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Modeling glacier and ice sheet flow is a computationally challenging problem. The

most challenging part in simulating ice sheet flow is modeling the fastest moving part of ice

sheets, ice streams. In the first part of the thesis, we have constructed two numerical models

of isothermal ice stream flow, a three-dimensional full-Stokes ice-sheet/ice-stream/ice-shelf

model and a modified MacAyeal-Morland ice-stream/ice-shelf model. In the second part

of the thesis, we studied the possibility of using SuperLU-DIST multiprocessor software

package for solving the systems of linear equations generated by the model.

The uniqueness of the modified MacAyeal-Morland model is in its inclusion of the

basal shear friction in the derivation of the equations. In the original MacAyeal-Morland

equations, the shear friction is not included in the fundamental formulation but instead

is added as a small correction to the final equations. Inclusion of the basal friction in the

derivation generates equations that contain a term that depends on the bed gradients; that is,

it generates equations that show how the ice stream flow may depend on the bed topography.

To validate the model, the European Ice Sheet Modeling Initiative 1 intercomparison test is

conducted and the results are compared with the results generated by MacAyeal (1994).



The three-dimensional full-Stokes model includes all higher-order stress gradients in

the force-balance equation. To validate the full-Stokes model, experiments demonstrating

the importance of the inclusion of all higher order stressesin the model, such as simulation

of the evolution of an ice stream within the ice sheet and simulation of iceberg profiles, are

conducted.

The computational demands of the full-Stokes model do not allow us using it in large

problem domains. To solve this problem, application of SuperLU-DIST multiprocessor

software package has been examined. The software’s performance characteristics have

been explored and benchmarked on the matrices generated by the three-dimensional full-

Stokes model. The performed tests indicate that for the big-size matrices computations

may not be stable. However, we have shown that it is possible to improve stability of the

algorithm by using a priori knowledge of the matrix and permuting rows prior to applying

the algorithm.
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Chapter 1

INTRODUCTION

Ice streams are fast flowing parts within ice sheets. They aretypically hundreds

of kilometers long and tens of kilometers wide, and flow at velocities of up to several

kilometers per year. While ice streams account for only about ten percent of the ice sheet

volume, they are key to understanding ice sheet stability. Ice streams drain the majority of

ice from ice sheets. In Antarctica, it is estimated that as much as 90% of ice sheet discharge

is via ice streams. While the East Antarctic ice sheet is stable, there is a debate whether the

West Antarctic ice sheet might decay in the future. If that happens, it could raise the sea

level by about 5 m [5].

In order to answer the question what is the likely future of West Antarctica and Green-

land, the flow behavior of ice sheets must be understood. Numerical modeling contributes

to our understanding of the ice sheets, yet the numerical models of ice streams have sub-

stantial limitations varying from a need for better physicsto overcoming the demand for

larger computing power. The aim of this work is to contributeto modeling ice streams and

to solving the computing problems associated with it.

In the introduction, I will review particular components ofthe multifaceted ice-flow

system and the classical ways of modeling them. Since the work done in this thesis is an

extension of the University of Maine Ice Sheet Model (UMISM), the introduction gives

also an overview of UMISM.
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1.1 Ice-flow System: Ice-sheets, Ice-streams, and Ice-shelves

Around90% of the world’s land ice is concentrated in the Antarctic ice sheets occu-

pying over 13 million square kilometers and reaching thickness of a few kilometers. Ice

flows as a highly viscous solid from the central parts of the continent, where the ice thick-

ness is greatest, towards the margins, which are near the coast and feed into the floating

ice shelves. The mass of ice is maintained by snowfall over the continent, while mass loss

from the ice sheets occurs mostly through the calving of icebergs at its margins.

At the central part of the Antarctic continent, ice flow occurs essentially as a result

of the ice sheet spreading under its own weight, thus, ice behaves as a highly viscous solid

and flows by creep deformation. This types of flow is calledice sheet flow.

Some parts of Antarctic ice sheets, calledice streams, are found to move at much

higher speeds than the surrounding parts of ice sheets. The observed high speeds cannot be

explained by creep deformation alone. Researchers assume that there is a sliding movement

of ice at the underlying bedrock. As the base of an ice sheet approaches the pressure melting

point, a thin and possibly patchy film of water can form between the ice and its bed. Such a

water film weakens the contact between ice and bed and may allow for a ’sliding’ velocity.

This type of flow is calledice stream flow.

The third type of flow is calledice shelf flow. An ice shelf is a large sheet of ice

floating on the sea but attached to land or to a grounded ice sheet. Ice shelves range in

thickness from about 50 to 600 meters. The place where the icestarts to float is called the

grounding line. Ice shelves surround much of Antarctica.

2



To model particular components of these multifaceted ice flow systems, different

types of models have been used: models of grounded ice sheet flow, models of the ice

shelves, and models of ice streams. The latter ones are divided into two different groups,

the first are based on the models of ice shelves, and the secondare models which include

higher-level stresses in the force-balance equation.

1.2 Numerical Modeling of Ice-sheets, Ice-streams, and Ice-shelves

Numerical modeling of glaciers and ice sheets generally involves a number of sim-

plifications with respect to the physics of the ice mass.

Most ice-sheet models are based on the so-calledshallow-ice approximation(SIA)1

[37] which is valid for an ice mass with a small aspect ratio (ice thickness� ice horizontal

dimensions). SIA is used in the ice dynamics component of UMISM which is described

below. In this approximation, longitudinal and transversestress gradients are neglected.

However, the SIA is not valid at all places in an ice sheet, such as at the ice divide or near

the ice-sheet margins. Shallow ice approximation is also not valid to model ice-streams or

ice-shelves, where inclusion of longitudinal stresses is especially important.

Almost all numerical models of ice-shelves solve stress-balance equations [49] that

are derived with the assumption that vertical shear is negligible; that is, that the horizontal

velocity does not vary with depth. In this approximation, the only stresses considered are

the longitudinal stresses. Since the ice shelf is supportedby water, the basal drag is not

included in the fundamental formulation.
1Derivation of SIA model is given in B on page 137.

3



This assumption allowed Morland to integrate out the vertical dimension and reduce

three-dimensional equations to two-dimensional equations.

Since ice-stream flow is transitional between ice sheet flow and ice shelf flow, both

basal shear and longitudinal stresses are important to consider. For solving ice streams, a

common approach, suggested by MacAyeal, is to treat the ice streams as barely-grounded

ice shelves. MacAyeal modified Morland equations for ice-shelves by adding a term sim-

ulating the basal drag. He used a heuristic assumption that the basal drag is proportional

to velocities. The resulting model is called MacAyeal-Morland model for ice streams. Al-

though the model generates credible results, the fact that the term for basal drag was added

to the equation after integrating the vertical dimension with the assumption of no basal drag

makes the equations not self-consistent.

Both the SIA and the barely-grounded ice-shelf models involve a number of simpli-

fications with respect to the physics of the ice mass. However, they are not valid at all

places in an ice sheet. For example, near the margin of the icesheet (at grounding lines,

outlet glaciers, and ice streams) or at the transition zonesbetween different types of ice

flow, all stresses in the force balance become equally important. The only way to properly

account for all stresses is to solve the full momentum equation with none of the limiting

assumptions that go into either the shallow-ice or the barely-grounded ice shelf approxi-

mations. Examples of the models that take into account the higher-order stresses can be

found in [53]. The models that take into account all stressesin the force balance are called

the full-Stokes models. However, very few three-dimensional full-Stokes models exist.

Among them are the models of Pattyn [52], Martin [47], Zwinger [62], and Price [55].

Since solving the 3-D full-Stokes equations demands huge computational power, most of

4



the higher-order models make some simplifications to reducecomplexity of the model. The

most common approximation is to ”introduce the two horizontal velocity components as

field variables. This leads to an elliptic system with two rather than four variables of the

full system at points in three-dimensional space [51], [32], and the resulting linear systems

are generally better conditioned than those resulting fromthe numerical analysis of the full

system” [53].

Another common approximation is the scheme used by Blatter [6] and Pattyn [51].

In these approximation, higher-order longitudinal and transverse stresses are included in

the force balance equation but the variational stresses areneglected
(

∂σzx

∂x
= 0, ∂σzy

∂y
= 0
)

; that is, the conservation of momentum equation (see (2.15a)-(2.15c) on page 18) is

reduced to the form:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= ρgx,

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= ρgy,

∂σzz
∂z

= ρgz.

This allows researchers to reduce three-dimensional problem to a computationally two-

dimensional problem.

Truly three-dimensional thermomechanically coupled ice sheet models including all

higher-order stress gradients, or full-Stokes models, arenot widely used. The reason for

this is in the complexity of the model description, the difficulty in obtaining a numerically

stable result, and the high computational cost – a substantial increase in their complexity

drastically affects the ability of a model to perform millennia-scale climate experiments.
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Thus, to summarize above, the most challenging part in simulating ice sheet flow is

modeling the fastest moving part of ice sheets, ice streams.Credible predictions of ice

stream evolution require taking into account the higher-order stresses in the force balance

equation. However, the three dimensional models of ice streams that include all higher-

order stresses have huge demands on computer time. To solve this problem, the goal of this

work was

1. to construct a model or models that can approximate ice stream flow, or different

types of ice flow, including ice streams, and

2. to explore the efficiency of using parallel programming toovercome the high com-

putational cost of solving big systems of linear equations generated by higher-order

full-Stokes models.

1.3 The University of Maine Ice Sheet Model

The work done in this thesis is made possible by the prior efforts of Dr. James

Fastook and his students. I have extended an existing ice sheet model by adding modules

that simulate ice-streams. Below is an overview of the fundamental building blocks of the

existing ice sheet model. This overview follows Johnson [41].

The UMISM has its origin in the 1980s. Early works on using finite element method

to model ice sheet flow appear in Fastook & Schmidt [18], Fastook & Hughes [14], Fastook

& Hughes [15], and Fastook [20]. Then, a flow band or one dimensional model for ice

sheets was developed in Fastook [20, 21, 22], and Fastook & Hughes [16]. This model
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was programmed in FORTRAN and ran on an IBM mainframe. The data sets represented

a problem domain with about 50 nodes.

In 1989, a two-dimensional, map-plane model for ice sheets was developed [Fastook

& Chapman [11]]. The program used the finite element method tosolve the continuity

equation for ice deformation. Portions of the code written for this model are still in the ice

sheet model that is run today. When it was created it ran on an IBM 360 mainframe. Runs

typically included 150 nodes and the output was directed to aTektronix graphics terminal.

Starting 1992, the model included calculations of internaltemperatures from which

mechanical properties could be derived [Fastook [23, 24, 25]]. The model was applied

to glaciological problems in [13], [19, 26, 12], and [27]. Climatology for the model was

developed with Fastook & Prentice [17].

Then, Johnson and Fastook modified the model to include an accounting of basal

melt water. Inclusion of the basal water component allowed the model to identify all major

lakes in Antarctica. Results were published in [41] and [29,28]. This major improvement

allowed the model itself to specify where and when the sliding would occur.

The model is also used to reconstruct ice-sheet evolution onthe flanks of the large

Tharsis Montes volcanos on Mars [30].

One of the most important applications of the ice sheet modelwas participation in

EISMINT (European Ice Sheet Modeling INiTiavite). This initiative established a baseline

for results from ice sheet models to assure that they producesimilar results. The initia-

tive considered applications to the Greenland and Antarctic ice sheets, thermo-mechanical

coupling, grounding line treatments, and ice shelf models.The results appear in [38]. In-
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volvement in the EISMINT experiment establishes credibility for a model’s output and

allows it to be used for new applications.

The model in its current form runs on both Linux, Mac OSX, and SGI platforms. The

source code is (mostly) ANSI FORTRAN. The screen output usesOpen GL, an industry

standard for graphics. There are a number of data filters for postscript output of maps. We

are currently able to model upward of 70,000 nodes in our map plane model for ice sheets.

The model predicts the ice thickness, velocity, and temperature of glaciers as func-

tions of position and time. Inputs to the model are climate conditions, temperatures and

precipitation rates, bed conditions, and elevations and sliding characteristics. Figure 1.1

shows the major components of the model and the data flow amongthem.

Figure 1.1.Components of UMISM. Provided by James Fastook.

The ice dynamics component is at the core of the model. It predicts ice thickness

and ice velocity using accumulation - ablation rates generated by the climate module, ice

temperatures generated by the thermodynamics module, the presence or absence of water

at the bed generated by the basal water module, and bed elevation generated by the isostasy
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module. Ice temperature is important in determining the icereaction to the applied forces;

cold ice is harder than warm ice and is deformed at a slower rate. The ice dynamics module

also uses the boundary condition characteristics between the ice and the earth. Finally, the

weight of the ice depresses the ground, which lowers the surface elevation of the ice. The

isostasy module computes the amount of bed depression.

Climate conditions at the surface of the ice depend upon surface elevation because

temperature decreases with increasing altitude. The climate module uses the surface el-

evation generated by the ice dynamics and isostasy modules along with a climate model

to predict surface temperatures, melting rates, and precipitation rates. The thermodynam-

ics module uses surface temperature as well as basal conditions and geothermal heating to

compute temperature throughout the ice sheet. In addition,deformation of the ice due to

movement also produces heat. The water module uses bed characteristics from the isostasy

module and basal temperatures to predict the presence of water.

The ice dynamics module uses partial differential equations (PDEs) derived from

mass and momentum conservation principals as a basis for computing ice thickness and

velocity. The thermodynamics module uses PDEs derived fromenergy conservation prin-

cipals as a basis for computing ice temperatures. Combined with constitutive relationships

that relate ice strain rates to temperature, and temperature to amount of heat, a complete

system is formed for doing the fundamental calculations of ice thickness and velocity. The

resulting PDEs are solved numerically using a mathematicaltechnique known as the finite

element method (FEM).
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1.4 Overview of Thesis

This work is organized as follows. Chapter 1 is a short reviewof particular com-

ponents of the multifaceted ice-flow system and a review of the University of Maine ice

sheet model. Chapter 2 gives a review of the basic conservation laws and the constitutive

relations that describe ice flow.

Chapter 3 details two models that have been constructed to study the flow of ice; a

full-Stokes model that takes into account all stresses and an ice-shelf/ice-stream model that

is a modification of MacAyeal-Morland model. In construction of the modified MacAyeal-

Morland model, we included shear friction (proportional tothe driving stress or velocities)

in the derivation of the equation. In the original Morland equations [46], the basal drag

is not included in the fundamental formulation but instead is added as a small correction,

proportional to speed, to the final equations. The higher-order model and verification of

the model have been presented at [57]. The modified MacAyeal-Morland model and its

verification has been presented in [56].

Chapter 4 describes the finite element method discretization of the partial differential

equations from Chapter 3.

Chapter 5 describes application and benchmarking of the multiprocessor software

package SuperLU-DIST for solving large systems of sparse simultaneous linear equations

generated by the three-dimensional higher-order model. The results of this chapter have

been discussed and published in [40] and [58].
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Chapter 6 is devoted to testing and verification of the models. A portion of the re-

sults has been published in [59]. We contributed to this paper by running the numerical

calculations which supported the discussions and conclusion.

The concluding remarks in Chapter 7 close the thesis.
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Chapter 2

MATHEMATICAL BACKGROUND - STOKES’ EQUATIONS FOR ICE

FLOW

This chapter introduces the basic conservation laws that are used to describe ice

flow. The variables that describe ice sheet are ice thickness, ice velocity, the various stress

components, and temperature at selected points. In this work we assume that ice flow is

isothermal, that is, ice temperature is fixed and uniform. The other variables are found

from conservation of mass, conservation of momentum, and the constitutive relation that

are discussed below.

2.1 Constitutive Relation

Constitutive relations describe some property of the material. The Glen flow law for

ice is a fundamental constitutive relation relating stressand strain rates:

ε̇ij = R

(

σ′
ij

B

)n

,

whereR is a strain rate scalar andB is ice viscosity. Derivation of the flow law of ice can

be found in [35].

A stress is a force per unit area applied to a surface. It is denoted byσij , where the

first subscript denotes the direction of the stress or force,and the second subscript denotes
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the direction of the normal to the surface on which the force is acting. Hydrostatic pressure

changes the size of an object but not its shape. Changes in shape require non-hydrostatic

stresses. Since flow of a glacier is caused by non-hydrostatic stresses, we will write the

equations in terms of these stresses. By subtracting the mean stress,

P =
1

3
(σxx + σyy + σzz, ) (2.1)

from the total stress, the non-hydrostatic stress, or so called deviator stressσ′
ij , is obtained:

σ′
ij = σij − δijP, (2.2)

whereδij is the Kronecker delta.

It is this component of the overall stress field acting on the glacier that produces the

deformation.

The deviator stress tensor has three invariants, the first two are as follows:

first invariant: J1 = σ′
xx + σ′

yy + σ′
zz = 0, (2.3a)

second invariant or the effective stress: J2 = (σe)
2 =

1

2
σ′
ijσ

′
ij . (2.3b)

In a deformable medium, stresses induce deformation or strain. Given a Cartesian

coordinate system(x, y, z) and a velocity field~u = (ux, uy, uz), the strain rate tensor,̇εij ,

is defined as follows:

ε̇ij =
dεij
dt

=
1

2

(

∂ui
∂j

+
∂uj
∂i

)

=
1

2
(ui,j + uj,i) . (2.4)
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The strain rate tensor has three invariants, the first two have special names:

incompressibility condition: I1 = ˙εxx + ˙εyy + ˙εzz = 0 ,

(2.5a)

effective strain rate: I2 = ε̇2e =
1

2
ε̇ij ε̇ij =

1

2
(ε̇2xx + ε̇2yy + ε̇2zz + 2ε̇2xy + 2ε̇2xz + 2ε̇2yz).

(2.5b)

Obtained experimentally from laboratory observations as well as measurements in

actual glaciers [31, 34], the Glen flow law is a non-linear relation between strain rate and

stress:

Glen flow law: ε̇ij = R

(

σ′
ij

B

)n

, (2.6)

whereB is a temperature-dependent measure of the ice hardness, theexponentn = 3 is

experimentally determined for ice [33].

If ice is assumed to be incompressible and isotropic, then the Glen flow law can be

linearized as follows:

ε̇ij =
σn−1
e

Bn
σ′
ij , (2.7)

Linearizing the constitutive relation will be critical forthe numerical solution of the result-

ing differential equations.

Solving equation (2.6) forσe and substituting into equation (2.7) gives

ε̇ij =
(ε̇e)

n−1
n

B
σ′
ij , (2.8)
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which can be solved forσ′
ij as:

σ′
ij = 2µε̇ij (2.9)

where2µ = B (ε̇e)
1−n

n is the effective viscosity. Viscosity is the material property that

relates stress and strain rates in a linear fluid. The dependence of the effective viscosity on

the strain rate invariant means thatµ will be spatially non-uniform and dependent upon the

solution itself. This approach is common with non-linear problems and requires an iterative

solution.

2.2 Conservation of Mass

2.2.1 Conservation of Mass Equation

The mass conservation, or the continuity equation, states that the change in mass is

equal to the gradient of the flux of material into the region. This is expressed in terms of

the density as

continuity equation:
∂ρ

∂t
+∇ · (ρ~u) = 0, (2.10)

or

∂ρ

∂t
+

(

∂ (ρux)

∂x
+
∂ (ρuy)

∂y
+
∂ (ρuz)

∂z

)

= 0.

If the density is constant, implying that the material is incompressible, this becomes

∇ · (~u) = 0. (2.11)
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The principle of conservation of mass can be used to write an equation in terms of the

variation in thickness of an ice mass over time. Figure 2.1 demonstrates conservation of

mass in a column of ice – change in ice surface elevation is balanced by accumulation

or ablation of ice and the divergence of ice flux. Consider a column of ice moving with

average velocity~U. Denote the mass flux by~q = ~Uh, where~U = (Ux, Uy) is the depth

averaged velocity of the column of ice andh is the thickness of ice. Then the thicknessh

of the ice varies over timet as

prognostic equation:
∂h

∂t
= ȧ− ∂qx

∂x
− ∂qy
∂y

(2.12)

whereqi is thex or y component of the mass flux andȧ is the surface accumulation rate,

which is the ice-equivalent of snowfall in meters per year.

Figure 2.1. Ice sheet mass balance for a column of ice on a horizontal bed.The column
has widthdy, lengthdx, and mean heighth. The change in ice surface elevation with time
∂h
∂t

is balanced by accumulation or ablation of ice (ȧ is accumulation/ablation rate) and the
divergence of ice flux (difference between influx and outflux of ice, qx andqx + dqx).
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2.2.2 Mass Equation Boundary Conditions

The mass conservation equation (2.12) requires boundary conditions to be specified

along the edge of the domain. There may be two types of the boundary conditions:

Newman (flux is specified)conditions may be imposed at the inland ice dome (flux

is zero,q0 = 0,), at the head of the ice stream (fluxq0 is given), or at the ice front (a free-

radiation condition can be applied to avoid having ice ”pileup”, q0 =
(

h~U
)

|− · ~n, where
(

h~U
)

|− represents the ice transport just upstream of the ice front):

h (Uxnx + Uyny) = h~U · ~n = ~q · ~n = q0, (2.13)

where~n is outward-pointing unit normal vector.

Dirichlet (ice thickness is specified)conditions may be imposed, for example, at the

ice stream:

h = h0. (2.14)

2.3 Conservation of Momentum

2.3.1 Conservation of Momentum Equations

Conservation of momentum is Newton’s second and third laws which state that linear

momentum is conserved if the sum of forces on an object are equal to zero.
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Figure (2.2) on Page 18 shows the forces acting on a glacier inone direction, sayx.

The driving stress directed in the direction of decreasing surface slope (ρ gx) is resisted by

longitudinal deviator stresses (compressions and tensions from up and down of glacier –

σxx), basal drag (friction generated at the bed –σxz), and lateral drags (frictions generated

at the sides of the glacier –σxy). Similar forces are acting iny andz directions.

Figure 2.2. Ice Sheet: forces acting on ice in one direction.

If we assume that ice is not accelerating or decelerating, than balancing all the applied

stresses acting on the various surfaces of a differential volumedx dy dz with the body forces

due to gravity, the linear momentum equations look as follows:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= ρgx, (2.15a)

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= ρgy, (2.15b)

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

= ρgz. (2.15c)

These momentum equations are called thediagnostic equations.
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Note that the applied stresses are symmetric,σij = σji. This prevents free rotation

with uniform motion. Symmetry of stresses reduces the problem of finding nine stresses to

that of finding six stresses.

Using the fact thatgx = 0 andgy = 0 and relations (2.1) and (2.2), the momentum

equations (2.15a)-(2.15c) in terms of deviatoric stressescould be written as follows:

∂ (σ′
xx + P )

∂x
+
∂σ′

xy

∂y
+
∂σ′

xz

∂z
= 0, (2.16)

∂σ′
yx

∂x
+
∂
(

σ′
yy + P

)

∂y
+
∂σ′

yz

∂z
= 0, (2.17)

∂σ′
zx

∂x
+
∂σ′

zy

∂y
+
∂ (σ′

zz + P )

∂z
= ρg. (2.18)

Taking into account the constitutive relations between stresses and strain rates (2.9),

the momentum equations (2.16)-(2.18) can be written in terms of strain rates as follows:

∂ (2µ ˙εxx + P )

∂x
+
∂ (2µ ˙εxy)

∂y
+
∂ (2µ ˙εxz)

∂z
= 0, (2.19a)

∂ (2µ ˙εyx)

∂x
+
∂ (2µ ˙εyy + P )

∂y
+
∂ (2µ ˙εyz)

∂z
= 0, (2.19b)

∂ (2µ ˙εzx)

∂x
+
∂ (2µ ˙εzy)

∂y
+
∂ (2µ ˙εzz + P )

∂z
= ρg. (2.19c)

Equations (2.19a)-(2.19c) can be written in a compact form as

Tij,j − ρgδi3 = 0, (2.20)

19



whereT is a tensor

T =

















2µε̇xx + P 2µε̇xy 2µε̇xz

2µε̇xy 2µε̇yy + P 2µε̇yz

2µε̇xz 2µε̇yz 2µε̇zz + P

















(2.21)

These differential equations, 2-nd order in terms of velocities, are the equations that we

must solve.

2.3.2 Momentum Equation Boundary Conditions

For the momentum equations, the boundary conditions must bespecified at the sides

of the domain, at the surface of the domain, and at the bed of the domain. Let’s discuss

them separately.

2.3.2.1 Surface Boundary Conditions

Regardless of the type of flow (ice-sheet, ice-stream, or ice-shelf), the boundary con-

ditions at the surface of the ice,z = zs, is assumed to be stress-free,i.e.,

T · ns = 0. (2.22)

wherens is the outward-pointing unit normal vector given by

ns =
−∂zs

∂x
nx − ∂zs

∂y
ny + nz

√

1 + (∂zs

∂x
)2 + (∂zs

∂y
)2

(2.23)
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Application of the tensor/vector product in (2.22) gives the following three equations that

must be satisfied atz = zs:

(2µ ˙εxx + P )
∂zs
∂x

+ 2µ ˙εxy
∂zs
∂y
− 2µ ˙εxz = 0, (2.24a)

2µ ˙εyx
∂zs
∂x

+ (2µ ˙εyy + P )
∂zs
∂y
− 2µ ˙εyz = 0, (2.24b)

2µ ˙εzx
∂zs
∂x

+ 2µ ˙εzy
∂zs
∂y
− (2µ ˙εzz + P ) = 0. (2.24c)

2.3.2.2 Basal Boundary Conditions

The boundary condition at the bed of the ice,z = zb, is not stress-free and is different

for different types of flow.

For ice-sheets, where the bed is frozen, Dirichlet boundaryconditions are the obvious

choice, as the velocity is zero and can be specified as such.

For ice-shelves, boundary conditions at the bed can be derived from the assumption

that the ice is floating and that the stress can be specified to be equal to the hydrostatic

pressure necessary to float the ice shelf.

For ice-streams, boundary conditions should be different since ice is not floating.

The velocities cannot be specified because they are unknown.But the resistive pressure

at the bed is also unknown. We know that this resistive stresshas a value between the

driving stress (if it equals the driving stress, we have the shallow-ice approximation) and

the hydrostatic pressure of the floating ice (if it is equal tothe hydrostatic pressure necessary

to float the ice, we have the ice-shelf approximation).
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There are two ways to specify the basal boundary conditions.One is to specify the

basal resistive stress as some fraction of the driving stress which we use in this work. This

approach does produce the concave profile characteristic ofan ice stream but the fraction

(which is a model parameter) is hard to specify.

A second approach is to use a boundary-layer. This approach has been studied by

Debra Kenneway for a two-dimensional version of the three-dimensional system which

models a vertical slice through the ice sheet along a flowline. In this approach, a thin layer

between the ice and the bed is introduced and zero velocity Dirichlet boundary conditions

are imposed at the bottom boundary of this layer. To simulatesliding at the bed, greater de-

formation is allowed within the boundary layer. Thus, the boundary layer can be interpreted

as deformable till or slush (water-saturated ice at the melting point). This approach also has

some disadvantages – the geometry (thickness) and the mechanical properties (how soft the

layer is) are as difficult to specify as is the fraction of the driving stress.

Below is derivation of the basal boundary conditions under assumption that the basal

resistive stress is some fraction of the driving stress.

Let’s assume that the resistive traction on the base has the following form:

~f = (fx, fy, fz). (2.25)

With this assumption, the basal boundary conditions can be specified as follows:

T · nb = fnb, (2.26)
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wherenb is the outward-pointing unit normal vector to the bottom surface given by

nb =

∂zb

∂x
nx + ∂zb

∂y
ny − nz

√

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2

(2.27)

Application of the tensor/vector product in (2.26) gives the following three equations

that must be satisfied atz = zb:

(2µ ˙εxx + P )
∂zb
∂x

+ 2µ ˙εxy
∂zb
∂y
− 2µ ˙εxz = fx, (2.28a)

2µ ˙εyx
∂zb
∂x

+ (2µ ˙εyy + P )
∂zb
∂y
− 2µ ˙εyz = fy, (2.28b)

2µ ˙εzx
∂zb
∂x

+ 2µ ˙εzy
∂zb
∂y
− (2µ ˙εzz + P ) = −fz . (2.28c)

2.3.2.3 Side Boundary Conditions

The momentum equations (3.1a)-(3.1c) may have two types of side boundary condi-

tions [36].

Dirichlet boundary conditions can be specified if velocities are known. For example,

zero velocity can be specified in the areas of frozen bed, or areas where ice-shelves abut

stagnant, zero slip coast lines, or areas where velocities are known from an experimental

data sets.

Neumann boundary condition, specification of stress or force on the boundary, are

usually applied at the seaward, iceberg-carving front. Multiplying stress by area on a

boundary specifies force. Typically at the lateral sides of the domain, a pressure varying

linearly with depth may serve as boundary conditions.

23



Chapter 3

MODELS

In this chapter, I will consider two models that have been constructed to study the

flow of ice; a higher-order model that takes into account all stresses and ice-shelf/ice-

stream Morland model. In construction of the Morland model,we included shear friction

(proportional to driving stress) in the derivation of the equation. In the original Morland

equations (see, for example, in [46], the basal drag is not included in the fundamental

formulation but instead is added as a small correction (proportional to speed) to the final

equations.

3.1 Three-Dimensional Full-Stokes Model

In the full-stress 3-dimensional model, we couple the mass (2.12) and momentum

(2.16) - (2.18) conservation equations (the prognostic anddiagnostic equations) that take

into account all stresses. This allows us to simulate flow in regions where longitudinal

stresses are important.

3.1.1 Conservation of Momentum Equation

Conservation of momentum equations (2.16) - (2.18) are written in terms of strain

rates. To write the equations in terms of velocities and pressure, substitute (2.9) and (2.4)
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into the system (2.16) - (2.18). All stresses and strain rates are then derived quantities from

the equations for velocities.

∂
(

2µ∂ux

∂x
) + P

)

∂x
+
∂
(

µ(∂ux

∂y
+ ∂uy

∂x
)
)

∂y
+
∂
(

µ(∂ux

∂z
+ ∂uz

∂x
)
)

∂z
= 0; (3.1a)

∂
(

µ(∂uy

∂x
+ ∂ux

∂y
)
)

∂x
+
∂
(

2µ∂uy

∂y
) + P

)

∂y
+
∂
(

µ(∂uy

∂z
+ ∂uz

∂y
)
)

∂z
= 0; (3.1b)

∂
(

µ(∂uz

∂x
+ ∂ux

∂z
)
)

∂x
+
∂
(

µ(∂uz

∂y
+ ∂uy

∂z
)
)

∂y
+
∂
(

2µ∂uz

∂z
) + P

)

∂z
= ρg. (3.1c)

These are three nonlinear, coupled, partial differential equations in terms ofux, uy, uz, and

P . Since this system has four variables (ux, uy, uz, andP ) and only three equations, we add

the conservation of mass equation, expression of incompressibility (2.11), to the system:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0. (3.2)

3.1.2 Conservation of Mass Equation

The conservation of mass equation (2.12) can be rewritten as

∂h

∂t
= ȧ− ∂ (hUx)

∂x
− ∂ (hUy)

∂y
, (3.3)

whereUx andUy are components of the depth-averaged velocity of the columnof ice.

Often, the numerical solutions of convective problems like(3.3) are corrupted by

node-to-node oscillations in the regions where the solutions undergo rapid changes. One

way to eliminate the oscillations is to severely refine the mesh. An alternative solution to
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eliminate oscillations is to add an artificial diffusion term to the equation. The drawback is

a loss of accuracy (the artificial terms are only second-order accurate).

With an artificial diffusion term, the equation becomes as follows:

∂h

∂t
= ȧ− ∂ (hUx)

∂x
− ∂ (hUy)

∂y
+

∂

∂x

(

kxx
∂h

∂x

)

+
∂

∂y

(

kyy
∂h

∂y

)

, (3.4)

wherekxx =
√

2ae

8

∣

∣

∣

∑

i=1,4 U
e
x,i

∣

∣

∣
, kyy =

√
2ae

8

∣

∣

∣

∑

i=1,4U
e
y,i

∣

∣

∣
, ae - column-average finite

element’s area (which are discussed further on Page 44).

The addition of a diffusion term requires an additional boundary condition along with

those already discussed on Page 17:

∇(kh) · n̄ = kxx
∂h

∂x
nx + kyy

∂h

∂y
ny = 0. (3.5)

3.1.3 Complexity of Equations

Thus, to solve the full 3-D models, we have to solve the systemof five equations,

(3.3) and (3.1a) - (3.2) for five variables,P , h, ux, uy, anduz.

The most challenging part is solving the system of momentum equations (3.1a) -

(3.2). This is a nonlinear system of four equations with fourvariables. The numerical

approximation of the system results in iterative solution of linear equations with huge ma-

trices. For example, for a 3-D model for a rectangular regionthat is50×50×10 = 25, 000

nodes, the system has100, 000 independent variables (number of nodes× 4 variables,

3 velocity variables and 1 pressure variable) and the matrixof the system could have
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100, 000 × 100, 000 = 1010 elements. The challenge of solving the large size systems

is discussed in Chapter 5.

3.2 Ice-stream Model

For modeling ice streams, the common approach is to treat them as barely-grounded

ice shelves. In the ice shelf, the only stresses considered are the longitudinal and lateral

stresses. The basal drag is not included in the fundamental formulation because the ice is

supported by water. Figure (3.1) on Page 27 shows the forces acting on our differential

volume. The resulting equations are called Morland equations [49].

Figure 3.1. Ice-shelf: major forces acting on ice-shelf in one direction.

Ice stream flow is transitional between sheet flow and shelf flow. Hence for stream

flow there will be both basal shear stresses and longitudinalstresses. A common approach

to model ice stream flow is to add a small correction (proportional to speed) to Morland

equations to simulate the basal drag effects after derivingthe equations with the assumption
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of no basal drag. This addition of this friction term does violate assumptions of the Morland

derivation.

This chapter solves this problem by including shear friction in the derivation of Mor-

land equations. Otherwise, the derivation follows [46].

3.2.1 Diagnostic Equation

3.2.1.1 Ice-stream/ice-shelf Basal Boundary Conditions

We will start the derivation by re-writing the boundary conditions. The surface

boundary conditions are the same for all type of flow, stress-free, and stays as (2.24a)-

(2.24c).

To re-write the basal boundary condition, we will follow [49]. Figure 3.2 from [49]

shows a horizontal plan of ice-flow as well as an element of theouter margin of the ice.~OX

and ~OY are the rectangular coordinates in which the equations are derived. The ice outer

margin is shown by the bold line. ContourC, shown as the dashed boundary boundary,

and the rear edgeLOM are the boundary of the smooth steady flow. Panelb on Figure 3.2

shows an element of ice betweenC and the outer margin. It also shows local normal and

tangential coordinates onC, (n, s). To re-write basal boundary conditions, we need local

normal coordinates on the base of the ice~nb not shown on the figure.

Let’s express zero tangential traction on base in the alternative form of components

perpendicular to~nb and ~OY and ~nb and ~OX, where ~OX and ~OY are the rectangular co-

ordinates in which the equations are derived. Let’s denote the components of the outward-

pointing unit normal vector to the bottom surface as~nb = (n1, n2, n3). From (2.27), we get
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Figure 3.2. The horizontal plan and the front region of ice flow. From Morland(1987).
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expressions for components of~nb:

n1 =
∂zb

∂x
√

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2

;

n2 =

∂zb

∂y
√

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2

; (3.6)

n3 =
−1

√

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2
.

With ~nbx the vector normal to~nb and ~OY and ~nby the vector normal to~nb and ~OX, we can

define them as follows:

~nbx = ( ~OY × ~nb) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

0 1 0

n1 n2 n3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (n3, 0,−n1), (3.7a)

~nby = (~nb × ~OX) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

n1 n2 n3

1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (0, n3,−n2) (3.7b)
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Then, the tangential traction component perpendicular to~nb and ~OY ( ~τbx) is found as fol-

lows:

τbx = ~nb[~T ] ~nbx′ = (n1, n2, n3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















n3

0

−n1

















(3.8)

=

(

n1σxx + n2σyx + n3σzx, n1σxy + n2σyy + n3σzy, n1σxz + n2σyz + n3σzz

)

















n3

0

−n1

















= n1n3(σxx − σzz) + n2n3σxy + (n2
3 − n2

1)σxz − n1n2σyz.

Similarly, the tangential traction component perpendicular to ~nb and ~OX ( ~τby) is

found as follows:

τby = ~nb[~T ] ~nby′ = (n1, n2, n3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















0

n3

−n2

















(3.9)

=

(

n1σxx + n2σyx + n3σzx, n1σxy + n2σyy + n3σzy, n1σxz + n2σyz + n3σzz

)

















0

n3

−n2

















= n2n3(σyy − σzz) + n1n3σxy + (n2
3 − n2

2)σyz − n1n2σxz.

31



After substituting the values ofn1, n2, andn3 from (3.6) in the above expression, we

get the following expressions forτbx andτby:

τbx =
−∂zb

∂x
(σxx − σzz)− ∂zb

∂y
σxy +

(

1−
(

∂zb

∂x

)2
)

σxz − ∂zb

∂x
∂zb

∂y
σyz

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2

(3.10a)

τby =

−∂zb

∂y
(σyy − σzz)− ∂zb

∂x
σxy +

(

1−
(

∂zb

∂y

)2
)

σyz − ∂zb

∂x
∂zb

∂y
σxz

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2

(3.10b)

Define the tangential traction boundary conditions in directionsnbx andnby as fol-

lows:

τbx = fbx, τby = fby (3.11)

Until now, we have been been following [49]. In MacAyeal-Morland model, the

horizontal components of shear stresses at the bed in the Cartesian coordinates(x, y, z) are

assumed to be zero:

~f = (fx, fy, fz) = (0, 0, ρgh) . (3.12)

We will be using two different heuristic assumptions, that is, the horizontal shear stresses

at the bed in Cartesian coordinates(x, y, z) are proportional in:

Modified Model 1: to unit velocity vectors:

~f = (fx, fy, fz) =

(

−τx
ux
|~u| ,−τy

uy
|~u| , ρgh

)

, (3.13)

Modified Model 2: to driving stresses:

~f = (fx, fy, fz) =

(

αxρgh
∂zs
∂x

, αyρgh
∂zs
∂y

, ρgh

)

, (3.14)
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whereτx, τy, αx(T ), andαy(T ) are parameters (αx(T ) = αy(T ) = 1 if ice is grounded and

αx(T ) = αy(T ) = 0 if ice is floating).

We denote the shear stresses at the bed in a new coordinate system(nbx, nby, nb) as:

f = (fbx, fby, fbz).

The shear stress components in new coordinate system can be found using the for-

mula for the scalar product of two vectors:

~fbx =
(~f · ~nbx)
| ~nbx|

=
fxn3 + fy0 + fz(−n1)
√

n2
3 + 02 + (−n1)2

= −
[

fx + fz
∂zb
∂x

]

{

1 +

(

∂zb
∂x

)2
}− 1

2

,

(3.15a)

~fby =
(~f · ~nby)
| ~nby|

=
fx0 + fyn3 + fz(−n2)
√

02 + n2
3 + (−n2)2

= −
[

fy + fz
∂zb
∂y

]

{

1 +

(

∂zb
∂y

)2
}− 1

2

Substituting ( 3.13) and ( 3.14) into ( 3.15a) gives the following shear stresses at the

bed in the new coordinate system:

Modified Model 1:

~fbx = −
ρgh∂zb

∂x
− τx ux

|~u|
√

1 +
(

∂zb

∂x

)2
, ~fby = −

ρgh∂zb

∂y
− τy uy

|~u|
√

1 +
(

∂zb

∂y

)2
(3.16)

Modified Model 2:

~fbx = −ρgh αx
∂zs

∂x
+ ∂zb

∂x
√

1 +
(

∂zb

∂x

)2
, ~fby = −ρgh

αy
∂zs

∂y
+ ∂zb

∂y
√

1 +
(

∂zb

∂y

)2
(3.17)
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The boundary condition (3.11) can then be written as follows:

−∂zb
∂x

(σxx − σzz)−
∂zb
∂y

σyx +

(

1−
(

∂zb
∂x

)2
)

σzx −
∂zb
∂x

∂zb
∂y

σyz = r2
b
~fbx,

−∂zb
∂y

(σyy − σzz)−
∂zb
∂x

σxy +

(

1−
(

∂zb
∂y

)2
)

σyz −
∂zb
∂x

∂zb
∂y

σxz = r2
b
~fby,

wherer2
b = 1 + (∂zb

∂x
)2 + (∂zb

∂y
)2.

Finally substituting strain rates for stressesσij using (2.2) with the linearized flow

law of equation (2.9), the above basal boundary conditions can be re-written as follows:

−∂zb
∂x

(2µε̇xx + P )− ∂zb
∂y

2µε̇yx + 2µε̇xz +
∂zb
∂x

(2µε̇zz + P )

−
(

∂zb
∂x

)2

2µε̇xz −
∂zb
∂x

∂zb
∂y

2µε̇yz = r2
b
~fbx, (3.19a)

−∂zb
∂y

(2µε̇yy + P )− ∂zb
∂x

2µε̇xy + 2µε̇yz +
∂zb
∂y

(2µε̇zz + P )

−
(

∂zb
∂y

)2

2µε̇yz −
∂zb
∂x

∂zb
∂y

2µε̇xz = r2
b
~fby. (3.19b)

3.2.1.2 Vertical Integration of Momentum Equations

In ice-shelf and ice-stream modeling, it is assumed that horizontal velocities and

strain rates are independent ofz, or,

∂ ˙εxx
∂z
→ 0,

∂ ˙εyy
∂z
→ 0,

∂ ˙εxy
∂z
→ 0,

∂ux
∂z
→ 0,

∂uy
∂z
→ 0, ˙εzx = ˙εzy = 0. (3.20)

These assumptions are justified by the flat and thin geometry of ice shelves.
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Using these assumptions, the Stokes’ equations (2.19a)-(2.19c) can be reduced and

written in terms of a horizontal, depth-averaged ice velocity ~U = (Ux, Uy). To derive the

reduced equations, Stokes’ equations (2.19a)-(2.19c) areintegrated over depth.

3.2.1.3 Integration of thez-momentum equation

Integrating the vertical component of the Stokes’ equation(2.19c) from some level

z to z = zs, rearranging terms using Leibnitz Rule1, and using boundary condition at the

surface (2.24c) generates an equation for the pressure field:

P (z) = +
∂

∂x

∫ zs

z

2µε̇xz dz +
∂

∂y

∫ zs

z

2µε̇yz dz − 2µε̇zz − ρg(zs − z)

Using assumption (3.20) thatε̇xz andε̇yz are independent of z, the above equation is

simplified as follows:

P (z) = −2µε̇zz − ρg(z − zs) +
∂

∂x
[2µ̄ε̇xz(zs − z)] +

∂

∂y
[2µ̄ε̇yz(zs − z)] (3.21)

whereµ̄ is the depth-averaged effective viscosity (overbar denotes depth averaging):̄µ =

1
zs−z

∫ zs

z
µ dz.

1
∫ zs

zb

∂f(x, z, . . . )

∂x
dz =

∂

∂x

∫ zs

zb

f(x, z, . . . )− f(x, zs, . . . )
∂zs

∂x
+ f(x, zb, . . . )

∂zb

∂x
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3.2.1.4 Integration of thex-momentum equation

Integrating thex− horizontal component of the Stokes’ equation (2.19a) fromz = zb

to z = zs and again rearranging terms using Leibnitz Rule gives the following system:

∂

∂x

∫ zs

zb

P dz +
∂

∂x

∫ zs

zb

2µε̇xx dz +
∂

∂y

∫ zs

zb

2µε̇xy dz

−
[

(2µε̇xx + P )
∂zs
∂x

+ 2µε̇xy
∂zs
∂y
− 2µε̇xz

]

z=zs

+

[

(2µε̇xx + P )
∂zb
∂x

+ 2µε̇xy
∂zb
∂y
− 2µε̇xz

]

z=zb

= 0.

Applying boundary conditions (2.24a) and (3.19a) gives thefollowing system:

∂

∂x

∫ zs

zb

P dz +
∂

∂x

∫ zs

zb

2µε̇xx dz +
∂

∂y

∫ zs

zb

2µε̇xy dz +
∂zb
∂x

(2µε̇zz + P )

−(
∂zb
∂x

)22µε̇xz −
∂zb
∂x

∂zb
∂y

2µε̇yz − r2
b
~fbx = 0.

To estimate the first term of the above equation, let’s integrate pressure over depth

(we also use the incompressibility condition,ε̇zz = −(ε̇xx + ε̇yy)):

∂

∂x

∫ zs

zb

P dz =
∂

∂x

∫ zs

zb

2µε̇xx dz +
∂

∂x

∫ zs

zb

2µε̇yy dz −
∂

∂x

ρgh2

2

+
∂

∂x

∫ zs

zb

∂

∂x
[2µ̄ε̇xz(zs − z)] dz +

∂

∂x

∫ zs

zb

∂

∂y
[2µ̄ε̇yz(zs − z)] dz
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With this assumption, the equation for x-momentum becomes:

∂

∂x

∫ zs

zb

2µε̇xx dz +
∂

∂x

∫ zs

zb

2µε̇yy dz −
∂

∂x

ρgh2

2
+

∂

∂x

∫ zs

zb

2µε̇xx dz +
∂

∂y

∫ zs

zb

2µε̇xy dz

+
∂

∂x

∫ zs

zb

∂

∂x
(2µ̄ε̇xz(zs − z)) dz +

∂

∂x

∫ zs

zb

∂

∂y
(2µ̄ε̇yz(zs − z)) dz

+
∂zb
∂x

(2µε̇zz + P )− (
∂zb
∂x

)22µε̇xz −
∂zb
∂x

∂zb
∂y

2µε̇yz − r2
b
~fbx = 0.

Using assumption (3.20) thatε̇xx, ε̇yy, andε̇yz are independent of z anḋεxz = 0 and

ε̇yz = 0, the above equation is simplified as:

∂

∂x
[2µ̄h(2ε̇xx + ε̇yy)] +

∂

∂y
(2µ̄hε̇xy) +

∂zb
∂x

[2µε̇zz + P ] =

ρgh
∂h

∂x
+ r2

b
~fbx.

If we substitute the fact that at the bedP = −2µε̇zz− ρgh (3.21) and use formulah+ zb =

zs, then the above equation can be written as follows:

∂

∂x
[2µ̄h(2ε̇xx + ε̇yy)] +

∂

∂y
(2µ̄hε̇xy) = ρgh

∂zs
∂x

+ r2
b
~fbx. (3.22)

Equation (3.22) is the x-component of the reduced stress-equation for ice streams.

To summarize and to ease the comparison with the original MacAyeal-Morland equa-

tion, we can re-write the above x-component of the reduced balance of momentum equa-

tion:

∂

∂x
[2µ̄h(2ε̇xx + ε̇yy)] +

∂

∂y
(2µ̄hε̇xy) = RHS, (3.23)

where the right-hand side,RHS, is as follows in:
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Morland Model for ice-shelves: ρgh∂zs

∂x
,

MacAyeal Model for ice-streams:ρgh∂zs

∂x
+ τc

ux

|~u| ,

Modified Model 1: ρgh∂zs

∂x
+
(

τx
ux

|~u| − ρgh
∂zb

∂x

)

gbx,

Modified Model 2: ρgh∂zs

∂x
− ρgh

(

αx
∂zs

∂x
+ ∂zb

∂x

)

gbx,

wheregbx =
(

1 + (∂zb

∂x
)2 + (∂zb

∂y
)2
)(

1 +
(

∂zb

∂x

)2
)− 1

2

The equations show that the modified models include the bed slopes. In the case

when the bed surface is flat,∂zb

∂x
= 0, ∂zb

∂y
= 0, the right-hand side of the equation becomes

as follows:

Morland Model for ice-shelves: ρgh∂zs

∂x
,

MacAyeal Model for ice-streams:ρgh∂zs

∂x
+ τc

ux

|~u| ,

Modified Model 1: ρgh∂zs

∂x
+ τx

ux

|~u| ,

Modified Model 2: ρgh(1− αx)∂zs

∂x
.

We can see that for the flat-bed ice-streams, derived equations of the Modified Model

1 are identical to the ones of MacAyeal model. In the case of Modified Model 2, the

shear stresses at the bed of ice-streams are adjusted not by subtracting from ice-sheet shear

stresses the forces proportional to velocities but multiplying the ice-sheet shear stresses by

factor (1− αx).

Below are two extreme cases of this equation:

• for ice-shelf (αx = 0): equation (3.22) becomes exactly equation (3.26) in [46]:

∂

∂x
[2µ̄h(2ε̇xx + ε̇yy)] +

∂

∂y
(2µ̄hε̇xy) = ρgh

∂zs
∂x

• for ice-sheet (αx = 1): equation (3.22)becomes:

∂

∂x
[2µ̄h(2ε̇xx + ε̇yy)] +

∂

∂y
(2µ̄hε̇xy) = 0.
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Finally, thex− component of the diagnostic equation (3.22) and the similarequation

for y− component of the diagnostic equation can be written in termsof depth-averaged

horizontal velocities using the definition of strain-rate components (2.4) as follows:

∂

∂x

(

2µh

(

2
∂Ux
∂x

+
∂Uy
∂y

))

+
∂

∂y

(

µh

(

∂Ux
∂y

+
∂Uy
∂x

))

= ρgh
∂zs
∂x

+ r2
b
~fbx,

(3.24a)

∂

∂y

(

2µh

(

2
∂Uy
∂y

+
∂Ux
∂x

))

+
∂

∂x

(

µh

(

∂Ux
∂y

+
∂Uy
∂x

))

= ρgh
∂zs
∂y

+ r2
b
~fby.

(3.24b)

3.2.1.5 Boundary Conditions along the Edge of the Domain

Two types of boundary conditions can be specified along the edge (∂Ω) of the domain

(Ω), Dirichlet and Neumann. Dirichlet boundary conditions, specification of the depth-

averaged velocity, are applied at zero slip coast-lines or where ice streams flow into the ice

shelf or at stagnant ice-shelf boundaries. Neumann boundary conditions are specified at

the seaward, iceberg-caving front. The depth-integrated balance of forces at the ice front is

formulated as a balance of the depth-integrated force transmitted across the ice front due to

internal stresses and the integral of the hydrostatic pressure in the seawater beyond the ice

front over the face of the ice front:

∫ zs

zb

σijnjdz = −ρwg
2

(

ρ

ρw
h

)2

~n (3.25)

whereρw is the average density of seawater. In the above equations, it is assumed that the

ice shelf floats in hydrostatic equilibrium with seawater,zb = − ρ

ρw
h.
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In the cases when the ice front extends along they− andx− axes, that is, when

~n = nx and~n = ny consequently, boundary condition (3.25) becomes:

~n = nx :

∫ zs

zb

(2µ ˙εxx + P ) dz = −ρwg
2

(

ρ

ρw
h

)2

; (3.26a)

~n = ny :

∫ zs

zb

(2µ ˙εyy + P ) dz = −ρwg
2

(

ρ

ρw
h

)2

. (3.26b)

Finally, using (3.21) and incompressibility conditioṅεxx + ˙εxx + ˙εxx = 0, they can be

written as follows:

~n = nx : 2µh

(

2
∂Ux
∂x

+
∂Uy
∂y

)

=
ρgh2

2

(

1− ρ

ρw

)

; (3.27a)

~n = ny : 2µh

(

∂Ux
∂x

+ 2
∂Uy
∂y

)

=
ρgh2

2

(

1− ρ

ρw

)

. (3.27b)

3.2.2 Prognostic Equation

The above momentum equations yield the z-independent horizontal velocity field

~U = (Ux(x, y), Uy(x, y)) that corresponds to an instantaneoussnap shotof the ice-thickness

field,h(x, y, t). The time-evolution of the ice shelf is governed by the prognostic equation:

∂h

∂t
= −∂ (h · Ux)

∂x
− ∂ (h · Uy)

∂y
+ ȧ. (3.28)

It is important to notice that the ice-shelf flux term in (3.28) is anon-localfunction

of ice-thickness. It depends on the flux of ice from the surrounding locations. This is in

stark contrast to the grounded ice sheet SIA model.
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3.2.3 Complexity of Ice-shelf Equations

In the ice-shelf model the basal stress is neglected. This allows us to reduce the

3-dimensional equations to quasi-2-dimensional equations (x andy) with variables inz

directions integrated out. That is, to solve Morland equations, we have to solve the system

of three equations with three degrees of freedom, equations(3.28) and (3.24a) - (3.24b) for

three (3) variables,h, Ux, andUy.

Equations (3.24a) - (3.24b) are nonlinear two-dimensionalequations. The lineariza-

tion of the flow law (2.9) for the numerical solution of the system allows us to solve the

linear problem, and then iterate on the effective viscosity, which itself depends on the ve-

locity field.

For a rectangular region that is50× 40 = 2, 000 nodes, the system has4, 000 inde-

pendent variables (number of nodes× 2 velocity variables) and the matrix of the system

has4, 000×4, 000 = 1.6×106 elements which is 100 times smaller than the corresponding

matrix for a 3-dimensional model.
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Chapter 4

NUMERICAL SOLUTION - FINITE ELEMENT METHOD

The models constructed for full 3-dimensional system and for 2-dimensional ice-

shelf equations share several key points. First, the time-stepping procedure is split into a

two-step algorithm. One step involves solution of the diagnostic equation which determines

the velocity field from the ice-thickness field and boundary conditions. Since the diagnostic

equations are non-linear, they are solved iteratively. Thesecond step involves solution of

the prognostic equation which updates the ice-thickness distribution using the new velocity

field and boundary conditions.

Both the diagnostic and prognostic equations are discretized using the finite element

method (FEM). The finite-element method is a standard numerical technique which can be

successfully applied to any of the conservation equations described in Chapter 3, either in a

steady-state or a time-dependent situation. The domain on which the conservation equation

is to be solved can be complexly irregular, with no need for the curvilinear or normalized

coordinates often required by the finite-difference method. Boundary conditions can be

easily specified along this irregular boundary as a mixture of essential boundary conditions

(specified state variable) or natural boundary conditions (specified flux or specified linear

combination of flux and state variable).
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Equations such as (3.1a)-(3.1c) or (3.3) are called the “strong” or classical formu-

lation of the problem. In this formulation, a solution is required to satisfy the differential

equations at any point in the domain as well as boundary conditions.

However, if data have any irregularities, or are not smooth enough, or the domain of

the problem is very complex, then the strong solution may notexist or cannot be found. In

this case, we can look for aweakor variational solution that may not satisfy the equation

and boundary conditions at every point of the domain but may satisfy them in average.

The variational formulation of the problem can be obtained by multiplying the dif-

ferential equation by an arbitrary test or weight function and integrating over the whole

domain. The choice and requirements of test function is discussed, for example, in [3]. To

solve the variational problem, the Galerkin method is used.It approximates the solution as

a finite linear combination of basis functions. Criteria in choosing basis functions include

the following considerations:

1. is there a systematic way of constructing the basis functions? The construction of

basis functions become a complex problem in two- and three- dimensional bound-

ary problems where functions must be designed to fit the boundary conditions on

domains with complex geometries.

2. is the resulting matrix of the generated system of linear equations, called astiffness

matrix a sparse matrix (which would greatly reduce the memory and time required

to solve the system)? and

3. is the calculation of the stiffness matrix elements simple?

These difficulties are resolved inFinite Element Methodby
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• dividing the domain of the problem into finite number of subregions calledfinite

elements; and

• approximating both the unknown solution and the arbitrary introduced test function

as a finite sum of some predefined basis functions which are constructed as a piece-

wise functions (polynomials of low degree) that are different from zero only on a few

adjacent subregions.

These approximations reduce the variational problem to a system of linear equations where

unknowns are the values of the unknown solution at the nodes of elements of the finite

element mesh. A major advantage of FEM over spectral or Taylor series solutions is the

sparseness of the resulting matrix due to the fact that the basis functions are different from

zero only on a few adjacent subregions of the domain. More on FEM can be found, for

example, in [3].

4.1 FEM formulation of Higher-Order 3-D Model

Paragraphs below show the variational forms of momentum andmass conserva-

tion equations, as well as the final systems of linear equations generated by FEM for 3-

dimensional full momentum equations.
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4.1.1 Approximation of Conservation of Momentum Equations

4.1.1.1 Variational Form

The variational form of thex-component of the momentum equations is constructed

by multiplying the residual error function from equation (3.1a):

∂
(

P + 2µ∂ux

∂x

)

∂x
+
∂
(

µ(∂ux

∂y
+ ∂uy

∂x
)
)

∂y
+
∂
(

µ(∂ux

∂z
+ ∂uz

∂x
)
)

∂z
+ ρfx

by a test functionψ(x, y, z) and integrating over the problem’s domainΩ:

∫∫∫

Ω
ψ(x, y, z)

{

∂
(

P + 2µ∂ux

∂x

)

∂x
+

∂
(

µ(∂ux

∂y
+ ∂uy

∂x
)
)

∂y
+
∂
(

µ(∂ux

∂z
+ ∂uz

∂x
)
)

∂z
+ ρfx







dx dy dz = 0.

Use of the divergence theorem converts the above equation tothe following form:

∫∫∫

Ω

{

−ρfxψ +

(

P + 2µ
∂ux
∂x

)

∂ψ

∂x

+µ

(

∂ux
∂y

+
∂uy
∂x

)

∂ψ

∂y
+ µ

(

∂ux
∂z

+
∂uz
∂x

)

∂ψ

∂z

}

dx dy dz − (4.1)

∫∫

∂Ω
ψ

((

P + 2µ
∂ux
∂x

)

nx + µ

(

∂ux
∂y

+
∂uy
∂x

)

ny + µ

(

∂ux
∂z

+
∂uz
∂x

)

nz

)

ds = 0.
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4.1.1.2 Application of Boundary Conditions

Let’s assume that the boundary∂Ω consists of the following parts:

∂Ω = ∂Ωsurface + ∂ΩbedD + ∂ΩbedN + ∂ΩsideD + ∂ΩsideN ,

In the expression above

∂Ωsurface is a surface boundary of the domain where stress-free conditions (2.24a)-

(2.24c) are specified;

∂ΩbedD is a basal boundary of the domain where Dirichlet boundary conditions (known

velocities) are specified;

∂ΩbedN is a basal boundary of the domain where Newman boundary conditions

(2.28a)-(2.28c) are specified;

∂ΩsideD is side boundary of the domain where Dirichlet boundary conditions are

specified; and

∂ΩsideN is the remaining side boundary of the domain where Newman boundary

conditions are specified.

Using ice surface and basal boundary conditions, the boundary integral in (4.1) can

be re-written as follows:

∫∫

∂Ω

ψRds =

∫∫

∂Ωsurface

ψRds+

∫∫

∂ΩbedD

ψRds+

∫∫

∂ΩbedN

ψRds+

∫∫

∂ΩsideD

ψRds+

∫∫

∂ΩsideN

ψRds

(4.2)
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where

R =

(

P + 2µ
∂ux
∂x

)

nx + µ

(

∂ux
∂y

+
∂uy
∂x

)

ny + µ

(

∂ux
∂z

+
∂uz
∂x

)

nz.

In (4.2), integral
∫∫

∂Ωsurface
ψRds = 0 because of stress-free conditions (2.24a)-

(2.24c); integrals
∫∫

∂ΩbedD
ψRds and

∫∫

∂ΩsideD
ψRds are made equal to zero by choosing

the arbitrary test functionsψ to be equal to zero on those boundaries; and
∫∫

∂ΩbedN
ψRds=

−
∫∫

∂ΩbedN
ψ
(

αxρgh
∂zb

∂x

)

ds because of (2.28a). The last integral
∫∫

∂ΩsideN
ψRds can be defined

in a similar way. Assuming for simplicity that all lateral boundary conditions are Dirichlet

boundary conditions, the boundary integral in (4.1) can be re-written as follows:

∫∫

∂Ω

ψRds =

∫∫

∂ΩbedN

ψRds = −
∫∫

∂ΩbedN

ψ

(

αxρgh
∂zb
∂x

)

ds (4.3)

The variational forms ofy- andz- components of the momentum equations are de-

rived in a similar way.

4.1.1.3 Finite Element Algorithm

The above equations apply for the domain as a whole, but they also apply for a partic-

ular sub-domain, or element. Thus we would have a set of element equations corresponding

to the above, where onlyΩ andδΩ would be changed toΩe andδΩe for elemente. The

important consequence of that fact is that the integrals in equations (4.1) can be calculated

by adding contributions from integrals over each individual element.
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Let’s consider shape functionsψej = ψej (x, y, z), which are the simple polynomial

pieces of the piece-wise defined basis functions mentioned on page 44.. For an element

with Ne = 8 nodes, thex-, y-, z- components of the velocity at any point within the

element can be expressed as a sum of values at the nodes times shape functions evaluated

at the point:

uex =
Ne
∑

j=1

ux
e
jψ

e
j , uey =

Ne
∑

j=1

uy
e
j
ψej , uez =

Ne
∑

j=1

uz
e
jψ

e
j , (4.4)

and the test function at any point within the element can be expressed as:

ψe =
∑

i=1,Ne

Ψe
iψ

e
i , (4.5)

whereΨe
i is the value of functionψ at nodei in elemente, uxei is the value ofux an nodei

in elemente, etc.

After substituting (4.5) into (4.1) written for an element and requiring that it is sat-

isfied for anyΨe
i , we get the following equations fori = 1, ..., Ne (Ne - is the number of

nodes) for thex-component of the momentum equation:

∫∫∫

Ωe

{

−ρfxψei +

(

P + 2µ
∂ux
∂x

)

∂ψei
∂x

+µ(
∂ux
∂y

+
∂uy
∂x

)
∂ψei
∂y

+ µ(
∂ux
∂z

+
∂uz
∂x

)
∂ψei
∂z

}

dx dy dz −
∫∫

∂Ωe
ψei

((

P + 2µ
∂ux
∂x

)

nx + µ

(

∂ux
∂y

+
∂uy
∂x

)

ny + µ

(

∂ux
∂z

+
∂uz
∂x

)

nz

)

ds = 0.
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The above equation can be rewritten as follows:

∫∫∫

Ωe
µ

{

2
∂ux
∂x

∂ψei
∂x

+

(

∂ux
∂y

+
∂uy
∂x

)

∂ψei
∂y

+

(

∂ux
∂z

+
∂uz
∂x

)

∂ψei
∂z

}

dx dy dz =

∫∫∫

Ωe

(

ρfxψ
e
i − P

∂ψei
∂x

)

dx dy dz +

∫∫

∂Ωe

ψeiPnx ds+

∫∫

∂Ωe

µψei

{

2
∂ux
∂x

nx +

(

∂ux
∂y

+
∂uy
∂x

)

ny +

(

∂ux
∂z

+
∂uz
∂x

)

nz

}

ds.

Then, after substitutinguex, u
e
y, u

e
z into the above formula, we get the following equa-

tions for thex-component of the momentum equation:

∑Ne

j=1

∫∫∫

Ωe
µ

{

2ux
e
j

∂ψej
∂x

∂ψei
∂x

+

(

ux
e
j

∂ψej
∂y

+ uy
e
j

∂ψej
∂x

)

∂ψei
∂y

+

(

ux
e
j

∂ψej
∂z

+ uz
e
j

∂ψej
∂x

)

∂ψei
∂z

}

dx dy dz =

∫∫∫

Ωe

(

ρfxψ
e
i − P

∂ψei
∂x

)

dx dy dz +

∫∫

∂Ωe

ψeiPnx ds+

∑Ne

j=1

∫∫

∂Ωe
µψei

{

2ux
e
j

∂ψej
∂x

nx +

(

ux
e
j

∂ψej
∂y

+ uy
e
j

∂ψej
∂x

)

ny

+

(

ux
e
j

∂ψej
∂z

+ uz
e
j

∂ψej
∂x

)

nz

}

ds.

Thus, for a eight-node quadrilateral element the unknowns consist of the 24 velocity

components and the pressure, (u1x, u1y, u1z, u2x, u2y, u2z, ..., u8x, u8y, u8z, P ). And the

momentum balance equation forx-component after some rearrangement is as follows:

49



Ne
∑

j=1

∫∫∫

Ωe

µ

{

ux
e
j

(

2
∂ψej
∂x

∂ψei
∂x

+
∂ψej
∂y

∂ψei
∂y

+
∂ψej
∂z

∂ψei
∂z

)

+ uy
e
j

∂ψej
∂x

∂ψei
∂y

+ uz
e
j

∂ψej
∂x

∂ψei
∂z

}

dxdydz

=

∫∫∫

Ωe

(

ρfxψ
e
i − P

∂ψei
∂x

)

dx dy dz +

∫∫

∂Ωe

ψeiPnx ds+ (4.6)

Ne
∑

j=1

∫∫

∂Ωe

µψei

{

ux
e
j

(

2
∂ψej
∂x

nx +
∂ψej
∂y

ny +
∂ψej
∂z

nz

)

+ uy
e
j

∂ψej
∂x

ny + uz
e
j

∂ψej
∂x

nz

}

ds.

Momentum equations fory- andz- component of the velocity are similar:

Ne
∑

j=1

∫∫∫

Ωe

µ

{

ux
e
j

∂ψej
∂y

∂ψei
∂x

+ uy
e
j

(

∂ψej
∂x

∂ψei
∂x

+ 2
∂ψej
∂y

∂ψei
∂y

+
∂ψej
∂z

∂ψei
∂z

)

+ uz
e
j

∂ψej
∂y

∂ψei
∂z

}

dxdydz

=

∫∫∫

Ωe

(

ρfyψ
e
i − P

∂ψei
∂y

)

dx dy dz +

∫∫

∂Ωe

ψeiPny ds+ (4.7)

Ne
∑

j=1

∫∫

∂Ωe

µψei

{

ux
e
j

∂ψej
∂y

nx + uy
e
j

(

∂ψej
∂x

nx + 2
∂ψej
∂y

ny +
∂ψej
∂z

nz

)

+ uz
e
j

∂ψej
∂y

nz

}

ds.

and

Ne
∑

j=1

∫∫∫

Ωe

µ

{

ux
e
j

∂ψej
∂z

∂ψei
∂x

+ uy
e
j

∂ψej
∂z

∂ψei
∂y

+ uz
e
j

(

∂ψej
∂x

∂ψei
∂x

+
∂ψej
∂y

∂ψei
∂y

+ 2
∂ψej
∂z

∂ψei
∂z

)}

dxdydz

=

∫∫∫

Ωe

(

ρfzψ
e
i − P

∂ψei
∂z

)

dx dy dz +

∫∫

∂Ωe

ψeiPnz ds+ (4.8)

Ne
∑

j=1

∫∫

∂Ωe

µψei

{

ux
e
j

∂ψej
∂z

nx + uy
e
j

∂ψej
∂z

ny + uz
e
j

(

∂ψej
∂x

nx +
∂ψej
∂y

ny + 2
∂ψej
∂z

nz

)}

ds.

The components of the global system of equation are obtainedby summing equations (4.6),

(4.7), and (4.8) over all the elements of the mesh. This will generate3N equations for

3N +E variables,3N components of velocities defined at theN nodes of the mesh andE
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components of pressure defined at the centers ofE elements of the mesh. The remaining

E equations are obtained by adding the incompressibility expression (3.2) to the system.

Variational Form of the Incompressibility Expression The variational form of the

x-component of the momentum equations is constructed by multiplying the residual error

function from equation (3.2):

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

by a test functionψ(x, y, z) and integrating over the problem’s domainΩ:

∫∫∫

Ω

ψ(x, y, z)

{

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

}

dx dy dz = 0.

Use of the divergence theorem converts the above equation tothe following form:

∫∫

Ω

(

ux
∂ψ

∂x
+ uy

∂ψ

∂y
+ uz

∂ψ

∂z

)

dx dy −
∫

∂Ω

ψ (uxnx + uyny + uznz) ds = 0. (4.9)

Due to boundary conditions, the integral over the domain boundary in the formula above is

zero.

Finite Element Algorithm of the Incompressibility Expression In the equation

(4.9), the integrals over the domainΩ and it’s boundary∂Ω can be calculated by adding

contributions from integrals over each individual elementof the mesh and boundaries of

the elements. This can be shown by considering an element of the mesh,Ωe.
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After substituting (4.5) and (4.4) into (4.9) written for anelement and requiring that

it is satisfied for anyΨe
i , we get the following equations fori = 1, ..., Ne:

Ne
∑

j=1

∫∫∫

Ωe

(

∂ψei
∂x

ux
e
j +

∂ψei
∂y

uy
e
j
+
∂ψei
∂z

uz
e
j

)

dx dy dz = 0. (4.10)

Summing equations (4.10) fori = 1, ..., Ne generates remainingE equations for solving

conservation of momentum problem. Thus, solving the momentum equation is reduced to

solving the system of linear equations (4.10) and (4.6) - (4.8). Properties of this system is

discussed in chapter 5 on page 61.
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4.1.2 Approximation of Conservation of Mass Equation

4.1.2.1 Variational Form

.

The variational form of the mass conservation equation is constructed in a manner

similar to the variational form of the momentum conservation equations and is as follows:

∫∫

Ω

ψ(x, y)

{

∂h

∂t
− ȧ+

∂ (hUx)

∂x
+
∂ (hUy)

∂y
− ∂

∂x

(

kxx
∂h

∂x

)

− ∂

∂y

(

kyy
∂h

∂y

)}

dx dy = 0.

(4.11)

Use of the divergence theorem converts the above equation tothe following form:

∫∫

Ω

(

ψ
∂h

∂t
− ψȧ− hUx

∂ψ

∂x
− hUy

∂ψ

∂y
+ kxx

∂h

∂x

∂ψ

∂x
+ kyy

∂h

∂y

∂ψ

∂y

)

dx dy

+

∫

∂Ω

ψh (Uxnx + Uyny) ds+

∫

∂Ω

ψ

(

kxx
∂h

∂x
nx + kyy

∂h

∂y
ny

)

ds = 0.

(4.12)

Due to boundary condition (3.5), the last integral in the formula above is zero. The

other boundary integral either equal zero at the boundarieswhere Dirichlet conditions are

specified (due to choice of an arbitrary test functionsψ) or can be rewritten as

∫

∂Ω

ψh (Uxnx + Uyny) ds =

∫

∂Ω1

ψq0 ds,

where fluxq0 is boundary flux (see (2.13)) and∂Ω1 is the part of the boundary where

boundary flux is specified..
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Then, the variational form of the mass equation is

∫∫

Ω

(

ψ
∂h

∂t
− ψȧ− hUx

∂ψ

∂x
− hUy

∂ψ

∂y
+ kxx

∂h

∂x

∂ψ

∂x
+ kyy

∂h

∂y

∂ψ

∂y

)

dx dy

+

∫

∂Ω1

ψq0 ds = 0.

(4.13)

4.1.2.2 Finite Element Algorithm

In the equation (4.13), the integrals over the domainΩ and it’s boundary∂Ω can be

calculated by adding contributions from integrals over each individual element of the mesh

and boundaries of the elements. This can be shown by considering an element of the mesh,

Ωe. Let’s consider the following approximate solutionhe and local shape functionsψe over

the element of the form:

he =

Ne
∑

j=1

hejψ
e
j , ψe =

∑

i=1,Ne

Ψe
iψ

e
i , (4.14)

whereNe is the number of nodes inΩe.

After substitutingψe into the variational equation overΩe and requiring that it is

satisfied for anyΨe
i , the linear system for the elementΩe is obtained:

∫∫

Ωe

(

ψei
∂h

∂t
− ψei ȧ− hUe

x

∂ψei
∂x
− hUe

y

∂ψei
∂y

+ kexx
∂h

∂x

∂ψei
∂x

+ keyy
∂h

∂y

∂ψei
∂y

)

dx dy

+

∫

∂Ωe

ψei h
(

Ue
xnx + Ue

yny
)

ds ds = 0, i = 1, 2, . . . , Ne

We assume that column-average velocitiesuex anduey and diffusion coefficientskexx andkeyy

are defined at the centroid of the elements.

54



After substitutinghe into above formula and approximating the time variable witha

difference scheme, we get the following equations fori = 1, ..., Ne:

∫∫

Ωe

{

ψei
1

∆t

(

∑Ne

j=1 h
e,m+1
j ψej −

∑Ne

j=1 h
e,m
j ψej

)

− ψei ȧ

−
∑Ne

j=1

(

he,m+1
j ψej

)

Ue
x
∂ψe

i

∂x
−
∑Ne

j=1

(

he,m+1
j ψej

)

Ue
y
∂ψe

i

∂y

+kexx
∂(

PNe
j=1 h

e,m+1
j ψe

j)
∂x

∂ψe
i

∂x
+ keyy

∂(
PNe

j=1 h
e,m+1
j ψe

j)
∂y

∂ψe
i

∂y

}

dx dy

+
∫

∂Ωe
ψei

(

∑Ne

j=1 h
e,m+1
j ψej

)

(

Ue
xnx + Ue

yny
)

ds = 0.

After some rearrangement, we get the following system:

∑Ne

j=1

∫∫

Ωe

{

ψei
1

∆t

(

he,m+1
j ψej − he,mj ψej

)

− ψei ȧ

−
(

he,m+1
j ψej

)

Ue
x
∂ψe

i

∂x
−
(

he,m+1
j ψej

)

Ue
y
∂ψe

i

∂y

+kexx
∂(he,m+1

j ψe
j)

∂x

∂ψe
i

∂x
+ keyy

∂(he,m+1
j ψe

j)
∂y

∂ψe
i

∂y

}

dx dy

+
∑Ne

j=1

∫

∂Ωe
ψei
(

he,m+1
j ψej

) (

Ue
xnx + Ue

yny
)

ds = 0.

4.1.2.3 Finite Element Calculations

The above equations can be rewritten as follows:

Ne
∑

j=1

(

Ce
ij +Ke

ij + σeij
)

he,m+1
j = f ei +

Ne
∑

j=1

Ce
ijh

e,m
j , i = 1, 2, . . . , Ne (4.15)

where

Ce
ij =

∫∫

Ωe

ψeiψ
e
j

∆t
dx dy, σeij =

∫

∂Ωe

ψeiψ
e
j

(

Ue
xnx + Ue

yny
)

ds,
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Ke
ij =

∫∫

Ωe

(

−Ue
xψ

e
j

∂ψei
∂x
− Ue

yψ
e
j

∂ψei
∂y

+ kexx
∂ψej
∂x

∂ψei
∂x

+ keyy
∂ψej
∂y

∂ψei
∂y

)

dx dy,

f ei =

∫∫

Ωe

ψei ȧ dx dy,

The components of the global system of equation are obtainedby summing equations

(4.15) over all the elements of the mesh:

(C +K + σ)hm+1 = F + Chm, (4.16)

where the matrix and vector entries are given by

Cij =

E
∑

e=1

Ce
ij (4.17)

Kij =

E
∑

e=1

Ke
ij (4.18)

σij =
E
∑

e=1

σeij (4.19)

Fi =

E
∑

e=1

fi (4.20)

whereE is the number of elements.

Thus, solving the prognostic equation is reduced to solvinga system of linear equa-

tions with matrixC +K + σ, which is called the stiffness matrix of the system.
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4.2 FEM formulation of an Ice Shelf Morland Equations

In this section, we construct the FEM formulation of Morlandice shelf/ice stream

model discussed in the previous chapter. The variational forms of momentum and mass

equations, as well as the final systems of linear equations generated by FEM are derived.

4.2.1 Approximation of the Diagnostic Equation

4.2.1.1 Variational Form

The variational form of thex-component of the momentum equations is constructed

by multiplying the residual error function from equation (3.24a) by a test functionψ(x, y)

and integrating over the problem’s domainΩ:

For the x-component of the momentum equations, the Galerkinmethod requires that:

∫∫

Ω

ψ(x, y)

[

∂

∂x

(

µ̄h

(

∂Ux
∂x

+
1

2

∂Uy
∂y

))

+
∂

∂y

(

µ̄h
1

4

(

∂Ux
∂y

+
∂Uy
∂x

))

− ρgh

4
(1− αxgbx)

∂zs
∂x

+
ρgh

4
gbx

∂zb
∂x

]

dx dy = 0.

(4.21)

Use of divergence theorem converts equation (4.21) to the following form:

∫∫

Ω

(

µ̄h

(

∂Ux
∂x

+
1

2

∂Uy
∂y

)

∂ψ

∂x
+ µ̄h

1

4

(

∂Ux
∂y

+
∂Uy
∂x

)

∂ψ

∂y

)

dx dy

+

∫∫

Ω

ρgh

4

(

(1− αxgbx)
∂zs
∂x
− gbx

∂zb
∂x

)

ψ dx dy

−
∫

∂Ω

ψ

[

µ̄h

(

∂Ux
∂x

+
1

2

∂Uy
∂y

)

+ µ̄h
1

4

(

∂Ux
∂y

+
∂Uy
∂x

)]

ds = 0.

(4.22)

The boundary contour integral in the equation above can be re-written taking into

account discussion of the boundary conditions on page 39. Contour integrals along the
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contour where Dirichlet conditions are applied can be made equal to zero by choosing the

arbitrary functionsψ while the contour integrals along the ice-shelf front whereNewman’s

conditions are applied can be replaced by the integral::

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψ ds

Then thex− andy− components of the diagnostic equation look as follows:

∫∫

Ω

(

µ̄h

(

∂Ux
∂x

+
1

2

∂Uy
∂y

)

∂ψ

∂x
+ µ̄h

1

4

(

∂Ux
∂y

+
∂Uy
∂x

)

∂ψ

∂y

)

dx dy

+

∫∫

Ω

ρgh

4

(

(1− αxgbx)
∂zs
∂x
− gbx

∂zb
∂x

)

ψ dx dy =

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψ ds;

(4.23)

∫∫

Ω

(

µ̄h

(

∂Uy
∂y

+
1

2

∂Ux
∂x

)

∂ψ

∂y
+ µ̄h

1

4

(

∂Ux
∂y

+
∂Uy
∂x

)

∂ψ

∂x

)

dx dy

+

∫∫

Ω

ρgh

4

(

(1− αygby)
∂zs
∂y
− gby

∂zb
∂y

)

ψ dx dy =

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψ ds,

(4.24)

where∂Ω is an ice-front where ice shelf floats in hydrostatic equilibrium with seawater.

4.2.1.2 Finite Element Algorithm

Equations (4.23)-(4.24) apply for the domain as a whole, butthey also apply for a

particular sub-domain, or element. Thus we would have a set of element equations corre-

sponding to the above, where onlyΩ andδΩ would be changed toΩe andδΩe for element

e. Let’s consider shape functionsψej = ψej (x, y). For an element withNe = 4 nodes, the

x-, y- components of the velocity at any point within the element can be expressed as a sum
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of values at the nodes times shape functions evaluated at thepoint:

Ue
x =

Ne
∑

j=1

ux
e
jψ

e
j , Ue

y =

Ne
∑

j=1

uy
e
j
ψej , (4.25)

whereuxei is the value ofux an nodei in elemente, etc.

After substitutingψe =
∑

i=1,Ne
Ψe
iψ

e
i , into above formula and requiring that it is

satisfied for anyΨe
i , we get the following equations fori = 1, ..., Ne (Ne - is the number of

elements) for the x-component of the momentum equation:

∫∫

Ωe

(

µ̄h

(

∂ux
∂x

+
1

2

∂uy
∂y

)

∂ψei
∂x

+ µ̄h
1

4

(

∂ux
∂y

+
∂uy
∂x

)

∂ψei
∂y

)

dx dy =

−
∫∫

Ω

ρgh

4

(

(1− αxgbx)
∂zs
∂x
− gbx

∂zb
∂x

)

ψei dx dy +

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψei ds.

Then, after substitutinguex, u
e
y into the above formula, we get the following equations

for the x-component of the momentum equation:

Ne
∑

j=1

∫∫

Ωe

(

µ̄h

(

uexj
∂ψej
∂x

+
1

2
ueyj

∂ψej
∂y

)

∂ψei
∂x

+ µ̄h
1

4

(

uexj
∂ψej
∂y

+ ueyj
∂ψej
∂x

)

∂ψei
∂y

)

dx dy

= −
∫∫

Ωe

ρgh

4

(

(1− αxgbx)
∂zs
∂x
− gbx

∂zb
∂x

)

ψei dx dy +

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψei ds

The momentum balance equation for x-component, after some rearrangement, is as

follows:
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Ne
∑

j=1

[

uexj

∫∫

Ωe

µ̄h

(

∂ψej
∂x

∂ψei
∂x

+
1

4

∂ψej
∂y

∂ψei
∂y

)

dxdy + ueyj

∫∫

Ωe

µ̄h

(

1

2

∂ψej
∂y

∂ψei
∂x

+
1

4

∂ψej
∂x

∂ψei
∂y

)

dxdy

]

= −
∫∫

Ωe

ρgh

4

(

(1− αxgbx)
∂zs
∂x
− gbx

∂zb
∂x

)

ψei dx dy +

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψei ds.

(4.26)

Momentum equations for y- component of the velocity is similar:

Ne
∑

j=1

[

ueyj

∫∫

Ωe

µ̄h

(

∂ψej
∂y

∂ψei
∂y

+
1

4

∂ψej
∂x

∂ψei
∂x

)

dxdy + uexj

∫∫

Ωe

µ̄h

(

1

2

∂ψej
∂x

∂ψei
∂y

+
1

4

∂ψej
∂y

∂ψei
∂x

)

dxdy

]

==

∫∫

Ωe

ρgh

4

(

(1− αygby)
∂zs
∂y
− gby

∂zb
∂y

)

ψei dx dy +

∫

∂Ω

ρgh2

8

(

1− ρ

ρw

)

ψei ds.

(4.27)

The components of the global system of equation are obtainedby summing equations

(4.26 and (4.27) over all the elements of the mesh. This will generate2N equations for2N

variables (x− andy− components of velocities defined at theN nodes of the mesh)

4.2.2 Approximation of the Prognostic Equation

Since the ice-stream/ice-shelf prognostic equation (3.28) is exactly the same as the

ice-sheet prognostic equation (3.3), the finite element formulation of the equation as well

as the final systems of linear equations generated by FEM willbe the same. They have

been discussed on page 53.
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Chapter 5

PERFORMANCE ANALYSES OF SuperLU PARALLEL SOLVER

This chapter describes application and benchmarking of themultiprocessor software

package SuperLU-DIST for solving large systems of sparse simultaneous linear equations

generated by the three-dimensional full-Stokes model.

5.1 Introduction

Solving the system of linear equations (SLE) generated by a three-dimensional higher-

order ice-sheet model is a demanding task because usage of indirect iterative methods is

impossible while usage of direct banded-Gaussian elimination method is impractical due

to types of matrices of the generated systems. Figure 5.1 on Page 63 is a scatter plot show-

ing the non-zero entries from an actual matrix generated by FEM for the higher-order 3D

model. It is a banded matrix with right and lower borders of non-zero elements. As it

can be seen from the picture, the matrices generated by FEM for solving conservation of

momentum equation have the following properties:

Matrices of the systems are not diagonally dominant.Since the diagonally dominance

of the matrices is the necessary condition for the iterativemethods to converge, that

means that iterative methods cannot be used to solve these systems. For this reason,

the direct methods, as opposed to iterative methods, are investigated for solving the

equations generated by FEM.
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Matrices of the systems do not have a strict banded structure. Non-zero elements on right

and lower borders of the matrix (Figure 5.1 on Page 63) are entries generated by pres-

sure terms in the momentum equations. These entries make thematrices non-banded.

Without the banded matrix structure, storing the matrices as two dimensional arrays

and straightforwardly applying banded-Gaussian elimination methods is impractical

for large size problems.

Matrices have extremely large sizes.For example, space grid of size50×50×10 gener-

ates≈ 105 equations. But the space grid may range1000×1000×50 which generates

≈ 108 equations.

Matrices of the systems are very sparse.Systems of equations that have many more zero

entries than non-zero entries are called sparse1. For example, for a 3-D model for a

rectangular region that is50× 40× 5 = 10, 000 nodes, the system has40, 000 inde-

pendent variables (number of nodes× 3 velocity variables and 1 pressure variable)

and the matrix of the system has40, 000× 40, 000 = 1.6× 108 elements. But only

81× 40, 000 = 3.24× 106 of them are non-zero elements, that is, only≈ 100 entries

per equation are non-zero.

Since indirect methods cannot be applied for solving ice-sheet systems, the choice is

between different direct methods. Table 5.1 on Page 63 compares characteristics of dense

matrix methods (based on Gauss elimination) and sparse matrix methods (such as SuperLU,

UMFPACK) applied to a matrix of size≈ 105 generated by grid50× 50× 10.

1Defining a sparse matrix as a matrix with some fraction of nonzero entries is inappropriate. Instead, it is
recognized that sparsity is an economic issue; if you can save time and memory by exploiting the zeros, then
the matrix is sparse. The sparse matrix community defines a sparse matrix as any matrix with enough zeros
that it pays to take advantage of them.
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Figure 5.1.Scatter plot of non-zero entries in an ice-sheet matrix

Dense Matrix Algorithms Sparse Matrix Algorithms

memory(storeA): memory (store only non-zeros ofA, row- and
column- pointers, and nonvisible for the user ma-
tricesL andU):

O(n2) ≈ 80GB O(n) ≈ 0.16GB

runtime(LU decomposition): runtime(perform operations only on nonzeros):
O(n3) ≈ 1015FLOPs ≈ 277
hoursa

O(n2) ∼ O(n2log2n) ≈ C × (1 ∼ 16.6) ×
1010FLOPs ≈ C × (10 ∼ 166) seconds.
If constantC ≈ 100, then runtime may range from
2 min to∼ 4 hours.

afor a typical processor that performs109 FLOPs per second.

Table 5.1.Comparison of dense and sparse matrix algorithms for solving a systemAx = b
with matrixA(n, n), wheren ≈ 105.

We can see from the table that application of dense matrix algorithms is impossible

– it requires≈ 80GB memory to solve even a modest size system and it takes about

270 hours to solve the system. Sparse matrix algorithms require significantly less memory

(they store only non-zero elements of the matrix and some additional needed matrices that

describe the positions of these nonzeros within the total matrix). However, the run-time

of the algorithm is in the range of2min to∼ 4 hours. Ideally we want to solve systems

of much higher-order (say,200, 000, 000 which is generated when we use a grid of100 ×
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100× 50 points in space) and solve them not once but100, 000 times to simulate evolution

of ice-sheet with time.

The above reasons have motivated us to explore the possibility of using multiproces-

sors to solve these systems of equations.

5.1.0.1 Which part of the code to parallelize?

To begin with, we have a question, should we write a parallel code ourselves or use

some available software. The answer depends on how unique isthe problem we are solving.

Our code consists of two steps, (1) a specific step, generating a SLE from mathematical ice-

sheet model using FEM, and (2) a general problem of solving the generated SLEs using a

direct solver. Running time of the first step, building the SLEs, is more than an order less

than the running time of the second step, solving the generated SLEs. Constructing the

SLEs isO(n), while solving the SLEs (for example, using serial SuperLU2 ) is O(n2) −

O(n2log2n).3

We timed these two steps using serial SuperLU. Table 5.2 on Page 65 shows the

timing results. Figure 5.2 on Page 66 displays the time required to build the system of linear

equations using FEM and the time required to solve the systemas functions of problem size.

We can see from the table that the first step, specific to our model, takes only about

2% of total running time for our benchmark problem of size100, 000 and less than1% for

bigger size problems. We can see from the graph that time to build the SLEs increases

2The software application for solving general systems of linear equations described further in this chapter.
3The running time of the algorithm depends on the type of matrix of the problem because complexity of

factorization of matrices depends on the type of the matrices.
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linearly when problem size increases, while the time required to solve the systems grows

much faster.

Grid Matrix Building Solving % Building Time
Order Time Time of Total Time

23× 23× 8 16,084 5.07 43.68 10.40

33× 33× 8 33,304 11.85 208.81 5.37

40× 40× 8 49,047 16.06 382.40 4.03

45 × 45 × 10 78,174 26.18 1,118.99 2.29

55 × 55 × 10 116,994 39.32 1,768.93 2.17

65 × 65 × 10 163,614 55.47 3,046.54 1.79

75 × 75 × 10 218,034 73.74 7,919.75 0.92

85 × 85 × 10 280,254 102.18 15,521.83 0.65

Table 5.2.FEM matrix building time vs. Solving time (in sec).

The experiments show that parallelizing the first step of theUMISM code is not

worth the effort – for a system of order≈ 105, solving the system takes∼ 95 − 98% of

running time and building the system takes only∼ 5− 2% of total running time. That is, it

is enough to parallelize solving the SLEs part of the code!

Moreover, if we need to parallelize only solving the SLEs, then we can use freely

available packages for solving SLEs on multiprocessors.

In this chapter, we explore an application of a distributed SuperLU software package

to solving the system of linear equations generated by 3-D higher-order ice sheet model

and evaluate and benchmark the performance characteristics of the package.
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Figure 5.2.Running time required to build and solve SLE generated by IceSheet model (in
seconds) as functions of matrix size. Left axis is used for scaling running time of building
SLEs while right axis is used for scaling running time of solving the SLEs.

5.2 Distributed SuperLU

Solving large systems of sparse simultaneous linear equations is a common task in

science and engineering problems. Over the years a great deal of work has been done

in this area by researchers. Software to solve these problems has been developed and

is readily available. In his Master’s thesis, Rodney Jacobs[39] chose and evaluated two

current software packages with respect to the ice sheet problem. One of them is SuperLU

[7, 8, 44] – a library of ANSI C subroutines for solving general sparse linear systems.

The principal developers are Xiaoye (Sherry) Li, James Demmel, and John Gilbert.4 The

SuperLU libraries are freely available for commercial and non-commercial use.

4Xiaoye (Sherry) Li, Computer Scientist, Lawrence BerkeleyNational Laboratory; James Demmel, Pro-
fessor of Computer Science and Mathematics, University of California at Berkeley; and John Gilbert, Profes-
sor of Computer Science, University of California at Santa Barbara.
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SuperLU comes in three versions, for single processor computers (known asSuperLU),

for shared memory multiprocessors5 (known as Multithreaded SuperLU orSuperLU −

MT ), and for distributed memory parallel computers (known as Distributed SuperLU or

SuperLU −DIST ). SuperLU-DIST was used in this work.

SuperLU-DIST uses Message Passing Interface (MPI) for interprocess communica-

tions. The authors claim these versions are designed to makeoptimum use of the sparsity

ofA and the computer’s architecture with attention given to optimum use of cache memory

and parallelism.

This section describes SuperLU-DIST package, the algorithm it uses, and distribution

of matrices and vectors among processors used in SuperLU-DIST.

5.2.1 SuperLU Algorithm Phases

The solver is based on sparse Gaussian elimination. To solvea system of equations

Ax = b, it uses factorization

A = D−1
r P−1

r LUP−1
c D−1

c (5.1)

with following forward and backward substitution to solve for x

x =
(

D−1
r P−1

r LUP−1
c D−1

c

)−1
b = DcPcU

−1L−1PrDrb, (5.2)

5A shared memory multiprocessor is a parallel computer that allows all processors to access any main
memory location. Access to main memory by the processors is coordinated by the computer’s hardware.
Each processor in a distributed memory computer has its own memory. A communications network between
the processors is used to share data and coordinate activities.
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where

Pr is a row permutation matrix for maintaining stability,

Pc is a column permutation matrix for maintaining sparsity,

Dr andDc are diagonal row and column scaling matrices chosen to make the diagonal

elements large compared to the off-diagonal elements. Thiswill minimize the sensitivity

of the matrix to round off errors.

SuperLU computes each of these four matrices with various levels of control avail-

able to the user. Because SuperLU usesLU factorization, it can computex for multiple

right hand sides.

In SuperLU terminology, driver routines are the user-callable routines for performing

major tasks. The expert driver, available in SuperLU-DIST,performs the following steps.

1. Equilibration ofA by computing the row and column scaling matricesDr andDc

so thatĀ = DrADc is better conditioned thanA (this reduces round off errors and

improves stability).

2. Row permutations of̄A for stability. If row permutations are done from the values of

āij before any factorization is performed, then the process is called static pivoting.

In some algorithms, the row permutations are determined during factorization. Such

a process is calledthreshold pivoting. The interprocess communication required to

perform threshold pivoting is not practical on a distributed memory parallel com-

puter.

3. Column permutations of̄A to reduce fill-in ofL andU and increase parallelism in

SuperLU-DIST. This step is also calledsymbolic factorization; in this step, column
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ordering is defined using fill-reducing heuristics.6 In sparseLU factorization, some

zero elements may become nonzeros at runtime due to factorization and pivoting.

Predicting these elements can help avoid costly data structure variations during the

factorization. The static symbolic factorization can identify the worst case fill-ins

without knowing numerical values of elements. This enablesthe symbolic process-

ing phase to be completely separated from numerical factorization. As a result, the

symbolic computation needs to be performed only once for matrices with the same

initial structure but different numerical values.

For the unsymmetric factorizations (that is, for factorization of general matrixA),

the preordering for sparsity is less well understood than that for the Cholesky fac-

torization (factorization of symmetric matrixA = AT ). Most unsymmetric ordering

methods, SuperLU-DIST including, use the symmetric ordering techniques, called

Multiple Minimum Degree, applied on a symmetrized matrixAT + A, denoted as

MMD(AT +A), or on a symmetrized matrixATA, denoted asMMD(ATA). In this

technique, fill-reducing ordering is computed on a symmetric matrixAT +A orATA

and applied symmetrically to the rows and columns of matrixA.

TheL andU factors generally have many more non-zero entries thanA due to fill-

in. SincePr andPc are computed before factorization begins, SuperLU-DIST can

6The process of factoring a sparse matrix is expressed by a directed acyclic task-dependency graph (DAG).
The vertices of this directed acyclic graph (DAG) correspond to the tasks of factoring rows or columns or
groups of rows and columns of the sparse matrix and the edges correspond to the dependencies between
the tasks. A task is ready for execution if and only if all tasks with incoming edges to it have completed.
Symbolic algorithms inexpensively compute an a-priori minimal task-dependency graph and near-minimal
data dependency graph for factoring a general sparse matrixthat are valid for any amount of pivoting induced
by the numerical values during LU factorization.
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determine what the fill-in requirements will be apriori and allocate the correct amount

of memory.

Complexity of symbolic factorization isO(nonzeros(L+U)) [43] and may depend

on matrix structure as well as the heuristic used in symbolicfactorization step.

4. Numeric factorizationLU with control of diagonal magnitude by replacing tiny piv-

ots by
√
ε ‖ A ‖, whereε is a small number.

5. Triangular solves of the system of equations usingL andU .

6. Iterative refinement to improve the solution if needed.

7. Computation of error bounds. SuperLU can compute the component-wise relative

backward error (BERR). The meaning of BERR is that̄x, the computed value ofx,

is the exact solution of the perturbed linear system of equations(A + E)x̄ = b + f ,

where

|eij| ≤ BERR× |aij| and |fj| ≤ BERR× |bj | for all i andj. (5.3)

The authors claim that by combining static pivoting with rowand column scaling

and iterative refinement, the distributed algorithm is as stable as partial pivoting for most

matrices observed in actual applications. In cases where computations are not stable, BERR

provides an indication of a problem.

In SuperLU-DIST, the most time-consuming steps (4) to (7) have been parallelized,

while preprocessing and analysis steps (1) to (3) are mostlyperformed sequentially at

present.
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5.2.2 Distribution of Matrices among Processors

SuperLU routine takes the matrixA in either compressed-column format7 or compressed-

row format. The right hand side of the system of equations,b, may be presented to the

routine as a dense vector if there is only a single right hand side, or as a dense matrix in

column major order if there are multiple right hand sides. The solutionx overwritesb. Both

A andb are distributed among all processes using a distribution based on block rows. That

is, each process owns a block of consecutive rows ofA andb.

MatricesL andU are distributed among processes in a two-dimensional (2D) block-

cyclic fashion. The routine first identifies the supernode boundary based on nonzero struc-

ture ofL. A supernodeis a range of columns ofL such that the triangular block ofL below

the diagonal is completely filled. In addition, each row ofL within this range of columns

either has all zero entries or all non-zero entries. Becausethe supernodes are not necessar-

ily symmetric, theU portion of the supernode does not have the same dense patternasL.

The matrix in Figure 5.3 illustrates such a partition.

Blocks ofL andU are distributed amongp processes that are arranged as a 2D grid

of dimensionprow × pcol = p. The user can set the shape of the process grid, such as2× 3

or 3 × 2, etc.. In block-cyclic mapping, block(I, J) (0 ≤ I, J ≤ N − 1), whereN is

the number of supernodes, is mapped into the process at coordinate((I−1)modprow, (J −
7Compressed column format is a data format for A that is compatible with both SuperLU and UMFPACK.

Three one-dimensional arrays are used to store a matrix in this format. One array is used to store the non-zero
entries of A in column-row order. The second array is used to store the row number of each corresponding
non-zero entry in the values array. The third array containsthe index values of the first and second arrays
where the first non-zero entry for each column of A is stored. The matrix column number is the index to this
array.

We used a special modified compressed column structures and supporting routines designed by Rodney
[39] that allowed us to exchange data with SuperLU software.Information about compressed column format
can be found in Appendix B.
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1)modpcol) of the process grid. In this 2D mapping, each block column ofL is spread

across every processor in a single column of the process grid. Figure 5.3 on Page 72 shows

2× 3 process-grid and distribution of matricesL andU among the processes.

Figure 5.3. SuperLU-DIST 2D block-cyclic mapping of matrix to processes (from
Baertschy & Li (2001)

In addition to default communicatorMPI COM WORLD, process-groups are

created usingprow × pcol processes. The majority of SuperLU’s computation is updating

the unfactored submatrix of the supernode using the following block mode update.

A(I, J)← A(I, J)− L(I,K)U(K, J),

whereA is the unfactored portion of the supernode,L andU are the factored portions of

the supernode,I is the range of rows of the unfactored portion,J is the range of columns
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of the unfactored portion, andK is the number of columns ofL and the number of rows

of U in the supernode. This looks like a BLAS level 3 operation, and that is in fact what

SuperLU-DIST uses. In theLU factorization, some communication occur only among the

processes in a row or column and not among all processes, so creating process-groups using

2D process grid reduces inefficient addressing.

Thus, decomposition of matricesL andU into blocks of 2D submatrices and us-

ing 2D block-cyclic mapping allows the authors to exploit dense submatrices in L and U

(”supernodes”), use Level 3 BLAS operations, reduce inefficient, indirect addressing (scat-

ter/gather), and enhance load balance and scalability.

5.3 Performance Analyses of the Parallel Solver

5.3.1 Test Environment

We ran the tests on the Boston University SCV8 IBM pSeries 690 (IBMp690) and

655 (IBMp655). Table 5.3 on Page 74 shows the characteristics of some of IBMp690 and

IBMp655 nodes used to perform experiments described in thiswork.

IBMp690 composed of four nodes, namedkite.bu.edu, pogo.bu.edu, frisbee.bu.edu,

anddomino.bu.edu, each consisting of Power4 processors running at 1.3 GHz andsharing

1 GB of memory per processor. There are three levels of cache on this machine. Each

processor has a 32KB L1 cache and then each pair of processorsshare a 1.41MB L2 cache,

and each set of eight processors share a 128MB L3 cache. The combined peak performance

of p690 system is 580 GFLOPS.

8SCV stands for Scientific Computing and Visualization
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IBMp655 is a 48-processor system composed of six nodes, named twister.bu.edu,

scrabble.bu.edu, marbles.bu.edu, crayon.bu.edu, litebrite.bu.eduandhotwheels.bu.edu, each

consisting of 8 Power4 processors running at 1.1 GHz and sharing 16 GB of memory. There

are three levels of cache on this machine. Each processor hasa 32KB L1 cache and then

each pair of processors share a 1.41MB L2 cache, and each p655node shares a 128MB L3

cache. Twister is the interactive machine for the entire setof pSeries machines and is the

only one of the machines which users can log in to. The other machines are all reserved for

batch processing.

Host Model # Processors Memory Network

twister IBMp655 8× 1.1 GHz 16GB 1Gbps Ethernet

kite IBMp690 32× 1.3 GHz 32GB 1Gbps Ethernet

frisbee IBMp690 32× 1.3 GHz 32GB 1Gbps Ethernet

pogo IBMp690 32× 1.3 GHz 32GB 1Gbps Ethernet

Table 5.3. Characteristics of Boston University IBMp690 and IBMp655 nodes used for
computations.

5.3.2 Test Problems

To study the applicability of the package to our problem, we tested it on matrices of

sizes varying from 16,000 to 163,600. Characteristics of the matrices are shown in Table 5.4

on Page 76. They include the problem’s name or grid size (Problem), order of matrices (n),

number of nonzeros in matricesA and inL andU factors (fill-in ), gigaflops required to

factorize the matrix, and the average number of nonzero elements in a supernode. The last

characteristic can be a certain measure of the sparsity of the filled matrix.
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To compare the properties of our matrix with the ones that have been solved on the

multiprocessor by the SuperLU-DIST developers, we included Table 5.4 on Page 77 from

[45] that shows the characteristics of benchmark matrices analyzed by Xiaoye Li and Yu

Wang.

Table 5.5 on Page 85 shows other parameters of the matrices derived from the param-

eters shown in Table 5.4 and Table 5.4, such as the average number of nonzero elements

of matrixA per row (which characterizes the sparsity of matrixA), the average number of

nonzero elements ofL andU per row (which characterizes how the sparsity of the problem

changes afterLU factorization), average number of rows per supernode (smaller the num-

ber, more evenly workload is distributed among processes),and number of megaflops, it

took to factorize the matrix, divided by matrix order (whichcharacterizes how fast running

time growth when the problem size increases).

From Table 5.5, we can see that our matrices are the most densematrices of all the

benchmark matrices. Only problemmixing-tankis close in sparsity ofA to our problems.

It is close in size ofA to our problem33×33×8, they have almost the same number of non-

zero elements per row, but the size of our matrix is a little bit bigger than the size of matrix

mixing-tank. Other characteristics of these two problems, such as sparsity of filled L and

U , average size of a supernode, average number of FLOPS it tookto factorize the matrices,

are also close. Comparing these parameters with similar parameters of other benchmark

matrices, we can conclude that matrices large in dimension and number of nonzeros require

more time to factorize.
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Problem Order nnz(A) nnz(L+U−I)#supernodes Flops nnz(L+U−I)
N

n ×106 (N ) ×109 ×103

23 × 23 × 8 16,084 1,051,446 23.92 1,795 28.80 13.32

33 × 33 × 8 33,304 2,207,046 59.06 3,262 88.20 18.11

40 × 40 × 8 49,047 3,268,008 107.55 4,849 216.06 22.18

65× 65× 10 163,614 14,561,646 610.89 16,376 2,134.25 37.30

Table 5.4.Characteristics of ice-sheet benchmark matrices used in this work. They include
the problem’s name, order of matrices (n), number of nonzeros in matrices, FLOPs required
to factorize the matrices, and the average number of nonzeroelements in a supernode.

The most important characteristic is the sparsity of matricesL andU which is shown

as the number of nonzero elements of the matrixL + U − I. It is a key parameter in

evaluating speed and memory requirements of the algorithm.

Since the algorithm factorization time depends on the the number of nonzeros of

this matrix, the faster this number grows when the size of theproblem increases, the more

time is required to factorize bigger matrices and the more memory is required to store the

matrices.

Figure 5.5 on Page 78 show the number of nonzero elements in matricesA andL+

U − I as functions of problem size. While number of nonzero elements in the matrixA

is proportional to the order of the matrix (linear graph in Figure 5.5, which is so close to

axisx that it is barely noticeable), the number of nonzeros of matricesL andU (number

of nonzeros of matricesL + U − I on the figure) grows much faster than the number of

nonzeros ofA. Our matrices result in the most dense matricesL andU after factorization

among all benchmark matrices of similar sizes in Table 5.5. Ispeculate that the reason

is the fact that our matricesA have many zero diagonal elements and elements at right
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Figure 5.4. Characteristics of benchmark matrices analyzed in Li & Wang(2003). Char-
acteristics include the number of supernodesN , the number of nonzeros inL andU using
MMD ordering onAT + A, and, for some matrices, the number of nonzeros inL andU
using the nested dissection (ND) ordering.

and lower borders (see Fig. 5.1). This fact may increase the number of column and row

permutations and, consequently, increase fill-ins.

5.3.3 Performance Characteristics

The number of non-zero entries in theL andU factors is a key parameter in evaluating

speed and memory requirements of an algorithm. The number offloating point operations

and the amount of memory required tend to increase with increasing numbers of non-zero

entries, and runtime tends to increase with increasing numbers of floating point operations.

In evaluating performance of the algorithm, we will look at numbers of non-zero entries

in L andU , number of floating point operations, runtime, efficiency, and scalability of the

algorithm.
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Figure 5.5. Number of nonzero elements in matricesA andL + U − I as functions of
problem size.

5.3.3.1 Scalability

Figure 5.6 on Page 80 demonstrates timing results, running time and efficiency, ob-

tained using ”square” processor-gridsP = 1, 2× 2, 3× 3, 4× 4, 5× 5, 5× 6, and4× 8 for

computing benchmark problems described in Table 5.4 on Page76.

Efficiency (E)is a measure of process utilization in a parallel program, relative to the

serial program. It can be also defined as thespeedup, the ratio of the runtime on one proces-

sor to that of parallel program running onp processors, divided into number of processors

p:

Speedup =
T (1)

T (p)
, E =

T (1)

p · T (p)
,
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whereT (p) - run time withp processors.

Efficiency of a parallel algorithm depends mainly on how the workload is distributed

and how much time is spent in communication. For dense matrices, theLU factorization

algorithm have been shown to exhibit good scalability, where it can be approximately main-

tained as the number of processors increases when the memoryrequirements per processor

are held constant [9]. For sparse matrices, however, the efficiency is much harder to predict

since the sparsity patterns vary with different applications.

Figure 5.6 shows results that are as expected on multiprocess computations, that is,

1. running time decreases as the number of processors increases; and it decreases faster

for smaller size problem than for bigger one;

2. as expected, the efficiency degrades faster for problems of smaller size and slower

for problems of bigger size;

3. for problems of order33, 000 or higher, efficiency still maintains at40% even with

32 processors.

Thus, we can conclude that the factorization phase scales quite well for our type of matrices.

Table 5.6 on Page 86 shows speedup reached on2 × 2, 3 × 3, 4 × 4, 5 × 5, 5 × 6,

4× 8 processor-grids. As can be seen from the table,

• for small size problems, speedup levels off at 16 processors;

• for big size problems, speedup levels off at 25-30 processors.

5.3.3.2 Workload Distribution and Optimal Process-Block Size

Efficiency of a parallel algorithm depends mainly on how the workload is distributed

and how much time is spent in communication. One way to measure workload distribution
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Figure 5.6.Running time and efficiency as functions of number of processors and problem
size. Processor-grids are1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 5 × 6, 4 × 8. Left: running time.
Right: efficiency.

is to compute theload balance factor, LBF, which is the average workload divided by the

maximum workload. It is clear that0 < LBF ≤ 1, and higherLBF indicates better load

balance. The parallel runtime is at least the runtime of the slowest process, whose workload

is highest.

LBF =

∑

i fi
p ·maxifi

=
averageworkload

maximumworkload
, 0 < LBF ≤ 1,

wherefi - number of floating-point operations performed on processor i.

Figure 5.7 on Page 81 shows a block-cyclic distribution of a matrix among four pro-

cessors on two different processor-grids, rectangular1×4 grid and square2×2 grid. From

the figure, we can see that a square processor-grids provides

1. better, more even, workload distribution. For example, in a rectangular processor

grid 1× 4, workload of Processor 0 is much less than than workload of Processors 1,

2, or 3 while in a square processor grid2× 2, all processors more evenly distributed

workload.
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Figure 5.7. Block-cyclic distribution of a matrix on a rectangular1 × 4 and square2 × 2
processor-grids.

2. less communication overhead. In a rectangular processor-grid 1 × 4 distribution,

each processor has to communicate with every other processor, while in a square

processor-grid2× 2 distribution, each processor has to communicate only with pro-

cessors in its row and column. The square grid minimizes the number of communi-

cations.

To study how the shape of processor-grids affect the workload distribution among

processors, we have run tests with different size problems on different shape processor-

grids, varying from more rectangularn × 1 andn × 2 to more ”square” gridsn × 4:

n× 1 = 1, 2× 1, 3× 1, 4× 1, ..., 32× 1,

n× 2 = 1× 2, 2× 2, 3× 2, ..., 16× 2, and

n× 4 = 1× 4, 2× 4, ..., 8× 4.

Figures 5.8 on Page 82 show the load balance factor for the factorization phase of

the algorithm for problems of size23× 23× 8 and65× 65× 10 calculated using different

shape processor-grids.
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Figure 5.8. Load Balance Factor as a function of a number of processors and processor-
grid shape. The following rectangular processor-grid shapes are used:n × 1, n × 2, and
n× 4; Left: problem23× 23× 8; Right: problem65× 65× 10i.

Figures 5.9 on Page 83 show the same graphs of the load balancefactor as a function

of a number of processors and matrix sizes (23× 23× 8, 40× 40× 8, and65× 65× 10)

displayed for different rectangular shape processor-gridsn× 1, n× 2, andn× 4.

Finally, Figures 5.10 on Page 87 demonstrate efficiency of the algorithm as a function

of a number of processors and matrix sizes (23× 23× 8, 40× 40× 8, and65× 65× 10)

for different shape processor-grids,n× 1, n× 2, andn× 4.

Figures 5.8, 5.9, and 5.10 show that

• distribution of the workload degrades when the number of processes increases;

• distribution of the workload degrades monotonically for ”more square” processor-

grid (n × 4), and degrades erratically for rectangular processor-grids (n × 2 and

n× 1);

• distribution of the workload is more even (higher LBF) for ”more square” processor-grid

(n× 4) than for rectangular processor-grids(n × 2 or n× 1).

• for all three different size problems, efficiency is higher for ”more square” processor-

grid (n× 4) than for rectangular processor-grids(n× 2, n× 1).
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Figure 5.9. Load Balance Factor as a function of a number of processors and matrix sizes
(23×23×8, 40×40×8, and65×65×10). Top: for processor-grids shapen×1. Middle:
for processor-grid shapen× 2. Bottom: for processor-grid shapen× 4.
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Thus, we can conclude that problems are more scalable for square processor-grids

than for rectangular processor-grids.
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Ice-sheet Matrices used in this work

Problem Order A sparsity L and U sparsity avg. size of aavg. # flops per

n
nnz(A)

n
nnz(L+U−I)

n
supernode: n

N
row: F lops

n
× 106

23× 23× 8 16,084 65.37 1,487 8.96 1.79

33× 33× 8 33,304 66.27 1,773 10.21 2.65

40× 40× 8 49,047 66.63 2,195 10.11 4.41

65× 65× 10 163,614 89.00 3,734 9.99 13.04

Benchmark matrices analyzed by Li & Wang (2003)
n

nnz(A)
n

nnz(L+U−I)
n

supernode: n
N

row: F lops
n
× 106

bbmat 38.744 45/73 932 5.44 0.68

fidapm11 22,294 27.97 1,148 8.54 1.08

wang4 26,064 6.80 411 3.74 0.34

twotone 120,750 10.14 94 3.10 0.06

mixing-tank 29,957 66.60 1,489 11.80 2.57

inv-extrusion-1 30,412 58.99 993 7.37 1.07

ecl32 51,993 7.32 806 2.71 1.17

ir 186,230 15.63 482 5.91 0.36

dds.quadratic 380,698 41.62 854 9.20 1.29

dds15 834,575 15.70 631 5.92 0.72

Table 5.5. Characteristics of ice-sheet benchmark matrices and benchmark matrices from
Li & Wang (2003). Theses characteristics are derived from the parameters in Table 5.4 and
Table 5.4 and include the average number of nonzero elementsof A per row, the average
number of nonzero elements ofL andU per row, average size of a supernode, and FLOPs
(took to factorize the matrix) divided by matrix order.
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# processors 23x23x8 33x33x8 40x40x8 65x65x10

4 2.86 3.73 3.94 4.00

9 4.46 6.71 7.23 8.22

16 5.60 9.61 10.26 12.99

25 5.97 11.69 12.30 16.38

30 6.10 12.11 13.34 17.73

32 5.95 12.32 13.60 17.78

Table 5.6.Speedup on processor-grids2× 2, 3× 3, 4× 4, 5× 5, 5× 6, 4× 8.
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Figure 5.10. Efficiency as a function of a number of processors and matrix sizes (23 ×
23× 8, 40× 40× 8, and65× 65× 10). Top: for processor-grids shapen× 1. Middle: for
processor-grid shapen× 2. Bottom: for processor-grid shapen× 4.
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5.3.3.3 Column Ordering Strategies

To check which MMD fill-reducing orderings (based onAT +A orATA) is better for

our type matrices, we tested performance of the algorithm with these orderings on different

size problems. Table 5.7 on Page 89 shows characteristics ofthe algorithm run with two

different column-ordering techniques,MMD(AT + A) andMMD(ATA). Tests are run

with three different size problems.

We can see from the table thatMMD(AT + A) ordering generates fewer num-

bers of supernodes thanMMD(ATA) ordering for all three different size problems. This

means that the average supernode size is larger forMMD(AT + A) ordering than for

MMD(ATA) ordering. The average size of supernodes generated byMMD(AT + A) is

about9−10, while the the average size of supernodes generated byMMD(ATA) is about

6.5. The supernode size determines the size of the matrix passedto matrix-vector multiply

and other Level 2 BLAS routines.

More important than average size is the distribution of supernode sizes. Figure 5.11

on Page 89 shows histograms of supernodes distribution generated with these two column-

ordering techniques, in red are distribution generated byMMD(AT +A), and in green are

distribution generated byMMD(ATA). In the figure, the number at the bottom of a bin

indicates the smallest supernode size in that bin. The figureshows thatMMD(AT + A),

shown in red, generates supernodes distributed over a widerspectrum, that is, relatively

smaller number of smaller size supernodes and relatively bigger number of bigger size su-

pernodes thanMMD(ATA) ordering, shown in green. This distribution reduces commu-

nication overhead and makes the algorithm faster. Thus, forthe type of matrices generated
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by our 3D higher-order model, column-ordering based onMMD(AT + A) works better

than column-ordering based onMMD(ATA).

problem MMD(AT + A) MMD(ATA)

# supernodes avg.size fill-ins run.time # supernodes avg.size fill-ins run.time

23x23x8 1,795 8.96 13,324 13.71 2,538 6.34 8,529 28.21

40x40x8 4,849 10.11 22,180 73.28 7,598 6.46 12,879 184.15

65x65x10 16,376 9.99 37,304 784.93 24,920 6.57 20,675 1,980.99

Table 5.7.Performance of the algorithm withMMD(AT +A) andMMD(ATA) column-
ordering methods;avg.size= problem size

#supernodes
; fill-ins = #nonzeros(L+U−I)

#supernodes
. Computations are

done on4× 4 processor-grid.

Figure 5.11.Supernodes size distribution for column-ordering techniquesMMD(AT +A)
andMMD(ATA). Left: for problem23× 23× 8. Right: for problem65× 65× 10.

5.3.3.4 Algorithm Stability and Numerical Error

In addition to computing a solution to a system of equations,we must also eval-

uate the accuracy of the computed solution. Real numbers on acomputer are generally

represented in single precision or double precision floating point format. Single precision

numbers have about 6 decimal digits of precision, while double precision numbers have

about 16 decimal digits. These formats are unable to represent real numbers exactly. As
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computations are performed, we must concern ourselves withround off error and the evolv-

ing accuracy. In addition to round off error, there is likelyto be uncertainty in the values of

A andb that must also be taken into account.

In theory, we should be able to put error bounds on the computations by following the

sequence of operations performed by the algorithm used to solve the system of equations.

In practice this approach tends to grossly overstate the errors that are actually observed

because a portion of the round off error is reduced due to cancellation. Instead, the standard

practice is to answer the two following questions [10].

1. Is the computed solutionx the exact solution of a nearby problem?

2. If small changes are made to the given problem, are changesto the exact solution

also small?

A problem Āx = b̄ is considered nearbyAx = b when small perturbations toA and b

produceĀ and b̄. When the first question is answered yes, the computational error has

been kept under control. An algorithm that satisfies this property is calledstable. When the

algorithm is stable, it is as though we made small perturbations to the problem and solved

the perturbed system exactly.

If the answer to the second question is yes, then the problem is calledwell-conditioned.

If the problem is well-conditioned and the algorithm is stable, then our calculated solution

is a good estimate of the exact solution. If the answer to the second question is no, then the

problem is calledill-conditioned. If a problem is ill-conditioned, then our solution is likely

to have a large error even if the algorithm used to compute it is stable. The condition of a

problem is a property of the problem.
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Checking if the problem is well-conditioned or not involvescalculating all eigenval-

ues of the matrix, which is at leastO(n3) and is not feasible for big size problems like our

problems.

Since there are no useful formulas that indicate the stability of Gaussian elimination

and LU factorization in practice, the common approach to ensuring the calculations are

stable is to measure the precision of the solution after it has been calculated.

SuperLU-DIST does not calculate the matrix condition number. But it calculates

backward error,BERR, using Demmel’s approach [8] as follows:

BERR = maxi
|bi −

∑

j Aij x̄j |
∑

j |Aij||x̄j|+ |bi|
(5.4)

That is, the calculated solution(x̄) can be considered as an exact solution of the

perturbed system:

(A+H)x̄ = b+ f, (5.5)

where

|Hij| ≤ BERR× |Aij|,

|fi| ≤ BERR × |bi|.

Knowing that the calculations have been stable and the extent to which the system of

equations must be perturbed in order forx̄ to be an exact solution does not yet answer how

accuratelȳx represents the solution of the original problem. If small perturbations of the

problem result in large changes to the solution, thenx̄ may be an inaccurate estimation of
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the solution. However, we do not have an effective way of estimating the conditionality of

the system. So, we limit ourselves to estimating stability of calculations.

Table 5.8 on Page 92 shows that the accumulated errors are quite big even for rela-

tively small size problems (n=33,304) and become about the same size as the elements of

A or b for problems of size n=49,047. Solutions calculated with such big errors cannot be

trusted.

Grid Matrix Order BERR

23× 23× 8 16,084 3.03E − 16

33× 33× 8 33,304 2.33E − 03

40× 40× 8 49,047 9.91E − 01

Table 5.8.Component-wise relative backward error (BERR) for different size problems.

Is it possible to reduce error? Are they big because our matrix is ill-conditioned

or because the algorithm couldn’t find the right row/column permutations to maintain sta-

bility? Would the error decrease if we permute the rows of thematrix before solving the

system using apriori knowledge of the matrix? If so, what criteria should we use to permute

the rows?

Figure 5.1 on Page 63 shows that an ice-sheet matrix has zero elements on some of

the diagonals. The rows with zero elements on diagonals correspond to equations approxi-

mating the ice incompressibility equations. Will the errorreduce if we permute the rows of

the matrix to make a matrix with non-zero elements on the diagonals? To do so, we need

some rule of what rows to exchange.

To demonstrate the concept, we consider a small 2-dimensional problem on a2 × 2

grid. The grid consists of 4 elements and 9 nodes as shown in Figure 5.12 on Page 93.
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Variables we want to solve for are horizontal and vertical components of velocities defined

in the nodes of the grid and pressures defined in the centers ofthe elements. This problem

generates a SLE of size 22. Scatter plot of non-zero entries in the matrix are shown on

Figure 5.13 on Page 94.

Figure 5.12. 2D problem grid2 × 2 (1-18 – velocities, x- and y- components, 19-22 –
pressure).

To make matrix diagonal elements nonzero, we exchanged rowsin the matrix cor-

responding to pressure in grid element with the rows corresponding to x-component of

momentum equation in the same element, or we exchanged the following rows: 1 ↔ 19,

3↔ 20, 7↔ 21, and9↔ 22.

This will change the global matrix from the one on Figure 5.13on Page 94 to the

one on Figure 5.14 on Page 95. The diagonal elements of this matrix are not zeros. This

permutation will not make the matrix a diagonally dominant one, to do so, we have to use

upwinding functions in approximating the ice incompressibility equations.

To test if the rows permutations improved stability, we run two problems with ma-

trices of sizes 33,304 and 163,614. The results of calculations without row permutations
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Figure 5.13.Matrix of 2× 2 2D problem.

and with above described row permutations are shown on Table5.9 on Page 96. The table

shows that the row permutations have

1. increased number of supernodes (N);

2. decreased number of nonzero elements of matricesL+U − I (which saves memory

and computation time),

3. made, in average, matricesL andU more sparse (nnz(L+ U − I)/N decreases),

4. decreased number of FLOPs,

5. decreased running time significantly, and

6. decreased the error, BERR, by∼ 100 times.
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Figure 5.14.Matrix of 2× 2 2D problem with permuted rows.

Thus, as can be seen from the table, row permutations reducedbackward error (BERR) by

about 100 times. It also reduced running time significantly.It also reduced backward error

(BERR) by about 100 times.

5.4 Conclusion

SuperLU-DIST package was used to parallelize solving the systems of linear equa-

tions generated by the 3-D higher-order model. The following conclusions can be made

from the performed experiments:

1. In UMISM code, which consists of two steps, building the system of linear equations

using FEM and solving the system of linear equations, it is enough to parallelize
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problem order rows not permuted

N nnz (L+U-I) nnz(L+U-I)/N flops running BERR
×103 ×1010 time

33x33x8 33,304 3,262 59,085,689 18.11 8.82 33.34 2.33E-03

65x65x10 163,614 15,804 593,525,103 37.56 210.42 743.89 9.99E-01

problem order rows are permuted

33x33x8 33,304 5,805 32,664,317 5.63 3.88 11.78 1.22E-05

65x65x10 163,614 26,585 288,318,180 10.85 76.88 158.36 4.52E-04

Table 5.9. Comparison of performance characteristics for the test matrices and matrices
with permuted rows.

solving the SLE step. Experiments show that for problems of size≈ 105, building

the SLE takes≈ 5 percent of total time, while solving SLEs takes≈ 95 percent.

2. SuperLU −DIST is a reasonable software package for applying to UMISM prob-

lems when the problem size is not too big. For big size problems,∼ 5 × 105, the

algorithm produces solutions with high error measures∼ 10−4.

3. Sparse matrices generated by FEM for UMISM are scalable.

• For example, running time of solving system∼ 1.6× 105 equations is reduced

from∼ 53 min. on one processor to∼ 6 min. on 9 processors.

• Scalability is better on problems when square processor-grids are used rather

than rectangular ones.

• For problems of sizes≤ 105, there is no need to use more than 16 processors.

4. MMD onAT + A column ordering method generates smaller number of (relatively

bigger) supernodes than MMD onATA column ordering method, thus, making the

algorithm faster.
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5. It is possible to decrease running time, memory usage, andimprove accuracy by

using a priori knowledge of the matrix and permute rows to make diagonal elements

of the matrix nonzero.9

9These row permutations do not make the matrix a diagonally dominant one; to do so, we have to use
upwinding functions in approximating the ice incompressibility equations.
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Chapter 6

APPLICATION OF MODELS TO GLACIOLOGY PROBLEMS

One way to validate a numerical model is to compare the model output with obser-

vations and data received from the field, such as Radio-Echo Sounding (RES) or the Ice,

Cloud, and land Elevation Satellite (ICESat) data. To validate the model, we have simulated

the iceberg profiles [59] and ice flow over subglacial lakes.

Another way to validate a numerical model is to compare the numerical results with

the results produced by the other modelers. So to verify the shelf/stream model, we have

simulated the flow of ice shelf confined by a rectangular embayment into which an ice

stream discharges [46].

6.1 Simulation of Iceberg Profiles

6.1.1 Previous Research

Using an analytic solution [54], Reeh analyzed deformationof the frontal part of a

glacier and the state of stresses using a method analogous with the beam theory [54]. As-

suming that the glacier is very thin (noz-dimension) and infinitely wide (noy-dimension),

he derived the equation for the deflection curve of the floating glacier (5-th order differ-

ential equation onx andt) which he solved usingnumericalintegration. His calculations

show a downward deformation of the frontal part of a glacier at the stages preceding calv-
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ing. Curves on Figure 6.1 on Page 99 show the progress in time of the deflections in the

frontal part of the glacier.

In 1984, Fastook [20] simulated iceberg profiles using SIA model discretized with

finite element method and obtained similar results.

Most of the rift and berg profiles in the Ross area show the headdown profile that

these models predicted.

Figure 6.1.Deformation of a frontal part of a glacier.
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6.1.2 ICESat Observations

Ted Scambos has examined several changes that occur during iceberg drift using

ICESat data. ICESat carries an instrument that gathers elevation data. Specifically, Dr.

Scambos has examined data gathered from three large icebergs named A38, A43, and A44.

These icebergs calved in late 1998 and early 2000 from the Ronne Ice Shelf, calved

into smaller icebergs, and drifted north along paths shown on Picture 6.2.

Figure 6.2. Iceberg drift tracks for the five Ronne Ice Shelf-derived icebergs studies. Berg
locations are plotted every 10 days. Insets are satellite images of the shelf front soon after
the initial calving events. (Provided by Ted Scambos.)

The picture shows that the icebergs have been calved in70◦S latitudes (cold waters)

and drifted far to the North to the50◦S latitudes (to warmer waters).
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Figure 6.3 shows elevation profiles from the examined icebergs and the Ronne Ice

Shelf front for different dates. The Ronne Ice Shelf and all icebergs within sea ice (south

of 63◦), showed berm-type profiles, having 0.6 m raised rounded berms with maximum

height at about 2 ice thicknesses from the shelf/berg edge. These profiles are consistent

with the ones simulated by Reeh and Fastook shown in Figure 6.1.

Figure 6.3. Examples of ICESat elevation profiles over iceberg and ice shelf margins.
Open symbols indicate the shelf or berg front was in sea ice; solid symbols indicate the
iceberg was in open water; gray-fill symbols (A38B, 08 March 2003) indicate partial sea
ice cover. (Provided by Ted Scambos)

Icebergs north of the sea ice edge have a consistent pattern of raised edges, ’ram-

parts’, with shallow (50 to 100 cm deep) ’moat’ areas inboardand parallel to the margin.

These profiles are not consistent with the ones above but are supported by the photographs
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made by astronauts aboard International Space Station in January 2004. The photograph

(Figure 6.4) reveals extensive melt ponds, some impounded by edge-parallel moats. This

and other similar photographs initiated Ted Scambos’ study.

Figure 6.4. Photograph from ISS of iceberg A43B near South Georgia Island showing
melt ponding and subsequent break-up. The iceberg calved from the Ronne Ice Shelf of
Antarctica. Photograph made on January 22, 2004, shows extensive melt ponds on the berg.
Over the next few days to weeks, the berg underwent a rapid disintegration. (Provided by
Ted Scambos)

6.1.3 Forces at an Iceberg Face

’Berm’ profiles consistent with the ones investigated by Fastook and Reeh could be

explained easily if we use Professor Terry Hughes’ geometric force balance method. The

difference between the lithostatic pressure in ice and the hydrostatic pressure in water is

shown by blue arrow. This difference pulls the ice forward leading to toe-down profile.
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Figure 6.5. Schematic cross-section of ice shelf and icebergs, illustrating basic character-
istics, nomenclature, and the physical basis for the model experiments.

However, as the bergs are drifting into ocean that has a thin ’warm’ mixed zone, the

warm upper layer and waves are acting to erode the front of theiceberg; so that the edge

profile becomes like a stair-step: vertical for the deep underwater part, then a shelf of some

10 to 100 meters perhaps, then the freeboard face of the berg.This shelf, or bulge, leads to

a reversed torque on the berg front, lifting the freeboard edge upward.

6.1.4 Modeling

We modeled this problem using a 2-D flowline (x−z plane) version of our full-Stoke

model. The Figure 6.6 shows two ’cold’ profiles and two ’warm’profiles, with our model

results next to them.
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Figure 6.6. Comparison of ICESat observed profiles and our model runs. ICESat profiles
used in setting model parameters are shown with ancillary information similar to Figure 6.3
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Cold/warm water is simulated as a modified shelf front (and remains modified on the

berg edge). The model generates an ’equilibrium state’ profile, i.e. time→ infinity.

For the ”rampart-moat’ case, we examine the effects of an icebench of varying widths

with an upper surface 5m below water level. Benches of just a few meters width were

sufficient to completely eliminate the ’berm’ shape and liftthe iceberg margin higher than

the mean freeboard. We find that benches of 20 to 40 meters width best match the observed

warm-water berg profiles.

As the graphs show, iceberg profiles generated by our model fitquite well the ob-

served iceberg profiles.

6.2 Simulation of Ice Flow over Subglacial Lakes

The next example shows a 2-D and 3-D simulation of ice flow oversubglacial lake.

6.2.1 RES Observations

Radio-echo sounding in East Antarctica has revealed the existence of numerous sub-

glacial lakes. Subglacial lakes have relatively flat surface consistent with a surface of an

ice shelf. The largest of detected subglacial lakes is Lake Vostok, which is 250 km east of

Ridge B (Figure 6.7). It is beneath 4 km of ice, is 250 km long and 50 km wide. Flow of

ice across the lake is dominated by the general eastward flow of the grounded ice sheet.

Figure 6.8 shows a Radarsat image of the ice-sheet surface across subglacial Lake

Vostok.
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Figure 6.7. Lake Vostok location map from Anahitaet al.(1902). The white star denotes
the location of the Vostok Ice Core. Map scale is in kilometers.
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Figure 6.8. Radarsat image of the ice-sheet surface across subglacial Lake Vostok (@
RADARSAT)
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Several RES data [42, 61, 4] over East-West transect of Lake Vostok observed one

distinct feature of the ice flow over the lake: there is a trench (about 2-5 meters) in ice sheet

surface profile in the western margin of the lake and a rise (about 5-10 meters) in the ice

sheet surface in the eastern margin of the lake (Figure 6.9).

108



Figure 6.9 on page 110 is from Science Frontiers no. 107, Sept-Oct, 1996. William

R. Corliss. It shows surface and bed elevations on East-Westtransect of Lake Vostok.
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Figure 6.9.
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6.2.2 Previous Research

Some researches suggest that these profiles are due to downslope and upslope mo-

tions produced by a mechanism driven by a change in ice dynamics from grounded, float-

ing, and regrounded ice [60]. Some other researchers think that the trough is caused not

by the change in the ice-dynamics from grounded to floated icebut by melting-refreezing

mechanism at the ice-water interface [48]. They assume thatthere is a narrow melting-

freezing zone on the eastern part of the lake.

Numerical modeling of ice-flow over subglacial lakes were done by Pattyn [51]. His

model shows important aspects of ice-flow over the lake features, such as surface flattening,

but has not shown troughs and rises on the sides of the lake duelow grid resolution used

(the model lake is approximated with only two grid points). Our model is capable of

producing all morphological features discussed above; thus supporting the suggestion that

the observed profiles are caused by the change in ice dynamicsfrom grounded to floating

and regrounded ice.

6.2.3 Modeling

6.2.3.1 2-D Modeling

We solved the problem iteratively starting from a flat frozenbed using a constant

accumulation rate. Assumption of a linear flow gives a dome orelliptic analytic profile for

the initial data. Starting from this steady state ice sheet conditions, a lake was generated by

adjusting the basal boundary conditions for a stress-free surface at the middle of the grid.
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The Figure (6.10) shows the evolution of the surface after invoking the stress-free boundary

conditions until the steady state was reached.

Figure 6.10.Evolution of the ice surface after invoking the stress-freeboundary conditions
until the steady state is reached. The figure demonstrates the surface flattening over a lake
as well as creation of a trench on the onset of the lake and a rise on the down-flow edge of
the lake.

As can be seen, the surface topography changes dramaticallyto become almost flat

over the lake. We can also see the trench on the onset of the lake and a rise on the down-flow

margin (edge) of the lake, features that have been observed by several radio-echo sounding

surveys over West-East flowline above Lake Vostok.

The Figure (6.11) illustrates the velocities magnitude. Wecan see that velocities are

highest over the lake.

6.2.3.2 3-D Modeling

To simulate three-dimensional ice flow over a subglacial lake, we started from the

steady state of the radially-symmetric ice sheet with frozen flat bed and elliptic ice surface
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Figure 6.11.Velocity magnitudes. The figure shows a local velocity increase over a lake.

Figure (6.12). Then a subglacial lake was created in the middle of the domain by relaxing

velocities constraints.

To solve the problem, we use a three-dimensional, time-dependent model that solves

the full momentum (diagnostic) equation and continuity (prognostic) equations to predict

the ice thickness distribution and velocity fields in respond to the change in boundary con-

ditions. The model domain is 10x10x4 km which is solved on the23x23x8 grid (0.5 km

grid; time step is 500years). The experiment lasted for 5,000yr.

Figure (6.13) shows the response of the ice thickness to the change in boundary

conditions for the first 5,000 years.

The ice velocity rapidly increases and the surface topography changes dramatically

to become almost flat over the lake. The model result shows that a trench and a rise are

generated at the in-flow and down-flow edges of the lake which are the results of the prop-

erly accounting for the longitudinal and transverse shear stresses. Figure (6.14) shows a

113



Figure 6.12.The initial steady state of the ice sheet with frozen bed and elliptic ice surface.
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Figure 6.13.The steady-state solution of a subglacial lake simulation.
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vertical transect which cuts across the ice sheet over the lake. Thus, our model is able to

replicate all the important features of an ice flow over a subglacial lake which are observed

at Lake Vostok, Antarctica.

Figure 6.14. A vertical transect through the ice sheet over the lake. Left: initial, prelake,
condition. Right: steady-state solution. A trench and a rise are generated at the in-flow and
down-flow edges of the lake.

6.3 Simulation of EISMINT Level 1 Ice Shelf Test

To verify shelf/stream model, we have simulated the problemsuggested by EISMINT

and compared the results with [46]. The test models the flow ofan ice-shelf confined by

a rectangular (plan view) embayment, into which an ice stream discharges (Figure 6.15).

Since the test models an ice-shelf flow, the model’s parameters are chosen asαx = αy = 0.

The two-step numerical procedure is used to perform a time step. The first step is the

solution of the diagnostic equations (4.26) - (4.27) to obtain the ice shelf/stream velocity

field from the the current ice thickness. This step requires the internal iteration to get
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Dimensional Constants
Symbol Value Definition

n = 3 flow-law exponent
g = 9.81ms−2 acceleration of gravity
ρ = 910 kgm−3 ice density
ρw = 1028 kgm−3 water density

31556926 s a−1 conversion factor for seconds to year
ȧ = 0.3/31556926ms−1 ice accumulation rate
B0 = 1.4688× 108 Pa s

1
3 ice stiffness parameter

H0 = 1000m initial ice thickness
u0 = 400

31556926
ms−1 velocity of ice-stream input

Table 6.1. Values of constants specified in the intercomparison experiment in Macayeal
(1994)].

an accurate solution. The second step is the solution of the prognostic equation (3.28)

to specify how ice-thicknessh changes with time as a result of the divergence of the ice

transport associated with nonzero velocities and the surface and basal accumulation rates.

6.3.1 Initial and Boundary Conditions and Finite Element Mesh

Figure (6.15) displays the finite-element mesh which has been used to simulate the

test by [46] and is used in this work. This way we can compare the results of the simulations

of shelf flow on the same mesh. The figure also displays the boundary conditions used for

the test.

Table 6.3 shows values of constants used for the experiments. They are specified

following [46].
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Figure 6.15. Finite Element Mesh and Boundary Conditions. Mesh: 17x21 nodes, mesh
resolution corresponds to 5 km. Boundary conditions: the kinematic boundary condition
associated with ice-stream input is specified on the bottom 4nodes of the right boundary;
The ice front corresponds to the right boundary; The lower boundary, lineCD, is an axis of
symmetry across which there are no gradients in longitudinal velocity; The top boundary
and portion of the right boundary, not corresponding to the inflowing ice stream, have zero
velocity (no slip, no normal flow) boundary conditions specified.
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6.3.2 Results; Comparison with MacAyeal’s EISMINT experiments

We run the coupled ice-shelf model through about 600 years (in dimensional units)

starting with a uniform 1000-m ice thickness. The equilibration of the thickness at the

ice-front node corresponding to the pointD (in Fig. 6.15) where the axes of symmetry (the

ice-shelf’s longitudinal centerline) intersects the ice front is demonstrated in Figure 6.16.

Equilibration is complete at about 400 years.

Figure 6.16. Change of ice-front thickness at line of symmetry (pointD in Fig. 6.15).
Equilibration is complete at about 400 years.

The ice-thickness field,h, and velocity magnitude at the end of the 400-year evolu-

tion are displayed as contour maps in Figures 6.17 and 6.18. The figures also display the

ice-thickness field and velocity magnitude at the end of 150-years of evolution generated

by [46].

Both programs generated very similar results. The minor defect on both maps is

the fact that the thickness has grown large at the node point corresponding to the upper

right-hand corner where the two stagnant, no-flux boundaries meet.

Figure 6.19 shows velocity vectors after 400 years of evolution.
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Figure 6.17. Contour map of ice thickness. Left: map generated by Macayeal (1994).
Right: map generated by our program. The ice front is on the left-hand side of the diagram;
the ice-stream input is on the lower right-hand side.

Figure 6.18. Contour map of velocity magnitude. Left: map generated by Macayeal
(1994). Right: map generated by our program. The ice front ison the left-hand side of
the diagram; the ice-stream input is on the lower right-handside.
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Figure 6.19.Velocity vectors after 400 years.
.

Figures 6.20 and 6.21 show ice thickness along the axis of symmetry (lineCD in

Figure 6.15 and ice thickness along the transverse, midlineaxis of the ice shelf (lineAB in

Figure 6.15 after equilibration has been achieved.

Figure 6.20. Ice thickness (m) along the axis of symmetry. Left: map generated by [46].
Right: map generated by our program.
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Figure 6.21.Ice thickness (m) along the transverse, midline axis of the ice shelf. Left: map
generated by [46] (after 150 years of evolution). Right: mapgenerated by our program
(after 400 years of evolution). Notice that the ice thickness at the stagnant side (left) of the
ice shelf is slightly higher in our diagram than in the left diagram while the ice thickness in
the center of the shelf (right) is slightly lower than in the left diagram. This is the result of
depicting the thickness at different time of evolution.
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This experiments demonstrates that our ice-shelf model generates results very close

to ones generated by [46] which can be considered as a satisfactory verification of the

model.

6.4 Modeling Conclusion

This chapter has presented three examples dealing with (1) simulation of iceberg

profiles, (2) simulation of ice flow over subglacial lake, and(3) simulation of ice-shelf flow

confined by a rectangular embayment into which an ice-streamdischarges.

Simulation of ice-shelf flow confined by a rectangular embayment into which an ice-

stream discharged demonstrated that the shelf/stream model generates results very similar

to ones generated by [46] which can be considered as a satisfactory verification of the

model.

The other tests show that the higher-order model replicatesimportant aspects of the

iceberg (toe-up and toe-down) profiles, as well as aspects ofobserved ice stream features,

such as the surface flattening over a subglacial lake, a localvelocity increase over the lake,

and trenches and troughs: features which are observed at Lake Vostok, Antarctica. Thus,

they demonstrate the importance of properly accounting forhigher-order stress gradients

in the model.
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Chapter 7

CONCLUSION AND FUTURE WORK

In the first part of this thesis, we presented construction and verification of two mod-

els to simulate ice-stream flow, a three-dimensional full-Stokes ice sheet model and a mod-

ified MacAyeal-Morland model. Since the 3-D full-Stokes model requires a significant

computational effort, in the second part of this thesis, we studied the possibility of us-

ing the SuperLU-DIST multiprocessor software package for solving the systems of linear

equations generated by the three-dimensional full-Stokesmodel.

The uniqueness of the modified MacAyeal-Morland equation isin its inclusion of

basal shear friction (proportional to the driving stress orto speed) in the derivation of the

equation. In the original MacAyeal-Morland equations [46], the basal drag is not included

in the fundamental formulation but instead is added as a small correction (proportional to

speed) to the final equations. Our approach does two things: first, by including the basal

drag in the derivation of the equations, it makes the equations self-consistent. Second,

since derived equations contain a term that depends on the bed gradient, our approach

gives a formula that accounts for how ice stream flow depends on the bed topography. The

basal drag term depends on the heuristic used to approximatethe basal shear stress for ice-

streams. In this work, we consider two heuristics for the basal shear stress, MacAyeal’s

assumption that the basal shear stress linearly depends on the velocity, and our assumption

that the basal shear stress is some proportion of the drivingstress. If we find a dependency
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formula for the structural form of functional dependency ofice-stream basal shear stress

from temperature, velocity, surface elevation, bed-slope, etc. it could be easily substituted

in our modified MacAyeal-Morland equations. The search for such formula may be another

avenue for future research.

To validate the modified MacAyeal-Morland model, the European Ice Sheet Model-

ing Initiative 1 intercomparison test is conducted. The test simulates an ice shelf confined

by a rectangular embayment into which an ice stream discharges. The results are compared

with the results generated by [46]. One of the shortcomings of this chapter is that the con-

structed model has not been used to simulate the flow of an ice-stream with a non-flat bed;

that is, we didn’t answer the question: is the effect of basaltopography on ice sheet flow

small or significant and, if it is significant, can our modifiedmodel capture it? This work is

left for future research.

The significance of the three-dimensional full-Stokes model is in the inclusion of all

higher-order stress gradients in the momentum equation. Tovalidate the three-dimensional

higher-order model, experiments demonstrating the importance of the inclusion of all higher

order stresses in the model, such as simulation of the evolution of an ice stream within the

ice sheet and simulation of iceberg profiles, are conducted.The proper accounting for the

higher-order stresses allowed the model to replicate the important features of ice sheet flow

observed by glaciologists.

A major deficiency of the higher-order model is that time limitations do not allow

using it in large problem domains. One way to solve this problem is to use parallel pro-

gramming. In this work, the possibility of the application of a distributed SuperLU-DIST

software package to solve the model’s system of equations isexplored, and the performance
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characteristics of the package are benchmarked. Performedtests indicate that for big-size

matrices generated by the three-dimensional model, computations are not stable. However,

we have shown that it is possible to improve stability of the algorithm by using a priori

knowledge of the matrix and permuting rows prior to applyingthe algorithm to solving the

system.

One of the shortcomings of the work is that the constructed models are isothermal

ice-stream flow models – they do not consider effect of temperature flow on ice-stream

flow. The models also do not consider the interaction betweenthe ice-stream flow and the

underlying bedrock. These steps are left for future work.

In this work we considered possibility of using multiprocessors to overcome the time-

constraint problem of solving the 3-D full-Stokes model. Another way to solve this problem

may be using embedded modeling. That is, construct a multifaceted embedded model

which uses a shallow-ice approximation model (that does notrequire much computation

time) in the entire domain, with the higher-order model in particular subdomains (where

longitudinal and lateral stresses play an important role),and the Morland model in the

ice-shelf areas. In addition to generating better solutions, this approach would allow us to

internalize the generation of boundary conditions at the margins of the higher-order model

sub-domains.
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Appendix A

SYMBOLS AND CONSTANTS

Symbol Unit Definition

x, y m horizontal dimensions
z m vertical dimension
zs m ice-surface elevation
zb m ice-bed elevation
h m ice thickness
ui ma−1 velocity components
Ux, Uy ma−1 horizontal components of the depth-averaged velocity

of the column of ice
ȧ m a−1 ice accumulation rate
t yr time
n = 3 flow-law exponent
A Pa−n a ice-flow parameter
B = A− 1

n Pa a−
1
n resistance to ice-flow, viscosity

P Pa hydrostatic pressure
σij Pa stress components
σ′
ij Pa deviatoric stress components
σe Pa effective stress
˙εij a−1 strain rate components
δij Kronecker delta
g = 9.81ms−2 acceleration of gravity
ρ = 910 kgm−3 ice density
ρw = 1028 kgm−3 water density

31556926 s a−1 conversion factor (seconds per year)

Table A.1. Symbols and constants used in this work. The following transition is used:

Pa = N
m2 =

kg m

s2

m2 = kg

ms2
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Appendix B

SHALLOW ICE APPROXIMATION MODEL

Since solution of a full system of equations is complicated,these equations are solved

in a reduced form. A typical ice sheet has a thickness of one orseveral kilometers while

its lateral extend is typically on the order of1000 km. That is, the aspect ratio, or ratio

of length to the depth of the ice sheet, is small and this fact can be exploited to derive the

reduced form of the ice sheet model. In this model, all stresses are neglected except for the

basal shear stress (σxz andσyz), that is, gravitational driving stresses are balanced locally

by basal traction. This approximation is called a shallow ice approximation (SIA).

Figure B.1 on Page 137 shows the forces acting on a glacier in directionx in the SIA

model.

Figure B.1. SIA: major forces acting on ice-sheet in one direction.
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The derivation of the model can be found in [[50]] and [[37]].SIA is a good approx-

imation for regions where creep is the dominant ice flow process.

B Expressions for Velocities

Neglecting all longitudinal deviatoric and lateral shear stresses means that in (2.16) -

(2.18),
∂σ′ij
∂x
→ 0,

∂σ′ij
∂y
→ 0. In this case, equations (2.16) - (2.18) become

x-component: ∂σ′xz

∂z
= −∂P

∂x
,

y-component:
∂σ′yz

∂z
= −∂P

∂y
,

z-component: ∂(σ′zz+P )
∂z

= ρg.

(B.1)

Vertical integration of thez− component of equation (B.1) yields:

σ′
zz(z) + P = ρg(z − s). (B.2)

wheres is ice surface.

The disparity between the vertical and horizontal length scales in ice-sheet flow im-

plies that simple shear dominates
(

∂σ′xz

∂z
> ∂σ′zz

∂x

)

and
(

∂σ′yz

∂z
> ∂σ′zz

∂y

)

. That is, if we substi-

tute (B.2) intox− andy− components of (B.1) and integrate fromz = z to z = s, we get

that shear stresses balance gravitational driving stresses:

σ′
xz(z) = −ρg(s− z)∂s

∂x
, (B.3a)

σ′
yz(z) = −ρg(s− z)∂s

∂y
. (B.3b)
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Using ice flow law (2.6) written asσ′
xz(z) = B ( ˙εxz)

1
n and (B.3a), we get

B ( ˙εxz)
1
n = −ρg(s− z)∂s

∂x
. (B.4)

Since
(

∂ux

∂z
> ∂uz

∂x

)

, ˙εxz ≈ 1
2
∂ux

∂z
and equation (B.4) becomes as follows:

(

1

2

∂ux
∂z

)
1
n

= −ρg A 1
n (s− z)∂s

∂x
, (B.5)

whereA is ice flow law rate constant inPa−3 sec−1 units andB = A− 1
n .

Integrating (B.5) forux (and similar equation foruy) from z = z to ice surfaces

generates expressions for horizontal velocities:

ux(z) = ux(s)− 2(ρg)n|∇s|n−1 ∂s

∂x

∫ z

s

A(T )(s− z)ndz, (B.6a)

uy(z) = uy(s)− 2(ρg)n|∇s|n−1 ∂s

∂y

∫ z

s

A(T )(s− z)ndz. (B.6b)

The vertical velocityuz is found using the divergence of horizontal velocity field from

incompressibility condition (2.5a):

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0. (B.7)
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B Continuity Equation

Conservation of mass equation (2.12) takes the form of the column-averaged flow

law that allows to obtain the expression for the change of local ice thickness in space,h:

∂h

∂t
= −∇ ·

(

~Uh
)

+ ȧ, (B.8)

where ~U is the vertically averaged horizontal velocity vector,∇· is the two-dimensional

horizontal divergence operator.

Equations (B.6a) and (B.6b) are integrated from bedrock to ice surface and divided

by h to obtain components of the vertically averaged horizontalvelocity vector~U:

Ux =
1

h

∫ s

b

ux(z)dz = ux(s) +
1

h

∫ s

b

2 (ρg|∇s|)n = ux(s) +
2 (ρg|∇s|)nA(T )hn+1

(n + 1)(n+ 2)
,

(B.9a)

Uy =
1

h

∫ s

b

uy(z)dz = uy(s) +
1

h

∫ s

b

2 (ρg|∇s|)n = uy(s) +
2 (ρg|∇s|)nA(T )hn+1

(n + 1)(n+ 2)

(B.9b)

When (B.9a-B.9b) are substituted into equation (B.8), a non-linear parabolic equation

results. This equation forh is usually called”ice-sheet equation”.

As can be seen from ice-sheet equation, ice-sheet mass flux term in (B.8) is purely a

function of the local ice thickness,h, and surface gradient,∇s.
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B Complexity of SIA Equations

In the SIA model the only stress considered is the basal stress. This allows us to

reduce 3-dimensional equations to quasi-2-dimensional equations with variables inz di-

rections integrated out, that is, to solve shallow ice approximation model, we have to solve

one non-linear parabolic equation (B.8) forh. The velocity field is calculated using for-

mulas (B.6a) and (B.6b). If we are solving a time-dependent problem, the above equations

are solved at each time step. The equation forh has one degree of freedom per node and

solved in a 2-dimensional grid.

Since SIA equations are solved in a 2-dimensional grid, for arectangular region that

is 50× 40 = 2, 000 nodes, the system has only2, 000 independent variables (ice thickness

h).

Since SIA neglects all stresses except the basal drag, it maybe a good approximation

for inland ice but may be very poor for fast-flowing, low-surface slope ice streams, where

longitudinal stresses may not only be important, but may in fact be the dominant stress.
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Appendix C

COMPRESSED COLUMN FORMAT SCHEME

In addition to getting an acceptable solution, the goal of solving the system of sparse

equations on a computer is minimizing the storage used and minimizing the execution time.

Jacobs solved the problem by designing and writing efficientprocedures and structures

needed to interface the ice sheet model with SuperLU.

To take advantage of the sparsity of the equations, compressed-column format of stor-

ing the matrixA of the equations have been used. It is a data format forA that is compatible

with SuperLU. Three one-dimensional arrays are used to store a matrix in compressed-

column format. One array is used to store the non-zero entries ofA. The non-zero entries

are stored in column-row order. The second array is used to store the row number of each

corresponding non-zero entry in the values array. The matrix column number is the index

to the third array. The third array contains the index valuesof the first and second arrays

where the first non-zero entry from each column ofA is stored.

However, inserting a new non-zero entry in a compressed-column format data struc-

ture is costly. In order to maintain entries in column-row order, all entries in the row number

and value arrays above the new entry must be moved and all entries in the column index

array above the column number of the new entry must be updated. To alleviate this per-

formance bottleneck, a modified compressed-column format with supporting routines was

developed by Rodney Jacobs.The rectangular FEM grid allowsus to compute the maximum
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number of non-zero entries per row of A. This maximum amount of space is allocated for

each column in the row number and value arrays. Instead of having a single column pointer

array that points to the first entry for each column in the row number and value arrays, two

column pointer arrays are used. The first array points to the first row number and value in

each column and the second array points to the last row numberand value in each column.

The free space for each column in the row number and value arrays allows a new entry to

be added by moving only entries in the column of the new entry.

Figure C.1. Modified compressed-column format data structure before squeezing (pro-
vided by Rodney Jacobs)

Once FEM has completed the computation ofA, the remaining free space is removed

from the modified compressed-column data structure by moving entries down in the row

number and value arrays and updating the column pointers in the column pointer arrays.

Once the free space has been squeezed out of the data structure, the starting column pointer

array, the row numbers array, and the values array are in facta compressed-column format

data structure that is compatible with SuperLU.

The FEM computation requires access to entries inA by row and column number as

well as the ability to insert new non-zero values inA. Compressed-column format allows
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efficient access to non-zero entries inA by row and column numbers. The column number

can be used to determine the range of index values in the row number and value arrays

that contain non-zero entries for the specified column. Since entries in this index range

are stored in order by row number, a binary search can be used to quickly find the index

value for a specific row. If the row number is located, then theentry value can be read from

the values array. If the row number is not found, then the entry value must be zero.The

ice sheet model requires performing the FEM calculation foreach time step of the model.

Once the row and column numbers of non-zero entries producedby FEM is determined in

the first iteration, they remain constant in all subsequent iterations. After the first iteration

is complete, the values array is zeroed and the column pointer and row number arrays are

left unchanged. No new entries are added to the data structure in subsequent iterations, so

there is no need for additional free space or the attendant squeeze operation.The ice sheet

model is written in Fortran 77. A C interface routine that is callable from the ice sheet

model was written to invoke the needed UMFPACK and SuperLU functionality to solve

the system of equations.

The software package and interface routines have been integrated with UMISM for

this project by Rodney Jacobs [40].
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