1998; McConnell & 

Moran, 2000; Parsons, 2004; Wallace et al., 1996).  What they commonly emphasized is 
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that more holistic approaches will be required to effectively conserve natural resources by 

integrating social and biological concerns.  When considering the situation of Cadillac 

Mountain in terms of research approaches, it is easily found that many studies based on 

social science were completed since 2000 (Table 1.3.).  Although their main objectives 

were slightly different, they generally attempted to identify visitors’ perceptions and 

experiences associated with the current site and visitor management strategies. 

 
Table 1.3. Impact monitoring studies at Cadillac Mountain. 

Studies based on Social Science Studies based on Biophysical Science 
1. Littlejohn (1999): Visitor survey 
2. Jacobi (2001a): Visitor # counting & observation
3. Turner (2001): Visitor behavior observation 
4. Jacobi (2003): Visitor # counting & observation 
5. Bullock & Lawson (2007): Visitor interview 
6. Bullock & Lawson (2008): Visitor survey 
7. Park & Others (2008): Visitor behavior 
observation 

1. Lubinski, Hop, & Gawler (2003): 
Vegetation mapping project by USGS-NPS 
 

 

Some of the major findings based on human dimension issues can be summarized: 

1) several studies identified the visitation and major recreational activities in the vicinity 

of the summit loop trail in order to offer baseline information (Jacobi, 2001a, 2003; 

Littlejohn, 1999), 2) visitors’ experience at the summit do not appear to be diminished by 

the exclosures and signs (Turner, 2001), 3) visitors consider resource protection as an 

important matter and they are willing to accept on-site regulation, reinforced with the use 

of moderately to highly intensive management structures, but generally do not support 

use limits (Bullock & Lawson, 2008), 4) current site and visitor management strategies 

(barriers, trail hardening, and indirect methods) appeared to be of little consequence to 

visitors’ experiences, but if fencing and regulatory messages were installed along the trail, 

it could be a negative factor to visitors’ experiences (Bullock & Lawson, 2007). 
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 Overall, studies based on social science identified that the current management 

strategies will not degrade visitors’ experiences, even if the use level is extremely high 

during the summer.  Now, it could be assumed that one major issue of the dual mandate 

(visitors’ enjoyment) was solved to a degree in the vicinity of the summit loop trail.  The 

next step, for a holistic approach, is to identify the degree of resource impact by directly 

examining the effect of site and visitor management strategies that were intended to 

reduce vegetation impact. 

As aforementioned, there are two potential benefits of visitor-induced impact 

monitoring: 1) help to prove the effectiveness of site and visitor management strategies; 

and 2) help to establish a site objective by the inventorying process.  Therefore, the 

expected benefits of this study include the detection of significantly impacted areas at the 

destination over a relatively long time period, and evaluation of effectiveness of the 

management techniques that have been employed to minimize vegetation loss and impact.  

These results would provide insight for managers to select an optimal management 

technique in a sub-alpine natural environment, especially in densely populated areas.  

Moreover, the study results would contribute to establishing a specific site objective in 

terms of maintaining biological conservation, which is one of the dual missions of NPS, 

by adapting and utilizing a “vegetation component” as the ecological indicator. 

 

Study Design 

Chapter 2: Since the study was designed to use several different vegetation change 

detection techniques on the basis of the same vegetation comparison mechanism and 
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study boundary, some of the important/common methodological considerations in 

vegetation change detection analysis were discussed in Chapter 2. 

 

Chapter 3: Fractional vegetation cover changes associated with the hiking trail network 

at Cadillac Mountain were analyzed using Landsat TM between 2001 and 2006.  Three 

major vegetation indices, Normalized Difference Vegetation Index (NDVI), Soil 

Adjusted Vegetation Index (SAVI), and Transformed Vegetation Index (TVI), were 

applied to detect major vegetation cover changes over the trail network on Cadillac 

Mountain.  According to proximity to the trail network, Cadillac Mountain was divided 

into two zones.  Then, the rates of increased and decreased vegetation areas along with 

the trail network were identified and compared between the two zones by using statistical 

analysis based on a systematic sampling approach.  In addition, spatial interaction 

between the trail network and the decreased vegetation areas was tested using Cross K-

function, in order to identify the spatial interaction of impact along the trail network. 

 

Chapter 4: Vegetation cover changes in the vicinity of the summit loop trail were 

analyzed using multi-spectral high resolution remote sensing datasets between 2001 and 

2007.  In order to better understand the effect of the employed management strategies in 

the experimental site (the summit loop trail) representing “vegetation impact by visitors” 

and “management actions,” a control site was selected on the basis of landscape analysis, 

natural factors (temperature, precipitation, elevation, vegetation species homogeneity), 

human disturbance factors (existing trails and automobile roads), and natural disturbance 

factors (fires, wind, and storm).  NDVI, one of the pre-classification change detection 
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analysis techniques, was used to detect fractional vegetation cover changes in the 

experimental site as well as in the selected control site.  Then, the rates of increased and 

decreased vegetation areas between the two sites were statistically compared to identify 

the effect of the deployed management strategies.  

 

Chapter 5: Vegetation cover change between the experimental and control sites were 

analyzed using the same high resolution datasets discussed in the previous chapter.  

However, post-classification change detection analysis based on supervised classification 

was used to detect vegetation cover changes.  Based on a training dataset gathered in the 

field investigation during the summer of 2007, two supervised classifications for 2001 

and 2007 imageries were completed at the levels of plant family and binary mode 

(vegetation vs. non-vegetation).  Then, the rates of vegetation cover changes between the 

two sites were statistically compared to identify the effect of the deployed management 

strategies.  In addition, vegetation diversity considering evenness and richness was 

calculated using Shannon Wiener Index (alpha diversity metrics) and Euclidian Distance 

(beta diversity metric), in order to measure the effect of the employed management 

strategies in terms of maintaining and enhancing vegetation diversity. 

 

Chapter 6: Vegetation cover changes in the vicinity of the summit loop trail were 

analyzed using single-spectral high resolution remote sensing datasets in 1979, 2001, and 

2007.  Pre-classification change detection analysis was applied to detect significant 

vegetation cover changes in both the experimental and the selected control sites.  Unlike 

the studies in Chapters 4 and 5, this study included vegetation cover change analysis 
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before 2000, when no active management actions were applied.  Again, the rates of 

vegetation cover changes were statistically compared to identify the effect of 

management actions.  

 

Chapter 7: Recommendations based on the study findings were made for future 

management and study.  In addition, study limitations such as temporal and spatial scales 

of analyses were discussed.
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CHAPTER 2 

VEGETATION COVER CHANGE DETECTION ANALYSIS: 

METHODOLOGICAL CONSIDERATIONS 

 

The study was designed to use several different vegetation change detection 

techniques on the basis of the same vegetation comparison mechanism and study 

boundary.  Therefore, some of the important methodological backgrounds and common 

considerations are discussed in this Chapter. 

 

Previous Vegetation Studies at Cadillac Mountain  

 Many vegetation studies have been done in ANP, which reflects the importance of 

the resource as the only national park in the northeastern U.S.  Some of the early 

vegetation studies were completed by Rand and Redfield (1894), Hill (1919, 1923), 

Moore and Taylor (1927), and Johnson and Skutch (1928a, 1928b).  The feature of those 

early vegetation studies focused more on plant identification and classification.  However, 

the trend of vegetation studies was changed to fit particular interests, focusing on spatial 

distribution and analysis.  Kuchler (1956) mapped dominant species in the southeastern 

portion of Mount Desert Island including the burned areas of the 1947 fire, and Davis 

(1966) investigated spatial distribution of spruce-fir forests based on a field sampling 

method in the coast of Maine covering ANP.  Waggoner (1981) used a color-infrared 

aerial photograph taken in August 1979 in the first attempt to map the vegetation 

distribution and classification of Mount Desert Island using remote sensing analysis.  

Demers (1991) combined GIS applications to present vegetation richness and habitat 
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preference of Mount Desert Island by integrating a vegetation classification map based on 

the result of Kuchler’s work (1956).  Calhoun (1994) inventoried and mapped the 

wetland areas, using the U.S. Fish and Wildlife Service wetland definition and 

classification methodology.  Other notable studies in ANP mainly include an inventory of 

natural resources: 1) Mittelhauser (1996): investigated forest composition as a part of an 

ecological baseline information inventory, 2) Greene and others (1999): inventoried 

aquatic plants and their distribution, 3)  Schauffler and others (2007): classified five 

different vegetation cover types over the two upper watersheds using aerial photographs, 

4) Wiersma (2007): investigated spatial distributions of two forest vegetation types 

(deciduous and coniferous forests) in two watersheds, 5) Lubinski and others (2003): 

conducted vegetation classification research for supporting resource assessment and park 

management under the cooperative effort by USGS and NPS.  Until now, there has been 

little direct study examining vegetation impact caused by recreational activities on 

Cadillac Mountain, especially off-trail hiking and trampling using remote sensing 

technology. 

 

High Resolution Remote Sensing Dataset 

It is generally accepted that the emergence of the IKONOS satellite has created a 

new phase for remote sensing analysis since it offers an advanced spatial ground 

resolution (Enclona et al., 2004; Sawaya et al., 2003).  Many studies show the usefulness 

of IKONOS satellite imagery for monitoring vegetation loss and change (Colombo et al., 

2003; Goetz et al., 2003; Hirose et al., 2004; Jain & Jain, 2006; Katoh, 2004; Khorram et 

al., 2003; Stow et al., 2004; Turner et al., 2003; Wallace & Marsh, 2005; Wulder et al., 
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2004).  It has been shown that land cover and land use change information from medium 

spatial resolution sensors such as Landsat and SPOT may be difficult to apply directly to 

ecosystem analysis in a local scale due to a coarse spatial resolution (Wulder et al., 2004).  

Therefore, major advantages of high resolution remote sensing datasets including 

IKONOS are to reduce a mixed pixel problem that is often pronounced in medium or 

coarse spatial resolution, and to provide a higher probability to obtain more detailed 

information related to land cover and change (Hirose et al., 2004; Jollineau & Howarth, 

2002; Lu & Weng, 2007; Sawaya et al., 2003).  Given recent advances and its increased 

availability in platforms and sensors, the utilization of high resolution datasets offer 

improved opportunity for analyzing detailed vegetation changes (Gross et al., 2006; 

Hirose et al., 2004; Loveland et al., 2002). 

In national parks and protected areas, high resolution aerial photographs and 

IKONOS from the 1940s to 1990s were used for mapping and quantifying land use, land 

cover changes, and ecological impact of such changes at the Effigy Mounds National 

Monument, Iowa (Narumalani et al., 2004).  Mehner and others (2004) utilized a pre-

classification change detection analysis based on IKONOS imagery for mapping upland 

vegetation classification in Northumberland National Park, UK.  They showed that 

IKONOS imagery is a useful tool for mapping vegetation at a finer spatial scale, 

providing accuracy comparable to a traditional on-site mapping method of ground survey.  

Gross and others (2006) introduced diverse uses of high resolution remote sensing 

datasets for landscape dynamics evaluation, conservation biodiversity, and ecosystem 

management.  Their research detailed possible applications of remote sensing technology, 

especially focusing on the management of U.S. national parks. 
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In Chapters 4 and 5, two multi-spectral remote sensing datasets, IKONOS 2001 

and Airborne 2007, holding an advanced spatial resolution, were used to detect 

vegetation changes between 2001 and 2007.  The IKONOS 2001 was obtained from 

Acadia National Park (ANP) and the airborne 2007 was obtained from the John Deere 

AGRI Service (Figure 2.1). 

IKONO 2001 (August 18, 2001) 
Projection: UTM, Zone 19 
Spheroid: GRS 1980 
Datum: NAD 83 
Resolution: 1.0m (PAN), 4.0m (Multi) 
Binary Digit: 11bit (0-2047) 

Airborne 2007 (June 24, 2007) 
Projection: UTM, Zone 19 
Spheroid: GRS 1980 
Datum: NAD 83 
Resolution: 0.96m (B, G, R, NIR)  
Binary Digit: 8bit (0-255) 

  
Figure 2.1. Description of remote sensing datasets used (natural color composite). 
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Identifying the Study Boundary 

Remote sensing technology has been recognized as useful way to collect spatial 

information, and has played an important role in investigating vegetation diversity and 

structural composition across multiple scales (Innes & Koch, 1998; Linke et al., 2007).  

Also, by integrating with GIS and other spatial statistic applications, the technology has 

been more useful to understand the human dimensions of land use and cover change 

(Green et al., 2005).  However, both spatial and temporal scales of remote sensing 

datasets that will be utilized in this analysis should be examined in order to produce an 

observed and measured change pattern more effectively and meaningfully.  

Studies for considering the importance in both spatial and temporal scales have 

been mainly addressed from the perspective of landscape ecology and analysis (Levin, 

1992; Turner, 1989, 1990; Wiens, 1989).  Levin (1992) proposed the problem of observer 

bias and filtering process associated with simplification and aggregation in investigating 

ecological change and analysis.  Levin’s main point is that the recognition of a natural 

system would be inevitably biased because we look at a natural system and function with 

our own filter at a certain position.  Alternative ways, therefore, should be developed to 

quantify spatial patterns under the variability of space and time in order to understand 

how patterns change with different scales (Levin, 1992).  In the same context, Wiens 

(1989) indicated that our measurement or observation at a certain spatial and temporal 

scale influences measured or observed results.  Therefore, it is extremely important to 

establish appropriate the spatial and temporal scales of research (Green et al., 2005). 
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As a practical application for controlling the spatial scale issue, two distinctive 

concepts have been suggested2 (Moran & Ostrom, 2005; Turner, 1990; Turner et al., 

2001; Wiens, 1989).  The first is “grain” that refers to a finest spatial resolution or 

measurement, and the second is “extent” that refers to a total area sampled within a given 

dataset (Gergel & Turner, 2002).  From the remote sensing perspective, grain and extent 

are generally related to resolution (pixel size) and area of coverage, respectively 

(Lillesand et al., 2004).  The problem associated with grain and extent is simple.  If we 

control and change the size of grain or extent, detailed or important sources for an 

analysis would also be changed together (Figures 2.2 and 2.3). 

 
      
      

   

      

  

      
 
 

 
 

 
 

      

 

      

 

 
 

 
 

 
 

 

  

 

 Figure 2.2. Increasing grain size: depending on the size of grain, observed spatial 
pattern would be different (Turner, 1990). 

 

                                                 
2 There are relatively fewer methods in terms of coping with a temporal scale issue because we 
have a limited number of remote sensing datasets for analysis.  However, two main factors are 
often recommended to be considered (Wiens, 1989).  The first is selecting an optimum seasonal 
time to ensure leave-on and dry vegetation and dry soil in a study area.  Furthermore, a selected 
remote sensing dataset must have no haze and clouds that may cause a false interpretation.  The 
second is monitoring a frequency of natural disturbance (e.g., fire or drought).  In other words, 
any natural disturbance that may influence vegetation structure and composition during an 
intended time frame should be identified and considered to better understand changes. 
 



 

 46

 
 
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
Figure 2.3. Increasing extent size: by increasing extent of study areas, different spatial 
pattern and results would be observed (Turner, 1990). 

 
 
Although there is no single correct scale for an analysis, it is commonly agreed 

that more appropriate extent and grain would be discovered by considering given study 

assumptions (Gergel, 2007).  In that regard, multi-spatial scale studies have been 

introduced by altering the size of extent and grain or by applying a statistical technique 

and modeling (Carroll & Pearson, 2000; Galzin, 1987; Turner, 1990; Turner et al., 2001; 

Wiens, 1989).  Wiens (1989) mentioned two techniques in order to control spatial 

variance and heterogeneity: 1) increasing the size of grain while holding the size of extent 

constant, and 2) increasing the size of extent while holding the size of grain constant.   

Pauchard and others (2000) controlled the grain sizes from broad to fine by 

different standards and tried to integrate them in a multiscale method for assessing 

vegetation distribution.  Kalkhan and Stohlgren (2000) applied two different spatial 

sampling approaches using 1m2 and 1,000m2 to identify the spatial pattern of plant 

species richness.  Tasser and Tappeiner (2002) adopted two different grain sizes of 25m2 

and 250m2 for their vegetation sampling research.  Graham and Knight (2004) used three 
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different multi-scale sampling plots to identify plant diversity in cliff environments: 1m2, 

20m2, and 30m2.   Underwood and others (2007) utilized two different spatial resolution 

scales (4m2 and 30m2) in detecting three invasive plants in California’s coastal ecosystem 

using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially degraded 

AVIRIS.  In addition, in the field of recreation ecology, two different sampling strategies 

at both 1m2 and 4m2 were used to identify vegetation trampling effect on a forest 

understory community (Taylor et al., 1993). 

On the other hand, Kendall and others (2003) employed two different extents 

(100m and 500m) to evaluate spatial distribution of a certain family of fish for 

discovering the pattern of settlement.  Madrigal and others (2008) also used two different 

spatial extents (micro and regional scales) to identify factors influencing a herbaceous 

community in the Mediterranean.  In addition, more than three different spatial extents 

were adopted to cope with the spatial scaling issue in two studies (Senft et al., 1987; 

Wiens et al., 1986).  In the field of recreation ecology, Cole and Monz (2004) utilized 

three different spatial extents to monitor campsite vegetation impact in two sub-alpine 

communities: core (3m2), intermediate (5m2), and periphery (7m2).  Although there is a 

slightly different aspect in understanding the concept of extent between landscape 

ecology that tries to cope with the inherent spatial problem of analysis and recreation 

ecology that mainly attempts to verify a localized impact and regular radial pattern of 

vegetation impact, it is remarkable that they reported the magnitude, variability, and 

spatial pattern of vegetation impact were varied with the spatial scale of analysis. 

Since the two remote sensing datasets which were used in our study have their 

own spatial resolutions around 1m, the vegetation change analysis using those datasets 



 

 48

was fixed within 1m grain size by a supplementary resampling process.  Establishing a 

appropriate grain size for an intended spatial analysis will be naturally settled by the fixed 

cell size of grid maps.  Also, in a spatial sampling process, the size of grain for 

calculating the rates of vegetation changes (the size of sampling plot) was controlled to 

obtain a minimum sampled plot (e.g., N ≥10) on the basis of a systematic sampling 

approach over the study region.  However, there still is a spatial issue associated with 

extent. 

It is important to establish a reasonable extent of the study site because a core idea 

to identify the effectiveness of the site/visitor management strategies has a close 

relationship with how much area in the vicinity of the summit loop trail will be impacted 

by visitors.  For our analysis, three different spatial extents were adopted to identify 

vegetation changes in the vicinity of the summit loop trail: small (30m buffering width 

from the summit loop trail), medium (60m buffering width), and large (90m buffering 

width).  Although the adopted method was guided by the landscape ecology literature, the 

physical delimitations of three extents were decided on the basis of an assumption that 

there will be limited visitor dispersion and associated impact beyond 100m from the 

summit loop trail.  This assumption is linked to a visitor observation study at the Cadillac 

Summit Loop Trail (Turner, 2001) which found that visitor impact on vegetation and soil 

was not limited to a few meters from the trailside of the summit loop trail.  Impact was 

occurring far beyond the summit loop trail, as well as the area surrounded by the trail, 

that could be easily taken up to 50-90m from the trail on the basis of Turner’s sampling 

plots for vegetation trampling and observational locations for visitor behaviors.  The 

important point was not the fact that we specifically assigned three different figures for 
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designing the buffering widths, but that we used three different spatial extents for 

investigating vegetation changes and trends.  Each result in the three spatial extents was 

then compared to ensure a consistency in detecting vegetation changes.   

 

Selecting the Control Site 

A method to estimate vegetation changes in the field of recreation ecology is 

mainly divided into two parts: 1) estimating amount of vegetation cover, 2) estimating 

vegetation composition and diversity (Hammitt & Cole, 1998).  The first is the most 

common and classic approach that calculates total or mean of vegetation cover, while the 

second is relatively less used in studies (Hammitt & Cole, 1998).  These methods could 

be further classified by spatial sampling strategies (e.g., random, stratified random, 

systematic, and cluster sampling) and the size of quadrat (e.g., 1m2 vs. 5m2).  In 

traditional recreation ecology studies, commonly used methods include a 1m2 quadrat 

based on a systematic sampling approach, and a line transect method for estimating the 

mean cover of vegetation (Cole, 1982; Hammitt & Cole, 1998; Marion, 1991).   

Vegetation changes could be indentified also by comparing vegetation cover on a 

target area with cover on adjacent undisturbed/pristine areas (Cole, 1995).  In this case, 

the most essential factor is that selected undisturbed sites (control sites) must have 

environmentally similar characteristics with the experimental site (original study site).  

This vegetation comparison mechanism was used in our vegetation change analysis to 

maximize the advantage of remote sensing datasets that allows us to capture areas having 

low or little accessibility.  Since our experimental site represents an “intensively used 

area” having both a constant vegetation impact by visitors and site/visitor management 
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actions to reduce vegetation impact, the control site must have different characteristics in 

terms of visitor use patterns and management actions, while their environment 

characteristics should be similar.  The similar environmental characteristics and 

boundaries can be explained as the same levels of climatological parameters such as 

temperature and precipitation aspect (Butler et al., 2003; Lloyd & Graumlich, 1997; 

Motta & Nola, 2001). 

In order to spatially identify areas that maintain a similar climatological parameter 

at Cadillac Mountain, the Maine Office of GIS (http://megis.maine.gov/) was 

investigated to check atmospheric, climatological, and meteorological GIS datasets, but 

no relevant datasets were discovered.  As an alternative, the National Digital Forecast 

Dataset (NDFD) (http://ndfd.weather.gov/), administrated by NOAA, was used to check 

climatological datasets covering the experimental site.  The NDFD is a grid-based 

weather forecast system that includes wind speed, wind direction, moisture level, 

precipitation, dew point, temperature, etc.  Basically, the NDFD is a forecast system 

projecting from every 3 to 120 hours, but what was necessary to investigate were the 

minimum spatial boundaries of those climatological parameters at Cadillac Mountain.  

Therefore, all related GIS datasets were downloaded, selected by location to contain one 

polygon covering the summit of Cadillac Mountain, and intersected to identify an overlay 

area (Figure 2.4).  The intersected area in Figure 2.4 included a relatively large area of 

Cadillac Mountain, so it was not useful to narrow down a target area where the control 

site could be potentially selected.  However, the spatial boundary of the intersected area 

was useful in discovering the fact that two other major summits, Sargent Mountain (1,473 
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ft) and Penobscot Mountain (1,194 ft) considered as strong candidates for the control site 

within Mount Desert Island, may have a different climatological regime (Figure 2.5). 

 

  
Wind Speed Wind Direction 

  

  
Moisture Level Precipitation 

  

  
Temperature Weather  

  
Figure 2.4. Spatial boundaries of climatological parameters by NDFD (Background 
Image: SPOT 2004). 
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Figure 2.5. Intersected area by 6 climatological parameters 
(Background Image: SPOT 2004). 

 

 More fundamentally, many studies discuss “elevation” as the most important 

single factor for shaping a homogeneous vegetation community, suggesting a shorter 

growing season, especially in alpine or sub-alpine environments (Barnes et al., 1998; 

Boughton et al., 2006; Kimball & Weihrauch, 2000).  In addition, recommendations 

associated with elevation in selecting the control site were suggested in the 5th 

Northeastern Alpine Stewardship Gathering at the Schoodic Education and Research 

Center, ANP, from June 8-9, 2007.  There was an attempt by participants to define 

“geographic area” of the summit loop trail area.  Among various ideas, using the 1,450 ft 

contour was commonly suggested because it would capture all areas of interest and the 

area already impacted (Jacobi, 2007).  

 Elevation as a baseline boundary was applied in selecting the control site.  

Initially, 1,450 ft in elevation was considered, but it included only a small portion of the 
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vicinity of the summit loop trail as mainly impacted areas.  Consequently, it was 

expanded to 1,300 ft to capture more undisturbed/pristine areas (Figure 2.6).  This 

minimum elevation included our large spatial scale boundary (90m buffering width from 

the summit loop trail) in the intended multi-scale analysis.  

 
Figure 2.6. Elevations at the summit of Cadillac Mountain: baseline 
boundary to select the control site (1,300 feet). 

  

On the basis of the selected boundary of 1,300 ft in elevation, a disturbance factor 

was additionally considered as empirical studies showed that disturbance is a key 

mechanism in maintaining species diversity by preventing dominance (Roberts & Gilliam, 

1995; Turner, 1989).  Disturbance is defined as a relatively discrete event that disrupts 

structure and process of ecosystems, communities, or populations and changes resource 

availability or physical environment (Barnes et al., 1998; Begon et al., 1996; Pickett & 

White, 1985).  It can be generally divided into two categories: natural and human-

induced disturbances (Randolph et al., 2005).  Natural disturbance is a biological and 
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physical mechanism including insect damage, disease, hurricane, windstorm, flood, snow, 

ice damage, fire, earthquake, landslide, and volcanic eruptions.  Human disturbances 

include timber harvesting, clearing, mining, and agriculture.   

 Major natural disturbances were investigated since the establishment of ANP in 

1919 using archived materials and interviews with park staff.  A notable event was the 

disastrous fire in 1947 (Figure 2.7).  The fire burned most of the eastern side of Mount 

Desert Island, including the vicinity of the summit loop trail (Patterson et al., 1983).  It is 

agreed that fire is the most important natural disturbance agent causing change of stand 

structure in sub-alpine forests (Rebertus et al., 1992; Veblen et al., 1994).  Therefore, it 

was suggested that the control site must be within the same burned areas. 

  
Figure 2.7. Burned area in the vicinity of the summit loop trail (right) and Mount Desert 
Island (left) by the Fire in 1947. 

 

Next, the human disturbance factor was considered.  From the perspective of 

forestry, the human disturbance factors have been investigated and observed by a 

relatively large scale land use and land cover change over a long time period in order to 

discover direct human impact, such as timber harvesting and clear cutting (Heckenberger 
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et al., 2007; Hessburg et al., 1999; Sader et al., 2004; van Gemerden et al., 2003; White 

& Oates, 1999).  However, it was assumed that there was no clear cutting and timber 

harvesting activities because ANP has been protected as a federal land since its 

establishment in 1919.  Instead of those direct human disturbance factors, two concepts 

were utilized to exclude potentially human accessible areas under the assumption that 

accumulated trampling effect is the most serious human disturbance factor in the vicinity 

of the summit loop trail: riparian buffering and wildlife conservation buffering distances.  

As mentioned, the two distance concepts were used as an alternative way in establishing 

undisturbed and potentially disturbed areas by visitors or recreationists. 

Establishing riparian buffer zone is a widely accepted tool for improving and 

protecting stream resources (Dosskey et al., 2005; Reid & Hilton, 1998).  It provides an 

ecologically important buffering function to alleviate direct impact of land use activities, 

mainly agricultural purposes (Dwire & Lowrance, 2006).  An appropriate buffering zone 

will be varied by topographic information such as slope and soil condition (Dosskey et al., 

2005), but related studies typically suggest distances ranging from 7m to 120m from 

stream shoreline (Buffler et al., 2005; Chase et al., 1997; Johnson & Buffler, 2008; 

Yeakley et al., 2006).  There is also the alert (or flush) distance concept as one of wildlife 

conservation buffering distances, indicating minimum approaching area to avoid a 

stressful situation to wildlife (Fernández-Juricic et al., 2002).  This alert distance is 

extremely varied among species, with large species being less tolerant of human 

disturbance than small ones (Fernández-Juricic et al., 2002).  Again, associated studies 

normally suggest the distances ranging from 12m to 200m from wildlife (Buckley & 

Buckley, 1976; Erwin, 1989; Fernández-Juricic et al., 2002; Rodgers & Schwikert, 2002; 
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Rodgers & Smith, 1997; Taylor & Knight, 2003).  There is another clue to derive an 

appropriate human disturbance distance.  Urban (2000) used more than 100m from a road 

network for undisruptive sampling areas for GIS landscape analysis and impact 

assessment, even though this study is neither about riparian buffering nor alert distance 

concepts. 

Accordingly, in order to exclude potentially human accessible areas, 150m was 

applied from the existing structures including parking lots, auto roads, concession and 

restroom areas, and the hiking trail network (Figure 2.8).  Originally, 200m was 

considered, but relatively huge portions of our baseline boundary of 1,300 ft in elevation 

were masked-out, so it was impossible to obtain potential pristine areas.  The targeted 

area for the control site was additionally reduced by eliminating cloud cover areas in 

IKONOS 2001 to avoid later classification confusion. 

 
 Figure 2.8. Buffering from the existing structures to exclude human impact area (sky 

blue: 150m buffering distances, ocher: 1,300 ft in elevation at the summit). 
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Figure 2.9 shows the selected control and experimental sites.  The control site was 

delineated by excluding the fire impacted and the potentially human accessible areas on 

the basis of the 1,300 feet in elevation contour.  The minimum distance between the 

experimental and control site at the large spatial scale was 60m, indicating a 

geographically adjacent area.  Both sites have a relatively similar south-east facing aspect, 

while the control site was slightly steeper than the experimental site, when comparing 

topographic factors. 

Experimental Site 
Visitor Impact, Management  

Area (m2) Vegetation Cover* 

Small 
(30m) 33,497 Dwarf-shrubland: 93% 

Medium 
(60m) 57,612 Dwarf-shrubland: 86% 

Large 
(90m) 87,136 Dwarf-shrubland: 81% 

Control Site  
No/limited Visitor Impact,  

No/little Management  

Area (m2) Vegetation Cover* 

Small 
(30m) 13,524 Dwarf-shrubland: 99% 

Medium 
(60m) 33,460 Dwarf-shrubland: 86% 

Large 
(90m) 61,551 Dwarf-shrubland: 76% 

 
Figure 2.9. Selected control site showing the three different spatial scales (red lines). 

 

Tests were made to investigate the similarity and difference between the two sites 

in terms of a vegetation composition and a level of impact.  The first test was done during 

our field vegetation investigation on July 20, 2007.  Undisturbed/pristine areas (about 

10m2) for comparing trampling impact in the vicinity of the summit loop trail were 
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investigated by Dr. John Daigle (University of Maine), Dr. Jeff Marion (Virginia Tech), 

and Charlie Jacobi (ANP).  The objective of the field investigation was to spatially 

discover undisturbed/pristine areas representing no site/visitor management and no visitor 

use, so that the selected points dataset could be potentially used for future trampling 

research.  Criteria used included minimum bare rock portion, no soil exposure scars, and 

relatively abundant vegetation covers.  Consequently, 22 sites were identified as 

undisturbed/pristine areas.  The location of each site was recorded by a Trimble GeoXT 

(a submeter GPS unit) with a bypass and external antenna and exported as ESRI shape 

file format (Figure 2.10).  Due to the accessibility issue, it was impossible to investigate 

intensively the entire vicinity, but the effort was made to visit many sites.  Overall, 

undisturbed/pristine sites were identified more at the core area of the control site.  The 

result showed six pristine sites were included in the selected control site, even though 

four sites were included over the medium scale of the experimental site.  In addition, the 

northern area of the summit loop trail included five potential sites in woodlands which 

are less accessible.  It was not possible to locate a potential site within the small spatial 

scale of the experimental site due to the significantly impacted level. 
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Figure 2.10. Potential control sites: 22 red points (background classes by VMP) 

 

 Additionally, vegetation composition in the selected control site was investigated 

using the result of the Vegetation Mapping Project (VMP) completed in Acadia (Lubinski 

et al., 2003) (Figure 2.9 & 2.10).  Under the cooperative effort by USGS and NPS, 

vegetation classification research in ANP was done for supporting resource management 

in 2003.  The project utilized 1,216 aerial photos in conjunction with 216 community 

based vegetation sampling plots.  For the classification scheme, 50 different map classes 

were developed for ANP on the basis of the National Vegetation Classification System 

(NVCS) developed by The Nature Conservancy (Anderson et al., 1998; Grossman, 1998) 

and endorsed by the Federal Geographic Data Committee (FGDC), to maintain 

classification consistency across regions.  Overall accuracy of the classification result 
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was about 80% via 668 accuracy assessment points.  When comparing vegetation cover 

at the level of plant class, it was found that vegetation covers between the experimental 

and the control sites were almost similar to Dwarf-shrubland in the small and medium 

scales, while the vegetation cover in the control site is a slightly more dynamic in the 

large spatial scale.  However, there was no outstanding difference in terms of vegetation 

composition at the level of plant class in the VMP. 

 

Pre-Classification Change Detection Analysis 

Classification is the process of sorting dataset pixels into a number of classes on 

the basis of their spectral values (Singh, 1989).  The common pixel-based classification 

methods are unsupervised and supervised classifications (Jensen, 2005).  One of the 

advantages of unsupervised classification is that it requires minimum input from the 

analyst.  Therefore, when the analyst does not have enough knowledge and information 

about a study site, this method may be more useful for classification.  However, the 

signatures (training dataset) in unsupervised classification are automatically generated, so 

the classification results may have less discerning ability compared to the supervised 

classification.  Unlike the unsupervised classification, supervised classification requires 

knowledge about a study area.  This background information (signature, training data, or 

priori knowledge) could be collected through a field survey and interpretation from other 

ancillary datasets (e.g., aerial photographs and vegetation maps).  The advantage of 

supervised classification is that the analyst can define a required classification scheme for 

organizing classification results.  However, the process of collecting the training data 

could be a drawback compared to unsupervised classification.   
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More importantly, there is a need to discuss change detection analysis techniques 

based on the classification algorithms.  Change detection is a process of identifying 

differences by observing land cover types at different times (Lu et al., 2004; Singh, 1989).  

Until now, two main techniques associated with change detection have been widely 

accepted in remote sensing analysis: pre-classification and post-classification change 

detection analyses (Lunetta et al., 2006; Rogan & Chen, 2004; Rymasheuskaya, 2007; 

Serra et al., 2003; Singh, 1989).  Both methods have pros and cons in terms of analyzing 

datasets and obtaining results (Table 2.1).  Therefore, change detection methods should 

be carefully selected among various analysis techniques under the given circumstance 

and detailed study objective. 

 
Table 2.1. Advantage and disadvantage of vegetation change detection methods (Lunetta 
et al., 2006; Rogan & Chen, 2004; Rymasheuskaya, 2007; Serra et al., 2003; Singh, 
1989). 

 Advantage Disadvantage 

Pre-classification 
Change Detection 

1. Easy to manipulate by 
transforming band ratio 
2. Partly compensating the 
problem of different illumination 
condition, surface slope, and 
aspect 
3. No need to have a training data 
(time saving) 

1. Must have a radiometric co-
registration process between 
imageries 
2. Non-detailed classification 
scheme 
(e.g., change vs. non-change) 

Post-classification 
Change Detection 

1. More detailed and flexible 
classification scheme by land 
cover types or user-defined 
classes (e.g., species, genus, and 
family) 
2. No radiometric co-registration 
process required between two 
images  

1. Relatively complicated process 
compared to pre-classification 
change detection technique 
2. Problem with result accuracy 
level (e.g., 80% accuracy × 80% 
accuracy = 64% accuracy) 
3. Time component 

  

Although it is commonly agreed that high resolution remote sensing datasets 

including IKONOS are useful for vegetation change analysis, several factors should be 
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considered before designing the vegetation change analysis using multi-spectral and high-

resolution remote sensing datasets captured by different sensors and platforms.  The 

measured spectral value of each band in remote sensing datasets is easily affected by 

external factors, such as changes in scene illumination, atmospheric conditions, 

seasonality, viewing geometry, and sensor response characteristics (Lillesand et al., 2004; 

Moran & Ostrom, 2005).  These factors could cause potential problems in identifying 

vegetation species, in assigning proper classification schemes and in detecting vegetation 

changes.  Even though the post-classification approach has been considered as a 

promising way for detecting changes and identifying detailed vegetation types, it requires 

extensive field work to obtain a training sample dataset often accompanying time and 

cost components, significant consideration in selecting classification schemes, 

consistency in imagery processing, and accuracy assessment regarding post-classification 

results (Singh, 1989; Weismiller et al., 1977).  Moreover, the reliability of the post-

classification change detection analysis result will be decreased considerably when two 

images have a relatively low level of accuracy (Coppin et al., 2004; Lambin & Strahler, 

1994; Petit & Lambin, 2001; Singh, 1989).  Many pre-classification change detection 

methods have been developed by ratio transformation between each band in order to 

partly cope with the problems related to the distortion of measured spectral values and the 

post-classification approach (Jensen, 2005; Lunetta et al., 2006) (Table 2.2). 

 



 

 63

Table 2.2. Applicable vegetation indices for IKONOS satellite imagery (Crist, 1985; 
Huete, 1988; Jensen, 2005; Katoh, 2004; Senseman et al., 1996; Tucker, 1979). There are 
numerous vegetation indices depending on study objectives and available remote sensing 
datasets.  Five major vegetation indices that could be applied for IKONOS are briefly 
summarized here (* In SAVI, 0.5 is generally used as L). 

Vegetation Index Equation 
Simple Ratio (SR) or Biband Band4 – Band3 
Brightness (Band32 + Band42)0.5 

Normalized Difference Vegetation Index (NDVI) (Band4 − Band3)/ 
(Band4+Band3) 

Soil Adjusted Vegetation Index (SAVI) (1+L*) (Band4-Band3)/ 
(Band4+Band3+L*) 

Transformed Vegetation Index (TVI) (NDVI+0.5)0.5 
 

One of the most commonly used ratio transformations is Normalized Difference 

Vegetation Index (NDVI) (Crist, 1985; Jensen, 2005; Michener & Houhoulis, 1997; Song 

et al., 2001; Xavier & Vettorazzi, 2004).  NDVI is a simple formula using two different 

reflective bands (red and near infrared) of multi-spectral remote sensing dataset for 

estimating vegetation cover, representing vegetation photosynthetic activity, vegetation 

biomass and vegetation canopy closure (Huete & Jackson, 1987; Rouse et al., 1973; 

Sader & Winne, 1992).  Particularly, NDVIs extracted from high resolution datasets have 

been used for supporting many diverse purposes: 1) for mapping rapidly growing 

impervious covers in urban areas (Sawaya et al., 2003), 2) for classifying vegetation 

covers (Katoh, 2004; Mehner et al., 2004), 3) for estimating a leaf area index (Soudani et 

al., 2006), and 4) baseline information for habitat classification (Wallace & Marsh, 2005).  

The advantage of the NDVI compared to a post-classification change detection analysis 

can be summarized (Avery & Berlin, 1992; Chen et al., 2005; Gertner et al., 2006; Katoh, 

2004; Lillesand et al., 2004; Wulder, 1998a, 1998b): 1) relatively stable results of the 

spectral values could be obtained compensating for illumination problems by differences 
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in the angle and intensity of sunlight, and 2) uncertainties in the process of classification 

could be minimized by adopting the automated vegetation detection algorithm between 

bands. 

 

Post-Classification Change Detection Analysis 

It is considered that post-classification change detection analysis is a more 

common approach in that analysts generally can create a required land cover 

classification scheme (Fuller et al., 2003; Lu et al., 2004).  Particularly, when comparing 

two imageries from different sensors and platforms, performing a radiometric co-

registration could be a challenging process to analysts (Du et al., 2002; Lillesand et al., 

2004).  Therefore, the primary advantage of the post-classification change detection 

process is that the radiometric correction process is not an essential factor in an image 

processing step.  In other words, in the post-classification change detection analysis, two 

imageries could be separately classified and compared to each other to identify major 

changes between dates, minimizing the radiometric co-registration problem (Chen et al., 

2005; Coppin et al., 2004). 

However, there are still potential problems associated with a pixel-based 

classification using high resolution remote sensing datasets.  First, a radiometric 

variability of high resolution dataset often shows a wide range of distribution, even 

within homogenous vegetation species (Carleer & Wolff, 2006; Lu & Weng, 2007).  

Consequently, it decreases class separability, adding a complexity for determining an 

appropriate boundary to differentiate a specific vegetation type from others (Aplin et al., 

1997; Carleer & Wolff, 2006; Lu & Weng, 2007; Thomas et al., 2003; Woodcock & 



 

 65

Strahler, 1987).  In addition, a relatively poor spectral resolution compared to other 

hyperspectral datasets should be mentioned (Carleer & Wolff, 2006).  Due to the lack of 

a spectral band, classification results less pertinent to characteristics of actual ground 

information may be produced despite the very high resolution and the visual 

improvement.  Also, a traditional pixel-based classification method generally produces a 

“salt-and-pepper” effect which can be displayed as noise in the classified image (Herold 

et al., 2003; Hirose et al., 2004; Lu & Weng, 2007).  This could be a potential problem in 

interpreting the classified image. 

Widely adopted methods to solve the aforementioned problems related to a 

classification of high resolution remote sensing datasets include: 1) image smoothing in a 

pre-processing step, and 2) majority filtering in a post-processing step.  The first is to 

remove local (high or low) variability by applying a mathematical transformation to the 

original dataset.  It has been reported that class separability and classification accuracy 

can be improved by eliminating low or high frequencies in the pre-processing process 

(Carleer & Wolff, 2006; Cushnie, 1987; Hsieh & Landgrebe, 1998; Jacobsen, 2005; 

Katoh, 2004; Marceau et al., 1990; Quackenbush et al., 2000; Wulder et al., 2000).  The 

second is to remove the salt-and pepper effect for better interpretation of results in the 

post-processing step.  It is often recommended to perform this function to eliminate 

scattered and isolated pixels (Lu & Weng, 2007; Macleod & Congalton, 1998).  

Therefore, in our post-classification change detection analysis, a low pass filtering 

method in the pre-process and a spatial neighbor majority filtering method in the post-

process were applied, respectively, to cope with the potential problems associated with a 

pixel-based classification using the high resolution remote sensing datasets.  



 

 66

 

Classification Scheme for Post-Classification Change Detection Analysis: Field 

Surveys 

The most important element in post-classification change detection analysis is to 

select an appropriate classification scheme (Jensen, 2005).  From the perspective of a 

high resolution remote sensing dataset, this matter has a close relationship in deciding 

how detailed classification will be possible using a given dataset.  Although the two high 

resolution datasets have an advanced ground resolution at this point, it is essential to 

consider an appropriate classification scheme because they have a relatively small 

number of bands (four band compositions: blue, green, red, and near-infrared). 

A number of different classification schemes have been developed for the purpose 

of interpreting remotely sensed datasets: U.S. Fish and Wildlife Service Wetland 

Classification System, N.O.A.A. Coast Watch Land Cover Classification System, and 

U.S. Geological Survey Land Use/Land Cover Classification System (Jensen, 2005, 

2007).  One of the representative classification schemes is the U.S. Geological Survey 

Land, Use/Land Cover Classification System (Anderson et al., 1976; USGS, 1992).  This 

classification scheme focuses more on resource (land cover) interpretation and offers a 

standard for four different levels of classification depending on the spatial resolution of 

the remote sensing dataset (Joy et al., 2003; Khorram et al., 2003; Narumalani et al., 

2004; Peterson et al., 2004).  Another representative classification scheme is the NVCS 

which was developed by The Nature Conservancy (Anderson et al., 1998; Grossman, 

1998).  This method offers more detailed vegetation classification results considering 

physiognomic and floristic characteristics over the study regions.  
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Using the modified NVCS method, the vegetation classification and mapping 

research was jointly done in 2003 for ANP by USGS and NPS (Lubinski et al., 2003).  

However, the vegetation classification scheme developed and used in the research for 

ANP could not be directly applied to our pixel-based classification study because the 

suggested classification scheme covers relatively a large number of plant species, genera, 

and families in one scheme on the basis of a cluster sampling approach and a manual 

polygon delineation for the classification.  Therefore, in order to produce a more relevant 

vegetation classification scheme for our analysis, a recent vegetation classification 

research trend using high resolution remotely sensed datasets was intensively reviewed 

(Table 2.3). 

 
Table 2.3. Classification scheme using IKONOS 

Authors Objective Dataset Scheme Accuracy
Olmanson et al. 

(2002) 

Aquatic Plants 
Detection and 
Classification 

IKONOS 
7 Classes: 3 emergent aquatic 
vegetation and 4 submerged aquatic 
vegetation 

- 

Jollineau and 
Howarth 
(2002) 

Wetland 
Mapping and 
Monitoring 

IKONOS 

Study 1: 10 classes including Lake 
Erie, Wetland (each species), 
Woodland, Dry Materials (sand) 
Study 2: 10 classes including 
woodland, wetland, grassland, 
cropland, and roads/building 

Over 95%

Goetz et al. 
(2003) 

Land Cover 
Classification IKONOS 2 Classes (for per pixel classification): 

forest vs. non-forest  83-86% 

Sawaya et al. 
(2003) 

Study 3: Aquatic 
Vegetation 
Mapping 

IKONOS 

9 Classes: 5 different classes (cattail, 
sedge, brush, water lily, and mud flat 
with dead sedge or cattail) in emergent 
vegetation, 4 different classes in 
submerged aquatic vegetation 

79.5% 

Khorram et al. 
(2003) 

Land Use and 
Land Cover 
Mapping for 

Stream Riparian 
Zones 

IKONOS 

8 Classes: 1) Impervious Surfaces, 2) 
Water, 3) Agriculture, 4) Grass/Open 
space, 5) Deciduous Forest, 6) 
Coniferous Forest, 7) Mixed Forest, 8) 
Bare/Disturbed Soil 

63-64% 
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Table 2.3. Continued 
Authors Objective Dataset Scheme Accuracy

Hirose et al. 
(2004) 

Vegetation 
Cover Mapping IKONOS 

13 Classes: 1) Water plant, 2) Grass, 3) 
Deciduous tree, 4) Coniferous tree, 5) 
Bamboo, 6) Bush, 7) Bare land, 8) 
Orchard, 9) Vegetable Field, 10) Rice 
Filed (difficult to distinguish from 
other agricultural field), 11) Manmade 
structure, 12) Residential area, 13) 
Water) 

- 

Blasco et al. 
(2004) 

Ground Truth 
Purpose 

IKONOS, 
Orthophotos

12 Classes: 1) fine forest, 2) mixed 
forest, 3) broad-leaved forest, 4) broad-
leaved forest under smoke, 5) 
Phrygana, 6) Phrygana under smoke, 7) 
fire scars, 8) Crops, 9) Bare cultivated 
soils, 10) Roads, 11) settlements/plants, 
12) water 

88% 

Katoh (2004) 

Vegetation 
Classification at 

Species and 
Genus levels 

IKONOS 
21 Classes: 2 Conifers and 19 
Broadleaved trees (at the level of 
species) 

58-62% 

Narumalani et 
al. (2004) 

Land Use and 
Land Cover 

Change 
Detection 

IKONOS 23 Classes based on Anderson et al. 
(1976) - 

Mehner et al. 
(2004) 

Land Cover 
Classification IKONOS 

15 Classes: some species, genus, 
family, forest (broadleaved vs. 
coniferous), rivers, lakes, and shadow, 
etc. 

80.28% 
(summer) 
61.67% 
(winter) 

Serra et al. 
(2003) 

Land Cover 
Classification IKONOS 9 to 15 classes in two research sites Over 85%

Mathieu and 
Aryal (2005) 

Management 
Support for 

Vegetated Areas 
in Urban 

IKONOS 
9 Classes: amenity grass, garden, tree 
group, plantation, forest, exotic, mixed, 
native, rough grass, pasture grass 

92% 

Jain and Jain 
(2006) 

Land Cover 
Classification 

for Urban Area
IKONOS 3 Classes: hard surface, soft surface, 

and green cover 88% 

Huggins (2006) 

Monitoring 
Cedar 

Populations and 
Distribution 

IKONOS, 
ASTER Family level (cedar) identification - 

 

Our review found that there was no fixed rule for assigning a potential vegetation 

classification scheme.  The research trend showed that the classification schemes were 

changed and controlled by analysts in order to attain given study purposes.  It was 

common that the classification accuracies were lower if analysts achieved more detailed 
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vegetation classification at the level of species and genus.  On the other hand, the 

accuracies were relatively higher in a broad spectrum of classification schemes including 

non-vegetation such as urban areas and impervious surfaces.  More importantly, one 

major recommendation was commonly suggested throughout the recent studies using 

IKONOS associated with a pixel-based supervised classification: the recommendation 

was to use a field survey. 

The field survey is an essential process to collect ground information before a 

classification.  From the viewpoint of an analyst, a field survey enables obtaining 

outlined ground information of a study area.  Moreover, the collected ground information 

could be utilized for a spectral difference analysis, eventually for choosing a desirable 

vegetation classification scheme to maximize classification accuracy.  In terms of 

collecting field datasets, many studies showed the importance of training site selections 

(Jensen, 2005; Mausel et al., 1990).  It was generally recommended to select many 

smaller training sites rather than fewer and larger training sites (Khorram et al., 2003).  In 

addition, selecting a sufficient number of training sites for each potential class was highly 

recommended in order to discover spectral characteristics (Chen & Stow, 2002; Hubert-

Moy et al., 2001; Landgrebe, 2003; Lu & Weng, 2007; Mather, 2004).  

During the summer of 2007, 129 ground surface points covering 25 different plant 

genera, soil, bare rock, and human-made surfaces were collected in the vicinity of the 

Cadillac summit (Figure 2.11).  The main purpose of the field survey was to identify how 

detailed or accurate vegetation classification will be within a desirable accuracy level.  

Specifically, the field survey was completed to 1) develop a draft list for a vegetation 

classification scheme in the vicinity of the summit loop trail, 2) collect spatial 
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information of dominant plant species in order to analyze spectral characteristics of the 

plant species (eventually to be used as a training site for the supervised classification 

process), and 3) additionally collect randomly generated 300 ground surface points that 

were encoded into GPS unit for accuracy assessment purpose of the classified result maps. 

 

 
Figure 2.11. Sampling plots for training sites at post-classification. 

 

A sub-meter accuracy GPS unit (Trimble GeoXT) was used to collect spatial 

information at sampled plots, and then post-processed at a base station located at the 

University of Maine.  In order to cope with a potential GPS measurement error and 

maintain consistent spectral values of species within the study region, more than 5m2 

homogenous vegetation surfaces were considered to be plotted considering physiognomic 

modifiers (e.g., coverage density, coverage pattern, and height).  However, it was a 

challenging process to discover more than 5m2 homogenous vegetation surfaces over the 
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study region, so a modification to include 3m2 and 4m2 homogenous vegetation surfaces 

was made in the field.  Homogeneous vegetation surfaces were sampled more than three 

times, which was suggested by other vegetation classification field surveys to investigate 

spectral values of different plant species. 

 
Table 2.4. Field survey summary. 
Date August 15-31, 2007 
Place Summit of Cadillac Mountain 
Weather Mostly Sunny 
Number collected 129 points covering 25 different genera 
Plot type Vegetation: 101 (82%) vs. Non-vegetation plots: 25 (19%) 
Plot location Open field: 94 (93%) vs. Under close canopy 7 (7%) 
Plot structure Homogeneous: 73 (72%) vs. Heterogeneous: 28 (28%) 
Cover size 32m, 42m, 52m 
Coverage density closed canopy, open canopy, sparse canopy 
Coverage pattern  even, clumped 
Others height, stem diameter 

 
Due to an accessibility issue over the study region, a random sampling approach 

was used to focus more on the experimental site.  Over 35 independent plant species were 

identified, but our field survey could not include all investigated plant species because 

most of them did not meet our cover size requirement (i.e., less than 32m), even if 

attempts to discover them were made throughout the study area using a modified transect 

method.  For a potential vegetation classification scheme, a scientific plant classification 

system that hierarchically categorizes genera was constructed using plant taxonomy in 

order to include all investigated and sampled points (Figure 2.12). 
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Figure 2.12.  Hierarchic plant classification system covering all investigated and 
sampled points (Judd et al. 2002). 

 

Then, a vegetation classification scheme at the genus level was organized for 

detailed vegetation change analysis.  However, in each reflective band at both 2001 and 

2007 datasets, it was found that there were too many spectral mixtures among the plant 
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genera through a statistical analysis, even though a GPS measurement error was 

considered by eliminating potential outliers (very high or low spectral value points) in 

each plant genus.  In addition, there were plant genera sampled fewer than three times 

(Lonicera, Viburnum, and Empetrum), which was eventually impossible to use as an 

independent vegetation classification scheme.  Accordingly, the vegetation classification 

scheme was controlled by up-scaling from genus to family levels, in order to include 

those fewer-sampled genera and prevent statistical confusions among genera.  

Furthermore, two aspects were taken into consideration in non-vegetated surfaces: 1) bare 

rock and soil were merged since there was no significant difference in terms of the 

spectral values at the level of plant family in both datasets; and 2) Rhizocarpaceae (lichen 

family) was significantly different from bare rock in the 2007 dataset, but not in the 2001 

dataset.  Therefore, for a consistency in analysis, Rhizocarpaceae was merged to bare 

rock/soil in both datasets.  Table 2.5 shows the modified plant family level classification 

scheme using the spectral analysis of the collected points and the hierarchic plant 

classification system. 

Table 2.5. Classification scheme for post-classification change detection analysis. 
 Family Level n Anderson 4 level Binary Mode 

1 Aquifoliaceae 5 Deciduous Forest Vegetation 
2 Asteraceae 5 Deciduous Forest Vegetation 
3 Betulaceae 6 Deciduous Forest Vegetation 
4 Cupressaceae 14 Evergreen Forest Vegetation 
5 Ericaceae 13 Mixed Forest Vegetation 
6 Fagaceae 4 Deciduous Forest Vegetation 
7 Pinaceae 17 Evergreen Forest Vegetation 
8 Poaceae 7 Deciduous Forest Vegetation 
9 Rosaceae 7 Deciduous Forest Vegetation 
10 Mixed Forest 19 Mixed Forest Vegetation 
11 Bare Rock & Soil 15 Non-Forest Non-Vegetated 
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CHAPTER 3 

VEGETATION COVER CHANGE DETECTION BY LANDSAT SATELLITE:  

DOES IT HAVE POTENTIAL FOR CADILLAC MOUNTAIN HIKING TRAIL 

MANAGEMENT AT ACADIA NATIONAL PARK? 

 

Abstract 

Vegetation impact by trampling is often concentrated along travel corridors and at 

destination areas; consequently it tends to add up to only a small fraction of total park 

areas.  This spatially explicit pattern has been identified as a “node and linkage” system 

in the field of park and recreation management.  Knowing the spatial pattern of 

vegetation impact by recreational use, the objective of this study was to detect fractional 

vegetation cover changes associated with off-trail hiking and trampling by using medium 

resolution remote sensing datasets.  Additionally, this study was established to examine 

whether remote sensing technology could be utilized as a method of identifying the node 

and linkage system.  Three major vegetation indices were applied to measure fractional 

vegetation cover changes on Cadillac Mountain between 2001 and 2006.  For spatial 

sampling purpose, the study area was divided into two zones on the basis of proximity to 

the trail network in order to compare the rates of increased and decreased vegetation 

covers between the two zones, expecting much higher impact and lower recovery in 

closer proximity to the trail network.  Spatial interactions between the trail network and 

the decreased vegetation areas were tested using Cross K-functions to assess whether or 

not the existing trail network is attracting and inducing more vegetation impact in a 

spatial context.  The statistical results showed no significant differences between the two 
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zones in terms of the rates of increased and decreased vegetation covers (all p > 0.05), 

indicating that the magnitudes of impact and recovery were similar regardless of the 

proximity to the trail.  Nonetheless, the applied methods based on zoning and spatial 

interaction analyses were useful for identifying spatially explicit patterns of vegetation 

impact related to the hiking trail network. 

Key words: trampling, remote sensing, vegetation cover changes, NDVI, SAVI, TVI, 

spatial interaction 

 

Introduction 

Vegetation in a national park is greatly impacted by anthropogenic activities, 

particularly as a result of visitor use such as trampling and off-trail hiking (Hammitt & 

Cole, 1998).  From the aerial perspective, vegetation impact is often concentrated along 

travel corridors and at destination areas, thus it tends to add up to only a small fraction of 

total park area (Hammitt & Cole, 1998).  Manning (1979) defined this spatially explicit 

phenomenon as a “node” (destination areas) and “linkage” (trails) system to explain a 

recreational resource impact pattern.  Leung (1998) also identified a spatial pattern of 

recreational resource impact as linear feature (line), nodes (points), and areas (attractions) 

within the same context. 

A number of techniques for monitoring visitor-induced impact have been 

developed to identify and assess the spatial pattern of vegetation impact by recreational 

use in a national park or protected area.  Although there have been substantial variations 

in sampling techniques and variables to be measured (Manning, 1999), dominant on-site 

monitoring techniques include 1) condition class assessment (Cole, 1989; Marion & 
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Farrell, 1996; Williams & Marion, 1995) and 2) multiple parameter rating system (Cole, 

1983; Leung & Marion, 2002; Marion & Farrell, 2002). 

While such exiting techniques have been useful for identifying a visitor-induced 

resource impact at a micro scale, it is ineffective to apply the techniques in observing the 

overall impact trend and pattern, often referred to as the node and linkage system, 

particularly when a study region covers relatively large areas.  In addition, widely 

accepted sampling strategies such as clustering and line transect methods that often 

require intervals (distance) between sampled points may cause too much simplification 

for synthesizing the results of the impact pattern spatially.  Consequently, a more 

effective and simple approach is needed to verify the overall spatial pattern of vegetation 

impact by recreational use in a national park or protected area, and we suggest the 

utilization of remote sensing technology for visitor impact monitoring, especially for 

verifying the node and linkage system at the large spatial scale. 

Remote sensing refers to the detection and recording of values of emitted or 

reflected electromagnetic radiation with sensors in aircrafts or satellites (Ingle et al., 

2003).  Particularly, from the perspective of recreation ecology, Monz and Leung (2006) 

showed that a digital photo analysis could be useful in identifying vegetation change, soil 

erosion, social trail identification, unofficial site identification, and shoreline disturbance.  

Ingle and others (2003) also indicated the importance and usefulness of remote sensing 

techniques for identifying the extent and severity of visitor-induced impact as a major 

biophysical approach. 

The advantages of remote sensing technology for detecting vegetation cover 

changes could be more specifically summarized as follows (Underwood et al., 2007):   
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1) the entire study region could be mapped simultaneously including inaccessible areas, 

2) the time and cost could potentially be saved over a field based data collection process, 

3) the collected dataset could be easily archived, manipulated, and integrated with other 

GIS datasets, and 4) the dataset record presenting the current site condition could serve as 

baseline information for future analysis. 

 

Study Area 

Acadia National Park (ANP) is part of the U.S. National Park System, which has 

its dual mission to conserve biological and cultural resources as well as to provide 

enjoyment to people (Daigle & Zimmerman, 2004).  The park was established in 1919, 

and has become one of the most intensively used national parks in the United States 

(Manning et al., 2006).  Visitation rate is similar to many other national parks in that it 

has been relatively stable over the past two decades.  For example, ANP received an 

estimated 2.2 million visitors in 2007 and 2.3 million in 1990.  Cadillac Mountain, the 

study area, is one of 26 peaks in ANP.  At 1,530 ft, Cadillac is the highest point on the 

Eastern Seaboard.  Because it is the only mountain in Acadia with an auto road, Cadillac 

Mountain is a major destination for ANP visitors.  According to a National Park Service 

(NPS) study, approximately 76% of the total visitors to the park visit the summit of 

Cadillac Mountain (Littlejohn, 1999).  The most common activities in ANP are scenic 

driving (86%), hiking on the trails (72%), and walking on the Carriage roads (40%) 

(Littlejohn, 1999). 



 

 92

Table 3.1. Vegetation cover change studies in ANP. 
Sources Contents 

Rand and Redfield (1894), Hill (1919, 
1923), Moore and Taylor (1927), 
Johnson and Skutch (1928a, 1928b) 

plant identifications and classification 

Kuchler (1956) mapped dominant vegetation species including the burned 
areas of the 1947 fire 

Davis (1966) investigated spatial distribution of spruce-fir forests 
Waggoner (1981) applied color-infrared aerial photographs taken in August 

1979 (first attempt to map the vegetation distribution and 
classification using remote sensing technology) 

Demers (1991) combined GIS application to present vegetation richness and 
habitat preference by integrating vegetation-map 
classification based on Kuchler’s work (1956) 

Calhoun (1994) mapped and inventoried the wetland areas, using the U.S. 
Fish and Wildlife Service wetland definition and 
classification methodology 

Mittelhauser (1996) investigated forest composition as a part of an ecological 
baseline information inventory 

Greene and others (1999) inventoried aquatic plants and their distribution 
Lubinski and others (2003) USGS-NPS vegetation mapping program for Acadia National 

Park 
Schauffler and others (2007) Classified five different vegetation covers over the two upper 

watersheds using aerial photographs 
Eckhoff (2007) investigated spatial distribution of two forest vegetation 

stands (deciduous and coniferous forests) 
 

Several vegetation studies have been completed in ANP reflecting the importance 

of the resource as the only national park in the northeastern U.S. (Table 3.1).  However, 

until now, there has been little direct study examining vegetation impact caused by 

recreational activities on Cadillac Mountain, especially off-trail hiking or trampling, 

using remote sensing technology.  This research trend in park management or recreation 

ecology primarily originated from three main reasons: 1) multi-spectral remote sensing 

datasets for analysis were limited to utilize given the spatial and temporal scales of 

datasets 2) localized impact by recreational use was not detectable using remote sensing 

datasets having broad or medium scale ground resolutions (Hammitt & Cole, 1998), and 

3) techniques to estimate direct vegetation impact by off-trail hiking or trampling were 

not well-established using remote sensing datasets. 



 

 93

Understanding the major obstacles, the objective of this study was to detect 

fractional vegetation cover changes associated with off-trail hiking or trampling by using 

medium resolution sensing datasets.  More importantly, this study was proposed to 

explore whether or not remote sensing could be used as a method of testing or identifying 

the effect of the node and linkage system.  We applied a simple zoning method based on 

the proximity of a trail network using a Landsat TM which is the most commonly used 

and widespread remote sensing dataset.  The study was designed to measure potential 

impact of off-trail hiking or trampling by analyzing and comparing the rates of increased 

and decreased vegetation covers between the two zones.  We hypothesized that there 

would be much higher impact and less recovery in closer proximity to the trail network. 

 

Methods 

The Cadillac Mountain Trail Network dataset, ESRI shapefile format, was 

obtained from ANP (Figure 3.1).  The dataset was originally composed of 65 different 

polylines, and the total length of the trail network was 32.267km (about 20 miles).  Based 

on the trail network shapefile, the extent of the study area was defined (12km2).  In 

addition, two different Landsat TM imageries covering the defined study area were 

obtained from the Maine Image Analysis Laboratory (MIAL), University of Maine 

(captured on October 2, 2001 and September 19, 2006). 
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Figure 3.1. Mount Desert Island (left) and trail network at Cadillac Mountain (right). 
 

Most of the functions to detect fractional vegetation cover changes were 

completed under ERDAS IMAGINE 9.1.  Although the two remote sensing datasets were 

already geo-referenced and ready to have image analysis, a geometric correction between 

the two imageries (2001 and 2006) was completed again (reference: 2001 imagery, input: 

2001 imagery, a first order polynomial method, 5 GCP used, RMSE=0.5).  Additionally, 

an image subset was carried out to focus on the trail network (ULX: 560327, ULY: 

4913503, LRX: 563207, LRY: 4908853).  Then, as a part of the radiometric correction 

process, haze reduction in each imagery and histogram matching between two imageries 

(master: 2006, slave: 2001) were applied, respectively. 

As a pre-classification change detection analysis method, Normalized Difference 

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Transformed 

Vegetation Index (TVI) were separately used and extracted from the two imageries using 
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a spatial modeler function (Table 3.2).  Also, in order to avoid confusion and false 

interpretation in the extracted index comparison between the two imageries, image mask 

function was applied by creating the mask layer of Bubble Pond on Cadillac Mountain. 

 
Table 3.2. Pre-classification change detection analysis methods used. 

Vegetation Index Equation 

Normalized Difference Vegetation Index (NDVI) (Band4 − Band3)/ 
(Band4+Band3) 

Soil Adjusted Vegetation Index (SAVI) (1+L*) (Band4-Band3)/ 
(Band4+Band3+L*) 

Transformed Vegetation Index (TVI) (NDVI+0.5)0.5 
Sources: Jensen, 2007; Katoh, 2004 (* In SAVI, 0.5 was used as L.) 

 

Multi-temporal RGB image analysis was utilized to identify fractional vegetation 

cover changes between 2001 and 2006 (Sader et al., 2003; Sader & Winne, 1992).  The 

analysis technique used was a simple and logical method to visualize vegetation cover 

changes by combining three dates of NDVI imagery concurrently and applying the 

interpretation concepts of color additive theory (Sader & Winne, 1992).  Our application 

was re-designed to produce two distinctive colors in identifying vegetation cover changes 

because only two different dates were used: blue (increased vegetation areas) and yellow 

(decreased vegetation areas). 

Cross K-function (expected number of points of type j within a given distance of a 

point of type i) was applied to identify spatial point interactions between the trail network 

and the decreased vegetation areas (Baddeley & Turner, 2005), to better understand 

whether or not the existing trail network is attracting and inducing more vegetation 

impact in a spatial context.  The results of the function represent one among three 

possible relationships between two types of point patterns: Repulsion, Attraction, and 
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Completely Spatial Randomness (CSR).  For the analysis, the decreased vegetation areas 

in all indices were converted into point datasets having X/Y coordinates information as 

well as the trail network at the 100m interval (total 306 points).  As a data processing 

software for the Cross K-functions, R (statistical software package) was used for 

computations and simulations. 

Depending on the proximity to the trail network, the study area was divided into 

two different zones in order to verify the node and linkage system of vegetation impact 

(Zone 1: within 100m from the trail network and Zone 2: 100 to 400m from the trail 

network).  The distances used were decided to include a certain numbers of pixels in the 

remote sensing datasets for calculating the rates of increased and decreased vegetation 

areas.  Additionally, areas within 100m from major automobile roads, Bubble Pond and 

other hiking trails outside the study boundary were excluded from the pre-defined zone 2.  

Based on a systematic sampling approach, 100m2 plots were created within each zone 

(number of plots: 126 in zone 1 and 96 in zone 2) (Figure 3.2).  This simple zoning 

method enabled us to test the following hypotheses in the study area:  

1) the rate of increased vegetation area will be higher in zone 2 due to the direct impact of 

the off-trail hiking and trampling in zone 1, and 2) the rate of decreased vegetation area 

will be higher in zone 1 due to the direct impact of off-trail hiking and trampling in zone 

1.  To test our hypotheses, we computed the rates of increased and decreased vegetation 

areas in each plot by an equation: increased (or decreased) vegetation area / total 

vegetation area ×  100.  Between the two zones, T-tests were used to compare the means 

of the increases and decreases at the p = 0.05 level. 



 

 97

 
Figure 3.2. Applied systematic sampling approach based on zoning  

(the vicinity of the summit loop trail at Cadillac Mountain). 
 

Results 

The three vegetation cover change detection results showed very similar spatial 

patterns, suggesting more dynamic changes along Cadillac North Ridge, Cadillac South 

Ridge, and Schiff Path within the trail network (Figure 3.3).  In addition, the results 

showed similar patterns in measuring the total increased and decreased vegetation areas, 

indicating more impacted and less recovered vegetation areas in the three results (Figure 

3.3).  The TVI was the most sensitive in terms of identifying vegetation cover changes, 

though the same boundary threshold was used to distinguish changed pixels from non-

changed pixels in all three indices.  The increased vegetation area was 8,580m2 and the 

decreased vegetation area was 9,420m2 in the TVI analysis, while showing 2,700m2 
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increases and 4,080m2 decreases in the SAVI analysis, as the least sensitive index in 

detecting fractional vegetation cover changes. 

Figure 3.3. Results of fractional vegetation cover changes based on vegetation indices. 
 

Spatial interaction tests between the trail network and the decreased vegetation 

cover points suggested CSR, showing no clear spatial relationships, in all vegetation 

indices (Figure 3.4).  In the NDVI and the SAVI, the theoretical CSR Cross K-function 

lines (red) were initially plotted over the border corrected Cross K-function lines (black), 

suggesting repulsive relationships between the two types of events.  On the other hand, in 

the TVI, the border corrected Cross K-function line (black) was plotted over the 

theoretical CSR Cross K-function line (red), suggesting an attractive relationship between 

the two types of events.  However, when a hypothesis of independence between the two 

types of events was tested using the envelope with 99 simulations (maximum: green, 
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minimum: blue) in each vegetation index, it was verified that the border corrected Cross 

K-function lines fell within the envelope, indicating failure to reject the null hypothesis 

that two point patterns are spatially independent. 

Figure 3.4. Hypothesis tests of spatial interaction between decreased vegetation cover 
points and the trail network (green: maximum envelope, blue: minimum envelope, black: 
border corrected Cross K-function, red: theoretical CSR Cross K-function, x: distance, y: 
K-cross). 

 

Overall, the three analysis results showed the same patterns in identifying the 

rates of increased and decreased vegetation areas on the basis of 100m2 plots and 

systematic sampling, indicating more impacted and less recovered vegetation areas in 

zone 1 (Table 3.3).  In the TVI analysis, the mean rate of decreased vegetation area based 

on 126 plots in zone 1 was 2.97%, while the mean rate based on 96 plots in zone 2 was 

1.48%.  The mean rate of increased vegetation area was 4.12% in zone 1 and 4.31% in 

zone 2.  In the SAVI analysis, the mean rate of decreased area was 0.58% in zone 1 and 

0.13% in zone 2, and the mean rate of increased area was 0.80% in zone 1 and 2.41% in 

zone 2.  However, the results of T-tests showed no significant differences in terms of the 

mean rates of the increased and decreased vegetation areas between the two zones in all 

vegetation indices (all p > 0.05).  These results suggest that the impact and recovery 
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magnitudes between the two zones were similar regardless of the proximity to the hiking 

trail network in each index at the p = 0.05 level. 

 
Table 3.3. T-test summary for comparison between the two zones: The rates of increased 
and decreased vegetation covers based on 100m2 plots (n: # of plots, M: mean of percent 
change). 

Spatial Scale 
(Variables) 

Zone 1 (n: 126) 
M 

Zone 2 (n: 96) 
M T P 

Impact 0.51 0.20 -1.2156 0.2255 NDVI Recovery 1.15 1.49 -0.6391 0.5235 
Impact 0.58 0.13 -1.4109 0.1601 SAVI Recovery 0.80 2.41 1.607 0.1108 
Impact 2.97 1.48 -1.5894 0.1136 TVI Recovery 4.12 4.31 0.1205 0.9042 

 

Discussion 

More extensive vegetation change detection analysis covering the entire trail 

network at Cadillac was completed by alleviating significant considerations in selecting 

size, number, and the location of the quadrats to be investigated, that could be spatial 

constraints in traditional recreation ecology methods such as on-site measurement and 

experiment.  Statistically, we failed to verify the effect of the node and linkage system, 

which is the concentrated vegetation impact along the trail network based on the designed 

zoning and sampling methods.  This result, conversely, may suggest that the hiking trail 

network is relatively well-managed at Cadillac, indicating no significantly impacted areas 

surrounding the trail network at the medium ground resolution analysis.  However, our 

analysis results suggest some considerations associated with the overall trend of 

fractional vegetation cover changes.  Although the concentrated vegetation impact by the 

node and linkage system at Cadillac Mountain was not verified at the medium ground 

resolution analysis, it should be noted that more impact and less recovery rates in the 

closer proximity to the trail network were verified in all three vegetation indices. 
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Spatially explicit patterns of vegetation cover changes derived from our analysis 

show more considerations for managing the hiking trail network at Cadillac Mountain.  

The analysis results directly indicate which trails in the trail network could attract or 

repulse vegetation impact spatially.  Figure 3.5 showed that the decreased vegetation 

areas calculated by the three vegetation indices were spatially clustered along six specific 

trails (Cadillac North Ridge, Cadillac South Ridge, Cadillac West Face Trail, Gorge Path, 

Cadillac-Dorr Connector, and Schiff Path) within the study region.  Particularly, the re-

simulated results of the Cross K-function with the only six specific trails suggested an 

attractive relationship with the decreased vegetation cover points based on the TVI 

analysis result, by rejecting the null hypothesis of spatial independence between the two 

types of events.  Therefore, management priority might be given for those six trails and 

adjacent areas in the hiking trail network at Cadillac Mountain. 

 

   
NDVI SAVI TVI 
Figure 3.5. Six trails with decreased vegetation cover points. 
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One of the most popular destinations on Cadillac Mountain associated with visitor 

use is the summit loop trail.  The summit receives an estimated 0.5 ~ 0.8 million visitors 

during the summer (June – August) each year (Jacobi, 2001, 2003).  This high visitation 

rate is partly explained by an auto road that provides convenient access to the summit and 

offers beautiful scenic vistas of the Maine coast.  Unlike the entire trail network of 

Cadillac Mountain, two distinctive site/visitor management practices using physical 

barriers and signposts based on the “Leave No Trace” principle have been implemented 

in the summit loop trail since 2000.  In our analysis, using medium-spatial resolution 

satellite imageries, the vicinity of the summit loop trail was mainly classified as “non-

vegetation” or “low/no vegetation biomass area” in all vegetation indices.  In addition, it 

was impossible to detect significant vegetation cover changes in the vicinity of the 

summit loop trail.  In that regard, it should be noted that there is a growing demand for 

monitoring land cover changes with finer spatial resolution (Gross et al., 2006; Hirose et 

al., 2004; Loveland et al., 2002).  More advanced satellites such as IKONOS and 

QuickBird, therefore, could be considered to identify micro-scale vegetation changes 

associated with trampling and the employed management practices. 

It should be noted that various spatial scales in our analysis were applied under 

the given assumptions: 1) the hiking trail network at Cadillac Mountain for identifying 

the study boundary (12km2 in Mount Desert Island), 2) 100m buffering width from the 

trail for defining zone 1 and 100-400m buffering width for zone 2, and 3) 100m2 plots for 

calculating the rates of vegetation cover changes.  From the perspective of landscape 

ecology, it is obvious that there is no single correct spatial scale for analysis (Levin, 

1992; Turner et al., 2001).  Therefore, changes such as downsizing the zone 1 and 
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extending the study area would be required to capture potentially different scenarios of 

vegetation impact along the trail network.  Additionally, though no significant natural 

disturbances were reported during the analysis time-frame, there is a potential 

phenological issue from the temporal gap between the two imageries acquisitions.  

Therefore, there might be a different moisture level and canopy structure that may cause 

a false interpretation of the classified vegetation index results.  

 

Conclusion 

Obtaining objective and reliable results in measuring the amount of vegetation 

cover change in a protected area is becoming important for monitoring resource impact in 

recreation ecology (Hammitt & Cole, 1998).  Although remote sensing approach has been 

recognized as a novel and less-profound method in the field, the applied remote sensing 

analysis could offer a potential approach for assessing the different rates of increased and 

decreased vegetation areas associated with off-trail hiking or trampling activities.  

Measurable changes of growth and reduction could be baseline data for detecting a 

vegetation change trend over time within the trail network.  Particularly, given that 

Landsat TM is continuously updated and archived, the change detection analysis results 

will be applicable for monitoring further changes over a longer period of time on Cadillac 

Mountain. 

While the trail network and decreased vegetation cover point datasets were 

spatially independent, providing information such as a spatial pattern of impact and a 

magnitude of impact would be a valuable source to resource managers for a decision-

making process.  Based on the results of the vegetation cover change detection analysis, 
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other landscape factors including soil type, vegetation type, aspect, slope, elevation, and 

proximity from a trail, water resources, and a road could be combined as a modeling 

approach that explains major factors of spatial impact pattern by off-trail hiking and 

trampling.  This will be particularly useful for prioritizing trails that need more intensive 

management. 
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CHAPTER 4 

MONITORING VEGETATION IMPACT BY TRAMPLING ON THE SUMMIT 

OF CADILLAC MOUNTAIN THROUGH HIGH RESOLUTION REMOTE 

SENSING DATASETS: 2001 AND 2007 

 

Abstract 

Cadillac Mountain at Acadia National Park, Maine, the highest peak on the eastern 

seaboard in the United States, is a popular destination that receives more than 1 million 

visits each year.  A scenic driving road makes the summit easily accessible to visitors, 

and managing vegetation impact by off-trail hiking and trampling is extremely 

challenging given the sparse low-growing shrubs and vegetation and vast granite rocky 

outcrops attractive for visitors to disperse from parking areas and along trails.  Since 

2000, a number of management strategies including physical barriers and “Leave No 

Trace” signage have been implemented to reduce vegetation loss and soil erosion in this 

sensitive sub-alpine natural environment.  The primary purpose of this study was to 

evaluate the effect of the management strategies to reduce vegetation impact by detecting 

vegetation cover changes between 2001 and 2007 using multi-spectral high resolution 

remote sensing datasets.  Pre-classification change detection analysis based on 

Normalized Difference Vegetation Index (NDVI) was applied to identify the rates of 

increased and decreased vegetation areas at three pre-defined spatial zones (0-30m, 30-

60m, 60-90m) emanating from the edge of the summit loop trail and at similar spatial 

scales at a nearby control site with no visitor use.  There was no significant difference in 

the mean rate of decreased vegetation area among the three pre-defined spatial zones (F = 
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1.6099, p = 0.2019).  However, a similar spatial pattern of vegetation recovery, that is, 

increasing vegetation recovery relationship from the central portion to the outer edge of 

the site, was observed at this recreation site as noted in other recreation ecology studies.  

A significant difference in the mean rate of increased vegetation area was observed for 

the outer spatial zone (60-90m) as compared to the intermediate spatial zone (30-60m) 

located in closer proximity to the summit loop trail (F = 3.7199, p = 0.02556).  Given the 

visitor behavior of off-trail use on durable rock surfaces and interspersed patches of 

vegetation, it appears recovery did not follow a predicted pattern of recovery at all spatial 

zones (more recovery in the 0-30m than 30-60m).  Our study results suggest that this 

recovered portion of vegetation in the closest proximity to the summit loop trail could be 

a direct positive effect of the combination of the management practices.  No significant 

differences were detected between the mean rates of increased and decreased vegetation 

areas for the experimental as compared to a nearby control site at the small spatial scale 

comparison, but the mean percentage increase in vegetation growth and decrease in 

vegetation reduction at all spatial scales at the experimental site versus the control site 

suggests a trend in the desired direction for management strategies to reduce vegetation 

impact and to enhance vegetation recovery.  While the applied NDVI analysis offers an 

approach for assessing the fractional vegetation cover changes at a large spatial scale, 

alternative change detection methods for identifying recovered and impacted vegetation 

characteristics should be considered at this study site in the future.  We also discuss 

strengths and limitations of remote sensing as a tool for monitoring recreation impact at 

larger spatial scales than typical campsite and trail systems at a recreation setting. 
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NDVI 

 

Introduction 

Vegetation is one of the main natural resource components that can be profoundly 

impacted by recreational activities, particularly as a result of trampling (Cole, 2004a; 

Hammitt & Cole, 1998; Liddle, 1997).  The ultimate effect of trampling is a reduction in 

the amount of vegetation, often resulting in a complete loss of vegetation cover (Marion, 

1998).  The severity of vegetation impact eventually affects the quality of the visitor 

experience as well as resource degradation.  Vegetation impact in national parks does not 

occur randomly in space, but exhibits spatially explicit and predictable patterns because 

recreationists consistently tend to use trail and road networks and other visitor-related 

infrastructure such as campsites, scenic overlooks, and popular attractions.  Manning 

(1979) defined this spatial impact pattern as a “node” (destination area) and “linkage” 

(road or trail) system.  While the localized vegetation impact in the node and linkage 

system is very often severe and long lasting (Cole, 1981a, 1981b; Hammitt & Cole, 1998; 

Pickering & Hill, 2007; Wagar, 1975), the impact can gradually expand or creep with 

time as visitor use shifts across the larger landscape (Cole, 2004a; Cole & Hall, 1992; 

Hammitt & Cole, 1998). 

A number of on-site management strategies including site and visitor management 

practices have been developed to cope with the spatial and temporal problems associated 

with vegetation impact, especially in high-use destinations.  For example, site 

management practices include, among others, site manipulation for controlling spatial 
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distribution of use (e.g., establishing an official durable trail system, installing 

barriers/fence or focus use around natural barriers such as a rock face that limits possible 

expansion of the site), and site hardening/shielding using gravel or wood chips (Hammitt 

& Cole, 1998).  Also visitor management practices such as signage (educational and 

Leave No Trace (LNT) or penalty/fine for behaviors such as picking flowers or going off-

trail) are used as well as limits to the length of stay or restrictions on type of use or size of 

group (Hammitt & Cole, 1998).  Many of these practices have been further classified as 

to whether they represent a direct or indirect influence on visitor behavior, and a 

continuum exists within and among site and visitor management practices (Manning, 

1999).  All these management practices focus on tactics and actual management tools 

applied by managers to accomplish specific management objectives (Manning, 1999).  

Yet, a question still remains regarding how we can prove or evaluate the effectiveness of 

the site and visitor management strategies which have been employed to reduce 

vegetation impact. 

As a classic approach to estimate the effectiveness of these management practices, 

several methods have been utilized that include on-site observations (visitor behavior and 

use), on-site measurement and experiment (resource condition), and survey and interview 

(visitors and park staff) (Hammitt & Cole, 1998).  These assessment techniques could be 

further categorized as biophysical and social science approaches by the applicability to 

specific questions to be asked (Ingle et al., 2003).  While there have been substantial 

variations in terms of levels of accuracy, precision, and time and cost, more advanced 

methods have been developed by adapting GIS/GPS technologies and by selecting 

detailed monitoring protocols for both biophysical and social science approaches (Cole, 
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2004a; Manning et al., 2006).  However, the main problem in the monitoring process is 

how to obtain a uniformly reliable dataset for evaluating the current condition and 

efficacy of management actions employed, at the same time, minimizing potential errors 

and bias, and saving time and labor.  Hammitt and Cole (1998) indicate that there are 

seldom available datasets for monitoring resource impact and evaluating the efficacy of 

management strategies utilized.  Therefore, managers are often forced to make a decision 

without enough information associated with visitor use and resource impact, often 

leading to incremental decision-making (Cole, 2006; Monz & Leung, 2006).  Clearly, a 

more fundamental and scientific approach is needed to apply monitoring results 

effectively to inform management decision-making (Cole, 2004b; Cole & Wright, 2004).  

This process may, in turn, promote the value of developing and maintaining a visitor 

impact monitoring program. 

 

Spatial Pattern of Vegetation Impact and Recovery 

A significant contribution by scientists conducting recreation ecology research 

has been the identification of the spatial and temporal patterns of vegetation changes in a 

recreational setting (Cole & Monz, 2004; Frissell, 1978; Hammitt & Cole, 1998; Leung, 

1998; Manning, 1979; McEwen & Tocher, 1976; Merriam & Smith, 1974).  McEwen and 

Tocher (1976) identified the spatial pattern of impact and recovery by applying a three 

distinctive zoning concept at a cluster of campsites: impact zone (most severely impacted 

areas, that never recover as long as use continues), intersite zone (partially impacted areas 

with informal trails and satellite sites, but recovery will be higher than in impact zone 

because the capacity of vegetation to regenerate is not severely compromised), and buffer 
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zone (transitional zones between the developed and the natural areas).  The logic behind 

this zoning method is to specifically design management and monitoring practices 

suitable for each zone.  For example, objectives of management in the impact zones are 

to keep them as spatially small and as attractive as possible.  An objective for the intersite 

zone is that the capacity of vegetation to regenerate is not severely compromised. Some 

placing of logs and rocks may be necessary both to minimize use of intersite zones and to 

provide protected regeneration sites.  Finally, an objective for the buffer zone is to avoid 

encroachment from the expanding intersite zone.  Recognition of these zones and spatial 

patterns is an important first step in devising management strategies for controlling 

impact (Hammitt & Cole, 1998).  Therefore, essential to this system are field 

measurements that define the boundaries of each zone for management and monitoring 

activities. 

The magnitudes of vegetation impact and recovery are varied by 1) environmental 

condition (e.g., amount of rainfall and length of growing season), 2) site durability (e.g., 

different resilience and resistance characteristics of vegetation species, and topographic 

factors such as slope and aspect), and 3) recreational use level and type (e.g., party size, 

type of user, user behavior, and mode of travel) (Cole, 1988; Hammitt & Cole, 1998; 

Liddle, 1997).  However, a general recovery pattern of vegetation can be similar to a 

normal curve on the basis of the zoning concept of McEwen and Tocher (1976) (Figure 

4.1).  The recovery will be greater in the intersite zone than the impact zone because the 

capacity of vegetation for regenerating is not severely impacted in the intersite zone 

(Hammitt & Cole, 1998; McEwen & Tocher, 1976).  At a certain point, the rates of 

recovery will be decreased in the buffer zone, since there is a positive relationship 
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between the amount of use (disturbance) and the amount of recovery (Cole & Monz, 

2004), and vegetation in the buffer zone will follow more natural variation of vegetation 

condition given there is no severe human disturbance factor. 

 

 
Figure 4.1. Spatial pattern of recovery. 
X: proximity, Y: rate of recovery (percent change), Maximum recovery line (top): 
areas having plentiful rainfall and long growing season, high resilience vegetation 
characteristics, and low visitor use level, Minimum recovery line (bottom): areas 
having low rainfall and short growing season, low resilience vegetation characteristics, 
and high levels of visitor use (Cole, 1988; Hammitt & Cole, 1998; Liddle, 1997). 
 

On the impact zone, the degrees of vegetation impact and recovery tend to fit a 

predictable pattern based on a regular radial system, which is, most vegetation impact at 

the central portion of a site and increasing vegetation recovery potential at the outer edge 

of a site (Cole & Monz, 2004; Frissell, 1978; Hammitt & Cole, 1998).  Cole and Monz 

(2004) verified magnitude, variability, and spatial pattern of vegetation impact using a 

different spatial zone of analysis with core (3m2), intermediate (5m2), and periphery (7m2) 

in two sub-alpine vegetation communities.  Consequently, they reported decreasing 

vegetation impacts with the distance from the center of the campsites.  While the studies 

have been focused on the conceptualization of spatial pattern of vegetation changes by 
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estimating current size and areal extent of impact, it is not easy to identify the spatial 

pattern of vegetation changes associated with visitor use if a site boundary is relatively 

large for on-site measurements, and if a site boundary grows or retreats as use level and 

density are changed.  Especially, in sub-alpine mountain summits where bare-rock is 

dominant with sparse low-lying shrubs and grasses, visitor use coupled with prevalent 

off-trail hiking activities could be widespread by ambiguous site boundaries.  Therefore, 

more spatially extensive investigations are required to identify the pattern of vegetation 

changes as well as the effect of the management practices designed to induce 

concentrated visitor use.  Remote sensing technology may offer a useful approach to 

monitoring long-term and large spatial scale changes to park resources caused by visitor 

use. 

 

Remote Sensing Technology 

Remote sensing refers to the detection and recording of values of emitted or 

reflected electromagnetic radiation with sensors in aircrafts or satellites (Ingle et al., 

2003).  A primary advantage of remote sensing datasets is that a relatively “big picture” 

can be captured easily in collecting datasets.  In other words, quick experiment and 

measurement are available in identifying changes in resource conditions between dates 

without direct contact, compared to the on-site measurement or experiment process that 

usually takes a longer amount of time.  Witztum and Stow (2004) found remote sensing 

data enhanced their visitor impact monitoring program by identifying impact quickly 

enough to implement alternative management strategies and assisted in identifying hot 

spots or heavily impacted areas.  Also, in many cases, archived imagery is available that 
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may further enhance development of a monitoring program.  From the perspective of 

recreational resource management, research regarding imagery and remote sensing has 

been explored since the early development of technology to aid in monitoring.  Generally, 

there have been three main research trends: 1) inventorying recreational resources, 2) 

monitoring impact and change in recreational resources, and 3) addressing the importance 

of remote sensing in park and recreation management (Table 4.1). 

 
Table 4.1. Uses of remote sensing in recreational resource management including 
recreation ecology. 

Main Research Trends Sources 
Inventorying recreational 
resources 

Burnett & Conklin (1979), Dill (1963), Green (1979), Jusoff & 
Hassan (1997), Kearsley (1994), Lindsay (1969), MacConnell & 
Stoll (1968), Miller & Carter (1979), Welch et al. (1999) 

Monitoring impact and change 
in recreational resources 

Allan (1983), Coleman (1977), Grizzle et al. (2002),  
Hockings & Twyford (1997), Lee et al. (1999), Leung et al. 
(2002), Li et al. (2006), Marion et al. (2006), Price (1983), 
Witztum & Stow (2004) 

Addressing the usefulness and 
importance of remote sensing 

Butler & Wright (1983), Draeger & Pettinger (1981), Gross et al. 
(2006), Hammitt & Cole (1998), Ingle et al. (2003), Monz & 
Leung (2006), Rochefort & Swinney (2000) 

 

Key to new investigations of utilizing remote sensing technology is knowing past 

limitations found in applying remote sensing to recreation problems and in particular to 

vegetation impact studies.  A frequently identified problem utilizing remote sensing was 

the difficulty in assessing vegetation impact caused by recreation under a tree canopy 

where trails or campsites are located for shade or other reasons (Hammitt and Cole 1998).  

Another issue has been that localized impact was undetectable in a broad or medium 

spatial scale resolution remote sensing dataset (e.g., 30m2 pixel resolutions).  However, 

recent advances of spatial resolution in datasets has helped to reduce a mixed pixel 

problem that is often pronounced in medium or coarse spatial resolution, and now 

provides a better opportunity to obtain more detailed information related to land cover 
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and change (Lu & Weng, 2007).  The use of remote sensing, therefore, will be 

continuously amplified in recreational resource management and analysis due to the 

technological advances in both software and hardware, eventually offering more credible 

and accurate products in terms of quality and ground resolution.  More importantly, the 

value of high spatial resolution remote sensing datasets will be significantly increased for 

monitoring vegetation conditions in environments dominated by bare-rock with sparse 

low-lying shrubs and grasses, reducing the potential problems associated with the 

localized impact and multiple vegetation layers. 

 

Methods 

Study Site 

Our application of remote sensing technologies was focused on the summit of 

Cadillac Mountain, one of the most popular visitor destinations in Acadia National Park 

(ANP).  There are three hiking trails to the summit of Cadillac in addition to an auto road, 

and the 0.3 mile long summit loop trail (Figure 4.2).  According to a National Park 

Service (NPS) study, approximately 76% of the total visitors to the park visit the summit 

of Cadillac Mountain (Littlejohn, 1999).  Although visitation levels have stabilized over 

the past few years, the summit receives an estimated 0.5 ~ 0.8 million visitors during the 

summer (June – August) each year (Jacobi, 2001, 2003).  The sensitive sub-alpine nature 

of the site and the convenient accessibility via the automobile road has created a scenario 

where vegetation degradation and soil erosion is at high risk.  This site represents a 

management challenge to balance the public’s desire for visiting a popular destination 
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and at the same time to maintain the natural conditions of the area for current and future 

generations. 

Archived visitor photos show that the scenic overlook site on Cadillac Mountain was 

accessed by trail as early as the 1860s and 1870s, even before being designated as a 

National Park in 1919.  The automobile road was built between 1929 and 1932 and 

provided additional access opportunity for visitors to the summit.  Soon after the road 

was built, a paved summit loop trail was constructed using crushed rocks and cement to 

blend with the exposed pink and gray granite surfaces intermixed with vegetation on the 

summit.  Given the volume of visitors and general open nature with exposed granite, low 

vegetation and shallow soils, the summit was still experiencing trampling and soil erosion, 

leading management to implement of more intensive visitor and site management 

measures to prevent future vegetation loss (Park et al., 2008; Turner, 2001).   

Figure 4.2. Locations of physical barriers (light blue) and LNT signage (red), captured by 
GPS (Trimble GeoXT) and exported as ESRI shapefile format. 
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Figure 4.3. Indirect management (left, LNT signage) and direct management 
(right, physical barriers): ANP has been using both management approaches 
since 2000 along the summit loop trail of Cadillac Mountain, in order to 
reduce the trampling effect, especially caused by off-trail hikers. 

 

In 2000, a combination of site and visitor management strategies using physical 

barriers and low-impact educational messages, respectively, were deployed in strategic 

locations to address vegetation loss on Cadillac Summit (Figure 4.2 and 4.3).  The 

strategies were initially used as a management tool, not as a research mechanism (Turner, 

2001; interview with the ANP resource management staff, 2007).  Until now, several 

studies based on social science approaches have attempted to verify the effectiveness of 

the deployed management strategies coupled with visitors’ perceptions and experiences 

(Bullock & Lawson, 2007, 2008; Park et al., 2008; Turner, 2001), but there has been little 

direct study examining the effectiveness of the management strategies focusing on 

vegetation changes. 

The objective of this study was to utilize remote sensing/GIS technologies to 

examine the effect of management strategies to reduce human-induced vegetation impact 
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around the Cadillac Mountain summit loop trail.  Two multi-spectral high spatial 

resolution remote sensing datasets and pre-classification change detection analysis were 

used to identify fractional vegetation cover changes between 2001 and 2007.  Three 

important dimensions associated with the design of this remote sensing study were 

defined: 

1) First we sought to verify the utility and applicability of using remote sensing/GIS 

technologies to measure the areal extent of vegetation cover changes around the summit 

loop trail as compared to a control site with no/little visitor use.  We hypothesized that 

recovered and impacted vegetation areas would differ based on the human-induced 

activity such as off-trail use and trampling as compared to other areas with no or little 

visitor use.  Multiple social trails were observed leading away from different locations 

along the summit loop trail, and incidentally these same locations were often places 

used for placing LNT signs.  Also, previous research documented wide-spread summit 

off-trail use by visitors (e.g., it is not uncommon to observe visitors being off-trail 50 

meters or more), and this suggested that remote sensing datasets may be helpful to 

detect changes in human-induced visitor impacts to vegetation.   

2) After determining the areal extent of vegetation cover changes, we hypothesized that 

the vegetation cover changes at the experimental site would be reflective of the radial 

pattern and three-category zoning concept of McEwen and Tocher (1976).  Specifically, 

that the spatial patterns of vegetation cover changes might be identified at the 

experimental site, for example, the intermediate (middle) zone would exhibit a higher 

increase in vegetation recovery than the other two zones.   
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3)  The third dimension of this study was to reflect on the “magnitude of change” that 

one could detect using remote sensing and GIS technologies and as a tool to assess the 

relative efficacy of the employed management practices to reduce the dispersed-use 

occurring away from the parking and trail systems.  We also discuss the strengths and 

limitations of using remote sensing as a tool for monitoring recreation impact at larger 

spatial scales than typical campsite and trail systems at a recreation setting. 

 

Identifying the Site Boundary 

A previous visitor observation study at Cadillac Summit Loop Trail (Turner, 

2001) found that visitor impact on vegetation and soil was not limited to just a few meters 

from the trailside of the summit loop trail, which is different from a typical recreational 

ecology study that attempted to identify localized impacts spatially in individual sites 

having a clearly defined site boundary.  Instead, impacts were occurring far beyond the 

summit loop trail as well as the area surrounded by the trail, that could be easily taken up 

to 50-90m from the trail on the basis of Turner’s sampling plots for vegetation trampling 

and observational locations for visitor behaviors.  Several reasons were offered by Turner 

(2001) to explain the off-trail hiking such as observation of visitor congestion on the trail 

as well as visitor’s traveling off-trail to do recreational activities such as photo-taking, 

berry-picking, cairn building and bird watching.  Other reasons attributing to the spatial 

pattern of impact were: 1) The summit loop trail and vicinity has an entirely open 

landscape characteristic (a mixture of sparse low-lying shrubs and grasses with bare-rock 

dominant) that encourages one to go off and explore, guaranteeing relatively easy 

mobility;  2) Visitor density (6,000 visits in a single day) especially in summer (Jacobi, 
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2001), contributes to the spatial distribution of visitors and particularly noted on the 

northern and southern ends of the summit loop trail due to the flatness of ground as 

compared to other areas with steeper slopes; and 3) Several signs on the summit that 

indicate “Step only on the paved trail or rocks”  that imply off-trail usage.  Therefore, 

visitors are technically encouraged to do off-trail hiking on the summit albeit on durable 

surfaces. 

A major issue associated with the assessment of the management practices that 

deter vegetation trampling has a close relationship with knowing the areal extent of the 

visitor-induced vegetation impact and area likely to be influenced by the deployed 

management actions.  Therefore, it was deemed important to establish a desirable or 

reasonable “extent” of vegetation impact caused by visitors from the summit loop trail 

since this was the area of more intensive management.  If this outer boundary is vague 

given the completely open landscape characteristic, we hypothesized the impact 

boundary to be fuzzy with off-trail use at this popular scenic overlook site, thus requiring 

consideration of a much larger extent of visitor-induced vegetation impact.  In order to 

cope with the ambiguous site boundary problem that characterizes the summit loop trail 

and to verify the effect of the employed management strategies, we utilized three 

different buffering distances emanating from the summit loop trail for defining multiple 

extents of the study site.  The buffering scales included: small (0-30m buffering distance 

from the summit loop trail), medium (0-60m), and large spatial scale (0-90m), guided in 

part by the visitor observation studies as well as landscape ecology studies (Kendall et al., 

2003; Levin, 1992; Madrigal et al., 2008; Turner et al., 2001; Wiens, 1989).  Within the 

experimental site, the spatial pattern of vegetation changes related to the zoning concept 
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was analyzed by dividing the large spatial scale into the three different zones (core: 0-

30m, intermediate: 30-60m, and periphery: 60-90m).  More importantly, the multi-spatial 

scale analysis utilizing the different spatial extents for the study site was done to compare 

the rates of increased and decreased vegetation areas with a control site not influenced by 

visitor, as a way of examining the effect of the management practices at the experimental 

site. 

 

Control Site Selection 

One of the most essential factors in selecting a control site is for the undisturbed 

site to have environmentally similar characteristics as the experimental site (Hammitt & 

Cole, 1998).  We adopted elevation and aspect as important factors that shape a 

vegetation community in alpine or sub-alpine environment (Barnes et al., 1998; 

Boughton et al., 2006; Kimball & Weihrauch, 2000).  The 1,300ft elevation of Cadillac 

Mountain was employed as a minimum baseline to contain our pre-defined large spatial 

scale of the experimental site (90m buffering distance from the summit loop trail). 

Major natural and human-induced disturbance factors were additionally 

considered as they are key mechanisms in maintaining species diversity (Roberts & 

Gilliam, 1995; Turner, 1989).  As a natural disturbance factor, the disastrous 1947 fire 

that burned most of the eastern side of Mount Desert Island including the vicinity of the 

summit loop trail was considered to select the control site within the same burned areas 

(Patterson et al., 1983).  The human-induced disturbance factor was considered to 

exclude potential human trampling and off-trail hiking areas using various distance 

concepts and undisruptive sampling techniques (Dosskey et al., 2005; Fernández-Juricic 
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et al., 2002; Urban, 2000).  Accordingly, a 150m buffer from the existing structures 

including parking lots, auto roads, concession and restroom areas, and the hiking trail 

network, was applied in order to exclude areas potentially accessible to humans. 

 

Experimental Site 
Visitor Impact, Management  

Area (m2) Vegetation Cover* 

Small 
(30m) 33,497 Dwarf-shrubland: 93% 

Medium 
(60m) 57,612 Dwarf-shrubland: 86% 

Large 
(90m) 87,136 Dwarf-shrubland: 81% 

Control Site  
No/limited Visitor Impact,  

No/little Management  

Area (m2) Vegetation Cover* 

Small 
(30m) 13,524 Dwarf-shrubland: 99% 

Medium 
(60m) 33,460 Dwarf-shrubland: 86% 

Large 
(90m) 61,551 Dwarf-shrubland: 76% 

 
Figure 4.4. Selected control site: the experimental site represents visitor impact and 
management strategies.  In contrast, the control site represents no/limited visitor impact and 
no management strategies. *Vegetation types based on the result of the Vegetation Mapping 
Project by USGS-NPS (Lubinski et al., 2003). 
 

Figure 4.4 shows the selected control site and the experimental site.  The distance 

between the outer edges of the experimental and control site was 60 meters.  Both sites 

have a similar south-east facing aspect, while the control site was slightly steeper than the 

experimental site.  Vegetation characteristics were similar with the dominant cover 

characterized as mostly “Dwarf-shrubland” using the vegetation mapping project 

completed by NPS-USGS (Lubinski et al., 2003).  
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Image Processing Steps 

Two multi-spectral high spatial resolution remote sensing datasets were used to 

detect fractional vegetation cover changes between 2001 and 2007.  IKONOS imagery 

(product level: PRO) from 2001 was purchased by ANP and airborne imagery collected 

in 2007 was obtained from the John Deere AGRI Service.  The IKONOS imagery 

captured on August 18, 2001 has 5 separate bands including 4m ground resolution blue, 

green, red, near-infrared, and 1m panchromatic.  The Airborne imagery captured on June 

24, 2007 was already in a high ground resolution format (about 0.9m) and had 4 bands 

composed of blue, green, red, and near-infrared.  A Trimble GeoXT (GPS) with an 

external antenna and bypass was used to identify the location of signpost messages 

(LNT) and physical barriers on the top of Cadillac Mountain.  After post-processing to 

increase the level to sub-meter accuracy, the data were exported as ESRI shapefile format 

for GIS analysis. 

ERDAS IMAGINE 9.1 was used for most of image processing steps for IKONOS 

and Airborne imagery.  As a pre-processing, a high-pass filter pan-sharpening technique 

was conducted to enhance the IKONOS imagery for 1m high ground resolution format.  

Re-sampling of the Airborne imagery, using a nearest-neighbor method for preserving 

spectral values, was performed to have a consistency as 1m ground resolution dataset, 

while rescaling of the pan-sharpened IKONOS imagery was performed to make it 8 bit 

(0-255) imagery.  A geometric correction between the two imageries was completed 

using 20 ground control points (GCPs) and a second order polynomial method.  The 

IKONOS imagery was used as a reference and Airborne as an input image, targeting to 

have less than a half pixel accuracy registration (RMSE=0.5).  In addition, an image 
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subset was performed to focus on the summit loop trail area of Cadillac Mountain as well 

as the control site (ULX: 561244.5, ULY: 4911505.5, LRX: 562050.5 563207, LRY: 

4910714.5).  Finally, as a part of the radiometric correction process, histograms of the 

two imagery were matched using the Airborne as reference imagery, particularly for a 

high resolution dataset radiometric normalization (Hong & Zhang, 2005). 

Normalized Difference Vegetation Index (NDVI) was used for detecting 

vegetation cover changes between the two imagery (Jensen, 2005, 2007).  NDVI is a 

simple formula using two different reflective bands of a multi-spectral remote sensing 

dataset for estimating vegetation cover, representing vegetation photosynthetic activity, 

vegetation biomass, greenness and vegetation canopy closure (Huete & Jackson, 1987; 

Rouse et al., 1973; Sader & Winne, 1992).  Additionally, in order to avoid confusion and 

false interpretation in the NDVIs comparison between the two imagery, an image mask 

function was used to exclude the summit parking area (10m buffering to include 

additional parking areas close to the summit loop trail), automobile road (15m wide), 

hiking trails (2m wide), viewing platforms (2m wide), durable summit loop trail (2m 

wide), cloud covered areas in the IKONOS 2001 (not included in the experiment and 

control site), and constructed buildings. 

Multi-temporal RGB-NDVI image analysis was used to identify fractional 

vegetation cover changes between the 2001 and 2007 imageries (Sader et al., 2003; Sader 

& Winne, 1992).  The analysis is a logical technique to visualize vegetation cover 

changes using NDVI and concepts of color additive theory (Sader and Winne, 1992).  By 

simultaneously combining each date of NDVI through the red, green, and blue (RGB), 

major changes in NDVIs between dates appear in combinations of the primary (RGB) or 
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complimentary (yellow, magenta, cyan) colors.  Since our analysis was for two different 

dates, two distinctive colors were produced in the results image: blue (increased 

vegetation cover) and yellow (decreased vegetation c).  In interpreting the NDVI results, 

a maximum variation between the two NDVIs was utilized by controlling a boundary 

threshold (Long Dai & Khorram, 1999; Lu et al., 2004), as a way of reducing 

phenological issues such as a different moisture level and a different canopy structure 

caused by the temporal gap of imagery acquisition. 

A field investigation was completed in the summer of 2007 to help assess the 

accuracy of the classified NDVI result indicating vegetation and non-vegetation areas.  A 

total of 300 reference ground points were randomly generated along with the classified 

results recoded in binary mode (vegetation vs. non-vegetation) by merging increased 

vegetation cover and no changed vegetation areas as “Vegetation,” and decreased 

vegetation cover and non-vegetation areas as “Non-vegetation.”  A Trimble GeoXT with 

an external antenna was used to locate the 300 randomly generated reference points in 

order to verify the accuracy level of the classified NDVI result. 

To test our hypothesized relationship of the areal extent of human-induced 

vegetation changes, we computed the rates of increased and decreased vegetation areas 

for 10m2 plots that were systematically sampled in the experimental and the control site at 

all three spatial zones.  For each plot, the rates of increased and decreased vegetation 

areas were calculated by an equation: increased (or decreased) vegetation area / total 

vegetation area ×  100.  On the basis of the multi-spatial scaling approach that uses 

different extents of the study site to maximize the applicability of remote sensing datasets, 

the mean rates of increased and decreased vegetation areas were calculated for small (0-
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30m), medium (0-60m), and large (0-90m) spatial scales.  T-test comparisons were used 

to compare the mean rates of vegetation cover changes in each spatial scale among the 

experimental and control sites at the p = 0.05 level. 

To test our hypothesized relationship of spatial patterns of vegetation impact and 

recovery within the experimental site, similar computations were made calculating the 

rates of increased and decreased vegetation areas based on the 10m2 plots that were 

systematically sampled at the experimental site.  Mean rates of increased and decreased 

vegetation areas were calculated for core (0-30m), intermediate (30-60m) and periphery 

(60-90m) and, one-way analysis of variance was used to compare the means of changes 

over the three spatial zones.  Tukey post-hoc tests of pairwise differences in means were 

used to identify significant differences at the p = 0.05 level.  It should be noted that the 

plots having no vegetation areas (complete bare rock or masked-out areas) in the change 

detection results were not considered as a sample in each statistical test, since the 

analyses were intended to identify the rates of increased and decreased vegetation areas. 

 



 

 130

Results 

 
Figure 4.5.  NDVI change detection analysis from 2001 
to 2007 (Top: experimental site, Bottom: control site). 

 

Figure 4.5 shows the vegetation cover change detection results from 2001 to 2007 

on Cadillac Mountain.  Overall accuracies estimated using the 300 randomly generated 
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points over the study region were 76.19% (producer accuracy: 71.25%, user accuracy: 

80.23%) at the level of binary mode.  The increased vegetation areas at the experimental 

site were 299m2 in the core (0-30m), 329m2 in the intermediate (30-60m), and 1,040m2 in 

the periphery zone (60-90m).  The decreased vegetation areas at the experimental site 

were 4m2 in the core (0-30m), 3m2 in the intermediate (30-60m), and 16m2 in the 

periphery zone (60-90m).  The increased vegetation areas at the control site were 203m2 

in the core (0-30m), 145m2 in the intermediate (30-60m), and 443m2 in the periphery zone 

(60-90m).  The decreased vegetation areas at the control site were 6m2 in the core (0-

30m), 94m2 in the intermediate (30-60m), and 80m2 in the periphery zone (60-90m).  

Though these changed vegetation areas were not the rates of vegetation cover changes 

that calculate the total vegetation areas as denominators in each pre-defined zone, there 

was a spatial relationship of increasing vegetation area from the core to the periphery 

zone at the experimental site.  However, there was no spatial relationship of decreasing 

vegetation area at the experimental site, showing the highest decreased vegetation area in 

the periphery zone. 

 

Verifying Areal Extents of Vegetation Changes 

As hypothesized, the areal extent of human-induced vegetation changes at the 

experimental site differed from the control site (Table 4.2).  Throughout the three 

different spatial scales, the means of rates of increased vegetation areas were higher at the 

experimental site than the control site.  Also, in the medium and large spatial scales, the 

means of rates of decreased vegetation areas were lower at the experimental site than the 

control site, while showing the same percentage in the small spatial scale analysis. 
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Table 4.2. T-test summary for comparison between experimental and control sites: The 
rates of increased and decreased vegetation areas based on 10m2 plots at the three 
different spatial scales (M: mean of percent change, n: # of plots). 

Experimental Site Control Site Spatial Extent (Variables) 
M (%) n M (%) n 

T P 

Impact 0.06 172 0.06 69 -0.0985 0.9217 Small Scale 
(0-30m) Recovery 4.91 172 3.68 69 -1.1276 0.2609 

Impact 0.04 327 0.67 222 4.0401 7.306e-05 Medium Scale 
(0-60m) Recovery 4.36 327 2.06 222 -3.6138 0.0003299 

Impact 0.12 545 0.64 456 4.4503 9.937e-06 Large Scale 
(0-90m) Recovery 5.56 545 2.36 456 -6.2044 8.272e-10 

 

The results of the T-test showed that there were no significant differences in terms 

of the rates of the increased and decreased vegetation areas between the two sites in the 

small spatial scale (all p > 0.05).  In the medium and large spatial scales, it was observed 

that the rates of increased and decreased vegetation areas at the experimental site were 

significantly different from those in the control site (all p < 0.001), showing more 

increased and less decreased vegetation areas in the experimental site.  Therefore, within 

the three multi-spatial scales, the employed management strategies had a positive effect 

in terms of reducing vegetation impact and enhancing vegetation regeneration compared 

to the control site from 2001 to 2007, using the applied NDVI analysis and the vegetation 

comparison mechanism. 

 

Spatial Patterns of Vegetation Changes 

Table 4.3. One-way ANOVA summary for experimental site analysis: The rates of 
increased and decreased vegetation areas based on 10m2 plots at the three different spatial 
zones (n: # of plots, M: mean of percent change) 

Variables Core Zone 
M (%) 

Intermediate Zone
M (%) 

Periphery Zone 
M (%) n F P 

Impact 0.02 0.00 0.26 86 1.6099 0.2019 
Recovery 5.06 4.81 8.62 86 3.7199 0.02556*

*Significance of differences: recovery at core = recovery at intermediate (p = 0.9855799), recovery at core 
= recovery at periphery (p = 0.0609131), recovery at intermediate < recovery at periphery (p = 0.0406764)  
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Table 4.3 contains the means rates of increased and decreased areas classified for 

each spatial zone within the experimental site.  There were no significant differences 

among the three different spatial zones in terms of the rates of decreased vegetation areas 

(F = 1.6099, p = 0.2019).  It was shown that there was no regular radial pattern or 

decreasing relationship of vegetation impact, which is typically reported by identifying a 

localized impact close to trails or campsites in recreation ecology studies, within the 

designed three spatial zones at the experimental site.  However, there was a significant 

difference among the three different spatial zones in terms of the rates of increased 

vegetation areas (F = 3.7199, p = 0.02556).  Specifically, Tukey post-hoc tests (p < 0.05 

for all significant contrasts) for pairwise comparison indicated that there was a significant 

difference in the rate of increased vegetation area between the intermediate (M = 4.81) 

and periphery zone (M = 8.62), indicating that the mean rate of increased vegetation area 

was higher in the periphery zone (60-90m from the summit loop trail).  This result 

suggests that there was a clear zone difference among the three zones, partially 

supporting the regular radial pattern or the increasing relationship of vegetation recovery 

at the experimental site. 

 

Discussion 

Unlike traditional recreation ecology studies that attempt to report how the size of 

the impact zone has been changed and to determine success of management focused 

within this zone, our study extended earlier works by adopting a multi-spatial scale 

approach and by enlarging the study region extensively with the aid of remote sensing 

datasets.  The relationship of decreasing vegetation impact based on the proximity within 
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a confined site boundary situation was not verified in our study site.  This result suggests 

that vegetation impact may be fuzzier due to the completely open nature of terrain 

characteristics and prevalent off-trail use at the vicinity of the summit loop trail.  The 

result may not be different from other sub-alpine environment summits with high levels 

of visitor use due to ambiguous site boundaries.  However, some of our findings 

supported the spatial relationship of increasing vegetation recovery in the outer compared 

to the intermediate zone.  Although the different landscape condition and visitor behavior 

should be added to explain more detailed spatial patterns of vegetation changes at 

Cadillac Summit, we believe that the spatial patterns based on the proximity and the 

zoning concept are still a powerful tool to explain vegetation change dynamics in a 

recreation site as well as to establish a site boundary. 

Cole (2004a) indicates that the theory related to resource impact and recovery still 

remains poorly developed, even though data processing methods have become more 

sophisticated in the field of park and recreation management.  In that regard, we 

attempted to define the site boundary using the recovered vegetation pattern that we 

observed in the vicinity of the summit loop trail.   As briefly mentioned, the recovery 

pattern of McEwen and Tocher (1976) can be delineated as a similar pattern to a normal 

curve, suggesting the highest recovery rate in the middle of the intersite zone.  On the 

other hand, Figure 4.6 shows the calculated vegetation recovery rates based on our study 

results, indicating initial decrease and change to increase at the 40m point from the 

summit loop trail.  This observed line was used to presume the boundary between the 

impact and the intersite zones based on the increasing relationship of vegetation recovery 

between the two zones.  Since the calculated vegetation recovery rates showed the 
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maximum recovery between 70 and 80m from the summit loop trail, we suggest this 

distance could be used to identify a point in the middle of a reclassified intersite zone.  

This reclassification of the intersite zone would be more indicative of the higher recovery 

patterns expected with human-induced impact in this zone as compared to other zones.  

Consequently, this assumption associated with the reclassification suggests that the 

intersite zone encompass at least the 70-80m edge in order to maximize the spatial 

containment of human-induced vegetation impact, and that the buffer zone be more 

reflective of natural variation in vegetation increases and decreases. The next 

management process is to build more specific objectives for each zone at Cadillac 

Summit. 

 
Figure 4.6. The rate of recovery in the vicinity of the summit loop trail from 0 to 100m 
based on the NDVI analysis (X: distance from the summit loop trail, Y: rate of recovery 
(percent change), the curve line showed the maximum recovery rate between 70 and 
80m from the summit loop trail) 
 

Additionally, we suggest that the more recovered vegetation from 0 to around 

20m in distance compared to the distance from 30 to 40m, unlike the general recovery 
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pattern, may be a direct effect of the management practices focusing on the closet 

proximity to the summit loop trail.  Considering the given assumption of the increasing 

relationship in vegetation recovery as we go away from the central part of the site, the 

increased recovery rates from 0 to about 20m could be the portions that may be positively 

influenced by the management strategies.  It is plausible that some visitors might be 

adhering to the signs and barriers focused close to the trail to stay off sensitive areas at 

points of contacts, but forgetting or not considering about the management actions in the 

less intensive management areas. 

No significantly clustered areas in terms of negative vegetation impact were 

identified within the large spatial scale (0-90m) emanating from the summit loop trail by 

using the applied NDVI analysis.  However, away from the summit loop trail, more 

decreases than increases in vegetation area were found from 2001 to 2007 at two specific 

locations: 1) near the gift shop and a nearby trail not associated with the summit loop trail, 

and 2) at a high ridge located on the west side of the parking lot.  In these locations, there 

are fewer visible forms of intensive site/visitor management actions such as physical 

barriers and educational signs.  It is possible that many visitors may be going to these 

locations before they walk the summit loop trail and they are unaware that they should 

remain on trails and other durable surfaces.  The gift shop was renovated in 2004 with 

new interpretative exhibits, and the attached toilet facility was rebuilt in 1999 with eco-

friendly technology.  A high ridge located on the west side of the parking lot has been 

used for a bus tour stop associated with cruise ships during the summer.  It is possible 

that the vegetation impact on these locations could be attributed to the increased visitor 

use associated with the updated facilities and bus tour stop.  Therefore, more intensive 
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management approaches in conjunction with the current management strategies in the 

loop trail are recommended in those areas. 

Direct effect of the physical barriers to reduce vegetation impact at the summit 

loop trail was estimated by calculating the rates of increased and decreased vegetation 

areas.  Currently, the three oval shaped physical barriers covering the total areas of 

1,860m2, mostly focusing on the northern part, were installed within the loop trail.  The 

intrinsic objective of the physical barriers was to keep visitors out of specific areas where 

trampling and soil erosion were at high risk (Turner, 2001).  The analysis results showed 

that the rate of increased vegetation area within the three exclosures between 2001 and 

2007 was 3.51% (4m2), while the rate of decreased vegetation area was 0% (0m2), and 

no-changed vegetation was 95% (96.49m2).  The rate of increased vegetation area was 

not significantly high, but there was no direct negative impact during the analysis time 

frame.  This suggests that no dynamic vegetation changes by trampling or off-trail hiking 

occurred within the three physical barriers.  Considering the nature of sub-alpine 

environments that usually take a long time to recover after being damaged, the 3.51 

percent of recovery and the 95 percent of no-change rates may reveal the positive effect 

of the direct approach to reduce further vegetation impact at Cadillac Summit.  

Interestingly, visitors’ experiences at the summit were not diminished by the exclosures, 

and visitors preferred more intensive management such as physical barriers along the 

summit loop trail (Bullock & Lawson, 2008).  Therefore, reinforcing and expanding the 

utilization of the exclosures coupled with broader landscape issues on the summit near 

the parking area identified above could be utilized at those potentially susceptible areas.   
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Our analysis results supported our hypothesized relationships related to 

examining the efficacy of management strategies using vegetation comparison 

mechanism between the experimental and the control site.  The analysis results, also, 

showed that fewer decreased vegetation areas compared to the increased vegetation areas 

were identified across all the spatial scales.  Given the fact that the study site was a 

popular visitor destination even before ANP was designated as a national park in 1919, 

this suggests that the most serious vegetation impact may have occurred at the beginning 

of the 20th century, based on the asymptotic relationship between vegetation impact and 

visitor use over time (Hammitt & Cole, 1998).  It is plausible that the site has been 

transformed to a more resistant site permitting less vegetation impact, even under 

constant visitor use.  While the applied NDVI change detection analysis was valuable to 

measure vegetation cover changes, more detailed analyses about vegetation 

characteristics would be helpful to fully assess vegetation change dynamics on the 

summit.  Research has consistently shown that re-vegetated sites often consist of more 

resilient and resistant species, and overall less diversity than the previous impacted 

condition (Hammitt & Cole, 1998).  In other words, vegetation diversity would be 

significantly lowered after being trampled, eventually leading vegetation changes in 

composition and structure (Cole, 1995; Green, 1998; Hammitt & Cole, 1998; Kobayashi 

et al., 1997; Kuss & Hall, 1991; Tasser & Tappeiner, 2002; Taylor et al., 1993).  More 

specifically, Cole (1995) indicated that grass family becomes the most dominant and 

common species after being disturbed by trampling (Cole, 1995; Hammitt & Cole, 1998; 

Marion & Cole, 1996).  Therefore, for verifying vegetation characteristics, the post-
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classification change detection methods in conjunction with field investigation could be 

considered as an alternative method. 

To encourage more vegetation recovery some distance away from the summit 

loop trail consideration will probably need to be given to revising the content of the LNT 

message that technically encourages off-trail hiking activities: “Step only on the paved 

trail or rocks.”  Given the visitor density estimated at 6,000 in a single day during the 

summer and the narrow 0.3 mile long summit loop trail, it may be inevitable to 

compromise visitor uses on durable surfaces at Cadillac.  However, it is recommended 

that the content of the message should be revised to reveal the high risk of vegetation at 

Cadillac Summit, understanding that sparse and low-lying vegetation are spatially 

distributed with bare rocks over the summit.  Applying other visual forms of signs such 

as prompters and symbols rather than using text message contents could be a 

management alternative since they appear to be more effective in influencing visitor 

behavior  (Bullock & Lawson, 2008).  In addition, as an integrated method, these visual 

forms of signs could be strategically located at identified problem areas where there is 

currently no focus of intensive management away from the summit loop trail. 

 

Technical Considerations 

We should note the technical considerations associated with our study design: 

spatial and temporal scaling issues.  Various spatial scales were applied under the given 

assumptions: 1) small (0-30m), medium (0-60m), and large (0-90m) spatial scales for 

identifying the study extent, 2) the proximity analysis among the three spatial zones (0-

30m, 30-60m, and 60-90m) for verifying the spatial patterns of vegetation changes, 3) 
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10m2 plots for the sampling purpose, and 4) certain amounts of distances for creating the 

masking out layer.  Although the multi-spatial scale approach for controlling the size of 

the extent was guided by various landscape ecology studies to cope with potential spatial 

scaling problems in observing the pattern of the changes, it is generally recognized that 

there is no single correct way to identify or select the exact spatial scales.  Therefore, 

there might be a slightly different result, once we adopt and use different value/distances 

in defining spatial scales in each case.  There is also a phenological issue from the 

temporal gap of imagery acquisition as well as different characteristics of imagery 

sensors.  Although both imageries are leaf-on versions, and several recommended image 

enhancement techniques including histogram matching for a radiometric correction and 

maximum variation threshold for interpreting the NDVI result were used, there might be 

a different moisture level and canopy structure that may cause a false interpretation of the 

classified NDVI results.  Additionally, sparse/isolated and low-lying vegetation families 

(mainly grass family) having extremely low greenness and productivity may not be 

detected effectively coupled with the problems related to the phenological issue and the 

different sensor characteristics (Paruelo & Lauenroth, 1995). 

There was no direct effect of the pan-sharpening technique, one of the resolution 

merging processes producing 1m2 spatial resolution imagery of IKONOS 2001.  Initially, 

uncertainty in the result of the pan-sharpening technique was proposed due to the two 

pre-processing techniques already applied in the 1m panchromatic dataset: Modulation 

Transfer Function Compensation (MTFC) and Dynamic Range Adjustment (DRA) 

(Baltsavias et al., 2001).  In order to increase confidence in the results of the vegetation 

cover change detection analysis at 1m2 ground resolution, the same analysis procedures 
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for comparing results were completed in 4m2 ground resolution that the pan-sharpening 

technique was not applied.  Though the 4m2 ground resolution analysis was less sensitive 

than the 1m2 ground resolution analysis, the two analysis results had relatively similar 

trends in calculating the rates of increased and decreased vegetation areas as well as other 

areas such as “no vegetation area” and “vegetation, but no changed area.”  The statistical 

analysis results at the 4m2 ground resolution indicated the same results with the 1m2 

ground resolution by showing no significant differences in terms of the rates of the 

increased and decreased vegetation areas between the experimental and the control site in 

the small spatial scale (all p > 0.05).  In the medium and large spatial scales, it was also 

observed that the rates of increased and decreased vegetation areas in the experimental 

site were significantly different from those in the control site (all p < 0.05), showing more 

increased and less decreased vegetation areas in the experimental site. 

Given the binary structure of the classified results (vegetation vs. non-vegetation), 

the overall accuracy level of the classified NDVI result was relatively low (76.19%) 

through the 300 randomly generated point dataset.  Although the sub-meter accuracy 

GPS unit (Trimble GeoXT) was utilized to detect actual ground information for accuracy 

assessment purpose at the pixel level (1m2), it is commonly agreed that there are always 

potential GPS errors caused by various factors such as atmospheric and topographic 

effects.  Especially, it was discovered that there was maximum 1-2m positional error 

(maximum 2-3m error under a heavy canopy), when the GPS unit was tested before the 

field investigation for accuracy assessment.  This technical limitation may cause 

difficulty in locating the reference points generated in less than 1-2m2 homogeneous 

areas.  
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Conclusion 

Basically, the summit of Cadillac Mountain is a tough place to recover vegetation 

due to the short growing season, thin/sandy soil, and shortage of available water.  

Monitoring the impact of the site over time is more challenging, since it has been 

intensively used over 90 years under the dual mandates of NPS.  In spite of these 

apparent obstacles, the results of this study using the NDVI analysis indicate that the 

management strategies at the experimental site were effective relatively in minimizing 

vegetation impact and in enhancing vegetation recovery compared to the conditions of 

the control site from 2001 to 2007.  From the perspective of obtaining a quality visitor-

induced impact monitoring dataset, the value of remote sensing has not been well-

recognized due to a dense canopy cover or a multiple vegetation layer that impedes 

discovering a localized impact in a study site.  However, Cadillac summit has a 

completely open landscape having a mixture of sparse low-lying shrubs with bare-rock 

dominant.  Accordingly, remote sensing technology appears to be a useful tool for 

capturing a localized, but extensively distributed impact at the summit environment 

beyond other traditional recreation ecology methods.  In addition, measuring vegetation 

cover changes with the aid of multi-spectral bands of remote sensing datasets provides 

quantitative and scientific information on the vegetation change dynamics at Cadillac 

Summit, which has been seldom used in recreation ecology (Hammitt & Cole, 1998). 

A future step for management is evaluating the effectiveness of implementation of 

the more intensive management actions around the summit trail.  For example, depending 

on one’s point of view, detection of vegetation recovery by 5.06% and vegetation impact 

by 0.02% within 30m of the trail from 2001 to 2007 might constitute real progress in 
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terms of management goals, or alternately, insignificant changes.  The development of 

clear objectives such as indicators and standards of resource conditions will become 

increasingly important for assessing management actions directed towards minimizing 

impact and maximizing recovery.  The apparent visitor-induced impact and recovery 70-

80m away from the summit trail may be viewed as progress, but the actual amount of that 

recovery might be targeted higher or closer to the summit trail.  Only where specific 

objectives have been established can one consistently determine whether or not an impact 

and recovery of a given magnitude constitutes an effective management strategy.  A 

temporal scale may also be necessary in establishing realistic goals, especially given the 

sub-alpine environment of Cadillac Mountain as compared to other areas in ANP.   

A growing body of research has shown that spatial containment strategies are 

generally the most effective management practice in a frontcountry setting (Cole, 1981a; 

Cole & Monz, 2004; Marion & Farrell, 2002).  As a result, identifying zone boundaries 

based on the spatial pattern of vegetation changes will become important for 

implementing management practices.  In our study, it was shown that areas 70-80m from 

the summit loop trail showed the maximum recovery rate (the functional role of the 

intersite zone) on the basis of the proximity and the zoning concept.  Therefore, the 

boundary between the fuzzy impact zone and the intersite zone at Cadillac Summit could 

be established less than 70m from the summit loop trail.  Once the boundaries are 

identified, the deployed management practices currently focused within the summit loop 

trail could be monitored to assess effectiveness of minimizing the expansion of the 

impact and the intersite zones and perhaps further recovery occurring within each zone. 
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CHAPTER 5 

MONITORING VEGETATION IMPACT BY RECREATIONAL USE ON THE 

SUMMIT OF CADILLAC MOUNTAIN USING POST-CLASSIFICATION 

CHANGE DETECTION ANALYSIS: 2001 AND 2007 

 

Abstract 

Vegetation impact by recreational use is often concentrated along travel corridors 

and at destination areas so it tends to add up to only a small fraction of total park areas.  

However, such vegetation impact is a legitimate management concern since it affects 

areas that are ecologically or culturally significant in national parks.  While recreation 

ecology has played an important role in identifying spatial patterns of vegetation impact 

as well as plant response characteristics to trampling or off-trail hiking, the challenge is 

to verify the patterns and characteristics when a site boundary is relatively large for on-

site measurement.  In this study, we suggest GIS/remote sensing technologies for 

identifying vegetation change dynamics at a large spatial scale and eventually for 

assessing efficacy of site and visitor management strategies designed to reduce vegetation 

impact and enhance recovery.  By using multi-spectral high resolution remote sensing 

datasets obtained in 2001 and 2007, the rates of increased and decreased vegetation 

covers in the vicinity of the summit loop trail, Cadillac Mountain, Acadia National Park, 

were determined at three pre-defined spatial zones (0-30m, 30-60m, 60-90m) emanating 

from the edge of the summit loop trail and compared at similar spatial scales with a 

nearby control site with no/little visitor use.  At the summit loop trail (experimental site), 

more impact was observed for the core spatial zone (0-30m) compared to the intermediate 
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spatial zone (30-60m) based on the proximity from the summit loop trail (F = 3.9002, p = 

0.02485), while showing no significant difference in vegetation recovery among the pre-

defined spatial zones (F = 0.1406, p = 0.869).  With the control site for comparing the 

rates of vegetation cover changes, significant differences in the mean rates of increased 

vegetation covers between the two sites were detected (all p < 0.05) throughout the pre-

defined accumulated spatial scales (0-30m, 0-60m, 0-90m), indicating higher recovery 

rates at the experimental site.  In addition, significant differences were verified in the 

mean rates of decreased vegetation covers (all p < 0.001), indicating higher impact rates 

at the experimental site.  Vegetation diversities, both evenness and richness, were lower 

at the experimental site using the 2001 and 2007 plant family level classifications (all p < 

0.001), showing no positive relationship with the employed management strategies in 

terms of enhancing vegetation diversity during the examined analysis time frame.  Within 

the experimental site, vegetation diversities varied among the three pre-defined zones (all 

p < 0.05), indicating lower vegetation diversities in the core spatial zones, 0-30m from 

the summit loop trail in 2001 and 2007, respectively.  Our study results support findings 

of other recreation ecology studies on vegetation spatial impact patterns, with decreasing 

impact observed from the central part to the edge of site and a reduction in vegetation 

diversity at the core area of the site.  Importantly, we examined this process at a much 

larger scale than typical recreation ecology studies.  Management actions at Cadillac 

Summit showed overall positive effects in enhancing vegetation regeneration, but no 

direct effect in reducing vegetation impact as well as in enhancing vegetation diversity 

during the observed time frame.  We also discuss strengths and limitations of remote 
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sensing as a tool for monitoring recreation impact at larger spatial scales than typical 

campsite and trail systems at a recreation setting. 

Key words: recreation ecology, vegetation, trampling, diversity, management, remote 

sensing, post-classification change detection  

 

Introduction 

The National Park Service (NPS) mission of preserving the natural character of an 

area while providing for visitor enjoyment poses some significant challenges.  Vegetation 

loss and soil erosion are common signs of visitor-induced resource impact, and these can 

be easily pronounced over a period of time without appropriate site and visitor 

management strategies.  One important characteristic of resource impact by recreational 

use is its highly concentrated nature because recreationists consistently tend to use the 

same places.  For example, vegetation impacts are often concentrated along travel 

corridors and at destination areas so they tend to add up to only a small fraction of the 

total park area (Hammitt & Cole, 1998; Manning, 1979).  However, these vegetation 

impacts are still an important management concern as these are the same places visitors 

are present with the potential to influence the quality of their experience and the unique 

ecological attributes that are likely to contribute to the national park being designated in 

the first place (Leung & Monz, 2006). 

Recreation ecology is a relatively new field of scientific study beginning in the 

1970s (Liddle, 1997) and refers to human recreation impact on the environment: 

vegetation, soil, water and wildlife (Leung & Marion, 2000).  Specifically, the discipline 

focuses on identifying, assessing, understanding, and managing resource impact caused 
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by visitors in a protected area (Leung et al. 2001).  One of the major challenges that 

recreation ecology currently faces is how to develop a synthesized and integrated method 

to identify and evaluate the efficacy of management strategies designed to reduce human 

impact caused by recreational activities (Buckley et al., 2008).  How can we prove or 

evaluate the effectiveness of site and visitor management strategies in a national park or 

protected area?  This is particularly important because managers need methods to 

evaluate practices currently employed and to have at their disposal alternative 

management strategies to optimize their efforts towards the mission of the agency. 

Recreation ecology studies that have focused on vegetation change dynamics with 

recreation use over time have concentrated on two areas: 1) amount of vegetation with 

the impact parameter being vegetation cover, and 2) vegetation composition with the 

impact parameter being species, species diversity and frequency (Hammitt & Cole, 1998).  

In most cases researchers have compared these measures at recreation sites with similar 

measures at adjacent undisturbed sites (control) to more fully understand the vegetation 

change dynamics.  These approaches have assisted managers in identifying diverse 

characteristics of the landscape they manage and susceptibility of vegetation changes 

associated with recreational use, including spatial patterns of vegetation changes (Cole & 

Monz, 2004; Frissell, 1978; Marion & Cole, 1996; McEwen & Tocher, 1976), plant 

response characteristics (Cole, 1987, 1995a, 1995b; Cole & Monz, 2002; Cole & Trull, 

1992; Hammitt & Cole, 1998; Liddle, 1997; Sun & Liddle, 1991) and species 

composition and diversity after being disturbed by trampling or recreational use (Cole, 

1985; Green, 1998; Hammitt & Cole, 1998; Kobayashi et al., 1997; Scherrer & Pickering, 

2006; Stohlgren & Parsons, 1986; Tasser & Tappeiner, 2002; Taylor et al., 1993; 
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Tolvanen et al., 2004). Most of the research efforts in understanding vegetation change 

dynamics have occurred in recreational use areas such as campsites, trails, and 

destination areas, and significant contributions have been made in terms of the 

identification of spatial patterns of vegetation impact as well as species response 

characteristics to trampling. 

Particularly, McEwen and Tocher (1976) identified the spatial pattern of impact 

and recovery at campsites by applying a three zone concept at a cluster of campsites: 

impact zone (most severely impacted areas, that never recover as long as use continues), 

intersite zone (partially impacted areas with informal trails and satellite sites, but 

recovery will be higher than in the impact zone because the capacity of vegetation to 

regenerate is not severely compromised), and buffer zone (transitional zones between the 

developed and the natural areas).  According to McEwen and Tocher’s zoning method, 

most of vegetation impact occurs at the central portion of the sites, and decreasing 

vegetation impact and increasing recovery potentials occur with increasing distance from 

the sites.  While the recovery will be higher in the intersite zone given disturbance and 

ability of vegetation to regenerate, the impact is hypothesized to exhibit a similar pattern 

to a two horizontal asymptotes curve line (arccot shape) (Figure 5.1).  At a certain point 

away from the center of impact in the buffer zone, the rates of impact and recovery will 

exhibit more natural variation of vegetation conditions given that there is no severe 

human or recreational disturbance factor.  Given these relationships, research and 

monitoring of vegetation impact have tended to focus on the impact zone or central point.  

We suggest several logical reasons for this focus on the impact zone areas: 1) vegetation 

changes are most severe with often a pronounced boundary that distinguishes the impact 
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zone from the intersite zone and 2) evaluation of management strategies can be assessed 

by examining vegetation change dynamics within this zone because an often important 

management objective is limiting the expansion of the impact zone boundary further into 

the intersite zone. 

 
Figure 5.1. General impact pattern.  
(Impact Zone: high impact, Intersite Zone: substantial impact, Buffer Zone: little impact) 
X: proximity, Y: rate of impact (percent change), Maximum impact line (top): areas 
having low rainfall and short growing season, low resistant vegetation characteristics, and 
high visitor use level, Minimum impact line (bottom): areas having plentiful rainfall and 
long growing season, highly resistant vegetation characteristics, and low levels of visitor 
use (Cole, 1988; Hammitt & Cole, 1998; Liddle, 1997). 

 

We ascribe that management still needs to focus on those defined impact zone 

areas where recreational use is often concentrated with severe impact on vegetation.  

However, there are situations where recreational use behaviors are both concentrated as 

well as dispersed in natural settings.  These recreation use patterns have been documented 

at destinations where visitor densities are high and terrain characteristics are conducive 

for visitors to spread out (Bullock & Lawson, 2007; Park et al., 2008; Turner, 2001).  

Particularly, in sub-alpine mountain summits where bare-rocks are dominant with sparse 

low-lying shrubs and grasses, the visitor flow is not uniformly identified along a trail in 

conjunction with the ambiguous site boundary and easy mobility of visitors.  Using the 

traditional recreation ecology methods that often utilize intervals (distance) between 
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sampled points may cause too much simplification for synthesizing the results of 

vegetation impact spatially.  In this study, we apply remote sensing and geographic 

information systems by evaluating vegetation changes in amount and composition over a 

period of time as an alternative method for accessing vegetation change dynamics with 

dispersed recreational use in a sensitive sub-alpine environment. 

Remote sensing refers to the detection and recording of values of emitted or 

reflected electromagnetic radiation with sensors in aircrafts or satellites (Ingle et al., 

2003).  A primary advantage of remote sensing datasets is that a relatively “big picture” 

can be captured easily in collecting datasets.  Key to new investigations of utilizing 

remote sensing technology is knowing past limitations found in applying remote sensing 

to recreation problems and in particular to vegetation impact studies.  A frequently 

identified problem utilizing remote sensing was the difficulty in assessing vegetation 

impact caused by recreation under a tree canopy where trails or campsites are located for 

shade or other reasons (Hammitt and Cole 1998).  Another issue has been that localized 

impact was undetectable in a broad or medium spatial scale resolution remote sensing 

dataset (e.g., 30m2 pixel resolutions).  However, recent advances in spatial resolution of 

datasets has helped to reduce a mixed pixel problem that is often pronounced in medium 

or coarse spatial resolution, and now provides a better opportunity to obtain more detailed 

information related to land cover and change (Lu & Weng, 2007).  The use of remote 

sensing, therefore, will be continuously amplified in recreational resource management 

and analysis due to the technological advances in both software and hardware, eventually 

offering more credible and accurate products in terms of quality and ground resolution.  

More importantly, the value of high spatial resolution remote sensing datasets will be 
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significantly increased for monitoring vegetation conditions in environments dominated 

by bare-rock with sparse low-lying shrubs and grasses, reducing the potential problems 

associated with the localized impact and multiple vegetation layers.  Our study objectives 

were to explore the utility of remote sensing as a tool to enhance the overall quality of a 

monitoring dataset and gauging effectiveness of management strategies employed to 

minimize visitor impact on the environment.   

   

Study Area Description 

Figure 5.2. Acadia National Park: Mount Desert Island has three major 
mountains: Cadillac, Sargent, and Penobscot. The Cadillac summit is the 
highest point on the Eastern Seaboard of the U.S. (1,530 feet). 

 

Our application of remote sensing technology focused on the summit of Cadillac 

Mountain, Acadia National Park (ANP).  At 1,530 ft elevation, Cadillac Summit is the 

highest point on the Eastern Seaboard of the U.S.  The Cadillac summit is a major 

destination for ANP visitors with an auto road providing convenient access to the top of 
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the summit and beautiful scenic vistas of the Maine coast (Jacobi, 2001, 2003).  Besides 

the access road there are three hiking trails leading to the summit of Cadillac as well as a 

popular summit loop hiking trail that is 0.3 miles long.  According to a NPS visitor study, 

approximately 76% of the total visitors to the park visit the summit of Cadillac Mountain 

(Littlejohn, 1999).  Although visitation levels have stabilized in recent decades, the 

summit receives an estimated 0.5 ~ 0.8 million visitors during the summer (June ~ 

August) each year (Jacobi, 2001, 2003).  However, the sensitive sub-alpine nature of the 

site and the convenient accessibility via the auto road has created a scenario where 

vegetation degradation and soil erosion are at a high risk.  This site represents a 

management challenge to balance the public’s desire for visiting a popular destination 

and at the same time to maintain the natural conditions of the area for current and future 

generations. 

Archived visitor photos show that the scenic overlook site on Cadillac Mountain 

was accessed by trails as early as the 1860s and 1870s, even before being designated as a 

national park in 1919.  The automobile road was built between 1929 and 1932 and 

provided additional access opportunities for visiting the summit.  Soon after the road was 

built, a paved summit loop trail was constructed using crushed rock and cement to blend 

with the exposed pink and gray granite surfaces intermixed with vegetation on the 

summit.  Given the volume of visitors and general open nature with exposed granite, low 

vegetation and shallow soils, the summit was still experiencing trampling and soil erosion, 

leading management to implement more intensive visitor and site management measures 

to prevent vegetation loss (Park et al., 2008; Turner, 2001). 
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Figure 5.3. Locations of physical barriers (light blue) and LNT signage (red), captured 
by a GPS (Trimble GeoXT) and exported as an ESRI shapefile format. 

 

  

Figure 5.4. Indirect management (left, LNT signage) and direct management (right, 
physical barriers): ANP has been utilized both management approaches since 2000 
along the summit loop trail of Cadillac Mountain in order to reduce direct trampling 
effect, especially caused by off-trail hikers. 
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In 2000, a shift toward more intensive management was put in place to minimize 

visitor-induced vegetation impact (Figure 5.3 and 5.4).  A combination of site and visitor 

management strategies using physical barriers and low impact education messages, 

respectively, were deployed in strategic locations to address vegetation loss on Cadillac 

Mountain.  The current resource management chief and staff in ANP had constantly 

observed significant vegetation loss over the area, so these visitor and site management 

strategies were used as a management tool, not as a research mechanism (Turner, 2001; 

interview with the ANP resource management staff, 2007).  Until now, several studies 

based on social science approaches have attempted to verify the effectiveness of the 

deployed management strategies coupled with visitors’ perceptions and experiences 

(Bullock & Lawson, 2007, 2008; Park et al., 2008; Turner, 2001), but there has been little 

direct study examining the effectiveness of the management strategies focusing on the 

vegetation component. 

It is our belief that, in order to support the park management initiatives newly 

adopted in 2000, a process to evaluate the effectiveness of these management practices 

along the summit loop trail should be implemented as part of a long-term monitoring 

program.  Therefore, the goal of this study was to utilize remote sensing/GIS 

technologies for examining the effect of the management strategies to reduce human-

induced vegetation impact and enhance vegetation recovery around the Cadillac 

Mountain summit loop trail.  A post-classification change detection analysis based on 

two multi-spectral high resolution remote sensing datasets obtained in 2001 and 2007 was 

used to identify the amount of vegetation increase and decline in proximity to the summit 
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loop trail as well as changes in vegetation composition.  The research design of the 

remote sensing study had four important dimensions: 

1) We hypothesized that the rate of increased vegetation would be higher and the rate 

of decreased vegetation would be lower over time at the summit loop trail 

(experimental site) as compared to an adjacent area without visitor use (control 

site) with more natural variability in growth and reduction of vegetation. 

2) We hypothesized that the rate of vegetation recovery would increase and the rate of 

vegetation impact would decrease as we go away from the central part of the site, 

but may also exhibit different spatial impact and recovery patterns given the 

characterstics of terrain and prevalent off-trail use at the summit. 

3) We hypothesized that the vegetation composition and diversity would be more 

dynamic and exhibit more variability over time at the experimental site as 

compared to natural variability of vegetation composition and diversity at the 

control site.  

4) We hypothesized that vegetation composition and diversity would increase from 

the center of impact area, but may also exhibit different spatial patterns given the 

terrain characteristics and prevalent off-trail use at the summit. 

 

Methods 

Study Design 

Two multi-spectral remote sensing datasets, high spatial resolution IKONOS 2001 

and Airborne 2007, were used to detect fractional vegetation cover changes between 

2001 and 2007.  The IKONOS 2001 was obtained from ANP and the airborne 2007 was 
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obtained from the John Deere AGRI Service.  The IKONOS, captured on August 18, 

2001, had five separate bands including 4m ground resolution blue, green, red, near-

infrared, and 1m panchromatic (product level: PRO).  Also, airborne 2007 imagery 

captured on June 24, 2007 had four separated bands including 0.98m spatial resolution 

blue, green, red and near-infrared.  Other ancillary datasets including the locations of 

signposts and physical barriers in the vicinity of the summit loop trail were collected 

using a GPS (Trimble GeoXT) with an external antenna and bypass. 

For better understanding the degree and magnitude of vegetation change 

dynamics in the vicinity of the summit loop trail, we selected a control site that maintains 

a natural variability with no/little visitor use using elevation and potential disturbance 

factors (Figure 5.5).  In addition, to cope with the ambiguous site boundary problem at 

Cadillac, we adopted a “multi-spatial scale approach” that employs a series of varying 

sizes of study extents for comparing vegetation changes in amount and composition with 

the control site: small (0-30m buffering width from the summit loop trail), medium (0-

60m), and large spatial scale (0-90m).  This multi-spatial design also enabled us to test 

spatial patterns of vegetation impact, recovery and composition within the experimental 

site by dividing the large spatial scale into three different zones (core: 0-30m, 

intermediate: 30-60m, and periphery: 60-90m) (Figure 5.5).3 

                                                 
3 More detailed information about the study design was described in Chapter 4, to be submitted to 
the Journal of Environmental Management. 
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Experimental Site 
Spatial 
Scale 

Area (m2) Vegetation Cover* 

Small 
(0-30m) 33,497 Dwarf-shrubland: 93% 

Medium 
(0-60m) 57,612 Dwarf-shrubland: 86% 

Large 
(0-90m) 87,136 Dwarf-shrubland: 81% 

Control Site  
Spatial 
Scale 

Area (m2) Vegetation Cover* 

Small 
(0-30m) 13,524 Dwarf-shrubland: 99% 

Medium 
(0-60m) 33,460 Dwarf-shrubland: 86% 

Large 
(0-90m) 61,551 Dwarf-shrubland: 76% 

 
 

Figure 5.5. Selected control site: the experimental site represents visitor impact and 
management strategies.  In contrast, the control site represents no visitor impact and no 
management strategies. *Vegetation cover types based on the result of the Vegetation 
Mapping Project by NPS-USGS (Lubinski et al., 2003). 

 

Post-Classification Change Detection Analysis 

Pre-classification and post-classification change detection methods are both 

widely used analysis tools for identifying land use and cover changes (Lunetta et al., 

2006; Rogan & Chen, 2004; Rymasheuskaya, 2007; Serra et al., 2003; Singh, 1989).  

Each method has unique pros and cons in terms of analyzing vegetation changes; 

however, the post-classification change detection method is more commonly used when 

developing land cover classification schemes (Fuller et al., 2003; Lu et al., 2004).  One 

primary advantage of using the post-classification method is comparing two imageries 

from different sensors and platforms as it does not require performing a radiometric co-

registration (Du et al., 2002; Lillesand et al., 2004).  By using this method the radiometric 
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correction process is not an essential factor in the image processing step.  The two 

imageries can be separately classified and compared with each other to identify major 

vegetation changes between dates, minimizing the radiometric co-registration problem 

(Chen et al., 2005; Coppin et al., 2004). 

Potential problems have been identified in the post-classification change detection 

analysis using a high resolution remote sensing dataset: 1) a radiometric variability of 

high resolution datasets often shows a wide range of distribution, even within 

homogenous vegetation species (Carleer & Wolff, 2006; Lu & Weng, 2007), 2) a 

relatively poor spectral resolution compared to other hyperspectral datasets (Carleer & 

Wolff, 2006), and 3) a salt-and-pepper effect which can be displayed as noises in the 

classified image (Herold et al., 2003; Hirose et al., 2004; Lu & Weng, 2007).  Widely 

adopted methods to solve the problems related to the classification of high resolution 

remote sensing datasets include: 1) an image smoothing in a pre-processing step, and 2) a 

majority filtering in a post-processing step.  The first is to remove local (high or low) 

variability by applying a mathematical transformation to the original dataset.  It has been 

reported that class separability and classification accuracy can be improved by 

eliminating low or high frequencies in the pre-processing process (Carleer & Wolff, 

2006; Cushnie, 1987; Hsieh & Landgrebe, 1998; Jacobsen, 2005; Katoh, 2004; Marceau 

et al., 1990; Quackenbush et al., 2000; Wulder et al., 2000).  The second is to remove the 

salt-and pepper effect for better interpretation of results in the post-processing step.  It is 

often recommended to perform this function to eliminate scattered and isolated pixels (Lu 

& Weng, 2007; Macleod & Congalton, 1998).  Therefore, in our post-classification 

change detection analysis, a low pass filtering method in the pre-process and a spatial 
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neighbor majority filtering method in the post-process were applied, respectively, to cope 

with the potential problems associated with a pixel-based classification using the high 

resolution remote sensing datasets. 

 

Classification Scheme: Field Survey 

An important element in the post-classification change detection analysis is to 

select an appropriate vegetation classification scheme (Jensen, 2005).  The two high 

resolution datasets in our study have advanced spatial (ground) resolutions; however, a 

relatively small number of bands were captured by the different platforms and sensors 

that ultimately influenced the spectral differences used to classify vegetation.  For 

developing a classification scheme, a sub-meter accuracy GPS unit (Trimble GeoXT) was 

used to collect 129 ground surface points covering 25 different plant genera, soil, bare 

rock, and human-made surfaces in the vicinity of the Cadillac summit during the summer 

of 2007.  The main purpose of this field survey was to obtain ground information to be 

utilized for a spectral difference analysis and deciding on a vegetation classification 

scheme to maximize class separability and minimize confusion between classes (Table 

5.1). 

Table 5.1. Field survey summary. 
Date August 15-31, 2007 
Place Summit of Cadillac Mountain 
Weather Mostly Sunny 
Number Collected 129 points covering 25 different genera 
Plot type Vegetation: 101 (82%) vs. Non-vegetated plots: 25 (19%) 
Plot location Open field: 94 (93%) vs. Under close canopy: 7 (7%) 
Plot structure Homogeneous: 73 (72%) vs. Heterogeneous: 28 (28%) 
Cover size 32m, 42m, 52m 
Coverage density closed canopy, open canopy, sparse canopy 
Coverage pattern  even, clumped 
Others height and stem diameter 
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A hierarchic plant classification system covering all investigated and sampled 

points (Judd et al., 2002), was used to develop a vegetation classification scheme at both 

the level of plant family (11 different classes) and the binary mode (2 different classes, 

vegetation vs. non-vegetated) for the each imagery.  Two adjustments were made based 

upon the preliminary statistical analysis of the vegetation classification scheme for each 

image: 1) bare rock and soil were merged since there was no significant difference in 

terms of the spectral values at the level of plant family in both datasets; and 2) 

Rhizocarpaceae (lichen family) was significantly different from bare rock in the 2007 

dataset, but not in the 2001 dataset.  Therefore, for consistency in analysis between the 

two dates, Rhizocarpaceae was merged to bare rock/soil in both datasets.  Table 5.2 

shows the modified plant family and binary mode scheme using the spectral analysis of 

the collected 129 points and the hierarchic plant classification system. 

 
Table 5.2. Classification scheme for post-classification change detection analysis (n: # of 
sampled plot). 

 Family Level n Anderson 4 level Binary Mode 
1 Aquifoliaceae 5 Deciduous Forest Vegetation 
2 Asteraceae 5 Deciduous Forest Vegetation 
3 Betulaceae 6 Deciduous Forest Vegetation 
4 Cupressaceae 14 Evergreen Forest Vegetation 
5 Ericaceae 13 Mixed Forest Vegetation 
6 Fagaceae 4 Deciduous Forest Vegetation 
7 Pinaceae 17 Evergreen Forest Vegetation 
8 Poaceae 7 Deciduous Forest Vegetation 
9 Rosaceae 7 Deciduous Forest Vegetation 
10 Mixed Forest 19 Mixed Forest Vegetation 
11 Bare Rock & Soil 15 Non-Forest Non-Vegetated 

 

Image Processing Steps 

ERDAS IMAGINE 9.1 was used for most image processing steps for the post-

classification change detection analysis.  As a pre-processing method, multi-spectral 
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imagery of IKONOS 2001 having 1m ground resolution was first produced using a high-

pass filter pan-sharpening technique.  In addition, resampling of the Airborne 2007 

imagery using a nearest-neighbor method for preserving spectral values was performed to 

have a consistency as 1m ground resolution dataset, while rescaling of the pan-sharpened 

IKONOS 2001 was performed to make 8 bit (0-255) imagery. 

A geometric correction between the two imageries was completed using 20 

ground control points (GCPs) and a second-order polynomial method.  The IKONOS 

2001 was used as a reference and Airborne 2007 as an input image, targeting to have less 

than a half-pixel accuracy registration (RMSE = 0.5).  In addition, an image subset was 

performed to focus on the summit loop trail area of Cadillac Mountain as well as the 

control site (ULX: 561244.5, ULY: 4911505.5, LRX: 562050.5 563207, LRY: 

4910714.5).  Then, low pass filtering functions were applied in the two imageries to 

increase visual quality and class separability of the two imageries for the classification 

process. 

In order to avoid confusion and false interpretation in the classified results, an 

image mask function was used to exclude the summit parking area (10m buffering to 

include additional parking areas close to the summit loop trail), automobile road (15m 

wide), hiking trails (2m wide), viewing platforms (2m wide), durable summit loop trail 

(2m wide), cloudy covered areas in the IKONOS 2001 (not included in the experiment 

and control site), and constructed buildings. 

A supervised classification method was applied to produce the intended 

classification results (modified plant family and binary mode) for each date using two 

algorithms: 1) Minimum Distance to Mean and 2) Maximum Likelihood.  The collected 
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sampled points in the field survey were used as training sites, focusing on very well-

known and large cover size points (5m2) to minimize class confusion and maximize 

separability.  In addition, as a post-classification process, spatial neighborhood majority 

filtering functions were applied to reduce the salt and pepper effect in the two classified 

imageries. 

Accuracy assessments of the two classified results were completed using the 

randomly generated 300 point dataset that was collected in the field survey during the 

summer of 2007.  By physically locating each generated point using the GPS (Trimble 

GeoXT) with an external antenna, ground information was concurrently recorded at the 

level of plant family.  Using this collected information, an error matrix associated with 

the classified results was made to identify overall accuracies.  Due to an accessibility 

issue over the study region (the control site), the collected accuracy assessment point 

dataset only covered the experimental site. 

Vegetation cover changes between the two classified imageries were analyzed 

using an image differencing technique at the level of binary mode.  To test our 

hypothesized relationship of relative efficacy of the management strategies for reducing 

vegetation impact and enhancing vegetation recovery, we computed the rates of increased 

and decreased vegetation covers for 30m2 plots that were systematically sampled in all 

three spatial zones at the experimental and control sites.  For each plot, the rates of 

increased and decreased vegetation covers were calculated by an equation: increased (or 

decreased) vegetation area / total vegetation area ×  100.   The mean rates of increased 

and decreased vegetation covers were calculated for small (0-30m), medium (0-60m), and 

large spatial scales (0-90m).  T-test comparisons were used to compare the mean rates of 
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vegetation cover changes in each spatial scale among the experimental and control sites 

at the p = 0.05 level.  To test our hypothesized relationship of spatial patterns of 

vegetation impact and recovery within the experimental site, similar computations were 

made calculating the rates of increased and decreased vegetation covers based on 30m2 

plots that were systematically sampled at the experimental site.  Mean rates of increased 

and decreased vegetation covers were calculated for core (0-30m), intermediate (30-60m) 

and periphery (60-90m), and one-way analysis of variance was used to compare the 

means of vegetation changes over the three spatial zones.  Tukey post-hoc tests of 

pairwise differences in means were used to identify significant differences at the p = 0.05 

level. 

To test our hypothesized relationship of vegetation diversities with the control site, 

the Euclidean Distances at the large spatial scale (0-90m) were calculated to compare 

beta diversity between the two stands of the experimental and control sites in both 2001 

and 2007 plant family level classification results.  Additionally, the Shannon-Weiner 

(SW) diversity index, which is one of the representative alpha diversity metrics (Barnes 

et al., 1998), was statistically tested to directly compare alpha diversity between the two 

sites at the large spatial scale based on 30m2 plots created at the p = 0.05 level.  

Additionally, to test our hypothesized relationship of vegetation diversities at the 

experimental site level, the same SW diversity index was statistically tested to directly 

compare alpha diversity among three zones based on the same 30m2 plots created.  At the 

p = 0.05 level,  one-way analysis of variance was used to compare the means of SW 

diversity indices over the three spatial zones in both 2001 and 2007 plant family level 

classification results. 
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Results 

 

 
Figure 5.6. Post-classification change detection analysis based 
on “Minimum Distance to Mean” algorithm: the result was 
initially classified by the level of plant family and was recoded 
to the binary mode classification for calculating the rates of 
increased and decreased vegetation covers at both sites. 
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Figure 5.6 shows the result of the post-classification change detection analysis 

using the two high resolution remote sensing datasets.  Overall estimated classification 

accuracies using the 300 randomly generated points over the study region were described 

in Table 5.3.  The post classification change detection was analyzed on the basis of the 

results of the “minimum distance to mean,” since the algorithm has better accuracy levels 

than the “maximum likelihood” algorithm in all classification results including the binary 

mode and the level of plant family at both datasets.  The rates of increased vegetation 

covers at the experimental site, based on the total vegetation cover, was 3.36% (483m2) in 

the core (0-30m), 4.04% (689m2) in the intermediate (30-60m), and 2.17% (518m2) in the 

periphery zone (60-90m).  The rates of decreased vegetation covers at the experimental 

site was 2.46% (354m2) in the core (0-30m), 1.39% (237m2) in the intermediate (30-60m), 

and 0.96% (229m2) in the periphery zone (60-90m).  The increased vegetation at the 

control site was 1.37% (171m2) in the core, 0.78% (151m2) in the intermediate, and 

0.45% (120m2) in the periphery zone.  The decreased vegetation at the control site was 

0.10% (13m2) in the core, 0.06% (11m2) in the intermediate, and 0.23% (62m2) in the 

periphery zone.  Overall, more recovery and impact rates were identified in all pre-

defined spatial zones at the experimental site compared to the control site.  In addition, 

there was a spatial relationship of decreasing vegetation impact from the core to 

periphery zones at the experimental site (core: 2.46% → intermediate: 1.39% → 

periphery: 0.96%), while showing no clear spatial relationship of increasing vegetation. 
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Table 5.3.  Accuracy assessment. 
Classification Algorithm Binary Mode Classification 

(Vegetation vs. Non-Vegetated) 
Family Level Classification 

(11 different classes) 
2007 Minimum Distance 78.08% 57.53% 

2007 Max Likelihood 73.88% 47.42% 
2001 Minimum Distance 76.71% 51.03% 

2001 Max Likelihood 69.66% 40.83% 
 

Vegetation Cover Changes Between Experimental and Control Sites 

As hypothesized, the rate of increased vegetation cover based on 30m2 plots at the 

experimental site was more dynamic compared to the control site (Table 5.4).  

Throughout the three different spatial scale comparisons, the means of rates of increased 

vegetation covers were higher at the experimental site than the control site.  However, the 

analysis results also indicated the means of rates of decreased vegetation covers were 

lower at the control site than the experimental site. 

 
Table 5.4. T-tests summary: The increased and decreased vegetation areas between 
experimental and control sites based on 30m2 plots at each spatial scale  
(n: # of plots, M: mean of percent change). 

Experimental Site Control Site Spatial Extent 
(Variables) M (%) n M (%) n 

T P 

Impact 3.81 21 0.04 6 -3.2879 0.003669 Small Scale 
(0-30m) Recovery 4.51 21 1.54 6 -2.3254 0.03328 

Impact 2.43 45 0.08 20 -4.0153 0.0002265Medium Scale 
(0-60m) Recovery 4.72 45 1.65 20 -3.1414 0.002548 

Impact 2.15 72 0.08 49 -5.2341 1.589e-06 Large Scale 
(0-90m) Recovery 5.08 72 0.94 49 -4.3523 3.774e-05 

 

The results of the T-test showed that there were significant differences in the 

means of rates of the increased and decreased vegetation covers between the two sites, 

indicating higher recovery rates (all p < 0.01) and higher impact rates (all p < 0.01) at the 

experimental site in all three spatial scaling approaches (Table 5.4).  Therefore, within the 

three multi-spatial scales analysis, the employed management strategies had a positive 
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effect in terms of enhancing vegetation regeneration and no effect in reducing vegetation 

impact compared to the control site from 2001 to 2007, using the post-classification 

change detection. 

 

Spatial Patterns of Vegetation Cover Changes at Experimental Site 

Table 5.5 contains the means of rates of decreased and increased vegetation covers 

for each spatial zone based on the same 30m2 plots within the experimental site.  

Although the percentage of recovery grew larger from the core to the periphery zone 

(core: 4.51% → intermediate: 4.91% → periphery: 5.68%), there were no significant 

differences among the three different spatial zones in terms of the rates of increased 

vegetation covers (F = 0.1406, p = 0.869).  On the contrary, there was a significant 

difference among the three different spatial zones in terms of the rates of decreased 

vegetation covers (F = 3.9002, p = 0.02485).  Specifically, Tukey post-hoc tests (p < 0.05 

for all significant contrasts) for pairwise comparison indicated that there was a significant 

difference in the rate of decreased vegetation cover between the core (M = 3.81) and 

intermediate zones (M = 1.30), indicating that the mean of the rate of decreased 

vegetation cover was lower in the intermediate zone (30-60m from the summit loop trail).  

This result suggests that there was a clear zone difference between the two zones, 

supporting partially the general spatial pattern of vegetation impact by the proximity or 

zoning concept in a recreation site. 
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Table 5.5. One-way ANOVA summary for experimental site analysis: The rates of 
increased and decreased vegetation covers based on 30m2 plots at the three different 
spatial zones (n: # of plots, M: mean of percent change). 

Core 
(0-30m) 

Intermediate 
(30-60m) 

Periphery 
(60-90m) Variables 

M (%) n M (%) n M (%) n
F P 

Impact 3.81 21 1.30 24 1.68 27 3.9002 0.02485*
Recovery 4.51 21 4.91 24 5.68 27 0.1406 0.869 

*Significance of differences: impact at core > impact at intermediate (p = 0.0299476), impact at core = 
impact at periphery (p = 0.0667490), impact at intermediate = impact at periphery (p = 0.9082048) 
 

Vegetation Diversity Comparison: 

Euclidean Distance and Shannon-Weiner Diversity Index 

The Euclidean Distance between the two sites at the level of plant family was 

7,686m in 2001 and 13,542m in 2007, indicating the beta diversity gap between the two 

stands was wider over time (Figure 5.7).  This result suggests that there was no positive 

effect of the management actions in terms of reducing the beta diversity gap from 2001 

and 2007.  Also, a one-way ANOVA and Tukey Multiple Comparison Test for alpha 

diversity analysis between the two sites showed no positive effect of the employed 

management strategies for enhancing the vegetation diversity at the experimental site 

between the two dates at the level of 10 different plant families (Figure 5.7).  In our 

samples, the SW diversity index at the control site in 2007 was the highest and the SW 

diversity index at the experimental site in 2001 was lowest (the SW at the experimental 

site in 2001: M = 1.02, SD = 0.46, n = 72: the SW at the experimental site in 2007: M = 

1.18, SD = 0.45, n = 72: the SW at the control site in 2001: M = 1.67, SD = 0.26, n = 49: 

the SW at the control site in 2007: M = 1.46, SD = 0.25, n = 49).  There was a significant 

difference among the alpha vegetation diversity at the experimental and control sites in 

2001 and 2007, one-way ANOVA, F (3, 238) = 34.314, p < 0.001. 
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Figure 5.7. Statistical analysis results: Alpha (SW Diversity Index) and Beta 
(Euclidean Distance) diversities (M: mean of the SW). 

 

Specifically, the Tukey post hoc tests for pairwise comparisons between the two 

dates at the experimental site showed that the mean of the SW diversity index (M = 1.02) 

in 2001 was not significantly different from the mean of the SW diversity index (M = 

1.18) in 2007 (p > 0.05).  Also, at the control site, the mean of the SW diversity index (M 

= 1.67) in 2001 was not significantly different from the mean of the SW diversity index 

(M = 1.46) in 2007 (p > 0.05).  However, the analysis results indicated that the mean of 

the SW diversity index (M = 1.67) at the control site in 2001 was higher than the mean of 

the SW diversity index (M = 1.02) at the experimental site in 2001 (p < 0.05).  Also, the 

mean of the SW diversity index (M = 1.46) at the control site in 2007 was higher than the 

mean of the SW diversity index (M = 1.18) at the experimental site in 2007 (p < 0.05).  

SW Index 
M=1.02 

SW Index 
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SW Index 
M=1.67 
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This result suggests that the lower alpha vegetation diversity at the experimental site was 

already formed before 2001 and did not change regardless of the deployed management 

strategies. 

 

Spatial Patterns of Vegetation Diversity Changes at Experimental Site 

Vegetation diversities at the experimental site varied among the three zones based 

on the 2001 plant family level classification (Figure 5.8).  The mean of SW diversity 

index increased going from the core to periphery zones (core: 0.84 → intermediate: 1.01 

→ periphery: 1.16).  A one-way ANOVA for Alpha diversity showed there was a 

significant difference among the three different spatial zones in terms of the mean of 

vegetation diversity (F = 3.1751, p = 0.04796).  Specifically, Tukey post-hoc test (p < 

0.05 for all significant contrasts) for pairwise comparison indicated that there was a 

significant difference in the mean of vegetation diversity between the core (M = 0.84) and 

periphery zone (M = 1.16), indicating higher alpha vegetation diversity in the outer area, 

60-90m from the summit loop trail (p < 0.05).  In addition, vegetation diversities at the 

experimental site were varied among the three zones in 2007 (Figure 5.8).  The mean of 

SW diversity index was also increased from the core to periphery zone (core: 1.00 → 

intermediate: 1.19 → periphery: 1.31).  A one-way ANOVA and Tukey Multiple 

Comparison Test for alpha diversity analysis among the spatial zones showed there was a 

significant difference in the mean of vegetation diversity between the core (M = 1.00) and 

periphery zone (M = 1.31), suggesting higher alpha vegetation diversity in the same outer 

area (F = 3.2547, p = 0.04459).  These analyses using the plant family level 

classifications of 2001 and 2007 support that vegetation diversity also differs based on 
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the zoning and proximity from the central part of the site as well as the spatial patterns of 

vegetation cover changes by recreational use and trampling. 

2001  2007 
Experimental Site 

 
 
 
 
 

 Experimental Site 
 

Figure 5.8. One-way ANOVA for vegetation diversity in the three different 
spatial zones (core → intermediate → periphery) at experimental site (M: 
mean of the SW index).  Significance of differences: SW at core in 2001 < 
SW at periphery in 2001 (p < 0.05), SW at core in 2007 < SW at periphery in 
2007 (p < 0.05). 

 

Discussion 

Diverse methods based on social and biophysical approaches have been utilized to 

verify the efficacy of management strategies by measuring vegetation change dynamics 

in amount and composition in the field of recreational ecology, but this study extended 

earlier work by adopting a multi-spatial scale analysis approach, and by extensively 

enlarging the study region with the aid of remote sensing technology.  While no clear 

zone differences in vegetation recovery were identified at the experimental site, a similar 

pattern in vegetation impact based on the proximity and the zoning concept was 

identified in our study site between the core and intermediate zones (higher impact at the 

core zone).  Unlike traditional recreation ecology study sites such as a cluster of 

M=0.84 

M=1.01 

M=1.16 

M=1.00 

M=1.19 

M=1.31 
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campsites and backcountry trails, the Cadillac summit has a completely open nature of 

terrain characteristics and prevalent off-trail use.  In spite of these landscape and visitor 

use differences, we believe that the spatial impact and recovery patterns based on the 

proximity or zoning concept is still a valuable tool to explain vegetation change dynamics 

at the recreation site as well as to establish the site boundary. 

Cole (2004) indicates that the theory related to impact and recovery still remains 

poorly developed in the field of park and recreation management, even if data processing 

methods have become more sophisticated.  In that regard, we attempted to define the site 

boundary using the impacted vegetation pattern that we observed in the vicinity of the 

summit loop trail.  As described, we defined the general vegetation impact as a similar 

pattern to a two horizontal asymptotes curve line (arccot shape) on the basis of proximity 

(McEwen & Tocher, 1976) (Figure 5.1).  The impact will be highest in the impact zone, 

reduced in the intersite zone (in our case, “intermediate zone” could be a better name), 

and finally stabilized at the buffer zone.  Based on our study results, the calculated 

vegetation impact rates from 0 to 100m showed an overall decreasing impact pattern 

except the drastically decreased areas from 30-50m (Figure 5.9).  This actual impact rate 

was used to presume the boundary between the impact and the intermediate zones based 

on the decreasing relationship of vegetation impact between the two zones.  The 

calculated vegetation impact rates showed the decreasing relationships at two areas: 20 to 

30m and 60 to 70m from the summit loop trail.  However, considering the extremely high 

visitor density and widespread distribution observed in many social science studies at 

Cadillac, the first decreased areas 20 to 30m from the summit loop trail may be 

unrealistic to designate as a boundary between the impact and intermediate zone, and we 
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suggest the second decreased areas 60-70m could be the middle of the intermediate zone 

at Cadillac Mountain (the functional role of the intermediate zone).  Accordingly, this 

assumption suggests that the boundary between the impact and intermediate zones should 

be established below 60-70m in order to maximize the spatial containment strategies in 

the impact zone.  We also suggest that the less impacted vegetation areas 30 to 50m in 

distance, unlike the general impact pattern in a recreation site, may be a direct effect of 

the management practices focusing on the closer proximity to the summit loop trail.  

Given the assumption of the decreasing relationship in vegetation impact as we go away 

from the central part of the site, the areas in distance 30 to 50m could be the portions that 

may be positively influenced by the management strategies.  There is also a clue to 

presume the boundary between the intermediate and the buffer zone, since areas 70-100m 

from the summit loop trail showed the relatively stable vegetation impact rates 

maintaining around 1% impact (the functional role of the buffer zone).  While this 

observed pattern was mainly demonstrated by the rates of decreased vegetation covers 

based on proximity, it could be used as a simple method to define a site boundary by 

detecting vegetation cover changes in a spatial context. 
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Figure 5.9. The rate of vegetation impact in the vicinity of the summit loop trail from 
0 to 100m based on the post-classification change detection analysis (X: distance from 
the summit loop trail, Y: rate of impact, percent change). 

 

Given the fact that the experimental site showed higher impact rates than the 

control site with a natural variability, it is possible that the summit is still experiencing 

the amount of vegetation loss coupled with visitor use over time, even if the rates of 

impact were relatively lower than the rates of recovery.  Particularly, vegetation impact 

was extensively distributed within 60m from the summit loop trail, while showing some 

of clustered areas at the periphery zone (60-90m).  Outside of the large spatial scale at the 

experimental site, the Cadillac North Ridge Trail located on the northwest side of the 

parking lot and the Cadillac South Ridge Trail located on the south side of the concession 

area have been impacted without any distinctive site and visitor management practices.  

In these locations, there are less visible forms of intensive management actions such 

physical barriers and low impact signs.  It is plausible that visitors may be going to these 

Functional Role of 
Intermediate Zone 
at Cadillac Summit 
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locations before the summit loop trail and unaware of management actions that inform 

visitors to walk on trail and durable surfaces.  Therefore, more intensive management 

considerations in conjunction with the current management strategies in the summit loop 

trail are recommended to reduce vegetation impact at those areas. 

Direct effect of the physical barriers to reduce vegetation impact at the summit 

loop trail is an important factor to verify the effectiveness of the site management 

practice.  Currently, the three oval shaped physical barriers covering the total areas of 

1,860m2, mostly focusing on the northern part, were installed within the loop trail.  The 

intrinsic objective of the physical barriers was to keep visitors out of specific areas where 

trampling and soil erosion were at high risk (Turner, 2001).  It was verified that the rate 

of increased vegetation cover within the three exclosures between 2001 and 2007 was 5% 

(25m2), while the rate of decreased vegetation cover was virtually 0% (1m2), and non-

changed vegetation was 95% (435m2).  This suggests that no dynamic vegetation cover 

changes by trampling or off-trail hiking occurred within the three physical barriers.  

Considering the nature of sub-alpine environments that usually take a long time to 

recover after being damaged, the 5% of recovery and the 95% of no-change rates may 

reveal the positive effect of the direct approach to reduce further vegetation impact at 

Cadillac Summit.  Interestingly, visitors’ experiences at the summit were not diminished 

by the exclosures, and visitors preferred more intensive management such as physical 

barriers along the summit loop trail (Bullock & Lawson, 2008).  Therefore, reinforcing 

and expanding the utilization of the exclosures coupled with broader landscape issues on 

the summit near the parking area identified above could be utilized at those chronically 

susceptible areas. 
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Within about 500m from the summit loop trail, facing west, there is another large 

parking area called as “Blue Hill Overlook.”  While the site was not a part of this 

vegetation change detection analysis, it was verified that the level of vegetation impact in 

the vicinity of the Overlook was extensively high.  In the mid of 1980s, the site was 

renamed from “Sunset Point” to the less enticing “Blue Hill Overlook” because of the 

popularity of this area, parking congestion, and vegetation degradation occurring in this 

vicinity.  However, the site has served as an alternative location, especially when the 

summit vicinity was full and congested.  In fact, during our field survey of August 2007, 

it was easily observed that a great number of visitors have been using the site for sunset 

sightseeing, even if the visitation level was not concurrently recorded.  No particular 

management practices have been applied to maximize visitor satisfaction and to minimize 

resource impact at this site until now.  Therefore, re-evaluation of the current non-

management at the Blue Hill parking area near the summit might be warranted to reduce 

the level of vegetation impact. 

Due to the low accuracies at the plant family level classifications in 2001 and 

2007, it was assumed that analyzing family composition changes may not be applicable 

between the two dates.  However, it was possible to identify impacted and recovered 

vegetation families by overlapping the increased and decreased vegetation polygon layers, 

the major outcomes of the binary mode change detection analysis, over each family level 

classification result of 2001 and 2007.  Based on the large spatial scale at the 

experimental site, the vegetation families impacted the most were identified as 

Cupressaceae (327m2, mainly low-lying Juniper), Mixed Forest (272m2), and Ericaceae 

(128m2).  In addition, the vegetation families that recovered the most were identified as 
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Poaceae (1,249m2, grass family) and Mixed Forest (322m2) based on the same large 

spatial scale at the experimental site (Figure 5.10). 
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Recovered Vegetation Families 
Figure 5.10. Impacted vs. recovered plant families at the experimental 
site between 2001 and 2007 (Y: square meter). 
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We observed Cupressaceae that mainly includes low-lying Juniper as the most 

impacted plant type (46% of the total impact layer).  This suggests that vegetation impact 

in the vicinity of the summit loop trail was not limited to low-growing shrub, which is 

typically reported in recreation ecology as the most impacted vegetation type due to the 

poor recovery ability after initial trampling (Cole, 1995b; Cole & Monz, 2003).  As well 

as low-lying Juniper, it is possible that Ericaceae (mainly blueberry) was one of the 

impacted plant types at Cadillac, since the major recreational activities in the vicinity of 

the summit loop trail involve berry-picking (Littlejohn, 1999; Turner, 2001).  On the 

other hand, it was observed that Poaceae (grass family, mostly open-canopy) was 

dominantly recovered since 2001 (68% of the total recovery layer), which is one of the 

most resistant families to trampling in recreation ecology (Cole & Monz, 2002; Hammitt 

& Cole, 1998; Marion & Cole, 1996).  The characteristics of grass on trampling are “high 

resistance” and “high resilience” based on a root system holding soil tightly, a relatively 

flexible stem structure, and rapid growth and spreading (Cole & Monz, 2003; Hammitt & 

Cole, 1998; Judd et al., 2002).  Therefore, as suggested in the findings of traditional 

recreation ecology studies (Cole & Monz, 2002; Green, 1998; LaPage, 1967), it is 

plausible that the experimental site has been transformed toward more resistance after 

being trampled over time, replacing native plants as grass families and accelerating 

vegetation diversity to be lower in the vicinity of the summit loop trail.  

The alpha vegetation diversity between the two sites was significantly different, 

indicating higher vegetation diversity at the control site over time.  As described, it has 

been consistently reported that vegetation diversity in a recreation site would be 

significantly reduced after being trampled, eventually leading to vegetation changes in 
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composition and structure (Cole, 2004; Green, 1998; Stohlgren & Parsons, 1986; 

Tolvanen et al., 2004).  The vegetation diversity metric results in our analysis directly 

support the previous recreation ecology study findings and suggest that the experimental 

site had undergone a constant level of impact, as a form of trampling or off-trail hiking, 

even before 2001 when no management practices were applied except the paved trail.  

While the intrinsic objective of the two distinctive management practices was not 

designed to enhance vegetation diversity, it was shown that the management practices 

have no positive relationship with the trends in vegetation diversity at Cadillac from 2001 

to 2007.  Although we utilized a simplified vegetation diversity metric based on 10 

different plant families, our study extended earlier work by investigating the spatial 

pattern of different vegetation diversity at the recreation site, which is a higher potential 

of low vegetation diversity in the core zone compared to the intermediate and periphery 

zones.  As well as spatial pattern of vegetation cover changes, this spatial variance in the 

vegetation diversity eventually will be beneficial in designing specific management 

objectives and implications suitable for each zone.  

 

Technical Considerations 

Our post-classification change detection analysis design has spatial and temporal 

scaling issues to be investigated more in-depth.  Various spatial scales were applied under 

the given assumptions: 1) small (30m buffering distance), medium (60m), and large 

spatial scale (90m) for defining the study boundaries, 2) 30m2 plots for calculating the 

rates of increased and decreased vegetation covers as well as comparing vegetation 

diversity between the two sites, and 3) 2-15m distances for making the mask-out layer for 
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reducing a false classification interpretation.  It is obvious that there is no single correct 

answer in identifying or selecting the exact spatial scales, and it sometimes involves a 

trial and error procedure to capture a relatively similar result in analysis (Manly, 2001).  

Therefore, it is possible that there might be a slightly different result, once we adopt and 

use different spatial scales in each case. 

There is also a potential phenological issue from the temporal gap of imagery 

acquisition (approximately 45 days), as well as different characteristics of imagery 

sensors and platforms.  Although both imageries are leaf-on versions and no major 

natural disturbances were reported during the analysis time frame, there might be a 

different canopy structure that may cause a false interpretation of the classification results.  

While we utilized post-classification change detection analysis to minimize radiometric 

co-registration problem and a few recommended image enhancement techniques, 

performing the analysis with imageries captured from different sensors and platforms was 

challenging, especially using the same classification scheme (Serra et al., 2003).  

Particularly, due to the different sensor characteristics, Rhizocarpaceae (lichen family) 

was merged to bare rock/soil class in the 2007 dataset for consistency in analysis. 

Given the binary structure of the classified results, the overall accuracy levels of 

the classified results were lower (76.71% in 2001 and 78.08% in 2007) through the 300 

randomly generated point dataset.  Although the sub-meter accuracy GPS unit (Trimble 

GeoXT) was utilized to detect actual ground information for the accuracy assessment 

purpose at the pixel level (1m2), it is commonly agreed that there are always potential 

GPS errors caused by various factors such as atmospheric and topographic 

effects.  Especially, it was discovered that there was maximum 1-2m positional error 
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(maximum 2-3m error under a heavy canopy), when the GPS unit was tested before the 

field investigation for accuracy assessment.  This technical limitation may cause 

difficulty in locating the reference points generated in less than 1-2m2 homogeneous 

areas.  

 

Conclusion 

The study results indicate that by applying the vegetation comparison and the 

multi spatial scale analysis, the newly initiated site and visitor management practices in 

2000 have been validated to enhance vegetation recovery in the vicinity of the summit 

loop trail during the analysis time frame.  However, it was also discovered that the 

summit was still suffering vegetation impact associated with trampling and off-trail 

hiking as well as low vegetation diversity.  Therefore, in order to maintain the dual 

mission of the agency, there is a need to reinforce the current site and visitor management 

practices more intensively to prevent additional vegetation impact in the vicinity of the 

summit loop trail.  For a long-term purpose, alternative ways to strengthen vegetation 

diversity may be considered using a more active ecological restoration project and site 

protection based on direct management regimes. 

A future step for management is evaluating the effectiveness of implementation of 

the more intensive management actions around the summit loop trail.  For example, 

depending on one’s point of view, detections of vegetation recovery by 3.4% and 

vegetation impact by 2.5% within 30m of the trail from 2001 to 2007 might constitute 

real progress in terms of management goals, or alternately, insignificant changes.  The 

development of clear objectives such as indicators and standards of resource conditions 
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will become increasingly important for assessing management actions directed towards 

minimizing impact and maximizing recovery.  Only where specific objectives have been 

established can one consistently determine whether or not an impact of a given 

magnitude constitutes an effective management strategy.  In addition, a future analysis 

must involve vegetation conditions before 2000, when almost no management practices 

were implemented except the paved trail.  Although there have been limited remote 

sensing datasets before 2000 in ANP, directly comparing the rates of vegetation cover 

changes before and after 2000 would give more information about the effectiveness of 

the employed management practices. 

The remote sensing technology used here offers opportunities for managers and 

researchers to take a big picture view of visitor-induced resource impact in national parks.  

Although the outcomes of our analysis approach may be less detailed in identifying the 

amount and composition of vegetation changes compared to traditional recreation 

ecology methods, the proposed post-classification change detection analysis using high 

resolution remote sensing datasets is useful for measuring the aggregated vegetation 

change dynamics at a larger spatial scale.  Measurable vegetation changes in conjunction 

with GIS and statistical analyses would provide baseline data for detection in trends of 

changes over longer periods of time.  The ability to compare these data with future 

imageries will add a valuable component to the current monitoring process in the park. 
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CHAPTER 6 
 

DETECTING VEGETATION COVER CHANGE ON THE SUMMIT OF 

CADILLAC MOUNTAIN USING MULTI-TEMPORAL REMOTE SENSING 

DATASETS: 1979, 2001, AND 2007 

 

Abstract 

This study examines the efficacy of management strategies implemented in 2000 

to reduce visitor-induced vegetation impact and enhance vegetation recovery at the 

summit loop trail on Cadillac Mountain at Acadia National Park, Maine.  Using single-

spectral high resolution remote sensing datasets captured in 1979, 2001 and 2007, pre-

classification change detection analysis techniques were applied to measure fractional 

vegetation cover changes between the time periods.  This popular sub-alpine summit with 

low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use 

away from the designated trail, so three pre-defined spatial scales (small: 0-30m, 

medium: 0-60m, large: 0-90m) were examined in the vicinity of the summit loop trail 

with visitor use (experimental site) and a site chosen nearby in a relatively pristine 

undisturbed area (control site) with similar spatial scales.  Results reveal significant 

changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 

90m from the summit loop trail with no management at the site.  No significant 

differences were detected among three spatial zones (inner: 0-30m, middle: 30-60m, 

outer: 60-90m) at the experimental site, but all were significantly higher rates of impact 

compared to similar spatial scales at the control site (all p < 0.001).  In contrast, 

significant changes in rates of recovery between 2001 and 2007 were observed in the 
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medium and large spatial scales at the experimental site under management as compared 

to the control site (all p < 0.05).  Also during this later period a higher rate of recovery 

was observed in the outer zone as compared to the inner zone at the experimental site (p 

< 0.05).  Overall study results suggest a trend in the desired direction for the site and 

visitor management strategies designed to reduce vegetation impact and enhance 

vegetation recovery at Cadillac Summit since 2000.  However, the vegetation recovery 

has been rather minimal and did not reach the level of cover observed during the 1979 

time period.  We discuss the advantages and some limitations of using remote sensing 

technologies in detecting vegetation change in this setting and potential application to 

other recreation settings.   

Key words: vegetation, trampling, change detection, single-spectral image, remote 

sensing 

 

Introduction 

Acadia National Park (ANP) is part of the U.S. National Park System, which has 

as its dual mission to conserve biological and cultural resources as well as provide 

enjoyment for people (Daigle & Zimmerman, 2004).  Visitation rates of the park are 

similar to many other national parks in that it has been relatively stable over the past few 

decades.  For example, ANP received an estimated 2.2 million visitors in 2009, 2.3 

million in 1990, and 2.7 million in 1980.  However, given the acreage of the park and 

visitation rate, ANP is one of the most densely populated national parks in U.S. (Jacobi, 

2001b; Manning et al., 2006; Wang & Manning, 1999).  The summit loop trail at Cadillac 

Mountain is a major destination for ANP visitors and receives an estimated 0.5 ~ 0.8 
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million visitors during the summer (June ~ August) each year (Jacobi, 2001a, 2003).  

There are three hiking trails to the summit of Cadillac, as well as an auto road and the 

summit loop trail that is 0.3 miles long.  A survey completed by the National Park 

Service (NPS) in 1998 showed 76% of the total visitors to the park visited the summit of 

Cadillac Mountain (Littlejohn, 1999).  The sensitive sub-alpine nature of the site coupled 

with high levels of visitor use has created a scenario where vegetation degradation and 

soil erosion are at a high risk.  The site represents a management challenge to balance the 

public’s desire for visiting a popular destination and at the same time to maintain the 

natural conditions of the area. 

Figure 6.1. Locations of physical barriers (light blue) and LNT signage (red), captured 
by a GPS (Trimble GeoXT) and exported as an ESRI shapefile format. 
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Figure 6.2. Indirect management (left, LNT signage) and direct management (right, 
physical barriers): ANP has been utilized both management approaches since 2000 
along the summit loop trail of Cadillac Mountain in order to reduce direct trampling 
effect, especially caused by off-trail hikers. 

 

There have been efforts by management to concentrate visitor use on durable 

surfaces such as the installment of a paved summit loop trail and viewing platforms.  

However, more intensive management began in 2000 to minimize vegetation impact in 

the vicinity of the summit loop trail.  Both indirect and direct management methods were 

employed using low impact educational messages (signposts) and physical barriers 

(exclosures), respectively (Figures 6.1 & 6.2).   Over the past decade several studies have 

examined the implications of the employed management strategies on visitors’ 

perceptions and experiences as well as visitor use patterns (Bullock & Lawson, 2007, 

2008; Park et al., 2008; Turner, 2001).  However, there has been little direct study 

examining the effectiveness of the management strategies on actual vegetation changes. 

In order to support park management initiatives adopted in 2000, it is our belief 

that a process to assess the effectiveness of the employed management practices along the 

summit loop trail should be implemented as part of a long-term monitoring program.  
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This is particularly important under the dual mandate of NPS because the manager must 

choose an optimal way between current management (when effective) and other 

alternative management strategies (when not effective) by regularly evaluating the 

effectiveness of the management practices.  The primary purpose of this study was to 

assess the efficacy of the site and visitor management strategies designed to reduce 

vegetation impact and enhance vegetation recovery in the vicinity of the summit loop 

trail, using pre-classification change detection analysis based on single-spectral high 

resolution remote sensing datasets: 1979, 2001 and 2007.  Additionally, with the aid of 

remote sensing technology, the study was designed to identify large spatial patterns of 

vegetation changes at a recreation site with terrain characteristics of low vegetation and 

rocky outcroppings and consequently prevalent off-trail use.  

 
 
Figure 6.3. Site/visitor management at Cadillac Summit: In order to identify the effect of 
the employed indirect and direct management practices since 2000, three remote sensing 
datasets captured in 1979, 2001, and 2007 were used for a detailed vegetation change 
analysis. 
 

Remote Sensing Technology for Park and Outdoor Recreation Management 

Remote sensing refers to the detection and recording of values of emitted or 

reflected electromagnetic radiation with sensors in aircrafts or satellites (Ingle et al., 
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2003).  Potential advantages of remote sensing include collecting large amounts of data 

very quickly and the availability of archived data that can be used to identify trends in 

resource conditions.  In addition, the archived data including aerial photographs generally 

have a high spatial resolution such as 1m and sub-meter, and cover long time sequences 

of a target area (Carmel & Kadmon, 1998).  From the perspective of park and outdoor 

recreation management, a growing body of research has begun to explore the potential 

usefulness of remote sensing technologies for 1) inventorying recreational resources 

(Burnett & Conklin, 1979; Dill, 1963; MacConnell & Stoll, 1968; Miller & Carter, 1979), 

2) monitoring impact and change in recreational resources (Hockings & Twyford, 1997; 

Leung et al., 2002; Marion et al., 2006; Witztum & Stow, 2004), and 3) addressing the 

importance of remote sensing in park and outdoor recreation management (Butler & 

Wright, 1983; Draeger & Pettinger, 1981; Gross et al., 2006; Ingle et al., 2003; Monz & 

Leung, 2006). 

Remote sensing technology has advantages over traditional and representative 

recreation ecology methods such as on-site measurement and experiments in its ability to 

examine large scale (albeit lower resolution) vegetation change.  Typical recreation 

ecology studies involving assessments of trail impacts have tended to be relatively small 

in spatial scale within a few meters from the center of the trail.  Turner (2001) observed 

at the Cadillac summit that visitor impact on vegetation and soil was not limited to just a 

few meters from the trailside of the summit loop trail.  Visitor impact was occurring far 

beyond up to 50-90m from the summit loop trail on the basis of Turner’s sampling plots 

for vegetation trampling and observations of visitor behavior.  Many activities were 

witnessed with this off-trail hiking including  photo-taking, berry-picking, and bird 
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watching (Turner, 2001).  Therefore, by using high resolution remote sensing datasets, 

more extensive vegetation change detection would be possible as well as nearby areas 

where accessibility was extremely low for assessing more natural variation of vegetation 

changes on the summit.  This factor was important because we adopted a vegetation 

comparison mechanism by selecting a control site which maintains a relatively pristine or 

undisturbed environment with little or no visitor use.  Also, it is important to mention that 

there were no field-based datasets available to verify the degree of vegetation impact 

before the site and visitor management were implemented in 2000.  Therefore, it was 

expected that the remote sensing datasets captured in 1979, before the employed 

management practices, would give a unique opportunity to identify the effect of the 

management strategies by detecting fractional vegetation cover changes over time. 

 

Methods 

Study Design 

Three high resolution remote sensing datasets were utilized in this study to detect 

fractional vegetation cover changes over time.  All three datasets (1979, 2001, and 2007) 

were obtained from ANP.  Other ancillary datasets such as the locations of signpost 

messages (Leave No Trace principle) and physical barriers on the top of Cadillac 

Mountain were collected using a Trimble GeoXT with an external antenna and bypass.  

After post-processing for differential positioning to increase accuracy, they were 

exported as an ESRI shapefile format with sub-meter accuracy.  Table 6.1 gives more 

details of the imageries used for the analysis (Table 6.1). 
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Table 6.1. Description of remote sensing datasets used. 
Year Dataset Acquisition date Spatial  

Resolution (m) 
Spectral  

Resolution 

1979 Scanned color-infrared  
Aerial photograph August 17, 1979 submeter (0.45) True Color (RGB) 

2001 IKONOS panchromatic  
(PRO option) August 21, 2001 1.00 Panchromatic (single)

2007 National Agriculture 
Imagery Program (NAIP) July 26, 2007 1.00 True Color (RGB) 

 

Two major methodological approaches were applied using the three high 

resolution remote sensing datasets in this study: 1) multi-spatial scale analysis that 

employs a series of varying sizes of study extents and 2) vegetation comparison 

mechanism.  Because of the extensively distributed nature of vegetation impact, we 

expected it to be a challenge to identify a clear extent of the study impact area; therefore, 

we utilized three different buffering widths from the summit loop trail to verify the 

relative effectiveness of the employed management strategies as well as to cope with the 

ambiguous site boundary problem: small (0-30m buffering width), medium (0-60m), 

large spatial scale (0-90m).  The adopted method was guided by various landscape 

ecology studies that attempt to discover appropriate spatial scale by controlling the size 

of impact extent (Kendall et al., 2003; Levin, 1992; Madrigal et al., 2008; Turner, 1989; 

Turner et al., 2001; Wiens, 1989). The three spatial extents were established with the 

assumption that there was limited visitor dispersion beyond 100m from the summit loop 

trail. 

A vegetation comparison mechanism was used to better understand the degree of 

vegetation change in the vicinity of the summit loop trail by selecting a nearby control 

site in similar spatial scale with limited to little or no visitor use and therefore a more 

environmental characteristic of natural variation in vegetation changes (Cole, 1995; 
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Hammitt & Cole, 1998).  For selecting the control site, we adopted “elevation” as an 

important factor as that shapes the vegetation community, especially in an alpine or sub-

alpine natural environment with a short growing season (Barnes et al., 1998; Boughton et 

al., 2006; Kimball & Weihrauch, 2000).  Other selection criteria were used to delineate 

the control site by including the same area close by that experienced the disastrous fire of 

1947.  Finally, additional areas were avoided to exclude potentially visitor accessible 

areas such as nearby structures including parking lots, auto roads, concession and 

restroom areas, and the hiking trail network. 

Experimental Site: 
Management/Visitor Use Spatial 

Scale 
Area (m2) Vegetation Cover* 

Small 
(0-30m) 33,497 Dwarf-shrubland: 93% 

Medium 
(0-60m) 57,612 Dwarf-shrubland: 86% 

Large 
(0-90m) 87,136 Dwarf-shrubland: 81% 

Control Site: 
No Management/No Visitor Use Spatial 

Scale 
Area (m2) Vegetation Cover* 

Small 
(0-30m) 13,524 Dwarf-shrubland: 99% 

Medium 
(0-60m) 33,460 Dwarf-shrubland: 86% 

Large 
(0-90m) 61,551 Dwarf-shrubland: 76% 

 
 

Figure 6.4. Selected control site: the experimental site represents visitor impact and 
management strategies.  In contrast, the control site represents no visitor impact and no 
management strategies. *Vegetation cover types based on the result of the Vegetation 
Mapping Project by NPS-USGS (Lubinski et al., 2003). 

 

The study design enabled us to test the following: 1) The rates of vegetation cover 

change between 1979 and 2001 at the experimental site with no-management will have 
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higher rates of vegetation impact and lower rates of vegetation recovery than at the 

control site;  2) The rates of vegetation cover change between 2001 and 2007 at the 

experimental site with management will have higher rates of vegetation recovery and 

lower rates of vegetation impact than at the control site; and 3) The rates of vegetation 

cover change will differ among the spatial zones at the experimental site with higher rates 

of vegetation recovery and lower rates of vegetation impact at the outer spatial zone as 

compared to the inner spatial zone in proximity to the summit loop trail.   

 

Image Processing Steps 

The following image processing steps were completed in Erdas IMAGINE 9.1.  

As a pre-processing step, geometric corrections among the three imageries were carried 

out using a second-order polynomial method.  The IKONOS 2001 was utilized as a 

reference and the two other imageries as input imageries, targeting to have less than a 

half pixel accuracy registration.  By focusing more on the study region that includes the 

experimental and control sites, 22 ground control points (GCPs) for geometric correction 

were used for the National Agriculture Imagery Program (NAIP) 2007 imagery (RMSE = 

0.832) and 68 GCPs for the scanned color-infrared 1979 imagery (RMSE = 8.8).  The 

high RMSE in the 1979 imagery was caused by more distorted levels in the process of the 

scanning.  The two input imagery were resampled using a nearest-neighbor method to 

have a consistency as 1m ground resolution dataset of the IKONOS 2001, respectively 

(NAD 83, UTM Zone 19).  In addition, image subsets were performed to focus on the 

summit loop trails areas of Cadillac Mountain as well as the control site (ULX: 561250, 

ULY:  4911505, LRX: 562047, LRY:  4910716). 
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To produce single-band structure images for a pre-classification change detection 

analysis, the two RGB colored imageries of 1979 and 2007 were spectrally degraded by 

averaging the RGB bands (Li et al., 2005; Wulder et al., 2000).  As a radiometric 

correction process, histograms of the three images were matched using the NAIP 2007 as 

reference image, particularly recommended for a high resolution dataset radiometric 

normalization (Hong & Zhang, 2005).  In order to avoid confusion and false 

interpretation in the classified result, an image mask function was used to exclude the 

summit parking area (10m buffering to include additional parking areas close to the 

summit loop trail), automobile road (15m wide), hiking trails (2m wide), viewing 

platforms (2m wide), summit loop trail (2m wide), cloudy covered areas in the IKONOS 

2001 (not included in the experiment and control site), and buildings. 

A pre-classification change detection analysis based on multi-temporal RGB 

analysis (Sader et al., 2003; Sader & Winne, 1992) was used to identify detailed 

vegetation cover changes over time.  The analysis technique was originally designed to 

visualize vegetation cover changes using three dates of NDVI imagery concurrently and 

the interpretation concepts of color additive theory.  Our application was re-designed to 

use single-spectral images based on the same analysis concept, considering higher 

radiometric reflectance values as non-vegetation areas, which is the reverse of the 

original multi-temporal NDVI-RGB analysis (Chapter 4).  For interpretation of results, a 

maximum variation was utilized by controlling a boundary threshold (Long Dai & 

Khorram, 1999; Lu et al., 2004) that differentiates “change” from “no-change,” in order 

to minimize illumination gaps among the images.  In addition, spatial neighborhood 
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majority filtering functions were applied to reduce the salt and pepper effect in the 

classified results (Lu & Weng, 2007; Macleod & Congalton, 1998). 

A field study was completed in the summer of 2007 to help assess the accuracy of 

the classified results indicating vegetation and non-vegetation areas.  A total of 300 

reference ground points were randomly generated along with the classified results 

recoded in binary mode (vegetation vs. non-vegetation) by merging increased vegetation 

and no-change area as “Vegetation,” and decreased vegetation and non-vegetation areas 

as “Non-Vegetated.”  A Trimble GeoXT with an external antenna was used to physically 

locate the 300 randomly generated reference points to record vegetation vs. non-

vegetated information. 

To test our hypothesized relationship with vegetation change between the 

experimental and control sites, we computed the rates of increased and decreased 

vegetation covers with 20m2 plots that were systematically sampled at the pre-defined 

spatial scales.  For each plot, the rates of increased and decreased vegetation were 

calculated by an equation: increased (or decreased) area / total vegetation area ×  100.  

A mean rate of vegetation increase and decrease was calculated for small (0-30m), 

medium (30-60m), and large spatial scales (60-90m) and T-test comparisons were used to 

compare the mean vegetation increases and decrease over the three spatial scales among 

the experimental and control sites at the p = 0.05 level.   

To verify spatial patterns of vegetation impact and recovery within the 

experimental site, similar computations were made calculating the rates of increased and 

decreased vegetation covers based on the same 20m2 plots at the experimental site.  Mean 

rates of increased and decreased vegetation covers were calculated for separated inner (0-
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30m), middle (30-60m) and outer spatial zones (60-90m) at the experimental site, and 

one-way analysis of variance was used to compare the means of vegetation changes over 

the three spatial zones.  Tukey post-hoc tests of pairwise differences in means were used 

to identify significant differences at the p = 0.05 level.  It should be noted that the plots 

having no vegetation areas (complete bare rock or masked-out areas) were not considered 

as a sample in each statistical test, since the analyses were intended to identify the rates 

of increased and decreased vegetation covers. 

 

Results 

Figure 6.5 shows the vegetation change detection analysis results.  Overall estimated 

change detection accuracies using the 300 randomly generated points were 76.87% (user 

accuracy: 76.25%, producer accuracy: 74.71%).  In the large spatial scale (0-90m) at the 

experimental site, the total decreased vegetation cover was 2.62% (1,169m2) from 1979 

to 2001, and 0.03% (14m2) from 2001 to 2007.  The total increased vegetation cover was 

0.14% (64m2) from 1979 to 2001, and 1.97% (871m2) from 2001 to 2007.  At the control 

site, the total decreased vegetation was 0.34% (182m2) from 1979 to 2001, and 0.03% 

(15m2) from 2001 to 2007.  The total increased vegetation cover was 0.72% (385m2) from 

1979 to 2001, and 0.20% (107m2) from 2001 to 2007.  Although these calculated rates 

represented relatively small magnitudes in vegetation changes on the basis of the total 

vegetation areas in each large spatial scale, more impact and less recovery were found at 

the experimental site from 1979 to 2001.  The trend was reversed at the site from 2001 to 

2007, showing more recovery and less impact. 
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1979-2007 1979-2001 2001-2007 
 Experimental Control Experimental Control 

Regeneration 64m2 (0.14%) 385m2 (0.72%) 871m2 (1.97%) 107m2 (0.20%) 
Reduction 1169m2 (2.62%) 182m2 (0.34%) 14m2 (0.03%) 15m2 (0.03%) 
No Vegetation 42,557m2 8,439m2 42,855m2 8,514m2 

 

Vegetation, No change 43,338m2 52,587m2 43,388m2 52,957m2 
Figure 6.5. Vegetation change detection analysis results (top: experimental site at the 
large spatial scale, bottom: control site at the large spatial scale). 
 

 

Spatial Patterns of Vegetation Change 

Table 6.2 contains the means of rates of increased and decreased vegetation 

classified for each separated spatial zone within the experimental site from 1979 to 2001.  

Based on the proximity from the summit loop trail, there were no significant differences 

among the three spatial zones in terms of the rates of decreased vegetation covers (F = 



 

 210

1.9403, p = 0.1467).  In addition, there were no significant differences among the zones 

in the rates of increased vegetation (F = 1.195, p = 0.3052).  These results suggest that 

there were no clear spatial patterns of vegetation cover changes within 90m from the 

summit loop trail before the management practices were employed. However, rates of 

decrease in vegetation were much more prevalent than rates of increase in vegetation at 

all spatial zones.  The prevalence of off-trail use may have contributed to the ability for 

recovering vegetation at all spatial zones. 

 
Table 6.2. One-way ANOVA summary for spatial pattern of vegetation cover changes at 
experimental site: The rates of increased and decreased vegetation covers based on 20m2 
plots at the three separated spatial zones from 1979 to 2001 (n: # of plots, M: mean of 
percent change). 

Inner Zone 
(0-30m) 

Middle Zone 
(30-60m) 

Outer Zone 
(60-90m) Variables 

M (%) n M (%) n M (%) n
F P 

Impact 2.58 59 1.33 54 2.56 65 1.9403 0.1467 
Recovery 0.40 59 0.00 54 0.10 65 1.195 0.3052 
 

Table 6.3 shows the means of rates of increased and decreased vegetation classified 

for each separated spatial zone within the experimental site from 2001 to 2007 when the 

management practices were put in place in 2000.  Again, there were no significant 

differences among the zones in the rates of decreased vegetation covers (F = 0.8679, p = 

0.4216).  However, compared to the time period from 1979 to 2001, there was very little 

detection of vegetation loss.  Unlike the spatial pattern of the rates of decreased 

vegetation from 2001 to 2007, there was a significant difference in the rates of increased 

vegetation between the spatial zones (F = 5.3061, p < 0.05).  Tukey post-hoc tests for 

pairwise comparison verified that the recovery rate was higher in the outer zone (M = 

2.20) than the inner zone (M = 0.42).  This result suggests more vegetation recovery 
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occurring at the outer edge of the site since 2001, and especially since the time period 

from 1979 to 2001.  At this point in time management strategies have reversed a trend of 

vegetation loss observed from 1979 to 2001, but it appears vegetation recovery has been 

slow to minimal and not recovered to the amount that existed in 1979. 

 
Table 6.3. One-way ANOVA summary for spatial pattern of vegetation cover changes at 
experimental site: The rates of increased and decreased vegetation covers based on 20m2 
plots at the three separated spatial zones from 2001 to 2007 (n: # of plots, M: mean of 
percent change) 

Inner Zone 
(0-30m) 

Middle Zone 
(30-60m) 

Outer Zone 
(60-90m) Variables 

M (%) n M (%) n M (%) n
F P 

Impact 0.00 59 0.00 54 0.06 65 0.8679 0.4216 
Recovery 0.42 59 0.91 54 2.20 65 5.3061 0.005791*

*Significance of differences: recovery at inner = recovery at middle (p = 0.6934288), recovery at inner < 
recovery at outer (p = 0.0056236), recovery at middle = recovery at outer (p = 0.0689164) 

 

Vegetation Cover Change Detection between 1979 and 2001 

The comparison between the experimental and control sites generally supported 

our hypothesized assumptions related to examining the visitor-induced impact, when no 

management practices were deployed from 1979 to 2001 (Table 6.4).  Throughout the 

three different spatial scales (0-30m, 0-60m, 0-90m), the means of rates of decreased 

vegetation were significantly higher at the experimental site than the control site (all p < 

0.001).   Conversely, the means of rates of increased vegetation covers were higher at the 

control site than the experimental site.  In addition, there was a significant difference in 

the rates of increased vegetation cover (T = 2.4807, p = 0.01368), indicating a higher 

recovery rate in the large spatial scale (0-90m) at the control site while showing no 

significant differences between the two sites in the small and medium spatial scales (all p 

> 0.05). 
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Table 6.4. T-tests Summary: The rates of increased and decreased vegetation covers 
between the experimental and control sites based on 20m2 plots at each spatial scale from 
1979 and 2001 (n: # of plots, M: mean of percent change) 

Experimental Site Control Site Spatial Scale 
(Variables) M (%) n M (%) n 

T P 

Impact 2.58 59 0.20 18 -4.4922 2.892e-05 Small Scale 
(0-30m) Recovery 0.22 59 0.40 18 -0.513 0.6094 

Impact 1.98 113 0.23 56 -5.5509 1.633e-07 Medium Scale 
(0-60m) Recovery 0.21 113 0.46 56 1.0844 0.2799 

Impact 2.91 178 0.24 120 -6.6571 2.976e-10 Large Scale 
(0-90m) Recovery 0.17 178 0.54 120 2.4807 0.01368 

 

Vegetation Cover Change Detection between 2001 and 2007 

The comparison between the experimental and control sites also supported our 

hypothesized assumptions related to examining the efficacy of management practices 

from 2001 to 2007 (Table 6.5).  While no impact rates were identified in the small and 

the medium spatial scales at the experimental site, there was no significant difference in 

the rates of decreased vegetation covers between the two sites in the large spatial scale 

analysis (T = -0.0247, p = 0.9803), indicating the same impact rates over the two sites.  

The rates of increased vegetation cover were the same in the small spatial scale 

comparison (T = -0.9491, p = 0.3461), and higher in the medium and the large spatial 

scales at the experimental site than the control site (all p < 0.05), indicating higher 

recovery rates at the experimental site.  Overall, the results suggest a trend in the desired 

direction for management strategies to reduce vegetation impact and enhance vegetation 

recovery at the experimental site from 2001 to 2007, but again relatively small gains at 

this point in time. 
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Table 6.5. T-tests Summary: The rates of increased and decreased vegetation covers 
between the experimental and control sites based on 20m2 plots at each spatial scale from 
2001 and 2007 (n: # of plots, M: mean of percent change) 

Experimental Site Control Site Spatial Scale 
(Variables) M (%) n M (%) n 

T P 

Impact 0.00 59 0.00 18 - - Small Scale 
(0-30m) Recovery 0.41 59 0.20 18 -0.9491 0.3461 

Impact 0.00 113 0.00 56 - - Medium Scale 
(0-60m) Recovery 0.65 113 0.14 56 -3.0031 0.00315 

Impact 0.02 178 0.02 120 -0.0247 0.9803 Large Scale 
(0-90m) Recovery 1.22 178 0.13 120 -4.4182 1.688e-05 

 

Discussion 

Our study examined the potential of using remote sensing technology for 

monitoring visitor-induced impact, and possibly of some assistance where a recreation 

site boundary is relatively unclear at a high-use and dispersed-use site.  The major 

literature in recreation ecology suggests that there is a spatial relationship of decreasing 

vegetation impact and increasing vegetation recovery based on the proximity in 

individual sites and specified impact zones (Cole & Monz, 2004; Frissell, 1978; Hammitt 

& Cole, 1998).  The impact zones are typically smaller than other zones at campsites and 

trails, but vegetation impact is most severe within the impact zone.  Given the prevalent 

visitor behavior of off-trail use on durable rock surfaces, interspersed patches of 

vegetation and the ambiguous site boundary, there were no significant differences in 

terms of the rates of vegetation cover changes among the three separated spatial zones 

within 90m from the summit loop trail when no management actions were applied from 

1979 to 2001.  Although no clear zone boundary of vegetation impact was being detected 

in the relatively same magnitude away from the trail, it is possible that a more extensive 

spatial zone of impact has formed at Cadillac without an active mode of management 
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action that induces a concentrated visitor use along the trail during the first analysis time 

period. 

However, some of our findings supported the spatial relationship of increasing 

vegetation recovery but at a much larger scale in the outer zone (60-90m) compared to 

the inner zone (0-30m) when the management actions were employed from 2001 to 2007.  

Therefore, based on this observed spatial pattern of vegetation recovery, more 

consideration might be given for defining the intensive management zone at Cadillac.  It 

may be required to further enhance and monitor vegetation management strategies in 

these outer edges of the recreation site.  

One potential advantage that might be utilized with large spatial scale vegetation 

change detection methods are potential clusters or patterns of impact.  However, no 

significantly clustered areas in terms of negative vegetation impact were identified within 

the 90m spatial scale by the summit loop trail.  There was an informal trail detected at a 

high ridge located on the west side of the parking lot (next to the Cadillac North Ridge 

Trail).  While the specific area was not a part of this multi-temporal vegetation change 

analysis, the study results showed that vegetation impact occurred even before 2001 and 

has constantly impacted the area over time.  In that location, unlike the summit loop trail, 

there are fewer visible forms of intensive site/visitor management actions such as 

physical barriers and educational signs.  Given the fact that the area could be an 

alternative location due to the flatness and easy accessibility of the area, especially when 

the summit loop trail is extremely crowded during a summer, it is plausible that visitors 

may be going to the location before they walk the summit loop trail and are unaware that 

they should remain on the maintained trails and other durable surfaces.  Therefore, 
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targeted management may be necessary to prevent further development of the informal 

trail and additional vegetation impact. 

An assessment was made of the direct management strategies.  The three oval 

shaped physical barriers covered a total area of 1,860m2, mostly focused on already 

heavily visitor impacted areas within the summit loop trail.  The main purpose of the 

physical barriers was to keep visitors out of specific areas where trampling and soil 

erosion were at high risk (Turner, 2001).  From 1970 to 2001 when no physical barriers 

were present, the rate of decreased vegetation cover in the same areas as the current three 

barriers was 2.78% (9m2), while showing no increased vegetation.  After installing the 

three physical barriers from 2001 to 2007, the trend changed by showing that the rate of 

increased vegetation cover was 0.94% (3m2), while the rate of decreased vegetation cover 

was 0% (0m2).  Although the rate of increased vegetation cover was considerably low, 

there was no negative vegetation impact after installing the barriers since 2001 and one 

would expect a slow natural recovery of this previously heavily impacted area.  No 

significant vegetation changes occurred within the three physical barriers by effectively 

prohibiting visitors from creating informal trails and shortcutting in these areas.   

Interestingly, visitors’ experiences at the summit were not diminished by the deployed 

exclosures (Bullock & Lawson, 2007; Turner, 2001), and visitors generally preferred 

more intensive management such as physical barriers along the summit loop trail 

(Bullock & Lawson, 2008).  The direct and indirect management techniques appear to be 

stemming the amount of vegetation loss in most areas, and evidence exists for recovery 

occurring, especially on the outer edges around the summit loop trail.  Recovery rates are 

low however since 2000, and management may want to supplement with plant treatment 
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if wanting to encourage more vegetation recovery on the outer edge where there appears 

to be less visitor use.  Finally, reinforcing and expanding the utilization of the exclosures 

and Leave No Rrace signage could be a management supplement to targeted areas around 

the informal trail or other susceptible areas near the summit loop trail. 

 

Conclusion 

Study results indicate that the site and visitor management practices initiated in 

2000 have been validated to enhance vegetation regeneration and reduce vegetation 

reduction at Cadillac Summit.  Therefore, maintaining and reinforcing the current site and 

visitor management practices could be a continued management option for ANP rather 

than using highly regulated management strategies such as use limits and length of stay 

limit.  We suggest that management strategies expand beyond the summit loop trail in the 

vicinity to prevent unintended and additional vegetation impact. 

While the applied change detection analysis was useful for detecting vegetation 

cover over time, more detailed analysis about vegetation characteristic would be required 

to better understand vegetation change dynamics at Cadillac Summit.  Studies have 

consistently shown that re-vegetated sites often consist of more resistant plant species and 

overall less vegetation diversity than the previous impacted condition (Green, 1998; 

LaPage, 1967; Stohlgren & Parsons, 1986; Tolvanen et al., 2004).  Traditional on-site 

measurement and experiment may further enhance and supplement the findings of our 

study. 

There are various scanned aerial photographs captured in 1944, 1953, and 1979 in 

ANP, and periodically the scanned aerial photographs as well as high resolution satellite 
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datasets are likely planned for the future.  Even though the spectral resolution is limited 

in the datasets, change detection analysis based on single spectral images can be useful to 

discover the general pattern of vegetation cover changes associated with visitor use for a 

long term period, particularly for the summit of Cadillac Mountain.  Further imageries 

collected could be integrated into this assessment. 
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CHAPTER 7 
 

CONCLUSIONS 
 

“When resources are abundant, we squander them.  We value them when they become 
scarce. That day is rapidly approaching, but we seem to pretend and act as if that day 
will never come.” 

 Emilio F. Moran (2006) 
 

In this study, high spatial resolution remote sensing datasets from 1979, 2001 to 

2007 and several different image-processing techniques were used to assess the 

effectiveness of management strategies to reduce vegetation impact and enhance recovery 

at Cadillac Mountain in Acadia National Park.  Factors such as different mechanisms 

used in image processing techniques, quality of remote sensing datasets and size of 

sampling plots (different size of grain), created some disparities in results, but clearly a 

higher degree of vegetation recovery and a smaller degree of impact was detected in the 

vicinity of the summit loop trail (experimental site) than in the undisturbed control site 

(Table 7.1).  

 
Table 7.1. Change in vegetation cover at the experimental and control sites. 

Experimental Site 
Mean (%) 

Control Site 
Mean (%) Large Spatial Scale 

(0-90m) 1979-2001 2001-2007 1979-2001 2001-2007 
Chapter 4* - 0.12 - 0.64 
Chapter 5** - 2.15 - 0.08 Impact 

Chapter 6*** 2.91 0.02 0.24 0.02 
Chapter 4* - 5.56 - 2.38 
Chapter 5** - 5.08 - 0.94 Recovery 

Chapter 6*** 0.17 1.22 0.54 0.13 
* Fractional vegetation cover change detection analysis based on pre-classification (NDVI) and 10m2 plots. 
**Fractional vegetation cover change detection analysis based on post-classification (supervised, minimum 
distance to mean algorithm) and 30m2 plots. ***Fractional vegetation cover change detection analysis 
based on pre-classification (single-spectral, simple image differencing) and 20m2 plots. 
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The two pre-classification change detection analyses using the multi-spectral and 

the single-spectral as well as the post classification change detection analysis all showed 

detailed measureable vegetation changes in terms of vegetation regeneration and loss at 

relatively large distances away from the summit loop trail as compared to the undisturbed 

control site.  Although not shown in Table 7.1, the post classification change detection 

analysis results showed little change in terms of vegetation diversity recovery in the 

vicinity of the summit loop trail as compared to what exists at the control site.  The 

regrowth of vegetation is probably the result of more resistant and resilient vegetation 

where impacts formerly occurred and where visitor use still occurs at the site. 

The summit of Cadillac Mountain is a tough place to recover vegetation after 

damage, due to the short growing season, thin soil, and shortage of available water.  This 

is because Cadillac Summit, like most other recreation sites, experiences an asymptotic 

relationship between use level and vegetation impact (Hammitt & Cole, 1998) (Figure 

7.1).  That is, most of the impact occurs quickly with low to moderate use levels and then 

levels off in the immediate vicinity of where the use is concentrated but continues slightly 

upward as the site expands.  Recovery through management efforts takes much longer 

especially if natural regeneration is allowed at the site.  The rates of recovery vary 

depending upon the resilience of vegetation and other site factors, and Cadillac as 

described above is expected to be much slower (R1) than in other recreation settings with 

deeper soils, warmer temperatures, and longer growing seasons (R2) (Hammitt & Cole, 

1998; Leung & Marion, 2000; Liddle, 1997).  Given the long history of visitor use at the 

summit which has been documented form the late 1800s to the present the summit has 

probably been constantly changing with the many seasons of human use. 
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Figure 7.1. Conceptual model showing the temporal relationship between vegetation 
impact and visitor use over time with expected rates of recovery depending on resilience 
of vegetation.  If there is no human disturbance factor, recovery rates will be influenced 
only by site resilience and environmental conditions.  Therefore, taking a long time for 
natural recovery may not be effective for the Cadillac summit that maintains an 
extremely low resilience characteristic in a sub-alpine nature environment. 

 

Based upon our work we suggest a similar conceptualization of the temporal 

relationship between vegetation impact and visitor use over time, but the large spatial 

scale quantifies vegetation impact differently as compared to impact measured close to 

the recreation site (Figure 7.2).  While line 1 generally represents a small spatial scale 

typical of the impact zone and immediate vicinity of the summit loop trail, line 2 

represents visitor use that is dispersed over more vegetation and thus lower in terms of 

impact to total percent of vegetation with use and associated levels of impact to 

vegetation in the intermediate and buffer zones of the recreation setting.  It is assumed at 

both the small and large spatial scales that the impact by recreation use on the summit 

followed patterns of previous recreation ecology studies with vegetation impact occurring 

noticeably within the first few years of light to moderate use, especially around the 

current trail system and access points to the trail.  In fact, the summit has likely 

experienced much vegetation damage during this length of visitor use and in some places 

permanent loss of vegetation due to the extremely shallow soil on bedrock and erosion by 

Recovery 
Starting 
Point 

Use/Time

Vegetation 
Impact 

R1: Low resilience site

R2: High resilience site
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wind and water.  It is important to note, however, that measurable vegetation loss was 

still detected on the summit from 1979 to 2001 and most likely provided motivation for 

implementing more intensive management in 2000.  The employed management appears 

to have stemmed the upward trend in impact, and minimal gains were seen in vegetation 

recovery. 

Although it is impossible to return to the pristine condition due to the already 

changed ecosystem and the amount of soil erosion accumulated, various recovery 

scenarios are possible given the deployed management strategies and future changes to 

the management strategies.  

Figure 7.2. Conceptual model showing the temporal relationship between vegetation 
impact and use/time level at different spatial scales at Cadillac Mountain Summit, Acadia 
National Park. 
 
 

In the reconceptualization of the temporal relationship between vegetation impact 

and use/time, there are measurable differences in the amount of vegetation recovery 

between those that occur in the small spatial scale and impact zone of x1 recovery and 

large spatial scale and multiple zones of x2 recovery (Figure 7.2).  As hypothesized in 

McEwen and Tocher (1976), the amount of vegetation recovery is expected to be higher 

in x2 recovery due to less soil compaction and alterations caused by constant visitor use 



 

 227

so that vegetation has the ability to regrow in the outer zones.  Our results support this 

hypothesized relationship with noticeable and significant recovery observed in the outer 

edges and especially at a distance characteristic of an intersite zone that has visitor 

disturbance and thus response of vegetation to regrow that is distinctly more than in the 

buffer zone that has regrowth slightly more than what can be seen through natural 

variability.  This transition of less regrowth and reduction of vegetation in the buffer zone 

results from less visitor use (Cole & Monz, 2004), and vegetation impact mimics the 

control site.  We feel there is still value in identification of the small spatial scale and 

identification of the impact zone boundary.  Often management objectives are set around 

this boundary that is generally visible with the goal of limiting further expansion of this 

zone into the intersite zone.  The stabilization of this zone expansion or reduction in size 

would assume positive effects with the amount of vegetation loss in the outer zones.  This 

is likely true, but we add caution especially in the case where there is known dispersed 

use occurring at a site and how measurements are taken beyond the designated impact 

zone.  This is where the larger spatial scale has value to managers as measurements and 

quantification of impact and recovery can be seen beyond the impact zone area.  Our 

study results showed while minimal at this point in time there was measureable 

vegetation recovery and more in the outer zones than the impact zone close to the summit 

trail.  Because the x2 recovery area is measurable and can be quantified, it is plausible 

that future management objectives could be created for a defined intersite zone to 

stabilize from further expansion or reduce in size the amount of vegetation impact 

occurring at this distance from the summit loop trail. 
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As indicated above, the amount of x2 recovery by the management actions at 

Cadillac will be higher than the amount of x1 recovery at the impact zone since natural 

recovery factors in the intermediate and buffer zones will be included, but the overall rate 

of recovery will remain minimal, especially if dispersed use continues at the site.  If the 

site was closed or more intensive management was considered, it would likely increase 

the rate of recovery at the site (y2 recovery) (Figure 7.2).  Limiting visitor use would 

reduce the amount of vegetation impact and increase the likelihood of vegetation 

regrowth, but as indicated above the natural recovery would be slow in this 

environmental setting.   Also, closure of the area or direct management such as charging a 

fine for traveling off-trail would be a rather drastic shift in management at the site.  In 

addition, management would need to consider the policy implications of these 

management actions such as closure as well as consider possible shifts in visitor use to 

other areas in the park and thereby further increase vegetation impact at other locations.  

This may be an option at other parks but most likely one that would not be considered at 

Acadia National Park.  The other alternative management option is to consider ecological 

restoration in certain areas and place more physical barriers in strategic locations (z2 

recovery) (Figure 7.2).  The advantage of the plantings including soil and water would 

help bring back a variety of native species that might take longer under natural recovery 

conditions and competition with more dominant resistant and resilient species.  As 

reported in previous chapters, the visitor research associated with reactions to physical 

barriers and signs did not degrade experiences, but one would expect that only a limited 

number of barriers would be permissible before it influences the visitor experience; 

therefore, monitoring this influence would be important as well.  The planting would 
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likely still need to be maintained given the current management regime with dispersed 

visitor use away from the summit trail. 

Based on the remote sensing data and change detection analysis, we also suggest a 

need to map informal trails and heavily impacted areas near the vicinity of the summit 

loop trail.  Informal trails were verified at the north ridge trail located on the northwest 

side of the parking lot, and the level of vegetation impact was extensively high in the 

vicinity of Blue Hill Overlook.  While the two locations were not included in the original 

study area of our change detection analysis, the specific areas have experienced 

vegetation impact from 2001 to 2007.  If the two locations have been alternative 

destinations to compromise a high visitor density at the summit loop trail during the 

summer, we suggest a reevaluation to include more intensive management as done at the 

summit loop trail in terms of barriers and low impact signs to reduce the level of 

vegetation impact.  Simultaneously, a systematic analysis regarding how many visitors 

are using the locations, how visitors move from the locations to the loop trail, and vice 

versa (identifying the visitor flow), should be estimated through an observational study to 

identify current and future hot spots. 

Given that both vegetation impact and soil erosion are major concerns in the 

vicinity of the summit loop trail, the efficacy of the employed management actions could 

be further understood by assessing the level of soil erosion.  For this process, a high 

resolution digital elevation model (DEM) could be considered for a larger spatial scale 

analysis, in order to maximize the advantages of the remote sensing technology.   

Additionally, providing the spatial pattern and magnitude of soil erosion and vegetation 

impact would be a valuable source for planning future management action and 
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infrastructure such as maintenance of trails.  More diverse factors including 

soil/vegetation types, aspect, slope, elevation, and proximity from a trail/road could be 

combined as a modeling approach that explains an overall spatial pattern of resource 

impact associated with trampling (Arrowsmith & Inbakaran, 2002; Dixon et al., 2004).  

This will be particularly useful in prioritizing the loop trail segments that need more 

intensive management. 

Currently, one of the most important processes at Cadillac Summit is physically 

defining the “site boundary” to reduce an unwanted or undesirable expansion of 

vegetation impact away from the durable summit loop trail.  By dividing the impact and 

intermediate zones, more efficient site management strategies would be possible to 

induce visitor use on the impact zone.  Various concepts could be utilized to establish the 

site boundary such as elevation and distance from the loop trail.  For example, the 

boundary could be set at 1,450ft in elevation because the suggested elevation would 

capture all areas of interest and the areas already impacted (Jacobi, 2007).  A closer 

proximity to the summit loop trail would be more desirable to minimize unintended 

impact in the intermediate zone and execute intensive management at the impact zone 

scale, but an unrealistic setup such as 10-20m from the summit loop trail may cause 

another problem related to the quality of the visitor experience as a way of potential 

conflict and displacement, considering the high use density during the summer.  In the 

NDVI change detection analysis, it was identified that the areas 70-80m from the summit 

loop trail showed the maximum recovery rate (the functional role of the intermediate 

zone) on the basis of the proximity.  Also, the areas 70-100m from the summit loop trail 

showed the stable vegetation impact rates maintaining around 1% impact (the functional 
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role of the buffer zone) in the post-classification change detection analysis.  Therefore, 

the Maginot Line between the impact and intermediate zones could be established less 

than 70m from the loop trail.  Once the boundary is established, the deployed 

management practices currently focused within the summit loop trail should be expanded 

to cover relatively many portions of the impact zone.  Again, most important is to define 

the impact zone first, manage intensively, and prevent expansion of the impact zone. 

A future step for management is evaluating the effectiveness of implementation of 

the management actions around the summit trail.  For example, detections of vegetation 

recovery by 3-5% and vegetation impact by 1-3% within 30m of the summit loop trail 

from 2001 to 2007 might constitute real progress in terms of management goals, or 

alternately, insignificant changes.  The development of clear objectives such as indicators 

and standards of resource conditions will become increasingly important for assessing 

management actions directed toward minimizing impact and maximizing recovery.  Only 

where specific objectives have been established can one consistently determine whether 

or not an impact of a given magnitude constitutes an effective management strategy.  A 

temporal scale may also be necessary in establishing realistic goals, especially given the 

sub-alpine nature environment.   

Utilizing remote sensing technology in recreation ecology has been limited due to 

difficulty in assessing localized vegetation impact caused by recreation, especially under 

a tree canopy where trails or campsites are located for shade or other reasons (Hammitt 

and Cole 1998).  The localized impact was often undetectable in a broad or medium 

spatial scale resolution remote sensing dataset (e.g., 30m2 pixel resolution).  However, the 

analysis on the basis of high resolution remote sensing datasets would be useful in 
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verifying the effect of the management approach in a heavily visited site around a 

mountain summit environment.  Although the outcome of our analysis approach might be 

less detailed in identifying the amount and composition of vegetation changes compared 

to a traditional recreation ecology method, our change detection analysis using high 

resolution remote sensing datasets offered an approach for measuring the aggregated 

vegetation change dynamics at a relatively larger spatial scale.  There might be a 

potential barrier to transfer our study results to other national park units due to the 

various impact and recovery patterns that involve the environmental condition, site 

durability, and use level/type.  It should be noted that one result from an Eastern park 

having specific conditions could not be applied simply to other Western parks having 

different environmental characteristics. 

Vegetation change is a spatially explicit process driven by both social and 

physical elements (Evans, 2005).  Identifying vegetation change, therefore, is one of the 

easiest ways to assess and analyze the change of ecosystems associated with those social 

and physical elements (Demers, 1991; Grossman, 1998; Mueller-Dombois & Ellenberg, 

1974; Pauchard et al., 2000).  In that regard, there is a strong need to emphasize the role 

of remote sensing in the field of recreation ecology.  Remote sensing technology has the 

capability of providing multi-scale spectral, spatial, and temporal information in a 

standardized format to assist managers in the NPS to monitor conditions over time and 

has direct applicability to their dual mission of preserving the natural character of the area 

while providing visitor enjoyment. 
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Appendix A. Sampling Plots for Post-Classification Change Detection Analysis 
 
 
Table A.1. Sampling Plots for Post-Classification Change Detection Analysis 

Homogenous 
(Non-mixed) 

Family 
Name 

Scientific 
Name 

Common 
Name 

# of 
samples

 Adoxaceae Viburnum viburnum 1 
 Aquifoliaceae Ilex holly 5 

 Asteraceae Doellingeria 
umbellata  aster umbellatus  1 

  Symphyotrichum new york aster 4 
 Betulaceae Betula birch 6 

 Caprifoliaceae Diervilla 
lonicera bush honeysuckle 1 

 Cupressaceae Juniperus juniper 9 
  Thuja cedar 5 
 Eriaceae Arctostaphylos bearberry 3 
  Gaylussacia huckleberry 1 
  Vaccinium blueberry 1 
 Fagaceae Quercus oak 4 
 Pinaceae Abies fir 7 
  Picea spruce 5 
  Pinus pine 5 
 Poaceae Grass grass 7 
 Rhizocarpaceae Rhizocarpon world map lichen 4 

 Roaceae Sibbaldiopsis shrubby 
fivefingers 1 

  Sorbus mountainash 1 
  Spiraea spiraea 5 
     
Mixed Group 1 Family Scientific Name Common Name 7 
 Ericaceae Kalmia laurel  
 Ericaceae Rhododendron rhododendron  
 Ericaceae Vaccinium blueberry  
 Ericaceae Gaylussacia huckleberry  
     
Mixed Group 2 Family Scientific Name Common Name 2 
 Rosaceae Rosa rose  
 Rosaceae Spiraea spiraea  
 Ericaceae Vaccinium blueberry  
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Table A.1. Continued 
Mixed Group 3 Family Scientific Name Common Name 1 
 Cupressaceae Juniperus juniper  
 Rosaceae Spiraea spiraea  

 Rosaceae Sibbaldiopsis shrubby 
fivefingers  

     
Mixed Group 4 Family Scientific Name Common Name 1 
 Empetraceae Empetrum crowberry  
 Ericaceae Vaccinium blueberry  
     
Mixed Group 5 Family Scientific Name Common Name 1 
 Rosaceae Rosa rose  
 Rosaceae Spiraea spiraea  

 Asteraceae Symphyotrichum 
novi-belgii New York aster  

     
Mixed Group 6 Family Scientific Name Common Name 1 
 Ericaceae Gaylussacia huckleberry  
 Rosaceae Spiraea spiraea  

 Asteraceae Symphyotrichum 
novi-belgii New York aster  

     
Mixed Group 7 Family Scientific Name Common Name 1 
 Betulaceae Alnus alder  
 Ericaceae Rhododendron rhododendron  
 Rosaceae Spiraea spiraea  
     
Mixed Group 8 Family Scientific Name Common Name 4 
 Cupressaceae Jupierus juniper  
 Ericaceae Vaccinium blueberry  
 Ericaceae Gaylussacia huckleberry  
     
Mixed Group 9 Family Scientific Name Common Name 2 
 Cupressaceae Juniperus juniper  
 Pinaceae Abies fir  
 Ericaceae Vaccinium blueberry  
     
Mixed Group 10 Family Scientific Name Common Name 2 
 Ericaceae Vaccinium blueberry  
 Ericaceae Kalmia laurel  
 Pinaceae Abies fir  
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Table A.1. Continued 
Mixed Group 11 Family Scientific Name Common Name 1 
 Ericaceae Arctostaphylos Bearberry  
 Ericaceae Vaccinium blueberry  
 Ericaceae Gaylussacia huckleberry  
     
Mixed Group 12 Family Scientific Name Common Name 2 
 Cupressaceae Juniperus juniper  
 Ericaceae Kalmia laurel  
 Ericaceae Rhododendron rhododendron  
     
Mixed Group 13 Family Scientific Name Common Name 1 
 Rosaceae Sorbus Mountainash  
 Pinaceae Abies fir  
     
Mixed Group 14 Family Scientific Name Common Name 2 
 Betulaceae Betula betula  
 Pinaceae Abies fir  
     
Non-vegetation Soil   11 
Non-vegetation Rock   4 

Non-vegetation Impervious 
Surface   10 

     
Total    129 
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Appendix B. Classification Scheme 
 
 
Table B.1. Development of Classification Scheme at Plant Family Level 

Homogenous 
(Non-mixed) 

Family 
Name 

Scientific 
Name 

Common 
Name 

Classification 
Scheme 

(Family level) 

 Adoxaceae Viburnum viburnum Deciduous 
Shrub 

 Aquifoliaceae Ilex holly Aquifoliaceae 

 Asteraceae Doellingeria 
umbellata  

aster 
umbellatus  Asteraceae 

  Symphyotrichum new york aster Asteraceae 
 Betulaceae Betula birch Betulaceae 

 Caprifoliaceae Diervilla 
lonicera 

bush 
honeysuckle 

Deciduous 
shrub 

 Cupressaceae Juniperus juniper Cupressaceae 
  Thuja cedar Cupressaceae 
 Eriaceae Arctostaphylos bearberry Eriaceae 
  Gaylussacia huckleberry Eriaceae 
  Vaccinium blueberry Eriaceae 
 Fagaceae Quercus oak Fagaceae 
 Pinaceae Abies fir Pinaceae 
  Picea spruce Pinaceae 
  Pinus pine Pinaceae 
 Poaceae Grass grass Poaceae 

 Rhizocarpaceae Rhizocarpon world map 
lichen Non-Forest 

 Roaceae Sibbaldiopsis shrubby 
fivefingers Roaceae 

  Sorbus mountainash Roaceae 
  Spiraea spiraea Roaceae 
     

Mixed Group 1 Family Scientific Name Common 
Name Eriaceae 

 Ericaceae Kalmia laurel  
 Ericaceae Rhododendron rhododendron  
 Ericaceae Vaccinium blueberry  
 Ericaceae Gaylussacia huckleberry  
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Table B.1. Continued 

Mixed Group 2 Family Scientific Name Common 
Name Mixed Forest 

 Rosaceae Rosa rose  
 Rosaceae Spiraea spiraea  
 Ericaceae Vaccinium blueberry  
     

Mixed Group 3 Family Scientific Name Common 
Name Mixed Forest 

 Cupressaceae Juniperus juniper  
 Rosaceae Spiraea spiraea  

 Rosaceae Sibbaldiopsis shrubby 
fivefingers  

     

Mixed Group 4 Family Scientific Name Common 
Name Mixed Forest 

 Empetraceae Empetrum crowberry  
 Ericaceae Vaccinium blueberry  
     

Mixed Group 5 Family Scientific Name Common 
Name Mixed Forest 

 Rosaceae Rosa rose  
 Rosaceae Spiraea spiraea  

 Asteraceae Symphyotrichum 
novi-belgii New York aster  

     

Mixed Group 6 Family Scientific Name Common 
Name 

Deciduous 
Shrub 

 Ericaceae Gaylussacia huckleberry  
 Rosaceae Spiraea spiraea  

 Asteraceae Symphyotrichum 
novi-belgii New York aster  

     

Mixed Group 7 Family Scientific Name Common 
Name Mixed Forest 

 Betulaceae Alnus alder  
 Ericaceae Rhododendron rhododendron  
 Rosaceae Spiraea spiraea  
     

Mixed Group 8 Family Scientific Name Common 
Name Mixed Forest 

 Cupressaceae Jupierus juniper  
 Ericaceae Vaccinium blueberry  
 Ericaceae Gaylussacia huckleberry  
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Table B.1. Continued 

Mixed Group 9 Family Scientific Name Common 
Name Mixed Forest 

 Cupressaceae Juniperus juniper  
 Pinaceae Abies fir  
 Ericaceae Vaccinium blueberry  
     

Mixed Group 10 Family Scientific Name Common 
Name Mixed Forest 

 Ericaceae Vaccinium blueberry  
 Ericaceae Kalmia laurel  
 Pinaceae Abies fir  
     

Mixed Group 11 Family Scientific Name Common 
Name Eriaceae 

 Ericaceae Arctostaphylos Bearberry  
 Ericaceae Vaccinium blueberry  
 Ericaceae Gaylussacia huckleberry  
     

Mixed Group 12 Family Scientific Name Common 
Name Mixed Forest 

 Cupressaceae Juniperus juniper  
 Ericaceae Kalmia laurel  
 Ericaceae Rhododendron rhododendron  
     

Mixed Group 13 Family Scientific Name Common 
Name Mixed Forest 

 Rosaceae Sorbus Mountainash  
 Pinaceae Abies fir  
     

Mixed Group 14 Family Scientific Name Common 
Name Mixed Forest 

 Betulaceae Betula betula  
 Pinaceae Abies fir  
     
Non-vegetation Soil   Soil 
Non-vegetation Rock   Rock  

Non-vegetation Impervious 
Surface   

Impervious 
Surfaces  

(masked-out) 
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Appendix C. List of Plants that did not meet plot size requirement (mostly 1*1 plot 
sizes): not included in homogenous sampling plots, but some of them were included in 
mixed groups. 
              
              
             Table C.1.  Family & Species Names 

Family Name Species (Scientific Name) 
Rosaceae amelanchier bartramiana 
Rosaceae amelanchier spicata 

Lycopodiaceae dendrolycopodium hickeyii 
Cyperaceae eleocharis acicularis 

Scrophulariaceae euphrasia nemorosa 
Cistaceae hudsonia ericoides 
Asteraceae ionactis linariifolius 

Polypodiaceae polypodium virginianum 
Rosaceae prunus pensylvanica 

Dennstaedtiaceae pteridium aquilinum 
Asteraceae solidago altissima 
Asteraceae solidago bicolor 
Asteraceae solidago gigantea 
Asteraceae solidago leiocarpa 
Rosaceae sorbus americana 

Asteraceae symphyotrichum novi-belgii var. novi-belgii 
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Appendix D. Log Book 
 
 
Date  Weather Participant Process & Result 

July 16 
2007 Sunny 

Min Kim, 
Wilfred 
 Mercier 

GPS unit accuracy test and 
assessment (Trimble GeoXT, a 
sub meter accuracy GPS unit)  
1) 9 random points were created 
over the University of Maine, 
Orono Campus 
2) Physically located at the 9 
random points, and ground truth 
the positions 
3) Checked differences of 
distance between two points 
dataset (1-3m error was 
discovered) depending on 
canopy conditions 

July 18 
2007 Sunny Min Kim 

 

Mapping spatial locations of 
direct and indirect managements 
1) 19 indirect management 
(LNT) locations were mapped 
along with the summit loop trail 
2) 3 direct management 
(physical enclosures) were 
mapped out inside of the summit 
loop trail 

July 20 
2007 

Foggy & 
Windy 

Min Kim,  
John Daigle 

 

Mapping viewpoint platforms 
and other wayside exhibits for 
reference purpose 
1) A center point was collected 
in each platform of the summit 
of Cadillac Mountain 
2) Then, north and south edges 
were collected in each platform, 
as a point 
3) Also, other noticeable point 
locations including wayside 
exhibits were collected 

 
Figure D.1. Log Book 
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July 20 
2007 

Partly 
Cloudy 

Min Kim,  
John Daigle, 
Jeff Marion, 

Charlie Jacobi

 

Selecting potential control sites 
comparing vegetation trampling 
in experimental site 
 
Three criteria were considered to 
selected a potential control site 
in order to compare with the 
experimental site 
1) Bare rock portion: including 
minimum bare rock area 
2) Pristine: not having soil 
exposure (no disturbance by 
recreational activities) 
3) Elevation and same 
environment with experimental 
site (nearest areas) 
Total 12 potential control sites 
were selected and spatially 
mapped 

Aug. 6 
2007 Sunny Min Kim Investigation and taking pictures of major vegetation species in the 

vicinity of the summit loop trail, ANP 

Aug. 
15-18 
2007 

Sunny & 
Partly 

Cloudy, 
Rain (Sat.) 

Min Kim, 
Michael 
Burgess 

Field sampling for vegetation 
classification 
1) Tried to map at least 3-5 
homogenous vegetation species 
plots considering physiognomic 
modifiers (coverage density, 
coverage pattern, height, stem 
diameter, etc) 
2) Total 129 ground surface 
points in 19 different classes 
were collected by a random 
spatial sampling process at the 
summit of Cadillac Mountain, 
ANP 

 
Figure D.1. Continued 
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Aug. 
30-31 
2007 

Sunny & 
Partly 

Cloudy 

Min Kim, 
Michael 
Burgess 

 

Ground truth for vegetation 
classification 
1) 300 random points were 
created over the vicinity of 
summit loop trail for accuracy 
assessment 
2) Physically located at the 300 
random points, and ground truth 
the surfaces 

Oct. 26 
2007 Sunny Min Kim 

 

Mapping reference points for 
geometric correction (for image 
pre-processing) 

 
Figure D.1. Continued 
* All data collections were completed by using a sub-meter accuracy GPS unit (Trimble 
GeoXT).  Then, datasets were post-processed for differential correction in the base 
station, located in Nutting Hall, University of Maine, adjusting the positions in the rover 
files accordingly. 
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