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Modeling glacier and ice sheet flow is a computationally kgmajing problem. The
most challenging part in simulating ice sheet flow is modgthre fastest moving part of ice
sheets, ice streams. In the first part of the thesis, we hanstreted two numerical models
of isothermal ice stream flow, a three-dimensional fullkeice-sheet/ice-stream/ice-shelf
model and a modified MacAyeal-Morland ice-stream/ice{simeldel. In the second part
of the thesis, we studied the possibility of using SuperLI$D multiprocessor software
package for solving the systems of linear equations gezrbiat the model.

The uniqueness of the modified MacAyeal-Morland model idsnriclusion of the
basal shear friction in the derivation of the equations.him ariginal MacAyeal-Morland
equations, the shear friction is not included in the fundataleformulation but instead
is added as a small correction to the final equations. Inmtusf the basal friction in the
derivation generates equations that contain a term thataison the bed gradients; that is,
it generates equations that show how the ice stream flow nsndison the bed topography.
To validate the model, the European Ice Sheet Modelingaling 1 intercomparison test is

conducted and the results are compared with the resultsajedéoy MacAyeal (1994).



The three-dimensional full-Stokes model includes all kigbrder stress gradients in
the force-balance equation. To validate the full-Stokesl@hcexperiments demonstrating
the importance of the inclusion of all higher order stresséise model, such as simulation
of the evolution of an ice stream within the ice sheet and ktran of iceberg profiles, are
conducted.

The computational demands of the full-Stokes model do hawals using it in large
problem domains. To solve this problem, application of $upeDIST multiprocessor
software package has been examined. The software’s penfmencharacteristics have
been explored and benchmarked on the matrices generatée llyree-dimensional full-
Stokes model. The performed tests indicate that for thesizig-matrices computations
may not be stable. However, we have shown that it is possibil@prove stability of the
algorithm by using a priori knowledge of the matrix and petimgi rows prior to applying

the algorithm.
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Chapter 1

INTRODUCTION

Ice streams are fast flowing parts within ice sheets. Theyyieally hundreds
of kilometers long and tens of kilometers wide, and flow atbegies of up to several
kilometers per year. While ice streams account for only aberupercent of the ice sheet
volume, they are key to understanding ice sheet stabitiystreams drain the majority of
ice from ice sheets. In Antarctica, it is estimated that aslmas 90% of ice sheet discharge
is via ice streams. While the East Antarctic ice sheet idstaéihere is a debate whether the
West Antarctic ice sheet might decay in the future. If thatgens, it could raise the sea
level by about 5 m [5].

In order to answer the question what is the likely future oS¥Wentarctica and Green-
land, the flow behavior of ice sheets must be understood. Noahenodeling contributes
to our understanding of the ice sheets, yet the numericakiad ice streams have sub-
stantial limitations varying from a need for better physic®vercoming the demand for
larger computing power. The aim of this work is to contribittenodeling ice streams and
to solving the computing problems associated with it.

In the introduction, | will review particular componentstbe multifaceted ice-flow
system and the classical ways of modeling them. Since thk dame in this thesis is an
extension of the University of Maine Ice Sheet Model (UMISNhe introduction gives

also an overview of UMISM.



1.1 Ice-flow System: Ice-sheets, Ice-streams, and Icexshel

Around90% of the world’s land ice is concentrated in the Antarctic ibee&ts occu-
pying over 13 million square kilometers and reaching thesshof a few kilometers. Ice
flows as a highly viscous solid from the central parts of thetio@nt, where the ice thick-
ness is greatest, towards the margins, which are near tls¢ aod feed into the floating
ice shelves. The mass of ice is maintained by snowfall owectmtinent, while mass loss
from the ice sheets occurs mostly through the calving ofecgbat its margins.

At the central part of the Antarctic continent, ice flow occessentially as a result
of the ice sheet spreading under its own weight, thus, icaye=has a highly viscous solid
and flows by creep deformation. This types of flow is caltisheet flow

Some parts of Antarctic ice sheets, called streamsare found to move at much
higher speeds than the surrounding parts of ice sheets. bdeev@d high speeds cannot be
explained by creep deformation alone. Researchers asbattbére is a sliding movement
of ice at the underlying bedrock. As the base of an ice shgebaphes the pressure melting
point, a thin and possibly patchy film of water can form betw#e ice and its bed. Such a
water film weakens the contact between ice and bed and may falia 'sliding’ velocity.
This type of flow is calledce stream flow

The third type of flow is calledce shelf flow An ice shelf is a large sheet of ice
floating on the sea but attached to land or to a grounded icet.slhee shelves range in
thickness from about 50 to 600 meters. The place where the&aces to float is called the

grounding line Ice shelves surround much of Antarctica.



To model particular components of these multifaceted ic& 8gstems, different
types of models have been used: models of grounded ice sbheetnflodels of the ice
shelves, and models of ice streams. The latter ones areadivido two different groups,
the first are based on the models of ice shelves, and the sacemdodels which include

higher-level stresses in the force-balance equation.

1.2 Numerical Modeling of Ice-sheets, Ice-streams, andlmdves

Numerical modeling of glaciers and ice sheets generallglims a number of sim-
plifications with respect to the physics of the ice mass.

Most ice-sheet models are based on the so-cal@dlow-ice approximatiofSIA)*
[37] which is valid for an ice mass with a small aspect ratoe hickness< ice horizontal
dimensions). SIA is used in the ice dynamics component of 8iwhich is described
below. In this approximation, longitudinal and transvessess gradients are neglected.
However, the SIA is not valid at all places in an ice sheethsagat the ice divide or near
the ice-sheet margins. Shallow ice approximation is alswvalid to model ice-streams or
ice-shelves, where inclusion of longitudinal stressesjeeially important.

Almost all numerical models of ice-shelves solve stredasz® equations [49] that
are derived with the assumption that vertical shear is gagyd; that is, that the horizontal
velocity does not vary with depth. In this approximatiore thnly stresses considered are
the longitudinal stresses. Since the ice shelf is suppdyedater, the basal drag is not

included in the fundamental formulation.

Derivation of SIA model is given in B on page 137.



This assumption allowed Morland to integrate out the valtiimension and reduce
three-dimensional equations to two-dimensional equation

Since ice-stream flow is transitional between ice sheet flotviee shelf flow, both
basal shear and longitudinal stresses are important tadeng$-or solving ice streams, a
common approach, suggested by MacAyeal, is to treat thenearss as barely-grounded
ice shelves. MacAyeal modified Morland equations for icekgbs by adding a term sim-
ulating the basal drag. He used a heuristic assumptiontiedtdsal drag is proportional
to velocities. The resulting model is called MacAyeal-Mardl model for ice streams. Al-
though the model generates credible results, the facthikaetm for basal drag was added
to the equation after integrating the vertical dimensiotinthe assumption of no basal drag
makes the equations not self-consistent.

Both the SIA and the barely-grounded ice-shelf models wv&al number of simpli-
fications with respect to the physics of the ice mass. Howeliey are not valid at all
places in an ice sheet. For example, near the margin of thehieet (at grounding lines,
outlet glaciers, and ice streams) or at the transition ztwetseen different types of ice
flow, all stresses in the force balance become equally iraptorhe only way to properly
account for all stresses is to solve the full momentum equoatiith none of the limiting
assumptions that go into either the shallow-ice or the Bagedunded ice shelf approxi-
mations. Examples of the models that take into account thleeriorder stresses can be
found in [53]. The models that take into account all stregsése force balance are called
the full-Stokes models. However, very few three-dimenaiduoll-Stokes models exist.
Among them are the models of Pattyn [52], Martin [47], Zwindé2], and Price [55].

Since solving the 3-D full-Stokes equations demands huggatational power, most of
4



the higher-order models make some simplifications to redopnglexity of the model. The
most common approximation is to "introduce the two horiabwelocity components as
field variables. This leads to an elliptic system with twdheatthan four variables of the
full system at points in three-dimensional space [51], [8BH the resulting linear systems
are generally better conditioned than those resulting fttemumerical analysis of the full
system” [53].

Another common approximation is the scheme used by Blaé{earjd Pattyn [51].

In these approximation, higher-order longitudinal anchskeerse stresses are included in

the force balance equation but the variational stresse:ﬁefgiectec(agf =0, 8g;y = 0)

; that is, the conservation of momentum equation (see (?-(E5a5c) on page 18) is

reduced to the form:

00 1 n 004y n 00,.

ox oy 8, P
0oy, 0oy, 0oy,

Ox + dy + 5. P

Jdo..
aZ _pgz

This allows researchers to reduce three-dimensional @nold a computationally two-
dimensional problem.

Truly three-dimensional thermomechanically coupled toeet models including all
higher-order stress gradients, or full-Stokes modelspataevidely used. The reason for
this is in the complexity of the model description, the diffty in obtaining a numerically
stable result, and the high computational cost — a subatantirease in their complexity

drastically affects the ability of a model to perform miliea-scale climate experiments.
5



Thus, to summarize above, the most challenging part in sitimgj ice sheet flow is
modeling the fastest moving part of ice sheets, ice stredabmsdible predictions of ice
stream evolution require taking into account the higheleostresses in the force balance
equation. However, the three dimensional models of icastsethat include all higher-
order stresses have huge demands on computer time. To Bislpedblem, the goal of this
work was

1. to construct a model or models that can approximate ieastrflow, or different
types of ice flow, including ice streams, and

2. to explore the efficiency of using parallel programmingtercome the high com-
putational cost of solving big systems of linear equatiomisegated by higher-order

full-Stokes models.

1.3 The University of Maine Ice Sheet Model

The work done in this thesis is made possible by the priorresffof Dr. James
Fastook and his students. | have extended an existing i@ stwdel by adding modules
that simulate ice-streams. Below is an overview of the fumeigtal building blocks of the
existing ice sheet model. This overview follows Johnsoi}.[41

The UMISM has its origin in the 1980s. Early works on usingtérelement method
to model ice sheet flow appear in Fastook & Schmidt [18], kas&Hughes [14], Fastook
& Hughes [15], and Fastook [20]. Then, a flow band or one dinugra model for ice

sheets was developed in Fastook [20, 21, 22], and Fastook ghéki[16]. This model



was programmed in FORTRAN and ran on an IBM mainframe. Tha sets represented
a problem domain with about 50 nodes.

In 1989, a two-dimensional, map-plane model for ice sheatsdeveloped [Fastook
& Chapman [11]]. The program used the finite element methosbtee the continuity
equation for ice deformation. Portions of the code writt@nthis model are still in the ice
sheet model that is run today. When it was created it ran oB®Rh360 mainframe. Runs
typically included 150 nodes and the output was directedTiekdronix graphics terminal.

Starting 1992, the model included calculations of inteteaiperatures from which
mechanical properties could be derived [Fastook [23, 24|, Zbhe model was applied
to glaciological problems in [13], [19, 26, 12], and [27].ilB&atology for the model was
developed with Fastook & Prentice [17].

Then, Johnson and Fastook modified the model to include avuatiog of basal
melt water. Inclusion of the basal water component allovisedmodel to identify all major
lakes in Antarctica. Results were published in [41] and &, This major improvement
allowed the model itself to specify where and when the sfjduould occur.

The model is also used to reconstruct ice-sheet evolutioimerlanks of the large
Tharsis Montes volcanos on Mars [30].

One of the most important applications of the ice sheet masl participation in
EISMINT (European Ice Sheet Modeling INiTiavite). Thistiative established a baseline
for results from ice sheet models to assure that they prodimegar results. The initia-
tive considered applications to the Greenland and Antaic#i sheets, thermo-mechanical

coupling, grounding line treatments, and ice shelf mod€&ke results appear in [38]. In-



volvement in the EISMINT experiment establishes credipifor a model’s output and
allows it to be used for new applications.

The model in its current form runs on both Linux, Mac OSX, agl Blatforms. The
source code is (mostly) ANSI FORTRAN. The screen output @@sn GL, an industry
standard for graphics. There are a number of data filtersdstspript output of maps. We
are currently able to model upward of 70,000 nodes in our ntepepmodel for ice sheets.

The model predicts the ice thickness, velocity, and tempegaof glaciers as func-
tions of position and time. Inputs to the model are climateditions, temperatures and
precipitation rates, bed conditions, and elevations aiihgl characteristics. Figure 1.1

shows the major components of the model and the data flow atheng

MELT/FREEZE »>>>
<<<WATER (BC) |WATER

—
=
=
Q
o

ACC/ABL>> THICK/VEL>

<<SURF

<<TEMPS
<<WATER
THICK>>>

ICE
DYNAMICS

BED >>>

SURFACE TEMP (BC)>> |

<<<THICK
BED >>>

CLIMATE - ~=<BED 1S OSTAsj

Figure 1.1. Components of UMISM. Provided by James Fastook.

:

The ice dynamics component is at the core of the model. Itipiecte thickness
and ice velocity using accumulation - ablation rates gerdrhy the climate module, ice
temperatures generated by the thermodynamics modulergésernxe or absence of water

at the bed generated by the basal water module, and bediefegaherated by the isostasy
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module. Ice temperature is important in determining theéaetion to the applied forces;
cold ice is harder than warm ice and is deformed at a slower Tdte ice dynamics module
also uses the boundary condition characteristics betweeité and the earth. Finally, the
weight of the ice depresses the ground, which lowers thasailevation of the ice. The
isostasy module computes the amount of bed depression.

Climate conditions at the surface of the ice depend uporaserélevation because
temperature decreases with increasing altitude. The tdimmedule uses the surface el-
evation generated by the ice dynamics and isostasy modioleg @ith a climate model
to predict surface temperatures, melting rates, and ptatgn rates. The thermodynam-
ics module uses surface temperature as well as basal angdénd geothermal heating to
compute temperature throughout the ice sheet. In addtieiormation of the ice due to
movement also produces heat. The water module uses bediehetics from the isostasy
module and basal temperatures to predict the presence ef. wat

The ice dynamics module uses partial differential equati@®DESs) derived from
mass and momentum conservation principals as a basis fgoutorg ice thickness and
velocity. The thermodynamics module uses PDEs derived &petrgy conservation prin-
cipals as a basis for computing ice temperatures. Combiitaccanstitutive relationships
that relate ice strain rates to temperature, and temper&duamount of heat, a complete
system is formed for doing the fundamental calculationgethickness and velocity. The
resulting PDEs are solved numerically using a mathematchinique known as the finite

element method (FEM).



1.4 Overview of Thesis

This work is organized as follows. Chapter 1 is a short revoéyarticular com-
ponents of the multifaceted ice-flow system and a review efUhiversity of Maine ice
sheet model. Chapter 2 gives a review of the basic consernviaivs and the constitutive
relations that describe ice flow.

Chapter 3 details two models that have been constructedidy #te flow of ice; a
full-Stokes model that takes into account all stresses anckashelf/ice-stream model that
is a modification of MacAyeal-Morland model. In constructiof the modified MacAyeal-
Morland model, we included shear friction (proportionathe driving stress or velocities)
in the derivation of the equation. In the original Morlanduatjons [46], the basal drag
is not included in the fundamental formulation but instemddded as a small correction,
proportional to speed, to the final equations. The highdetomodel and verification of
the model have been presented at [57]. The modified MacAyiealand model and its
verification has been presented in [56].

Chapter 4 describes the finite element method discretizafithe partial differential
equations from Chapter 3.

Chapter 5 describes application and benchmarking of théipnutessor software
package SuperLU-DIST for solving large systems of sparselsaneous linear equations
generated by the three-dimensional higher-order mode¢ réhults of this chapter have

been discussed and published in [40] and [58].
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Chapter 6 is devoted to testing and verification of the moda&lportion of the re-
sults has been published in [59]. We contributed to this pageunning the numerical
calculations which supported the discussions and corwiusi

The concluding remarks in Chapter 7 close the thesis.
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Chapter 2
MATHEMATICAL BACKGROUND - STOKES’ EQUATIONS FOR ICE

FLOW

This chapter introduces the basic conservation laws treatuaed to describe ice
flow. The variables that describe ice sheet are ice thickmasselocity, the various stress
components, and temperature at selected points. In this werassume that ice flow is
isothermal, that is, ice temperature is fixed and uniforme ®ther variables are found
from conservation of mass, conservation of momentum, aaddmnstitutive relation that

are discussed below.

2.1 Constitutive Relation

Constitutive relations describe some property of the nedtéFhe Glen flow law for

ice is a fundamental constitutive relation relating stieass strain rates:

whereR is a strain rate scalar argl is ice viscosity. Derivation of the flow law of ice can
be found in [35].
A stress is a force per unit area applied to a surface. It istaéeinbyo;;, where the

first subscript denotes the direction of the stress or fand,the second subscript denotes

12



the direction of the normal to the surface on which the foscacting. Hydrostatic pressure
changes the size of an object but not its shape. Changespe sbquire non-hydrostatic
stresses. Since flow of a glacier is caused by non-hydrogtasses, we will write the

equations in terms of these stresses. By subtracting the stiesss,

1
P = 3 (Opz +0yy +022,) (2.1)

from the total stress, the non-hydrostatic stress, or dectekviator stress;;, is obtained:

O'I-» = 045 — 5ijP7 (22)

v

whered,; is the Kronecker delta.
It is this component of the overall stress field acting on tlagigr that produces the
deformation.

The deviator stress tensor has three invariants, the ficsareras follows:

first invariant: Ji =0y, +o,, +o., =0, (2.3a)
. . . 1
second invariant or the effective stress: Jo = (0.)* = §all-jall-j. (2.3b)

In a deformable medium, stresses induce deformation anstfaiven a Cartesian
coordinate systerfr, y, z) and a velocity field/ = (u,, u,, u.), the strain rate tensas;;,

is defined as follows:

. dEij 1 8’111@ 8uj 1
T T2 (aj "o ) 5 (tag + ) (2.4)
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The strain rate tensor has three invariants, the first twe Bpecial names:

incompressibility condition: I =€n+eyt+e.=0

)

(2.5a)

: : ) 1. . 1 . . . . . .
effective strainrate: I, = ¢ = Sy = Q(Eim FE e, 260 4268, +2E).

(2.5b)

Obtained experimentally from laboratory observations afi as measurements in
actual glaciers [31, 34], the Glen flow law is a non-lineaatiein between strain rate and
stress:

/ n
Glen flow law: ¢, :R(%) , (2.6)

where B is a temperature-dependent measure of the ice hardnessgbeent: = 3 is
experimentally determined for ice [33].
If ice is assumed to be incompressible and isotropic, therGlen flow law can be

linearized as follows:

2.7)

Linearizing the constitutive relation will be critical feine numerical solution of the result-
ing differential equations.

Solving equation (2.6) forr, and substituting into equation (2.7) gives

(2.8)
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which can be solved far;; as:
Uzl'j = 24u€;; (2.9)

1

where2y = B (e‘e)%" is the effective viscosity. Viscosity is the material prayehat
relates stress and strain rates in a linear fluid. The depeeds the effective viscosity on
the strain rate invariant means thatvill be spatially non-uniform and dependent upon the
solution itself. This approach is common with non-lineaslgems and requires an iterative

solution.

2.2 Conservation of Mass

2.2.1 Conservation of Mass Equation

The mass conservation, or the continuity equation, sthtEsihe change in mass is
equal to the gradient of the flux of material into the regiohisTis expressed in terms of
the density as

dp

continuity equation: e + V- (pu) =0, (2.10)

or

p d(puz) | O(puy)  O(pu)\
8t+( ox oy oz )

If the density is constant, implying that the material isampressible, this becomes

V- (&) = 0. (2.11)
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The principle of conservation of mass can be used to writecaateon in terms of the
variation in thickness of an ice mass over time. Figure 2rhalestrates conservation of
mass in a column of ice — change in ice surface elevation @nlbald by accumulation
or ablation of ice and the divergence of ice flux. Considerlaroo of ice moving with
average velocityU. Denote the mass flux by = Uk, whereU = (U,,U,) is the depth
averaged velocity of the column of ice ands the thickness of ice. Then the thicknéss

of the ice varies over timeas

T = — — —= 2.1
pI’OgHOStIC equatlon ; a o iy ( )

whereg; is thex or y component of the mass flux aids the surface accumulation rate,

which is the ice-equivalent of snowfall in meters per year.

4 dwae

qx
q, T dgy
<+

Figure 2.1. Ice sheet mass balance for a column of ice on a horizontal blee.column
has widthdy, lengthdz, and mean heighit. The change in ice surface elevation with time
% Is balanced by accumulation or ablation of ieag accumulation/ablation rate) and the
divergence of ice flux (difference between influx and outfléice, ¢, andq, + dg.).
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2.2.2 Mass Equation Boundary Conditions

The mass conservation equation (2.12) requires boundawitcans to be specified
along the edge of the domain. There may be two types of thedaoyrronditions:

Newman (flux is specified)conditions may be imposed at the inland ice dome (flux
is zero,qy = 0,), at the head of the ice stream (flyxis given), or at the ice front (a free-
radiation condition can be applied to avoid having ice "pig, ¢, = (hﬁ) |_ -7, where

(hﬁ ) |_ represents the ice transport just upstream of the ice front)
h(Ugng + Uyny) = U -t = G- 7t = qo, (2.13)

whereri is outward-pointing unit normal vector.
Dirichlet (ice thickness is specifiedfonditions may be imposed, for example, at the
ice stream:

h = ho. (2.14)

2.3 Conservation of Momentum

2.3.1 Conservation of Momentum Equations

Conservation of momentum is Newton’s second and third lahismstate that linear

momentum is conserved if the sum of forces on an object aral ¢guero.
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Figure (2.2) on Page 18 shows the forces acting on a glacmmerdirection, say.
The driving stress directed in the direction of decreasinmfpse slope/f g.) is resisted by
longitudinal deviator stresses (compressions and teagrom up and down of glacier —
0.2), basal drag (friction generated at the bed,>), and lateral drags (frictions generated

at the sides of the glaciers;,). Similar forces are acting in andz directions.

driving stress
lateral drag

longitudinal drag
(compression from

up/down glacier) direction of flow

- —

basal drag

Figure 2.2.Ice Sheet: forces acting on ice in one direction.

If we assume that ice is not accelerating or deceleratirag, bialancing all the applied
stresses acting on the various surfaces of a differentiahvedz dy dz with the body forces

due to gravity, the linear momentum equations look as fadtow

002 N 004y N 00,
ox dy 0z
doy,  Odoy, 0oy
or oy T TP

0o., 0o, 00,
= pg.. 2.15

= pga, (2.15a)

(2.15b)

These momentum equations are calleddiagnostic equations
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Note that the applied stresses are symmettic= o;;. This prevents free rotation
with uniform motion. Symmetry of stresses reduces the groldf finding nine stresses to
that of finding six stresses.

Using the fact thay, = 0 andg, = 0 and relations (2.1) and (2.2), the momentum

equations (2.15a)-(2.15c) in terms of deviatoric stresse&d be written as follows:

6 (OJ$$ + P) 80-5,133/ 80-;2 _
P R 0, (2.16)

oo’ 0 (U’ + P) oo’
yz Yy yz
o + oy + 5 0, (2.17)

aa,/zm 60_2’?} a (G,,zz + P)
- -
ox dy 0z

= pg. (2.18)

Taking into account the constitutive relations betweeesstes and strain rates (2.9),

the momentum equations (2.16)-(2.18) can be written ingeshstrain rates as follows:

0uees + P) | 0Q2pes) | OQpess) _ (2.19a)
Ox Ay 0z
0(2peis) | OQ@pueyy +P)  0Cues) _ (2.19b)
ox dy 9z
0(2uei) | 0(uesy)  OQCueatP) _ . (2.19¢)
Ox Ay 9z

Equations (2.19a)-(2.19c) can be written in a compact fem a

Tij; — pgdiz = 0, (2.20)
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whereT is a tensor

2uéry + P 211€qy 20y
T= Qibpy — 2éy, + P 2pé,. (2.21)
20é,, 211éy, 2ué,, + P

These differential equations, 2-nd order in terms of vélesj are the equations that we

must solve.

2.3.2 Momentum Equation Boundary Conditions

For the momentum equations, the boundary conditions muspéefied at the sides
of the domain, at the surface of the domain, and at the bedeofitimain. Let’s discuss

them separately.

2.3.2.1 Surface Boundary Conditions

Regardless of the type of flow (ice-sheet, ice-stream, esiadf), the boundary con-

ditions at the surface of the ice = z,, is assumed to be stress-free,,
T -ng =0. (2.22)

whereny is the outward-pointing unit normal vector given by

Ozs
ny — dy ny + n,

VI G+ (G

(2.23)
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Application of the tensor/vector product in (2.22) gives tbllowing three equations that

must be satisfied at= z,:

) 0z . 0z, )

(2uépy + P) s + 2uexya—y — 2uéy, =0, (2.24a)
. 0z , 0z '
. 0z . 0z .

2uezx% + 2uezy@ — (2ue., + P) = 0. (2.24c¢)

2.3.2.2 Basal Boundary Conditions

The boundary condition at the bed of the icer z;, is not stress-free and is different
for different types of flow.

For ice-sheets, where the bed is frozen, Dirichlet boundanglitions are the obvious
choice, as the velocity is zero and can be specified as such.

For ice-shelves, boundary conditions at the bed can beatefrem the assumption
that the ice is floating and that the stress can be specifie@ &gbal to the hydrostatic
pressure necessary to float the ice shelf.

For ice-streams, boundary conditions should be differemtesice is not floating.
The velocities cannot be specified because they are unknBwithe resistive pressure
at the bed is also unknown. We know that this resistive stinessa value between the
driving stress (if it equals the driving stress, we have thelew-ice approximation) and
the hydrostatic pressure of the floating ice (if it is equah®hydrostatic pressure necessary

to float the ice, we have the ice-shelf approximation).
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There are two ways to specify the basal boundary conditiQme is to specify the
basal resistive stress as some fraction of the drivingstaasch we use in this work. This
approach does produce the concave profile characteristio mfe stream but the fraction
(which is a model parameter) is hard to specify.

A second approach is to use a boundary-layer. This approasibden studied by
Debra Kenneway for a two-dimensional version of the threeedsional system which
models a vertical slice through the ice sheet along a flowlméhis approach, a thin layer
between the ice and the bed is introduced and zero velocitghbet boundary conditions
are imposed at the bottom boundary of this layer. To simgl&deng at the bed, greater de-
formation is allowed within the boundary layer. Thus, themdary layer can be interpreted
as deformabile till or slush (water-saturated ice at theingefioint). This approach also has
some disadvantages — the geometry (thickness) and the meaharoperties (how soft the
layer is) are as difficult to specify as is the fraction of thizidg stress.

Below is derivation of the basal boundary conditions undsuaption that the basal
resistive stress is some fraction of the driving stress.

Let’s assume that the resistive traction on the base haslibe/ing form:

—

f=fa: 1y, I2). (2.25)

With this assumption, the basal boundary conditions carpbeited as follows:

T - n, = fnb, (226)
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wheren,, is the outward-pointing unit normal vector to the bottomface given by

8217 nx + 8zb ny _ nz
\/ 1+ azb azb )

Application of the tensor/vector product in (2.26) gives following three equations

(2.27)

that must be satisfied at= z;,:

(21€z: + P) ?‘9 L 2uemy% b — 2y, = [u, (2.28a)
0z 0z .

2i€yr—— 7 + (Q,LLEyy + P) a—y — 2u€,, = fy, (2.28b)

2M€zxaa + 2,uezyaa b (Q,UEZZ + P) = —fz. (228C)

2.3.2.3 Side Boundary Conditions

The momentum equations (3.1a)-(3.1c) may have two typeslefmundary condi-
tions [36].

Dirichlet boundary conditions can be specified if veloatse known. For example,
zero velocity can be specified in the areas of frozen bed,e&sawhere ice-shelves abut
stagnant, zero slip coast lines, or areas where velociteekraown from an experimental
data sets.

Neumann boundary condition, specification of stress orefant the boundary, are
usually applied at the seaward, iceberg-carving front. tlying stress by area on a
boundary specifies force. Typically at the lateral sideshefdomain, a pressure varying

linearly with depth may serve as boundary conditions.
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Chapter 3

MODELS

In this chapter, | will consider two models that have beenstarected to study the
flow of ice; a higher-order model that takes into account atsses and ice-shelf/ice-
stream Morland model. In construction of the Morland mouded,included shear friction
(proportional to driving stress) in the derivation of theuation. In the original Morland
equations (see, for example, in [46], the basal drag is duded in the fundamental
formulation but instead is added as a small correction (@rtognal to speed) to the final

equations.

3.1 Three-Dimensional Full-Stokes Model

In the full-stress 3-dimensional model, we couple the mask2j and momentum
(2.16) - (2.18) conservation equations (the prognosticdiagnostic equations) that take
into account all stresses. This allows us to simulate flowegians where longitudinal

stresses are important.

3.1.1 Conservation of Momentum Equation

Conservation of momentum equations (2.16) - (2.18) aretewriin terms of strain

rates. To write the equations in terms of velocities andsanes substitute (2.9) and (2.4)
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into the system (2.16) - (2.18). All stresses and strairsrate then derived quantities from

the equations for velocities.

o (utiy+P) O (1% +5) o (et o)) .
ox dy 0z
o(mGe+%) oG +P) 0 (n(GE+5)
( o Oy ) + ( 9y ) + ( o % ) = 0; (3.1b)
ox dy 0z
u. 4 ousyy O (% + G Oz
x oy 0z

These are three nonlinear, coupled, partial differengabgions in terms of.,,, u,, u., and
P. Since this system has four variables,(u,, u., andP) and only three equations, we add

the conservation of mass equation, expression of incorsipiéty (2.11), to the system:

Ou, n Ou, n ou,
ox dy 0z

— 0. (3.2)

3.1.2 Conservation of Mass Equation

The conservation of mass equation (2.12) can be rewritten as

oh . 9(hU;) 0(hU,)
a " Ox oy (3:3)

wherelU, andU, are components of the depth-averaged velocity of the colifroe.
Often, the numerical solutions of convective problems [[Re3) are corrupted by
node-to-node oscillations in the regions where the satstiondergo rapid changes. One

way to eliminate the oscillations is to severely refine thesimeAn alternative solution to
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eliminate oscillations is to add an artificial diffusionrreto the equation. The drawback is
a loss of accuracy (the artificial terms are only secondfaxdeurate).

With an artificial diffusion term, the equation becomes doves:

o . O(mU,) oMU, & [, on\ & (. oh
A _ 9 (e, 2y 2 (g, O 3.4
o 0T T on oy ar \"mar ) T oy Mway ) (3.4)

V2a®

wherek,, = ¥2¢ >

8

Yo U, , a° - column-average finite

) kyy:

Zi:1,4 U;,i

element’s area (which are discussed further on Page 44).
The addition of a diffusion term requires an additional baany condition along with

those already discussed on Page 17:

—n, = 0. (3.5)

3.1.3 Complexity of Equations

Thus, to solve the full 3-D models, we have to solve the sysiéfive equations,
(3.3) and (3.1a) - (3.2) for five variableB, h, u,, u,, andu..

The most challenging part is solving the system of momentgoatons (3.1a) -
(3.2). This is a nonlinear system of four equations with feariables. The numerical
approximation of the system results in iterative solutibhreear equations with huge ma-
trices. For example, for a 3-D model for a rectangular re¢ia is50 x 50 x 10 = 25, 000
nodes, the system hd$0, 000 independent variables (number of nodes4 variables,

3 velocity variables and 1 pressure variable) and the matfrithe system could have
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100,000 x 100,000 = 10'° elements. The challenge of solving the large size systems

is discussed in Chapter 5.

3.2 Ice-stream Model

For modeling ice streams, the common approach is to treat #sebarely-grounded
ice shelves. In the ice shelf, the only stresses considestha longitudinal and lateral
stresses. The basal drag is not included in the fundamemtalfation because the ice is
supported by water. Figure (3.1) on Page 27 shows the fotesyaon our differential

volume. The resulting equations are called Morland eqnatj49].

driving stress|

lateral drag

longitudinal drag
(compression from
up/down glacier)

direction of flow
_

Figure 3.1. Ice-shelf: major forces acting on ice-shelf in one direatio

Ice stream flow is transitional between sheet flow and sheif fldence for stream
flow there will be both basal shear stresses and longitudinegses. A common approach
to model ice stream flow is to add a small correction (propoél to speed) to Morland

eqguations to simulate the basal drag effects after derthi@gquations with the assumption
27



of no basal drag. This addition of this friction term doedaie assumptions of the Morland
derivation.
This chapter solves this problem by including shear frictiothe derivation of Mor-

land equations. Otherwise, the derivation follows [46].

3.2.1 Diagnostic Equation

3.2.1.1 Ice-stream/ice-shelf Basal Boundary Conditions

We will start the derivation by re-writing the boundary carmahs. The surface
boundary conditions are the same for all type of flow, stfess- and stays as (2.24a)-
(2.24c).

To re-write the basal boundary condition, we will follow [4%igure 3.2 from [49]
shows a horizontal plan of ice-flow as well as an element obther margin of the ice0 X
andOY are the rectangular coordinates in which the equationsemieed!. The ice outer
margin is shown by the bold line. Contodf, shown as the dashed boundary boundary,
and the rear edgeO M are the boundary of the smooth steady flow. Parai Figure 3.2
shows an element of ice betweéhand the outer margin. It also shows local normal and
tangential coordinates af, (n, s). To re-write basal boundary conditions, we need local
normal coordinates on the base of thesigaiot shown on the figure.

Let’'s express zero tangential traction on base in the atmeform of components
perpendicular toz, andOY ands;, andOX, whereOX andOY are the rectangular co-
ordinates in which the equations are derived. Let’s deft@edmponents of the outward-
pointing unit normal vector to the bottom surface@s= (n1, no, ng). From (2.27), we get
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Flgure 1. Unconfined ice—shelf flow. Panel a shows the hori
pacel b the froot reglon. st

Figure 3.2. The horizontal plan and the front region of ice flow. From Naowdl(1987).
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expressions for components:af.

oz
ny = aam = :
VG (G
9z
Oy
nyg = ; 3.6
? 1 92p 2 Ozp\2 (3.6)
+ (32 +(5)
-1
ns

With ny, the vector normal tay, andOY andny, the vector normal tay, andOX, we can

define them as follows:

7k

n = (OY xn)=| o 1 0 |=s0,-m),  (3.78)
ny Ny N3
T 7k

Ny = (M X OX) =1 ny ny nyg|=(0,n3—n) (3.7b)
1 0 0
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Then, the tangential traction component perpendicula@tme? (1) is found as fol-

lows:

Oxx Ozxy Ogxz ns
Toe = 1| T|nige! = (11, 2, n3) Ope Oy Oy 0 (3.8)
Oz Ozy Ozz ot
ns

- (nlaxx + NoO0yy + N30z, M10gy + N20yy + N30y, N0z + N20y, + n3azz> 0

= nn3(Ope — 0.2) + Nanz0y + (N3 — NT)0w — N1N20,,.

Similarly, the tangential traction component perpendicub 7, and OX (Tby) Is

found as follows:

Ozz Ogzy Ogz 0
Toy = 1T |nigy! = (n1, n2, n3) Oyz Oyy Oy ns (3.9)
Oze Ozy Oz —T2

0

- (nlaxx + No0yy + N30 2z, N10gy + N20yy + N30 2y, N10g, + N20y, + n3azz) ns

= Nong(0yy — 042) + NN304y, + (n3 — n%)ayz — NN 4.
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After substituting the values of;, ny, andns from (3.6) in the above expression, we

get the following expressions fay, and,:

The = — (3.10a)

= - (3.10b)

Define the tangential traction boundary conditions in dices n;, andn,, as fol-

lows:

Tox = fb:va Toy = fby (311)

Until now, we have been been following [49]. In MacAyeal-N&ord model, the
horizontal components of shear stresses at the bed in tives@ar coordinatels:, y, ) are

assumed to be zero:

—

f: (fa:afyafZ) = (0,0,pgh). (312)
We will be using two different heuristic assumptions, tigtthe horizontal shear stresses
at the bed in Cartesian coordinatesy, z) are proportional in:
Modified Model 1: to unit velocity vectors:

]?: (fa&afyafz) = <_Txu_x|> —Ty ujapgh) > (313)

@’
Modified Model 2: to driving stresses:

—

0z, 0z,
f - (fxafyafz) — (Oéaﬁpgh%aaypgh@apgh) ) (314)
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wherer,, 7, a,(T), anda,, (1) are parametersy, (1) = o, (1) = 1ifice is grounded and

a,(T) = oy (T) = 0O'if ice is floating).

We denote the shear stresses at the bed in a new coordintms$ys,, ny,, n,) as:

f = (fba:a fbya sz)

The shear stress components in new coordinate system cawihe fising the for-

mula for the scalar product of two vectors:

fZ:(fmw:hm+thk%Q:_[
Tl /M0t (Cm)?

s {2}

- (feniy) S04 fyns ot f(ome) { %] <%)2 _%
o = gyl V02 +n2 + (—ny)? =— |+ [ Y {1+ o

Substituting ( 3.13) and ( 3.14) into ( 3.15a) gives the fwlltg shear stresses at the

bed in the new coordinate system:

Modified Model 1:

8zb Ug
- pohsy — Tald - PINSy — TyTa
o =m0 fiy = ———1 (3.16)
L+ (%) 1+ (%)
Modified Model 2:
825 821, % %
R Qy =L o « +
foo = —pgh—Bz 0§ _pgp YO O (3.17)
1 0z |2 0z 2
+ (8J3) 1 + (a_yb)
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The boundary condition (3.11) can then be written as follows

_ 8zb

02z P 0z, 0z "
By (e T 0w) T gy e (1 B (% ) T2 = Gy gy O~ oI

8zb &zb &zb 2 8zb &zb 92
_ — _ 1 — _ =
ay (Jyy Uzz) or Ozy + ( ( ay ) ) Oyz O ay Oz beb:tp

Whel’efr’g =1+ (%)2 + (%)2

Finally substituting strain rates for stresses using (2.2) with the linearized flow

law of equation (2.9), the above basal boundary conditiansoe re-written as follows:

—% (2ptépe + P) — %—'Z’MW + 2péz, + % (2pé.. + P)

- (g;) 2htse = ot ey = 2 i (3.199)
—%—Zb (i + P) — Loy, + 2 + %—Z’ (2piés. + P)

- @Z’)Q 2té,. — %%—Z’Quém = r2fy (3.19b)

3.2.1.2 \ertical Integration of Momentum Equations

In ice-shelf and ice-stream modeling, it is assumed thaizbotal velocities and

strain rates are independentxgfor,

O€sa Oeyy

S0 Oézy ou, Ou,
0z 0z

9% — 0, §—>0, Eeo, €x =€y =0. (3.20)

— 0,

These assumptions are justified by the flat and thin geométcg shelves.
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Using these assumptions, the Stokes’ equations (2.1989¢Pcan be reduced and
written in terms of a horizontal, depth-averaged ice véjobi = (U, U,). To derive the

reduced equations, Stokes’ equations (2.19a)-(2.19¢htagrated over depth.

3.2.1.3 Integration of the-momentum equation

Integrating the vertical component of the Stokes’ equatihh9c) from some level
210 z = z,, rearranging terms using Leibnitz Rtl@nd using boundary condition at the

surface (2.24c) generates an equation for the pressure field

Zs

0 o [*
P(z) = +% i €y, dz + a—y/Z 2uéy, dz — 2pé,, — pg(zs — 2)

Using assumption (3.20) that, and¢,, are independent of z, the above equation is

simplified as follows:

P(z) = —2pé.. — pg(z — z5) + a% [2/1€4: (2 — 2)] + a% 27é,. (2 — 2)]  (3.21)

wheref is the depth-averaged effective viscosity (overbar dendépth averaging): =

zslfz fzzs 'u dZ

1

= 0f(x,z,...) _3/25 B 0z 0z
/Zb o dz-ax . flx,z,...) f(x,zs,...)ax —|—f(gg,zb,...)8:17
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3.2.1.4 Integration of the-momentum equation

Integrating ther— horizontal component of the Stokes’ equation (2.19a) from z,

to z = z, and again rearranging terms using Leibnitz Rule gives theviong system:

o [* o [* . o [* .
6_95/% sz—i-%/ 2,uemdz+a—/ 2piéyy dz

. 0z 025
_ {(QMGM + P)— e + 2y —— 9 2,uemz}

0z 0z

Z=Zp

z=zs

Applying boundary conditions (2.24a) and (3.19a) givesitilewing system:

o [* 9 [ o [* 02
— Pd — 2y d — 2€, d — (2ué P

Zp Zb
82’1)

. 82’1) 8zb 9
Wty — —2 =22 = 0.
<8l‘) M€z 8l‘ ay Meyz Ty fb:c 0

To estimate the first term of the above equation, let’s irstEgpressure over depth

(we also use the incompressibility conditién, = —(é,, + é,,)):

a Zs a Zs ) a Zs a pgh2
— Pdz = — 2 dz + — 2 d
Ox /Zb °T o /Zb Hexr 02+ Ox /Zb Heyy 42 = or 2

o [* 0 . o [* 0
+% /Zb e [2fi€y. (25 — 2)] dz + e 8 201€,. (25 — 2)] dz

Zb
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With this assumption, the equation for x-momentum becomes:

o [* . O 0 pgh?
E 5 2t€pr dz + . 2péy, dz ~ 5 9 + — / 2y dz + — / gy dz
_/ZS (2/1€ —2)) alz+2 ng(Q’é (zs — 2)) dz
. M J:z Zs o . ay HEyz(Zs
&zb 9 . &zb 8zb
2 P —)°2 - ——2 =
+a ( Mezz + ) (8l‘) M€z~ 8l‘ ay ,ueyz bebx 0.

Using assumption (3.20) that,, ¢,,, andé,, are independent of z arid, = 0 and
é,. = 0, the above equation is simplified as:

0 ) )
— [20h(2¢,, + Eyy)] +

0 8zb
— (2fthéyy) + = [2ué.. + P =
ox ( Mhﬁxy) =+ o [ M€z + ]

Oy

oh -
pgh=—+ 73 foe-

If we substitute the fact that at the b&d= —2u¢.. — pgh (3.21) and use formula+ z, =

zs, then the above equation can be written as follows:

(3.22)

0 o ..
8_y(2luh€:vy>

o . ) .
Oz [2/1h(2€ 20 + Eyy)] + (’9

Equation (3.22) is the x-component of the reduced stresatem for ice streams.

To summarize and to ease the comparison with the originaPykel-Morland equa-
tion, we can re-write the above x-component of the reducéahba of momentum equa-
tion:

Q(Q,Jhéw) — RHS, (3.23)

o . ) .
or [2/1h(2¢,0 + Eyy)] + ay

where the right-hand sid&H S, is as follows in:
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Morland Model for ice-shelves: pghZ,
MacAyeal Model for ice-streams:pghazs + Tz Ei

Modified Model 1: pghazs + (Tx i pghazb) Gz
Modified Model 2: pghZs — pgh (a, % + 92 gy,

NI

whereg,, = (14 (22)2 + (22)?) (1+ (%)°)
The equations show that the modified models include the bmekes!| In the case
when the bed surface is fl% =0, a—b 0, the right-hand side of the equation becomes

as follows:

Morland Model for ice-shelves: pgh%zS
MacAyeal Model for ice-streamS'pghazs + Tt M,
Modified Model 1: pghe + T i,

Modified Model 2: pgh(l — o) %,

We can see that for the flat-bed ice-streams, derived easaticthe Modified Model
1 are identical to the ones of MacAyeal model. In the case ofliitd Model 2, the
shear stresses at the bed of ice-streams are adjusted nditbgcsing from ice-sheet shear
stresses the forces proportional to velocities but myitng the ice-sheet shear stresses by
factor (1 — a,).

Below are two extreme cases of this equation:

e for ice-shelf (o, = 0): equation (3.22) becomes exactly equation (3.26) in [46]:

[ ) o .. 024
By (A2 + &) + 3—y(2uhemy) pgh—-

e for ice-sheet (v, = 1): equation (3.22)becomes:

0 0
o 200200 + €yy)] + o~

2nhéy,) = 0.
Ox 83/( fihésy) =0
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Finally, thez— component of the diagnostic equation (3.22) and the siradaation
for y— component of the diagnostic equation can be written in tesfrdepth-averaged

horizontal velocities using the definition of strain-ratemponents (2.4) as follows:

0 ouU. oU, 0 ouU. ouU, 0z -
— | 2mh (2= + =¥ — (@h L4 Y ) = pgh—== 42
8:6(” ( ox + 8y))+8y (,u (8@/ + 83:)) g 8x+rbﬁm

(3.24a)

o (.. (.0U, O, O (_ (0U, OUN\ 0z  op
oy (2’” (2 oy ¥ ax)) o0 <“h<ay ! ax)) = P9y bl

(3.24b)

3.2.1.5 Boundary Conditions along the Edge of the Domain

Two types of boundary conditions can be specified along tge ¢4?) of the domain
(€2), Dirichlet and Neumann. Dirichlet boundary conditionpgsification of the depth-
averaged velocity, are applied at zero slip coast-lineshmre/ice streams flow into the ice
shelf or at stagnant ice-shelf boundaries. Neumann boyratarditions are specified at
the seaward, iceberg-caving front. The depth-integraééahlce of forces at the ice front is
formulated as a balance of the depth-integrated forcerratesl across the ice front due to
internal stresses and the integral of the hydrostatic prese the seawater beyond the ice

front over the face of the ice front:

Zs 2
Pwy [ P -
oiinidz = ——= (—h) n (3.25)
/zb 7 2 \puw

wherep,, is the average density of seawater. In the above equatidassgsumed that the

ice shelf floats in hydrostatic equilibrium with seawatgr= —p%h.
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In the cases when the ice front extends alongitheand x— axes, that is, when

n = n, andn = n, consequently, boundary condition (3.25) becomes:

S

I
S
8

Zb

“ . Pwd
/ (2/~L€yy+P)dZZ_T(

Zb

Zs 2
/ (2uess + P)dz = —% (ﬁh) : (3.26a)
Puw
P
Pw

SL

Il

S
<

h) B (3.26b)

Finally, using (3.21) and incompressibility conditief, + ¢,. + €. = 0, they can be

written as follows:

2
i =n, o (2900 4 OUs) _poh” (P (3.27a)
Ox dy 2 Pw
- _ — (U | OU,\ _ pgh? p
=1y 2ph ( e +2 By ) =5 1 - (3.27b)

3.2.2 Prognostic Equation

The above momentum equations yield the z-independentdmiak velocity field
U = (Uy(z,y), U,(z,y)) that corresponds to an instantanesuiap shobf the ice-thickness

field, h(z,y,t). The time-evolution of the ice shelf is governed by the pasgic equation:

oh  A(h-U) 9(h-U,)
= - TR (3.28)

It is important to notice that the ice-shelf flux term in (328 anon-localfunction
of ice-thickness. It depends on the flux of ice from the sumthg locations. This is in

stark contrast to the grounded ice sheet SIA model.
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3.2.3 Complexity of Ice-shelf Equations

In the ice-shelf model the basal stress is neglected. This/glus to reduce the
3-dimensional equations to quasi-2-dimensional equat{orandy) with variables inz
directions integrated out. That is, to solve Morland equratj we have to solve the system
of three equations with three degrees of freedom, equafBB8) and (3.24a) - (3.24b) for
three (3) variablesy, U,, andU,,.

Equations (3.24a) - (3.24b) are nonlinear two-dimensienaktions. The lineariza-
tion of the flow law (2.9) for the numerical solution of the #® allows us to solve the
linear problem, and then iterate on the effective viscosityich itself depends on the ve-
locity field.

For a rectangular region thati® x 40 = 2,000 nodes, the system hds000 inde-
pendent variables (number of nodes2 velocity variables) and the matrix of the system
has4, 000 x 4,000 = 1.6 x 10° elements which is 100 times smaller than the corresponding

matrix for a 3-dimensional model.
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Chapter 4

NUMERICAL SOLUTION - FINITE ELEMENT METHOD

The models constructed for full 3-dimensional system and2fdimensional ice-
shelf equations share several key points. First, the ti@gpsng procedure is split into a
two-step algorithm. One step involves solution of the d@siit equation which determines
the velocity field from the ice-thickness field and boundamditions. Since the diagnostic
equations are non-linear, they are solved iteratively. éwond step involves solution of
the prognostic equation which updates the ice-thicknestslglition using the new velocity
field and boundary conditions.

Both the diagnostic and prognostic equations are disetising the finite element
method (FEM). The finite-element method is a standard nuwaleechnique which can be
successfully applied to any of the conservation equatiessribed in Chapter 3, eitherin a
steady-state or a time-dependent situation. The domairhahwhe conservation equation
is to be solved can be complexly irregular, with no need ferdhrvilinear or normalized
coordinates often required by the finite-difference methBdundary conditions can be
easily specified along this irregular boundary as a mixtéiessential boundary conditions
(specified state variable) or natural boundary conditiepg¢ified flux or specified linear

combination of flux and state variable).
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Equations such as (3.1a)-(3.1c) or (3.3) are called therigtror classical formu-
lation of the problem. In this formulation, a solution is végd to satisfy the differential
equations at any point in the domain as well as boundary tiondi

However, if data have any irregularities, or are not smoatsugh, or the domain of
the problem is very complex, then the strong solution mayemat or cannot be found. In
this case, we can look forveeakor variational solution that may not satisfy the equation
and boundary conditions at every point of the domain but naéigfy them in average.

The variational formulation of the problem can be obtaingdrultiplying the dif-
ferential equation by an arbitrary test or weight functiord antegrating over the whole
domain. The choice and requirements of test function isugdised, for example, in [3]. To
solve the variational problem, the Galerkin method is utempproximates the solution as
a finite linear combination of basis functions. Criteria hbosing basis functions include
the following considerations:

1. is there a systematic way of constructing the basis fans®® The construction of
basis functions become a complex problem in two- and threeenkional bound-
ary problems where functions must be designed to fit the bamyncbonditions on
domains with complex geometries.

2. is the resulting matrix of the generated system of ling@iagons, called atiffness
matrix a sparse matrix (which would greatly reduce the mgnamid time required
to solve the system)? and

3. is the calculation of the stiffness matrix elements sefpl

These difficulties are resolved Finite Element Methody
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¢ dividing the domain of the problem into finite number of suoas calledfinite
elementsand
e approximating both the unknown solution and the arbitratyoiduced test function
as a finite sum of some predefined basis functions which argtremted as a piece-
wise functions (polynomials of low degree) that are difféeom zero only on a few
adjacent subregions.
These approximations reduce the variational problem tegesyof linear equations where
unknowns are the values of the unknown solution at the notletements of the finite
element mesh. A major advantage of FEM over spectral or Taddes solutions is the
sparseness of the resulting matrix due to the fact that this banctions are different from
zero only on a few adjacent subregions of the domain. MoreEX Ean be found, for

example, in [3].

4.1 FEM formulation of Higher-Order 3-D Model

Paragraphs below show the variational forms of momentummaass conserva-
tion equations, as well as the final systems of linear eguatienerated by FEM for 3-

dimensional full momentum equations.
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4.1.1 Approximation of Conservation of Momentum Equations

4.1.1.1 Variational Form

The variational form of the-component of the momentum equations is constructed

by multiplying the residual error function from equationi&):

o(P+2me) O (1 + 50) 0 (e + 2))

ox y + 0z

+pfa

by a test function)(z, y, z) and integrating over the problem’s doméin

Waw(ay. 2

O (P +2p5e
{ ( +2,u )+
ox

0 (,u(%“y“ a“y)> 9 (e 4 2

Jz 8J1))
dxdydz = 0.
3y + o +,0fx} rdydz =0

Use of the divergence theorem converts the above equatibe following form:

du,\ &
Mo {—pfa;w (P+2u - ) >

ou, % 8_1/1 Ou, Ou, 8_1# B
+,u<a +8x)8 +'u<8z+6x) Z}dxdydz 4.1)

Loa ¥ <<P+2ua—x) Ny + 1 < 3 +6—x) ny+u<g+ 833)%) ds = 0.
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4.1.1.2 Application of Boundary Conditions

Let’'s assume that the bounda?$ consists of the following parts:
o0l = agzsurface + aQbedD + 8gzbealN + agzsialeD + aQsideNu

In the expression above

0Qsur race 1S @ surface boundary of the domain where stress-free ¢onslif2.24a)-
(2.24c) are specified;

I eqp 1S @ basal boundary of the domain where Dirichlet boundangitmns (known
velocities) are specified;

0peqn IS @ basal boundary of the domain where Newman boundary womnsli
(2.28a)-(2.28c) are specified;

00iq.p IS side boundary of the domain where Dirichlet boundary domts are
specified; and

00i4.n 1S the remaining side boundary of the domain where Newmamdbeny
conditions are specified.

Using ice surface and basal boundary conditions, the bayngral in (4.1) can

be re-written as follows:

/ WRds = / / WRds+ / W Rds+ / W Rds+ / W Rds+ / WRds
aqurface aQbedD aQbedN aQsideD aQsideN
(4.2)
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where

R = (P+2,u861;x) Ny + 1 (8% + 8_1;@,) ny + p (% + 8uz) n,.

In (4.2), integral ffmswacwRds = 0 because of stress-free conditions (2.24a)-
(2.24c); integrals| faﬂbew Y Rds and || faﬂsidw 1 Rds are made equal to zero by choosing
the arbitrary test functiong to be equal to zero on those boundaries; ffggb ,dN@Z’RdSZ
~[oq,, P pgh%Z2)ds because of (2.28a). The last integff), ., VRds can be defined

in a similar way. Assuming for simplicity that all lateral imedary conditions are Dirichlet

boundary conditions, the boundary integral in (4.1) caneberitten as follows:

/ o YRds = / /8 o YRds = — / /a o W (axpgh%) ds (4.3)

The variational forms ofj- andz- components of the momentum equations are de-

rived in a similar way.

4.1.1.3 Finite Element Algorithm

The above equations apply for the domain as a whole, but tkeyaaply for a partic-
ular sub-domain, or element. Thus we would have a set of eleeggiations corresponding
to the above, where onlf{2 and €2 would be changed t@°¢ ando2¢ for elemente. The
important consequence of that fact is that the integralgjuagons (4.1) can be calculated

by adding contributions from integrals over each individzlament.
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Let's consider shape functions = v%(z,y, z), which are the simple polynomial
pieces of the piece-wise defined basis functions mentiongolage 44.. For an element
with N, = 8 nodes, ther-, y-, z- components of the velocity at any point within the
element can be expressed as a sum of values at the nodes hiapesfanctions evaluated

at the point:
Ne Ne Ne
uf = uaSvS, uh = S, ul =Y uSs, (4.4)
Jj=1 Jj=1 J=1

and the test function at any point within the element can Ipeessed as:

U= Y Wiy, (4.5)

i=1,N.

whereV¢ is the value of function) at nodei in element, u,¢ is the value ofu,, an nodel
in element, etc.

After substituting (4.5) into (4.1) written for an elememidarequiring that it is sat-
isfied for any¥¢, we get the following equations for= 1, ..., N, (N, - is the number of

nodes) for thec-component of the momentum equation:

O\ Oe
fffﬂﬁ {_pfl‘,lvz)ze+ (P+21u 81.;) ali

ou, Ou, OY° Ou,  Ou, OUf
U Uy wZJr U+U (0

il oy + 8x)8y e 0z (‘390)82 }dxdydz—

. O, Ou, — Ouy Ou, Ou, B
ffaﬂe (Ch <<P+2M6—x) Ng + 1 ( ay + %) ny + [ ( Ey + O )nz)ds = 0.
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The above equation can be rewritten as follows:

3um e Oy oY¢ Ouy oYs B
M, # { 0z Oz +( +8x)8y+< +8:1:) az}dxdydz_
/// (pfxd)e 81# ) d:pdyder// Vi Png, ds +
e aQe
ou ou ou ou ou
€= A al £ ds.
[, asc””(@y # G )t (G + ) oo

Then, after substituting;, u;, u$ into the above formula, we get the following equa-

tions for thex-component of the momentum equation:

. Ut ovs (00 L0 dus
Zj:L[foe '“{ x]a O +< e oy Tty 6:15) dy

a e a e e
—|—<u J+ . w)aw}dxdydz_
0z

/// ( Foh? — PWG) da:dydz—i—//mez/zeander

’ . ¢e awe awe
Zjvzlffaﬂe ll“?bz {2u9€j or 7’L$~|>( 95] a +u y] or )TL

+< Uz (,;/}e +uz; awe)nz} ds.

Thus, for a eight-node quadrilateral element the unknownsist of the 24 velocity

Components and the pressur&jx( ulya Uizy U2gs u2y’ Uzy +ovy Uy u8ya U8z P) And the

momentum balance equation fercomponent after some rearrangement is as follows:
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Ne e e e e e e e e e e
Z/// M{U:vj (28¢j 87/’2‘ + 81/1] 3% + 81/1] 3% ) +u 881/1] 3% + 881/1] awi
Jj=

o or Oy Oy | 0z 02 Yigr Oy | or 02 }dxdydz

/ / / (pfx@/f we) de dydz + / /a N YePny ds + (4.6)

e oy our o oy oy
Z//ag o {uj< met Gyt 5 " )“‘yfa y F s J"}ds'

0

Momentum equations fay- andz- component of the velocity are similar:

Ne e e e e e e e e e e
Z///u{u O Oy o (aw our 005 dus 0 8%)4_ Zja@z)jaz/;i

i oy Oz Bz 9r 0y 8y | 9z 0z ) ' 8y 0z }dxdydz

///( Foe — awe) dxdyder//me U Py ds + (4.7)

o 0 e (9] o5 9 N
;//39 it {%j@—ynx i ( o oy oz n) Ty oy }ds'

and

Ne e e O e e e OE e awe e
E e J 7 e 7 7 e J i i i
jl///QeM {umj 0z Ox + uy; 52 Oy + ( 9r Or + oy 0y + 2 % s )}d;pdydz

— ///Q <pfz¢; —~ P%) dz dydz + //m Vs P, ds + (4.8)

N,

< [T os os os os
Z//a uwe{ux] P nm—iruy] aw ny—iruZ](;;]nij 8123ny+2ﬂnz>}ds.
j=1

0z

The components of the global system of equation are obtédiypedmming equations (4.6),
(4.7), and (4.8) over all the elements of the mesh. This vaherate3 N equations for

3N + F variables3 N components of velocities defined at tNenodes of the mesh and

50



components of pressure defined at the center’s efements of the mesh. The remaining
E equations are obtained by adding the incompressibilityesgion (3.2) to the system.
Variational Form of the Incompressibility Expression The variational form of the
x-component of the momentum equations is constructed byiptyiitg the residual error
function from equation (3.2):
Ou,  Ouy, Ou,
+

ox + dy 0z

by a test function)(z, y, z) and integrating over the problem’s domé&in

Ou,  Ou, Ou, B
///91/1(5573/72){&1j + Dy + ER } drdydz = 0.

Use of the divergence theorem converts the above equatibe following form:

o o oV _
//Q <umax+uy6y+uzaz) dx dy

Y (ugng + uyny, +u,n,) ds = 0. (4.9)
a0

Due to boundary conditions, the integral over the domaimdaury in the formula above is
zero.

Finite Element Algorithm of the Incompressibility Expression In the equation
(4.9), the integrals over the domaihand it's boundary)() can be calculated by adding
contributions from integrals over each individual elemehthe mesh and boundaries of

the elements. This can be shown by considering an elemené ahéshy?..
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After substituting (4.5) and (4.4) into (4.9) written for alement and requiring that

it is satisfied for any’'$, we get the following equations for= 1, ..., N,:

N,
. o ., owe . oYE -
;///E ( Ox Uz + dy Uy + 92 uzj) drdydz = 0. (4_10)

Summing equations (4.10) fer= 1, ..., N, generates remaining equations for solving
conservation of momentum problem. Thus, solving the moarargquation is reduced to
solving the system of linear equations (4.10) and (4.6)8)(4Properties of this system is

discussed in chapter 5 on page 61.
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4.1.2 Approximation of Conservation of Mass Equation

4.1.2.1 Variational Form

The variational form of the mass conservation equation rstacted in a manner

similar to the variational form of the momentum conservagguations and is as follows:

oh . o(U,) oMU) o [ on\ 0 [ oh
oh _ =9 (k2 9 (e P gy — 0,
/ L¢(x’y){at o T ey o Mgy ) gy \fwg, ) drdy =0

(4.11)

Use of the divergence theorem converts the above equatibe following form:

oh ) oY o Oh O Oh O
//Q <1/1 ot wa = hts ox hy oy + km@x ox + kyy(’?y 8y) du dy (4.12)

oh Oh
h (Uzn, + U, d kypw—ng + kyy— ds = 0.

Due to boundary condition (3.5), the last integral in therfala above is zero. The
other boundary integral either equal zero at the boundarmeese Dirichlet conditions are

specified (due to choice of an arbitrary test functigf®r can be rewritten as

Yh (Ugng + Uyny) ds = Yqo ds,
a0 o0

where fluxq, is boundary flux (see (2.13)) andl), is the part of the boundary where

boundary flux is specified..
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Then, the variational form of the mass equation is
oh , oY o Oh oY Oh Y
— —a— hU,— — hUy— + kpp—— + kyy—— | dxd
/. (%t TG ey e Ty ay) YL

+ 1/1(]0 ds = 0.
o

4.1.2.2 Finite Element Algorithm

In the equation (4.13), the integrals over the donfaiand it's boundary){2 can be
calculated by adding contributions from integrals ovethaadividual element of the mesh
and boundaries of the elements. This can be shown by comgjdar element of the mesh,
Q.. Let’s consider the following approximate solutibhand local shape functions’ over

the element of the form:

Ne
he = hSys, vt =) Wy, (4.14)
j=1

i=1,N

wherelV, is the number of nodes ..
After substitutingy© into the variational equation ovél. and requiring that it is

satisfied for anyl¢, the linear system for the element is obtained:

Oh o e Oy OV . OhOY; . Oh Oy
//Qe <¢i ot Yid = hU; Ox hu, dy +k”8x ox Ky dy Oy d dy

+ Yih (UgnijU;ny) dsds=0, i=1,2,...,N,
09

We assume that column-average velocitigendu; and diffusion coefficients;, andk;,

are defined at the centroid of the elements.
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After substitutingh© into above formula and approximating the time variable waith

difference scheme, we get the following equationsifer1, ..., V.:

ffge { fﬁ (Z;V:el h?mﬂw; o Z;V:el hjmw;> - wz'ed

Ne , 1 g Ne , 1 oY
- Zj=1 (h'j " w]e) Ulﬁ or Zj=1 (h'j " w]e) U; dy

O(SNey o) e O(57%y b5 ™ 1) oug
R, T Tk T gy e dy

+ Joo, U5 (Ej\g h?mﬂ%e‘) (Ueng + Ugny) ds = 0.

After some rearrangement, we get the following system:

Sy Mo, {wras (h5™ s — hS™ye) — yga

- (1) U — () U3

T Ox Yy Oy

(RS ye) aye (RS Ty gye
+k;$ ( Ja:v J)a_ml+kjle/y ( Jay J)a_yl dl‘dy

+ 3N oo, U (RS T16) (Usny + Ugny) ds = 0.

4.1.2.3 Finite Element Calculations

The above equations can be rewritten as follows:

Ne Ne
S (Ch+KG+05)he™ = fr+ ) ChS™, i=1,2,... N, (4.15)
j=1 j=1

where
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e __ e eawie e eawie e 8w]e awze e 677[)]6 awze
Kij_//e (—waj D —Uywj By + k5, 9 O —i—l{:yy 5y dy dx dy,

fo = / Yeadedy,
Qe

The components of the global system of equation are obtéypedmming equations

(4.15) over all the elements of the mesh:
(C+ K +o)h™ =F+Ch™, (4.16)

where the matrix and vector entries are given by

E
Cij = Z Cs, (4.17)
e=1
E
Kij=> K (4.18)
e=1
E
oij =Y o (4.19)
e=1
E
F, = Z f; (4.20)
e=1

whereF is the number of elements.
Thus, solving the prognostic equation is reduced to solaisgstem of linear equa-

tions with matrixC' + K + o, which is called the stiffness matrix of the system.
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4.2 FEM formulation of an Ice Shelf Morland Equations

In this section, we construct the FEM formulation of Morlaicd shelf/ice stream
model discussed in the previous chapter. The variatiomaigoof momentum and mass

equations, as well as the final systems of linear equatiomsrgeed by FEM are derived.

4.2.1 Approximation of the Diagnostic Equation

4.2.1.1 Variational Form

The variational form of the-component of the momentum equations is constructed
by multiplying the residual error function from equation38a) by a test functiog(z, y)
and integrating over the problem’s domain

For the x-component of the momentum equations, the Galenkitod requires that:

o[ (o (2 ) 2 0 (2 )
4 or 2 Oy oy Hvy dy ox (4.21)

pgh 0zy  pgh Oz
_ Pt Tes o P9 Db

} dxdy = 0.

Use of divergence theorem converts equation (4.21) to thenimg form:

18U, 8¢ ou, o
//(“h(a 2ay)ax+“h‘(a *ax)a)d“”dy

( (1 = Cage) =2 ZS gbmaaz”) b d dy (4.22)

oU, 10U, ou,  av,
< l‘+§8—y)+ﬂh4<a +6$)} ds = 0.

The boundary contour integral in the equation above can {veriteen taking into

P_
Q 4

account discussion of the boundary conditions on page 3%toQo integrals along the
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contour where Dirichlet conditions are applied can be mapmkto zero by choosing the
arbitrary functions) while the contour integrals along the ice-shelf front whdesvman’s

conditions are applied can be replaced by the integral::

/ Pg8h2 (1 B _) b ds
o0 p

Then ther— andy— components of the diagnostic equation look as follows:

o (0U= 10U, 00 oU, O
//(“h( o 26y)6 *’”‘hzx(a y aa:)a )d“ly K
) .
Q w
ou, 19U, 1 /08U, W
/] ( (5 ax) iy () 57 ) w2
Py 9z pgh2
S (- vy oy vt = [ 255 (1= 2 v

whereds2 is an ice-front where ice shelf floats in hydrostatic equilim with seawater.

4.2.1.2 Finite Element Algorithm

Equations (4.23)-(4.24) apply for the domain as a whole tlhey also apply for a
particular sub-domain, or element. Thus we would have afsgement equations corre-
sponding to the above, where orilyandd<2 would be changed t@¢ anddé€)° for element
e. Let's consider shape functiong = v (x,y). For an element withV., = 4 nodes, the

X-, y- components of the velocity at any point within the edgrhcan be expressed as a sum
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of values at the nodes times shape functions evaluated pothe

Ne Ne
- Z uSs,  US = Z w1, (4.25)
j=1 j=1

whereu, is the value ofu, an node in element, etc.
After substitutingy® = >, v V§¢s, into above formula and requiring that it is
satisfied for anyl’¢, we get the following equations for= 1, ..., N. (/V. - is the number of

elements) for the x-component of the momentum equation:

8u$ 10u, \ oYy 1 Ou,  Ouy\ O B
//( ( 2ay)ax+“h4(ay+ax) oy ) P =
_ [ rat 3% 3 / pgh? (P e

Then, after substitutings, u;, into the above formula, we get the following equations

for the x-component of the momentum equation:

oup L U\ OUE 1 (U oug B
Z// (“h( R ay)E”hi (“ oy T asc) ay) d dy

B pgh B 0zs 0z, /pgh2 AW
// 1 ((1 Oéxgbar)ax Gba gy )wdd+ 8 1 o Vs ds

The momentum balance equation for x-component, after seareangement, is as

follows:
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N,
- e - 81/’; a,l/}e 1 8we 81pe 1 8#;]3 awze 1 8w]e awze
]Zl|:U$j//:th(ax O 4 83/ 6y)dxdy +u y]/v/e (2 83/ O + Z o 6y)dxdy}

_ @ 8’23 a e /pgh'2 = e
// 4( axgbar)a — Gba )wdxdy+ o 8 1 o Y5 ds.

(4.26)

Momentum equations for y- component of the velocity is samil

N,
[, [ (G 105 0us (10V5 05 10v5 0y

pgh 0z 0%\ e / ,ogh2
/ /Qe 4 (( ) Ay oo Ay ) vidway+ oo 8 Puw vi ds.

(4.27)

The components of the global system of equation are obtéyedmming equations
(4.26 and (4.27) over all the elements of the mesh. This witlegate2 N equations fo2 N

variables {— andy— components of velocities defined at tNenodes of the mesh)

4.2.2 Approximation of the Prognostic Equation

Since the ice-stream/ice-shelf prognostic equation j38xactly the same as the
ice-sheet prognostic equation (3.3), the finite elememhédation of the equation as well
as the final systems of linear equations generated by FEMb&ilhe same. They have

been discussed on page 53.
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Chapter 5

PERFORMANCE ANALYSES OF SuperLU PARALLEL SOLVER
This chapter describes application and benchmarking afiléprocessor software
package SuperLU-DIST for solving large systems of sparselsaneous linear equations

generated by the three-dimensional full-Stokes model.

5.1 Introduction

Solving the system of linear equations (SLE) generated byegtdimensional higher-
order ice-sheet model is a demanding task because usagéireicinterative methods is
impossible while usage of direct banded-Gaussian elin@nahethod is impractical due
to types of matrices of the generated systems. Figure 5..hge €3 is a scatter plot show-
ing the non-zero entries from an actual matrix generatedti For the higher-order 3D
model. It is a banded matrix with right and lower borders oh4zero elements. As it
can be seen from the picture, the matrices generated by FEkbfeing conservation of
momentum equation have the following properties:

Matrices of the systems are not diagonally dominant.Since the diagonally dominance
of the matrices is the necessary condition for the iteratie¢hods to converge, that
means that iterative methods cannot be used to solve thetssy, For this reason,
the direct methods, as opposed to iterative methods, aestigated for solving the

equations generated by FEM.
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Matrices of the systems do not have a strict banded structureNon-zero elements on right
and lower borders of the matrix (Figure 5.1 on Page 63) argesrgenerated by pres-
sure terms in the momentum equations. These entries makedtinees non-banded.
Without the banded matrix structure, storing the matricesve dimensional arrays
and straightforwardly applying banded-Gaussian elinmatnethods is impractical
for large size problems.

Matrices have extremely large sizesFor example, space grid of sizé x 50 x 10 gener-
ates~ 10° equations. But the space grid may range0 x 1000 x 50 which generates
~ 10® equations.

Matrices of the systems are very sparseSystems of equations that have many more zero
entries than non-zero entries are called spar§®r example, for a 3-D model for a
rectangular region that i) x 40 x 5 = 10, 000 nodes, the system hd8, 000 inde-
pendent variables (number of nodes3 velocity variables and 1 pressure variable)
and the matrix of the system has, 000 x 40,000 = 1.6 x 10® elements. But only
81 x 40,000 = 3.24 x 10° of them are non-zero elements, that is, orly00 entries
per equation are non-zero.

Since indirect methods cannot be applied for solving iceeskystems, the choice is
between different direct methods. Table 5.1 on Page 63 caasgharacteristics of dense
matrix methods (based on Gauss elimination) and sparsexmmathods (such as SuperLU,

UMFPACK) applied to a matrix of size- 10° generated by grid0 x 50 x 10.

Defining a sparse matrix as a matrix with some fraction of eonentries is inappropriate. Instead, it is
recognized that sparsity is an economic issue; if you caa sane and memory by exploiting the zeros, then
the matrix is sparse. The sparse matrix community defineamsspnatrix as any matrix with enough zeros
that it pays to take advantage of them.
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Figure 5.1. Scatter plot of non-zero entries in an ice-sheet matrix

Dense Matrix Algorithms

Sparse Matrix Algorithms

memory(storeA):

O(n?) ~ 80GB

memory (store only non-zeros ofd, row- and
column- pointers, and nonvisible for the user ma-
tricesL andU):
O(n) ~ 0.16GB

O(n?) ~ 10¥FLOPs ~
hours

runtime(LU decomposition):

277

runtime(perform operations only on nonzeros)
O(n?) ~ O(n*logan) ~ C x (1 ~ 16.6) x
101°FLOPs =~ C x (10 ~ 166) seconds.

If constantC”' =~ 100, then runtime may range fror
2 min to ~ 4 hours.

=1

afor a typical processor that perform&® FLOPs per second.

Table 5.1.Comparison of dense and sparse matrix algorithms for splvisystendx = b

with matrix A(n, n), wheren = 10°.

We can see from the table that application of dense matrorighgns is impossible
— it requires~ 80 GB memory to solve even a modest size system and it takes about
270 hours to solve the system. Sparse matrix algorithms require Bognitly less memory

(they store only non-zero elements of the matrix and somgiaddl needed matrices that

describe the positions of these nonzeros within the totafix)a However, the run-time

of the algorithm is in the range @fmin to ~ 4 hours. Ideally we want to solve systems

of much higher-order (sag00, 000, 000 which is generated when we use a gridiof x
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100 x 50 points in space) and solve them not once X 000 times to simulate evolution
of ice-sheet with time.
The above reasons have motivated us to explore the possdiilising multiproces-

sors to solve these systems of equations.

5.1.0.1 Which part of the code to parallelize?

To begin with, we have a question, should we write a paratidecourselves or use
some available software. The answer depends on how unitluepsoblem we are solving.
Our code consists of two steps, (1) a specific step, gengra®iE from mathematical ice-
sheet model using FEM, and (2) a general problem of solviaggmerated SLEs using a
direct solver. Running time of the first step, building theESl_is more than an order less
than the running time of the second step, solving the gem@r@LEs. Constructing the
SLEs isO(n), while solving the SLEs (for example, using serial SupeA)ds O(n?) —
O(n?logan).3

We timed these two steps using serial SuperLU. Table 5.2 ge B& shows the
timing results. Figure 5.2 on Page 66 displays the time reduo build the system of linear
equations using FEM and the time required to solve the syasdomctions of problem size.

We can see from the table that the first step, specific to ouemtakes only about
2% of total running time for our benchmark problem of siZ¥), 000 and less than% for

bigger size problems. We can see from the graph that timeitd the SLEs increases

°The software application for solving general systems @fdirequations described further in this chapter.
3The running time of the algorithm depends on the type of maitirthe problem because complexity of
factorization of matrices depends on the type of the matrice
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linearly when problem size increases, while the time rexuto solve the systems grows

much faster.

Grid Matrix | Building | Solving | % Building Time
Order Time Time of Total Time
23 x 23 x 8 | 16,084 5.07 43.68 10.40
33 x 33 x8 | 33,304 11.85 208.81 5.37
40 x 40 x 8 | 49,047 16.06 382.40 4.03
45 x 45 x 10 | 78,174 26.18 1,118.99 2.29
55 x 55 x 10 | 116,994 39.32 1,768.93 2.17
65 x 65 x 10 | 163,614 55.47 3,046.54 1.79
75 x 75 x 10 | 218,034 73.74 7,919.75 0.92
85 x 85 x 10 | 280,254 102.18 | 15,521.83 0.65

Table 5.2.FEM matrix building time vs. Solving time (in sec).

The experiments show that parallelizing the first step of UMISM code is not
worth the effort — for a system of order 10°, solving the system takes 95 — 98% of
running time and building the system takes only — 2% of total running time. That is, it
is enough to parallelize solving the SLEs part of the code!

Moreover, if we need to parallelize only solving the SLEsrtlwe can use freely
available packages for solving SLEs on multiprocessors.

In this chapter, we explore an application of a distributade3LU software package
to solving the system of linear equations generated by 3¢bdriorder ice sheet model

and evaluate and benchmark the performance charactewstice package.
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Time: Buiding and Solving SLE
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Figure 5.2. Running time required to build and solve SLE generated btueet model (in
seconds) as functions of matrix size. Left axis is used falisg running time of building
SLEs while right axis is used for scaling running time of sodythe SLEs.

5.2 Distributed SuperLU

Solving large systems of sparse simultaneous linear egais a common task in
science and engineering problems. Over the years a greabdeark has been done
in this area by researchers. Software to solve these preblers been developed and
is readily available. In his Master’s thesis, Rodney Jad8B% chose and evaluated two
current software packages with respect to the ice sheetggnol©ne of them is SuperLU
[7, 8, 44] — a library of ANSI C subroutines for solving gerlesparse linear systems.
The principal developers are Xiaoye (Sherry) Li, James Deimand John Gilbert. The

SuperLU libraries are freely available for commercial and4tommercial use.

4Xiaoye (Sherry) Li, Computer Scientist, Lawrence Berkeltional Laboratory; James Demmel, Pro-
fessor of Computer Science and Mathematics, Universityadif@nia at Berkeley; and John Gilbert, Profes-
sor of Computer Science, University of California at Sanéalfara.
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SuperLU comes in three versions, for single processor ctenp(known asuper LU),
for shared memory multiprocessdi&nown as Multithreaded SuperLU Stuper LU —
MT), and for distributed memory parallel computers (known &stributed SuperLU or
Super LU — DIST). SuperLU-DIST was used in this work.

SuperLU-DIST uses Message Passing Interface (MPI) forpnbeess communica-
tions. The authors claim these versions are designed to opkaum use of the sparsity
of A and the computer’s architecture with attention given tanopin use of cache memory
and parallelism.

This section describes SuperLU-DIST package, the algurithses, and distribution

of matrices and vectors among processors used in SuperSJ:DI

5.2.1 SuperLU Algorithm Phases

The solver is based on sparse Gaussian elimination. To adystem of equations

Ax = b, it uses factorization

A=D'PlLUP ' D! (5.1)

with following forward and backward substitution to sohae k

¢ = (D;'P'LUP' DY) b= D.P.U L™ P,D,b, (5.2)

5A shared memory multiprocessor is a parallel computer thetva all processors to access any main
memory location. Access to main memory by the processoredsdinated by the computer’s hardware.
Each processor in a distributed memory computer has its oamary. A communications network between
the processors is used to share data and coordinate astiviti
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where

P, is a row permutation matrix for maintaining stability,

P.is a column permutation matrix for maintaining sparsity,

D, andD, are diagonal row and column scaling matrices chosen to nalagiagonal
elements large compared to the off-diagonal elements. Witlisninimize the sensitivity
of the matrix to round off errors.

SuperLU computes each of these four matrices with varioteddeof control avail-
able to the user. Because SuperLU ugésfactorization, it can compute for multiple
right hand sides.

In SuperLU terminology, driver routines are the user-dddaoutines for performing
major tasks. The expert driver, available in SuperLU-DI&8rforms the following steps.

1. Equilibration ofA by computing the row and column scaling matridesand D,
so thatd = D, AD, is better conditioned thad (this reduces round off errors and
improves stability).

2. Row permutations ofl for stability. If row permutations are done from the valués o

a;; before any factorization is performed, then the processlisastatic pivoting

In some algorithms, the row permutations are determinethgdiactorization. Such

a process is callethreshold pivoting The interprocess communication required to

perform threshold pivoting is not practical on a distrilmiteemory parallel com-

puter.

3. Column permutations ofl to reduce fill-in of L andU and increase parallelism in

SuperLU-DIST. This step is also callegmbolic factorizationin this step, column
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ordering is defined using fill-reducing heuristfcén sparseLU factorization, some
zero elements may become nonzeros at runtime due to faaiorizand pivoting.
Predicting these elements can help avoid costly data steigariations during the
factorization. The static symbolic factorization can itignthe worst case fill-ins
without knowing numerical values of elements. This enatilessymbolic process-
ing phase to be completely separated from numerical faetbon. As a result, the
symbolic computation needs to be performed only once forioes with the same
initial structure but different numerical values.

For the unsymmetric factorizations (that is, for factoti@a of general matrixA4),
the preordering for sparsity is less well understood tha fibr the Cholesky fac-
torization (factorization of symmetric matrix = A”7). Most unsymmetric ordering
methods, SuperLU-DIST including, use the symmetric ordgtechniques, called
Multiple Minimum Degregapplied on a symmetrized matrix” + A, denoted as
MMD(AT + A), or on a symmetrized matriA” 4, denoted agd/MD(A” A). In this
technique, fill-reducing ordering is computed on a symmetratrix A7 + A or AT A
and applied symmetrically to the rows and columns of madrix

The L andU factors generally have many more non-zero entries thaue to fill-

in. SinceP, and P. are computed before factorization begins, SuperLU-DIST ca

5The process of factoring a sparse matrix is expressed bgetdit acyclic task-dependency graph (DAG).
The vertices of this directed acyclic graph (DAG) corregptmthe tasks of factoring rows or columns or
groups of rows and columns of the sparse matrix and the edgesspond to the dependencies between
the tasks. A task is ready for execution if and only if all ®skith incoming edges to it have completed.
Symbolic algorithms inexpensively compute an a-priori imial task-dependency graph and near-minimal
data dependency graph for factoring a general sparse nitatiare valid for any amount of pivoting induced
by the numerical values during LU factorization.
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determine what the fill-in requirements will be apriori atideate the correct amount
of memory.

Complexity of symbolic factorization i® (nonzeros(L + U)) [43] and may depend
on matrix structure as well as the heuristic used in symbatitorization step.

. Numeric factorizatio.U with control of diagonal magnitude by replacing tiny piv-
ots by./e || A ||, wheree is a small number.

. Triangular solves of the system of equations udirandU.

. Iterative refinement to improve the solution if needed.

. Computation of error bounds. SuperLU can compute the coet-wise relative
backward errorBERR. The meaning of BERR is that, the computed value af,

is the exact solution of the perturbed linear system of egnatA + E)z = b + f,

where

leij| < BERR x |a;j| and|f;| < BERR x |b;| for all i andj. (5.3)

The authors claim that by combining static pivoting with rawd column scaling

and iterative refinement, the distributed algorithm is ablst as partial pivoting for most

matrices observed in actual applications. In cases whenputations are not stable, BERR

provides an indication of a problem.

In SuperLU-DIST, the most time-consuming steps (4) to (Xjehaeen parallelized,

while preprocessing and analysis steps (1) to (3) are masifformed sequentially at

present.
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5.2.2 Distribution of Matrices among Processors

SuperLU routine takes the matrikin either compressed-column format compressed-
row format. The right hand side of the system of equatiénsnay be presented to the
routine as a dense vector if there is only a single right haahel ®r as a dense matrix in
column major order if there are multiple right hand sidese $blution: overwritesh. Both
A andb are distributed among all processes using a distributisedban block rows. That
is, each process owns a block of consecutive rows ahdb.

MatricesL andU are distributed among processes in a two-dimensional (Rigkb
cyclic fashion. The routine first identifies the supernoderiotary based on nonzero struc-
ture of L. A supernodes a range of columns df such that the triangular block éf below
the diagonal is completely filled. In addition, each rowlofvithin this range of columns
either has all zero entries or all non-zero entries. Becthessupernodes are not necessar-
ily symmetric, thel portion of the supernode does not have the same dense padtern
The matrix in Figure 5.3 illustrates such a partition.

Blocks of L andU are distributed among processes that are arranged as a 2D grid
of dimensionp,.., X p.st = p. The user can set the shape of the process grid, sutlx &s
or 3 x 2, etc. In block-cyclic mapping, block/,J) (0 < I,J < N — 1), whereN is

the number of supernodes, is mapped into the process aticated / — 1)modp,ow, (J —

“Compressed column format is a data format for A that is coibjeatith both SuperLU and UMFPACK.
Three one-dimensional arrays are used to store a matriisifotmat. One array is used to store the non-zero
entries of A in column-row order. The second array is useddreghe row number of each corresponding
non-zero entry in the values array. The third array contdiesndex values of the first and second arrays
where the first non-zero entry for each column of A is stordeke matrix column number is the index to this
array.

We used a special modified compressed column structuresugmodiging routines designed by Rodney
[39] that allowed us to exchange data with SuperLU softwerf@rmation about compressed column format
can be found in Appendix B.
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1)modp.,;) of the process grid. In this 2D mapping, each block columii a$ spread
across every processor in a single column of the processkjgdre 5.3 on Page 72 shows

2 x 3 process-grid and distribution of matricesandU among the processes.

Glabal Matriz Precasc Mach
2 i0 0il1:z
= B iPBn: 3i4i5
{on Uz ;¢
""" ; Hq

-

e

Figure 5.3. SuperLU-DIST 2D block-cyclic mapping of matrix to processgrom
Baertschy & Li (2001)

In addition to default communicatav/ PI_ COM _WORLD, process-groups are
created using,.., X p., processes. The majority of SuperLU’s computation is updati

the unfactored submatrix of the supernode using the foligwlock mode update.

A(L,J) — A(I,J) = LI, K)U(K, J),

where A is the unfactored portion of the supernodeandU are the factored portions of

the supernodg¢, is the range of rows of the unfactored portiohis the range of columns
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of the unfactored portion, andl' is the number of columns of and the number of rows
of U in the supernode. This looks like a BLAS level 3 operatiord #rat is in fact what
SuperLU-DIST uses. In théU factorization, some communication occur only among the
processes in a row or column and not among all processesating process-groups using
2D process grid reduces inefficient addressing.

Thus, decomposition of matricds and U into blocks of 2D submatrices and us-
ing 2D block-cyclic mapping allows the authors to exploinde submatrices in L and U
("supernodes”), use Level 3 BLAS operations, reduce inefiit; indirect addressing (scat-

ter/gather), and enhance load balance and scalability.

5.3 Performance Analyses of the Parallel Solver

5.3.1 Test Environment

We ran the tests on the Boston University SABM pSeries 690 (IBMp690) and
655 (IBMp655). Table 5.3 on Page 74 shows the characteyistisome of IBMp690 and
IBMp655 nodes used to perform experiments described intbig.

IBMp690 composed of four nodes, namidgte.bu.edupogo.bu.edufrisbee.bu.edu
anddomino.bu.edueach consisting of Power4 processors running at 1.3 GHzalazgng
1 GB of memory per processor. There are three levels of cashbis machine. Each
processor has a 32KB L1 cache and then each pair of procedsoesa 1.41MB L2 cache,
and each set of eight processors share a 128MB L3 cache. i®reed peak performance

of p690 system is 580 GFLOPS.

8SCV stands for Scientific Computing and Visualization
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IBMp655 is a 48-processor system composed of six nodes, chamster.bu.edyu
scrabble.bu.edumarbles.bu.edicrayon.bu.edditebrite.bu.edwandhotwheels.bu.edeach
consisting of 8 Power4 processors running at 1.1 GHz andgha8 GB of memory. There
are three levels of cache on this machine. Each processa 32KB L1 cache and then
each pair of processors share a 1.41MB L2 cache, and eacmp@i&shares a 128MB L3
cache. Twister is the interactive machine for the entireo@iSeries machines and is the
only one of the machines which users can log in to. The othehmas are all reserved for

batch processing.

Host Model | # Processors| Memory Network

twister | IBMp655 | 8 x 1.1 GHz | 16GB | 1Gbps Ethernet
kite | IBMp690 | 32 x 1.3 GHz | 32GB | 1Gbps Ethernet

frisbee| IBMp690 | 32 x 1.3 GHz | 32GB | 1Gbps Ethernet

pogo | IBMp690 | 32 x 1.3 GHz | 32GB | 1Gbps Ethernet

Table 5.3. Characteristics of Boston University IBMp690 and IBMp65&des used for
computations.

5.3.2 Test Problems

To study the applicability of the package to our problem, ested it on matrices of
sizes varying from 16,000 to 163,600. Characteristics@htlatrices are shown in Table 5.4
on Page 76. They include the problem’s name or grid $tzel{len), order of matricesr(),
number of nonzeros in matrices and in L and U factors f{ill-in), gigaflops required to
factorize the matrix, and the average number of nonzeroezi&sin a supernode. The last

characteristic can be a certain measure of the sparsityedilligdd matrix.
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To compare the properties of our matrix with the ones thaehmen solved on the
multiprocessor by the SuperLU-DIST developers, we inailifiéble 5.4 on Page 77 from
[45] that shows the characteristics of benchmark matrioadéyaed by Xiaoye Li and Yu
Wang.

Table 5.5 on Page 85 shows other parameters of the matricesdirom the param-
eters shown in Table 5.4 and Table 5.4, such as the averageenwhnonzero elements
of matrix A per row (which characterizes the sparsity of mattjx the average number of
nonzero elements df andU per row (which characterizes how the sparsity of the problem
changes aftef.U factorization), average number of rows per supernode (sntake num-
ber, more evenly workload is distributed among processes),number of megaflops, it
took to factorize the matrix, divided by matrix order (whickharacterizes how fast running
time growth when the problem size increases).

From Table 5.5, we can see that our matrices are the most deatsiees of all the
benchmark matrices. Only problemixing-tankis close in sparsity ofi to our problems.
Itis close in size ofd to our problens3 x 33 x 8, they have almost the same number of non-
zero elements per row, but the size of our matrix is a litttolgger than the size of matrix
mixing-tank Other characteristics of these two problems, such asigpafdilled L and
U, average size of a supernode, average number of FLOPS itdda&torize the matrices,
are also close. Comparing these parameters with similanpeters of other benchmark
matrices, we can conclude that matrices large in dimensidmamber of nonzeros require

more time to factorize.
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nnz (I
Problem | Order nnz(A) |nnz(L+U-I)#supernodes Flops %

n x 106 (N) x10? x103
23 x 23 x 8| 16,084 | 1,051,446 | 23.92 1,795 28.80 | 13.32
33 x 33 x 8| 33,304 | 2,207,046 | 59.06 3,262 88.20 | 18.11

40 x 40 x 8| 49,047 | 3,268,008 | 107.55 4,849 216.06 | 22.18
65 x 65 x 10 163,614 | 14,561,646 610.89 16,376 | 2,134.25| 37.30

Table 5.4.Characteristics of ice-sheet benchmark matrices usedsiwtirk. They include
the problem’s name, order of matriceg,(number of nonzeros in matrices, FLOPs required
to factorize the matrices, and the average number of nortenoents in a supernode.

The most important characteristic is the sparsity of masicandU which is shown
as the number of nonzero elements of the mafrix U — I. It is a key parameter in
evaluating speed and memory requirements of the algorithm.

Since the algorithm factorization time depends on the thmber of nonzeros of
this matrix, the faster this number grows when the size optisblem increases, the more
time is required to factorize bigger matrices and the moreorg is required to store the
matrices.

Figure 5.5 on Page 78 show the number of nonzero elementstiicesad and L +
U — I as functions of problem size. While number of nonzero eldmanthe matrixA
is proportional to the order of the matrix (linear graph iguiie 5.5, which is so close to
axisz that it is barely noticeable), the number of nonzeros of e, andU (number
of nonzeros of matrices + U — I on the figure) grows much faster than the number of
nonzeros ofA. Our matrices result in the most dense matricendU after factorization
among all benchmark matrices of similar sizes in Table 5.Spdculate that the reason

is the fact that our matriced have many zero diagonal elements and elements at right
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Matrix Order nnz(A) | nnz(L+ 1) N Flops(F) | nnz(L+U)/N
x 106 x 10¢ x 103

bbmat 38744 | 1771722 36.1 7128 26.28 5.06
fidapm11 22294 623554 25.6 2610 24.11 9.81
wang4d 26064 177196 10.7 6961 8.79 1.54
twotone 120750 | 1224224 11.4 | 38939 7.59 0.29
mixing-tank 29957 | 1995041 44.6 2538 76.84 17.57
inv-extrusion-1 | 30412 1793881 30.2 4129 32.46 7.31
ecl32 51993 380415 41.9 19168 60.74 2.19
ir 186230 | 2910202 | (mmMp) 132.7 | 2R77 148.48 h.1h
(WD) 89.8 | 31498 66.19 2.85

dds.quadratic 380698 | 15844364 | (MMD) 642.5 | 36877 2120.75 17.42
(ND) 325.0 | 41362 491.04 7.86

ddsl5 834575 | 13100653 | (MMD) 875.3 | 114929 1576.43 7.62
(WD) 526.6 | 141060 600.58 3.73

Figure 5.4. Characteristics of benchmark matrices analyzed in Li & Wg&@3). Char-
acteristics include the number of supernodeghe number of nonzeros ih andU using
MMD ordering on AT + A, and, for some matrices, the number of nonzeros and U

using the nested dissection (ND) ordering.

and lower borders (see Fig. 5.1). This fact may increase tingber of column and row

permutations and, consequently, increase fill-ins.

5.3.3 Performance Characteristics

The number of non-zero entries in thendU factors is a key parameter in evaluating
speed and memory requirements of an algorithm. The numiderading point operations
and the amount of memory required tend to increase with &stng numbers of non-zero
entries, and runtime tends to increase with increasing reusnif floating point operations.
In evaluating performance of the algorithm, we will look ainmbers of non-zero entries
in L andU, number of floating point operations, runtime, efficienayl acalability of the

algorithm.
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Figure 5.5. Number of nonzero elements in matricésand L + U — I as functions of
problem size.

5.3.3.1 Scalability

Figure 5.6 on Page 80 demonstrates timing results, runimmgydnd efficiency, ob-
tained using "square” processor-grifls= 1,2 x 2,3 x 3,4 x 4,5 x 5,5 x 6, and4 x 8 for
computing benchmark problems described in Table 5.4 on Page

Efficiency (E)s a measure of process utilization in a parallel progratative to the
serial program. It can be also defined asspheedupthe ratio of the runtime on one proces-

sor to that of parallel program running grprocessors, divided into number of processors

p.

T(1
Speedup = <—, E =

(p)
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whereT'(p) - run time withp processors.

Efficiency of a parallel algorithm depends mainly on how therkioad is distributed
and how much time is spent in communication. For dense neatritelU factorization
algorithm have been shown to exhibit good scalability, vehecan be approximately main-
tained as the number of processors increases when the mesgorgements per processor
are held constant [9]. For sparse matrices, however, theegftly is much harder to predict
since the sparsity patterns vary with different appliaagio

Figure 5.6 shows results that are as expected on multipg@oesputations, that is,

1. running time decreases as the number of processors sesreand it decreases faster
for smaller size problem than for bigger one;

2. as expected, the efficiency degrades faster for problérasaller size and slower
for problems of bigger size;

3. for problems of ordeB3, 000 or higher, efficiency still maintains d0% even with

32 processors.

Thus, we can conclude that the factorization phase scaieswell for our type of matrices.

Table 5.6 on Page 86 shows speedup reachetl>o, 3 x 3,4 x 4,5 x 5,5 x 6,

4 x 8 processor-grids. As can be seen from the table,
o for small size problems, speedup levels off at 16 processors

e for big size problems, speedup levels off at 25-30 procassor

5.3.3.2 Workload Distribution and Optimal Process-BloceS

Efficiency of a parallel algorithm depends mainly on how therkioad is distributed

and how much time is spent in communication. One way to measgarkload distribution
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Figure 5.6. Running time and efficiency as functions of number of progessand problem
size. Processor-grids ate2 x 2,3 x 3,4 x 4,5 x 5,5 x 6,4 x 8. Left: running time.
Right: efficiency.

is to compute théoad balance factor, LBFwhich is the average workload divided by the
maximum workload. It is clear th&t < LBF < 1, and higherL BF" indicates better load
balance. The parallel runtime is at least the runtime of ih&esst process, whose workload

is highest.

LBF — Yol average workload

p-max;f;  mazimumworkload’

0< LBF <1,

wheref; - number of floating-point operations performed on processo
Figure 5.7 on Page 81 shows a block-cyclic distribution ofedrimm among four pro-
cessors on two different processor-grids, rectangutat grid and square x 2 grid. From
the figure, we can see that a square processor-grids provides
1. better, more even, workload distribution. For examptea irectangular processor
grid 1 x 4, workload of Processor 0 is much less than than workloadatdéasors 1,
2, or 3 while in a square processor geick 2, all processors more evenly distributed

workload.
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1x4 Block-cyclic distribution Process Mesh 2x2 Block-cyclic distribution Process Mesh

o1 2 3 01 2 3 |/0123 01010101 0 1
01 2 3 01 2 3 2 3 2 3 2 3 2 3 2 3
01 2 3 01 2 3 01 0 1 0 1 0 1

01 2 3 0 1 2 3 2 3 2 3 2 3 2 3

0 1.2 3 0 1 2 3 0 1.0 1 0 1 0 1

01 2 3 0 1 2 3 2 3 2 3 2 3 2 3

01 2 3 0 1 2 3 o o 0o 0

01 2 3 0 1 2 3 2 3 2 3 2 3 2 3

Figure 5.7. Block-cyclic distribution of a matrix on a rectangularx 4 and squar@ x 2
processor-grids.

2. less communication overhead. In a rectangular procegabi x 4 distribution,
each processor has to communicate with every other prageskie in a square
processor-gri@ x 2 distribution, each processor has to communicate only wibh p
cessors in its row and column. The square grid minimizes timeber of communi-
cations.

To study how the shape of processor-grids affect the wodkttiatribution among
processors, we have run tests with different size problemdifferent shape processor-
grids, varying from more rectangular x 1 andn x 2 to more "square” grids: x 4:
nx1l=12x1,3x1,4x1,..,32x1,
nx2=1x22x23x2,..16x2,and
nx4d=1x4,2x4,..8x4.

Figures 5.8 on Page 82 show the load balance factor for therization phase of
the algorithm for problems of sizZ& x 23 x 8 and65 x 65 x 10 calculated using different

shape processor-grids.
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Figure 5.8. Load Balance Factor as a function of a number of processalpaitessor-
grid shape. The following rectangular processor-grid seagre usedn x 1, n x 2, and
n x 4; Left: problem23 x 23 x 8; Right: problemt5 x 65 x 10i.

Figures 5.9 on Page 83 show the same graphs of the load b&atmeas a function
of a number of processors and matrix siz&k x 23 x 8, 40 x 40 x 8, and65 x 65 x 10)
displayed for different rectangular shape processorsgrid 1, n x 2, andn x 4.
Finally, Figures 5.10 on Page 87 demonstrate efficiencyeélforithm as a function
of a number of processors and matrix siz&s X 23 x 8, 40 x 40 x 8, and65 x 65 x 10)
for different shape processor-gridsx 1, n x 2, andn x 4.
Figures 5.8, 5.9, and 5.10 show that
o distribution of the workload degrades when the number of@sses increases;
e distribution of the workload degrades monotonically fordira square” processor-
grid (n x 4), and degrades erratically for rectangular processosdridx 2 and
n x 1);
e distribution of the workload is more even (higher LBF) for dne square” processor-grid
(n x 4) than for rectangular processor-grigs x 2 orn x 1).
o for all three different size problems, efficiency is highar’imore square” processor-

grid (n x 4) than for rectangular processor-grigdsx 2, n x 1).
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Figure 5.9. Load Balance Factor as a function of a number of processargnatrix sizes
(23 x 23 x 8,40 x 40 x 8, and65 x 65 x 10). Top: for processor-grids shapex 1. Middle:
for processor-grid shape x 2. Bottom: for processor-grid shapex 4.
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Thus, we can conclude that problems are more scalable faresguocessor-grids

than for rectangular processor-grids.
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Ice-sheet Matrices used in this work

Problem Order | A sparsity |L and U sparsity avg. size of gavg. # flops per

n %(’“ 7”“@:&” supernode: Zrow: £125 5 106
23 x 23 x 8 | 16,084 65.37 1,487 8.96 1.79
33 x 33 x8 | 33,304 66.27 1,773 10.21 2.65
40 x 40 x 8 | 49,047 66.63 2,195 10.11 4.41
65 x 65 x 10| 163,614 89.00 3,734 9.99 13.04

Benchmark matrices analyzed by Li & Wang (2003)

n rnz(4) =) lsupernode: &row: £192s 5 106
bbmat 38.744 45/73 932 5.44 0.68
fidapm11l | 22,294 27.97 1,148 8.54 1.08
wang4 26,064 6.80 411 3.74 0.34
twotone 120,750 10.14 94 3.10 0.06
mixing-tank | 29,957 66.60 1,489 11.80 2.57
inv-extrusion-L 30,412 58.99 993 7.37 1.07
ecl32 51,993 7.32 806 2.71 1.17
ir 186,230 15.63 482 5.91 0.36
dds.quadrati¢ 380,698 41.62 854 9.20 1.29
dds15 834,575 15.70 631 5.92 0.72

Table 5.5. Characteristics of ice-sheet benchmark matrices and begrghmatrices from

Li & Wang (2003). Theses characteristics are derived froepidwrameters in Table 5.4 and
Table 5.4 and include the average number of nonzero eleroéntgper row, the average
number of nonzero elements bfandU per row, average size of a supernode, and FLOPs
(took to factorize the matrix) divided by matrix order.
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# processors| 23x23x8 | 33x33x8 | 40x40x8 | 65x65x10
4 2.86 3.73 3.94 4.00
9 4.46 6.71 7.23 8.22
16 5.60 9.61 10.26 12.99
25 5.97 11.69 12.30 16.38
30 6.10 12.11 13.34 17.73
32 5.95 12.32 13.60 17.78

Table 5.6.Speedup on processor-griglx 2,3 x 3,4 x 4,5 x 5,5 x 6,4 x 8.
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Figure 5.10. Efficiency as a function of a number of processors and maizess3 x
23 x 8,40 x 40 x 8, and65 x 65 x 10). Top: for processor-grids shapex 1. Middle: for
processor-grid shape x 2. Bottom: for processor-grid shapex 4.
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5.3.3.3 Column Ordering Strategies

To check which MMD fill-reducing orderings (based dA + A or AT A) is better for
our type matrices, we tested performance of the algorithtin thiese orderings on different
size problems. Table 5.7 on Page 89 shows characteristite aflgorithm run with two
different column-ordering techniques/ M D(A™ + A) and M M D(AT A). Tests are run
with three different size problems.

We can see from the table that M/ D(AT + A) ordering generates fewer num-
bers of supernodes thad M D (AT A) ordering for all three different size problems. This
means that the average supernode size is largeiffidof D(AT + A) ordering than for
MM D(AT A) ordering. The average size of supernodes generatdd byD (AT + A) is
about9 — 10, while the the average size of supernodes generatéd biyD (AT A) is about
6.5. The supernode size determines the size of the matrix p&ssedtrix-vector multiply
and other Level 2 BLAS routines.

More important than average size is the distribution of supée sizes. Figure 5.11
on Page 89 shows histograms of supernodes distribution@edewvith these two column-
ordering techniques, in red are distribution generated/dy D(A” + A), and in green are
distribution generated by/ M D(AT A). In the figure, the number at the bottom of a bin
indicates the smallest supernode size in that bin. The fighwe/s thatV/ M D(AT + A),
shown in red, generates supernodes distributed over a wptrum, that is, relatively
smaller number of smaller size supernodes and relativglydsinumber of bigger size su-
pernodes thai/ M D(AT A) ordering, shown in green. This distribution reduces commu-

nication overhead and makes the algorithm faster. Thushétype of matrices generated
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by our 3D higher-order model, column-ordering based\én/ D(AT + A) works better

than column-ordering based ai )M/ D(AT A).

problem MMD(AT + A)

MMD( AT A)

# supernodes avg.size fill-ins

run.time # supernodes | avg.size fill-ins run.time

23x23x8 | 1,795 | 8.96 | 13,324

13.71| 2,538 | 6.34| 8,529 | 28.21

40x40x8 | 4,849 | 10.11| 22,180

73.28 | 7,598 | 6.46| 12,879| 184.15

6

5x65x10| 16,376 | 9.99 | 37,304

784.93| 24,920 | 6.57| 20,675| 1,980.99

Table 5.7.Performance of the algorithm with/ M/ D(A” + A) andM M D(AT A) column-

orderi
done
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Figure 5.11.Supernodes size distribution for column-ordering techegj/ M D (AT + A)
andM M D(AT A). Left: for problem23 x 23 x 8. Right: for problent5 x 65 x 10.

5.3.3.4 Algorithm Stability and Numerical Error

In addition to computing a solution to a system of equatiams,must also eval-

uate the accuracy of the computed solution. Real numberscam@uter are generally

represented in single precision or double precision flggpimint format. Single precision

numbers have about 6 decimal digits of precision, while d¢®wecision numbers have

about 16 decimal digits. These formats are unable to represal numbers exactly. As
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computations are performed, we must concern ourselvesaeuitid off error and the evolv-
ing accuracy. In addition to round off error, there is likédybe uncertainty in the values of
A andb that must also be taken into account.

In theory, we should be able to put error bounds on the cortipataby following the
sequence of operations performed by the algorithm usedve Hte system of equations.
In practice this approach tends to grossly overstate tlersethat are actually observed
because a portion of the round off error is reduced due toeti@tion. Instead, the standard
practice is to answer the two following questions [10].

1. Is the computed solutionthe exact solution of a nearby problem?

2. If small changes are made to the given problem, are changbe exact solution

also small?

A problem Az = b is considered nearbyiz = b when small perturbations td andb
produceA andb. When the first question is answered yes, the computational kas
been kept under control. An algorithm that satisfies thiperty is calledstable When the
algorithm is stable, it is as though we made small pertuobatio the problem and solved
the perturbed system exactly.

If the answer to the second question is yes, then the prolslealledwell-conditioned
If the problem is well-conditioned and the algorithm is $¢althen our calculated solution
is a good estimate of the exact solution. If the answer to¢lsersd question is no, then the
problem is calledll-conditioned If a problem is ill-conditioned, then our solution is likel
to have a large error even if the algorithm used to computestable. The condition of a

problem is a property of the problem.
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Checking if the problem is well-conditioned or not involegculating all eigenval-
ues of the matrix, which is at leaé(n?®) and is not feasible for big size problems like our
problems.

Since there are no useful formulas that indicate the stalofiGaussian elimination
and LU factorization in practice, the common approach taigng the calculations are
stable is to measure the precision of the solution afterstideeen calculated.

SuperLU-DIST does not calculate the matrix condition numigut it calculates
backward errorBE RR, using Demmel’'s approach [8] as follows:

|bi — >, Ay @]
> [ Aillz;| + 1bi]

BERR = max; (5.4)

That is, the calculated solutiofx) can be considered as an exact solution of the
perturbed system:

(A+ H)i=b+ f, (5.5)

where

|HZJ| S BERR x |Aij|7

/il < BERR x |by.

Knowing that the calculations have been stable and the extevhich the system of
equations must be perturbed in order faio be an exact solution does not yet answer how
accuratelyz represents the solution of the original problem. If smaltydations of the

problem result in large changes to the solution, tihenay be an inaccurate estimation of
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the solution. However, we do not have an effective way oheating the conditionality of
the system. So, we limit ourselves to estimating stabilityadculations.

Table 5.8 on Page 92 shows that the accumulated errors dechiglieven for rela-
tively small size problems (n=33,304) and become aboutdheessize as the elements of
A or b for problems of size n=49,047. Solutions calculatethwuch big errors cannot be

trusted.

Grid Matrix Order BERR
23 x 23 x 8 16,084 3.03FE — 16

33 x 33 x8 33,304 2.33E - 03

40 x 40 x 8 49,047 9.91F - 01

Table 5.8. Component-wise relative backward error (BERR) for différgize problems.

Is it possible to reduce error? Are they big because our matrix is ill-conditioned
or because the algorithm couldn't find the right row/colunenrputations to maintain sta-
bility? Would the error decrease if we permute the rows ofrtfarix before solving the
system using apriori knowledge of the matrix? If so, whaeeia should we use to permute
the rows?

Figure 5.1 on Page 63 shows that an ice-sheet matrix has lsene@®ts on some of
the diagonals. The rows with zero elements on diagonalespond to equations approxi-
mating the ice incompressibility equations. Will the emeduce if we permute the rows of
the matrix to make a matrix with non-zero elements on theatafs? To do so, we need
some rule of what rows to exchange.

To demonstrate the concept, we consider a small 2-dimealgiooblem on & x 2
grid. The grid consists of 4 elements and 9 nodes as showrgurd-5.12 on Page 93.
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Variables we want to solve for are horizontal and verticahponents of velocities defined
in the nodes of the grid and pressures defined in the centdéne elements. This problem
generates a SLE of size 22. Scatter plot of non-zero entiéisel matrix are shown on

Figure 5.13 on Page 94.

13 15 17

14 16 18
21 22

7 q 11

] 1Q 12
19 2Q

1 3 5

2 4 [:]

Figure 5.12. 2D problem grid2 x 2 (1-18 — velocities, x- and y- components, 19-22 —
pressure).

To make matrix diagonal elements nonzero, we exchanged iroit® matrix cor-
responding to pressure in grid element with the rows comegipng to x-component of
momentum equation in the same element, or we exchangedItbwifg rows: 1 « 19,
3« 20,7 < 21, and9 « 22.

This will change the global matrix from the one on Figure 5at8Page 94 to the
one on Figure 5.14 on Page 95. The diagonal elements of thrsxrage not zeros. This
permutation will not make the matrix a diagonally dominanépto do so, we have to use
upwinding functions in approximating the ice incompresgibequations.

To test if the rows permutations improved stability, we rao tproblems with ma-

trices of sizes 33,304 and 163,614. The results of calamatwithout row permutations
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1 2 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

X X X X X X X X x ™ f.
2|X X XX X X X X x Vi f2
3(X X XX XX XXX X X X X X uz fs
4/X X XX XX XXXX X X X X Va fa
5 X X XX X X X X x us fs
6 X Xxx X X X X X Va fs.
7/X X XX XX X X X X X X X Ua fz
8|X X X X X X X X X X X X X X Va fs
9 X X X X X X X XXX X X X X X X X X X X X X| |ug fo
10X X X X X X XXX X X X X X X X X X X X X X| |vs fi0
11 X X XX X X X X X X X X X x| |ug i1
12 X X XX X X X X X X X X X x| |ve| = |fiz
13 X X X X X X X X X uy fis
14 XXX X X X X X X vz fia
15 XXX X X X X X X X X X X X| |ug fis
16 XXX X X X X X X X X X X X| |vs fie
17 X X X X X X X X x| |ug f17.
18 X X X X X X X X x| |ve fia
19X X X X XXX X Ps fio
20 X XXX X X X X P2 fao
21 X X X X X X X X Pa a1,
22 X X X X X X X X Pa f22

Figure 5.13.Matrix of 2 x 2 2D problem.

and with above described row permutations are shown on ta8len Page 96. The table
shows that the row permutations have

1. increased number of supernodes (N);

2. decreased number of nonzero elements of matfice$/ — I (which saves memory

and computation time),

3. made, in average, matricesandU more sparserdnz(L + U — I)/N decreases),

4. decreased number of FLOPSs,

5. decreased running time significantly, and

6. decreased the error, BERR, ®y100 times.
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19 X X X X X X X X P fia
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Figure 5.14.Matrix of 2 x 2 2D problem with permuted rows.

Thus, as can be seen from the table, row permutations redhacdavard error (BERR) by
about 100 times. It also reduced running time significartlglso reduced backward error

(BERR) by about 100 times.

5.4 Conclusion

SuperLU-DIST package was used to parallelize solving tls¢esys of linear equa-
tions generated by the 3-D higher-order model. The follgngonclusions can be made
from the performed experiments:

1. In UMISM code, which consists of two steps, building theteyn of linear equations

using FEM and solving the system of linear equations, it isugh to parallelize
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problem | order rows not permuted

N nnz (L+U-1) |nnz(L+U-I)/N| flops [unning] BERR

x103 x1010 | time

33x33x8 | 33,304 | 3,262 | 59,085,689 18.11 8.82 | 33.34| 2.33E-03
65x65x10| 163,614| 15,804 | 593,525,103 37.56 210.42|743.89| 9.99E-01
problem | order rows are permuted
33x33x8 | 33,304 | 5,805 | 32,664,317 5.63 3.88 | 11.78 | 1.22E-05
65x65x10| 163,614| 26,585| 288,318,180 10.85 76.88 | 158.36| 4.52E-04

Table 5.9. Comparison of performance characteristics for the testioest and matrices
with permuted rows.

solving the SLE step. Experiments show that for problemszz s 10°, building
the SLE takess 5 percent of total time, while solving SLEs take<5 percent.

2. Super LU — DIST is a reasonable software package for applying to UMISM prob-
lems when the problem size is not too big. For big size problem5 x 10°, the
algorithm produces solutions with high error measuves) .

3. Sparse matrices generated by FEM for UMISM are scalable.

e For example, running time of solving systeml1.6 x 10° equations is reduced
from ~ 53 min. on one processor to 6 min. on 9 processors.

e Scalability is better on problems when square processds-@re used rather
than rectangular ones.

¢ For problems of sizes 107, there is no need to use more than 16 processors.

4. MMD on AT 4 A column ordering method generates smaller number of (velgti
bigger) supernodes than MMD o A column ordering method, thus, making the

algorithm faster.
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5. It is possible to decrease running time, memory usage,iraptbve accuracy by
using a priori knowledge of the matrix and permute rows to endiegonal elements

of the matrix nonzer8.

9These row permutations do not make the matrix a diagonalfyicant one; to do so, we have to use
upwinding functions in approximating the ice incompreagjbequations.
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Chapter 6

APPLICATION OF MODELS TO GLACIOLOGY PROBLEMS

One way to validate a numerical model is to compare the maakplud with obser-
vations and data received from the field, such as Radio-Ecbhoadng (RES) or the Ice,
Cloud, and land Elevation Satellite (ICESat) data. To \&kdhe model, we have simulated
the iceberg profiles [59] and ice flow over subglacial lakes.

Another way to validate a numerical model is to compare thaemcal results with
the results produced by the other modelers. So to verify hleff/stream model, we have
simulated the flow of ice shelf confined by a rectangular emEayt into which an ice

stream discharges [46].

6.1 Simulation of Iceberg Profiles

6.1.1 Previous Research

Using an analytic solution [54], Reeh analyzed deformatibthe frontal part of a
glacier and the state of stresses using a method analogtdutheibeam theory [54]. As-
suming that the glacier is very thin (nedimension) and infinitely wide (ng-dimension),
he derived the equation for the deflection curve of the flgagjlacier (5-th order differ-
ential equation on: andt) which he solved usingumericalintegration. His calculations

show a downward deformation of the frontal part of a glacteha stages preceding calv-
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ing. Curves on Figure 6.1 on Page 99 show the progress in tirieeaeflections in the
frontal part of the glacier.

In 1984, Fastook [20] simulated iceberg profiles using SlIAdeialiscretized with
finite element method and obtained similar results.

Most of the rift and berg profiles in the Ross area show the ldesh profile that

these models predicted.
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Figure 6.1. Deformation of a frontal part of a glacier.
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6.1.2 ICESat Observations

Ted Scambos has examined several changes that occur doeloerg drift using
ICESat data. ICESat carries an instrument that gathersat@evdata. Specifically, Dr.
Scambos has examined data gathered from three large isatmreed A38, A43, and A44.

These icebergs calved in late 1998 and early 2000 from the®twe Shelf, calved

into smaller icebergs, and drifted north along paths showRioture 6.2.

50W 40 W 30w
22 Feb 2004
(A43B disintegrated) @
50 * 17 Mar 2004 30 Jan 2005
- | [A38Abroke up) [(A43A intacti~50
South i

27 Jan 2004 | \Georgiae = =

(A43B first event) .

\ =} 13 Apr 2004
55 *(A38B broke up)
J - ~55

26 Feb 2000

30 Jan 2005
[A43F intact)

‘6:5‘

o ANTARCTICA

Figure 6.2. Iceberg drift tracks for the five Ronne Ice Shelf-deriversys studies. Berg
locations are plotted every 10 days. Insets are satellisggés of the shelf front soon after
the initial calving events. (Provided by Ted Scambos.)

The picture shows that the icebergs have been calveédrisi latitudes (cold waters)

and drifted far to the North to th&°S latitudes (to warmer waters).
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Figure 6.3 shows elevation profiles from the examined igeband the Ronne Ice
Shelf front for different dates. The Ronne Ice Shelf andadbiergs within sea ice (south
of 63°), showed berm-type profiles, having 0.6 m raised roundech®evith maximum
height at about 2 ice thicknesses from the shelf/berg ed@pesd profiles are consistent

with the ones simulated by Reeh and Fastook shown in Figtre 6.

—

-4

.
Ei webrmi ~
- -
— ..:I"‘ .""'-'.:-H;--‘#.W
- i = S
g3 " FA——
[/ —e-—
S0 ’,,
! .
[ -
i é
0
AASAIbsCL O
g
a6l .,(" At s s s bansntas
- gy -
S ey PRI el = an - L)
L 31 1
i
i Ll ®
ddk 44
| L] -
N i S e T E—— &
12} 42
| =
] n m]
.|||:.. 1] ‘_.."qu"'..jiilillll'
| . Y
'l"*
3%
A < -
2 e T T L
- -
18 p— L
. P
i PR ...i.- ot e ]
f ¥ T i e
c“‘
- -’
- '.*r" R
s e
4 a "
" o
i -
8 -
& i - -
& -
¥ o = —— i
[\ r
| ATt
il

300
15000
A0 -
]

L
5500

2500

5

K -
1500
20040

Figure 6.3. Examples of ICESat elevation profiles over iceberg and iedf shargins.
Open symbols indicate the shelf or berg front was in sea kg symbols indicate the
iceberg was in open water; gray-fill symbols (A38B, 08 Mar€i02) indicate partial sea

ice cover. (Provided by Ted Scambos)

Icebergs north of the sea ice edge have a consistent pafteamsed edges, ram-
parts’, with shallow (50 to 100 cm deep) 'moat’ areas inbcand parallel to the margin.

These profiles are not consistent with the ones above buuppoged by the photographs
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made by astronauts aboard International Space Statiomirada2004. The photograph
(Figure 6.4) reveals extensive melt ponds, some impounyextige-parallel moats. This

and other similar photographs initiated Ted Scambos’ study

Figure 6.4. Photograph from ISS of iceberg A43B near South Georgia dsErowing
melt ponding and subsequent break-up. The iceberg caleed thhe Ronne Ice Shelf of
Antarctica. Photograph made on January 22, 2004, showssxéemelt ponds on the berg.
Over the next few days to weeks, the berg underwent a rapiteijgation. (Provided by
Ted Scambos)

6.1.3 Forces at an Iceberg Face

'Berm’ profiles consistent with the ones investigated bytéals and Reeh could be
explained easily if we use Professor Terry Hughes’ geométrce balance method. The
difference between the lithostatic pressure in ice and jfuedstatic pressure in water is

shown by blue arrow. This difference pulls the ice forwaradieg to toe-down profile.
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Figure 6.5. Schematic cross-section of ice shelf and icebergs, iltisy basic character-

istics, nomenclature, and the physical basis for the mogedr@ments.

However, as the bergs are drifting into ocean that has awanm’ mixed zone, the

warm upper layer and waves are acting to erode the front at#terg; so that the edge
profile becomes like a stair-step: vertical for the deep undter part, then a shelf of some

10 to 100 meters perhaps, then the freeboard face of the Deigyshelf, or bulge, leads to

a reversed torque on the berg front, lifting the freeboagkatgward.

6.1.4 Modeling

We modeled this problem using a 2-D flowline<{ = plane) version of our full-Stoke

model. The Figure 6.6 shows two 'cold’ profiles and two 'wamnofiles, with our model

results next to them.

103



o
o

—o— A43F 22 Feb 2003;66.69° 5

(9]
o
T

—— 'Cold' model, 500 mice thickness
ﬂ?@—o—uwﬂ—c—o—o O~0-0-0-0—~0-0-0-0-0-0—-0-0)
—o— A43A 18 Mar 2003; Lat 67.52°5

.\\‘ — 'Warm' model, 500m thick w/ 40m bench

. L3 -
L P .Htammwarw eeoed
—a— A3BB 310ct 2003; Lat 56.00" 5

\ — "Warm' model, 300m thick w/ 20m bench

".‘*Om"r ee ‘._W

—a— A43B 09 Nov 2003; 54.25°5

B
61
|

'
o
L

7]
n
T

Freeboard elevation (m)
L0
o

ha
(4]
T

0 1.0 2.0 3.0 4.0 5.0
Projected distance from Iceberg edge (km)

Figure 6.6. Comparison of ICESat observed profiles and our model runsSSHE profiles
used in setting model parameters are shown with ancilldynmation similar to Figure 6.3
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Cold/warm water is simulated as a modified shelf front (amdai@s modified on the
berg edge). The model generates an 'equilibrium state’lprafe. time— infinity.

For the "rampart-moat’ case, we examine the effects of aneoeh of varying widths
with an upper surface 5m below water level. Benches of jusvarheters width were
sufficient to completely eliminate the 'berm’ shape andth# iceberg margin higher than
the mean freeboard. We find that benches of 20 to 40 meterh t&dt match the observed
warm-water berg profiles.

As the graphs show, iceberg profiles generated by our modglité well the ob-

served iceberg profiles.

6.2 Simulation of Ice Flow over Subglacial Lakes

The next example shows a 2-D and 3-D simulation of ice flow suéiglacial lake.

6.2.1 RES Observations

Radio-echo sounding in East Antarctica has revealed ttstemde of numerous sub-
glacial lakes. Subglacial lakes have relatively flat swefaonsistent with a surface of an
ice shelf. The largest of detected subglacial lakes is Laistok, which is 250 km east of
Ridge B (Figure 6.7). It is beneath 4 km of ice, is 250 km lond 80 km wide. Flow of
ice across the lake is dominated by the general eastward fldve grounded ice sheet.

Figure 6.8 shows a Radarsat image of the ice-sheet surfagssasubglacial Lake

\Vostok.
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Figure 6.7. Lake Vostok location map from Anahitet al(1902). The white star denotes
the location of the Vostok Ice Core. Map scale is in kilomgter
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Figure 6.8. Radarsat image of the ice-sheet surface across subgladal Yostok (@
RADARSAT)
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Several RES data [42, 61, 4] over East-West transect of LaktoW observed one
distinct feature of the ice flow over the lake: there is a thef@about 2-5 meters) in ice sheet
surface profile in the western margin of the lake and a riseu@b-10 meters) in the ice

sheet surface in the eastern margin of the lake (Figure 6.9).
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Figure 6.9 on page 110 is from Science Frontiers no. 107-Gept1996. William

R. Corliss. It shows surface and bed elevations on East-Wasect of Lake Vostok.
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6.2.2 Previous Research

Some researches suggest that these profiles are due to dpeasid upslope mo-
tions produced by a mechanism driven by a change in ice dysainom grounded, float-
ing, and regrounded ice [60]. Some other researchers thatkthe trough is caused not
by the change in the ice-dynamics from grounded to floatethutdy melting-refreezing
mechanism at the ice-water interface [48]. They assumetliiea¢ is a narrow melting-
freezing zone on the eastern part of the lake.

Numerical modeling of ice-flow over subglacial lakes wera@by Pattyn [51]. His
model shows important aspects of ice-flow over the lake feafisuch as surface flattening,
but has not shown troughs and rises on the sides of the lakiodugrid resolution used
(the model lake is approximated with only two grid points).ur@nodel is capable of
producing all morphological features discussed aboves slapporting the suggestion that
the observed profiles are caused by the change in ice dynénmneggrounded to floating

and regrounded ice.

6.2.3 Modeling

6.2.3.1 2-D Modeling

We solved the problem iteratively starting from a flat frozssd using a constant
accumulation rate. Assumption of a linear flow gives a domalgotic analytic profile for
the initial data. Starting from this steady state ice sheattions, a lake was generated by

adjusting the basal boundary conditions for a stress-neflace at the middle of the grid.
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The Figure (6.10) shows the evolution of the surface aftevking the stress-free boundary

conditions until the steady state was reached.

Surface Evoluiion
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Figure 6.10.Evolution of the ice surface after invoking the stress-fseendary conditions

until the steady state is reached. The figure demonstratesitiface flattening over a lake
as well as creation of a trench on the onset of the lake an@ @nishe down-flow edge of
the lake.

As can be seen, the surface topography changes dramatwdlgcome almost flat
over the lake. We can also see the trench on the onset of thaitaka rise on the down-flow
margin (edge) of the lake, features that have been obsewseMeral radio-echo sounding
surveys over West-East flowline above Lake Vostok.

The Figure (6.11) illustrates the velocities magnitude.dake see that velocities are

highest over the lake.

6.2.3.2 3-D Modeling

To simulate three-dimensional ice flow over a subglaciat Jaie started from the

steady state of the radially-symmetric ice sheet with fnotat bed and elliptic ice surface
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Figure 6.11.Velocity magnitudes. The figure shows a local velocity iaseover a lake.

Figure (6.12). Then a subglacial lake was created in the lmigicthe domain by relaxing
velocities constraints.

To solve the problem, we use a three-dimensional, time+ugrg model that solves
the full momentum (diagnostic) equation and continuityofprostic) equations to predict
the ice thickness distribution and velocity fields in respémthe change in boundary con-
ditions. The model domain is 10x10x4 km which is solved on2Bg23x8 grid (0.5 km
grid; time step is 500years). The experiment lasted for@00

Figure (6.13) shows the response of the ice thickness tohhage in boundary
conditions for the first 5,000 years.

The ice velocity rapidly increases and the surface topdgrapanges dramatically
to become almost flat over the lake. The model result showsattr@nch and a rise are
generated at the in-flow and down-flow edges of the lake whiehhee results of the prop-

erly accounting for the longitudinal and transverse sh&asses. Figure (6.14) shows a
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Figure 6.12.The initial steady state of the ice sheet with frozen bed #igdie ice surface.
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Figure 6.13. The steady-state solution of a subglacial lake simulation.
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vertical transect which cuts across the ice sheet over #&e [@hus, our model is able to
replicate all the important features of an ice flow over a $atigl lake which are observed

at Lake Vostok, Antarctica.

ﬁ“ﬁégg '

Figure 6.14. A vertical transect through the ice sheet over the lake.: liritial, prelake,
condition. Right: steady-state solution. A trench and @ aie generated at the in-flow and
down-flow edges of the lake.

6.3 Simulation of EISMINT Level 1 Ice Shelf Test

To verify shelf/stream model, we have simulated the proldaggested by EISMINT
and compared the results with [46]. The test models the floanate-shelf confined by
a rectangular (plan view) embayment, into which an ice strdescharges (Figure 6.15).
Since the test models an ice-shelf flow, the model's paraisate chosen as, = «,, = 0.

The two-step numerical procedure is used to perform a tieye Sthe first step is the
solution of the diagnostic equations (4.26) - (4.27) to wbthe ice shelf/stream velocity

field from the the current ice thickness. This step requihesinternal iteration to get
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Dimensional Constants
Symbol Value Definition
n =3 flow-law exponent
g =9.81ms2 acceleration of gravity
p =910 kgm™—3 ice density
Pu = 1028 kgm =3 water density
31556926 s a ! conversion factor for seconds to year
a = 0.3/31556926 m s~! ice accumulation rate
By = 1.4688 x 10° Pas3 ice stiffness parameter
H, = 1000m initial ice thickness
Ug = % ms! velocity of ice-stream input

Table 6.1. Values of constants specified in the intercomparison expari in Macayeal
(2994)].

an accurate solution. The second step is the solution of thgnpstic equation (3.28)
to specify how ice-thicknesk changes with time as a result of the divergence of the ice

transport associated with nonzero velocities and the seidad basal accumulation rates.

6.3.1 Initial and Boundary Conditions and Finite Elementshkie

Figure (6.15) displays the finite-element mesh which has lbesed to simulate the
test by [46] and is used in this work. This way we can compaeedbults of the simulations
of shelf flow on the same mesh. The figure also displays thedayyrconditions used for
the test.

Table 6.3 shows values of constants used for the experimdifisy are specified

following [46].
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Figure 6.15. Finite Element Mesh and Boundary Conditions. Mesh: 17x2despmesh
resolution corresponds to 5 km. Boundary conditions: tmeikiatic boundary condition
associated with ice-stream input is specified on the bottarodés of the right boundary;
The ice front corresponds to the right boundary; The lowenoary, lineC' D, is an axis of
symmetry across which there are no gradients in longitudiglacity; The top boundary
and portion of the right boundary, not corresponding to tifl@wing ice stream, have zero
velocity (no slip, no normal flow) boundary conditions siieci.
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6.3.2 Results; Comparison with MacAyeal's EISMINT expezits

We run the coupled ice-shelf model through about 600 yeardifhensional units)
starting with a uniform 1000-m ice thickness. The equilitmma of the thickness at the
ice-front node corresponding to the point(in Fig. 6.15) where the axes of symmetry (the
ice-shelf’s longitudinal centerline) intersects the icent is demonstrated in Figure 6.16.

Equilibration is complete at about 400 years.
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Figure 6.16. Change of ice-front thickness at line of symmetry (paihin Fig. 6.15).
Equilibration is complete at about 400 years.

The ice-thickness fieldy, and velocity magnitude at the end of the 400-year evolu-
tion are displayed as contour maps in Figures 6.17 and 6.48.fiures also display the
ice-thickness field and velocity magnitude at the end of {&&érs of evolution generated
by [46].

Both programs generated very similar results. The minoeatedn both maps is
the fact that the thickness has grown large at the node pomésponding to the upper
right-hand corner where the two stagnant, no-flux boundamieet.

Figure 6.19 shows velocity vectors after 400 years of elahut
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Figure 6.17. Contour map of ice thickness. Left: map generated by Maddi€84).
Right: map generated by our program. The ice front is on titdnknd side of the diagram,;
the ice-stream input is on the lower right-hand side.

H

N

gl

- BaC

F 00cC

| g

3L

A0

1ar

A

Figure 6.18. Contour map of velocity magnitude. Left: map generated bycéaal
(1994). Right: map generated by our program. The ice froohishe left-hand side of
the diagram; the ice-stream input is on the lower right-hsidd.
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Figure 6.19.Velocity vectors after 400 years.

Figures 6.20 and 6.21 show ice thickness along the axis ofr@tmy (lineC'D in
Figure 6.15 and ice thickness along the transverse, midkiseof the ice shelf (linel B in
Figure 6.15 after equilibration has been achieved.
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Figure 6.20. Ice thickness (m) along the axis of symmetry. Left: map gateel by [46].
Right: map generated by our program.
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Figure 6.21.Ice thickness (m) along the transverse, midline axis of¢heshelf. Left: map
generated by [46] (after 150 years of evolution). Right: ngaperated by our program
(after 400 years of evolution). Notice that the ice thicksatsthe stagnant side (left) of the
ice shelf is slightly higher in our diagram than in the lefagliam while the ice thickness in
the center of the shelf (right) is slightly lower than in tleét Idiagram. This is the result of
depicting the thickness at different time of evolution.
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This experiments demonstrates that our ice-shelf modedrgées results very close
to ones generated by [46] which can be considered as a s#tisfaverification of the

model.

6.4 Modeling Conclusion

This chapter has presented three examples dealing withirfiljlagion of iceberg
profiles, (2) simulation of ice flow over subglacial lake, §8fisimulation of ice-shelf flow
confined by a rectangular embayment into which an ice-stidiaainarges.

Simulation of ice-shelf flow confined by a rectangular embagthinto which an ice-
stream discharged demonstrated that the shelf/streaml penierates results very similar
to ones generated by [46] which can be considered as a s#bisfaverification of the
model.

The other tests show that the higher-order model repligaipertant aspects of the
iceberg (toe-up and toe-down) profiles, as well as aspecibs#rved ice stream features,
such as the surface flattening over a subglacial lake, aVetatity increase over the lake,
and trenches and troughs: features which are observed at\tadtok, Antarctica. Thus,
they demonstrate the importance of properly accountindnigier-order stress gradients

in the model.
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Chapter 7

CONCLUSION AND FUTURE WORK

In the first part of this thesis, we presented constructiahemification of two mod-
els to simulate ice-stream flow, a three-dimensional ftdk8s ice sheet model and a mod-
ified MacAyeal-Morland model. Since the 3-D full-Stokes rebdequires a significant
computational effort, in the second part of this thesis, welied the possibility of us-
ing the SuperLU-DIST multiprocessor software package évisg the systems of linear
equations generated by the three-dimensional full-Stokadel.

The uniqueness of the modified MacAyeal-Morland equatiom igs inclusion of
basal shear friction (proportional to the driving stressoospeed) in the derivation of the
equation. In the original MacAyeal-Morland equations [46F basal drag is not included
in the fundamental formulation but instead is added as alsmoakction (proportional to
speed) to the final equations. Our approach does two things; Bl including the basal
drag in the derivation of the equations, it makes the eqnat&elf-consistent. Second,
since derived equations contain a term that depends on th@raelient, our approach
gives a formula that accounts for how ice stream flow depende@bed topography. The
basal drag term depends on the heuristic used to approxthebasal shear stress for ice-
streams. In this work, we consider two heuristics for theabakear stress, MacAyeal’s
assumption that the basal shear stress linearly depentie eelocity, and our assumption

that the basal shear stress is some proportion of the drstregs. If we find a dependency
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formula for the structural form of functional dependencyicd-stream basal shear stress
from temperature, velocity, surface elevation, bed-slepe it could be easily substituted
in our modified MacAyeal-Morland equations. The search fimhsformula may be another
avenue for future research.

To validate the modified MacAyeal-Morland model, the Eulapéce Sheet Model-
ing Initiative 1 intercomparison test is conducted. The sanulates an ice shelf confined
by a rectangular embayment into which an ice stream disebkaiithe results are compared
with the results generated by [46]. One of the shortcomiridisis chapter is that the con-
structed model has not been used to simulate the flow of astieam with a non-flat bed;
that is, we didn’t answer the question: is the effect of bagabgraphy on ice sheet flow
small or significant and, if it is significant, can our modifi@ddel capture it? This work is
left for future research.

The significance of the three-dimensional full-Stokes nhaglie the inclusion of all
higher-order stress gradients in the momentum equatiomalidate the three-dimensional
higher-order model, experiments demonstrating the inapos of the inclusion of all higher
order stresses in the model, such as simulation of the @onlat an ice stream within the
ice sheet and simulation of iceberg profiles, are conducied. proper accounting for the
higher-order stresses allowed the model to replicate tipeitant features of ice sheet flow
observed by glaciologists.

A major deficiency of the higher-order model is that time tetions do not allow
using it in large problem domains. One way to solve this mobls to use parallel pro-
gramming. In this work, the possibility of the applicatiohaodistributed SuperLU-DIST

software package to solve the model’s system of equatiangisred, and the performance
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characteristics of the package are benchmarked. Perfaieseglindicate that for big-size
matrices generated by the three-dimensional model, catipos are not stable. However,
we have shown that it is possible to improve stability of thgpoathm by using a priori
knowledge of the matrix and permuting rows prior to applytimg algorithm to solving the
system.

One of the shortcomings of the work is that the constructedeisoare isothermal
ice-stream flow models — they do not consider effect of teatpee flow on ice-stream
flow. The models also do not consider the interaction betweence-stream flow and the
underlying bedrock. These steps are left for future work.

In this work we considered possibility of using multiprosess to overcome the time-
constraint problem of solving the 3-D full-Stokes model.offmer way to solve this problem
may be using embedded modeling. That is, construct a meétéal embedded model
which uses a shallow-ice approximation model (that doeseguire much computation
time) in the entire domain, with the higher-order model imtjgalar subdomains (where
longitudinal and lateral stresses play an important ra@y the Morland model in the
ice-shelf areas. In addition to generating better solstitims approach would allow us to
internalize the generation of boundary conditions at thegina of the higher-order model

sub-domains.
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Appendix

A

SYMBOLS AND CONSTANTS

Symbol Unit Definition
x,y m horizontal dimensions
z m  vertical dimension
Zs m ice-surface elevation
2 m ice-bed elevation
h m ice thickness
U; ma~! velocity components
Uz, Uy ma~! horizontal components of the depth-averaged velo
of the column of ice
a ma~! ice accumulation rate
t yr time
n =3 flow-law exponent
A Pa"a ice-flow parameter
B=A"% Paa~= resistance to ice-flow, viscosity
P Pa hydrostatic pressure
Oij Pa stress components
ol Pa deviatoric stress components
O Pa effective stress
€ij a~! strain rate components
0ij Kronecker delta
g =9.81ms~2 acceleration of gravity
p =910kgm=3 ice density
Puw = 1028 kgm=2 water density
31556926 sa~! conversion factor (seconds per year)

city

Table A.1. Symbols and constants used in this work. The following ftaorsis used:
ko s _ kg

Pu= -

m

2 T ms?
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Appendix B

SHALLOW ICE APPROXIMATION MODEL

Since solution of a full system of equations is complicateése equations are solved
in a reduced form. A typical ice sheet has a thickness of orszweeral kilometers while
its lateral extend is typically on the order 8§00 £m. That is, the aspect ratio, or ratio
of length to the depth of the ice sheet, is small and this fantle exploited to derive the
reduced form of the ice sheet model. In this model, all seesse neglected except for the
basal shear stress,( ando,.), that is, gravitational driving stresses are balanceellpc
by basal traction. This approximation is called a shallosvapproximation (SIA).

Figure B.1 on Page 137 shows the forces acting on a glaciérdatisnz in the SIA
model.

driving stress

=5

direction of flow
_—

basal drag

Figure B.1. SIA: major forces acting on ice-sheet in one direction.
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The derivation of the model can be found in [[50]] and [[33)JA is a good approx-

imation for regions where creep is the dominant ice flow psece

B Expressions for Velocities

Neglecting all longitudinal deviatoric and lateral sheaesses means that in (2.16) -

!
80”-

I ay

802-
J
=+ —0

(2.18),%

— 0. In this case, equations (2.16) - (2.18) become

. do, )
x-component: %%z = 92
8 /
y-component: 7= — —2F, (B.1)
!
z-component: A%t — g

Vertical integration of the— component of equation (B.1) yields:

0..(2) + P = pg(z — s). (B.2)

wheres is ice surface.

The disparity between the vertical and horizontal lengtiexcin ice-sheet flow im-

plies that simple shear dominatégg/ﬁ > 8;;) and(agéz > ag'zz>. That is, if we substi-
z T z Y

tute (B.2) intoxr— andy— components of (B.1) and integrate from= z to z = s, we get

that shear stresses balance gravitational driving ssesse

Uzz(z) = —pg(S - Z)%v (BSa)
0,.(2) = —pg(s — z)g—; (B.3b)



Using ice flow law (2.6) written as’.(z) = B (e;z)% and (B.3a), we get

B(e:n)h = —pgls — )0, (B.4)

Since (% > %u=) ;. ~ 1% and equation (B.4) becomes as follows:

1 Ju, 0 1 Js
(352) =—roar-ag ®.5)

whereA is ice flow law rate constant ifa =3 sec~! units andB = A~ .
Integrating (B.5) foru, (and similar equation for,) from z = 2 to ice surfaces

generates expressions for horizontal velocities:

a z
ua(2) = ua(s) = 2pg" (V" 5 [ A (s = 27 (B.62)

w(2) = uy(s) ~ 2pg [5G [ A 2 (B.6b)

The vertical velocityu, is found using the divergence of horizontal velocity fieldrfr

incompressibility condition (2.5a):

Ou, N Ou, N ou,
ox dy 0z

— 0. (B.7)
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B Continuity Equation

Conservation of mass equation (2.12) takes the form of thero-averaged flow
law that allows to obtain the expression for the change ddllme thickness in space;
Oh S
o v, Uh) ' B.8
==V (On) +a, (B.8)
whereU is the vertically averaged horizontal velocity vect®ft, is the two-dimensional
horizontal divergence operator.
Equations (B.6a) and (B.6b) are integrated from bedrockécsurface and divided
by h to obtain components of the vertically averaged horizorgidcity vectorU:

(pg|Vs|)" A(T)h"*
n+t)(n+2)

(B.9a)

1 S 1 S 2
U, = ‘/ up(2)dz = uy(s) + —/ 2 (pglVs|)" = uy(s) +
h b h b

(pg|Vs|)" A(T)h""
(n+1)(n+2)

(B.9b)

U, = 7 /bs uy(2)dz = uy(s) + % /bs 2(pg|Vs|)" =uy(s) + 2

When (B.9a-B.9b) are substituted into equation (B.8), alimoar parabolic equation
results. This equation fadr is usually calledice-sheet equation”
As can be seen from ice-sheet equation, ice-sheet massiiaxrt€B.8) is purely a

function of the local ice thickness, and surface gradieny/s.

140



B Complexity of SIA Equations

In the SIA model the only stress considered is the basalsstrékis allows us to
reduce 3-dimensional equations to quasi-2-dimensionadteans with variables in di-
rections integrated out, that is, to solve shallow ice apipnation model, we have to solve
one non-linear parabolic equation (B.8) flor The velocity field is calculated using for-
mulas (B.6a) and (B.6b). If we are solving a time-dependesttlpm, the above equations
are solved at each time step. The equatiormiftias one degree of freedom per node and
solved in a 2-dimensional grid.

Since SIA equations are solved in a 2-dimensional grid, f@céangular region that
is 50 x 40 = 2,000 nodes, the system has orly000 independent variables (ice thickness
h).

Since SIA neglects all stresses except the basal drag, ibmaygood approximation
for inland ice but may be very poor for fast-flowing, low-sagé slope ice streams, where

longitudinal stresses may not only be important, but mayat be the dominant stress.
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Appendix C

COMPRESSED COLUMN FORMAT SCHEME

In addition to getting an acceptable solution, the goal bfisg the system of sparse
equations on a computer is minimizing the storage used anismzing the execution time.
Jacobs solved the problem by designing and writing efficpgntedures and structures
needed to interface the ice sheet model with SuperLU.

To take advantage of the sparsity of the equations, comgmtesslumn format of stor-
ing the matrixA of the equations have been used. It is a data format thiat is compatible
with SuperLU. Three one-dimensional arrays are used t@ stanatrix in compressed-
column format. One array is used to store the non-zero erifid. The non-zero entries
are stored in column-row order. The second array is useate gte row number of each
corresponding non-zero entry in the values array. The metfumn number is the index
to the third array. The third array contains the index valiethe first and second arrays
where the first non-zero entry from each colummask stored.

However, inserting a new non-zero entry in a compressedghuoformat data struc-
ture is costly. In order to maintain entries in column-rower, all entries in the row number
and value arrays above the new entry must be moved and ak®mirthe column index
array above the column number of the new entry must be upddiadlleviate this per-
formance bottleneck, a modified compressed-column forntatsupporting routines was

developed by Rodney Jacobs.The rectangular FEM grid allews compute the maximum
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number of non-zero entries per row of A. This maximum amoduispace is allocated for
each column in the row number and value arrays. Instead afi¢pawsingle column pointer
array that points to the first entry for each column in the reamber and value arrays, two
column pointer arrays are used. The first array points to teerbw number and value in
each column and the second array points to the last row nuamgevalue in each column.
The free space for each column in the row number and valugsaatbbows a new entry to

be added by moving only entries in the column of the new entry.

- KN KN B

cogg s 711 |

row [ 122l -]

Value|2.5‘10.1‘ - |5.3‘7.8| - |-1.3‘ - | - | - ||

Figure C.1. Modified compressed-column format data structure befoueezjing (pro-
vided by Rodney Jacobs)

Once FEM has completed the computatiomothe remaining free space is removed
from the modified compressed-column data structure by ngoemtries down in the row
number and value arrays and updating the column pointetseircalumn pointer arrays.
Once the free space has been squeezed out of the data strtioeustarting column pointer
array, the row numbers array, and the values array are imafagtpressed-column format
data structure that is compatible with SuperLU.

The FEM computation requires access to entries by row and column number as

well as the ability to insert new non-zero valuesAn Compressed-column format allows
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efficient access to non-zero entriesdrby row and column numbers. The column number
can be used to determine the range of index values in the rombeuand value arrays
that contain non-zero entries for the specified column. &gerries in this index range
are stored in order by row number, a binary search can be osguidkly find the index
value for a specific row. If the row number is located, thenghiey value can be read from
the values array. If the row number is not found, then theyevafue must be zero.The
ice sheet model requires performing the FEM calculatioreturh time step of the model.
Once the row and column numbers of non-zero entries prodag&EM is determined in
the first iteration, they remain constant in all subsequenaiions. After the first iteration
is complete, the values array is zeroed and the column pantkrow number arrays are
left unchanged. No new entries are added to the data steuctgubsequent iterations, so
there is no need for additional free space or the attendaieiezg operation.The ice sheet
model is written in Fortran 77. A C interface routine that &élable from the ice sheet
model was written to invoke the needed UMFPACK and SuperLittionality to solve
the system of equations.

The software package and interface routines have beerrameegwith UMISM for

this project by Rodney Jacobs [40].
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